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Abstract 
There are several aspects of the iterative design process that present 
opportunities for innovation in the development of complex systems such as 
aircraft. The focus of the work presented here lies on leveraging un- or under-
captured information for the purposes of improving design process outcomes. 
The three main categories of information relate to assumptions, stakeholder 
preferences, and system modeling. The method developed for this work not 
only facilitates formally capturing this information, but also putting it to use 
through automatic design space exploration employing an application of 
numerical optimization algorithms.  

The method is implemented in a software framework centering on the analytical 
model of the system in question, a design variable class to capture information, 
and a design space class to execute the searching and facilitate design 
exploration and understanding. The searching results are a finite set of design 
points likely to be of interest for further design iterations, along with other 
artifacts to aid in gaining design insights and support decision-making. Example 
cases presented include the prospective clean-sheet design of a small regional 
airliner and another study examining a potential wing redesign with a winglet for 
a narrow-body airliner. Several benefits were observed related to facilitating 
effective design space exploration with reduced resources and reaping benefits 
from utilizing optimization much earlier in the design and development process 
than is otherwise normally practical. 
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Kurzfassung 
Bei der Entwicklung von komplexen Systemen, wie zum Beispiel Flugzeugen, 
gibt es verschiedene Aspekte des iterativen Entwurfsprozesses, die 
Innovationsmöglichkeiten bieten. Der Fokus des hier präsentierten 
Forschungsprojektes liegt darin, nicht bzw. nicht ausreichend erfasste 
Informationen zu nutzen, um die Ergebnisse des Entwurfsprozess zu 
verbessern. Die drei Hauptkategorien von Informationen beziehen sich auf 
Annahmen, Stakeholderpräferenzen und Systemmodellierung. Die entwickelte 
Methode dieser Arbeit erleichtert nicht nur die formale Erfassung dieser 
Informationen, sondern auch deren Nutzung durch die automatisierte 
Untersuchung des Entwurfsraumes und die Verwendung von numerischen 
Optimierungsalgorithmen.  

Die Methode ist in einer Softwareumgebung implementiert. Die Umgebung 
basiert sich auf dem analytischen Modell des betreffenden Systems, einer 
Objektklasse von Entwurfsvariablen zur Erfassung der Informationen und einer 
Designraumobjektklasse für die Durchführung der Optimierung und ermöglichen 
einer Parametervariation und dem Verständnis der Entwurfsergebnisse. Die 
Optimierung ergibt eine Menge an Designpunkten, die mit großer 
Wahrscheinlichkeit interessante Eigenschaften für weitere Entwurfsiterationen 
darstellen, sowie weitere Hilfestellungen zur Gewinnung von Einblicken in den 
Entwurf und zur Unterstützung von Designentscheidungen. Als Beispiel werden 
folgende zwei Fallstudien durchgeführt: Der Neuentwurf eines kleinen 
Regionalverkehrsflugzeugs und die Neugestaltung eines Flügels mit Winglet für 
ein narrow-body Passagierflugzeug. Hierbei zeigt die Methode Vorteile 
gegenüber dem Stand der Technik durch eine effektivere 
Entwurfsraumuntersuchung mit reduzierten Ressourcen sowie durch die frühere 
Anwendung von Optimierung im Verlauf des Entwurfsprozesses. 
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1 Introduction 
 

 

 

 

The aim of any research endeavor is to further the state of the art or add to the 
general body of knowledge. The body of work described in this document 
focuses on improving process outcomes in the design and development of 
aerospace products, with a focus on early and conceptual aircraft design. In this 
chapter, a discussion of the domain of development processes, a subset of the 
broader aerospace research categories, lends context to the motivation for the 
specific topic, namely exploring a new technique to leverage a software-based 
process to achieve improved design process outcomes.  
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1.1 Design research domains 

When discussing research in the field of aeronautics, there are several high-
level domains of exploration. One such domain is pure scientific discovery, a 
focus that is more closely related to the natural sciences than the engineering 
that aeronautics is normally associated with. This type of search for pure 
knowledge is characterized by discovery and seeking a better understanding of 
phenomena in the physical world as it is, as opposed to the creation of 
something new. 

Another domain of research in aeronautics is that of creation, evaluation, and 
refinement of domain-specific analyses. These are methods of prediction and 
are often associated with the classic disciplines such as structures and 
materials, aerodynamics, stability and control, propulsion, etc. Improving 
prediction methods increases the likelihood that after the heavy investment of 
time and resources into developing an aerospace product, the product will, 
when the program is at a stage of verification and validation, meet requirements 
and expectations. 

The creation and evaluation of new and novel technologies and concepts is yet 
another distinct domain of research within aerospace. When it is not yet certain 
if or under what circumstances a novel invention, configuration, or other concept 
is feasible or viable, research in this domain aims to mature the technology, 
increasing the so-called technology readiness level. The technology readiness 
level, or TRL, is a measure of maturity commonly used by aerospace and 
defense organizations, particularly government organizations. The TRL scale 
ranges from 1 (just an idea based on observed scientific principles, transitioning 
from scientific to applied research) to 9 (a proven and deployed product). The 
definitions of the various stages of TRL are summarized in Figure 1-1, and 
these definitions are similar for organizations such as the US Department of 
Defense (Defense Acquisition University Press, 2001), NASA (NASA, n.d.), 
ESA (ESA, n.d.), and ISO (ISO/TC 20/SC 14, 2013). The TRL scale correlates 
to research and development activities within an organization whereby 
investigations of low-TRL technologies and ideas are typically categorized as 
research, and the work on higher-TRL concepts is called development or 
product development.  
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Figure 1-1. TRL scale summary. (NASA public domain image) 

Finally, research in aerospace can instead focus on the processes individuals 
and organizations utilize. Of interest, and the focus of this body of work, are the 
processes used in designing new aerospace products, particularly early design 
of aircraft. A preliminary examination of the processes used in design exposes 
potential gaps or weakness, and these yield potential research opportunities.  
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1.2 Design processes 

The aim of research in the area of aerospace design and development 
processes is essentially centered on arriving at a better resulting product and/or 
arriving at the same result more quickly and with fewer resources. The 
processes for aircraft design have the potential for exploitation for innovation.  

1.2.1 Archetypal aircraft early design iteration process 

The design process, particularly as it relates to early aircraft conceptual design, 
lives on the upper left side of the classic development “V” model (see Figure 
1-2). Early design has significant overlaps with requirements and begins with 
initial requirements, including both elicitation of new requirements as well as 
analysis of existing requirements.  

 

Figure 1-2. Simple depiction of “V” model of development.  

Design is a continuous iterative cycle of investigations, refinements, trade 
studies, and decision-making. Iterating and making engineering design 
decisions in the early conceptual phase of design can be as much art as 
science in that it is non-deterministic, and results may vary depending on the 
individuals involved (and their creativity). While each project and every iteration 
within that project are unique, a typical individual generic trade study within 
early design can be broken down into roughly six subprocesses as labeled and 
defined by this author as follows: 

1. The triage phase, for lack of a better term, is a precursor to making 
formal decisions. It is when the decision is made regarding which trade-
off studies to investigate. This is the key step of selecting with each 
iteration which areas are worth investigating and which trade studies are 
the best use of limited resources to maintain a balanced design effort. 

2. The identification phase is when the designer identifies alternatives as 
potential candidates for a final design choice. This could be identifying 
distinct alternatives or a continuous trade space or design domain.  

3. The analysis phase is when alternatives are analyzed. The result is 
complete (or as complete as practical at the given design phase) 
information regarding performance of potential candidates or 
performance variations across the design domain. 

Requirements Validation

Design Verification

Implementation
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4. The communication/understanding phase is when the results of the 
preceding phases, particularly the analysis phase, are communicated to 
stakeholders as well as the designer(s) themselves for the purpose of 
understanding the alternatives or design domain. 

5. The decision phase is when a single alternative or design point is 
chosen from the many possibilities. 

6. The documentation activity, which ideally runs continually in parallel 
with all the previous phases, is when all key inputs and results of the 
previous five phases are preserved for future reference and for inclusion 
in reports, proposals, etc. 

These activities are depicted graphically in the flowchart in Figure 1-3. 

 

Figure 1-3. Typical design iteration process.  

1.2.2 Opportunities in the design iteration process 

In the context of conceptual design and the iteration process outlined above, 
there exist several deficiencies and shortcomings. Some of these shortcomings 
have potential to be overcome, creating opportunities for further advancement. 

The triage phase should involve some formal processes for down-selecting 
trade-off studies to conduct, for example by doing some cursory parametric 
sensitivity analyses. This can be recursive in that the triage phase can be 
treated as a design decision making process in and of itself. However, there 
often are insufficient resources for such a formal process, and the selection of 
which trade-offs to investigate is often made using experience and instinct 
and/or by higher-ups within an organization with a different set of motivations 
and incentives.  

Triage
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The identification phase in some cases must rely heavily on the creativity and 
inventiveness of the designer. This is especially the case when configuration 
alternatives must be synthesized. Because of the reliance of the very subjective 
experience, meme pool, and creativity of the designer, design synthesis in the 
identification phase runs the risk of overlooking potentially superior alternatives. 

Most shortcomings and therefore most potential advances in the analysis phase 
of decision making are discipline- and industry-specific. Engineers and 
scientists are constantly striving to make estimations of system performance 
more quickly, more accurately, and more robustly. One potential opportunity to 
improve the analysis phase that is not quite as discipline-specific lies in more 
efficient ways of linking analysis modules together in the larger context for 
purpose of, for example, speed of convergence. 

The communication & understanding phase suffers from a lack of easy-to-use 
and accessible multi-dimensional visualization tools. More importantly, there 
can be significant overhead and effort involved in good communication, e.g. 
setting up and running parametric analyses and/or making clear, well-formatted 
visualizations of results. This overhead represents a barrier to creating artifacts 
useful for understanding and communication. An example of this would be a 
designer modifying input cells in a spreadsheet-based analysis tool until the 
resulting outputs “look good.” Doing this, despite the full analysis capability 
being repeatably in place as software, the designer gains only a modest 
understanding of the problem, and other stakeholders have no way of gaining 
even that much understanding.  

If the understanding of the problem is thorough, a good result from the decision 
phase is likely. However, even with good understanding, this is not guaranteed. 
Decisions can be made that are not entirely justified. Sometimes the final 
decision is not 100% supported by the preceding objective analysis, for 
example to capture a qualitative preference or quantitative information not 
explicitly integrated into analysis. In this case, a decision is made, and a design 
alternative is chosen that is not directly supported by the quantitative analysis 
alone. Conversely, when making an objective decision based solely on analysis 
results, a decision is possible that goes against the intuition of an experienced 
designer or other stakeholder. 

The documentation phase, like the communication phase, can be labor-
intensive and without immediate gratification. There is significant overhead 
involved in producing proposal-quality text and figures, and the step of 
documenting decisions may be left out at the time the decision process is 
actually conducted. Delaying documentation introduces the risk that the 
justification for the decision will be forgotten. 

Examining the typical iterative design process exposes some potential 
opportunities for novel approaches, as well as revealing some weaknesses in 
the process that translate into additional opportunities for improvement. These 
opportunities and the desire to create advances in the design process sparked 
the motivation for exploring new design process techniques for this work. 
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1.3 Motivation for exploring a different approach 

Several factors combined make up the motivation and inspiration for 
undertaking this work and create the rationale for why the work is worthwhile. 

1.3.1 Software-centric contemporary workflows 

Computers and software play an intrinsic role in contemporary aircraft design 
and trade studies. At each stage of a project, not only has software replaced 
manual calculations, but software is often written even for the simplest of tasks. 
From day one of any type of new technical design investigation, for example, 
conducting initial ‘back of the envelope’ hand calculations using pencil, paper, 
and a calculator has been replaced by writing formulae into a spreadsheet or a 
simple software script. In this way, the designer has access not only to the 
results of initial calculations but has concurrently created a useful tool whereby 
calculations are repeatable at very low cost with different inputs and 
assumptions. 

Unfortunately, this is where much of the advantage often ends, as those low-
cost repetitions of calculations are too often only repeated with very manual 
modification of the inputs and assumptions. This still offers a significant 
advantage for speed and consistency, but, crucially, the mental and decision 
processes of the designer remain the same as when the investigation is done 
without software at all. Other aspects of this workflow also remain the same, for 
example still only examining a very small number of parameters (usually only 
one or two) simultaneously.  

Because software is ubiquitous in design as an instrument to be wielded by the 
designer, it is worthwhile to explore techniques that have the potential to 
augment the mutualistic and complementary relationship between designers 
and their software. In this way, more of the potential advantages of already 
software-intensive workflows can be leveraged, and further synergies between 
human designers and computer-based software can be realized. 

1.3.2 Un- and under-captured stakeholder wisdom 

Information that is un- and under-captured is an untapped resource that could 
be further exploited in the early design process. While the whole body of 
knowledge of the designers and others involved constitutes all the information 
available, in the context of this work, the term “stakeholder wisdom” is used to 
more exclusively describe the knowledge that exists among participants but that 
is not fully captured in the modeling and usually also not in documentation. This 
is similar to the term “expertise” in describing some of the less tangible 
knowledge that is nevertheless still respected and may still influence design 
results through other parts of the process such as design reviews or subjective 
design decisions. 

There are three typical categories of information that affect the outcome of a 
design that are relevant to this un- and under-captured stakeholder wisdom. 
Assumptions are the inputs to the design and modeling that are defined by 
stakeholders (usually designers) other than documented requirements and 
specifications. Preferences are traditionally documented by customers as 
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requirements; slightly more nuanced preference information is commonly 
expressed, for example, when requirements are defined with both a threshold 
and an objective value. Model behavior determines the predicted performance 
of the system and therefore influences decisions that are based on these 
predictions. The typically under-captured stakeholder wisdom associated with 
these categories is summarized in Table 1-1 below and discussed in more 
detail in the context of an example in Section 3.3.  

Table 1-1. Typical categories of un- and under-captured information. 

Category Typical under-captured information 

Assumptions 
Nuanced and richer information regarding the 
assumptions used for analyses. 

Preferences 
Preference information, not explicitly written in 
requirements or specifications, on figures of merit 
(FOMs) and other design parameters. 

Model behavior 
Known behaviors of the analyses in modeling the 
system behavior and faithfully capturing (or not 
capturing) the true physics of the system. 

To illustrate the role stakeholder wisdom plays and the effect it has on the 

design process, consider a simple abstract example of an early trade study in a 
new aircraft design project: payload capacity, which the customer already 
specified as a requirement or preference, versus the operational cost per unit of 
payload carried for the mission distance (the notional figure of merit to be 
minimized to achieve the ‘best’ system), shown in Figure 1-4. 

 

Figure 1-4. Illustration of early payload capacity trade study. (Sartorius & Hornung, 
2018, p. 3) 

In this situation, a significant cost improvement is possible with a system 
designed with a payload capacity several times larger than originally requested 
by the customer. In the hypothetical case that numerical optimization would be 
used for this study, the resulting design would either have the payload 
stipulated by the customer (if set as a constraint) or it would be a system 
several times larger than what the customer originally requested. However, the 
choice made by the designer was neither, with a point in between selected 
instead. 
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What preference information led to the decision, and how much of that 
information was easily accessible to the designer before the shape of the curve 
was known? This question is the inspiration for the technique presented in this 
work.  

The answer is that a significant amount of this information is present early in 
design but is simply not captured in a conventional design workflow. However, it 
is there, waiting to be exploited. Capturing this stakeholder wisdom in a formal 
manner should therefore be low-hanging fruit for taking advantage of. With the 
right software-enabled techniques, we can not only harvest that information, 
which has hitherto been out of reach, but we can also put it to use in meaningful 
ways that can improve design development and product outcomes. 

1.3.3 Increasing chances of product success 

Innovation in design processes increases the chances of a product or program 
being successful by reducing time and resources needed for converging on an 
acceptable result or by increasing the quality or refinement of the results of a 
given iteration or trade study. By exploring a technique that captures un- and 
under-captured information, there is potential for significant benefits to the 
design process for the reasons discussed here. 

 Access to unexplored areas of the design space 

It is often the case that as design progresses, certain design variables, 
parameters, requirements, and decisions transition from a free, undetermined 
state to being set to a fixed value. This is often necessary for the design to 
move forward. However, every time a parameter is fixed, the design space is 
effectively pruned of possibilities. This means that there is a potential for 
excellent design possibilities to be undiscovered and unexplored. By 
maintaining richer information about design parameters for longer in the design 
process instead of locking them in to fixed values prematurely, the pruning 
process is delayed for as long as possible, and the chances of discovering 
better solutions improves.  

 Delaying locking in requirements 

This pruning of possibilities also applies to requirements. Product failure often 
results from requirements that are locked in prior to fully understanding the 
costs and compromises of those requirements. Maintaining flexibility on the 
requirements until later in design avoids this. However, doing so normally 
carries an extreme burden and significantly slows the pace of development, so 
there are strong incentives to fix requirements as early as possible. By 
facilitating carrying uncertainty in the requirements deeper into the design and 
development instead of prematurely pruning the product space, the 
development can adapt and make necessary changes in reaction to new 
insights and information.  

 Design decision freedom, tracked and justified 

As illustrated in the example payload capacity shown in Figure 1-4 above, it is 
possible for a given trade study to result in a spectrum of possible decisions. In 
this case, two decisions are easily justified: either the decision is conforming to 
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a provided specification or it is based upon optimizing an objective, quantitative 
parameter. It is all the possibilities in between where decision-making is not 
always easily justified. Conversely, sometimes the objective analyses and data 
drive towards a decision that goes against the wisdom of the designer or other 
stakeholders. This wisdom should not be undervalued, and if it is, the pressure 
to make easy-to-justify decisions can prevent better design possibilities from 
being selected. By explicitly capturing the information in a formal way that is 
documented and traceable, designers have the justification in hand to enable 
the freedom to make decisions that will lead to better results. 

