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Somewhere, something incredible is waiting to be known. 
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Summary 

Lung cancer belongs to the most abundant and deadly cancer types in the German 

population. Although the variety of available medication including targeted drugs 

increased over the years even for advanced disease stages, there is still a lack for 

informative biomarkers for accompanying diagnostics. These will contribute to early 

treatment response assessments and individualized therapy management. 

The aim of this study is to investigate the potential of eight tumor markers and new 

developed immunological biomarkers regarding prediction of therapy response and 

prognosis of survival in a cohort of 266 patients with advanced non-small cell lung 

cancer receiving chemotherapy. 

Serial blood samples were collected in the CESAR Biomarker Substudy, a part of the 

clinical CEPAC-TDM trial. Commercial assays were applied to measure the eight tumor 

markers CYFRA 21-1, CEA, SCCA, NSE, ProGRP, CA 15-3, CA 125 and HE4. Novel 

ELISAs for the quantification of the soluble programmed cell death markers based on 

chemiluminescence detection technology were developed and established. 

Comprehensively analytical and preanalytical validation assured high quality sample 

assessments. Independent data analysis was performed in cooperation with a statistics 

company. 

Before start of therapy tumor markers were not predictive for poor response to therapy 

objectified by computed tomography prior to cycle 3 , though marker changes between 

cycle 1 and 3 (C1, C3) indicated predictive value for CYFRA 21-1, CA 125 and NSE for 

poor and CYFRA 21-1 and CA 125 for good response. Prognostic potential for 

progression free survival was seen for pre-therapeutic levels of CA 15-3 and CA 125 and 

before start of C3 also for CYFRA 21-1, CEA, SCCA, CA 15-3 and CA 125. Prognostic 

value concerning overall survival was found for pre-therapeutic levels of CA 15-3 and at 

cycle 3 for CYFRA 21-1, CA 15-3 and CA 125. The programmed cell death markers 

were not predictive for response to therapy. 

The comprehensive clinical characterization, validated assay procedures and an 

independent data analysis build a meaningful investigation of the predictive and 

prognostic potential of application of tumor markers and new immunological biomarkers. 

Conclusively, the tumor markers CYFRA 21-1, CA 15-3 and CA 125 revealed predictive 

and prognostic potential and should be included in future biomarker trials in advanced 

lung cancer patients. 
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1 Introduction 

Lung cancer is one of the most abundant cancer types in human kind. In 2016 the 

Robert Koch Institute estimated 492000 new cancer diagnoses in Germany. Lung cancer 

rates on position four accounting for nearly 9% of all cancer diagnoses (Rober Koch-

Institut, 2019). Due to unspecific symptoms most of these carcinomas remain undetected 

until the disease reached its late stages. This results in short overall survival although a 

variety of treatment options is available. The class of tyrosine kinase inhibitors 

introduced the first targeted therapy option and showed great improvements in 

progression free and overall survival. Nevertheless many patients still did not benefit 

from the new approaches. In 2011, the immune checkpoint inhibitors (ICIs) introduced a 

new class of anti-cancer therapeutics convincing with unexpected therapy success in 

former untreatable patients. The approach relies on supporting immune response 

against the tumor cells. The development of targeted medication is accompanied by the 

need of target identification diagnostics. 

Different approaches follow the path to realize a more and more individualized therapy. 

Not only the drugs themselves but the diagnostic markers play an important role in 

personalized medicine. Diagnostic tools which enable early differentiation between 

therapy responders and non-responders will enable an early shift of therapy. This not 

only spares the patient from the risk to suffer from adverse events but also can also lead 

to an effective treatment in the second place. 

Biomarkers to reliably predict therapy response and forecast progression free survival 

and overall survival are still needed for all treatments in lung cancer. The majority of 

patients is still and will be for the next year, treated with a conventional chemotherapy 

which presents as the gold standard in lung cancer therapy. This work investigated eight 

tumor markers in an interventional study using a paclitaxel/platinum therapy regimen in 

NSCLC patients. Additionally, new biomarkers were investigated in the cohort. Three 

assays were developed to quantify the immune response modulating molecules, soluble 

programmed cell death markers PD-1, PD-L1 and PD-L2 in blood. 
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2 Theoretical background 

2.1 Lung cancer 

Lung cancer is currently one of the most abundant cancer types worldwide. First 

predominantly observed in men, cases in women are constantly rising due to adjustment 

of smoking habits and rising risk of environmental causes, like air pollution. 

2.1.1 Types of lung cancer 

According to histology lung tumors can be divided into several subtypes (Table 1). A 

major revision on earlier classification was published by the World Health Organization in 

2015 (Travis et al., 2015). It is still valid and thus followed by the latest Manual published 

by the Tumorzentrum Munich in 2020 (Tumorzentrum München, 2020). 

Commonly it is also distinguished between Non-small-cell lung cancer (NSCLC) and 

Small-cell lung cancer (SCLC). Whereas NSCLC encompassed the majority of 

diagnoses (85%), SCLC accounts for the remaining 15%. A further subdivision of 

NSCLC into the three main histological carcinomas adenocarcinoma, squamous-cell 

carcinoma and large-cell carcinoma can be performed according to the observed 

morphology. Under one percent of NSCLC belong to the rare subtypes adenosquamous 

carcinoma, sarcomatoid tumors, carcinoid tumors and bronchial gland tumors (Herold, 

2018; Reck & Rabe, 2017) (Figure 1). The classification plays an important role in the 

therapy decision process as the choice of medication is based on the histology. 

 

Figure 1: Lung carcinoma subtypes 

The pie chart on the right side shows the two main subtypes small-cell lung cancer (red) and non-

small-cell lung cancer (blue). The pie chart on the left side displays the subtypes of NSCLC and 

their proportions in different shades of blue. (Herold, 2018, p. 401). 
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Table 1: Differentiation of lung cancer subtypes 

Histologic type and primary subtypification 

Epithelial tumors 

  Adenocarcinoma 

  Squamous cell carcinoma 

Neuroendocrine tumors 

  Small cell carcinoma 

  Large cell neuroendocrine carcinoma 

  Carcinoid tumors 

  Preinvasive lesion 

  Large cell carcinoma 

  Adenosquamous carcinoma 

  Sarcomatoid carcinomas 

  Other and Unclassified carcinomas 

  Salivary gland-type tumors 

  Papillomas 

  Adenomas 

Lymphohistiocytic tumors 

  Extranodal marginal zone lymphomas of 

    mucosa-associated lympohoid tissue 

  Diffuse large cell lymphoma 

  Lymphomatoid granulomatosis  

  Intravascular large B cell lymphoma 

  Pulmonary Langerhans cell histiocytosis 

  Erdheim–Chester disease 

Mesenchymal tumors 

  Pulmonary harmatoma 

  Chondroma 

  PEComatous tumors 

  Congenital peribronchial  

    myofibroblastic tumor 

  Diffuse pulmonary lymphangiomatosis 

  Inflammatory myofibroblastic tumor 

  Epithelioid hemangioendothelioma 

  Pleuropulmonary blastoma 

  Synovial sarcoma 

  Pulmonary artery intimal sarcoma 

  Pulmonary myxoid sarcoma  

    with EWSR1–CREB1 translocation 

  Myoepithelial tumors 

Tumors of ectopic origin 

  Germ cell tumors 

  Intrapulmonary thymoma 

  Melanoma 

  Meningioma, NOS 

Metastatic tumors 

NOS: not otherwise specified 

Classification after the World Health Organizations' (WHO) specification in 2015 (Travis et al., 

2015) 
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2.1.2 Epidemiology 

Lung cancer is the second most abundant cancer type observed in men following after 

prostate cancer in Germany. Ranging behind breast and colorectal cancer it evolves at 

the third position of cancer diagnoses in women (Tumorzentrum München, 2020). Still, 

the numbers for woman suffering from lung cancer increase constantly due to a rising 

incidence in female smoking habits. About one quarter of male cancer patients suffers 

from lung cancer, whereas it is only 16% for women. Meanwhile men lead in all other 

subtypes, women outnumber men in the ratio for adenocarcinoma by a calculated 

relation of 1:6=m:f (Herold, 2018, p.400). 

Regardless, lung cancer causes the most cancer deaths in men and the second most in 

women (Tumorzentrum München, 2020). 

2.1.3 Risk factors 

Since a lot of patients suffer from lung cancer, many risk factors have already been 

identified. Those include exposure to tobacco smoke (active and passive), marijuana, 

hookah, nutrition, radon-222, ionizing radiation, general air pollution (mostly by fine 

particles), diesel exhaust (ultrafine particles), asbestos, man-made mineral fibers, 

polycyclic aromatic hydrocarbons, chromates, silicon dioxide, arsenic, nickel, beryllium, 

cadmium, hard metal dusts containing wolfram/cobalt, halogenated ethers, mustard gas 

and lung scars for example caused by tuberculosis or thoracic perfusion traumata 

(Deutsche Krebsgesellschaft, 2018; Herold, 2018; Reck & Rabe, 2017). A genetic 

predisposition towards lung cancer development of two- to threefold when one parent is 

suffering from the disease was also found (Herold, 2018). 

2.1.4 Treatment of NSCLC 

Before start of treatment tumor subclassification is performed according to the histology 

(Table 1). After that, patients are staged into different categories following the observed 

clinical appearance (see Table 2). Therapy decision bases on different schemes, 

depending on tumor histology and stage. 

The first treatment option considered in stage I-IIIA is tumor resection. Since it 

represents a curative method, resection is always applied in the absence of 

contraindications. Different factors, including maximal resilience, comorbidities 

(especially cardiovascular diseases), performance status defined by the Eastern 

Cooperation Oncology Group (ECOC-status) and others are assessed before treatment 

decision. Resection can be followed by an adjuvant therapy which consists of radiation, 

radiochemotherapy or chemotherapy depending on the tumor stage and location. 
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Radiotherapy (RaT) should be applied, in case resection is impossible. If needed, it can 

be combined with adjuvant chemotherapy (ChT). The Manual by the Tumorzentrum 

Munich also recommends the application if the immune checkpoint inhibitor durvalumab 

after confirmed tissue expression of PD-L1 in stage IIIA patients. 

Patients in stage IIIB and IV suffer from advanced stage lung cancer. They have already 

progressed in the disease to an extent that resection is, at least initially, impossible. 

Patients in stage IIIB should be treated with radiochemotherapy. If tissue PD-L1 

expression is detectable, a treatment with durvalumab should follow. Patients diagnosed 

in stage IV should undergo molecular analysis searching for the known genetic 

alterations as well as PD-L1 expression investigation. Therapy decision depends on the 

outcome of the analysis and usually combines targeted with other approaches like ICIs 

and chemotherapy. Chemotherapeutic regimens are usually based on a platinum-drug 

which is combined with one or two other agents. The selection of the therapeutics is 

based on various prerequisites including general healthy status, tumor stage, 

contraindications and comorbidities (Tumorzentrum München, 2020). In December 2019, 

the National Comprehensive Cancer Network (NCCN) published an update on their 

NSCLC treatment guideline focusing on the reevaluated role of immunotherapy. Herein, 

the first line monotherapy with pembrolizumab is recommended in advanced stage 

NSCLC showing PD-L1 tissue expression rates ≥50%. If platinum-based chemotherapy 

is not tolerated, patients showing expression levels between one and 49% can also be 

treated likewise. For patients suffering from non-squamous NSCLC, a combinatory first 

line treatment of pembrolizumab and chemotherapy is recommended even independent 

from the PD-L1 expression status (Ettinger et al., 2019). 

A standard chemotherapy regimen in advanced stage NSCLC is the combination of 

paclitaxel with a platinum-based drug. 

Paclitaxel belongs to the family of taxanes and is a native biological substance found in 

the pacific yew tree. The cellular target of taxanes is the β- subunit of the microtubules. 

Target binding stabilizes the polymerized form of the microtubules. Due to a lack of free 

microtubules the mitotic spindle can no longer be built and the cell cycle is not able to 

proceed to the M-phase. Consequently the cell cycle is constantly arrested in the 

G2-phase. This process leads to cell death in the end. 
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The general digestibility of paclitaxel is very well, main adverse events are a short-term 

suppression of the bone marrow and peripheral neuropathy. Resistance to therapy is 

hypothesized to happen due to increased production of efflux transporters or mutation of 

the paclitaxel binding site on the β-subunit of the microtubule in course of therapy 

(Mutschler et al., 2013, p.895 ). 

Platinum-based drugs belong to the class of alkylating agents. This class of anticancer 

drugs consists of reactive substances whose main mechanism of action is the alkylation 

of nucleic acids. The consequences are multiple DNA-alterations including cross-links 

which harm DNA-replication. Though the platinum-based drugs do not alkylate nucleic 

acids, they share the mechanism of cross-linking with the other substances of this group. 

The three platinum-based drugs cisplatin, carboplatin and oxaliplatin are plane cis-

diamine complexes with a platinum cation in the center. The drugs differ in their 

accompanying anion, which results in a higher stability of the latter. Platinum-based 

drugs activate by losing of the accompanying anions due to shift in intracellular chlorine 

concentration. This results in the building of an electrophile aquatic complex. The 

reactive complex forms cross-links, especially in single stranded DNA. Cross-linked 

strands cannot be replicated and lead to induction of apoptosis in the corresponding cell. 

All three substances have a high emetogenic potential which can be mitigated by the 

application of 5-HT3 receptor antagonists (setrons) or dexamethasone. Additionally each 

substance has its special side effect that has to be considered while choosing between 

the three drugs. Cisplatin is highly nephron- and ototoxic. The toxic potential can be 

reduced by the application of a saline-glucose infusion. The application of carboplatin is 

limited by its bone marrow suppression whereas oxaliplatin shows a dose limiting 

neurotoxicity. Resistance against platinum-based drugs is also knows. Mechanisms are 

hypothesized to base on a reduced transport into the cell, an increased intracellular 

enzymatic clearance, increased expression on DNA-repair enzyme or an enlarged 

tolerance for DNA-damages meanwhile replication (Mutschler et al., 2013, p. 889; 

Steinhilber et al., 2010, pp. 474-476). 

Currently, targeted therapies are only applied in advanced stage NSCLC (Deutsche 

Krebsgesellschaft et al., 2018; Griesinger et al., 2018). Targeted treatment bears the 

hope for a specific and effective therapy meanwhile reducing adverse effects. Three 

starting points for targeted therapies are postulated. The first idea is to identify and treat 

driver mutations (e.g. BRAF-mutation, MET-amplification). The second idea is to identify 

and block cell proliferation or survival molecules (e.g. Tyrosin kinase inhibitors). 
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The third aspect is to enhance the immune system (e.g. immune checkpoint inhibitors) 

(Griesinger et al., 2018; Hirsch et al., 2016). In the future these targeted approaches will 

gain more influence in therapy regimen as the accompanying diagnostics will be more 

accessible. 

Table 2: Staging and TNM classification of lung cancers (NSCLC and SCLC) 

Stage TNM-classification 

0 Tis 

IA 

IB 

T1N0M0 

T2aN0M0 

IIA 

IIB 

T2bN0M0 

T1N1M0; T2N1M0; T3N0M0 

IIIA 

IIIB 

IIIC 

T1N2M0; T2N2M0; T3N1M0; T4N0M0; T4N1M0 

T1N3M0; T2N3M0; T3N2M0; T4N2M0 

T3N3M0; T4N3M0 

IVA 

IVB 

T1-4 N1-3 M1a,b 

T1-4 N1-3 M1c 

T: Tumor, N:Node, M: Metastatis, Tis: Carcinoma in situ, a: metastasis lung tissue, b: one 

extrathoraic metastasis, c: one or more extrathoraic metastasis 

After the International Association for the Study of Lung Cancer (IASLC) and the Union for 

International Cancer Control (UICC), (Goldstraw et al., 2016; Union for International Cancer 

Control (UICC), 2020). 

2.2 Immune checkpoint inhibitors 

Immunotherapy conveys a relatively young field in cancer therapy resulting in amazing 

responses for previously hard-to-treat tumors and tumor stages. The approach uncovers 

an innovative way to eliminate cancer cells. Not the tumor cell itself is addressed by the 

medication but the immune system is enabled to identify and eradicate cancer cells more 

effectively. 

  



Theoretical background 

9 

Tumor cells, the same as normal cells, present specific antigens on their surface. Some 

of those antigens identify the cell as tumorous (tumor-specific antigens) and thus result 

in elimination by immune cells. Certain tumor cells developed the ability to downregulate 

the immune system as a survival mechanism. This process leads to a preselection of 

immunocompetent cells in cancer progression. The concept is referred to as 

immunoediting (Dunn et al., 2005; Escors et al., 2018; Smyth, 2005). Nevertheless 

immune cells are still able to identify and destroy cancer cells if being reactivated. 

Following this approach, the immune checkpoint inhibitors were developed. 

2.2.1 Physiological background 

The first explored immune checkpoint pathways were the cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) and the programmed cell death protein (PD-1-PD-L1) 

pathway. Currently, several other proteins are investigated in the context of immune 

checkpoint inhibition (Schildberg et al., 2016). 

The programmed-cell death protein pathway is targeted by the majority of ICIs because 

the PD-1-PD-L pathway represents an important mechanism to maintain peripheral 

immune tolerance (Patsoukis et al., 2012). 

PD-1 (CD279) is a transmembrane receptor which is expressed on the surface of 

activated T-cells, B-cells, myeloid cells and macrophages (Blank et al., 2005; Freeman et 

al., 2000; Ishida et al., 1992; Schildberg et al., 2016). The amino acid structure of PD-1 is 

encoded in the Pdcd1 gene. It consists of five exons, which can roughly be dedicated to 

the three distinct protein regions. Exon one and two belong to the extracellular region, 

exon three represents transmembrane component and Exon four and five belong to the 

intercellular part. Four splice variants are known of which two are lacking exon three and 

thus the transmembrane region. These can possibly represent soluble forms of the 

receptor (Keir et al., 2008; Wan et al., 2006). PD-1s extracellular region is a single Ig-like 

variable (IgV) domain, which is followed by a hydrophobic transmembrane motif. The 

intercellular region comprises of two motifes, an immunoreceptor tyrosine-based 

inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM) 

(Freeman et al., 2000; Vivier & Daëron, 1997). Mutations in the ITSM region cause a 

loss of functionality, which indicates its importance in downstream signaling. PD-1 

appearance on the cell surface is monomeric (Zhang et al., 2004). 

Two ligands of PD-1 are described in literature, PD-L1 (CD274) and PD-L2 (CD273) 

(Freeman et al., 2000). As the PD-1 receptor shares main structure elements with CTLA-

4, Freeman et al. hypothesized that the to-be-discovered ligand will have similarities with 

B7-1 (CD80) and B7-2 (CD86), the corresponding ligands of CTLA-4. 
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In order to test their hypothesis the group used the Basic Local Assignment Search Tool 

(BLAST). Finding a matching structure and confirmation cell culture experiments it was 

named it PD-L1. They also corroborated that the ligand PD-L1 was the same structure 

Dong and his group had identified already in 1999 as a so far receptorless ligand B7-H1 

(Dong et al., 1999; Freeman et al., 2000; Vivier & Daëron, 1997). PD-L1 is expressed on 

the surface of a variety of hematopoetic and non-hematopoetic cells, for example 

antigen-presenting cells (APC) and epithelial cells. Its expression is balanced according 

to different factors including the location of the corresponding cell (Marzec et al., 2008). 

High levels of PD-L1 mRNA are found in several tissues, for examples those of lung and 

heart. PD-L1 consists of an extracellular structure including an IgV and an IgC domain, 

followed by a transmembrane element. The intracellular region only encompasses a few 

amino acids and its function is still unclear (Freeman et al., 2000). 

In 2007 Butte et al. identified B7-1 (CD80) as a second binding partner for PD-L1, but not 

PD-L2. Receptor binding results in downregulation of T-cell proliferation as well as 

cytokine production (Butte et al., 2007). As both receptors are found on the surface of 

the same cell-type, their interaction causes bidirectional inhibitory signaling. Hence its 

effects basically resemble the ones by PD-1-PD-L1 interaction. The two signal pathways 

are likely to explain the greater efficacy of anti-PD-L1 drugs in vivo (Keir et al., 2008). 