 Process efficiency 

One consequence of stakeholder wisdom sometimes being undervalued is that 
research or other efforts are spent only to reach a conclusion that could have 
been found using only the existing knowledge on hand amongst the designers 
and stakeholders. By enabling and leveraging the use of that knowledge, some 
of those superfluous efforts can be short-circuited, making better use of 
resources in design and accelerating development or, conversely, 
accomplishing the development with fewer resources spent. 

1.3.4 Focus on early design 

In a typical aircraft development program, the decisions that have the greatest 
effects on the ultimate outcome are made early on before the majority of the 
effort has been spent. In other words, only a relatively small early investment 
has a disproportionate impact on the overall program (see Figure 1-5), and 
there is quickly decreasing flexibility to make changes to the design definition 
that is set in this early time. This means that new processes and approaches 
that can yield gains will have a greater relative impact when the improvements 
are realized in the earlier design states. Therefore, the focus of this work is on 
early design studies for superior returns in making better decisions when so 
much is in flux and the development is less hindered by high programmatic 
inertia. 

 

Figure 1-5. A disproportionate amount of definition is set in early design. 
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For conceptual aircraft design, ‘early design’ would typically fall prior to a 
conceptual design review for a larger program, prior to a preliminary design 
review for a small program in a small company, and prior to the use of formal 
requirements and change management tools and processes. In the context of 
this work, ‘early design’ also spans into market analysis, requirements 
elicitation, and other activities sometimes conventionally thought of as 
preceding the design phase. That said, not all ‘early design studies’ take place 
in the early phases of a program like in a conceptual design phase. The term as 
used here applies to any effort that has a combination of the following attributes 
or characteristics: 

• The study is part of the early stages of any trade study or exploration of 
the design space. 

• It is part of the initial investigations into some aspect of an aircraft or 
system that has not been previously given significant consideration in the 
overall development. 

• Project requirements and/or objectives are unlikely to be extremely well 
defined and understood. 

• The analytical models in use have a lack of maturity and/or fidelity.  

• There is a high likelihood, or even a near certainty, that the design will 
change in future iterations. 

• The designer and other stakeholders are more interested in 
understanding the design space and the decisions bringing the design 
closer to a good area of the design space, rather than a single best and 
final design decision. 

These motivations coalesce to inspire the undertaking that is the focus of this 
work, where there is surmised to be a potential for a new approach to leverage 
the already software-centric workflows to capture additional information and put 
it to use to improve the results of early design processes. 
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1.4 Objectives 

The objectives of this new approach are split into two main parts: 

1.4.1 Objective 1: Facilitate formally capturing stakeholder 
wisdom 

The first and primary objective of the work is to create a method for formally and 
quantitatively capturing the aforementioned un- and under-captured information 
and knowledge. This makes available preferences and other types of 
information that are present a priori in early design but not normally explicitly 
used. The aim of the technique is to capture as much as possible of the 
preference information designers normally do have a priori but typically only use 
to make design decisions after completing activities that make the design space 
and trade-offs better understood. 

This requires first devising a format that can effectively capture often qualitative 
information in a way that can be at least roughly quantified for use by automatic 
processing methods. There is also the important aspect of making sure that the 
approach to capturing is as low effort and low friction as possible. Since the 
information for the most part already exists in the knowledge base of the 
stakeholders, if the approach is ever to see practical real-world usage, it is 
crucial that the process for capturing the information is relatively low overhead 
and does not present an unpalatable burden to stakeholders. 

1.4.2 Objective 2: Automate the integration of captured 
information in design space exploration and decisions  

Simply capturing the stakeholder information has limited usefulness by itself. 
There are many potential ways to put the captured information to good use. The 
primary aim here is to use the information in such a way as to automate some 
of the design space exploration and decision making. In this fashion, it is 
possible to accelerate the design and decision-making process with the 
automated search process, but with an automated search that is informed with 
as much available information and knowledge as possible. This essentially adds 
automation where the additional captured information makes it possible but 
keeps the designer and other stakeholders in the loop for decisions where it 
makes sense to do so.  

This work explores an approach to use the power of computational tools, 
specifically existing optimization search algorithms, to put the information to 
good use for automating design space exploration. The stakeholder wisdom 
information involved here is, by definition, not normally used in multidisciplinary 
design optimization (MDO), so to meet this objective, it is necessary to capture 
this type of often nuanced and nonlinear information and knowledge in a 
quantitative way that can enable leveraging the power of these search 
algorithms to provide a useful result. Thus, the aim is to accelerate the design 
and decision-making processes and accelerate design iteration cycles through 
automatic searching of the design space that is as informed as possible to let 
the search algorithms, at every step, to be driven toward similar design 
directions that a human-in-the-loop designer would be. 
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Capturing knowledge and putting that captured information to good use were 
the two primary objectives of the work, which came with certain anticipated 
benefits. However, in executing the project, certain unplanned secondary 
benefits were also realized, which will also be discussed. 

  



  1 Introduction 
 

Sartorius  14 

 

1.5 Structure of this work 

The present thesis describes the specific approach used to achieve the primary 
objectives for improving design processes. A theoretical discussion is 
supplemented by specific discussion of implementation and experiments with 
example design cases. 

Chapter 2 discusses the state of the art related to capturing stakeholder 
preferences and information, particularly in the domain of requirements 
elicitation. Some prior work is also summarized regarding design processes and 
techniques for conducting trades studies and visualizing and understanding the 
design space, including techniques for accounting for uncertainty and numerical 
optimization. 

Chapter 3 begins to go deeper into the applicability of the approach and the 
issues to resolve in developing the new technique, called the Well-Informed 
Search Design Optimization Method (WISDOM). The specific types of 
information targeted for formal capturing and implementation are illustrated with 
a simple regional airliner sizing example, and then the approach to 
implementation of that information in an optimization workflow is presented. 

Because this technique is meant to be a relatively integral part of a design and 
development process, the specific implementation in software is important. 
Chapter 4 lays out the workflow, architecture, and algorithms involved, along 
with some of the reasoning behind certain implementation decisions. 

To further solidify the illustration of the usage of the technique in design 
processes, example cases are laid out in Chapter 5. The regional airliner from 
Chapter 3 is used as one example case, and the second example case 
explores the possible redesign of a narrow-body airliner wing with a winglet. 

Chapter 6 concludes with a discussion on how the technique performs against 
the objectives of this work, some of the unexpected side benefits that were 
realized, and also some drawbacks and areas where future improvements or 
new capabilities may be worthwhile to build.   
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The typical aerospace program process begins with requirements, and there 
are established approaches for eliciting, formulating, and analyzing 
requirements. During the iterative development of the system, design decisions 
must be made, and there are many techniques proposed and in use for formally 
structuring trades studies and decision-making. A large subcategory of 
decision-making approaches is the broad field of multidisciplinary design 
optimization. Finally, there are additional approaches and techniques in 
development that aim to account for various types of uncertainty in design and 
optimization. 
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2.1 Requirements elicitation and analysis 

One primary objective of this work is to facilitate formally capturing stakeholder 
knowledge. Though the focus is on capturing the types of knowledge and other 
information that is often un- or under-captured in typical design, there are still 
many areas where information is formally captured, particularly in developing 
requirements. It is therefore worthwhile to take stock of some of the established 
approaches used for capturing stakeholder preferences and knowledge in the 
creation of system requirements. 

2.1.1 Market research 

Briefly, market research is any effort that seeks to gain insights about 
customers or potential customers in order to support business and product 
decisions. In the context of the commercial aerospace industry, this applies to 
sectors such as airliners, business jets, general aviation, and even experimental 
kit planes and ultralights. In these industry sectors, market research translates 
into figuring out what the company should build that will have a market fit and 
profitable sales. The aforementioned “what” translates into top-level 
requirements. In other words, market research seeks to determine the 
requirements for the next product, and there are several categories of 
techniques available in the domain of market research (McQuarrie, 2016), as 
summarized in Table 2-1. 

Table 2-1. Market research techniques overview. 

Category Example technique 

Archival 

Secondary research: Search existing information collected for 

another purpose.  

Big data analytics: Special kind of secondary research 

characterized by large datasets and software-based analysis.  

Qualitative / 

interview 

Customer visits: Researcher and colleagues visit multiple 

customers. 

Focus groups: Multiple customers are brought to the researcher 

at one facility. 

Quantitative 

Descriptive survey: Collecting data from multiple respondents 

using specific, quantifiable (e.g. multiple choice) questions. 

Experimentation: Multiple ‘treatments’ (e.g. product features) 

applied to different groups. 

Conjoint analysis: Multiple treatments applied to an individual. 

 

2.1.2 Traditional aerospace and defense approach to 
requirements 

Many requirements formulation approaches that are advocated for in the 
aerospace and defense domain acknowledge that requirements, at least to 
some extent, must be allowed to iterate, for example in response to the program 
progressing and new information becoming available. However, as larger 
programs progress, the cost of any changes to requirements makes changes 



  2 State of the Art 
 

Sartorius  17 

 

infeasible. This is especially true of top-level customer requirements and system 
goals, and this is one reason that, for example, the US Department of Defense 
systems engineering process, shown in Figure 2-1, which evolved for the 
development of very large, complex, and expensive programs, features only a 
one-way flow of customer requirements and needs into the process.  

 

 

Figure 2-1. DoD systems engineering process. (Defense Acquisition University 
Press, 2001, p. 31) 

Many of the requirements applied to aircraft certified for civil aviation are 
enshrined in law and regulation and are understandably also taken as 
immutable inputs. The prevalent recommended practice for development and 
certification of civil aircraft and an accepted means of compliance with key 
regulations, ARP4754A (SAE S-18, 2010), focuses primarily on safety 
assurance in a “development” phase that is a mostly separate follow-on to a 
“concept” phase. However, it is during this concept phase, which “determines 
the overall aircraft performance and configuration” (SAE S-18, 2010), when top-
level requirements would have an opportunity for analysis and iteration.  

The NASA systems engineering process, shown in Figure 2-2, also features a 
primarily one-way flow of customer requirements (also called “mission 
requirements” or “stakeholder expectations”) and constraints into the design 
and implementation process. However, it also explicitly advocates for an 
iterative feedback loop that includes involving stakeholder expectations. 
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Figure 2-2. NASA systems engineering process. (Hoffpauir, 2017, p. 68) 

Since the flow of information from customer top-level requirements all the way 
down to detailed design and implementation is often unidirectional, it is 
important that the process of formulating and deriving requirements has some 
structure and robustness. With primary focus on the development of 
requirements for software-intensive systems such as avionics and other real-
time embedded systems, the FAA’s Requirements Engineering Management 
Handbook (Lempia & Miller, 2009) prescribes formulating qualitative system 
goals and highly structured derived use cases. Since the top-level system goals 
are less likely to change, high quality requirements are more likely due to the 
strict adherence to linking and deriving a) use cases from goals, b) high-level 
requirements from use cases, and c) low-level requirements from higher-level 
requirements.  

2.1.3 Requirements traceability for verification and validation 

Early in a program or for smaller projects, it is straightforward to record 
requirements in a text document or other simple format such as a spreadsheet 
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in such a way that an individual can have both a broad and deep understanding 
of all requirements. As development progresses, further low-level requirements 
are derived, and the system is designed and built to the requirements (left side 
of the classic development “V” model). When progressing up the right side of 
the development “V” model, however, two activities add additional burden to the 
formats and tools used for recording and managing requirements: a) the 
verification that the system conforms to specifications and b) validation that the 
system meets objectives, together known as verification and validation (V&V). 

Additional needed capabilities for requirements management led to the 
development of specialized requirements management tools. A prevalent tool 
for aerospace applications is IBM’s Rational DOORS software, which facilitates 
tracking of both requirements and compliance with requirements (IBM, 2016). 
Complex or software-intensive systems present additional challenges for 
requirements traceability and V&V, particularly those that must conduct a 
rigorous safety assessment process, e.g., for certified civil aircraft, follow 
ARP4761 (SAE S-18, 1996), or comply with a rigorous development assurance 
level (DAL), such as by following DO-178C (RTCA SC-205, 2011). These 
processes, when traditionally implemented, have many manual steps required 
for maintaining requirements traceability.  
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2.2 Design exploration and decision techniques 

Development activities, i.e., iteratively moving down the left side of the 
development “V” model, consist of constantly making a series of design 
decisions. The second objective of this work is to use the formally-captured 
information in a useful way such to facilitate better design decision making. 
Better decisions lead to better results (as measured by system performance, 
but also by reduced risk, cost, schedule, etc.), so to establish context for the 
WISDOM technique that is the subject of this work, a sampling of common 
established approaches to trade studies and decision-making is summarized 
here.  

2.2.1 Trade studies 

A trade study is a process to support decision making. It is an objective 
comparison of as many realistic alternatives as possible while considering as 
many figures of merit as is reasonable. A good trade study will lead to a sound 
engineering design decision. Not only must the trade study be well executed 
using appropriate tools and methods for both the trade study process and 
technical analysis, but it should also be well communicated such that the results 
are clear to the designer, decision-maker, and other stakeholders.  

Trade studies and other design decision techniques may be applicable to 
discrete decisions (choosing between two or more distinct alternatives), 
selection of one from an infinite number of design alternatives on a continuous 
design domain, or a discrete-continuous combination of the two. In many cases, 
the technique for conducting a basic discrete trade study is some variation on 
the decision matrix. One of the simplest forms of the decision matrix is the fully 
qualitative stoplight chart, an example of which is shown in Figure 2-3, with a 
row for each alternative and a column for each figure of merit. The stoplight 
chart is a visual representation of pros and cons of alternatives against various 
figures of merit.  

 

Figure 2-3. Example stoplight chart decision matrix for an electric aircraft 
propulsion-empennage configuration. (Atanasov, 2011, p. 20) 

The next level of decision matrix quantifies or assigns a weighting to each of the 
figures of merit and uses a quantitative score in lieu of qualitative color coding, 
yielding a quantitative measure for each alternative considered. Further 
variations on the decision matrix approach to trade studies delve deeper into 
the various elements, for example a tiered approach for criteria prioritization and 
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weighting, illustrated in Figure 2-4, or accounting for team dynamics or 
uncertainty (Ullman & Spiegel, 2006). 

 

Figure 2-4. Tiered approach to decision matrix criteria prioritization and 
weighting. (Felix, 2004, p. 5) 

2.2.2 House of quality 

A further variation on the decision matrix approach, the house of quality is a 
semi-quantitative graphical technique that is applicable to early development 
while also spanning the divide between requirements development and 
facilitating making early design decisions. It is often used as a means to 
facilitate discussions amongst various stakeholders regarding priorities and 
desirability of various design features and attributes (Hauser & Clausing, 1988; 
King, 1987).  

In the house of quality technique, customer needs are prioritized and weighted. 
For each design feature, its correlation with a customer need is recorded in the 
central matrix region of the house of quality. Each level of correlation (e.g. 
strong, medium, weak, or none) is assigned a value, which when multiplied by 
the customer priority weighting and summed yields a quantitative guidance on 
design feature priorities.  

The house of quality has a role in early aircraft design for providing diverse and 
multidisciplinary teams and stakeholders a common artifact to reference for a 
basis of discussion. Figure 2-5 shows an example house of quality for a 
multirole jet fighter.  
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Figure 2-5. House of quality for a multirole jet fighter. (Brandt et al., 2004, p. 32) 

One drawback of the house of quality is that it “lacks an explicit indication of the 
cost of each design priority and decision” (Brandt et al., 2004, p. 31). On the 
other hand, somewhat mitigating this and a somewhat underrated feature is the 
design feature correlation matrix in the ‘attic’ of the house of quality. Despite 
having no quantitative impact on the bottom-line results of the house of quality 
technique, the design feature correlation matrix in the attic serves to offer a 
common basis for discussion on the constant compromises that must be made 
in aircraft design.  

2.2.3 Design space understanding and visualization techniques 

One way that trade studies and other design decision aides and techniques 
could be described is simply as activities in expressing a complex situation in a 
way that a decision-maker can understand in order to make well-informed 
decisions. To this end, there are several different ways that designers create 
visual artifacts in order to better understand the design space. These types of 
plots are most common for examining and better understanding trade studies 
on a continuous domain. 

Figure 2-6 shows an example of one of the simplest forms of design space 
visualization: a plot in cartesian coordinates examining the effects of a single 
design parameter upon a sole other parameter or figure of merit of interest. In 
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this case it is an examination of the effect of wing aspect ratio on the overall 
weight of a UAV wing built with a solid foam core and composite skin and spar. 

 

Figure 2-6. Example simple two-parameter plot for a solid-core UAV wing. 

An extension of the simple sweep of a single parameter is examining the effects 
of multiple parameters. This, with an example shown in Figure 2-7, is commonly 
called a sensitivity analysis, and it is an extremely useful technique for 
understanding which parameters have the strongest effect on the design. Not 
only does this information help inform immediate design changes or 
adjustments, but it also provides benefits in directing limited resources in future 
design iterations and trade studies. 

 

Figure 2-7. Example sensitivity analysis for a HALE ISR UAV. (Nicolai & Carichner, 
2010, p. 662) 

There are other common visualizations used in early aircraft design to better 
understand the design space. A classic example is the very common constraint 
diagram, which shows various design constraints (dictated by requirements) on 
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a field of all the possibilities of wing size and powerplant size, for example in 
terms of wing loading and inverse power loading, as shown in Figure 2-8. 

 

Figure 2-8. Example constraint diagram for airplane conceptual wing and 
powerplant sizing visualization. 