In 2001, PD-L2 was discovered as the second known ligand of PD-1. Its structure and 

functions are hypothesized to equal the ones of PD-L1, though its affinity to PD-1 is 

higher (Latchman et al., 2001; Tseng et al., 2001; Youngnak et al., 2003). Alike PD-L1, 

PD-L2 is expressed on the surface of hematopoietic and non-hematopoietic cells, for 

example B lymphocytes and dendritic cells (Francisco et al., 2010). Only recently a 

second binding partner for PD-L2 was identified. The interaction with repulsive guidance 

molecule b (RGMb) results in respiratory tolerance. This finding might contribute to an 

explanation for the observed side effect of (severe) pneumonitis during anti-PD-1 

treatment (Xiao et al., 2014). The role of PD-L2 in cancer development has not 

intensively been investigated so far. Since the last few years more is understood about 

the function of immune checkpoint pathways in general. This also resulted in extended 

research on PD-L2, which will hopefully reveal more insights on its special functions in 

the near future (Solinas et al., 2020). 

The interaction of the PD-1 receptor with its ligands PD-L1 or PD- (Figure 2) leads to 

phosphorylation of the aforementioned intracellular motifs ITIM and ITSM. Those recruit 

Src homology region 2 domain-containing phosphatases (SHP) which henceforth 

dephosphorylate signaling intermediates (Chemnitz et. al., 2004; Okazaki et al., 2001; 

Sheppard et al., 2004). 
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Consequently the signaling of PI3K-Akt and Ras-MEK-ERK pathways is inhibited 

(Patsoukis et al., 2012). Direct effects are decreases in the cytokine production of IFN-γ, 

TNF-α and IL-2 (Keir et al., 2008; Schildberg et al., 2016). Other than implied by the 

name, the interaction leads to cell cycle arrest rather than cell death (Brown et al., 2003). 

 

Figure 2: Signaling pathways of the programmed-cell death markers 

The upper part of the figure (green) illustrates the physiological whereas the lower (red) part 

refers to the pathological PD-1-PD-L1 interaction and downstream signaling pathways. 

Ligand expression can be upregulated by different inflammation stimulating mediators 

(Rozali et al., 2012; Topalian et al., 2015). PD-L1 expression, for example is induced by 

various inflammatory stimuli, like INF-γ. Parsa et al. detected an increased expression of 

PD-L1 due to loss of PTEN function and PI3K activation in cell culture of glioma cells 

(Parsa et al., 2007). 

Upregulation of PD proteins expression was demonstrated in a variety of tumor types by 

different research groups. Dong et al. detected PD-L1 expression on different cancer cell 

culture by fluorescence-activated cell sorting (FACS) and used immunohistochemical 

staining to confirm the results on cancer biopsies (Brown et al., 2003; Dong et al., 2002). 

In the continuation, the tumor microenvironment (TME) evolved as the focus point for 

PD-1, PD-L1 and PD-L2 research (Keir et al., 2008). Cancer cells use immune 

checkpoint pathways to induce resistance against the immune system in two ways. 

These, innate and adaptive, mechanisms occur separately or in combination. 
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The consequence is always a high expression of PD-ligands on the cell surface. Genetic 

modifications form the basis of the innate pathway. These are amplifications of the PD-L 

genes or mutations in oncogenic signaling pathways. The adaptive pathway needs an 

environmental stimulus to induce the expression. This stimulus comes mainly from 

cytokines secreted by T cells aiming to eradicate tumor cells (Marzec et al., 2008; 

Pardoll, 2012; Parsa et al., 2007; Spranger et al., 2013; Taube et al., 2012; Topalian et 

al., 2015). It was shown that the infiltration with tumor infiltrating lymphocytes (TILs) 

results in IFN-γ secretion, which consequently fosters PD-L1 expression. This 

physiologically negative feedback loop therefore causes adaptive immune resistance in 

tumor cells (Spranger et al., 2013; Taube et al., 2012).  

Just recently, the genetic element PD-L1L2-SE was identified. It is encoded between the 

PD-L1 and PD-L2 gene and represents an important enhancer sequence needed for the 

expression of PD-L1 and PD-L2 mRNA. Further research revealed it not to be depending 

on the presence of IFN-γ (Xu et al., 2019). The finding underlined the complexity of the 

regulation of signaling and expression of the PD-1-PD-L1 pathway. 

Since the programmed cell death markers are shown to play a pivotal role in the 

regulation of the immune response they represent interesting biomarkers the context of 

cancer. A strong effect is expected to be found in ICI-treated patients due to the direct 

association with the corresponding target. An important prerequisite for the development 

of blood based biomarker analysis is the existence of soluble forms of the corresponding 

biomarkers. In 2005 Nielsen et al. were able to detect five splice variants of the PD-1 

protein in cell culture of peripheral blood mononuclear cells. Special interest was payed 

to PD-1∆ex3 which lacks the transmembrane domain (TMD) and is hence expected to 

represent a soluble splice variant. The group was able to stimulate the its expression 

though they, probably due to insensitive antibodies, were not able to confirm the 

secretion in cell culture supernatant (Nielsen et al., 2005). The existence of a soluble 

form of PD-L1 was shown by Frigola et al. in 2011. They were able to detect PD-L1 in 

the cell culture of tumor cells and blood samples of renal cell carcinoma patients. Since 

PD-L1 could not be found intracellularly, they follow the hypothesis of cleavage from the 

cell surface by metaloproteinases (Frigola et al., 2011). A TMD-lacking splice variant was 

also shown for PD-L2. The function of this variant is still unclear (Schildberg et al., 2016). 

The existence of soluble forms of PD-1, PD-L1 and PD-L2 was at least theoretically 

confirmed by literature research. 
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2.2.2 Application as biomarkers 

This approach follows the idea of the immune checkpoint molecules PD-1, PD-L1 and 

PD-L2 representing interesting targets to evolve as biomarkers. Due to their central 

position in modulating immune response, they are hypothesized to play a pivotal role in 

all kinds of inflammatory diseases. Since cancer and cancer treatment results in immune 

activation it is proposed to find an effect by monitoring the biomarker concentrations. 

Since tissue based analytic is expensive, only rarely accessible and cannot cover tumor 

heterogeneity, serum and plasma were chosen as analytes. Background research 

revealed it is likely that soluble forms of PD-1, PD-L1 and PD-L2 exist. A blood based 

screening method combined the advantages of a low cost and easily performable and 

objectively analyzable method. 

The biomarkers can be of use in prediction, prognosis and monitoring of cancer patients 

treated with checkpoint inhibitors and other chemotherapeutic agents.  

A further approach will be to evaluate the markers in differential diagnostic purposes on 

ICI-treated patients. Response rates of tumor patients to immunotherapy currently range 

in the low double-digit percent range. Hence, it is of great interest to establish a predictor 

to evaluate therapy success before application. In 2010 Brahmer et al. detected a 

correlation between tissue expression of PD-L1 and outcome in 39 patients treated with 

an anti-PD-1 study drug. The cohort suffered from a variety of solid tumors including 

metastatic melanoma, colorectal cancer, castrate-resistant prostate cancer, non-small-

cell lung cancer and renal cell carcinoma (Brahmer et al., 2010). In the continuation other 

groups investigated the postulated correlation in larger cohorts and on different cancer 

types with varying outcomes. 
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2.2.3 Drugs 

A variety of immune checkpoint inhibitors opens up a broad field of potentially later 

investigations on the new biomarker assays. Since the first approved drugs showed 

encouraging results in clinical practice, the research on new drugs was intensified. 

Especially melanoma patient data convinced with longterm survival observed former 

untreatable advanced stages. Some already received market approval for the treatment 

of a variety of cancer types. Table 3 lists all EMA-approved drugs with their 

corresponding indications. Currently two drugs targeting PD-1, pembrolizumab and 

cemiplimab, and four drugs targeting PD-L1, nivolumab, atezolizumab, durvalumab and 

avelumab, are available treatment options. Targeting PD-L1 combines two advantages. 

On the one hand this approach does not prevent PD-L2 from binding to the PD-1 

receptor. This is assumed to reduce the rate and intensity of adverse events seen by 

anti-PD-1 blockade. On the other hand PD-L1 also induces downstream signaling by the 

B7-1 (CD80) receptor. The interaction with this second pathway is believed to enhance 

the immune stimulating effect. The general side effect profile of the drugs is similar as 

these are all explainable by the mechanism of action. The main difference between the 

drugs is based on the different approved indications. The picture will change in the future 

due to still ongoing studies. 

Table 3: EMA-approved PD-1 and PD-L1 immune checkpoint inhibitors 

Drug Target Indication Source 

Pembrolizumab PD-1 Advanced melanoma (MSD SHARP & DOHME GMBH, 

2019) 

NSCLC (MSD SHARP & DOHME GMBH, 

2019) 

Recurrent cHL (MSD SHARP & DOHME GMBH, 

2019) 

Locally advanced urothelial 

carcinoma 

(MSD SHARP & DOHME GMBH, 

2019) 

Locally advanced SCCHN (MSD SHARP & DOHME GMBH, 

2019) 

RCC (MSD SHARP & DOHME GMBH, 

2019) 
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Drug Target Indication Source 

Cemiplimab PD-1 Locally advanced CSCC (Sanofi-Aventis Deutschland GmbH, 

2019) 

Nivolumab PD-L1 Melanoma (adjuvant) (Bristol-Myers Squibb GmbH & Co. 

KGaA, 2020) 

NSCLC (Bristol-Myers Squibb GmbH & Co. 

KGaA, 2020) 

Advanced RCC (Bristol-Myers Squibb GmbH & Co. 

KGaA, 2020) 

Recurrent cHL (Bristol-Myers Squibb GmbH & Co. 

KGaA, 2020) 

Recurrent SCCHN (Bristol-Myers Squibb GmbH & Co. 

KGaA, 2020) 

Locally advanced urothelial 

carcinoma 

(Bristol-Myers Squibb GmbH & Co. 

KGaA, 2020) 

Atezolizumab PD-L1 Locally advanced urothelial 

carcinoma 

(Roche Pharma AG, 2019b, 2019a) 

Advanced NSCLC (Roche Pharma AG, 2019b, 2019a) 

Locally advanced triple-

negative breast cancer 

(Roche Pharma AG, 2019b) 

ES-SCLC (Roche Pharma AG, 2019a) 

Durvalumab PD-L1 Advanced NSCLC (AstraZeneca GmbH, 2018) 

Avelumab PD-L1 Metastatic MCC (Merck Europe B.V., 2019a) 

Advanced RCC (Merck Europe B.V., 2019a) 

NSCLC: Non-small cell lung cancer, cHL: Classic Hodgkin-lymphoma, SCCHN: Squamous cell 
carcinoma of the head and neck, RCC: Renal cell carcinoma, CSCC: Cutaneous squamous cell 
carcinoma, ES-SCLC: Extensive Stage Small Cell Lung Cancer, MCC: Merkel cell carcinoma 
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2.2.3 Side effects 

Due to immune system down-regulation, infectious diseases as pneumonitis, hepatitis, 

colitis, nephritis, endocrinopathies (including thyroid disorders, diabetes mellitus) and 

other immune-mediated side effects (including Guillain-Barré-Syndrom, myositis, 

meningitis, and more) occur in all drugs with market approval (AstraZeneca GmbH, 

2018; Bristol-Myers Squibb GmbH & Co. KGaA, 2020; Merck Europe B.V., 2019a; MSD 

SHARP & DOHME GMBH, 2019; Roche Pharma AG, 2019a; Sanofi-Aventis 

Deutschland GmbH, 2019). Other adverse events are only reported in some of the 

medications, such as myocarditis (AstraZeneca GmbH, 2018; Bristol-Myers Squibb 

GmbH & Co. KGaA, 2020; Merck Europe B.V., 2019a; Roche Pharma AG, 2019a), 

reactions to infusion (AstraZeneca GmbH, 2018; Merck Europe B.V., 2019a; MSD 

SHARP & DOHME GMBH, 2019; Roche Pharma AG, 2019a) and skin reactions, 

especially rash (AstraZeneca GmbH, 2018; Bristol-Myers Squibb GmbH & Co. KGaA, 

2020; MSD SHARP & DOHME GMBH, 2019; Roche Pharma AG, 2019a; Sanofi-Aventis 

Deutschland GmbH, 2019). All of the abovementioned reactions are severe diseases, 

which most need intensive treatment on their own. Consequently, it is very important to 

stratify patients before treatment application in order to protect those who will not benefit 

from therapy from severe side effects. 

2.2.4 Developments in the field of immune checkpoint inhibitors 

The therapeutic success of the first immune checkpoint inhibitors lead to intensified 

research on further pharmaceutical agents and targets. SHR-1210 (Ocrelizumab, anti-

PD1, NCT03871855) and MK-1308 (anti-CTLA4) represent two drugs in the pipeline that 

are developed on already known targets (National Cancer Institute, 2020a; U.S. National 

Library of Medicine, U.S. National Institutes of Health, & U.S. Department of Health and 

Human Services, 2020b). The field of immune checkpoint inhibitors in broad though and 

offers a variety of new targets. MK-4280, for example, is developed to bind lymphocyte-

activation gene 3 (LAG-3) (National Cancer Institute, 2020b). The majority of projects 

focus on the development of bifunctional molecules, for example bispecific antibodies. 

Some focus on the combination of already known targets. These include a for example 

the targets PD-1 with CTLA-4 (NCT03179436) or PD-1 with a tyrosine kinase inhibitor 

(NCT04203485), which are both part of clinical trials (Astra Zeneca, 2020; U.S. National 

Library of Medicine et al., 2020b). Another approach, M7824 (NCT03631706), combines 

PD-L1 with the cytokine TGF-β (Merck Europe B.V., 2019b). The combination with new 

checkpoint inhibitors is investigated in RGs 6160 and 7769 (Roche Pharma AG, 2020). 

The named substances only represent examples to illustrate the current pipeline due to 

many other companies and projects in the research field. 



Theoretical background 

17 

2.3 Biomarkers 

2.3.1 Definition 

The term biomarker is defined by the European Medicines Agency and the U.S. Food 

and Drug Administration. 

The European Medicines Agency (EMA) defines the term as follows:  

“A biological molecule found in blood, other body fluids, or tissues that can be used to 

follow body processes and diseases in humans and animals.”  

       (European Medicines Agency, 2019) 

Whereas the U.S. Food and Drug Administration (FDA) states the following: 

“A defined characteristic that is measured as an indicator of normal biological processes, 

pathogenic processes, or biological responses to an exposure or intervention, including 

therapeutic interventions. Molecular, histologic, radiographic, or physiologic 

characteristics are types of biomarkers. A biomarker is not an assessment of how an 

individual feels, functions, or survives. Categories of biomarkers include: 

 susceptibility/risk biomarker 

 diagnostic biomarker 

 monitoring biomarker 

 prognostic biomarker 

 predictive biomarker 

 pharmacodynamic/response biomarker 

 safety biomarker”   (Food and Drug Administration, 2019) 

While the EMA definition is short but comprehensive, the one by the FDA encompasses 

more details by the introduction of subcategories. These can turn out to be useful in 

categorizing the markers, though it will not be possible to easily place all of them. 

Nevertheless, both understandings fit the latter presented biomarkers. 

This work focuses on soluble biomarkers that can be detected in the blood stream. The 

advantages of such markers are easily accessible and comparably cheap sample 

drawing procedures. Thus, longitudinal monitoring is applicable and more information 

available. Samples are more stable and easier to store and transport. A limitation of the 

approach represents the impossibility to locate the origin of the biomarker. On the other 

hand, tumor heterogeneity and even metastases can be covered. 
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2.3.2 Tissue biomarkers in lung cancer 

2.3.2.1 Staining  

The Guideline established by the Association of the Scientific Medical Societies 

(Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V., 

AWMF) from 2018 in Germany, announces the consent-based recommendation to 

assess the tissue PD-L1 expression status in untreated stage IV patients diagnosed with 

NSCLC. Different antibodies to perform immunohistochemical staining are available. 

According to the guideline, results are reported using a tumor proportion score (TPS) 

(Deutsche Krebsgesellschaft et al., 2018). Following Hutarew, “Tumor proportion scores 

(TPS) were defined as the percentage of tumour cells with complete or partial 

membranous staining at any intensity.” (Hutarew, 2016).  

However, tissue staining with anti-PD-L1 antibodies faces various challenges. Results 

vary among different PD-L1 antibody clones, staining platforms, specimen type and 

observers. Consequently, different scoring systems and cut off values are used to 

interpret obtained results (Hutarew, 2016; Kerr et al., 2015). 

Although hazard ratios for overall survival (OS) and progression free survival (PFS) rose 

for positive cohorts in many studies, other investigations also showed considerable 

response rates in negative tested patients (Hutarew, 2016). Limitation to the surveyed 

tissue biopsy and uncovered tumor heterogeneity and metastasis serve as an 

explanation for the finding. Moreover, it is not yet clear what effect prior chemotherapy or 

targeted therapy has on the tumorous PD-L1 expression status. This serves as a 

potential explanation for different results in the various studies as their prerequisite 

conditions might have been different (Kerr et al., 2015).The group of Herbst et al. 

showed than expression profiles on tumor infiltrating lymphocytes (TILs) correlated with 

therapy response, at least in an atezolizumab-treated cohort (Herbst et al., 2016). 

Nevertheless, PD-L1 expression patterns on immune cells cannot be reproducibly 

detected so far, though better training and guidelines are likely to improve the diagnostic 

value (Scheel et al., 2016). 

2.3.2.2 Molecular markers 

Especially the development of targeted therapies proved the necessity to introduce 

biomarkers to identify the target in advance to therapy application. Popular targets are 

genetic alterations including mutations, translocations and amplifications, for example 

BRAF, MET. 
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These are currently investigated in tumor biopsies using next generation sequencing 

(NGS) approaches. Different groups work on detecting the mutations on circulating 

tumor DNA (ctDNA) in blood samples. There have been already some impressive 

results, though the methods are not ready to enter broad clinical diagnostic setting yet 

(Tumorzentrum München, 2020). 

2.3.3 Blood biomarkers in lung cancer 

Tumor markers represent an important and easy to apply diagnostic tool. Although they 

cannot be relied on as single markers for diagnostic purposes they have found their role 

in supporting differential diagnosis, monitoring therapy and in early detection of 

recurrence in lung cancer. CYFRA 21-1, CEA, SCCA; NSE and ProGRP are known 

biomarkers in lung cancer (Table 4), whereas CA15-3, CA125 and HE4 are not. 

Soluble cytokeratin 19 fragment (CYFRA 21-1) represents a promising tumor marker in 

lung cancer diagnostics. Cytokeratins are intermediate-sized filaments in epithelial cells. 

These filaments maintain an important functions in the structure of cell cytoplasm 

(Hatzfeld & Franke, 1985). So far, around 20 keratins are known which split into two 

subgroups (type I: 9-20; type II: 1-8). To form its final structure, the acidic (type I) and the 

basic (type II) combine to heteropolymers (Bodenmüller, 1995). Broers et al. investigated 

the presence of different cytokines in lung cancer tissues and detected cytokeratine 19 in 

a variety of them (Broers et al., 1988). Stieber et al. showed that CYFRA 21-1 allows for 

better distinguishing between malign and benign lung diseases than so far used 

carcinoembryonic antigen (CEA) and squamous cell carcinoma antigen (SCCA). Utility 

varied among the investigated lung cancer subtype (Stieber et al., 1993). Nowadays it is 

recommended to measure CYFRA-21 in monitoring and aftercare of NSCLC patients 

(Roche Diagnostics GmbH, 2012). It proved to be an independent prognostic factor in 

multivariate survival analysis. Additionally the efficacy of chemotherapy in advanced 

stage NSCLC can be monitored. Increasing concentrations after resection will indicate 

recurrence earlier than imaging. In summary, CYFRA 21-1 is currently the most 

important biomarker in NSCLC (Tumorzentrum München, 2020). 

Carcinoembryonic antigen (CEA) was first described by the group of Gold et al. in 1964 

(Gold & Freedman, 1964). Although the name indicates differently, CEA expression is 

not limited to fetal cells. It is detected in various healthy tissues, especially in the colon. 