Many variations on design space visualizations exist. A relatively common 
variation on the constraint plot adds information in the form of contours of some 
objective function or figure of merit. Transforming the axes such that this FOM 
is on the ordinate axis can yield a simple carpet plot, shown in Figure 2-9 for a 
similar wing size and powerplant size visualization. Variations on the carpet plot 
can add further independent and/or dependent variables to the visualization (for 
example by using the abscissa for either), and the type of visualization can be 
used to understand a myriad of different aspects of a design or trade-off. 
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Figure 2-9. Example carpet plot with single figure of merit on the ordinate axis. 
(Oberhauser, 2013, p. 32) 

Visualizations of the design space become more challenging when a higher 
number of variables, or design space dimensions, is involved. It is common to 
examine two or three design variables at a time for early aircraft design 
because usually these two variables (commonly wing size and powerplant size) 
have an oversized and dominant effect on the design’s performance and 
outcome. However, there are many applications, within and outside of simple 
airplane design, where understanding more parameters simultaneously is 
advantageous. Three-dimensional plots, color, marker size, and other tools can 
be used to capture higher dimensions, but one slightly more scalable method is 
to use a matrix of two-dimensional plots, effectively visualizing planar slices of 
the design space taken about some baseline point. Two visualizations that 
leverage this approach are shown in Figure 2-10 and Figure 2-11. Both are in 
the context of initial helicopter sizing and design space understanding. The 
nature of rotary wing aircraft means that it is very difficult to make effective 
design decisions examining only two design parameters simultaneously.  
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Figure 2-10. Constraint matrix for conceptual helicopter sizing. Three design 
variables (cardinal axes), six constraints with 1% margin contours (colored lines), and 

objectives with sensitivity (gray). (Sartorius, 2011c, p. 8) 
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Figure 2-11. Pareto set visualizer with data brushing for design space 
exploration. (Sartorius, 2011c, p. 7)  
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2.3 Accounting for uncertainty 

While it is possible, with the understanding that comes from the design space 
visualization techniques discussed above in Section 2.2.3, to account for some 
uncertainties in calculations, add margins, and similar, there are also 
techniques to integrate information regarding uncertainty more directly into 
engineering analysis and calculations.  

Normally, design and analysis calculations are executed using certain variables 
and parameters as inputs that take on a singular value. The yield stress of a 
material, for example, may be taken as 50,000 psi (345 MPa). However, it is 
known that this value will not be exact. Instead of executing design and analysis 
calculations with these singular values, it is possible to perform the calculations 
using distributions with probabilistic design and analysis (Haugen, 1980). This 
allows the yield stress input to instead be, for example, a normal (Gaussian) 
distribution. Similarly, instead of defining the input variables and parameters as 
a probability distribution, fuzzy sets can be used to define the inputs to 
calculations (Wood et al., 1992), which has been shown to have some 
computational advantages for preliminary design over probabilistic design and 
analysis (Wood et al., 1989). 

The concept of accounting for uncertainty can be extended to the field of 
optimization as well (optimization is discussed in Section 2.4 below) in the field 
of robust optimization. A survey of robust optimization is presented by Sözüer 
and Thiele (2016), which contains a broad survey that includes a discussion of 
applications of robust optimization beyond just engineering design. 

A basic form of robust optimization simply introduces worst-case tolerances to 
input parameters to ensure feasibility of resulting designs. This can be 
overconservative in applications where performance is demanding or margins 
must be kept small, so statistical tolerances, an extension of the concepts of 
probabilistic design and analysis, can be used instead. These types of robust 
optimization approaches are typically to ensure feasibility. However, another 
type of robustness involves minimizing the sensitivity of the design solution’s 
performance to variations, either in the input parameters, the design variables, 
or both (Parkinson et al., 2018, Chapter 9). Fuzzy optimization is a similar 
extension of the concept of using fuzzy sets for engineering calculations applied 
to optimization to account for uncertainty (Rao, 2009, Chapter 13). 
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2.4 Optimization 

Many capabilities are available to designers by the simple presence of the 
nearly-free repetitions of a given analysis inherent to computers and software 
being so central to modern development work. One prominent example is 
optimization, which employs a variety of search algorithms to automatically 
search the design space to find an optimal design. Optimization is an excellent 
tool that has unique capability for handling design problems with numerous 
variables of interest that all interact, which is the normal situation in aeronautical 
design. 

While it is straightforward to fully understand a problem and make an informed 
design decision using plots and visualizations of only a few design variables 
and a handful of dependent parameters, most optimization algorithms easily 
scale up to larger problems that a human designer can only grasp a few 
dimensions at a time. Consequently, optimization also enables exploring these 
higher-dimension design spaces, not only to find optimal solutions, but also 
often enabling or accelerating discovery of feasible solutions in cases of highly 
constrained problems and identifying and gaining insight into driving design 
constraints. 

There exist a variety of algorithms, techniques, and off-the-shelf software 
toolboxes for optimization. Various approaches are typically either deterministic 
or stochastic in nature. There is also a categorization of approaches into 
methods that minimize a single objective function versus those that account for 
multiple objective functions.  

2.4.1 Single-objective search 

The basic form of optimization is a minimization of a single function of one or 
more design variables, typically of the form 

 𝒙∗ = min
𝒙

𝑓(𝒙) , (1) 

where 𝒙 is a vector containing 𝑛 design variables (also known as decision 
variables), 

 𝒙 = {

𝑥1

𝑥2

⋮
𝑥𝑛

} , (2) 

𝑓 is a function returning a single objective value, and 𝒙∗ is an optimized design 
solution.  

It is typical in engineering optimization to also have many constraints that must 
be satisfied for a solution to be valid, feasible, and meet requirements. The 
most basic constraints are the simple lower or upper bounds (𝐿𝐵 and 𝑈𝐵, 
respectively), also called side constraints, on the values of the design variables 
themselves, 

 𝐿𝐵𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝐵𝑖 ,   𝑖 = 1,2,3, … , 𝑛 . (3) 
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It is quite common to also have nonlinear inequality constraints, 

 𝑔𝑗(𝒙) ≤ 0,   𝑗 = 1,2,3, … , 𝑚 , (4) 

and nonlinear equality constraints,  

 ℎ𝑘(𝒙) = 0,   𝑘 = 1,2,3, … , 𝑝 . (5) 

Sometimes simple linear constraints are also imposed, either equality 

constraints (𝐴𝒙 = 𝑏) or inequality constraints (𝐴𝒙 ≤ 𝑏).  

There are many valid approaches and algorithms for single-objective search, as 
well as a variety of associated methods for handling constraints. While there is 
no single taxonomy of single-objective optimization algorithms, it is common to 
label algorithms as deterministic versus stochastic, local versus global, and 
sometimes also unimodal versus multimodal. Further differentiation between 
search methods is often associated with how constraints are addressed and 
integrated into the algorithm. 

Deterministic algorithms will yield the same result for a given objective function, 
constraints, search starting conditions, and algorithm parameters. Stochastic 
approaches, on the other hand, are less dependent on starting conditions but 
are not guaranteed to yield consistent, repeatable results due to the intentional 
introduction of randomness.  

A common theme in local search methods is, from a given starting point in the 
design space, to determine the direction of steepest change of the objective 
function and step in that direction. This is done iteratively until certain 
convergence criteria are reached. Local search methods, following some sort of 
steepest descent direction of search from a starting point, often result in finding 
one of the minima near the search starting point (Figure 2-12).  

 

Figure 2-12. Local search iteratively following steepest descent to local minimum 
near starting point. 

Global search methods, on the other hand, are designed to seek the global 
optimum design point in a way that is somewhat independent of the starting 
conditions. One of the simplest approaches to global search is to execute local 
search at multiple (often random) starting points. There is a correlation between 
local and deterministic search methods, and likewise a correlation between 
global and stochastic search methods such as evolutionary algorithms or 
simulated annealing. References such as Vanderplaats (2007), Rao (2009), and 
Parkinson et al. (2018) provide more in-depth descriptions of the various 
common single-objective optimization algorithms.  
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Instead of finding a local minimum near a starting point or a single global 
optimum, sometimes it is desirable to instead find multiple local minima for 
multimodal functions. These are objective functions that may have several 
peaks and valleys in the design space and therefore several local minima that 
may be interesting and valid design solutions. Because of the similarity to a 
global search task, multimodal search algorithms are often variations on global 
search algorithms such as genetic algorithms and other evolutionary algorithms 
(Wong, 2015).  

2.4.2 Multi-objective search 

It is often the case in real-world engineering development, especially in early 
aircraft design, that there will be several competing interests and therefore 
compromises to be made. In many cases, a single-objective optimization 
formulation with constraints will not adequately represent the design challenges 
at hand. In these situations, a formulation is needed that seeks to 
simultaneously minimize multiple objective functions, 

 𝑓1(𝒙), 𝑓2(𝒙), … , 𝑓𝑘(𝒙) . (6) 

The optimization task therefore becomes 

 min
𝒙

𝐹(𝒙) , (7) 

where 𝐹(𝒙) is the vector of all objective functions, and the optimization is still 
subject to the same side, inequality, and equality constraints as with single-
objective optimization. 

Multi-objective optimization and other multi-criteria decision methods can 
support the designer in several ways: Many approaches select a single design 
point, some rank various alternatives, others use clustering to classify 
alternatives and sort them into groups, and others compare and prioritize 
between two or more alternatives. These method roles are summarized in 
Figure 2-13.  

 

Figure 2-13. Various roles of multi-objective methods. (Schneiderbauer, 2013, p. 3) 

It is rarely the case that a single design point, 𝒙, can simultaneously minimize all 
objective functions, and compromises must therefore be made by trading off 



  2 State of the Art 
 

Sartorius  32 

 

one objective for another. If an objective cannot be improved from a given 
design point without a detriment to another objective, then that design point is 
considered Pareto optimal. It is therefore desirable for multi-objective methods 
to yield Pareto optimal results. A priori methods typically require additional 
inputs prior to using the algorithm with the aim of identifying and selecting a 
single optimum design point. A posteriori methods, on the other hand, more 
typically focus on identifying a full Pareto set, and after the algorithm is run is 
when the designer or decision maker will integrate further information to make a 
design selection from this set. See Loehr (2013) and Schneiderbauer (2013) for 
further discussion of more multi-criteria and multi-objective search and decision-
making methods and their taxonomies. 

It is common with multi-objective optimization to create a single objective 
function that is itself some function of the multiple objectives. This normally 
involves creating a single all-encompassing value function to represent overall 
goodness of a design as a single figure of merit. One of the most common of 
these value function methods is the simple weighted sum model, whereby, as 
the name suggests, weights, 𝑤, are assigned to each objective and the sum of 
the results is the new single objective function to minimize, as in  

 
𝒙∗ = min

𝒙
∑ 𝑤𝑖𝑓𝑖 (𝒙)

𝑘

𝑖=1

 . 

 

(8) 
 

This and similar methods, such as the less common weighted product method, 

 𝒙∗ = min
𝒙

∏(𝑓𝑖(𝑥))
𝑤𝑖

𝑘

𝑖=1

 , (9) 
 

require significant and precise a priori knowledge of design preferences, which 
is rarely available in early design. There are also mathematical issues that can 
sometimes make compromise solutions unlikely to be found in cases of simple 
formulations of value functions.  

Lexicographic ordering, another a priori method, requires the designer to rank 
objectives in order of absolute importance. Often in real-world cases, the 
method results in ignoring all objectives except for the most important one. The 
method also requires foreknowledge of the absolute importance of objectives, 
which is not always the case in early design. 

Methods such as Nash arbitration, goal programming, achievement scalarizing, 
and similar methods integrate more specific knowledge and preferences 
regarding objectives, but only in the form of a single goal or reference value for 
each objective. This can result in ignoring any benefits of exceeding goal values 
and/or effectively over- or under-weighting objectives based on the distance 
from the reference value. 

The ELECTRE (Elimination Et Choix Traduisant la REalité / Elimination and 
Choice Expressing Reality) family of multi-criteria decision methods is more of a 
decision analysis method than a multi-objective optimization. However, it does 
facilitate selection, ranking, or sorting (depending on which ELECTRE method) 
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of a set of alternatives based multiple factors. Some ELECTRE methods use 
multiple thresholds (e.g. indifference, preference, and veto thresholds) for each 
criterion to mimic real decision-maker preferences. Another feature of the 
method is that it allows for non-binary comparison of alternatives (two 
alternatives can be “just as good” or “incomparable” in addition to simply “better” 
or “worse”), which accounts for common real-world decision-maker preference. 
(Schneiderbauer, 2013) 

2.4.3 Physical programming 

Physical programming, introduced by Messac (1996), along with applications in 
aircraft design (Messac & Hattis, 1996), is the multi-objective optimization 
method that carries most similarities to the new technique presented in this 
work for capturing and using preference information in early design. Physical 
programming captures richer preference information for each objective, with 
four different classes of information that could be associated with a given 
objective and an associated ‘hard’ or ‘soft’ mapping of preferences to the 
objectives. Figure 2-14 shows the classification of preference, �̅�, to each design 

objective, 𝑔. 

 

Figure 2-14. Physical programming preference classification. (Loehr, 2013, p. 20) 

One of the weak points of several multi-objective methods is the need to adjust 
relative weights or goals for each objective. Physical programming addresses 
this by mapping distinct qualitative attributes (highly desirable, desirable, 
tolerable, undesirable, highly undesirable, and unacceptable), which can be 
applied somewhat consistently across objectives, to various values of each 
objective, shown for the soft classifications in Figure 2-15. Furthermore, 
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application of physical programming techniques has shown to be effective in 
both robust design and in the generation of full and well-distributed Pareto 
optimal solutions (Chen et al., 2000; Messac & Mattson, 2002).  

 

Figure 2-15. Physical programming class function ranges. (Loehr, 2013, p. 21) 

Variations of physical programming have been explored. The physical 
programming described above is sometimes called nonlinear physical 
programming to distinguish it from the more common linear physical 
programming whereby instead of using a type of smooth spline function, a 
simple linear piecewise function is used for the class functions, for example as 
shown in Figure 2-16.  
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Figure 2-16. Linear physical programing class function. (Messac, 2015, p. 431)  

There are other variations as well, such as fuzzy and global physical 
programming, though the majority of applications of physical programming use 
linear physical programming, and the plurality of applications are in the field of 
engineering design (Ilgin & Gupta, 2012). The exercise presented by Ilgin 
(2019) is a recent example of employing linear physical programming in 
aerospace for selecting an aircraft for an airline fleet. 

In the work of Yatsuka et al. (2018), the linear physical programming concept of 
a preference class function is used as a way to non-linearize a goal 
programming multi-objective optimization problem. The authors then used this 
approach to capture preference functions for multiple stakeholders with 
competing interests in what they call multi-player multi-objective decision 
making. This creates a method whereby a priori information from the 
stakeholders is used to automate arriving at compromise solutions. 
Furthermore, robust optimization was applied to capture uncertainty information 
to allow minimization of the worst case under uncertainty, mitigating effects of 
biases.   
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2.5 Comparing optimization to other search techniques 

The design space exploration and decision techniques discussed in Section 2.2 
and particularly Section 2.2.3 – the so-called ‘classical’ design space search 
and decision methods – have been practiced since before design and 
engineering with modern computing speed and power was possible. Tools for 
this classical approach include the decision matrix, house of quality, two-, 
three-, and four-variable plots, etc. These classical techniques essentially 
encompass the identification, analysis, communication and understanding, and 
decision phases of the archetypal aircraft design iteration process discussed in 
Section 1.2.1. Done well, documentation is also done simultaneously as part of 
the process. 

The essential advantage of these classical approaches is that the designer and 
other stakeholders retain the freedom to intervene and deviate from the 
mathematical models if deemed necessary. This means that the designer has 
the option to challenge design requirements, compensate for deficiencies in 
analysis tools and methods, and account for a value function or figure of merit 
that does not capture all value information or preferences. The designer can 
also use experience to arbitrarily add margins to the process as needed. 

The disadvantages of the classical approaches derive from the inability to 
simultaneously examine a trade space with many dimensions. Being unable to 
examine all relevant parameters simultaneously means that it is difficult or 
impossible to find the absolute (mathematically) best alternative. As the 
complexity of the problem increases, the advantages of the classical 
approaches further diminish to the point that establishing a full understanding of 
the design space becomes difficult to the extent that an optimal or Pareto 
optimal solution is not guaranteed, even for smooth, differentiable, convex 
problems. 

Optimization methods, discussed in Section 2.4, by leveraging automated 
analysis tools to arrive at an optimal solution, address the analysis phase and 
the decision phase of the archetypal aircraft design iteration process discussed 
in Section 1.2.1. Unfortunately, this means that the communication and 
understanding phase is mostly or entirely omitted when implementing 
optimization methods. 

The main advantage of optimization methods, and the main reason that they 
are currently used effectively in aerospace development and other fields, is that 
it is likely that an optimal design solution can be found that is superior in every 
way to the best solution findable with the ‘classical’ methods alone. However, 
this feature comes at a cost. With optimization methods, many of the 
advantages of the classical approach are lost, including the ability to challenge 
requirements, add margin, account for analysis tool deficiencies, and integrate 
more subtle preference information. Extra effort must be exerted as well in order 
to formulate the optimization problem in a way that the analyses and the search 
algorithm are compatible. In addition, the designer must have some level of 
optimization expertise in addition to discipline-specific expertise to effectively 
wield optimization as a tool and avoid potential pitfalls such as those caused by 
noisy data, discontinuities, etc.  
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A rough qualitative comparison between the classical approach and the 
optimization methods are shown below in Table 2-2, with optimization’s strength 
lying in the attributes at the top of the table and the classical approach’s 
strengths falling primarily in the attributes at the bottom of the table.  

Table 2-2. Attributes of alternative approaches to design space search. 

Approach attribute Approach 

Classical  Optimization 

Examine many parameters simultaneously ⬤ ⬤ 

Find feasible domain ⬤ ⬤ 

Find precisely optimal solution(s) ⬤ ⬤ 

Understand problem and design space ⬤ ⬤ 

Account for known modeling deficiencies ⬤ ⬤ 

Identify design drivers ⬤ ⬤ 

Challenge requirements ⬤ ⬤ 

Deviate from established figures of merit ⬤ ⬤ 

Account for extra preference information ⬤ ⬤ 

Key: Strong ⬤ ⬤ ⬤ ⬤ Weak 

The newly developed approach and supporting tools described in this work 
strive to retain most of the advantages of the classical approach while being 
able to use numerical optimization and other techniques requiring intense 
computation to find good design solutions. The approach allows for finding 
optimal solutions while integrating more preference information in a methodical, 
justifiable fashion but without the need to formulate an elaborate and precisely 
informed value function or objective weightings. It thereby helps achieve greater 
understanding of the problem, account for known or discovered analysis 
deficiencies, and retain the ability to challenge requirements and take into 
consideration the cost of requirements. The method semi-quantitatively 
captures preference information that, for technical or other reasons, cannot be 
integrated into an all-encompassing value function. The lack of said value 
function is accounted for by keeping the designer in the loop. 
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The two primary objectives of this work are to a) formally capture stakeholder 
knowledge and b) put that knowledge to good use in the design and 
development cycle. For each of these objectives, both in isolation and in 
conjunction, there are multiple possibilities for how to approach the execution. 
This chapter describes the specific method used for this work, called the Well-
Informed Search Design Optimization Method (WISDOM), based primarily on 
utilizing preference maps coupled with numerical optimization. The WISDOM 
approach described in this chapter is relatively independent from the specific 
software implementation of the approach. 
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3.1 Applicability of approach 

It is important to first discuss the conditions under which this approach is and is 
not appropriate to apply as intended. 

3.1.1 Early design studies 

This work is primarily developed with early design studies in mind. As discussed 
in Section 1.3.4, the term ‘early design’ as used here refers to the early stages 
of a trade study or exploration of the design space. This could typically be the 
first sizing estimate made in the first days after either encountering a new set of 
air vehicle requirements or a decision to pursue internal development of a new 
product. More broadly, however, an early design study is simply the initial 
investigation into some vehicle or system aspect that has not been previously 
given significant attention in the overall development effort. 

3.1.2 Moderate dimensionality 

Early aircraft design studies involve multiple degrees of freedom. However, 
because it is early design, the total number of design variables that are truly of 
interest is usually limited. Very early airplane design, for example, may only be 
interested in two: powerplant size and wing size (thrust-to-weight ratio and wing 
loading, e.g.). Even as conceptual design progresses quite far, there are still 
only six basic design variables that are the most important in conceptual design 
(Raymer, 2002), with the wing geometry being the main focus: 

Table 3-1. The basic six design variables of airplane conceptual design. 

Design variable Description 

𝑇 𝑊⁄  or 𝑃 𝑊⁄  Engine size 

𝑊 𝑆⁄  Wing loading 

𝐴𝑅 Wing aspect ratio 

𝜆 Wing taper ratio 

𝛬 Wing sweep 

𝑡 𝑐⁄  Wing airfoil thickness ratio 

Unlike airplanes, for rotorcraft there is typically no phase early enough where 
only examining two main design variables is appropriate. For traditional single 
main rotor, single tail rotor helicopters, instead of the dominant two parameters 
for an airplane, it may be appropriate for the very earliest investigations for the 
helicopter to examine a minimum of four parameters relating to rotor disc area, 
rotor speed, rotor solidity (the reference area of the blades in relation to the disc 
area), and the engine size. The typical analogue to the most important 
conceptual design parameters for airplanes may also include the number of 
blades and the twist of the rotor blades. Finally, for a compound helicopter, the 
typical set of conceptual design parameters also includes the lift-compounding 
wing area and aspect ratio and the thrust-compounding forward propulsion 
system size (Sartorius, 2011a), for a total of seven to nine design variables that 
would be in the earliest design studies. 

Since most early design studies for aircraft will likely only examine perhaps two 
to six design variables simultaneously, the approach here is intended only to be 
used for design studies with up to about a dozen design variables (plus about 
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twice that many constraints, measures of merit, and other parameters of 
interest). Problems with higher dimensionality are not necessarily infeasible with 
the approach, but they are not the intended application. 

3.1.3 Mostly continuous design variables 

In early design of air vehicles, massive discontinuities in the design space are 
rare and are usually small in comparison to the scale of the overall design 
space. One cause of this is that there are not too many discrete parameters in 
early design. Discrete design variables that do come up are often a countable 
number that is quite small, with just a small and manageable number of distinct 
alternatives, for example a design variable for the number of engines or number 
of rotor blades. For early design studies, many other discrete parameters can 
be effectively ‘smeared’ into a continuous parameter for purposes of early 
design iterations, for example the number of cells in a battery pack for electric 
propulsion. So, while the approach should be able to handle some discrete 
variables, it is more as an exception and not as the norm. 

3.1.4 Nominally convex design space 

Like enormous discontinuities, a design space with multiple major ‘humps,’ i.e. 
qualitatively multiple highly disparate but valid and viable local optima, are rare 
in the design experience of this author. Non-convex and non-smooth design 
spaces can often be present at a much smaller scale, however. An example 
source of this is the prevalence of analytic methods that rely on discretization 
(for example for piecewise integration), methods that have limited precision (for 
example limited significant figures from the output of a separate integrated tool 
that the design has no control over), and/or methods that rely on iteration to find 
solutions for analyses that are difficult or impossible to invert into a closed-form 
equation. An example of this type of ‘micro’ non-convexity is shown in Figure 
3-1 for a case where gross weight of an aircraft is solved as a function of fuel 
fraction using an uninvertible equation for empty weight fraction as a function of 
gross weight. At the macro level, the method appears smooth and continuous 
but in fact, due to the iterative method of solving, has significant nonconvexity 
and discontinuity at the ‘micro’ scale. This type of ‘noise’ must be kept in mind 
as an expected and likely phenomenon to encounter when applying the design 
space exploration approach discussed in this work. However, because the 
approach uses off-the-shelf existing optimization tools and algorithms that may 
have trouble handling this kind of ‘micro’ noise, the approach, just like most 
applications of MDO, is expected to perform better when the analytical tools 
used are truly smooth and continuous.  
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Figure 3-1. Example of 'micro' non-convexity typical of iterative methods used in 
early aircraft design. 

3.1.5 Tightly coupled parameters 

A key element of the method is capturing of stakeholder knowledge. One aspect 
that the approach does not explicitly account for is tightly coupled parameters. 
While it is generally the case, especially in aircraft design, that very few 
parameters are truly independent, the WISDOM approach operates under the 
assumption that most parameters are independent, with mechanisms in place to 
compensate for the inevitable but assumed small coupling of parameters. 
Therefore, it is primarily left to the designer to recognize tightly coupled 
parameters and compensate for these themselves. A simple example is that the 
designer should be cognizant that the empty weight of an aircraft and its gross 
weight are tightly correlated and that assigning similar strong preferences to 
both is effectively double bookkeeping of the true underlying preference. A more 
advanced case may be where two technical assumptions are treated 
independently but are in fact correlated, for example aerodynamic efficiency 
and structural efficiency. In this situation, a designer would be better off 
transforming this to be an assumption applying only to one of the technology 
levels and roughly modeling the other as a dependent function of the first, 
possibly introducing an alternate assumption regarding the strength of the 
correlation. In summary, the applicability is limited to cases where the coupling 
of the parameters is understood well enough by the designer to be able to 
sufficiently compensate for it manually in the setup of the problem.  
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3.2 Issues with optimization in early design 

Besides the tendency in early design to have non-convexity, discontinuities, 
etc., there are some additional characteristics of early design studies which 
pose a challenge to leveraging traditional optimization in the process.  

3.2.1 Imperfectly defined requirements and objectives 

The first of these characteristics is that the requirements and objectives for the 
project are unlikely to be precisely defined and well understood, and they may 
in fact be in a state of flux as the early design efforts are under way. This is 
especially true for product design as opposed to, for example, a traditional 
defense program where the objectives and metric(s) to maximize or minimize 
may be explicitly stated. Even then, the explicit objectives are only a best effort 
by the requirements’ author(s), and a faithful, literal adherence to those 
objectives may not result in fulfilling the true underlying needs or satisfying all 
the ultimate decision-makers. 

3.2.2 Low-fidelity analytical models 

Conventional wisdom regarding the analytical models used in optimization is 
captured well by Vanderplaats (2007): “The underlying analysis must properly 
model the true physics or optimization will generate unrealistic designs.” In 
addition to uncertain requirements, another common trait of early design studies 
is a lack of maturity or fidelity of the analytical models employed. Models 
appropriate for conceptual aircraft design, by definition, do not capture the 
effects of all possible design parameters simply because these parameters are 
unknown at the conceptual design stage. One positive side benefit is that these 
models used in early design tend to be relatively simple and computationally 
inexpensive, easing what can be one of the pain points in implementing 
optimization search algorithms: long computation times.  

3.2.3 Immature system models 

Models may also lack maturity because it is possible in early design that the 
models are being built in parallel to the design effort itself. When unique design 
problems or solutions are involved (or problems or solutions novel to the 
particular organization in question), it may be a necessity to develop novel 
models at the same time as the design definition is maturing. Compared to 
established models that have been used before, under-construction models are 
less tested and validated, and the users have less experience with them, so the 
models have a higher chance of leading the searches astray through 
unaccounted for responses to certain combinations of inputs.  

3.2.4 Rigidity of optimization approach 

Even if the deficiencies of modeling are known and acknowledged, system 
models are still unsuitable for use with automated search due to the inability to 
integrate more subtle types of information into optimization in the early design 
stages. Subtle preference information and knowledge is usually very active in 
early design as an efficient shortcut to maturing the design, the requirements, or 
both. Implementing optimization, where the design decisions are being made 



  3 Methodology 
 

Sartorius  43 

 

behind the obscuring curtain of the algorithm, strips away some of the ability to 
use that information for making quicker or better decisions or, in some cases, 
challenge design requirements based on gained insights from more manually 
exploring the design space using more classical design space exploration and 
decision techniques. 

3.2.5 Algorithms focused on final solution 

A final aspect of early design studies posing a challenge to using optimization is 
that the fundamental aims of early design projects are not well aligned with the 
goals of more typical optimization. Mathematical optimization is focused on 
finding optima, and, in most cases, this is an optimal design solution according 
to a single all-encompassing objective function that attempts to capture all 
facets of value and desires for all stakeholders.  

In early design studies, in contrast to focusing on finding the single best design 
point, the designer is more likely concerned with identifying ‘interesting’ regions 
of the design space for investigation in future iterations and informing human-in-
the-loop decision making. One major reason for this is that any single design 
point chosen in early design is certain to change. Especially when working on a 
novel design problem or solution, the designer may also simply be more 
focused during this stage on building and maturing the analytical models. 
Another reason that early design is not as focused on selecting a single design 
point is that the designer is often more interested in increasing understanding of 
the design problem as opposed to allowing a search algorithm explore the 
design space as a black box operating behind a veil of abstraction and 
obscurity.   
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3.3 Types of information captured  

The method here is designed to facilitate capturing types of stakeholder 
knowledge, wisdom, and preferences that normally are un- or under-captured, 
especially a priori. The three main categories of information type are 
assumption uncertainty, preferences on requirements and other parameters, 
and known modeling idiosyncrasies and deficiencies. 

3.3.1 Example regional airliner design for illustration 

To illustrate all three of these categories, a textbook early aircraft fuel fraction 
sizing example is used. For this example, a hypothetical company that already 
has a product portfolio of business jets and small regional jets is interested in 
developing a larger aircraft: a small regional airliner. The example is based on 
the initial sizing of such a vehicle to the requirements in Table 3-2 below using 
the fuel fraction sizing method, with the gross weight of the vehicle being used, 
as is common practice in aircraft design, as an unrefined though meaningful 
surrogate for higher-level figures of merit such as operating costs. 

Table 3-2. Example design case range and payload requirements. 

Requirement Value 

Range 2500 nmi (4630 km) 

Payload 100 passengers + flight deck and cabin crew 

The fuel fraction sizing method is named for how a given mission profile is 

analyzed to find the weight fraction for each mission segment flown, i.e., what 
portion of the starting weight for that segment is expended as fuel. Typically, in 
conceptual design, several segments are assigned a fixed, assumed weight 
fraction such as for taxi, takeoff, and even climb, while for calculating weight 
fractions of cruising or loitering mission segments, various forms of the Breguet 
range equation are used, for example 

 
𝑊𝑒𝑛𝑑

𝑊𝑠𝑡𝑎𝑟𝑡
= 𝑒

−𝑅∙𝑆𝐹𝐶

𝑉∙𝐿 𝐷⁄   or  
𝑊𝑒𝑛𝑑

𝑊𝑠𝑡𝑎𝑟𝑡
= 𝑒

−𝐸∙𝑆𝐹𝐶
𝐿

𝐷⁄ , (10) 
 

where endurance, 𝐸, range, 𝑅, specific fuel consumption, 𝑆𝐹𝐶, speed, 𝑉, and 
aerodynamic efficiency, 𝐿 𝐷⁄ , are estimated or assumed with a level of fidelity 
appropriate for early conceptual design. 

The product of all the weight fractions for all the mission segments reveals how 
much fuel is consumed through the mission as a portion of the starting gross 
weight of the aircraft. This fuel fraction (usually with some margin added), 
combined with the empty weight fraction and the known payload weight, yields 
the gross weight of the aircraft.  

If an estimated fixed constant value is used for the empty weight fraction, then 
this is where the fuel fraction sizing method ends. However, the empty weight 
fraction is commonly expressed as a function of gross weight based on a 
historical regression, usually of the form 

 
𝑊𝑒𝑚𝑝𝑡𝑦

𝑊0
= 𝐴 ∙ 𝑊0

𝐶  , (11) 
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where the constants 𝐴 and 𝐶 are taken based on a fit for a given category or 

class of aircraft. For the example here, constants (for 𝑊0 in units of pounds) 𝐴 =
0.902 and 𝐶 = −0.0385 are used to be representative for the small jet transport 
category, resulting in the relationship shown in Figure 3-2.  

 

Figure 3-2. Regional jet transport empty weight fraction trend. 

3.3.2 Assumption uncertainty 

Using this simple example case of the regional airliner, we can illustrate how 
information regarding technical assumptions is often uncaptured in early design. 
Note how the weight fractions calculated using the Breguet range equation, 
Equation (10), are highly affected by the assumptions used in early conceptual 
design for specific fuel consumption and aerodynamic efficiency. It would be the 
normal situation for these assumption parameters to be set to singular, fixed 
values at the beginning of some analysis script (Figure 3-3), which for the 

regional airliner example here are set as 𝐿 𝐷⁄ = 17 and 𝑆𝐹𝐶 = 0.5 𝑙𝑏 ℎ𝑟⁄ 𝑙𝑏⁄ .  

 

Figure 3-3. Assumptions set to fixed values early in analysis. 

These assumptions could very well be set spontaneously by an experienced 
designer or could be somewhat informed by some preliminary analysis. In either 
case, there is significant information that is not being captured here.  

With the baseline requirements and assumptions, the resulting gross weight of 
the sized aircraft is 124,000 pounds (56.1 tonnes). The designer knows at this 
point that this is only an estimate based on the best assumptions available at 
the time, and that there is in fact significant possible variation in this result. 
Whenever this result is presented, it must be accompanied by a “depending on 
the assumptions” disclaimer. 

maxLiftToDrag = 17; % L/D 

sfc = 0.5; % Thrust specific fuel consumption (lb/hr/lb) 
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If the designer can come up with a best estimate baseline value for a given 
technical assumption, he or she should also, at a minimum, have a reasonable 
guess for what a worst-case and best-case value for the parameter might be. 
However, what if instead of just a singular value for an assumption, a probability 
distribution is captured? Creating such a distribution can be as straightforward 
as a simple triangular distribution (Figure 3-4), which only requires the three 
pieces of information that are likely to be readily at hand:  

• Best and most likely estimate 

• Most optimistic possible estimate 

• Most pessimistic possible estimate 

 

Figure 3-4. Triangular distributions for uncertain technical assumptions. 

Now, significantly more information that was already available for the designer 
is formally captured. With this range of possible values for the technical 
assumptions, there is now a range of possibilities for the resulting gross weight, 
with a most-optimistic gross weight of 95,700 pounds (43.4 tonnes) and a most-
pessimistic gross weight of 284,000 pounds (129 tonnes). In fact, a distribution 
of probabilities exists across that range, which is easily obtained by a simple 
Monte Carlo simulation approach, as shown by the histogram of the results in 
Figure 3-5 below (result with baseline assumptions shown in red).  
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Figure 3-5. Resulting gross weight estimate distribution, propagating 
uncertainty. 

Visualizing the distribution (with a histogram or with some other method such as 
a whisker plot) is crucial to gaining a better understanding of the effects of the 
assumptions beyond the basic understanding that comes from simply 
examining the optimistic and pessimistic cases. In this situation, the pessimistic 
case is over double the gross weight of the baseline, but when examining the 
histogram, it is apparent that the pessimistic extreme is very extreme and highly 
unlikely. This contrasts with results in the region of the optimistic case, which 
are much more realistic to consider. 

A triangular distribution makes sense when the only information on hand about 
a parameter’s assumption is the minimum realistic value, the maximum realistic 
value, and a best guess. However, with that same set of information, slightly 
more realistic distributions can be used without significant added effort. Taken 
to the extreme, a technical assumption’s uncertainty can be captured in the 
form of any arbitrary probability density function (PDF) that the designer or 
stakeholder might choose or may even be informed by experimentation 
involving many samples.  