Structurally, CEA belongs to the immunoglobulin superfamily. It is a highly glycosylated 

molecule, that is normally membrane-bound but can also be cleaved. Biologically it is 

important to enable cell-adhesion. Thus its utility as a biomarker candidate to diagnose 

and monitor cancer disease was hypothesized (Hammarström, 1999). 
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Nowadays, rising values indicate post-surgical cancer recurrence in colorectal cancer 

(CRC) (Herold, 2018, p. 493). Jong et al. strongly recommend to measure CEA values in 

order to monitor NSCLC (de Jong et al., 2020). Showing no organ specificity is one of 

the limitations faced by CEA. Nevertheless its pre-therapeutic concentrations are 

predictive for survival in the subgroup of adenocarcinomas. Additionally, its combination 

with other biomarkers improves overall specificity (Tumorzentrum München, 2020). 

Squamous cell carcinoma antigen (SCCA or SCC) is a glycoprotein that is expressed in 

epithelial tissues. Biologically, it serves an enzyme inhibitor for serine and cysteine 

proteinases (Roche Diagnostics GmbH, 2020c; Schick et al., 1998). The tumor marker 

can be used to follow the status of cancers of squamous origin, for example located in 

the head and neck, oral cavity, esophagus and lung region. In lung cancer it is 

investigated in differential diagnosis, though its meaningfulness as a single marker is 

limited by its elevation in various benign diseases (Kagohashi et al., 2008; 

Tumorzentrum München, 2020). 

Neuron-specific enolase (NSE) is an enzyme that catalyzes an important step in glucose 

metabolism. The corresponding enzyme family consists of three isoenzymes. NSE or 

enolase γ is characteristically expressed in neuronal tissue (Mu et al., 2020). 

Erythrocytes also contain NSE, in consequence blood samples that show signs of 

hemolysis cannot be analyzed (Scatena, 2015, p.137). Due to its specificity, NSE 

evolves as a promising biomarker for neuroendocrine type tumors. This characterization 

includes the histology of SCLC, which has been investigated in several studies. Marker 

concentrations have been found to correlate with the clinical stage as well as an increase 

in former stable concentrations is an early recurrence indicator. Pre-therapeutic NSE 

concentrations showed prognostic potential in lung cancer patients, SCLC and NSCLC 

(Muley et al., 2003; Tumorzentrum München, 2020). 

ProGRP is a preliminary form of the gastrin-releasing protein (GRP). It is hypothesized 

to act as a neurotransmitter in the nervous system. Its release is highly specific to small 

cell lung cancers. Currently ProGRP is measured in differential diagnosis and to monitor 

therapy efficacy in SCLC patients. Due to its high specificity, it qualifies for a screening 

marker which has not been investigated yet. The combinatory analysis with the tumor 

marker NSE leads to a further increase in the diagnostic potential of ProGRP 

(Holdenrieder & von Pawel, 2013; Polak et al., 1988; Tumorzentrum München, 2020). 
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Table 4: Recommended tumor markers to assist in lung cancer diagnosis and monitoring 

Histology Pre therapy Monitoring 

Unknown 
CYFRA 21-1, NSE, 

ProGRP, CEA, SCCA 
Depending on histology 

Adenocarcinoma CYFRA 21-1 and CEA CYFRA 21-1 and/or CEA 

Squamous cell carcinoma CYFRA 21-1 and SCCA CYFRA 21-1 and/or SCCA 

Large cell carcinoma CYFRA 21-1 and CEA CYFRA 21-1 and/or CEA 

Small cell carcinoma NSE and ProGRP NSE and/or ProGRP 

Obtained from the Tumorzentrum Munich (Tumorzentrum München, 2020) 

Not being known as biomarkers in the field so far are the tumor markers CA 15-3, 

CA 125 and HE4. Due to their biology and locations, they might also represent 

interesting targets to evaluate. Hence these were included in the study investigations. 

Cancer antigen 15-3 (CA 15-3, PEM (polymorphic epithelial mucin), MUC1 (mucin-1)) is 

a mucin protein, that belongs to the subfamily of membrane-associated mucins. It is a 

transmembrane protein although the majority of the protein is located extracellular. 

Repeated sequences of amino acids with alcoholic side chains explain the high 

abundance of O-glycosylation (Gendler et al., 1990; Hilkens et al., 1995). It is typically 

expressed in glandular and luminal epithelial tissue and participates in forming the 

glycocalyx. Its function is to protect the cells from various environmental influences. 

When cells experience stress conditions they lose their polarity and reposition mucins. 

These shifts result in different downstream signaling pathways including the MAPK-, 

PI3K/Akt- and Wnt-pathway. CA15-3 is also suggested to play a role in regulation of 

inflammation (Kufe, 2009). It is hypothesized to induce a downregulation in infections 

whereas activation was observed in tumor malignancies. Tumor associated CA 15-3 can 

be differentiated from physiological mucin-1 by its different glycosylation pattern. This 

resulting from the different expression of glycosylation enzymes compared to non-

malignant cells. The hypoglycosylation is believed to result in extended extracellular 

shedding and intracellular uptake and therefore increased downstream signaling. 

Currently CA 15-3 is measured in order to stage and monitor relapse in cancers with 

glandular origin like breast or pancreatic cancer (Nath & Mukherjee, 2014). Since its 

omnipresent appearance on the cell surface it is also hypothesized to display an 

informative biomarker in other epithelial cancers like lung cancer. 
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Cancer or carbohydrate antigen 125 (CA 125), also known as MUC16, is a large 

glycoprotein. It represents a member of the membrane-bound mucin protein family, 

though it can also be secreted either by the Golgi apparatus or by enzymatic 

cleavage(Kaneko et al., 2009; O’Brien et al., 2002; Rump et al., 2004). The antigen is 

highly glycosylated with oligosaccharides bound to the protein by N- and O-linkage 

(O’Brien et al., 2002). The protein is known to be expressed by a variety of tissues 

including fallopian tubes, endometrium, endocervix, pleura, peritoneum, and pericardium 

(Miralles et al., 2003). It has several proposed functions including anti-adhesion, immune 

suppression and the observation that it ties various sugar-binding molecules. Rump et al 

demonstrated that CA125 binds to membrane-bound mesothelin in ovarian cancer. As 

the interaction mediates cell-adhesion, they hypothesize it promotes metastasis in 

ovarian cancer (Rump et al., 2004). CA125 has had a long history as a tumor marker in 

diagnosis and follow-up of ovarian cancer. Since it is expressed in many tissues and 

rises in a variety of benign diseases as well, combining the biomarker with other markers 

improves its clinical utility (Escudero et al., 2011). In this approach it could also allow 

further insights included in a multi-marker investigation in NSCLC. 

Human epididymis protein 4 (HE4) is a secreted N-glycosylated protein. First found in 

epididymal tissue, it is also expressed in other tissues like the respiratory epithelium, 

especially the trachea (Drapkin et al., 2005). Its biological function is not exactly known 

yet. Structure homologies suggest it to be an extracellular proteinase inhibitor. It is 

assumed to be a decapacitation factor which are part of the seminal plasma and 

modulate the fertilizing ability of spermatozoa (Kirchhoff, 1998). At the moment it is used 

to detect ovarian and endometrial cancer, also in combination with CA125 which turns 

out to improve specificity (Escudero et al., 2011; Roche Diagnostics GmbH, 2011). HE4 

investigations in lung cancer indicate that it can be predictive for tumor recurrence in the 

adenocarcinoma subtype (Tumorzentrum München, 2020). Choi et al. found that the pre-

therapeutic concentrations of HE4 were able to assist diagnostic procedures. Marker 

concentrations were able to differentiate healthy controls from benign from tumor 

disease. The differentiation to healthy patients did not depend on a certain carcinoma 

subtype. Additionally a correlation between marker concentrations and stage was seen. 

The diagnostic value of HE4 was again shown in by a review in 2019 (Choi et al., 2017; 

He et al., 2019). 

All of the abovementioned tumor markers present with their specific cut-off 

concentrations to differentiate between healthy or benign and malign disease. These are 

listed in Table 5. 
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Table 5: Tumor markers and their corresponding cut-off values 

Biomarker Cohort Cut-off Additional information Source 

CYFRA 21-1 Healthy vs. benign lung diseases 

Healthy vs. malignant lung diseases 

3.3 ng/ml (specificity: 95%) 

1.8 ng/ml (specificity: 95%) 

Elevated levels possible in:          

acute pneumonia, 

tuberculosis, interstitial lung 

diseases, liver cirrhosis, renal 

insufficiency 

(Roche Diagnostics 

GmbH, 2020a; 

Tumorzentrum 

München, 2020) 

CEA Healthy  

  20-69 years 

  40-69 years 

 

4.7 ng/ml 

5.2 ng/ml 

(95% percentile) 

Elevated levels in smokers (Roche Diagnostics 

GmbH, 2018a) 

SCCA Healthy 

 

Lung cancer vs. benign lung diseases 

2.3 ng/ml  

(95% percentile) 

2.6 ng/ml (sensitivity: 39.1%) 

 (Roche Diagnostics 

GmbH, 2020c) 

NSE Healthy 16.3 ng/ml  

(95% percentile) 

 (Roche Diagnostics 

GmbH, 2017) 
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Biomarker Cohort Cut-off Additional information Source 

ProGRP Healthy 

 

SCLC vs. NSCLC 

SCLC vs. benign Lung disease 

SCLC vs. other malignancies 

68.4 pg/ml  

(95% percentile) 

80.1 pg/ml (sensitivity: 78.2%) 

80.8 pg/ml (sensitivity: 78.2%) 

191 pg/ml (sensitivity: 66%) 

Elevated in patients with 

renal failure 

(Roche Diagnostics 

GmbH, 2020b) 

CA 15-3 Healthy 26.4 U/ml 

(95% percentile) 

 (Roche Diagnostics 

GmbH, 2013) 

CA 125 Healthy 35 U/ml 

(95% percentile) 

 (Roche Diagnostics 

GmbH, 2019) 

HE4 Healthy 

  <40 years 

  41-59 years 

  60-69 years 

  ≥70 years 

 

60.5 pmol/l  

~75 pmol/l 

82.9  pmol/l 

104 pmol/l 

(95% percentile) 

 (Roche Diagnostics 

GmbH, 2018b) 
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3 Aim 

Therapy individualization is the basis for the desired goal of personalized cancer 

treatment. The approach needs to combine the employment of targeted therapies with 

comprehensive biomarker surveillance. A major challenge is still the introduction of 

informative biomarkers. Those offer great potential to initiate adjustments in therapy 

regimen and applied diagnostic methods. A biomarker-indicated early differentiation 

between responders and non-responders to therapy for example proves beneficial in two 

ways. On the one hand can non-responders be switched to a different therapy regimen 

which increases the individual probability of therapy response and also reduces the risk 

to experience side effects. On the other hand, it might be possible to enlarge the 

distances between follow-up investigations in good responders. This can, for example, 

contribute to a reduction radiation diagnostics in the patients. 

There is still an unmet need for informative biomarkers to allow patients' response 

prediction, prognosis of outcome and therapy monitoring in all kinds of cancer therapy. 

On this behalf it is necessary to investigate already established but also introduce new 

biomarkers. The tumor markers CYFRA 21-1, CEA, SCCA, NSE, ProGRP, CA15-3, 

CA125 and HE4 and the new biomarkers PD-1, PD-L1 and PD-L2 were investigated in 

an NSCLC cohort. Analysis was performed with the focus on predictive value for therapy 

response and prognostic value for progression free and overall survival to address the 

following objectives. 

 Pre-therapeutic concentrations predictive for poor and good response to 

chemotherapy objected by CT 

 Concentration changes between C1 and C3 predictive for poor and good 

response to chemotherapy objected by CT 

 Pre-therapeutic concentrations prognostic for PFS/OS 

 C3 concentrations prognostic for PFS/OS 

 Programmed cell death markers predictive for poor and good response to 

chemotherapy objected by CT 
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4 Patients, methods and materials 

4.1 Patients 

4.1.1 CESAR Biomarker Substudy 

The Central European Society of Anticancer Research (CESAR) initiated a multicentric 

interventional study in cooperation with Saladax Biomedical Inc., the CESAR Study of 

Paclitaxel Therapeutic Drug Monitoring: CEPAC-TDM. The study protocol included blood 

collections for biomarker measurements, the CESAR Biomarker. The main study 

investigated whether pharmacokinetically-guided paclitaxel dosing could reduce 

neutropenia compared to conventional dosing. The findings of the study were already 

published (Joerger et al., 2016). 

The blood collection for the CESAR Biomarker Substudy took place in a subset of the 

patients following the main study and focused on the first three treatment cycles. The 

blood-drawing scheme is visualized in Figure 3. The time points are indexed with a 

number consisting of two parts. The front part names the treatment cycle. The back part 

identifies the day in the treatment cycle, where one stands for before treatment 

application and two for the day after treatment application. Only patients where a blood 

sample before start of the study (1_1 or 1_0) was available were included in the 

measurements. The blood sample of the day after treatment (x_2) was included just, if a 

sample before treatment was available. Time point 3_2 was left out because of the low 

number of applicable samples. In case of cancer progression or study drop-outs, the last 

collected blood sample is automatically named end of treatment (EOT.) 

 

Figure 3: Blood collection scheme of the biomarker substudy 

The dark blue arrow marks the time line. Blood collections are depicted as red arrows, whereas 

blue arrows stand for radiation investigations. The blue boxes at the top indicate the treatment 

cycles. 
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Table 6: Patient characteristics in the CESAR Biomarker Substudy 

Characteristic Amount 

N 261 

Age/gender  

  Mean age (range) 
63  

(40-77) 

  Median age 63 

  Female (%) 92 (35) 

  Male (%) 169 (65) 

Smoking habits  

  Current smoker (%) 97 (37) 

  Former smoker (%) 136 (52) 

  Never smoker (%) 28 (11) 

Study arm  

  Arm A (BSA) 130 (50) 

  Arm B (PK) 131 (50) 

Study drug  

  Carboplatin (%) 217 (83) 

  Cisplatin (%) 44 (17) 

Characteristic Amount 

Histology  

  Adenocarcinoma (%) 201 (77) 

  Squamous carcinoma (%) 60 (23) 

Staging  

  Stage IIIB (%) 40 (15) 

  Stage IV (%) 221 (85) 

ECOG baseline  

  0 (%) 135 (52) 

  1 (%) 94 (36) 

  2 (%) 10 (4) 

  NA (%) 22 (8) 

Response  

  Partial remission (%) 99 (38) 

  Stable disease (%) 88 (34) 

  Progressive disease (%) 58 (22) 

  NA (%) 

 

16 (6) 

BSA: Body surface area guided dosing, PK: Pharmacokinetic guided dosing 

Response was evaluated after the termination of the second treatment cycle by CT evaluation 

(Holdenrieder et al., 2020) 
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In preparation to the biomarker measurements, the whole sample set was properly 

organized and sorted. The shipped serum sample volume of 0.5 to 5 ml was divided in 

aliquots containing 500 µl each. Re-identification of the samples was carefully performed 

according to the reported clinical data. Whenever the sample identity remained unclear 

or no data was recorded, the corresponding sample was excluded from the biomarker 

study analyses. 

All in all the background data of 243 patients was analyzable. 1/3 of the study population 

was female and 2/3 was male. 77% suffer from Non-Squamous adenocarcinoma and 

85% reached stage IV of the disease. The characteristics of the patients were 

summarized in Table 6. 

Patients were divided among their response to therapy assessed by computed 

tomography (CT) into responders and non-responders. Since 40% of the patients 

presented with stable disease, two approaches were differentiated. First, stable disease 

as well as partial remission was classified as response and progressive disease as non-

response. The second approach investigated good response and as such only classified 

partial remission as response and summarized stable disease along with progressive 

disease as non-responsive. 

Prediction of therapy response was investigated on the pre-therapy biomarker 

concentrations and on change in marker concentrations. The change period observed 

was start of therapy (1_1) until the end of treatment cycle two (3_1). Wherever data on 

3_1 was not available, other time points were used when fulfilling the criteria. If only data 

on the end of treatment (EOT) was available, this data was used on the condition that 

the total amount of treatment cycles was less than three. If only data on the beginning of 

the second cycle (2_1) was available, this was used instead. In the case where data on 

both, 2_1 and EOT, was measured EOT data was preferred if the total amount of 

treatment cycles has been less than three, otherwise 2_1 data was used. 

4.1.2 Healthy cohort 

The set of healthy controls contained 136 heparin plasma samples. All study participants 

were males with a median age of 54 years (32-71). 96 participants showed cardiac 

abnormalities during the medical examination whereas the remaining 40 participants 

were categorized as healthy. All samples were analyzed with the newly developed PD-1, 

PD-L1 and PD-L2 ELISA assays. 
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4.1.3 Ethics 

The CEPAC-TDM study protocol was written based on international standards of good 

clinical practice. It was accepted by local institutional review boards and also national 

authorities. Every participant agreed to study conditions by signing an informed consent 

(Joerger et al., 2016). The study is listed in the U.S. Library of Medicine (Clinical 

trials.gov) under the identifier: NCT01326767 (U.S. National Library of Medicine, U.S. 

National Institutes of Health, & U.S. Department of Health and Human Services, 2020a). 

Informed consent was given by all patients included in the healthy cohort. 

4.2 Tumor markers ECLIA 

4.2.1 ECLIA method 

The electrochemiluminescence immune assay (ECLIA) is an ELISA technology 

developed by Roche. The assays are based on two antibodies of which one is coupled 

with biotin and the other with a ruthenium complex. The sample is incubated with both 

antibodies in the first step. Next, streptavidin-covered beads are added which bind the 

biotinylated antibodies. The application of electricity activates the ruthenium complex to 

emit light which is then allows the sensitive quantification of the antigen. It takes 18 

minutes to complete one sample analysis. All assays were fully validated by Roche 

Diagnostics GmbH. Measurements were performed on a Cobas Elecsys® e411 (Roche 

Diagnostics GmbH, 2012). 

4.2.2 ECLIA quality control 

Quality control was performed by a daily calibration and the measurement of supplied 

assay kit controls. Accepted calibration and controls were the prerequisite for sample 

measurements. 

4.2.3 ECLIA materials 

The analysis of the tumor markers based on assay kits purchased from Roche 

Diagnostics GmbH. The following tables list the reagents, additional reagents and 

consumables used to perform the analyses (Table 7, Table 8, Table 9). 
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Table 7: Tumor marker reagents 

Reagent Calibrator Control 

Elecsys® CYFRA 21-1 
Elecsys® CYFRA 21-1 

CalSet 

PreciControl LC/ 

PreciControl Tumor Marker 

Elecsys® CEA Elecsys® CEA CalSet PreciControl Tumor Marker 

Elecsys® SCC Elecsys® SCC CalSet PreciControl LC 

Elecsys® NSE Elecsys® NSE CalSet 
PreciControl LC/ 

PreciControl Tumor Marker 

Elecsys® ProGRP Elecsys® ProGRP CalSet 
PreciControl LC/ 

PreciControl ProGRP 

Elecsys® CA 15-3 II Elecsys® CA 15-3 II CalSet PreciControl Tumor Marker 

Elecsys® CA 125 II Elecsys® CA 125 II CalSet PreciControl Tumor Marker 

Elecsys® HE4 Elecsys® HE4 CalSet PreciControl HE4 

All manufactured by Roche Diagnostics GmbH (Roche Diagnostics GmbH, 2013, 2017, 2018a, 

2018b, 2019, 2020a, 2020c, 2020b) 

Table 8: Tumor marker additional reagents 

Reagent Purpose 

Universal Diluent Sample dilution (optional) 

Diluent NSE Sample dilution NSE (optional) 

Diluent MultiAssay Sample dilution (optional) 

ProCell Cleaning 

CleanCell Cleaning 

CleanSys Cleaning 

All manufactured by: Roche Diagnostics GmbH 
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Table 9: Tumor markers consumables 

Consumables Purpose 

AssayCups Reagent tubes 

AssayTips Pipetting 

Hitachi-Standard-Cup Manual sample dilution 

All manufactured by: Roche Diagnostics GmbH 

4.3 PD-markers ELISA 

4.3.1 ELISA method 

The applied method is the sandwich-ELISA technology. In this method, two specific 

antibodies against different human epitopes are used to identify the antigen. Available 

information about the origin and antibody type is listed in Table 10.The assay procedure 

described applies to all three assays. It is also visualized Figure 4. 