When picking a probability density function for capturing technical assumption 
uncertainty in early design, it is important in some cases when generating 
random values of the parameter for analysis that hard bounds on the 
parameter’s value are possible so that values that simply do not make physical 
sense can be precluded. A normal (Gaussian) distribution does not fulfill this 
requirement, but one flexible distribution that is versatile for many situations 
(while also being free of the discontinuity of the triangular distribution) is the 

beta distribution, which has the PDF on the 𝑥 interval from zero to one of 

 𝑓(𝑥) = 𝐾 ∙ 𝑥𝛼−1(1 − 𝑥)𝛽−1 , (12) 
 

where the two shape parameters, 𝛼 and 𝛽, determine the shape of the 
distribution. The normalization constant 𝐾 is equal to the reciprocal of the beta 
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function of the shape parameters 𝛼 and 𝛽, which ensures that the total 
probability is one. 

The beta distribution is most useful for capturing assumptions when modified to 
a PERT (Program Evaluation and Review Technique) beta distribution (London, 
2013; The Beta-PERT Distribution, n.d.) such that the function is again 
characterized by a minimum value, maximum value, and best estimate (the 
mode of the distribution). While the beta distribution needs two parameters, 𝛼 
and 𝛽, to determine its shape, the PERT distribution only requires a single 
parameter for the best estimate. That is because the PERT distribution also 
allows one to capture an additional shape parameter defining how ‘peaky’ the 
distribution is and reflecting how confident one is in the best guess estimate. 
With the PERT distribution, the shape parameters of Equation (12) are defined 

in terms of the mode, 𝑚, and this more meaningful shape parameter, 𝜆, as 

 𝛽 =
𝛼(1 − 𝜇)

𝜇
 , (13) 

 

and 

 𝛼 =
𝜇(2𝑚 − 1)

(𝑚 − 𝜇)
 , (14) 

 

where  

 𝜇 =
(𝜆𝑚 + 1)

(𝜆 + 2)
 . (15) 

 

For comparison to the above example, Figure 3-6 and Figure 3-7 represent 
assumptions and results, respectively, when using a PERT distribution in lieu of 
a triangular distribution. The result is qualitatively the same, though with slightly 
more results toward a lower gross weight and somewhat more tightly clustered. 

 

Figure 3-6. PERT distributions for uncertain technical assumptions. 
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Figure 3-7. Resulting distribution when using PERT-distributed assumptions 
instead of triangular. 

The ability to capture technical assumptions not just as a singular value, but as 
a probability density function, is an important feature of the method. With that 
additional information in hand, the uncertainty about assumptions can be 
propagated to final analysis results, for example through examining the 
distribution of results of many Monte Carlo trials as shown in the example here. 
This yields significant additional insight into the design possibilities early in 
design and without requiring significant effort beyond inputting simple 
information that is already on hand for the designer.  

3.3.3 Preferences on figures of merit and design parameters 

Another category of information captured by the technique is preferences on 
figures of merit, design requirements and specifications, and other design 
parameters. Different projects in different aerospace sectors may have varying 
degrees of solidity of definition of certain metrics, as experienced by this author. 
A small general aviation aircraft may be an example of one end of this 
spectrum, as these may be purchased by pilots or passengers for whom the 
financial costs of aviation are of secondary importance to aesthetic or other 
emotional factors. At the other end of this spectrum may be an airliner product, 
where there is well-understood existing business model along with a small set 
of clear, overarching value functions to minimize or maximize (costs and 
profits). In addition, there is often a connection with customers to support 
market research with airliners, as well as commitments from customers to 
further enhance confidence in the requirements for a new design. Across this 
entire spectrum, however, there can be un- and under-captured stakeholder 
wisdom in the form of preferences on various requirements, design parameters, 
and figures of merit.  

For the regional airliner example, consider the passenger capacity requirement 
from Table 3-2 in Section 3.3.1. Like the earlier motivational example (Section 
1.3.2 Figure 1-4), a fixed value for the payload requirement does not fully 
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capture the entirety of the knowledge available regarding the desired passenger 
capacity of the to-be-developed new regional airliner. Even if an extremely 
refined cost and profits model exists, blindly minimizing or maximizing to these 
parameters, respectively, still may omit some key information from the decision-
making process.  

The one hundred passenger capacity is the specified requirement, which could 
have been dictated by careful market research or just a rough initial guess. In 
either case, there are some pieces of information that a designer would still use 
when examining the whole spectrum of possible passenger capacities to design 
to. Some examples of these extra pieces of information take the form of 
qualitative preferences, such as: 

A. Other things being equal, it is good to comply with the specified 
requirement of a one hundred passenger capacity, avoiding challenging 
requirements and conflicting with what was specifically requested for the 
new product. Given the roughness of any results early in design, any 
result that is close to what is asked (within, say, five passengers) might 
as well simply default to the specified requirement and avoid the hassle 
of challenging a requirement. 

B. It is slightly preferable to develop a smaller aircraft if possible, given that 
it would require a smaller overall investment of time and resources to 
achieve the goal of bringing a new airplane to market. It is also closer to 
the experience base of the company, with increased chances of recycling 
design aspects and expertise. 

C. In this hypothetical scenario, the manufacturer already has existing 
products with a smaller capacity of fifty passengers, and there is 
therefore a strong preference not to develop a small aircraft that will 
impinge on sales of existing aircraft, even if the new product could be 
potentially very profitable by itself. 

D. In line with preference C above, there is a hard lower limit on passenger 
capacity at around fifty passengers, where there would essentially be 
direct duplication of an existing product in the portfolio. 

E. Like the internal competition on the small side, there is also significant 
competition on the larger side of the range of possibilities, though with 
other companies and not within the hypothetical firm, in the form of the 
prolific existing narrow-body airliners in the ca. 150-seat capacity range. 
Therefore, there is a preference for making sure that whatever new 
aircraft is developed will be in a capacity category far away from those 
competitors. 

If the passenger capacity is plotted against a meaningful metric or figure of 
merit (such as in Figure 3-8), and then some decision-makers decide on a 
specification based on this plot, then they can integrate the preference 
information that they carry in their minds at that time. However, it is an objective 
of this work to automate such decisions while keeping them just as informed by 
that preference information in order to yield similar results.  
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Figure 3-8. Regional jet gross weight versus passenger capacity. 

In the WISDOM approach that is the subject of this work, the tool used for 
capturing preference information is called a preference map. The preference 
map is simply a map of some penalty or value as a function of a given 
parameter to which the preference is attached. An example of a basic 
preference map is shown below in Figure 3-9 for preference penalty as a 
function of passenger capacity, with regions reflecting the qualitative 
preferences A through E listed above called out on the map. 

 

 

Figure 3-9. Basic preference map of passenger capacity. 

In this case, the penalty on the ordinate axis of Figure 3-9 is arbitrary. What is 
more important is the qualitative shape of the preference map: 

• Preference A, a desire to comply with the original requirements, is 
reflected in the steep trough surrounding the baseline value, such that in 
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this region, designs will be strongly driven to minimize penalty and 
gravitate toward the baseline value. 

• Preference B, a slight drive toward a smaller and less resource-intensive 
development program, is captured by the gently increasing penalty in the 
region surrounding the baseline specification. 

• Preference C, not competing with existing smaller products of the 
company, is captured by the increase in penalty on the left, with a type of 
‘soft’ lower bound on passenger capacity created by the sudden change 
in preference map slope near ca. 75 passengers. 

• Preference D, a hard limit on duplicating an existing product of the 
company, is implemented with a hard lower bound on passenger 
capacity. 

• Preference E, not competing with the existing narrow-body market, like 
preference C, is reflected by the increased slope at the right and its 
associated ‘soft’ upper bound at the kink in the curve at 135 passenger 
capacity. 

To get design results that integrate this preference information, preference 
maps from all parameters and figures of merit that have associated preferences 
are combined into a single objective function. Local minima are then found while 
searching through this design space using optimization algorithms. Further 
information on this can be found in Section 3.4, with information on the 
implementation details in Chapter 4. 

With other preferences on weight, cost, productivity, revenue, and other figures 
of merit also influencing the direction the design takes, one would expect, based 
on the preference map in Figure 3-9, that the interesting designs would likely be 
clustered around 75, 100, and 135 passenger capacity vehicles. Some 
combinations of preferences on the other figures of merit (and with variations in 
their relative importance) may also drive some designs to be compromises that 
come between or go beyond these points. For the sake of this illustrative 
example, simple linear preferences are also captured for two other competing 
preferences: 

• The desire to minimize development and operating cost, using gross 
weight as a surrogate for both (see also the preference map for gross 
weight shown in Figure 3-11 in Section 3.3.4 below). 

• The desire to maximize revenue, both in sale price for the manufacturer 
and lucrative fares for the airline, using the product of passenger 
capacity and design range as a surrogate utility metric. 

All penalties from the preference maps are summed to yield a single objective 
function to be used by search algorithms to find a varied set of design 
candidates. A histogram of the results when using this type of automated 
search of the design space integrating the information captured in preference 
maps is shown in Figure 3-10 (for ca. one thousand total design trials), with the 
preference map from Figure 3-9 in the background for reference.  
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Figure 3-10. Clustering of design results driven by preferences captured in a 
preference map. 

As expected, the results are clustered at the baseline specification, the ‘soft’ 
lower bound, the ‘hard’ lower bound, and a somewhat at the ‘soft’ upper bound. 
Due to variations in relative weighting of preferences, there are also some 
designs that do not close and/or are driven off the chart to the right with 
runaway weight.  

Where the most frequent designs lie is an indicator of the interesting regions of 
the design space for further investigation. A qualitative interpretation of these 
results could be: 

• A design that complies with the original specification of 100 passenger 
capacity is probably quite acceptable. 

• Alternatively, an appealing new product development option could 
instead focus on a design philosophy of pursuing the smallest, least 
expensive, fastest development that would still be in a larger size class 
and give the company access to some new markets. This would likely be 
around a 75 passenger capacity aircraft. 

• Or, given other drivers, quantitative or qualitative, that may be present, 
any passenger capacity in between the 75 and 100 points is justifiable,  

• Capacities above 100 passengers would also be justifiable with a 
potential design philosophy of pursuing the largest, highest-revenue 
vehicle that is not in competition with existing narrow-body airliners. 

Of course, the same conclusions could be reached in this example by 
inspection without the need to implement this analytical process. The difference 
is that the technique of capturing preferences to preference maps can scale up 
to higher dimensions with multiple parameters with complex and competing 
preferences in play. In this way, this type of exploration and decision making 
can be automated in the design loop such that the design decisions made using 
the algorithm are aligned with those that would be made by a human designer 



  3 Methodology 
 

Sartorius  54 

 

examining the same area of the design space with deep understanding of all the 
factors and issues present for a given case. 

There is no limit to the total number of preference maps that can be combined. 
For this example, a natural additional dimension to add when exploring which 
class of aircraft to develop would be a preference map for the aircraft range, 
with a resulting set of design candidates clustering at the most interesting 
potential combinations of passenger capacity and range. 

3.3.4 Known uncaptured system model behaviors 

A third type of information that the technique can capture and account for is the 
known deficiencies, idiosyncrasies, and other behaviors in the system model 
and its constituent analytical methods. It is often the case, especially in early 
design, that the modeling of the system under investigation is being built in 
parallel with the design progression. As the designer(s) and other stakeholders 
build up these models, they are aware of the analytical methods being 
employed and how the models are built. They therefore have a reasonable idea 
of where the models fall short, potentially having sets of inputs where accuracy 
is questionable or where a specific phenomenon is known to not be captured by 
the methods. 

Going back to the illustrative example of using the fuel fraction method to size a 
small regional airliner, the fuel fraction sizing method is a very simple approach 
that is appealing for its usefulness very early in design studies when not many 
inputs for higher fidelity methods are known. However, just because it is early 
does not mean that some of these shortcomings should not be taken into 
account. The deficiencies are known, and that knowledge can be captured, at 
least roughly, and be integrated into the design iteration cycle.  

Let us examine for an example the weight modeling used in the method. At its 
core, it relies on a model of the empty weight fraction of the vehicle as a simple 
function of the gross weight of the aircraft (Figure 3-2). Obviously, however, 
many other factors besides gross weight affect the ultimate empty weight 
fraction of the final design. 

One common trade-off in aircraft development is aerodynamic efficiency versus 
weight and cost. Higher aspect ratio wings, for example, have less structural 
depth and require more material to sustain the same loads (not to mention 
aeroelastic constraints). If using gross weight as the top-level surrogate metric 
to minimize as a design objective, some of the qualitative information that can 
be captured is: 

A. The empty weight fraction trend is based on typical existing aircraft in this 
category. If the aerodynamic efficiency (characterized by lift to drag ratio) 
is higher than is typical for the category, the weight should be higher than 
the trend.  

B. Conversely, if aerodynamic efficiency is significantly lower than typical, 
there may be a slight weight decrease below the trend. 

C. The magnitude of the effects from items A and B above on the resulting 
gross weight is not precisely understood or quantified. 
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D. Designs that incorporate an aerodynamic efficiency that is significantly 
higher than is typical for the category should be viewed with skepticism, 
possibly prone to aeroelastic or other unmodeled effects (for example 
fuel volume constraints created by a high aspect ratio wing) that could 
invalidate the design. 

The classic fuel fraction sizing method does not take these factors into account, 
but with this method, a preference map, the same as discussed in Section 
3.3.3, can be used to capture some of this knowledge. Because the gross 
weight of the aircraft is used as a surrogate primary metric to minimize for this 
example, the preference associated with gross weight is a simple linear 
function, as shown in the preference map in Figure 3-11 (which also features a 
hard lower bound to preclude what would be non-sensical negative values). 

 

Figure 3-11. Linear preference map for gross weight, the surrogate objective to 
minimize. 

Combined with this is the preference map associated with aerodynamic 
efficiency, shown below in Figure 3-12, which captures the qualitative 
information listed above. 

 

Figure 3-12. Preference map for capturing known system model characteristics. 
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Captured information items A and B are reflected by the varying slopes to the 
left and right of the baseline. Item C, the uncertainty in defining these slopes, is 
represented graphically by the shaded region showing the extents of the 
possible variation in scaling of the preference map. Finally, the information in D, 
the skepticism that should be attributed to designs with very high aerodynamic 
efficiency, is captured not by the shape of the preference map, but rather by 
explicitly defining the region where, for designs that fall in this domain for this 
parameter, a flag will be raised to make sure the designer is aware of the 
potential issue.  

Introducing this very coarse preference map on aerodynamic efficiency affects 
the design results by effectively ‘thumbing the scales’ using the captured 
knowledge to modify the behavior of the system modeling as a function of 
aerodynamic efficiency, particularly the objective metric to minimize (in this case 
gross weight). Consider the gross weight as a function of aerodynamic 
efficiency, 𝐿 𝐷⁄

𝑚𝑎𝑥, in Figure 3-13. Since the preference map for gross weight 

(Figure 3-11) is linear, the abstracted gross weight penalty as a function of 
aerodynamic efficiency is the identical shape.  

   

Figure 3-13. Gross weight as a function of aerodynamic efficiency. 

With the addition of the preference map for aerodynamic efficiency on top of the 
preference map for gross weight, however, it is possible to have a qualitative 
shift in the trend. As shown in Figure 3-14, the extents of the possible relative 
weighting of the aerodynamic efficiency preference map (captured information 
item C) is captured in weightings relative to the gross weight penalty. 
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Figure 3-14. Extents of the effect of L/Dmax preference map on qualitative nature 
of system modeling behavior. 

Without this added information, designs that feature very high aerodynamic 
efficiency are artificially appealing. Normally, when conducting initial sizing of an 
aircraft using the fuel fraction sizing method, if aerodynamic efficiency is treated 
as a design variable, there is nothing in the mathematical system modeling that 
creates any driver at all for moderate and reasonable values for L/D. With the 
information added, however, the fact that there are some unmodeled 
consequences to very high 𝐿 𝐷⁄

𝑚𝑎𝑥 is captured and integrated into the 

information that an optimization solver would use to explore the design space. 

If the aerodynamic efficiency is treated as an uncertain assumption parameter 
instead of a design variable, the integration of the preference map still plays an 
important role. In this case, whichever designs that benefit from an unusually 
high assumption for aerodynamic efficiency will not be unduly elevated to be top 
candidates. Conversely, designs with somewhat lower aerodynamic efficiency 
assumptions will not be inappropriately discarded due to the potential incorrect 
conclusion that the adverse weight impact is too great. 

As discussed previously, the greatest benefits from this approach come when 
all the preference maps are combined such that the automatic search 
algorithms can make informed decisions that are as aligned as possible with the 
decisions an experienced human designer would make. The other great benefit 
is the significant difference in effort required to capture certain phenomena. To 
capture the effects of high aerodynamic efficiency (primarily achieved via high 
aspect ratio wings) on weight, significant research and modeling of structures, 
aerodynamics, dynamics, etc. could be spent, but instead a simple preference 
map is drawn using information and designer wisdom on hand, allowing the 
design process to progress quickly. 
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3.4 Application of optimization 

As mentioned, the goal of the approach here is for the automated search, i.e., 
optimization algorithms, to make decisions that are as close as possible to the 
decisions that a human designer would make. This requires mapping 
preference maps onto an optimization problem in a certain way to integrate all 
captured information into the search algorithm. There are a multitude of existing 
off-the-shelf optimization algorithms, and in order to be able to leverage them, 
design variable preference information can be transformed into a standard-
format for a single-objective optimization problem, which typically takes the form 

 𝒙∗ = min
𝒙

𝑓(𝒙) subject to {

𝐿𝐵𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝐵𝑖,   𝑖 = 1,2,3, … , 𝑛

𝑔𝑗(𝒙) ≤ 0,   𝑗 = 1,2,3, … , 𝑚

ℎ𝑘(𝒙) = 0,   𝑘 = 1,2,3, … , 𝑝

 . (16) 

3.4.1 Objective function 

The objective function transformation that includes the preference maps is given 
by the sum of design variable preferences: 

 𝑓(𝒙) = ∑ 𝑝𝑖(𝑺(𝒙))

𝑘

𝑖=1

 , (17) 
 

where 𝑺 is the system model function that analyzes a design defined by design 

variables contained in design variable vector 𝒙 and returns all figures of merit 
and parameters, including design variables themselves, to which preferences 
may be attached. Each of 𝑘 preference functions, 𝑝, acts on its respective 
output parameter of 𝑺 and yields the preference penalty value mapped to that 

parameter value based on the 𝑖th preference map corresponding to the 𝑖th 
parameter returned by the system model function. 

3.4.2 Introducing variation 

A primary result of the method presented here is generating interesting and 
useful sets of multiple design points from which insights can be gained and 
decisions can be made. There are three main elements that by themselves or 
combined lead to creating diverse sets of results. 

 Multi-start multimodal search 

This method seeks to find many unique local minima by searching from many 

different starting points, 𝒙0. This is a simple but effective approach to 
multimodal optimization and finding multiple local optima, and each resulting 𝑗th 
local optimization solution,  

 
𝒙𝑗

∗ = min
𝒙

𝑓(𝒙) ∀𝑗 ∈ {1,2, … , 𝑛} , 

 

(18) 
 

is associated with its 𝑗th search starting point, 𝒙0,𝑗  ∀𝑗 ∈ {1,2, … , 𝑛}. 
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 Preference map uncertainty scaling 

The other mechanism for adding variation to the resulting set of design 
optimization solutions leverages the parameter preference map property that is 
a measure of uncertainty in the preference map magnitude. This property is 
depicted visually as the shaded region C of Figure 3-12 in Section 3.3.4 above. 
This property is integrated into the objective function mathematically by adding 
a factor such that Equation (17) becomes: 

 𝑓𝑗 (𝒙) = ∑ 𝜌
𝑖

𝑋𝑖,𝑗 ∼ 𝑈(−1,1)
∙ 𝑝𝑖(𝑺(𝒙))

𝑘

𝑖=1

 , (19) 
 

where in addition to using a different starting point, 𝒙0,𝑗, for each search, the 

uncertainty factor, 𝜌, for each preference map is used to scale the ordinate of 
the preference map stochastically. This random scaling is based on uniformly 
distributed random number 𝑋 between minus one and one. An uncertainty 
factor value of 4 assigned to a given preference map, for example, means that 
the preference map may be scaled by between ¼ and 4, for a total ratio of 
maximum possible scaling to minimum possible scaling of 16.  

 Stochastic assumption parameters 

Recall from the illustration in Section 3.3.2 that significant additional information 
is captured by using probability distributions in lieu of singular parameter values 
for uncertain technical assumptions. To additionally capture the variation due to 
uncertain assumptions, these parameters are randomly assigned values 
according to their respective specified probability density functions. These 
parameters are used in the system model objective function separately from the 
design variables, 𝒙, that are allowed to vary during each search. Each 𝑗th 
solution, 𝒙𝑗

∗, in addition to being affected by its starting point, 𝒙0,𝑗, is influenced 

by the randomly generated uncertain assumption parameters, 𝝎𝑗: 

 𝒙𝑗
∗ = min

𝒙
∑ 𝜌

𝑖

𝑋𝑖,𝑗 ∼ 𝑈(−1,1)
∙ 𝑝𝑖 (𝑺(𝒙, 𝝎𝑗))

𝑘

𝑖=1

 . (20) 
 

A flowchart representation of how the objective function is constructed is shown 
in Figure 3-15. 
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Figure 3-15. Flowchart of objective function integrating preference maps. 

Observe that if there are no uncertain assumptions at play and all preference 
maps are linear or affine without uncertainty scaling factors, the technique 
simply regresses to a weighted sum approach to multi-objective optimization. In 
the case that the system modeling is also smooth and convex, i.e., convergence 
to the one existing local and global optimum is ensured, only the uncertainty 
factors, not the varying start points, form variation in the resulting design point 
set. If all uncertainty factors, 𝜌, are equal to one, then there will be no variation 

in results and each 𝑗th optimization will converge to the same solution, reducing 
to a conventional implementation of optimization. 

3.4.3 Constraints 

Preference information attached to design parameters often contains hard 
bounds on the parameter. The treatment of these hard bounds depends on if 
the parameter is an input to the system model function, i.e., it is a design 
variable, or if it is an output. Upper or lower bounds are implemented as simple 
side constraints for input design variables and as nonlinear inequality constraint 
functions for bounds on output design variables.  

There are many cases in design iteration where it is also desirable to set an 
output of the system model function to a fixed value. In this case it is 
appropriate to enforce this as nonlinear equality constraint functions. It is also 
sometimes the case that parameters are both inputs and outputs and that they 
must be consistent for the design to make sense or close. An example would be 
an estimated gross weight input and a calculated gross weight output. These 
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would also be enforced as nonlinear equality constraints. This provides the side 
benefit of removing the need for the implementation of the system model to 
inefficiently converge internally. 

Figure 3-16 shows a version of Figure 3-15 that integrates a flowchart of how 
some of the constraints are implemented. 

 

  

Figure 3-16. Flowchart of objective function with constraints. 
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3.5 Understanding and decision-making  

The application of optimization is not the final step in the process for this 
method. The variety of results yielded by that step must be reduced to 
manageable and understandable alternatives from which insights can be 
gained, decisions can be made, and the next iteration can proceed with further 
changes and refinements.  

3.5.1 Nature of optimization results 

The optimization process in this method involves running multiple optimization 
studies, and the results of each optimization will vary from one to the next due 
to the factors discussed in Section 3.4.2 above that introduce variation. The 
total number of optimization runs is determined by the designer as a 
compromise between computing time, thoroughness of the search of the design 
space, and statistical significance of the stochastically derived insights that can 
come from the results. This could mean that there are dozens, hundreds, or 
thousands of possible design alternatives. Assuming optimization convergence, 
all of these results are closed designs that are locally optimized for the given 
assumptions and preferences, so any selection of a single alternative from 
these will be a valid and justifiable design option.  

3.5.2 Processing of optimization results 

Given that in many cases the total number of design results will be far too many 
for a designer to individually scrutinize, some tools are necessary to reduce the 
set of results down to a comprehensible form for designers and other decision 
makers. This form may be a condensed set of candidates that is finite enough 
for comprehension, but it may also take the form of some other kind of analysis 
or visualization of the results as a whole. 

A simple histogram is one of the tools available for gaining insight into results. 
Not only, as per the examples shown in Figure 3-5 and Figure 3-7 in Section 
3.3.2, can it provide information on the relative likelihood of outcomes, but it can 
also show where results are clustered, indicating potentially interesting regions 
of the design space for further exploration, as in Figure 3-10 in Section 3.3.3. 
This type of clustering visualization can be extended to other types of 
visualizations, such as scatter matrices similar to Figure 2-11 or corner plots (a 
related multidimensional visualization technique presented in Chapter 4), 
revealing where, despite variations in search starting points, relative 
preferences, or even uncertain assumptions, similar or identical designs still 
arise. 

Outliers, the converse to clustered and high-frequency regions of the design 
space shown by the results, can also serve a function in providing further 
understanding of the design space. Besides being valid and potentially 
interesting design alternatives themselves, experience has shown that the 
existence and location of outliers can provide information that may call into 
question certain assumptions or the way in which the system is modeled. 

It can also be useful, instead of visualizing the entire set of results, to focus on 
reducing a large set of results down to a more manageable set of distinct design 
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alternatives that are representative or indicative of the larger set. Since in most 
cases most or all resulting design points are Pareto dominant, reducing to only 
a Pareto set does not usually prove a significant enough reduction to be useful. 
More often, other methods of classification and clustering are required. Again, 
methods for doing so are discussed further in Chapter 4. The result of clustering 
is a handful of representative or interesting design candidates that are few 
enough that they can all be laid out in front of stakeholders and act as artifacts 
to facilitate understanding and informed discussion. 

3.5.3 Iteration actions 

Whatever form the processed results take, usually the aim is not particularly 
focused on explicit ranking, prioritization, or selection of designs. Rather, the 
primary purpose is to direct actions that will influence the approach and 
outcome of the next iteration.  

In the design process of any moderately complex system, there are a significant 
number of areas where efforts can be spent or changes can be made from one 
design iteration to the next. A very common activity in iterating in early design is 
continual improvement and refinement of the system modeling, and the 
understanding provided in this method can help direct those efforts. The other 
major activity between iterations is locking in or narrowing down on 
requirements, design decisions, and other design parameters. This is the 
design space ‘pruning’ that was discussed Section 1.3.3. The specific 
implementation of the method, discussed in the next Chapter, provides several 
features and tools designed to facilitate this design refinement and pruning 
process in an efficient and flexible manner. 
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4 Implementation 
 

 

 

 

The method as described in the previous chapter is in principle sufficient for 
prototyping and demonstrating the technique and assessing how it fulfills the 
two primary objectives of this work. However, the implementation of the 
technique in a way that is practical for real use is not entirely straightforward 
and contains some interesting challenges that must be addressed. This chapter 
lays out the specific workflow, the architecture of the software implementation, 
and the details of some of the key components in their current state at the time 
of this writing, along with some of the reasoning behind implementation 
decisions. 
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4.1 Overview 

When building a set of software tools for a one-off design task, it is often not a 
terribly significant additional step to put those tools together into a single design 
tool or design suite to be used for a later project. However, the moment that any 
new design challenge deviates qualitatively from the original design task, the 
all-encompassing design tool requires significant modification to be applicable 
and useful. Recognizing this, instead of building a software suite with the 
intention of quickly and easily re-using it for each new design undertaking, this 
author simply maintains a library of tools that are useful for various design-
related tasks and analyses, with the expectation that each new project, which 
will likely be fundamentally different from the last, will require putting these tools 
together in a new and unique way. The library is called the Design 
Understanding and Exploration Library, or DUEL, so named also for the nature 
of engineering design and development as always being characterized by 
conflict and competition between various drivers and aspects. The Well-
Informed Search Design Optimization Method (WISDOM) approach that is the 
subject of this work was implemented as a tool within DUEL as a framework 
called the Well-Informed Search Environment (WISE).  

4.1.1 Implementation priorities and requirements 

Just like with the design of a new air vehicle product, it can be helpful when 
developing a new piece of software to keep in mind some explicit priorities that 
help inform design decisions and requirements. These priorities can also be 
thought of as themes or, per Lempia & Miller (2009), goals. In any case, for this 
software development project, the general themes and priorities are usefulness, 
usability, flexibility and reusability, and speed, expounded below: 

 Early and broad utility 

The tool is explicitly meant to be used in early design studies, as discussed in 
Section 3.1. However, it is also important to try to make the tool useful in 
activities that both precede and follow early design. In this way, the user is more 
likely to begin to use the tool or at least think about using the tool from day one 
and, for example, build system models and analyses with usage of the tool in 
mind. Conversely, the tool should be built in such a way that minimal 
requirements are inflicted on the system model so that the model can be useful 
on its own before integration and use with the framework. If the tool is not useful 
from extremely early on, the likely alternative scenario is that the designer 
becomes too committed down one path, and the friction involved in pivoting to 
use of the tool is too great to make its use appealing.  

This usefulness goal is also a driver for making the framework useful for 
additional activities within and beyond early design studies. For moving beyond 
early design, it is desirable that the framework be useful in preliminary design or 
at least keeping the transition to preliminary design in mind for projects that get 
that far. For activities within early design studies, what this means is that there 
is a high desirability for the framework to be built in such a way that it makes 
sense to implement some design tasks within the framework, unrelated to the 
WISDOM searching, that would otherwise be done externally. A good example 
of this is creating plots, parametric sweeps, or tables of design data. These 
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types of artifacts are often needed for the design reviews, proposals, or reports 
that are common deliverables in design projects. 

 Usability 

The WISE tool should not only be useful, but highly usable. What this means is 
that the tool should be low effort to use and should not introduce significant 
unnecessary burdens or barriers to entry in the form of superfluous activities or 
added cognitive load. A derived goal of this usability priority is that, at least for 
some activities, using the framework should not only result in a long-term 
reduction in overall effort or improvement in outcomes, but also provide a near-
term reduction in effort. In other words, a designer may have many alternatives 
in the toolbox for accomplishing a given task, and the tools that are easy to use 
early may be selected over those that are high effort early on but save effort in 
the long term. The design of the framework therefore should seek to represent a 
similar or decreased level of effort as comparable alternatives. 

An example of this is implementing the common task of closing a design. It can 
be very quick to build a simple analysis script or spreadsheet that, for a given 
set of design parameters describing a system, provides a computed result. In 
some cases, writing the loops or implementing the functions to make the design 
converge can take more time than implementing the analysis itself. This is an 
opportunity for the WISE framework to be an attractive option. For applications 
such as setting up and running an optimization problem, the framework has 
even more potential to not just match the status quo level of effort as a 
conventional optimization implementation, but to offer significantly reduced 
effort. 

 Flexibility and reuse 

The architecture of the software should be built keeping in mind the wide variety 
of design tasks for which it might be used. This stems from lessons learned in 
developing the Conceptual Optimization of Rotorcraft Environment (CORE) 
(Sartorius, 2011b) for this author’s Master’s thesis. In the case of CORE, a 
useful framework was built for exploring the design space and optimizing 
helicopters or lift- and/or thrust-compounding helicopters. However, the parts of 
the tools that were specific to helicopter design and analysis were intimately 
embedded in the parts of the tool that facilitated design, optimization, 
understanding, and visualization of the design space – so much so that neither 
aspect was at all useful alone or reusable for other tasks. With this in mind, the 
WISE framework should have the flexibility to be applied to any type of early 
design task. This means not just independent of aircraft type, but also not 
restricted to just aeronautical applications. Along these same lines, there should 
also be the flexibility with the framework to build and use a wide variety of 
domain-specific tools and resources, including those not written in the same 
language as the framework itself. 

The reusability priority refers not just to the framework, but also the artifacts that 
are created on a project-by-project basis. There may be very little or significant 
overlap from one project to the next, and in the latter case it can represent not 
only significant effort savings but also valuable preservation of expertise if some 
project-specific artifacts can be reused. This carries implications on the format 
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with which information is captured as well as drives for features that facilitate, 
for example, good documentation. Both flexibility and reusability drive towards a 
level of modularity in the architecture, especially with an emphasis on making 
sure it is possible to cleanly keep separate anything project-specific from the 
framework tool. 

 Speed 

One of the pain points of using optimization and MDO in design can be long 
computation times. The WISDOM approach relies not only on optimization, but 
on running each optimization tens, hundreds, or even thousands of times just 
for one iteration of the method. Because the approach is known to be 
fundamentally computationally expensive, thought should be given from the 
very beginning to profiling the software and making sure that any possible 
bottlenecks and any possible additional overhead resulting from the 
implementation are kept to a minimum. 

The speed theme applies not just to use, but also to development of the 
framework. Speed of development creates yet another incentive for some 
modularity in the architecture. Modularity facilitates tests as well as experiments 
to try out new approaches to determine if better results can be achieved. An 
example of this is the use of a standard interface to optimization algorithms, 
which not only allows for easily experimenting with alternatives (and even 
making it easy to offer alternatives to users), but also makes it much easier to 
integrate some new and possibly superior and faster off-the-shelf option if and 
when it becomes available. 

4.1.2 Nominal workflow 

A nominal workflow is envisioned for the use of the framework. The workflow 
should support the typical iterative process of aircraft design, as discussed in 
Section 1.2.1 and illustrated in Figure 1-3. In addition, as shown in Figure 4-1 
below, it is important for the initial setup to be possible without significant 
burden imposed by system model syntax restrictions. What is unavoidable, 
however, is the sometimes-tedious step of formally capturing, in the form of 
preference maps, all relevant information on hand about parameters of interest. 
This exercise in itself can sometimes require some back and forth with 
adjustments to the specific input/output scheme of the system model, but as will 
be shown in Section 4.2 below, it is possible to segregate these activities and 
be able to build a system model independent of the initial creation of design 
variables.  
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Figure 4-1. Nominal workflow for WISE framework. 

Once initial setup is complete, the iteration workflow is designed to be flexible 
enough to allow the framework to continue to be useful as design continues to 
mature beyond just the early studies, with seamless transition to more 
advanced design stages. The key activities at each iteration involve continuing 
down the iterative design spiral, continually increasing the definition of the 
design, understanding of the performance, and increased confidence in the 
analytical results.   
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4.1.3 MATLAB as selected programming language 

One of the first decisions to make in creating the WISE framework is the 
language to write it in. Because the rest of DUEL is already almost entirely 
written in MATLAB, it is a natural choice for WISE implementation. The tool is 
built with MATLAB up to version R2018b (MATLAB (Version 9.5), 2018) and 
relies on the Optimization Toolbox (Optimization Toolbox (Version 8.2), 2018). 
Still, other languages were considered. Python 3 is the most attractive 
alternative since it is free and therefore easy to distribute. Python also has a 
wide variety of freely available packages built by a strong developer community. 
However, MATLAB was selected for implementation because it provides some 
other key advantages: 

 Common environment 

MATLAB is a programming language, but it also refers to the integrated 
development environment (IDE) that is used for editing and running MATLAB 
code. Having a single common IDE that is used by every single user of a 
language provides many advantages for development. The WISE framework is 
built for exploring a design, interacting with the models, and making 
adjustments. It is therefore fundamentally interactive, meaning that there are 
necessarily some graphical user interface (GUI) elements. Using MATLAB 
allows for piggybacking on the common IDE for creating some of the desired 
GUI capabilities. 