Table 10: Specification of PD-1, PD-L1 and PD-L2 antibodies 

Name Origin/ production cell line 

Capture antibody PD-1 Goat 

Detection antibody PD-1 Goat 

Standard PD-1 Recombinant human protein 

Capture antibody PD-L1 Mouse 

Detection antibody PD-L1 Goat 

Standard PD-L1 Recombinant human protein 

Capture antibody PD-1 Mouse 

Detection antibody PD-1 Mouse 

Standard PD-1 Recombinant human protein 

DuoSet manuals for PD-1, PD-L1 and PD-L2 (R&D Systems, 2018; R&D Systems Inc., 2016a, 

2016b) 
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The assays are performed on bare (=uncoated) plates with a carbon surface. The carbon 

surface fulfills two purposes as it on the one hand binds biological material with high 

affinity and on the other hand serves as the electrode during the detection process. In 

the first step all wells are mixed with phosphate buffered saline (PBS) for 5 minutes at 

700 rpm. This step is included to moisten the dry well bottom. It will allow for the capture 

antibody dilution to spread alongside the whole well bottom. After discarding the PBS 

25 µl of the capture antibody dilution is added to each well. Following five minutes of 

shaking at 700 rpm the plate is placed in the fridge (2-8 °C) for an overnight incubation. 

After this step the plate is washed. This is done three times with a volume of 200 µl of 

wash buffer per well. Next, 150 µl of blocking reagent is added to satiate the unbound 

capacity of the carbon surface. This step is important to avoid sample components to 

bind to the plate and thereby probably cause disturbing detections signals. After one 

hour incubation step at 500 rpm the washing step is repeated. Subsequently, 25 µl of 

standards, controls and samples are added to the plate and incubated for two hours at 

500 rpm. After another washing step, 25 µl of detection antibody solution is applied and 

again incubated for two hours at 500 rpm. Followed by another washing step, 25 µl of 

SULFO-TAG streptavidin dilution is pipetted to each well. This introduced one part of the 

needed detection reagents, which is bound to the biotin-coupled detection antibody via 

its streptavidin component. The assay procedure is concluded by another washing step 

and the introduction of 150 µl MSD GOLD Read Buffer per well. Within the next 

15 minutes the plate is measured on the MESO QuickPlex SQ 120 reader. The 

instrument applies voltage to the plate to start the light emission, which is captured by a 

high sensitive camera. As the electricity destroys the plate bottom, every plate can be 

only detected once. The described process is visualized in Figure 6. All assays were 

performed according to a self-developed assay protocol (Figure 5). 
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Figure 4: ELISA processing scheme 

Starting with an overnight incubation with the capture antibody which is followed by a blocking step, the sample incubation step, the detection antibody the 

assay procedure terminates introducing the detection agent (SULFO-TAG). Finally the read buffer is added, voltage is applied to the plate by the MESO 

QuickPlex SQ120 and emitted light is detected. 
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Figure 5: Template assay protocol PD-1, PD-L1 and PD-L2 DHM assays 
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The developed assays use electrochemilumincescence (ECL) as the detection method. 

In this technology, voltage is used to create highly reactive substances whose interaction 

then emits light. This emission is detected by a highly sensitive camera. The principle of 

ECL is depicted in Figure 6. 

The bottom of each ELISA-plate consists of carbon which serves as an electrode in the 

detection process. In the instrument voltage is applied to the plate. This leads to the 

development of two reactive substances. One is a ruthenium-complex as part of the 

SULFO-TAG, bound to the detection antibody via biotin-streptavidin-coupling. The 

second, tripropylamine (TPA), is part of the MSD GOLD Read Buffer. The interplay of the 

ruthenium-complex and the TPA emits light that is detected by a camera in the 

instrument. The amount of light emitted correlates with the amount of the ruthenium-

complex, and in consequence with the concentration of the antigen. 

 

Figure 6: Detection based on electrochemiluminescence 

The upper part of the figure describes the necessary compounds for an 

electrochemiluminescence detection system. The lower part describes which components fulfill 

the corresponding part in the system supplied by MSD. 

ELC convinces with several advantages over conventional ELISA-detection technology. 

It provides a highly sensitive detection method due to signal amplification. Nevertheless 

the background signals are very low. The detection technology is compatible with a 

variety of sample matrices, namely serum, plasma and cell culture supernatant. Its broad 

dynamic range over several magnitudes enables the measurement of differently 

concentrated samples without pre-dilution on one plate (Meso Scale Discovery, 2020). 

Data procession and analysis was performed with the supplied DISCOVERY 

WORKBENCH 4.0.12 (LSR_4_0_12) (Meso Scale Discovery, LLC., Rockville, USA). 

Analyses are performed using Microsoft Office Home and Student 2010, Microsoft excel 

version 14.0.7249.5000 (Microsoft Corporation, Redmond, USA). 
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4.3.2 ELISA validation 

The three ELISAs to quantify soluble PD-1, PD-L1 and PD-L2 were based on antibody 

pairs and recombinant protein standards. Chessboard titrations experiments were 

performed to identify capture and detection antibody concentrations exhibiting the 

highest signals. Additionally, different diluents were explored to optimize assay 

performance. Following methodical validation comprised imprecision, limit of 

quantification, dilution linearity and selectivity testing. A standard curve was prepared as 

a serial dilution of the corresponding recombinant protein. This calibration was used for 

quantification purposes (Krueger et al., 2020). 

Knowledge about preanalytcial influence factors on sample quality is a key factor to 

receive high quality data in the end. Centrifugation speed, duration before sample 

processing and storage temperature were varied. Investigations included time intervals 

and storage temperatures before blood centrifugation (3h/ 6h/ 24h/ 48h/ 168h at 4°C/ 

25°C/ 37°C) and after blood centrifugation (3h/ 6h /24h at 4°C/ 25°C). Additionally, the 

effect of the freezing process and repeated freeze- thaw cycles were investigated 

(Krueger et al., 2020). 

4.3.3 ELISA quality control 

Quality control represents an important aspect to verify and monitor assay quality. 

Therefore serum control pools were produced for each assay. A number of samples 

were measured and split into a high, a medium and a low group according to obtained 

concentrations. The samples from each group were pooled, mixed thoroughly and 

aliquoted. In this way three controls were created for each assay separately. The control 

aliquots are measured in duplicate on each performed plate. Thereby the plate 

performance of several plates can be compared directly and if necessary adjusted or 

decided to be re-measured. 
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4.3.4 ELISA materials 

Different materials, supplies instruments were needed to perform all experiments. These 

were structured into tables which separate the topics chemicals (Table 11), solutions 

(Table 12), consumables (Table 13), instruments (Table 14), and centrifugation 

programs (Table 15). 

Table 11: Applied chemicals and their corresponding suppliers 

Chemical agent Supplier 

Albumine Fraktion V Carl Roth GmbH+Co.KG, Karlsruhe, Germany 

ROTI®-CELL 10x PBS Carl Roth GmbH+Co.KG, Karlsruhe, Germany 

TWEEN®20 Merck KGaA, Darmstadt, Germany 

Diluent 2/ 3 Meso Scale Discovery, LLC., Rockville, USA 

SULFO-TAG Streptavidin Meso Scale Discovery, LLC., Rockville, USA 

MSD GOLD Read Buffer Meso Scale Discovery, LLC., Rockville, USA 

Human PD-1 DuoSet® ELISA R&D Systems, Inc., Minneapolis, USA 

Human PD-L1 DuoSet® ELISA R&D Systems, Inc., Minneapolis, USA 

Human PD-L2/B7-DC DuoSet® ELISA R&D Systems, Inc., Minneapolis, USA 

PBS: Phosphate buffered saline 

Table 12: Solutions and their composition 

Name Component 

Blocking reagent PBS + 5% BSA 

Reagent diluent PBS + 1%BSA 

Wash Buffer PBS + 0,05% TWEEN®20 

PBS: Phosphate buffered saline, BSA: Bovine serum albumin. 
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Table 13: Consumables and their corresponding suppliers 

Consumables Supplier 

Sample tubes 

  0.5/ 1.5/ 2.0 ml 

  5.0 ml 

 

BRAND GMBH+CO KG, Wertheim, Germany 

Carl Roth GmbH+Co.KG, Karlsruhe, Germany 

Falcon™ tubes 

  15/50  ml 

 

Fisher Scientific GmbH, Schwerte, Germany 

Cyro® tubes 

  0.5/1.8 ml 

 

Thermo Fisher Scientific Inc., Waltham, USA 

Sample tips 

  0.5-10 ml 

  100-1000/ 10-100 µl/ 0.5-10 µl 

  50-1250 µl 

 

BRAND GMBH+CO KG, Wertheim, Germany 

BRAND GMBH+CO KG, Wertheim, Germany 

Eppendorf AG, Hamburg, Germany 

Seal foils Carl Roth GmbH+Co.KG, Karlsruhe, Germany 

Plates  

  QUICKPLEX®96-Well Standard Meso Scale Discovery, LLC., Rockville, USA 

  QUICKPLEX®96-Well High Bind Meso Scale Discovery, LLC., Rockville, USA 

Blood sampling tubes SARSTEDT AG&Co.KG, Nümbrecht, Germany 

  Serum: S-Monovette® 5.5ml Z 

  Heparin: S-Monovette® 5.5ml LH 

  EDTA: S-Monovette® 9ml K3E 

  Citrate: S-Monovette® 5ml 9NC  
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Table 14: Instruments and their corresponding suppliers 

Instrument Supplier 

Stirring plate Heidolph Instruments GmbH & CO. KG, Schwabach, 

Germany 

Scales Ohaus corporation, Parsippany, USA 

Centrifuges 

  Rotina 380 

 

  5415D 

 

Andreas Hettich GmbH & CO.KG, Tuttlingen, 

Germany 

Eppendorf AG, Hamburg, Germany 

Shaker  

  Unimax 1010 

 

  Bioshake IQ 

  ThermoMixer C 

 

Heidolph Instruments GmbH & CO. KG, Schwabach, 

Germany 

Quantifoil Instruments GmbH, Jena, Germany 

Eppendorf AG, Hamburg, Germany 

  Tube shaker IKA®-Werke GmbH & CO. KG, Staufen, Germany 

Pipettes 

  0.5-10ml 

  100-1000 /10-100/ 0.5-10 µl 

 

BRAND GMBH+CO KG, Wertheim, Germany 

BRAND GMBH+CO KG, Wertheim, Germany 

Multichannel-pipettes 

  5-100/ 50-1250 µl 

 

Eppendorf AG, Hamburg, Germany 
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Continuation of Table 14 

Instrument Supplier 

Timer Bresser GmbH, Rhede, Germany 

Incubator 

  memmert Type U26 

 

Memmert GmbH + Co.KG 

Storage 

  Refridgerator 

  Freezer (-20°C) 

  Freezer (-80°C) 

 

Skyport GmbH, Amberg, Germany 

Liebherr-Hausgeräte GmbH, Ochsenhausen, Germany 

Thermo Fisher Scientific Inc., Waltham, USA 

Analyzers 

  MESO QuickPlex SQ120 

 

Meso Scale Discovery, LLC., Rockville, USA 

 

Table 15: Specification of centrifugation programs 

Program Specimen Speed/ Time/ Temperature 

Normal Full blood 3000/ 10/ rt 

½x velocity Full blood 1500/ 10/ rt 

2x velocity Full blood 6000/ 10/ rt 

Sample preparation 

(ELISA) 

Serum, Heparin-/EDTA-

/Citrate-plasma 

3000/ 2/ rt 

Speed in g (=rcf), time in min, temperature in °C; rt: room temperature. 
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4.4 Statistic tools clinical evaluation 

Comprehensive data analysis was performed independently from sample collection and 

analysis with support by the QuoData Statistics GmbH. The results of the tumor marker 

evaluation are part of a publication that is currently prepared (Holdenrieder et al., 2020). 

Mean, median, standard deviation and coefficient of variation (CV) are basic statistic 

tools to analyze the data. Describing boxplots, also the fifth and the 95th quartile are 

listed. Line, dot, bar and pie charts were constructed with excel. Boxplots and scatter 

plots were drawn in R and RStudio version 3.4.0 (2017-04-21). The Wilcox- , Mann-

Whitney-U-Test and Spearman correlations were also calculated in R. 

Results were drawn as receiver operating characteristic (ROC) curves and analyzed on 

the corresponding area under the curve (AUC). The AUC was classified as not 

discriminating (<0.6), poor (0.6-0.7), acceptable (0.7-0.8), excellent (0.8-0.9) and 

outstanding (>0.9). Following single marker assessments covariates were added in order 

to try to improve prognosis and prediction. Last, multi-marker analysis was performed 

including all tumor marker data. 

Kaplan-Meier curves were applied to visualize progression free survival (PFS) and 

overall survival (OS) in the whole NSCLC cohort. In order to investigate prognostic value 

of the pre-therapeutic tumor marker concentrations, they were split into four groups. The 

cohort was split into quartiles based on all measured single marker concentrations. Each 

patient was allocated to the corresponding group. Kaplan-Meier curves were drawn to 

compare the performance of the groups. Hazard ratios (HRs) were calculated to 

compare the lowest and the highest concentration group on the basis of a p-value of 

≤0.05 and also providing a 95% confidence interval. HRs equaling 1 meant no 

discrimination between the two groups. HRs >1 represented an elevated risk for the 

investigated group to suffer from decreased median survival whereas HRs <1 conversely 

indicated a lower risk. 

Cox proportional hazard regression analysis was performed to estimate the influence of 

covariates on progression free and overall survival. Accounted covariates included 

gender, stage, histology, study arm, study drug, ECOG-status at study entry and prior 

therapies. Results of analysis were reported again in form of hazard ratios. 
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Paired and unpaired t-Tests can be used to calculate whether means differ significantly. 

The applied significance level in this study is 95% (p=0.05). As prerequisites for the t-

Test were not fulfilled, Mann-Whitney-U-Test and Wilcoxon test were used to compare 

the groups instead. In case the values come from different cohorts, the Mann-Whitney-U-

Test was used. When two measurements in the same cohort were compared the Wilcox-

Test was applied. Significant differences between the compared groups existed, where 

the calculated p-value was smaller than 0.05. 

The Shapiro-Wilk test determines whether the investigated data is normally distributed. 

The decision is based on the applied significance level. In this approach, all data sets 

with p-value >0.05 were normally distributed. 

To assess linear correlation between two variables, two tests Pearson or Spearman 

correlation are applicable. The Pearson correlation has the following prerequisites: 

metric scaling, no (extreme) outliers and bivariate normal distribution of the data. The 

obtained correlation coefficient r can range von -1 to 1. Its three possible interpretations 

are: r~0: no correlation, r<0: negative correlation and r>0: positive correlation. If at least 

one precondition is violated, the Spearman correlation can be used instead. The 

calculation reports two numbers, the p-value of the correlation and the correlation 

coefficient (rho). P-values >0.05 indicate a significant correlation. The Rho value, also 

effect size, is interpreted according to a classification published by Cohen in 1992. Effect 

size is weak between 0.10 and 0.29, medium between 0.30 and 0.49 and strong ≥0.50 

(Cohen, 1992). The coefficient of determination represents the amount of variances in 

two variables determined by the same source. It is calculated from the squared rho and 

listed in [%]. 
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5 Results 

The measurement data of the tumor markers and the newly developed assays 

quantifying soluble PD-1, PD-L1 and PD-L2 in the NSCLC cohort were reported. 

Analyses were performed to assess predictive value regarding response to therapy as 

well as prognostic value in regard to progression free survival and overall survival. The 

newly developed markers PD-1, PD-L1 and PD-L2 were additionally measured in a 

cohort of healthy males and compared with the concentrations obtained in NSCLC 

patients. 

5.1 Tumor markers CESAR Biomarker Substudy 

The tumor markers CYFRA 21-1, CEA, SCCA, NSE, ProGRP, CA 15_3, CA 125 and 

HE4 and the PD-markers PD-1, PD-L1 and PD-L2 were analyzed in the NSCLC cohort. 

The results of the tumor marker evaluation are part of a publication that is currently 

prepared (Holdenrieder et al., 2020). 

Time-point 1_1, 2_1 and 3_1 were blood samples collected before the start of the 

respective treatment cycles' medication application. The last sample taken before study 

termination was related to as end of treatment (EOT). Those samples allowed a 

monitoring of the biology of cancer development under treatment. Two additional 

samples at day two after treatment application were collected in the first and the second 

cycle of treatment, referred to as 1_2 and 2_2. These specifically visualize the direct 

effect of treatment on the biomarker concentrations. 

The time points 1_1 and 3_1, as well as the relative change in biomarker concentrations 

between both time points were chosen for intensive analysis. 1_1 represented 

pre-therapeutic concentrations. The largest potential for predictive and prognostic 

biomarkers is associated with this time point because it offers answers on cancer 

development and choice of therapy even before start of application. Since the 

meaningfulness of biomarkers is expected in course of therapy due to separation of 

responders and non-responders a second time point within the therapy was analyzed. In 

this approach the data for before the application of the third treatment cycle was chosen. 

CT was performed at that time point which allowed for a very precise evaluation of 

therapy response.  
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Tumor markers associated with lung cancer CYFRA 21-1, CEA, SCCA NSE and 

ProGRP were measured. Additionally, CA 15-3, CA 125 were investigated. Boxplots 

visualized the tumor marker concentration distributions on the six blood sample time 

points without differentiating according to the response (Figure 7). 

 

Figure 7: Tumor marker concentrations development during cancer therapy 

Boxplots visualize the distribution of the concentration of the different tumor markers 

CYFRA 21-1 (A), CEA (B), SCCA (C), NSE (D), ProGRP (E), CA 15-3 (F), CA 125 (G) and 

HE4 (H) in course of therapy. Red starts indicate the calculated mean concentration. 
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The development of the tumor marker concentrations was evaluated with a focus on the 

general marker development in course of therapy. Additionally the direct effect of 

chemotherapy application of the markers was investigated. In this approach the time 

point X_1 was compared with the time point X_2. 

CYFRA 21-1 concentrations varied among the whole investigation period. A slight 

decrease was seen during the end of treatment time point. Increasing CYFRA 21-1 

concentrations were detected in response to therapy application in treatment cycle 1 and 

also cycle 2. Median CEA concentrations stayed stable across all six time points and no 

direct effect of treatment was seen. The measured SCCA concentrations resulted in 

narrow boxes. No variations in median concentrations were observed throughout the 

observation period and as reaction to therapy. 

A non-significant shift towards lower median concentrations was observed in the NSE 

biomarker levels. No change in marker concentrations in response to therapy was 

reported. Stable median biomarker concentrations of ProGRP were measured 

throughout therapy, although strong outliers were detected at the time points 1_2, 2_2 

and end of treatment. Again no concentration change in response to therapy was 

detected. 

CA 15-3 and CA 125 also presented with stable marker levels. CA 125 concentrations 

were very high in a fraction of the patients and concentrations did not change in 

response to therapy application.. Median HE4 concentrations did not change during the 

treatment. HE4 concentrations stayed stable when chemotherapy was applied. 

Downstream analysis was performed with regard to four questions. First the predictive 

value for progression of disease, categorizing stable disease and remission as 

responders and progressive disease as not responsive was investigated. The evaluation 

was based on the pre-treatment tumor marker concentrations and the relative change in 

concentrations from the beginning to the end of treatment cycle 2. Second, the same 

was approach was applied to assess good response regrouping the stable disease 

patients to the non-responders. The third and fourth question dealt with the idea of 

estimating the prognostic value for progression free survival (PFS) and overall survival 

(OS). 
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5.2 Prediction of therapy response 

245 patients were eligible for the analysis of response to therapy in the pre-therapeutic 

concentrations. Due to missing data for a second time point, the number reduced to 230 

patients for the analysis of the effect of concentration changes in course of therapy 

(Figure 8). 