 Command line use 

Along the same lines as having an environment that is fundamentally 
interactive, it is helpful that MATLAB is built with command line usage as a 
primary use case interface. This means that, unlike other languages that may 
necessitate importing packages or defining variables at the top of every source 
file, MATLAB allows for relatively seamless on-the-fly interaction with the 
defined variables and objects in the workspace via the command line. This is a 
very useful feature when exploring a new design space, as the direction the 
designer may want to go is not always known ahead of time. 

 Designed for technical computing 

At its core, MATLAB is targeted almost exclusively at scientists and engineers. 
This means that there are tools that make it useful for engineering-related tasks 
such as analysis and optimization. 

 Popularity and familiarity  

Being an excellent tool for scientists and engineers has led MATLAB to become 
a very popular programming language and IDE with engineers. Since it is 
popular with the type of users to whom the WISE framework is targeted also 
means that many potential users will already have a level of familiarity with 
MATLAB. The popularity of MATLAB has also led to a strong user community, 
including an active exchange of freely available tools and modules. 
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 Interaction with other languages 

One central element of the WISOM approach is the system model. One highly 
desirable feature of the implementation is that whatever language is chosen 
does not necessarily dictate the language in which the system model must be 
written. MATLAB accomplishes this by having relatively straightforward means 
available to call functions written in other languages such as C or Python. 

 Vectorization 

The word ‘MATLAB’ comes from ‘matrix laboratory,’ so at its core it is very fast 
and efficient at dealing with vectors, arrays, and even multi-dimensional arrays 
of data. This characteristic can be quite useful for tasks that involve repeating 
similar operations that in other languages would normally be done using some 
sort of loop. In MATLAB, loops can be avoided, and a workflow is feasible 
whereby initial development is done using scalar data and little to no 
modification is required to repeat the analysis with large arrays of inputs.  

 Object-oriented 

MATLAB supports object-oriented programming. Though much typical usage of 
MATLAB takes on a functional programming paradigm, the object-oriented 
capability and the ability to define new custom classes is an invaluable tool in 
keeping the WISE framework organized and usable. As will be shown in the 
discussion of the framework organization in Section 4.1.4 below, encapsulating 
data relevant to design variables and the design space in defined objects is an 
essential feature for keeping the design organized and reducing the burden 
involved in implementing key design space search and exploration functions. 

4.1.4 Framework components and organization 

The two major components of the WISE framework (whose readme file is 
included in Appendix A1) are the DesignSpace class and the 

DesignVariable class. In addition to these two main classes, a central part of 

any project is the system model function that analyzes the expected 
performance of a given system. A DesignSpace object defines a given project 

by containing a vector of DesignVariable objects and a pointer to the system 

model function (in the form of a function handle), as shown in Figure 4-2. This 
architecture lends to a certain amount of modularity inasmuch as the system 
model can stand and be useful on its own. Each design variable can also be 
handled and manipulated in isolation. 
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Figure 4-2. Top-level organization of the WISE framework setup of a design. 

The primary interface between the design variables and the system model 
function is the input-output system structure. This structure defines the system 
and is a simple MATLAB standard data type (a struct) that provides 

significant flexibility in working with the system model, which is discussed in 
Section 4.2.  

Much of the information contained in a DesignSpace setup, such as defining 

exactly which design variables are inputs, outputs, or both, lies in the 
DesignVariable objects. The design variable class, its attributes, and its 

methods for defining and iterating design variable attributes are discussed in 
Section 4.3.  

Further DesignSpace class attributes and methods facilitate conducting 

WISDOM searching, including processing and storing results, details of which 
are discussed in Section 4.4.   
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4.2 System model function 

The system model function has already been mentioned in Section 3.4.1. It is, 
abstractly, an arbitrary function that takes as inputs all design variables and 
returns all parameters of interest related to the system. However, consideration 
has been given to the syntax and other aspects to increase flexibility and 
accommodate an early design workflow. 

4.2.1 Syntax 

The system model function syntax is an important contributor to the usability 
and flexibility of the framework, especially compared to more traditional MDO 
setup requirements. A standard-format optimization problem in MATLAB (as is 
also typical of optimization formulations in other languages) requires an 
objective function to be defined as a function of a single input variable that is a 
vector of floating-point numbers (example in Figure 4-3). Note how this means 
that a necessary task for the designer is keeping track of which parameters lie 
at which index of the design vector, x. Not only is this bookkeeping an extra 

burden and error-prone, the list also requires revision whenever a new 
parameter is added, say to increase the fidelity of the analysis, or whenever a 
design parameter is removed by locking it into a set value. 

 

Figure 4-3. Traditional MDO typical required syntax for objective function. 

In addition, the constraints for a typical MDO setup must often be defined in an 
entirely separate function (example in Figure 4-4). Again, the same burden of 
tracking parameter indices is present (and it must be kept synchronized with the 
list in the objective function). It is also highly likely in early aircraft design that 
the same or similar analysis will inform both the objective function and the 
constraints. The analysis that determines the performance of the vehicle over a 
mission profile, for example, would likely play a role in informing some objective 
value to minimize while also being a key part of informing key constraints on 
minimum performance.  

function objectiveValue = objective_function(x) 

  

input_1 = x(1); 

input_2 = x(2); 

input_3 = x(3); 

... 

input_n = x(n); 

... 

Analysis 

... 

objectiveValue = ...; 
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Figure 4-4. Typical MDO required syntax for defining nonlinear constraints. 

The syntax for the system model function in the WISE framework breaks away 
from the traditional MDO pattern by a) putting all threads of analysis in a single 
function and b) leveraging MATLAB’s struct data type for inputs and outputs. 

The struct data type stores data in an unlimited number of named containers 

called fields. This significantly eases the burden on the designer by using a 
meaningful name instead of numeric indices and allowing for an arbitrary 
number of additional fields. An example syntax for a WISE system model 
function is shown in Figure 4-5.  

 

Figure 4-5. System model function syntax. 

The variable S is the input-output system structure as depicted earlier in Figure 

4-2, and its fields contain rich descriptive system data. It is important to note 
that the implementation here puts no restrictions at all on what fields are or are 
not required in the system model, and it is entirely up to the designer for each 
new project to decide on the naming and organization of the relevant input-
output system structure fields. This lack of enforced names and organization is 
a valuable feature for facilitating early design workflows but can also present a 
hazard as a project may grow, particularly if it grows to the point where many 
individuals are authoring submodules of the system analyses. At that point, it 
may begin to be prudent to implement an organized mapping of input-output 
system structure fields onto pre-standardized aeronautical system 
parameterizations such as the Common Parametric Aircraft Configuration 

function [inequalities, equalities] = constraint_function(x) 

  

input_1 = x(1); 

input_2 = x(2); 

input_3 = x(3); 

... 

input_n = x(n); 

... 

Analysis 

... 

inequalities(1) = ...; 

inequalities(2) = ...; 

... 

inequalities(m) = ...; 

 

equalities(1) = ...; 

equalities(2) = ...; 

... 

equalities(p) = ...; 

function S = system_model_function(S) 

  

intermediateParameter = foo(S.input_1, S.input_2); 

... 

Analysis 

... 

S.output_1 = bar(S.intermediateParameter, S.input_n); 

S.output_2 = ...; 

... 

Analysis 

... 

S.output_k = ...; 
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Scheme, CPACS (Nagel et al., 2012), or ADDAM, the Aircraft Design DAta 
Model (Herbst & Hornung, 2015). In this way, the set of design parameters 
within the WISE framework is still limited and manageable while the system 
model analysis can be done collaboratively or easily implemented efficiently 
with existing tools. 

4.2.2 Input and output variable types 

Another advantage of the struct data type is that a field can contain data of 

any type (even another sub-structure), unrestricted to the floating-point numbers 
in a typical MDO function input vector. Therefore, the most meaningful and 
appropriate data type can be used on a per-parameter basis, and there is also 
added flexibility for a parameter to take on non-scalar values ad hoc, which can 
be leveraged for parameter sweeps, Monte Carlo analyses, plotting, etc.  

There are two types of continuous variables that are typically useful for aircraft 
design and are supported as system model inputs and outputs. The first is the 
classic MATLAB double-precision floating-point double (the default numeric 

data storage type in MATLAB). The second is the DimVar (“dimensioned 

variable”) data type, which is similar in functionality to double but carries with 

each variable meaningful physical units. This data type and the associated 
Physical Units Toolbox (Sartorius, 2019a) enables the use of the most 
meaningful unit for a given parameter without the need to implement any unit 
conversions in software, along with the added benefit of catching unit-related 
coding errors by enforcing unit consistency (adding a mass to a weight, for 
example, results in an error). An additional benefit of the struct data type is 

that is displays by default in the MATLAB command window in a compact and 
meaningful way. Dimensioned variables also display along with their units, 
including when displayed as part of the input-output system structure. 

Discrete system model inputs and outputs have even more flexibility regarding 
data type and can be nearly any MATLAB type or class. Some aircraft-related 
examples of leveraging discrete data types include using the logical (true or 

false) data type to indicate the presence or absence of a feature, system, or 
characteristic, e.g. S.is_pressurized, or using the string data type to 

distinguish between several named alternatives, e.g. S.spar_material = 

"2024-T6 Aluminum".  

4.2.3 Typical evolution of system model function 

One path to creating a system model function is the simple use of an existing 
analysis suite, in which case the only additional step is creating a MATLAB 
function wrapper. Another typical case for early aircraft design involves not only 
creating a system model function from scratch but doing so in a way that is a 
natural progression and evolution from the very first lines of code up through a 
complex multi-module analysis that works with the framework.  

The first lines of code are usually in a simple script with inputs (key design 
variables and assumptions) declared near the beginning, followed by some 
analysis that adds variables of interest to workspace. A simple script such as 
this is quite useful for setting up the analytical approach, debugging, and for 
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some very initial understanding of the system and its modeling. For use with the 
WISE framework, the key variables of interest, both inputs and outputs, should 
be made fields of the system structure instead of standalone variables by simply 
prepending e.g. “S.” to the variable names. This script can then be easily made 

into a function by adding a function header with the simple syntax shown in 
Figure 4-5 above.  

Instead of removing all lines that declare the key input variables, the created 
system model function can remain a useful stand-alone script by adding a 
switch for different behavior based on if it is being used as a function or a script. 
Also, additional parameters can be passed to the function when the function is 
being used for one-off analysis instead of inside WISDOM search loops. 
Pseudocode for these features is shown in Figure 4-6.  

 

Figure 4-6. System model function syntax and pseudocode with additional 
typical features. 

The additional inputs to the system model function are the ‘additional system 
model parameters’ shown previously in Figure 4-2, and they enable code that 
normally should not run during optimization to nevertheless remain in the 
system model code. Examples of this are more expensive analyses, code that 
displays parameters in the command window, code that creates plots, or code 
that does not run properly with the array inputs sometimes used in the 
framework. In lieu of or in addition to building this directly into the system model 
function, the “handles to additional system analysis functions” from Figure 4-2 
also enable extra functionality for the case of performing richer depth of analysis 
on a one-off design. These additional system analysis functions use the same 
simple structure-in, structure-out syntax as the primary system model function, 
and they can be chained together such that each subsequent function can 
utilize information generated by the last, as discussed further in Section 4.5.3.4. 
An example of an in-depth additional system analysis function would be a 
module that creates a 3D model of a design point for visualization and 
generating a drawing.   

function S = system_model_function(S_in, flag_1, flag_2, ...) 

 

% Set static inputs, parameters, and assumptions: 

S.input_1 = ...; 

S.input_2 = ...; 

... 

S.input_n = ...; 

 

 

if input provided 

    overwrite fields of S with fields of S_in 

end 

 

... 

Analysis and setting additional fields of S 

... 

  

if flags set or running as script 

    run additional expensive analyses 

    display parameters of interest 

    produce plots and reports 

end 
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4.3 Design variable class 

One of the primary objectives of this work is to formally capture stakeholder 
knowledge and wisdom, and the design variable class is what facilitates this. As 
such, the DesignVariable class has many attributes (called properties in 

MATLAB terminology). The main user-facing attributes fall into a few categories, 
which are described in this section along with descriptions of some of the user-
facing design variable class methods. In addition, many dependent properties, 
set/get methods, and other utility methods, not discussed here, are present in 
the class to further enable the capabilities and bolster ease of use of the class. 
The top-level help block documentation of the class is in Appendix A2. 

4.3.1 Descriptive and system model interfacing attributes 

Each parameter described by a design variable object should be easy to work 
with for the system model function, the WISE framework, and for the humans 
interacting with the parameter. To this end, there are a few basic user-facing 
attributes that the designer sets to make a given parameter easy to understand 
for human and machine. 

 Name 

The name attribute is used as the field name for the input-output system 

structure. There are therefore some hard restrictions regarding making sure it is 
a valid string of characters to use for a field name, and there are also some 
softer practical restrictions. Even though this name acts as the primary 
shorthand reference to the parameter, it may still be referenced frequently in the 
system model function, so it should be both descriptive and succinct.  

 Description 

To capture more information about the parameter than what can just be 
captured in the name, the optional description attribute is available. 

Normally this is simply used with a descriptive string. However, as an arbitrary 
container, it can also hold more complete information that may be useful to 
have co-located with the other parameter attributes, including structured 
information that could be, for example, links or references to external 
documentation. 

 Label 

The framework uses plotting in many places, and the name attribute, with its 

restrictions, does not always make for the clearest of most attractive label for 
things like plot axes. The optional label attribute fills this role. The label is a 

simple TeX-interpretable string, but it makes the plots generated within the 
framework clearer, with a shorter path with less labor required from generation 
to inclusion in a report, memo, design review, or other deliverable. 

 Units 

It is greatly beneficial when discussing requirements, design parameters, and 
preferences to be able to have that quantitative discussion using the physical 
units that are most natural and that the stakeholders are most used to thinking 
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in for that parameter. Length dimensions of an air vehicle may best be thought 
of in inches or millimeters, for example, while altitudes are best discussed in 
terms of feet and long distances in terms of kilometers or nautical miles. That is 
why it is so important to be able to attach physical units to each design variable 
using the units attribute.  

If specified for a given design variable, the appropriate dimensioned variable will 
be passed to, and expected from, the system model function. Through the use 
of the Physical Units Toolbox, not only are unit conversions unnecessary within 
the system model function or anywhere else, but the preferred unit for working 
with a given parameter can be easily changed, without affecting the preferences 
or analyses, simply by changing the units attribute. The units are also 

automatically included wherever the design variable is displayed, including 
when labeling plot axes. 

 Input-output type 

Features of the design space search methods (see Section 4.4 below) mean 
that when searching the design space, for the most part, the designer does not 
have to think about parameters that are inputs to the system model differently 
than outputs from the system model. These features make it so that when 
building the system model function, the most straightforward and fastest to 
develop analyses can be used without the need to try to invert complex 
equations or iteratively converge to solutions.  

Still, the tool requires some indication of what the system model expects, so the 
ioType attribute allows the user to distinguish between parameters that are 

inputs to the system model function, outputs, or both. A parameter can be both 
if its value is used as an input to some analysis but ultimately a better estimate 
is calculated as part of the system model function. A common example is 
aircraft gross weight, which is used for almost all performance calculations but 
is also used itself as an input to calculate the weights of various components for 
the sake of a gross weight buildup. If a parameter is both an input and an 
output, this is signaled by specifying a required ‘greater than’ relationship (input 
must be greater than output), ‘less than’ relationship, or ‘equal to’ relationship to 
be enforced as a constraint as described in Section 3.4.3. 

 Closing flag 

The closing attribute is only used for parameters that are both inputs and 

outputs. If the closing flag is set (i.e., its logical value is set to true), this is an 

indication that if the input does not equal the output for a given parameter, the 
design is not considered a ‘closed’ design. A design that is not closed is a 
design that does not make physical sense and is considered invalid. 

 Smallest meaningful step 

It is typical for optimization algorithms to use very small finite differences to 
determine gradient-based search directions. For some types of analyses, 
however, the precision is much more granular than is compatible with these 
minute differences used by the algorithms. The optional 
smallestMeaningfulStep attribute captures the smallest change in a 
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design variable that will produce meaningful changes with the analytical 
methods being used. 

4.3.2 Attributes capturing preferences and other information 

Beyond the descriptive and interfacing design variable attributes discussed 
above, the most critical attributes for using the WISE framework for exploring 
the WISDOM approach are discussed below: 

 Assumption type parameter flag 

The parameter attribute, like the closing flag, is another simple logical 

true/false switch to indicate, for input variables, if the variable is an input that the 
designer has control over or is more of an assumption. This distinction comes 
into play during search optimization, where the uncertainty of an assumption is 
captured but it is not made available as a design variable to an optimization 
algorithm. This may be because the designer truly has no control over the 
parameter, but the distinction may be driven simply by what phenomena are or 
are not captured by the analyses employed (and the assumption may become a 
design variable in later iterations as the system model evolves). 

 Lower and upper bounds 

Every design variable can have optional upper and/or lower bounds (simply set 
to +/- infinity when not in force). These are hard bounds, defined by the 
lowerBound and upperBound attributes. As discussed in Section 3.4.3, the 

bounds are internally treated differently for inputs (enforced as side constraints) 
as for outputs (enforced as inequality constraints), but there is no difference 
from the user perspective. 

 Starting lower and upper bounds 

While hard lower and upper bounds are dictated by physics or requirements, 
the domain that is selected as the starting point for a search may be subject to 
different bounds. This is especially true if the parameter has no hard bounds, 
when it must still have a defined reasonable and finite domain for the starting 
point. The startLowerBound and startUpperBound attributes are what set 

these bounds for stochastic starting points as described in Section 3.4.2.1.  