For predicting response to therapy, the patients were grouped into three parties among 

the observed tumor growth in imaging (CT). The differentiation was made between 

partial remission (PR; N=99), stable disease (SD; N=88) and progressive disease (PD; 

N=58). Patient numbers were a little lower in the assessment of relative changes due to 

a lack of a second data point in some patients. Since 34% of the patients experienced 

stable disease, two downstream evaluations were followed. For estimation of poor 

response to therapy, patients with progressive disease were classified as non-

responders and SD together with PR as responders. When good response to therapy 

was investigated, only PR was classified as response and SD and PD were combined in 

the non-responder group. 

The comparison of the response groups was performed in pre-therapeutic concentration 

first. In a second approach, the relative change in biomarker concentrations between the 

beginning of therapy and the end of treatment cycle 2 (3_1) was compared. 

In the first approach the absolute concentrations in both groups were depicted as 

histograms. The peak as well as the overlapping area gave a first idea whether the 

marker concentration in the two response groups differ. For further assessment, receiver 

operating characteristic (ROC) curves were drawn. The respective area under the curve 

(AUC) calculated the predictive potential of the corresponding biomarker. 
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Figure 8: Decision tree outlining included samples in the analysis for prediction of response 

The depicted decision trees illustrate the sample inclusion process for the analysis of the prediction potential of poor and good response to therapy. The 

decision tree for pre-therapeutic study samples was shown on the left (A) and the one for the relative concentration change between C1 and C3 on the 

right (B). 
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5.2.1 Prediction of poor response to therapy 

Patients were grouped according to CT results into responders (SD/PR; N=187) and 

non-responders (PD; N=58). The concentrations were depicted in a histogram to 

compare the distribution in both response groups. 

Pre-therapeutic concentrations 

Pre-therapeutic concentrations were depicted in histograms (Figure 9). The curves 

drawn for CYFRA 21-1 showed a considerable overlap. The non-responders curve 

showed a plateau, whereas the responders curve showed a clear peak. The density 

evaluation showed a maximum at higher concentrations for responders compared to 

non-responders. Both curves for CEA present with a large overlap covering the whole 

concentration range. The maximum density of concentrations is very slightly shifted to 

lower concentrations for responders. The responders' curve in the biomarker SCCA 

formed a considerable peak around a concentration of 1 ng/ml. The peak of the non-

responder curve was detected at the same concentration. But the whole concentration 

range distribution was broader resulting in a notably lower density at 1 ng/ml for non-

responders. 

No differentiation between the two curves was possible when analyzing NSE 

concentration distribution and density. The results obtained in ProGRP almost resemble 

those of NSE. Contrary in this biomarker a slight shift of the maximum density of 

responders to higher concentrations was observed. 

Concentrations obtained for CA 15-3 showed large overlapping fractions with a minimal 

shift of the maximum density in responders towards lower concentrations. The 

concentrations for responders form one defined peak for the tumor marker CA 125. The 

concentrations for non-responders instead spread widely across the concentration 

range, though the highest density of concentrations was comparable with the one in the 

responder group. The curves constructed for responders and non-responders for HE4 

formed normal peaks. A minimal shift of the peak for responders towards lower 

concentrations was visible. 

Receiver operating characteristic (ROC) curves were drawn to further analyze predictive 

value of pre-therapeutic concentrations on poor response to therapy. Calculated AUCs 

were 0.573 (CYFRA 21-1), 0.517 (CEA), 0.536 (SCCA), 0.521 (NSE), 0.563 (ProGRP), 

0.570 (CA 15-3), 0.587 (CA 125) and 0.563 (HE4). The AUCs were smaller than 0.6 for 

all eight investigated markers. Pre-therapeutic single marker concentrations were not 

predictive for poor therapy response. The combination of pre-therapeutic concentration 

of different tumor markers was not able to improve overall predictive value (Figure 10). 
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Figure 9: Comparison of the pre-therapeutic concentrations in the response groups based on poor 
response to therapy 

Histograms illustrate the distribution of the single tumor markers based on the measured pre-

therapeutic concentrations for CYFRA 21-1 (A), CEA (B), SCCA (C), NSE (D), ProGRP (E), 

CA 15-3 (F), CA 125 (G) and HE4 (H) separated into response groups. Non-responders (PD) are 

shown in turquoise and responders (SD/PR) in orange. 
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Figure 10: Predictive value of pre-therapeutic marker levels on therapy response 

ROC curves illustrate the predictive value of the single tumor markers based on the measured 

pre-therapeutic concentrations for CYFRA 21-1 (A), CEA (B), SCCA (C), NSE (D), ProGRP (E), 

CA 15-3 (F), CA 125 (G) and HE4 (H). Corresponding AUCs were calculated and displayed on 

the upper right of the graph for each marker. AUCs lower than 0.6 represent poor prognostic 

performance regarding prediction of response to therapy. 
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Relative concentration changes between Cycle 1 and Cycle 3 

In the next step the predictive value of relative concentrations between the beginning of 

therapy and the end of treatment cycle 2 were investigated. The end of treatment cycle 2 

equaled the beginning of treatment cycle 3 before application of therapy which was 

represented by the blood sample 3_1 (Figure 11). 

The curve for responders in CYFRA 21-1 showed a peak in the negative range of the 

scale. This translated into a decrease in concentrations for the majority of responders. 

The peak for the non-responder distribution curve was located around zero and 

presented a shoulder towards increases relative changes. Non-responders consequently 

tend to experience stable or even increasing CYFRA 21-1 concentrations. CEA 

concentrations for both response groups peaked at zero equaling no change in 

biomarker concentrations. Regardless the density for responders was considerably 

higher since the non-responder curve additionally showed a tiny plateau in the positive 

scale ranges. Meaning some non-responders experienced an increase in CEA 

concentration. The peaks for SCCA showed an overlap at concentrations slightly below 

zero. Again, the density for responders was much higher since the non-responder peak 

formed a shoulder because some patients of the non-responder group exhibited 

increased concentrations during treatment. 

Both curves for responders and non-responders formed defined peaks depicting the 

relative change in NSE concentrations. Whereas the peak for the non-responders was 

located at zero meaning no observed marker changes in response to treatment, the peak 

for responders was shifted towards decreasing biomarker concentrations. In ProGRP 

both response groups showed no change in biomarker concentration indicated by sharp 

overlapping peaks at the zero value. Interestingly the responder analysis exhibited an 

additional peak at a relative change of -1 with considerable density. A subgroup of the 

patients experienced a decrease in ProGRP concentrations in response to treatment. 

Separating the stable disease from the partial remission patients in later evaluation might 

lead to further insights. 
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CA 15-3 curves looked alike throughout the whole depicted course. A peak at zero 

meant no change in concentrations in the marker in the majority of patients. Both 

response groups showed an additional peak at decreasing concentrations. Due to the 

resemblance of both curves no differentiation potential was expected. The picture 

observed for CA 125 is different. The responders curve formed a sharp peak at zero with 

the majority of patients experiencing a decrease to stable marker concentrations in 

course of chemotherapy. The curve characterizing the non-responders was comparably 

flatter. Although the maximum density was also seen at zero, a considerable part of the 

patients experienced increasing marker concentrations. Responder and non-responder 

curve in HE4 showed a large overlap with a joined peak at a stable biomarker 

concentration during therapy course. A subgroup of the responders showed decreasing 

concentrations towards the end of treatment cycle 2. Alike ProGRP, further 

investigations on good response to therapy might offer explanations for the observed 

phenomenon. 

ROC curves were also drawn to investigate predictive value of a relative change in tumor 

marker concentrations between beginning and end of treatment cycle 2 on response to 

therapy. Corresponding AUCs were 0.747 (CYFRA 21-1), 0.638 (CEA), 0.668 (SCCA), 

0.691 (NSE), 0.518 (ProGRP), 0.583 (CA 15-3), 0.702 (CA 125) and 0.634 (HE4). The 

relative change measured in ProGRP concentrations was not discriminative between 

responders and non-responders. AUCs for CEA, SCCA, CA 15-3 and HE4 only show 

poor predictive value. Nevertheless the predictive value for CYFRA 21-1, NSE and 

CA125 proved to be acceptable. Multi-marker approaches could not increase the 

predictive value significantly (Figure 12). 
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Figure 11: Comparison of the relative change in concentrations in the response groups based on 
poor response to therapy 

Histograms illustrate the distribution of the single tumor markers based on the measured pre-

therapeutic concentrations for CYFRA 21-1 (A), CEA (B), SCCA (C), NSE (D), ProGRP (E), 

CA 15-3 (F), CA 125 (G) and HE4 (H) separated into response groups. Non-responders (PD) are 

shown in turquoise and responders (SD/PR) in orange. 
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Figure 12: Predictive value of relative change in marker levels between cycle 1 and end of cycle 2 
on therapy response 

ROC curves illustrate the predictive value of the single tumor markers based on the measured 

relative change in concentration from beginning of therapy until the end of treatment cycle 2 for 

CYFRA 21-1 (A), CEA (B), SCCA (C), NSE (D), ProGRP (E), CA 15-3 (F), CA 125 (G) and 

HE4 (H). Corresponding AUCs were calculated and displayed on the upper right of the graph for 

each marker. AUCs lower than 0.6 represent poor prognostic performance regarding prediction of 

response to therapy. 
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5.2.2 Prediction of good response to therapy 

Patients were grouped according to CT results into responders (PR; N=99) and 

non-responders (SD/PD; N=146). The concentrations were depicted in a histogram to 

compare the distribution in both response groups (Figure 13). 

Pre-therapeutic concentrations 

The curves of the responders and non-responders showed a large overlap in the tumor 

marker CYFRA 21-1. The peak of the non-responder group was slightly but clearly not 

significantly shifted towards lower pre-treatment concentrations. CEA curves covered 

each other very well which meant no difference between the two groups was shown. The 

same observation was made for SCCA concentrations. 

Alike the other markers no differentiation between responders and non-responders was 

seen in absolute pre-therapeutic concentrations for the biomarkers NSE and ProGRP. 

Histograms depicting the concentrations of CA 15-3 showed no differentiation between 

the two response groups. Both curves for CA 125 peaked at a concentration around 

30 ng/ml. The density for the responder curve was considerably higher as the non-

responder curve exhibited a generally flatter course. The higher concentrations were 

more likely to belong to a patient in the non-responder group. HE4 investigations 

revealed peaks that showed a comparable shape. The responder peak was slightly 

shifted towards lower pre-therapeutic concentrations. 

The good response to therapy was investigated using ROC curves. Assessing pre-

therapy tumor marker concentrations the following AUCs were reported for the single 

marker analyses: 0.558 (CYFRA 21-1), 0.569 (CEA), 0.552 (SCCA), 0.511 (NSE), 

0.558 (ProGRP), 0.581 (CA 15-3), 0.588 (CA 125) and 0.612 (HE4). The prognostic 

value of all single markers ranges between from not discriminative to poor. The 

combination of different markers did not elevate the AUCs and thus not the predictive 

value of pre-therapeutic concentrations (Figure 14). 
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Figure 13: Comparison of the pre-therapeutic concentrations in the response groups based on 
good response to therapy 

Histograms illustrate the distribution of the single tumor markers based on the measured pre-

therapeutic concentrations for CYFRA 21-1 (A), CEA (B), SCCA (C), NSE (D), ProGRP (E), 

CA 15-3 (F), CA 125 (G) and HE4 (H) separated into response groups. Non-responders (PD/SD) 

are shown in turquoise and responders (PR) in orange. 
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Figure 14: Predictive value of pre-therapeutic marker levels on well response to therapy 

ROC curves illustrate the predictive value of the single tumor markers based on the measured 

pre-therapeutic concentrations for CYFRA 21-1 (A), CEA (B), SCCA (C), NSE (D), ProGRP (E), 

CA 15-3 (F), CA 125 (G) and HE4 (H). Corresponding AUCs were calculated and displayed on 

the upper right of the graph for each marker. AUCs lower than 0.6 represent poor prognostic 

performance regarding prediction of well response to therapy. 
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Relative concentration changes between Cycle 1 and Cycle 3 

In a second approach the relative change in biomarker concentration was compared 

between beginning of therapy and the end of treatment cycle 2 (Figure 15). 

The highest density for CYFRA 21-1 was observed in the negative scale of the graph 

which equaled a decrease in biomarker concentrations in both response groups. 

Whereas patients that respond well to therapy almost never experienced an increase in 

biomarker concentration during therapy, a considerable part of the non-responders did. 

Stable concentrations were seen in CEA biomarker concentrations for both response 

groups. The same picture was observed when analyzing the SCCA concentrations. 

The majority of responders to therapy experienced a decrease in NSE concentrations 

during the first two therapy cycles. The concentrations in the non-responders varied from 

decrease to increase but the peak was located in decreasing concentrations. Further 

calculations will reveal whether the differences are significant. Both curves for ProGRP 

showed almost complete overlap. The majority of patients in either response group 

showed stable concentrations of the biomarker. A small group of patients in responders 

and non-responders experienced a decrease in concentrations. Since a similar 

observation was made when analyzing poor response to therapy. Thus the response to 

therapy cannot be the explanation for this separates peaks. 

The observations made when analyzing the curves for CA 15-3 mirrored the results 

obtained when analyzing the ProGRP graph, CA 125 curves showed a large overlap for 

both response groups. Both peak concentrations ranged around the zero concentration 

which meant stable biomarker concentrations during treatment. No differentiation 

between the curves drawn for HE4 was feasible. The majority of patients in both groups 

experienced stable values. A subpopulation in both groups had a decrease on HE4 

concentration. 

Again also the relative change in tumor marker concentrations between beginning of 

therapy and end of treatment cycle 2 was assessed on the predictive value for a good 

response to therapy. Calculated AUCs were 0.718 (CYFRA 21-1), 0.600 (CEA), 

0.585 (SCCA), 0.630 (NSE), 0.542 (ProGRP), 0.590 (CA 15-3), 0.670 (CA 125) and 

0.622 (HE4). ProGRP data again showed no discriminative value whereas poor 

predictive value was calculated for CEA, SCCA, NSE, CA15-3 and HE4. CYFRA 21-1 

and CA 125 showed acceptable results regarding prediction of therapy response. 

Predictive value was not increased by a multi marker approach (Figure 16). 
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Figure 15: Comparison of the relative change in concentrations in the response groups based on 
good response to therapy 

Histograms illustrate the distribution of the single tumor markers based on the measured pre-

therapeutic concentrations for CYFRA 21-1 (A), CEA (B), SCCA (C), NSE (D), ProGRP (E), 

CA 15-3 (F), CA 125 (G) and HE4 (H) separated into response groups. Non-responders (PD/SD) 

are shown in turquoise and responders (PR) in orange. 
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Figure 16: Predictive value of relative change in marker levels between cycle 1 and end of cycle 2 
on well response to therapy 

ROC curves illustrate the predictive value of the single tumor markers based on the measured 

relative change in concentration from beginning of therapy until the end of treatment cycle 2 for 

CYFRA 21-1 (A), CEA (B), SCCA (C), NSE (D), ProGRP (E), CA 15-3 (F), CA 125 (G) and 

HE4 (H). Corresponding AUCs were calculated and displayed on the upper right of the graph for 

each marker. AUCs lower than 0.6 represent poor prognostic performance regarding prediction of 

well response to therapy. 



Results 

61 

5.3 Prognosis of survival probability 

193 patients were eligible for the analysis of probability of PFS in the pre-therapeutic 

concentrations. Due to missing data for a second time point, the number reduced to 175 

patients for the corresponding analysis. Equally, 197 patients were eligible for the 

analysis of probability of PFS in the pre-therapeutic concentrations. Due to missing data 

for a second time point, the number reduced to 182 patients for the corresponding 

analysis (Figure 17). 

Prognostic value of the tumor markers regarding progression free survival (PFS) and 

overall survival (OS) was investigated by Kaplan-Meier curves and further confirmed by 

hazard ratio (HR) and cox proportional hazard regression analysis. 

Kaplan-Meier curves were dawn to visualize PFS and OS in the whole cohort. Later the 

patients were clustered depending on their smoking status into current smokers, former 

smokers and never smokers. The never smokers outperform former and current smoker 

in progression free and overall survival. The former smoker showed a very slightly 

beneficial course in progression free survival during the first six months compared to the 

current smokers. In the following months, both curves were comparable. There were only 

minor differences observed in the course of both overall survival curves which were 

consequently regarded as equal (Figure 18). Never-smokers were not included in the 

probability analysis for prognosis of PFS and OS since their PFS/OS performance was 

different from the remaining cohort. A single analysis of the never-smokers was not 

feasible due to the small amount of patients in this group. Two time points were 

investigated in this approach. First, the pre-therapeutic concentrations were analyzed. 

Second, the biomarker concentrations before the start of the third treatment cycle were 

taken into account. 

For the analysis of the prognostic value of tumor marker concentrations, the patients 

were split into four groups. Quartiles were calculated from the whole cohort's 

concentrations and the patients were placed based on their corresponding tumor marker 

concentration. The data was depicted in Kaplan-Meier curves. Hazard ratios were 

calculated comparing a low and high quartile to objectively assess whether there is a 

difference in the median survival. 
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Figure 17: Decision tree outlining included samples in the analysis for prognosis of survival 

The depicted decision trees illustrate the sample inclusion process for the analysis of the prognosis of progression free and overall survival. The decision tree 

for pre-therapeutic study samples was shown on the left (A) and the one for the C3 samples on the right (B). 
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Figure 18: Kaplan-Meier curves on progression free survival and overall survival 

Kaplan-Meier curves were drawn to illustrate the progression free and overall survival of the 

NSCLC study cohort. The dark blue line represented the mean progression free survival (A) or the 

mean overall survival (C) incorporating data of all patients. Light blue shades marked the 

confidence interval. The cohort was split by the reported smoking status into current smokers, 

former smokers and never smokers. Kaplan-Meier curves compared the performance of the three 

groups for progression free survival (B) and overall survival (D). 

 

The influence of covariates was also illustrated by Kaplan-Meier curves comparing two 

conditions of the corresponding covariate with each other. Regarding the histology, a 

better performance of the squamous cell carcinoma patients was observed over the 

whole observation period. Only minor differences were observed for the different patient 

stages. The Kaplan-Meier curves investigating the influence of gender and study arm 

showed a large overlap of both curves. Whereas in exploring the study drug the cisplatin-

treated group visibly outperformed the carboplatin group. The comparison of 

ECOG-status zero with the combined higher ECOG states one and two revealed no 

difference in the groups. Patients that did not underwent prior therapy, performed slightly 

better than those with adjuvant therapy. Still, the effect is rather weak and the patients 

with adjuvant therapies small (Figure 19). 
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Figure 19: Kaplan-Meier curves analyzing the influence of different covariates on PFS 

Kaplan-Meier curves were drawn to visually analyze the influence of the covariates histology (A), 

stage (B), gender (C), study arm (D), study drug (E), ECOG-status (F) and prior therapy (G) on 

the probability of progression free survival. 
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5.3.1 Progression free survival 

The probability of progression free survival was investigated by Kaplan-Meier curves and 

the calculation of hazard ratios. Hazard ratios were accepted as significant when the 

calculated 95% confidence interval did not include one. 

Pre-therapeutic concentrations 

To assess the prognostic value of pre-therapeutic CYFRA 21-1 concentrations Kaplan-

Meier curves were alike comparing all four groups. This was also seen in the 

corresponding hazard ratio (HR) which equals 1.07 (CI: 0.94-1.22) and proved no 

significant difference between the groups. The curves for CEA showed the same course 

for the first months. Later the patients showing the lowest pre-treatment concentrations 

presented with a more favorable outcome regarding PFS. Considering the median 

progression free survival there was no difference seen between the groups 

(HR: 1.07; CI: 0.99-1.16). The same applied to the tumor marker SCCA with a reported 

HR of 1.11 (CI: 0.93-1.31). 

NSE and ProGRP curves were comparable among the four examined groups. Hazard 

ratios of 1.20 (CI: 0.96-1.50) for NSE and 0.84 (CI: 0.64-1.08) for ProGRP were 

calculated but the broad confidence interval negated prognostic value for both markers. 

Regarding the Kaplan-Meier curves for CA 15-3 a separation between the four quartile 

concentration curves was detected. Q1 patients seemed to outperform the whole cohort 

regarding progression free survival after one year. The calculated median survival 

showed a benefit for the cohort displayed by a HR of 1.34 (CI: 1.17-1.54). A median 

progression free survival time of 6.4 months was shown in the cohort with a low 

concentration of CA 15-3, whereas a median progress was observed after 4.4 months in 

patients with high concentrations. Kaplan-Meier curves for CA 125 differed significantly 

for the four investigated groups. The observation was confirmed by a HR of 1.22 

(CI: 1.09-1.36) indicating a median survival advantage for patients with low pre-treatment 

concentrations over the ones with a high concentration (6.3 versus 4.3 months). The four 

groups showed equal course examining HE4 tumor marker concentrations. Although the 

resulting HR was 1.20 (CI: 0.79-1.27) the broad confidence interval proved no 

discrimination between the quartiles (Table 16, Figure 20). 
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Figure 20: Kaplan-Meier curves showing progression free survival distributed among the quartiles 
of the measured pre-therapeutic concentration range 

Patients were categorized into four groups according to their reported concentration among the 

quartiles calculated from the whole cohort. The four resulting Kaplan-Meier curves were 

compared for the markers CYFRA 21-1 (A), CEA (B), SCCA (C), NSE (D), ProGRP (E), 

CA 15-3 (F), CA 125 (G) and HE4 (H). The quartiles were differentiated by color starting with the 

lowest (Q1) in blue, followed by Q2 in yellow, Q3 in grey and the highest (Q4) in red. The results 

were compared by the median survival depicted by the dashed black line for the prognostic value 

of progression free survival (PFS). 
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Table 16: Hazard ratios for the single markers investigating progression free survival of pre-
therapeutic concentrations 

Marker Hazard ratio (95% CI) 
Median PFS  

low conc. 

Median PFS  

high conc. 

CYFRA 21-1 1.07 (0.94-1.22) 5.7 (4.7-6.5) 5.3 (4.5-6.1) 

CEA 1.07 (0.99-1.16) 5.8 (4.9-6.9) 4.7 (4.2-5.8) 

SCCA 1.11 (0.93-1.31) 5.8 (4.7-6.7) 4.9 (4.3-6.1) 

NSE 1.20 (0.96-1.50) 5.8 (4.9-6.7) 4.7 (4.3-6.0) 

ProGRP 0.84 (0.64-1.08) 4.9 (4.4-6.0) 5.8 (4.8-6.7) 

CA 15-3 1.34 (1.17-1.54) 6.4 (5.8-7.5) 4.4 (3.6-5.3) 

CA 125 1.22 (1.09-1.36) 6.3 (5.7-7.4) 4.3 (3.2-5.3) 

HE4 1.20 (0.79-1.27) 5.5 (4.6-6.3) 5.4 (4.5-6.4) 

Median PFS in months 

 

Cox proportional hazard regression analysis was performed on the single biomarkers 

and also a variety of covariates including gender, stage, histology, study arm, study drug, 

ECOG at study entry and prior therapies. As single markers, the pre-therapeutic 

concentrations of SCCA (HR: 1.30), CA 15-3 (HR: 1.35) and CA 125 (HR: 1.23) evolved 

as prognostic for progression free survival. For all three markers the probability of PFS 

decreased with increasing pre-therapeutic marker levels. The covariates stage, gender, 

study arm, ECOG status and prior therapy had no influence on the PFS probability. The 

incorporation of histology revealed a longer PFS probability for squamous cell cancers 

for the markers CYFRA 21-1, CEA, SCCA, NSE, ProGRP and HE4 (HRs: 0.50-0.64). 

Additionally patients treated with cisplatin were more likely to experience longer PFS. 

This was shown by all six markers with calculated hazard ratios ranging from 0.56 to 

0.60 (Table 17). 
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Table 17: Hazard ratios resulting from Cox regression analysis of covariates on progression free survival in pre-therapeutic concentrations 

 CEA CYFRA 21-1 NSE ProGRP SCCA CA 15-3 CA 125 HE4 

ln(Marker) 1.05 1.11 1.18 0.80 1.30 1.35 1.23 0.91 

Histo  

(Squamous) 
0.64 0.57 0.60 0.60 0.50 0.70 0.69 0.59 

Stage 

(IV) 
1.05 1.02 1.03 1.10 1.02 1.05 0.93 1.09 

Gender 

(Male) 
0.93 0.88 0.93 0.91 0.83 0.90 0.89 0.92 

Arm 

(PK) 
1.16 1.19 1.17 1.17 1.12 1.14 1.22 1.17 

Drug 

(Cisplatin) 
0.56 0.59 0.57 0.56 0.55 0.60 0.59 0.56 

ECOG 

(≥1) 
1.19 1.21 1.22 1.22 1.17 1.28 1.27 1.20 

PriorTx 

(yes) 
1.18 1.24 1.20 1.14 1.23 1.48 1.48 1.15 
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End of treatment cycle 2 concentrations 

The same investigations were performed at the end of treatment cycle 2. It was expected 

to confirm or even increase the prognostic potential of the markers detected in pre-

therapeutic concentrations. Kaplan-Meier curves were drawn to follow the survival in the 

grouped quartiles. 

For CYFRA 21-1, the three curves for Q1-Q3 run in close proximity to each other 

whereas the curve for Q4 showed a good separation from the other three. The same 

observation was made for the tumor marker CEA although the separation between the 

curves was visibly smaller. Also marker SCCA showed similar curve slopes in the 

Kaplan-Meier analysis. The four Kaplan-Meier curves drawn for the quartiles of NSE 

concentrations showed some variations. Nevertheless no clear differentiation between 

the curves was possible. Also the curves for ProGRP presented with a large overlap for 

most of the observation period. For CA 15-3, the curves for Q1-Q3 showed a large 

overlap and differed from the course of the Q4 curve during the first moths of the 

observation period. Around the eight moth mark the probability for progression free 

survival changed in Q3 and looked more like the one observed for Q4. A separation of all 

four curves drawn for CA 125 was visible for the first few months. In the continuation 

Q1/Q2 and Q3/Q4 showed equal time courses. The curve for Q4 in HE4 showed a 

variation from the other three quartiles within the first four months. In the following time 

period, all four curves ran in close proximity to each other and no difference was visible. 

Calculation of hazard ratios confirmed the prognostic potential of five tumor markers in 

single marker investigations (Figure 21). The three biomarkers CYFRA 21-1 (HR: 1.66; 

CI: 1.39-1.99), CEA (HR: 1.14; CI: 1.04-1.25) and SCCA (HR: 1.34; CI: 1.06-1.66) 

showed significant HRs at the 95% confidence interval. The median progression free 

survival period increases for CYFRA 21-1 from 3.6 to 7.2, for CEA from 4.4 to 6.3 and for 

SCCA from 4.5 to 6.3 months. NSE and ProGRP did not reveal prognostic quality (HRs: 

1.05; CI: 0.90-1.23 and 1.16; CI: 0.98-1.36). The mucins CA 15-3 and CA 125 already 

showed prognostic potential in the pre-therapeutic concentrations. The potential was 

also seen in the investigation at the end of treatment cycle 2 with corresponding HRs of 

1.29 (CA 15-3; CI: 1.10-1.52) and 1.35 (CA 125; CI: 1.20-1.52). The median time until 

progression increased from 4.4 to 6.5 months in CA 15-3 and from 3.3 to 6.7 months in 

CA 125. HE4 concentrations did not allow discrimination between the responders and 

non-responders (HR: 1.06; CI: 0.92-1.21) (Table 18). 
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Figure 21: Kaplan-Meier curves showing progression free survival distributed among the quartiles 
of the measured concentration range at the end of treatment cycle 2 

Patients were categorized into four groups according to their reported concentration among the 

quartiles calculated from the whole cohort. The four resulting Kaplan-Meier curves were 

compared for the markers CYFRA 21-1 (A), CEA (B), SCCA (C), NSE (D), ProGRP (E), 

CA 15-3 (F), CA 125 (G) and HE4 (H). The quartiles were differentiated by color starting with the 

lowest (Q1) in blue, followed by Q2 in yellow, Q3 in grey and the highest (Q4) in red. The results 

were compared by the median survival depicted by the dashed black line for the prognostic value 

of progression free survival (PFS). 
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Table 18: Hazard ratios for the single markers investigating progression free survival of end of 
treatment cycle 2 concentrations 

Marker Hazard ratio (95% CI) 
Median PFS  

low conc. 

Median PFS  

high conc. 

CYFRA 21-1 1.66 (1.39-1.99) 7.2 (6.3-8.0) 3.6 (2.9-4.5) 

CEA 1.14 (1.04-1.25) 6.3 (5.6-7.4) 4.4 (3.3-5.7) 

SCCA 1.34 (1.09-1.66) 6.3 (5.6-7.4) 4.5 (4.1-5.8) 

NSE 1.05 (0.90-1.23) 5.8 (4.6-6.9) 5.4 (4.4-6.3) 

ProGRP 1.16 (0.98-1.36) 6.3 (5.3-7.7) 4.9 (4.4-6.1) 

CA 15-3 1.29 (1.10-1.52) 6.5 (5.8-7.7) 4.4 (3.2-5.6) 

CA 125 1.35 (1.20-1.52) 6.7 (6.0-7.7) 3.3 (2.9-4.6) 

HE4 1.06 (0.92-1.21) 5.8 (4.7-7.1) 5.3 (4.4-6.3) 

 

 

Cox proportional hazard regression analysis was performed to evaluate the effects of 

covariates on the predictive value. Single marker investigations confirmed the results 

obtained in the previous analysis step. Calculated HRs were 1.66 (CYFRA 21-1), 

1.14 (CEA), 1.51 (SCCA), 1.28 (CA 15-3) and 1.39 (CA 125). The analysis of covariates 

showed the influence of the histology and the treatment drug. The probability for 

progression free survival was in favor of squamous histology in CYFRA 21-1, CEA, 

SCCA, NSE, ProGRP, CA 15-3 and HE4 with calculated hazard ratios between 0.49 and 

0.65. All eight biomarkers showed a benefit of the treatment with cisplatin over 

carboplatin with hazard rations ranging from 0.56 to 0.59 (Table 19). 
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Table 19: Hazard ratios resulting from Cox regression analysis of covariates on progression free survival in end of treatment cycle 2 concentrations 

 CEA CYFRA 21-1 NSE ProGRP SCCA CA 15-3 CA 125 HE4 

ln(Marker) 1.14 1.66 1.07 1.12 1.51 1.28 1.39 1.05 

Histo  

(Squamous) 
0.65 0.63 0.57 0.57 0.49 0.57 0.69 0.56 

Stage 

(IV) 
1.06 1.07 1.06 1.06 0.98 0.98 1.01 1.07 

Gender 

(Male) 
0.91 0.86 0.86 0.89 0.79 0.89 0.80 0.88 

Arm 

(PK) 
1.31 1.24 1.30 1.28 1.25 1.24 1.35 1.28 

Drug 

(Cisplatin) 
0.56 0.56 0.59 0.59 0.58 0.59 0.59 0.59 

ECOG 

(≥1) 
1.08 1.01 1.16 1.13 1.03 1.24 1.20 1.14 

PriorTx 

(yes) 
1.16 1.20 1.14 1.12 1.17 1.24 1.42 1.10 
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5.3.2 Overall survival 

Pre-therapeutic concentrations 

Next, the prognostic value of pre-therapeutic tumor marker concentrations regarding 

overall survival was analyzed. Again the patients were split into four groups among the 

concentrations quartiles. The resulting data was graphically transferred into 

Kaplan-Meier curves (Figure 22). Hazard ratios were calculated comparing low and high 

concentrations of the biomarker to objectively assess whether there is a difference in the 

median survival (Table 20). 

Kaplan-Meier curves depicting the four groups for CYFRA 21-1 ran close to each other. 

Consequently the hazard ratio of 1.09 (CI: 0.95-1.25) proved no difference between the 

lowest and highest quartile. The curves for CEA showed a reasonable overlap over the 

whole time period. The resulting HR was 1.07 (CI: 0.95-1.13) which meant no 

discrimination between the groups. The same applied to the curves of the tumor marker 

SCCA with a recorded HR of 1.04 (CI: 0.89-1.28). 

The Kaplan-Meier curves for NSE ran in close proximity to each other. The observation 

was confirmed by a calculated HR of 0.99 (CI: 0.78-1.25). The graph displaying ProGRP 

results showed a considerable overlap of the curves in the first weeks and after more 

than fourteen months. In between, the four quartiles of patients appear to be separable 

from each other. Nevertheless hazard ratio assessment was not able to allow 

discrimination between highest and lowest quartile for median survival (HR: 0.94; 

CI: 0.73-1.21). 

Regarding the Kaplan-Meier curves for CA 15-3 a separation of the curves for Q1, Q2/3 

and Q4 was possible. The calculated median survival confirmed a benefit for the cohort 

displayed by a HR of 1.27 (CI: 1.11-1.44). The median overall survival duration 

increased from 8.2 to 12.2 months. Kaplan-Meier curves for CA 125 displayed only minor 

differences for the four investigated groups. The observation was confirmed by a HR of 

1.10 (CI: 0.99-1.22) indicating no prognostic value for the median survival. The four 

groups showed equal course examining HE4 tumor marker concentrations. The reported 

HR was 1.00 (CI: 0.79-1.26) which proved no potential for median survival prognosis. 
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Figure 22: Kaplan-Meier curves showing overall survival distributed among the quartiles of the 
measured pre-therapeutic concentration range 

Patients were categorized into four groups according to their reported concentration among the 

quartiles calculated from the whole cohort. The four resulting Kaplan-Meier curves were 

compared for the markers CYFRA 21-1 (A), CEA (B), SCCA (C), NSE (D), ProGRP (E), 

CA 15-3 (F), CA 125 (G) and HE4 (H). The quartiles were differentiated by color starting with the 

lowest (Q1) in blue, followed by Q2 in yellow, Q3 in grey and the highest (Q4) in red. The results 

were compared by the median survival depicted by the dashed black line for the prognostic value 

of overall survival (OS). 
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Table 20: Hazard ratios for the single markers investigating overall survival of pre-therapeutic 
concentrations 

Marker Hazard ratio (95% CI) 
Median OS  

low conc. 

Median OS  

high conc. 

CYFRA 21-1 1.09 (0.95-1.25) 10.7 (8.9-14.2) 9.2 (8.1-12.0) 

CEA 1.04 (0.95-1.13) 10.5 (8.8-14.1) 9.2 (8.1-12.2) 

SCCA 1.07 (0.89-1.28) 10.5 (8.7-14.4) 9.2 (8.1-12.3) 

NSE 0.99 (0.78-1.25) 10.2 (8.4-12.3) 10.2 (8.4-13.8) 

ProGRP 0.94 (0.73-1.21) 9.7 (8.2-12.3) 10.5 (8.7-13.4) 

CA 15-3 1.27 (1.11-1.44) 12.2 (10.4-16.1) 8.2 (7.3-10.2) 

CA 125 1.10 (0.99-1.22) 11.2 (9.1-14.6) 8.7 (7.4-11.2) 

HE4 1.00 (0.79-1.26) 10.2 (8.4-13.1) 10.2 (8.4-13.8) 

Median OS in months 

 

Cox proportional hazard regression analysis was performed on the single biomarkers 

and under consideration of covariates to assess the probability of overall survival. The 

incorporated covariates were gender, stage, histology, study arm, study drug, ECOG at 

study entry and prior therapies. Concerning single marker assessments, only CA 15-3 

evolved as prognostic for overall survival (HR: 1.30). The probability of overall survival 

increases with decreasing pre-therapeutic CA 15-3 concentrations. The inclusion of the 

covariates, histology, stage, gender, study arm, study drug, ECOG status and prior 

therapy had no influence on the OS probability (Table 21). 
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Table 21: Hazard ratios resulting from Cox regression analysis of covariates on overall survival in pre-therapeutic concentrations 

 CEA CYFRA 21-1 NSE ProGRP SCCA CA 15-3 CA 125 HE 4 

ln(Marker) 1.03 1.08 0.95 0.92 1.11 1.30 1.11 0.98 

Histo 

(Squamous) 
0.97 0.91 0.93 0.93 0.88 1.09 1.01 0.92 

Stage 

(IV) 
1.08 1.07 1.11 1.11 1.12 1.03 1.03 1.10 

Gender 

(Male) 
0.90 0.90 0.89 0.89 0.88 0.90 0.90 0.90 

Arm 

(PK) 
1.13 1.12 1.12 1.13 1.11 1.14 1.16 1.12 

Drug 

(Cisplatin) 
0.81 0.82 0.80 0.81 0.79 0.86 0.82 0.81 

ECOG 

(≥1) 
1.11 1.10 1.11 1.11 1.09 1.19 1.13 1.11 

PriorTx 

(yes) 
0.98 1.02 0.93 0.93 0.94 1.12 1.04 0.93 
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End of treatment cycle 2 concentrations 

CYFRA 21-1 showed prognostic potential in estimating overall survival with a clear 

separation of the Kaplan-Meier curves of Q1 and Q4. It was confirmed by a calculated 

hazard ratio of 1.27 (CI: 1.11-1.46). The median overall survival increase was 3.8 

months from 8.4 to 12.2 months. The Kaplan-Meier curves for CEA showed close 

proximity of the curves for Q1, Q3 and Q4. The curve for Q2 ranged above the other 

three curves. As the hazard ratio was investigated between Q1 and Q4, CEA was not 

able to prove discrimination between the groups (HR: 1.06; CI: 0.96-1.17). The curves 

for SCCA did not differ much in their slope. But a small difference was observed at the 

median overall survival. Nevertheless the calculated HR of 1.15 (CI: 0.93-1.42) for SCCA 

was not discriminative due to its broad confidence interval. 

The four curves for NSE showed good discrimination at the median overall survival 

probability. The curves for ProGRP ranged in close proximity to each other so no 

discriminative value was expected. The same held true for the squamous cell carcinoma 

markers NSE and ProGRP with HRs of 1.12 (CI: 0:94-1:32) and 1.15 (CI: 0.97-1.38), 

respectively. 

Kaplan-Meier curves for CA 15-3 showed discrimination between the curve for Q1 and 

the three other curves. Hence the prognostic value that already revealed in the pre-

therapeutic values showed again. A corresponding HR of 1.26 (CI: 1.07-1.48) was 

calculated for the time point end of cycle two. The median overall survival increased from 

8.4 to 13.4 months. Additionally, CA 125 proved prognostic potential in this investigation 

(HR: 1.16; CI: 1.03-1.31). This resulted in a longer median overall survival of 3.5 months 

(8.5 versus 12.0). The Kaplan-Meier curves for Q3 and Q4 looked alike but were visibly 

different than those of Q2 and Q1. All four curves four HE4 ranged in close proximity to 

each other. In consequence HE4 was not able to discriminate between the groups with a 

calculated HR of 1.08 (CI: 0.94-1.25) (Figure 23, Table 22). 

Cox proportional hazard regression analysis to assess the influence of covariates on the 

prognostic potential of the single tumor markers proved the previous findings. 

CYFRA 21-1 (HR: 1.27), CA 15-3 (HR: 1.27) and CA 125 (HR: 1.18) were confirmed as 

interesting markers. None of the other covariates, gender, stage, histology, study arm, 

study drug, ECOG at study entry and prior therapies, was able to further improve 

prognostic quality of the tumor markers (Table 23).  
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Figure 23: Kaplan-Meier curves showing overall survival distributed among the quartiles of the 
measured concentration range at the end of treatment cycle 2 

Patients were categorized into four groups according to their reported concentration among the 

quartiles calculated from the whole cohort. The four resulting Kaplan-Meier curves were 

compared for the markers CYFRA 21-1 (A), CEA (B), SCCA (C), NSE (D), ProGRP (E), 

CA 15-3 (F), CA 125 (G) and HE4 (H). The quartiles were differentiated by color starting with the 

lowest (Q1) in blue, followed by Q2 in yellow, Q3 in grey and the highest (Q4) in red. The results 

were compared by the median survival depicted by the dashed black line for the prognostic value 

of overall survival (OS). 
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Table 22: Hazard ratios for the single markers investigating overall survival of end of treatment 
cycle 2 concentrations 

Marker Hazard ratio (95% CI) 
Median OS  

low conc. 

Median OS  

high conc. 

CYFRA 21-1 1.27 (1.11-1.46) 12.2 (10.5-15.3) 8.4 (7.4-10.5) 

CEA 1.06 (0.96-1.17) 11.2 (9.1-14.9) 9.2 (8.1-12.3) 

SCCA 1.15 (0.93-1.42) 11.3 (9.2-14.9) 9.2 (8.1-12.2) 

NSE 1.12 (0.94-1.32) 12.0 (9.2-16.1) 9.3 (8.2-12.2) 

ProGRP 1.15 (0.97-1.38) 12.2 (9.7-17.3) 9.5 (8.4-12.0) 

CA 15-3 1.26 (1.07-1.48) 13.4 (10.5-17.4) 8.4 (7.4-10.7) 

CA 125 1.16 (1.03-1.31) 12.0 (10.2-15.3) 8.5 (7.4-10.8) 

HE4 1.08 (0.94-1.25) 11.4 (9.1-16.5) 9.5 (8.2-12.2) 

Median OS in months 

The results of the tumor marker analysis can be summarized as follows: 

No pre-therapeutic tumor marker concentration, single or combination, was predictive for 

poor response to therapy. When the changes in marker levels between start of therapy 

and cycle two were investigated CYFRA 21-1, CA 125 and NSE revealed predictive 

qualities as single markers. 

The same as for good response to therapy, no pre-therapeutic tumor marker or tumor 

marker combination showed a predictive potential estimating good response to therapy. 

The change in the biomarkers CYFRA 21-1 and CA 125 predicted the response to 

therapy. 

Pre-therapeutic levels CA 15-3 and CA 125 showed potential in the prognosis of 

progression free survival. Increasing levels of all three markers resulted in a decreasing 

probability for progression free survival. Investigations after treatment cycle two revealed 

a prognostic value for five markers. Increasing values of CYFRA 21-1, CEA, SCCA, CA 

15-3 and CA 125 decreased the probability for progression free survival. 

Prognostic value concerning overall survival (OS) was only seen in the pre-therapeutic 

levels of CA 15-3. Evaluating the concentrations at cycle two, increasing concentrations 

of CYFRA 21-1, CA 15-3 and CA 125 decreased median overall survival. 
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Table 23: Hazard ratios resulting from Cox regression analysis of covariates on overall survival in end of treatment cycle 2 concentrations 

 CEA CYFRA 21-1 NSE ProGRP SCCA CA 15-3 CA 125 HE 4 

ln(Marker) 1.07 1.27 1.14 1.14 1.17 1.27 1.18 1.07 

Histo 

(Squamous) 

1.01 1.04 0.95 0.93 0.91 0.95 1.05 0.93 

Stage 

(IV) 

1.08 1.10 1.08 1.05 1.10 1.01 1.08 1.10 

Gender 

(Male) 

0.88 0.95 0.85 0.90 0.86 0.88 0.85 0.87 

Arm 

(PK) 

1.27 1.14 1.25 1.23 1.21 1.23 1.30 1.21 

Drug 

(Cisplatin) 

0.84 0.82 0.83 0.83 0.80 0.83 0.87 0.84 

ECOG 

(≥1) 

1.03 0.93 1.05 1.04 0.99 1.14 1.05 1.04 

PriorTx 

(yes) 

1.00 1.04 0.98 0.91 0.92 1.01 1.04 0.94 
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5.4 Programmed cell death markers 

Programmed cell death markers represent important proteins in the regulation of immune 

cell activity. PD-1, PD-L1 and PD-L2 were investigated as new biomarkers. Three 

ELISAs to reliably quantify soluble markers in blood were invented on the basis of 

purchased antibody DuoSets and electrochemiluminescence detection technology. 

During the establishment process the best assay performance conditions were identified. 

A comprehensive set of analytical and preanalytical experiments were executed to 

validate the assays. The data was submitted for publication. 

5.4.1 Analytical validation 

The analytical validation showed a broad quantification range starting at 30 ng/ml down 

to 0.0073 ng/ml for PD-1, PD-L1 and PD-L2. Intra-assay imprecision presented with 

coefficients of variations (CVs) under ten percent obtained in three patient pools of 

different concentrations for all three markers (PD-1: 6.4%, 6.5%, 7.8%, PD-L1: 7.1%, 

4.2%, 6.8%; PD-L2: 4.5%, 10.0%, 9.9%). Dilution linearity experiments proved good 

linearity from a 1:4 dilution downwards. Selectivity was tested against the each two other 

biomarkers. No interference was shown for neither of the markers for concentrations of 

at least 15 ng/ml of the possible influencing marker (Krueger, Mayer, Gerckens, et al., 

2020). 

5.4.2 Preanalytical validation 

PD-1 concentrations were stable for 24 hours before and after centrifugation either at 

room temperature or at 4°C. PD-L1 concentrations fluctuate with a variations coefficient 

of ± 40%, especially because of signals close to the lower limit of quantification. PD-L2 

marker levels are stable in full blood for 24 hours at 4°C and for six hours at room 

temperature or even 37°C. Stability after centrifugation was for 24 hours either at room 

temperature or at 4°C. The freezing process did not change the concentrations for PD-1, 

PD-L1 or PD-L2. Reproducibility of results was proven for up to three freeze-thaw cycles 

with obtained variation coefficients of 9.1% for PD-1, 6.8% for PD-L1 and 4.8% for PD-L2 

(Krueger, Mayer, Kottmaier, et al., 2020). 
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5.4.3 CESAR Biomarker substudy 

The self-developed assays for soluble PD-1, PD-L1 and PD-L2 were used to quantify the 

programmed cell death markers in the NSCLC cohort. Samples from all six blood 

drawing time points were investigated. The number of measurements varied among the 

time points due to limited availability of patient samples. An overview of the measured 

data is given in Table 24.  

The marker concentrations for PD-1, PD-L1 and PD-L2 in course of the intervention were 

visualized in boxplots (Figure 24). During all time points the majority of concentrations for 

PD-1 range between 0.01 and 0.02 ng/ml. at all observation time points, a few 

concentrations are very high. Most PD-L1 concentrations were below or at the 

quantification limit. Still located in the lower third of the standard curve, the highest 

measured concentration equaled 0.17 ng/ml. The majority of PD-L2 concentration 

ranged between 0.18 and 2.1 ng/ml. Neither of the markers showed a significant change 

in concentration in response to therapy application on the day after treatment (X_2). 

For analysis of response to therapy the patients were categorized according to the 

response obtained in CT-staging after completion of treatment cycle 2. Response groups 

included 58 patients with progressive disease (PD), 99 patients with stable disease (SD) 

and 86 patients with partial remission (PR). Investigating poor response to therapy, PR 

and SD (N=185) were classified as response and PD (N=58) as non-response. When 

assessing good response to therapy, stable and progressive disease were classified as 

non-responders (N=157) and only partial remission (N=86) as responsive (Figure 25). 

Pre-therapeutic programmed cell death marker concentrations were analyzed for their 

potential of predicting poor and good response to therapy. For all three biomarkers, no 

difference in mean concentration or in the distribution of concentrations was detected 

regarding pre-therapeutic marker concentrations. Neither PD-1, nor PD-L1 or PD-L2 

concentrations before therapy start was predictive for poor or good therapy response 

(Figure 26). 

The same analysis was performed with the concentrations obtained from time point 3_1. 

Where no data for this time point existed, the data from 2_1 was used instead. The same 

observations that were made in the pre-therapeutic data showed also in this 

examination. No difference between mean marker concentrations or marker distributions 

revealed by separating the two response groups. Just like pre-therapeutic 

concentrations, concentrations obtained during treatment were not predictive for poor or 

good response to therapy (Figure 27). 
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Table 24: Data summary of PD-1, PD-L1 and PD-L2 values for the cancer cohort 

PD-1 1_1 1_2 2_1 2_2 3_1 EOT 

N 264 95 218 73 164 174 

Median 0.12 0.11 0.11 0.10 0.12 0.13 

Mean 0.45 0.21 0.32 0.60 0.27 0.63 

5th 

percentile 

0.048 0.047 0.049 0.049 0.04 0.045 

95th 

percentile 

0.74 0.68 0.64 0.75 0.63 1.046 

Minimum 0.023 0.038 0.020 0.045 0.012 0.022 

Maximum 30.00 2.29 21.69 30.00 8.33 30.00 

N >ULOQ 1 0 0 1 0 1 

N <LLOQ 0 0 0 0 0 0 

PD-L1 1_1 1_2 2_1 2_2 3_1 EOT 

N 266 96 220 73 165 175 

Median 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 

Mean 0.0093 0.0085 0.0096 0.0090 0.0099 0.0099 

5th 

percentile 

0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 

95th 

percentile 

0.020 0.014 0.017 0.013 0.019 0.025 

Minimum 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073 

Maximum 0.12 0.042 0.11 0.083 0.17 0.085 

N >ULOQ 0 0 0 0 0 0 

N <LLOQ 222 87 179 64 135 143 

PD-L2 1_1 1_2 2_1 2_2 3_1 EOT 

N 266 96 220 73 165 175 

Median 0.61 0.57 0.62 0.52 0.64 0.70 

Mean 0.92 0.87 1.00 1.021 1.15 0.84 

5th 

percentile 

0.22 0.25 0.21 0.18 0.25 0.21 

95th 

percentile 

1.81 2.08 1.66 1.89 1.66 1.63 

Minimum 0.029 0.029 0.032 0.12 0.071 0.018 

Maximum 19.21 9.034 21.98 21.88 30.00 8.51 

N >ULOQ 0 0 0 0 1 0 

N <LLOQ 0 0 0 0 0 0 

ULOQ: Upper limit of quantification, LLOQ: Lower limit of quantification 

Units for all markers [ng/ml], except for N 
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Figure 24: PD-1, PD-L1 and PD-L2 biomarker concentrations at the six different time points 
during treatment 

The figure depicts the distribution of the biomarker concentrations at each of the blood collection 

time points in direct comparison for PD-1 (A), PD-L1 (B) and PD-L2 (C).Red stars in each box 

indicate the mean values. 
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Figure 25: Decision tree outlining included samples in the analysis for prediction of response in the programmed cell death markers 

The depicted decision trees illustrate the sample inclusion process for the analysis of the prediction potential of poor and good response to therapy. The 

decision tree for pre-therapeutic study samples was shown on the left (A) and the one for the relative concentration change between C1 and C3 on the 

right (B). 
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Figure 26: Pre-therapeutic concentrations of responders versus non-responders in PD-1, PD-L1 
and PD-L2 

Pre-therapeutic biomarker concentrations were plotted separated into responders and non-

responders for PD-1 (A, B), PD-L1 (C, D) and PD-L2 (E, F). Stable disease was classified as 

response in the left column (poor response) and as non-response (good response) in the right 

column. Non-responders (PD) are shown in turquoise and responders (SD/PR) in orange for poor 

response to therapy (left). Responders (PR) are shown in turquoise and non-responders (SD/PD) 

in orange for good response to therapy (right). 
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Figure 27: Concentrations at therapy cycle three of responders versus non-responders in PD-1, 
PD-L1 and PD-L2 

Biomarker concentrations at the completion of treatment cycle 2 (=3_1) were plotted separated 

into responders and non-responders for PD-1 (A, B), PD-L1 (C, D) and PD-L2 (E, F). Stable 

disease was classified as response in the left column (poor response) and as non-response (good 

response) in the right column. Non-responders (PD) are shown in turquoise and responders 

(SD/PR) in orange for poor response to therapy (left). Responders (PR) are shown in turquoise 

and non-responders (SD/PD) in orange for good response to therapy (right). 
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The following analysis investigated whether correlations between the three markers at 

certain time points were detectable. The test on normal distribution (Shapiro-Wilk-test) 

showed that none of the data groups were normally distributed (Table 25). 

 

Table 25: Test on normal distribution after Shapiro-Wilk for PD-1, PD-L1 and PD-L2 in the cancer 

cohort 

PD-1 1_1 EOT 

p-value <2.2e-16 <2.2e-16 

Result N.n.d. N.n.d. 

PD-L1 1_1 EOT 

p-value <2.2e-16 <2.2e-16 

Result N.n.d. N.n.d. 

PD-L2 1_1 EOT 

p-value <2.2e-16 <2.2e-16 

Result N.n.d. N.n.d. 

N.n.d.: not normally distributed 

 

Consequently, the correlation after Spearman was used to analyze the data. First, the 

correlation before (1_1) and at the end of treatment (EOT) was looked at. PD-1 

concentrations correlated with PD-L1 and PD-L2 concentrations at both time points with 

correlation coefficients (rho) of 0.337 in cycle one and 0.037 in cycle two. The effect size 

of the correlation shrinks from medium to weak though. No correlation was detected 

between the two ligand levels PD-L1 and PD-L2 (Table 26).  
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Table 26: Calculated correlation of the PD-markers at time points 1_1 and EOT 

Correlated 

values 

Calc. 

p-value 
Result rho Effect size  CD 

PD-1 1_1 

PD-L1 1_1 
1.93e-8 Significant 0.337 Medium 11.3 

PD-1 1_1 

PD-L2 1_1 
2.96e-7 Significant 0.309 Medium 9.5 

PD-L1 1_1 

PD-L2 1_1 
0.022 

Not 

significant 
0.140 - - 

PD-1 EOT 

PD-L1 EOT 
0.006 Significant 0.210 Weak 4.4 

PD-1 EOT 

PD-L2 EOT 
0.0004 Significant 0.263 Weak 6.9 

PD-L1 EOT 

PD-L2 EOT 
0.736 

Not 

significant 
0.026 - - 

CD: Coefficient of determination r
2 
[%] 

Obtained by Spearman-correlation, significant: p<0.05, effect size rated according to Cohen (4.7) 
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5.4.4 Healthy cohort 

Programmed cell death markers have not been investigated in the blood of study 

patients according to literature research. Soluble PD-1, PD-L1 and PD-L2 were 

measured in a cohort of 136 healthy male participants. 

The statistics are listed in Table 27., the data was visualized in boxplots (Figure 28). 

Mean and Median showed slight differences for the biomarkers PD-1, PD-L1 and PD-L2. 

In all three markers, the calculated mean was a bit higher than the median. This hinted 

on some high concentrations in the sample set, which was confirmed by the 

concentration data. 90% of measured PD-1 concentrations ranged between 0.07 and 

6.16 ng/ml. Out of the three biomarkers, PD-1 concentrations presented with the largest 

variability. . PD-L1 concentrations were very low, with two thirds of participants showing 

concentrations at the LLOQ. A maximum concentration of 0.14 ng/ml was measured. 

The majority of measured PD-L2 concentrations ranged between 0.11 and 2.79 ng/ml. A 

concentration in the quantification range was available for all 136 participants. 

 

Figure 28: PD-1, PD-L1, PD-L2 concentrations in the healthy cohort 

Boxplots indicate the spread of the biomarker values in a healthy cohort. The biomarkers are 

depicted in the order PD-1, PD-L1, PD-L2. Red starts visualize the mean value. 
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Table 27: Data summary healthy cohort 

 PD-1 PD-L1 PD-L2 

N 136 136 136 

Median 0.24 0.007 0.29 

Mean 1.36 0.012 0.97 

5th percentile 0.07 0.007 0.11 

95th percentile 6.16 0.038 2.79 

Minimum 0.04 0.007 0.06 

Maximum 30.0 0.14 29.01 

Samples >ULOQ 1 0 0 

Samples <LLOQ 0 94 0 

ULOQ: Upper limit of quantification, LLOQ: Lower limit of quantification 

Units for all markers [ng/ml], except for N 

5.4.5 Comparison NSCLC and healthy 

The measured concentrations in the cancer cohort were compared with those of the 

healthy cohort. The time points before treatment (1_1), at the end of treatment cycle 2 

(3_1) and end of treatment (EOT) of the cancer study were chosen. PD-1 concentrations 

resulted into narrow boxes for all three markers. The median and mean of the healthy 

control samples ranged higher than the both depicted concentrations from the cancer 

cohort. Even though including the whiskers, a larger overlap of both cohorts was seen. 

PD-L1 concentrations presented with sharp boxes for both cohorts. Since the majority of 

data ranged underneath the lower limit of quantification the observation was not 

surprising. For the marker PD-L2, the boxes for the healthy and the cancer samples 

looked very alike. A shift of the healthy samples towards lower concentrations was 

detected (Figure 29). 

The significance of the differences between the means of the healthy and the NSCLC 

patients was calculated applying the Mann-Whitney-U-Test for all three markers. The 

mean concentration of the control group was significantly higher in all three biomarkers 

for the three time points pre-treatment, end of cycle 2 and end of treatment (Table 28). 
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Figure 29: Comparison of the healthy and selected time points in cancer cohort for PD-1, PD-L1 
and PD-L2 

The concentrations of healthy control samples were related to the concentrations of cancer 

patients at the beginning and the end of treatment cycle 2 (3_1). Part A shows the PD-1 

concentrations, whereas part B the ones of PD-L1 and C the PD-L2 concentrations. Red starts 

visualize the mean concentration. 
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Table 28: Significance investigations of PD-1, PD-L1 and PD-L2 in healthy controls versus cancer 

patients before, at the end of cycle 2 and at the end of treatment 

PD-1 Cycle 1 Cycle 3 End of treatment 

Description Group 
Gr. 1: Controls 

Gr. 2: Cancer 1_1 

Gr. 1: Controls 

Gr. 2: Cancer 3_1 

Gr. 1: Controls 

Gr. 2: Cancer EOT 

Mean group 1 1.36 1.36 1.36 

Mean group 2 0.45 0.27 0.63 

p-value 5.105e-12 5.547e-14 4.079e-9 

Result Significant Significant Significant 

PD-L1 Cycle 1 Cycle 3 End of treatment 

Description Group 
Gr. 1: Controls 

Gr. 2: Cancer 1_1 

Gr. 1: Controls 

Gr. 2: Cancer 3_1 

Gr. 1: Controls 

Gr. 2: Cancer EOT 

Mean group 1 0.012 0.012 0.012 

Mean group 2 0.0093 0.0099 0.0099 

p-value 0.0010 0.0115 0.0063 

Result Significant Significant Significant 

PD-L2 Cycle 1 Cycle 3 End of treatment 

Description Group 
Gr. 1: Controls 

Gr. 2: Cancer 1_1 

Gr. 1: Controls 

Gr. 2: Cancer 3_1 

Gr. 1: Controls 

Gr. 2: Cancer EOT 

Mean group 1 0.97 0.97 0.97 

Mean group 2 0.92 1.15 0.84 

p-value 8.556e-14 3.04e-11 5.223e-13 

Result Significant Significant Significant 

Conc. [ng/ml], obtained by Mann-Whitney-U-Test, significance level: 95 
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6 Discussion 

Lung cancer represents the cancer type with one of the greatest incidences in the 

German population. Although there is currently a large focus on the development and 

investigation of new therapies, conventional therapy still is and will be an important 

therapy regimen in the future. There is still a lack of biomarkers that reliably allow 

prediction of response to therapy and prognosis of progression free survival and overall 

survival in chemotherapy. 

The establishment of informative biomarkers will contribute to the concept of 

individualized treatment. This idea is publically connected with the preselection of 

medication on the basis of target identification. Nevertheless also comprehensive 

biomarker surveillance will contribute to achieve personalized medicine. Some examples 

for the benefits of informative biomarkers are following. With the identification of 

biomarkers that early indicate response to therapy, a quicker adaption of the therapy 

regimen is enabled. This will increase therapy efficacy as well as reduce unnecessary 

side effects. If a well response to therapy can be reliably identified, it offers the possibility 

to enlarge distances between radiation-dependent imaging methods. 

In this approach eight tumor markers and three newly developed assays were 

investigated in a NSCLC cohort. The blood sampling in the CESAR Biomarker Substudy 

was done in the course of the clinical trial CEPAC-TDM. Patients with NSCLC were 

included and treated with conventional chemotherapy regimen consisting of paclitaxel 

combined with cisplatin or carboplatin. CEPAC-TDM’s objective was to explore the effect 

of pharmacokinetically(PK)-guided paclitaxel dosing on the occurrence of adverse 

events. The study compared in two study arms a conventional body surface area dosing 

approach with a pharmacokinetically-guided approach. Primary end point of the study 

was the occurrence of grade four neutropenia, secondary end points encompassed 

neuropathy, radiological response and survival. The study results showed that PK-

guided dosing did not reduce the risk for severe neutropenia. Both study arms also 

reported comparable response and survival data. Nevertheless the drug monitoring 

allowed reduction of the paclitaxel dose in the PK-guided study arm which resulted in 

decreased risk to suffer from neuropathy in those patients (Joerger et al., 2016). 

The CESAR Biomarker Substudy invests tumor markers and new biomarkers on their 

potential to predict therapy response and prognosis of survival. Tumor markers have 

been used in the differential diagnosis, for prognostic, predictive and monitoring 

purposes in different cancer indications with varying success for years. 
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CYFRA 21-1, CEA,SCCA, NSE and ProGRP are associated with lung cancer 

(Tumorzentrum München, 2020). The additionally included tumor markers CA 15-3, 

CA 125 and HE4 are currently not reported in any guideline to assess response to 

therapy or predict outcome in lung cancer. But some studies showed utility of these 

markers particularly in the adenocarcinoma histology in lung cancer (Ghosh et al., 2013; 

Iwahori et al., 2012; Molina et al., 2003) 

Although a number of studies have investigated the potential of different biomarkers 

before, still few biomarkers entered clinical routine. The main reason for that fact is the 

heterogeneity of the current biomarker study landscape with a limited number of high 

quality studies. Conclusively no strong evidence supports the measurement of the 

abovementioned markers in clinical context. Since no unique study set-up has been 

defined by now, comparability between different studies is often difficult. Various factors 

combine to the observed heterogeneity. 

Inclusion criteria vary among the studies and as such can already introduce a bias. For 

example the preselection of certain tumor stages versus the inclusion of all stages. It can 

change the overall study outcome when stage is not considered as a covariate in the 

analyses. Studies use different quantification methods, some even within one study, 

without considering method dependency. The staging by radiation was combined with 

the drawing of blood samples in the majority of biomarker studies. Nevertheless the time 

points of response assessment during chemotherapy varied among the studies. 

Another problem is the reported variation in tumor response classification. Response is 

assessed by radiology, for example CT. The interpretation of the obtained results 

regarding progression and remission can be done in different ways. Differences for 

example occur in the consideration of newly evolved tumor focuses during therapy. 

Other circumstances are heterogeneous tumor shrinkage or the inclusion of growth rate 

and many other. This variety of possibilities leads to different result interpretations in 

different centers. Additionally the classification of stable disease into response or non-

response is still discussed. 

The application of biomarker cut-offs is a key element to differentiate response groups. 

Whereas standardized cut-offs were chosen to evaluate predictive potential of the 

biomarkers, individualized cut-offs were reported in the monitoring approach 

(Holdenrieder, 2016; Holdenrieder et al., 2017). 

The high variability in radiological response data also stresses the importance of 

assessing other patient-related end points. Herein, the investigation of progression free 

and overall survival represent accepted and relevant prognostic factors. 
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The embedding of the CESAR Biomarker Substudy into a clinical study enabled the 

thorough investigation of many diagnostic questions under excellent conditions for high 

quality sample collection and well-defined clinical characterization of patients by 

homogenous radiological response evaluation by GCP-conform study procedures. 

In the current study CYFRA 21-1 was predictive for response to therapy when monitoring 

the change in concentration between the start of therapy until the end of the second 

treatment cycle. Though no prognostic value was detected for pre-therapeutic 

concentrations the concentrations measured after termination of the second treatment 

cycle were prognostic for progression free and overall survival. CYFRA 21-1 has already 

been described as a biomarker in monitoring and aftercare. The results confirmed the 

findings in other studies (Edelman et al., 2012; Holdenrieder et al., 2009, 2017; Okamura 

et al., 2013). The Manual of the Tumor Center Munich recommends the measurement of 

CYFRA 21-1 in pre-therapeutic and monitoring samples of unknown histology and in 

adenocarcinoma, squamous cell carcinoma and large cell carcinoma (Tumorzentrum 

München, 2020). The current study data confirmed the value of CYFRA 21-1 in 

monitoring therapy response and was also able to allow prognosis of PFS and OS after 

termination of two cycles of chemotherapy treatment. Nevertheless CYFRA 21-1 pre-

therapy concentrations were not able to reach significance in prediction and prognosis 

which was not expected in the first place. Referring to the biology of cytokeratins, their 

presence in squamous cell carcinomas is expected to be higher than in 

adenocarcinomas. Since three quarters of the patients suffered from adenocarcinoma, 

this fact provides an adequate explanation why CYFRA 21-1 did not show its full 

potential in the investigation. 

Carcinoembryonic antigen was described to improve the predictive and prognostic value 

when combined with CYFRA 21-1 in the diagnosis adenocarcinoma in lung cancer (de 

Jong et al., 2020; Tumorzentrum München, 2020). In the current study CEA was 

investigated as a single marker and in combination with the other tumor markers. The 

CEA concentration after the end of the second treatment cycle was prognostic for 

progression free survival. The combination with CYFRA 21-1 was able to slightly but not 

significantly increase the predictive value for therapy response by change in 

concentrations in the first two treatment cycles. CEA is more often elevated in 

adenocarcinoma which stresses its relevance for differential diagnostic applications. 

However for prognosis, we were not able to show utility for CEA in our study cohort. 
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SCCA is recommended in combination with CYFRA 21-1 before treatment and as a 

single marker assessment in monitoring in the subtype squamous cell carcinoma by the 

Manual published by the Tumorzentrum Munich (Tumorzentrum München, 2020). Since 

three quarters of the study cohort suffer from adenocarcinoma, it was not frequently 

elevated in the patients in our study. Nevertheless SCCA was able to show potential for 

prognosis of progression free survival after the completion of treatment cycle 2. The 

analysis proved the value reported by the Tumor Center Munich and its recommendation 

in monitoring. As it is reported, samples can be contaminated with SCCA from epithelial 

cells. On this account, extra care has been taken in the sample processing to prevent 

contamination and ensure highest analytical standards which enables informative 

results. 

NSE and ProGRP are recommended in the analysis of small cell carcinoma as both are 

expressed mostly by neuroendocrine tissue (Tumorzentrum München, 2020). In 

consequence it was not expected to find strong correlations in a cohort consisting of 

NSCLC patients. Pre-therapeutic NSE concentrations were able to predict response to 

therapy but the observed effect was only poor. There was no significant predictive or 

prognostic value detectable for the tumor marker ProGRP. The results obtained from the 

NSCLC cohort confirmed the expected data. 

The tumor markers CA 15-3, CA 125 and HE4 have neither been recommended in the 

support of differential diagnosis nor the prediction, prognosis or monitoring of lung 

cancer patients. However some studies in literature report on positive results of these 

markers for differential diagnosis and prognosis in lung cancer. Also some of the 

markers are currently used in the monitoring of other cancers, particularly in 

adenocarcinoma histology. The analysis of the data set revealed that the pre-therapeutic 

concentrations of the tumor marker CA 15-3 offered prognostic potential regarding 

progression free survival and overall survival. Progression free survival was also 

predictable by pre-therapeutic CA 125 concentrations. Additionally, the relative change in 

concentration measured before start of treatment and at the end of cycle 2 was 

predictive for therapy response. Biologically, CA 15-3 and CA 125 are both mucins. As 

such they are strongly associated with the adenocarcinoma subtypes of cancers. They 

are not tissue-specific so patients have to be diagnosed with lung cancer before 

application of the two markers. If the diagnosis is confirmed, they may offer an earlier 

estimation of PFS and OS. Currently used CYFRA 21-1 was only able to provide this 

information at the end of cycle 2 in this study. However, other studies confirmed our 

positive results regarding CA 125 as they have already hinted at its potential in prognosis 

(Cedrés et al., 2011; Kimura et al., 1990). 
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Like CA 125, HE4 is an established biomarker in ovarian cancer. Due to its confirmed 

expression in lung epithelia tissue, it is suggested to be a potential biomarker in lung 

cancer. Choi et al. and He et al. found a diagnostic potential in the quantification of HE4 

in lung cancer patients (Choi et al., 2017; He et al., 2019). In addition, a small study of 

Iwahori in 2012 hinted at a potential for prediction and prognosis for the biomarker HE4 

in lung cancer, that was reproduced by Lamy et al in 2015 in NSCLC patients (Iwahori et 

al., 2012; Lamy, Plassot, & Pujol, 2015). HE4 is associated with the adenocarcinoma 

subtype, too. Even though the majority of patients suffered from adenocarcinoma the 

analysis did not show predictive or prognostic potential in the investigated NSCLC 

cohort. 

For the quantification of soluble biomarkers PD-1, PD-L1 and PD-L2 in blood we 

established and optimized novel highly sensitive immunoassays on a chemiluminescent 

detection platform. By a performing a comprehensive set of analytical and preanalytical 

experiments a thorough validation process was shown (Krueger et al.,2020a; Krueger et 

al., 2020b). Validity experiments were according to relevant guidelines in the field 

(Andreasson et al., 2015; Clinical and Laboratory Standards Institute, 2001; Committee 

for Medicinal Products for Human Use, 2012; Duffy et al., 2015; Pasella et al., 2013). 

Successful proof of validity represents a prerequisite for obtaining high quality 

measurement results. These form the basis for meaningful clinical data analysis. 

PD-1, PD-L1 and PD-L2 concentrations were measured in all available time points of the 

NSCLC cohort. All three markers presented with stable concentrations over the 

investigation period. For evaluation of predictive value for response to therapy the 

patients were classified into response groups among the CT-evaluated tumor status after 

termination of the second treatment cycle. Neither the pre-therapeutic nor the relative 

change in concentration during the first two treatment cycles was able to predict 

response to therapy due to a great overlap of the histograms of responder and non-

responder concentrations for any of the three biomarkers. 

The programmed cell death markers represent important molecules in the regulation of 

immune response. It is known that some cancer types use the expression of the 

silencing ligand PD-L1 to evade elimination by the immune system. Stable biomarker 

concentrations indicate that this regulative mechanism did not play a major role in the 

presented cohort. If it had, a differentiation between responders and non-responders 

would have been possible. A correlation of the pre-therapeutic concentrations of the 

receptor PD-1 with each of its ligands PD-L1 and PD-L2 was seen. It was expected to 

extract this correlation since receptor and ligand interaction result in downstream 

signaling. No correlation was detected between the concentrations of the two ligands. 
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Research showed that although both markers share the PD-1 receptor, both ligands also 

bind to different proprietary receptors and exhibit different signaling pathways. In this 

context it was not expected to observe a strong correlation between the two ligands 

(Butte et al., 2007; Chen et al., 2018). 

The findings of the study's investigations were not completely unexpected. The 

regulation of the activity of the immune system is finely regulated by a plethora of 

proteins. Cancer and the treatment of cancer induce inflammatory processes. These 

must be regulated by other proteins than the programmed cell death markers in the 

presented cohort. The obtained data denied the application of PD-1, PD-L1 and PD-L2 

as general markers to assess response to therapy in a chemotherapeutical treated 

cohort. Since the assays proved validity, the application in a patient cohort treated with 

immune checkpoint-inhibitors targeting the programmed cell death marker pathways is of 

interest. Since these drugs directly target the investigated proteins, it is more likely to 

show an effect. It is hoped, that the biomarkers will uncover prognostic and/or monitoring 

potential in a checkpoint-treated cohort. 

Literature research revealed no comprehensive investigation of the concentrations of the 

programmed cell death markers PD-1, PD-L1 and PD-L2 in healthy controls so far. 

Comparisons between the healthy and the cancer cohort showed that the mean and 

median concentrations of PD-1 and PD-L1 were significantly elevated in the healthy 

cohort compared to the cancer cohort. The data obtained for PD-L1 has to be handled 

with caution as the vast majority of patients presented with concentrations below the 

lower limit of quantification. This made it difficult to draw comparisons and calculate 

statistics applying this biomarker. Contrary, for PD-L2 median concentrations in the 

healthy cohort are located significantly below the cancer cohort. Tumor disease creates 

an inflammatory environment which leads to the activation of the immune system. 

However the constant stimulation results in the induction of negative feed-back loops 

which cause regulatory immune depression. Either process might contribute to an 

explanation for our findings. Regardless, it is important that so far activity was only 

proven for membrane-bound proteins. The developed assays instead, measure the 

soluble protein forms. A correlation between surface proteins is likely but has not been 

investigated yet. The soluble forms are hypothesized to generate by either cleavage from 

the cell surface by matrixmetaloproteinases or secretion of soluble protein isoforms 

(Frigola et al., 2011; Keir et al., 2008; Nielsen et al., 2005; Schildberg et al., 2016). A 

comprehensive explanation for the biology of soluble programmed cell death proteins is 

currently not possible as many questions remain to be investigated. 
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Our explorative approach was able to show that the marker concentration between 

healthy and cancer patients differ significantly. Further investigations, including the 

biology behind the markers, will hopefully elevate the knowledge about the markers and 

add to explain the findings. 

As mentioned before, the biomarkers are regulators of the immune system. This means 

that their concentration is hypothesized to be influenced by a variety of factors like 

immune modulatory molecules and processes. The background of the programmed cell 

death proteins suggests the application as marker in the context of inflammation-

accompanied diseases. This opens up the field for new indications to investigate the 

newly developed assays, starting but not limited to autoimmune diseases, transplant 

reactions and infectious diseases. These investigations will help to understand more 

about the biology and the complex impact of the three markers in the regulation of 

immune system activity. 

The presented biomarker study benefited greatly from its junction to a large, multicentric 

clinical study that was performed according to GCP-guidelines. The advantages 

comprise clinical characterization of the patients, defined drug administration, monitoring 

exams and well-controlled radiologic evaluation of therapy response. The CESAR 

Biomarker Substudy was planned as a side study when setting up the clinical study 

(CEPAC-TDM Study). This allowed a comprehensive pre-selection of blood sampling 

time points. The multi-center study took place at different sites in Germany, Austria and 

Switzerland. Well clinical characterization of included study patients was performed and 

reported. Therapy response was monitored by computed tomography and analyzed 

applying the RECIST-guidelines for good clinical practice. Comprehensive assessment 

of clinical data is expensive and often not available in biomarker study. In this context the 

biomarker study benefited from the connection to a clinical study which enabled the 

access to extensive clinical patient data. 

The blood samples were drawn solely for the investigation of biomarkers. Processing 

and storage was performed according to a standard sample processing protocol. The 

protocol was written with respect to preserve best pre-analytic sample quality. Central 

organization and distribution of study materials ensures high comparability within the 

different study centers. 

Sample aliquotation at the biomarker measurement site maintained high sample quality 

by the reduction of necessary freeze thaw cycles. Approved assays were used for the 

quantification of the tumor markers. The self-developed assays for the quantification of 

the soluble programmed cell death protein markers underwent extensive validation to 
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ensure high data quality. Assays were executed according to a predefined assay 

protocol. Assay specific quality control samples were included in every performed 

experiment. Biomarker analysis was executed in cooperation with an independent 

institution. Data consistency and variation was assessed before analysis. The statistical 

insecurities of the calculated results were reported in form of significance levels and 

confidence intervals. 

However the study patients were not randomized. Another limitation of the study is the 

drop-out rate in the analyses. 261 were originally included in the study. Depending on 

the analysis, 16 to 80 patients could not be included in the analysis due to missing blood 

drawing time-points. The highest rates of drop-outs were seen the monitoring time-

points. The retrospective measurement did not allow for addition of further interesting 

time points or data. The study findings need to be validated in an independent cohort. 

However the high quality of execution and analysis applied, allowed for a clear 

suggestion. 

In conclusion it can be stated that pre-therapeutic concentrations offered no predictive 

and limited prognostic potential in the tumor markers. After termination of the second 

treatment cycle, the biomarkers CYFRA 21-1, CA 125 and NSE were predictive for poor 

response, and the biomarkers CYFRA 21-1 and CA 125 were predictive for good 

response to treatment. Pre-therapeutic concentrations of CA 15-3 and CA 125 were 

prognostic for progression free survival. After completion of the second therapy cycle the 

five markers CYFRA 21-1, CEA, SCCA, CA 15-3 and CA125 were prognostic for 

progression free survival. Pre-therapeutic CA 15-3 concentrations for overall survival, 

after the end of treatment cycle 2 CYFRA21-1, CA 15-3 and CA 125 were prognostic for 

OS. CYFRA 21-1 and CA 125 showed most potential in prediction and prognosis when 

applied after the first treatment cycles, in this case two. 

The programmed cell death markers did not show predictive potential for response to 

therapy in the currently investigated NSCLC cohort. A stronger effect is estimated to be 

found in a squamous cell cohort what is also more likely to be treated with ICIs that 

directly target the investigated markers. 
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7 Conclusion 

Tumor markers and soluble programmed cell death markers were measured in a 

chemotherapy treated cohort of NSCLC patients. Analysis was performed in order to 

assess prediction of therapy response and prognosis of progression free and overall 

survival. In the tumor marker measurements, the already known marker CYFRA 21-1 

confirmed its potential in predicting therapy response and prognosis of PFS and OS. 

CEA did not evolve as a significant marker due to the low number of squamous cell 

cancer patients in the cohort. Cox regression analysis showed potential for SCC in the 

prognosis of progression free survival. NSE and ProGRP are described markers in small 

cell lung cancer. As expected neither predictive nor prognostic value was detected in the 

NSCLC patient group. Formerly not investigated tumor markers CA 15-3 and CA 125 

revealed potential in prediction of response and prognosis of survival in the NSCLC 

cohort. CA 15-3 was able to allow prognosis of progression free and overall survival. 

CA 125 was able to estimate PFS and also by the change of concentrations during the 

first two therapy cycles predict response to therapy. HE4 showed no potential regarding 

prediction of response or prognosis of survival in this investigation. 

After extensive experiments to prove analytic and preanalytic validity, qualified EILSA 

assays for study sample testing on solublePD-1, PD-L1 and PD-L2 were introduced. 

Examination of the programmed cell death markers in NSCLC cohort treated with 

chemotherapy revealed no predictive value of the biomarkers in this patient group. A 

comparison with a healthy cohort detected differences in the mean marker 

concentrations for all three markers. These findings stress the involvement of the 

programmed cell death proteins in the tumor microenvironment. It is hypothesized that 

the PD-marker will uncover their full potential in a patient cohort treated with immune 

checkpoint inhibitors directly targeting the markers which will be the next step to explore. 
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8 Outlook 

The biomarker measurements on the NSCLC cohort revealed a lot of interesting insights 

that will lead to a variety of following scientific questions and investigations.. 

The potential of CA 15-3 and CA 125 in the prediction of response to therapy and 

prognosis of progression free and overall survival will be further explored. 

The researched study cohort is well characterization in terms of clinical data availability. 

This predestines the remaining samples to be investigated in further biomarker 

measurements, for example routine markers, the immunogenic cell death markers and 

inflammation markers. That will be assessed regarding their correspondence with 

prediction and monitoring of therapy response. 

The programmed cell death biomarkers were not able to show predictive or prognostic 

value. In consequence it will be the next step to measure those markers in a more 

appropriate target group, for example immune checkpoint inhibitor treated NSCLC 

patients. For sure, due to a blood based test system and the variety of approved 

indications it will be interesting to also include other cancer types. Of great interest will 

be the analysis of melanoma patients treated with immune checkpoint inhibitors as these 

were the first to be treated with the new anti-cancer drug class and reported impressive 

response data. Nevertheless the application of the biomarkers will not be limited to the 

indication of cancer as the underlying target is part of the immune system regulation. 

Thus the assays will also be interesting in the investigation of inflammatory processes or 

diseases. 

Besides it will also be of great interest to gain a deeper understanding of the biology 

behind the PD-markers. Cell culture experiments will help to understand whether the 

detectable proteins in blood are secreted soluble forms or cleaved former 

transmembrane proteins. They might be attached to transporting proteins or bound on 

the surface or incorporated in exosomes. 

Currently on the verge of grasping the potential of the programmed cell death protein 

detection, there is a lot more to explore in the field in the next years. 
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