For variables where the assumption type parameter flag is set, the variable is 
not part of the optimization search space. Instead, the startLowerBound and 

startUpperBound attributes are what set the bounds on the randomly 

generated uncertain assumption parameters, 𝝎𝑗, as described in Equation (20).  

  Value 

The value attribute of a design variable indicates the baseline, default value for 

that parameter, which is usually the designer’s best reasonable guess. As 
iteration proceeds, design decisions are made, and the parameter that was a 
free design variable may be set to this fixed value by setting the fixed attribute 

to true (or the free attribute to false). When variables that are outputs of the 

system model function are set to fixed values, equality constraints are used to 
enforce their values. With fixes input variables, the tool automatically removes 
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them from the problem presented to optimization algorithms, reducing the 
dimensionality of the optimization and greatly increasing the efficiency of future 
searches. 

 Starting distribution 

The value attribute is also used as the mode of the probability distribution used 

for randomly generated input starting points or for randomly generated 
uncertain assumption parameters. The specific PDF to use is determined by the 
distribution attribute. The starting distribution can be used to direct 

searching to focus on certain areas of the design space by having relatively 
more searches start in those regions. Often, however, especially for convex 
search spaces, the results may be relatively independent of the starting point for 
certain parameters, in which case a simple uniform distribution or single starting 
point is sufficient (and the designer does not have to be burdened with thinking 
about defining the ideal distribution).  

For assumption type parameters, however, the starting distribution is the 
primary tool for capturing the designer and expert knowledge about the 
assumption, so in these cases a more nuanced PDF can be indicated using the 
distribution attribute. The triangular and PERT distributions, whose merits 

for this task were described in Section 3.3.2, are implemented using simple 
functions built with engineering estimates in mind (Sartorius, 2019b). The 
control over the starting PDF afforded by modifying the value and starting upper 
and lower bound attributes is illustrated in Figure 4-7, where numeric values 

correspond to the shape parameter, 𝜆, of the PERT distribution (with 𝜆 = 4 for 

default "pert"). 

 

Figure 4-7. Illustration of various possible PDFs based on distribution 

attribute. 

 Preference map abscissa and ordinate points 

As introduced in Figure 3-9, the preference map is one of the core tools for 
capturing preferences and other types of information. The preference map is a 
simple polyline / table lookup defined by a set of abscissa and ordinate points 
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(stored as floating-point vectors in the prefAbscissa and prefOrdinate 

attributes) that together define some preference as a function of that design 
variable’s value. In the case of discrete parameters, the prefAbscissa 

attribute is not a floating-point array but rather a cell or string array data type 
containing the arbitrary discrete values. A prefMap attribute allows the option 

for straightforward and clear setting of both the abscissa and ordinate points 
simultaneously, optionally along with the preference map node information 
described in Section 4.3.2.11 below. 

The preference ordinate can be expressed as a penalty or, as determined by 
the prefType attribute, as a value, depending on in which sense it is more 

natural to think about a given parameter. The penalty or value associated with 
the preference ordinate of a preference map is arbitrary and can be an 
abstracted point system or something more concrete, such as a dollar cost 
associated with values of the parameter. The important thing is that whatever 
scale is used is kept consistent across all design variable objects’ preference 
maps used in a design space. 

 Active or inactive preference map 

The preferenceOn flag is a simple tool that can be used to easily turn off the 

preference map of a parameter for a given search. This is equivalent to setting 
all preference map ordinate points to zero while maintaining the other aspects 
such as the upper and lower bounds and flagged regions. This can be a useful 
tool to, for example, answer what-if questions related to customer preferences 
and desires. 

 Preference map uncertainty 

Despite attempts to keep the scale consistent between preference maps used 
in the same design space, the designer will never be able to achieve perfect 
consistency. This is not only acknowledged in the WISDOM approach but is 
embraced and utilized to yield a richer set of useful search results. The 
prefUncertainty attribute captures the level of confidence in the ordinate 

scale for a given preference map, as discussed in Section 3.4.2.2. 

 Preference map slope 

In some cases, it can be useful when defining preference maps to think of the 
preference ordinate penalties or values in absolute terms. It is sometime more 
natural to think in terms of the slope or relative slopes of the preference map, as 
this occasionally better captures designer intent or results in more expected 
behavior. The prefSlope attribute can be used either as a read-only 

reference, for modifying the slopes of individual preference map segments, or to 
adjust the slope of the entire preference map.  

Slopes of preference map segments tend to be more aligned with what drives 
real-world designer decision-making behavior when presented with similar 
regions of the design space. Using finite slopes and ramps instead of hard 
steps in preference maps also introduces fewer numerical issues and tends to 
yield more useful WISDOM search results in terms of creating an environment 
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for the search algorithms to make design ‘decisions’ similar to those that a 
human designer might make.  

 Preference map smoothing 

Most of the time, the designer or other stakeholders do not have highly detailed 
preferences with any level of fidelity or confidence to warrant anything more 
granular than a simple polyline function. Still, the discontinuities inherent in a 
polyline function may in some applications be undesirable, particularly if the 
discontinuities cause numerical issues with an optimization algorithm, so the 
optional prefSmoothing attribute is available to round off the junctions of the 

polyline function. It does this by using nested blending functions based on the 
hyperbolic tangent function (Sartorius, 2016). 

 Preference map node information 

Each node in a preference map can be tagged with unstructured additional 
information using the optional prefInfo attribute. This additional information 

can be as simple as notes to the designer. Another use case can be linking to 
requirements, which can be quite informal or employing a formal requirements 
tool such as IBM’s Rational DOORS or other requirements management 
schemes such as that presented by Glas and Sartorius (2012). This helps make 
the defined design variables useful sources of documentation as well as 
reusable artifacts for future projects in cases where similar design drivers are 
present. 

 Preference map segment warning flags 

The optional prefFlags attribute allows for attaching warnings to certain 

segments of the preference map, as introduced in Figure 3-12. The flags can 
contain rich information, for example notes on the reasons why a given segment 
is flagged. These flags are automatically raised when examining an individual 
design point that has a parameter that falls in one of these marked segments. 
This becomes a valuable tool as the complexity of the design tasks increases, 
when it can become easier for a design to seem appealing despite some 
unnoticed detrimental characteristic. 

4.3.3 Design variable class methods 

The main user-facing design variable class methods are oriented toward 
helping the user capture information. These methods therefore focus on 
creating, viewing, and editing DesignVariable objects. 

 Plotting and visualization 

Most of the key information about a design variable can be visualized using the 
plot method. This method creates a plot of the preference map that is overlaid 

with other information. Additional plot elements such as the axis labels are used 
to convey some additional information contained in the object’s attributes. An 
annotated example screenshot of the plotted information (based off the 
passenger capacity preference map of Figure 3-9) is shown below in Figure 4-8. 
The annotations on the plot are created using a customization of the built-in 
MATLAB data tip capability, allowing users to interactively and graphically 
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access node information, segment warning flags, or other additional information 
about the design variable object without overly cluttering the usable graphics 
area. Implied soft bounds signified by orange triangle markers are discussed in 
Section 4.5.2. 

 

Figure 4-8. Screenshot of design variable class plot method. 

 Real-time editing 

The typical way to define a DesignVariable object is by setting the attributes 

in a script. The plotting and visualization method discussed above is then an 
excellent tool for verifying those attributes. However, especially with the 
preference map abscissa and ordinate points, the cycle of editing a script, 
plotting the results, further revising, and re-plotting is inefficient and can become 
tedious. To address this, the editmap method creates a basic graphical 

interface for interactively editing design variable attributes.  

There are two elements to the editing interface. The first is the GUI window 
(Figure 4-9), whose main element is the same visualization as created by the 
plot method. Added to this are areas where certain attributes can be modified, 

with the visualization updating immediately when any valid change is made. 
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Figure 4-9. GUI window for the design variable editmap method. 

It is possible to add to the main GUI window a table that would also allow users 
to make real-time edits to the other attributes related to the preference map 
such as the abscissa and ordinate points, the additional information attached to 
nodes, and information for flagged map segments. However, these attributes 
are not scalar and could have an unwieldy size that is difficult to edit in a 
relatively static GUI window. Instead, the editmap method brings up an 

additional window of MATLAB’s built-in variable editor loaded with a special 
array (Figure 4-10) that can be used for simultaneously editing some of these 
non-scalar design variable attributes. The most important capability offered by 
this approach, though, is the intuitive context menu and keyboard shortcuts that 
can be used to add or remove columns, creating a very quick and usable 
approach to growing or shrinking the number of nodes in a preference map. 
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Figure 4-10. Design variable editing using the built-in variable editor. 

 Export 

Design variable attributes can be modified by making changes to attributes on 
the command line, for example, or by using the editmap method discussed 

above. In any case, the changes often need to be recorded, and this is 
facilitated by the design variable export method. Instead of exporting the 

design variable information as a file to be saved to the hard drive, a simpler 
approach is taken whereby the export function creates a string that, when 
executed, recreates the design variable and its attributes and assigns the 
DesignVariable object to a specified variable name.  

If no output is specified from the method, it simply copies the string to the 
system clipboard for easy pasting into a setup script. The export capability is 
also built into the design variable editing GUI (note the “export as” cell in the 
lower left of Figure 4-9 above). An example of the resulting exported string is 
shown in Figure 4-11. 

 

Figure 4-11. Example code output from design variable export method. 

  

% passengers 

v = DesignVariable(); 

v.name = "passengers"; 

v.label = 'pax'; 

v.distribution = "triangular"; 

v.prefUncertainty = 2; 

v.prefAbscissa = [60 75 95 100 105 135 150]; 

v.prefOrdinate = [0.9 0.415 0.435 0.14 0.445 0.475 0.69]; 

v.prefInfo = {"encroaching on firm's existing portfolio" [] [] ... 

    "original requirement specification" [] [] ... 

    "competing with established narrow-bodies"}; 

v.prefFlags = {[] [] [] [] [] [] [] "runaway size"}; 

v.lbvub = [50 70 85 140 200]; 
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4.4 Design space class 

While the design variable class creates a framework for capturing and refining 
information, the function of putting that information to good use in searching the 
design space falls to the DesignSpace class. Because of this segregation of 

purposes, there are some contrasts between the nature of the two classes, 
summarized in Table 4-1.  

Table 4-1. Comparison of DesignVariable and DesignSpace classes. 

Characteristic DesignVariable DesignSpace 

User-facing attributes Many Few 

User-facing methods Few Many 

Objects in a project Many One 

As with the design variable class, there are many additional dependent 
properties, set/get methods, and other background utilities present in the class 
but not discussed here. Select documentation of the DesignSpace class and 

methods are included in Appendix A3. 

4.4.1 User-facing design space attributes 

The most important user-facing attributes for the design space class have 
already been mentioned in Section 4.1.4 and shown in Figure 4-2. Namely, the 
handle to the system model function is held in the systemModel attribute, and 

the DesignVariable object array is held in the variables attribute.  

One of the issues with storing all design variables in an array is that referencing 
them must be done using indices in the array. When dealing with dozens of 
design variables, it can be quite cumbersome to remember which design 
variable occupies which position in the array, made more complicated by any 
changes in the design space or setup. To address this, an alternative reference 
to design variables can be made using the design variables’ names and dot 
referencing of the v attribute of the DesignSpace class. In this way, there are 

two alternative ways to access or edit a design variable in a design space, as 
shown in Figure 4-12, which also illustrates the added usability added by using 
suggestions and tab completion with this scheme. 

 

Figure 4-12. Name-based command-line design variable referencing in 
DesignSpace object o. 

>> o.variables(5).fixed = true; 

>> o.v.range.value 

ans = 

        2500 

>> o.v. 
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4.4.2 Design space utility methods and attributes 

There are also design space class methods that allow for more guided 
inspection and modification of design variables. Most of these methods, though 
belonging to the design space class, act simply as wrappers to the 
corresponding method of the design variable class. Some of these methods 
have different behavior, however, when operating on an array of design variable 
objects instead of a scalar object, so they are discussed here instead of in 
Section 4.3.3. 

A significant portion of the other utility attributes and methods of the design 
space class are primarily used in adjusting the design space, design variables, 
and search behavior affecting design iteration outcomes. 

 Display 

When working with a conventional MATLAB structure or object, the display of 
the object in the MATLAB command window is usually a simple list of object 
attributes and their values. However, a couple of factors make this default 
display behavior undesirable for display of a design space object. The first 
factor is that most of the information in a design space is in the contained array 
of design variables, not the design space object itself. So, display of a design 
space object should bring forward significant information from the design 
variables. The second factor is that, if displaying an array of objects such as the 
array of design variable objects, the default display behavior lists attribute 
names only and not attribute values. 

These issues prompted creating custom display methods. Non-scalar design 
variable objects, instead of the common list display, are displayed as a table 
with only the most relevant attributes included as columns. The display method 
for the design space primarily calls the display method for the design variable 
array. It also adds some additional information such as the system model 
function name, as shown in Figure 4-13 for a design space for the regional 
airliner illustration example from Section 3.3. 

 

Figure 4-13. Tabular display of DesignSpace objects or arrays of 

DesignVariable objects. 

 Plotting and editing design variables 

The plot method for the design space class is a straightforward wrapper for 

the plot method for the design variable class. The design space class also 

implements a method that calls the editmap method of a single design variable 

in the design space as identified by its name. 

When plotting the multiple design variables in a vector of DesignVariable 

objects, such as would be contained in a design space, the plot method 

systemModel: duel_wise_demos.regional_jet.system_model 

                 io     frdm    unc    traits       unt         LB       sLB       val       sUB       UB     dist… 

                 ___    ____    ___    _______    ________    ______    ______    ______    ______    ____    ____… 

range            in     free     2                nmi            400       500      2500      3500    4000    unif… 

passengers       in     free     2                                50        70       100       140     180    unif… 

grossMass        =      free     1     closing    lb          2204.6    4409.2    4409.2    4409.2            unif… 

utility          out    free     4                lb-nmi                   -         -         -                  … 

sfc              in     free     1     param      lb/hr/lb                0.45       0.5      0.65            pert… 

maxLiftToDrag    in     free     3     param                                13        17        22            pert… 
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automatically plots all design variables in a single figure window and by default 
will also make sure that all of the ordinate axes of the preference maps are 
using the same scale (examples of which are shown in Chapter 5 Figure 5-2 
and Figure 5-7). This is immensely valuable in sanity checking the defined 
preferences and making sure that their prefOrdinate values are defined on 

an appropriate range. The background color of the plot is also grayed out for 
variables currently fixed at their value and therefore not active for the current 
iteration. 

 Processing and utility attribute setting 

One approach to keeping a class organized is to implement set and get 
methods for attributes. Set methods or validators instantly check the validity of 
what the user is trying to set as a value for an attribute. Get methods are useful 
when some useful parameter is a function of one or more other attributes and 
the get method is called whenever that parameter is needed. 

However, the process of building up a design space and its design variables 
can be messy, so strictly checking for errors for every setting of an attribute and 
enforcing consistency can get in the way of the process. Secondly, and most 
importantly, many of the useful parameters that would normally be made 
available using get methods are called many times during a given run of the 
system model function. These tend to relate to the trimming away of inactive 
variables, converting a conventional numeric design vector into an input-output 
system structure, calculating preference values based on system parameter 
values, etc.  

Even for operations that would not necessarily need their own get method to get 
the needed parameter(s), even simple steps, for example concatenation of all 
design variable default values, may be run so many times during a search that 
meaningful speed gains can be made by pre-setting utility parameters. For this 
purpose, the design variable class implements a processvariables method, 

which sets many useful utility attributes of the design space class for use in 
other exploration and understanding methods. Part of this method makes sure 
to run the runchecks method on the design variable array, which checks the 

design variable definitions for completeness and consistency, offering useful 
warnings and error messages to help the user correct any errors.  

 Toggling active and fixed variables 

One of the most basic adjustments that is made from one iteration to the next is 
adding or removing design freedoms from the design space. Keeping certain 
design parameters fixed makes for quick exploration and easier understanding, 
while allowing more design variables to vary facilitates more design refinement. 
Because it is so common to want to adjust the set of design parameters under 
current investigation, the toggle method provides a quick, command-prompt-

based interface for changing the fixed or free state of design variables, as 
shown in Figure 4-14. 
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Figure 4-14. The design space class toggle method. 

 Memoization 

Some design space attributes are simply settings for controlling the behavior of 
other methods, particularly the search and optimization methods. Some of the 
settings are regarding the use of memoization. Memoization is the technique of 
storing the inputs and outputs of a process and using the stored outputs instead 
of re-running the computationally expensive process when identical inputs are 
provided. Typical implementations of memoization store all unique sets of inputs 
and outputs, making a trade of storage and memory against potentially very 
expensive processes. However, in the WISE framework, by far the most 
common repeated calls to a process are back to back, so the memoization 
implementations can be simplified to have a short ‘memory’ that can be used 
not just for expensive processes, but even for only moderately repetitive 
processes to make meaningful gains in speed.  

The processes that are optionally memoized based on their 
use{Process}Memoization settings are calculating preference map values, 

converting a traditional design vector to an input-output system structure, 
closing a design, and running the system model function. The latter provides by 
far the most benefit due to it being the mechanism by which only one system 
model function call is necessary for analyzing a given optimization search point. 
Traditional search algorithms run separate functions to analyze objectives and 
constraints, while the WISE framework uses only one function and, with 
memoization, one system model function call. 

 Evaluating a design point 

At the core of the WISE framework and an essential part of several other 
methods, including the implementation of the WISDOM approach, are the 
methods that allow for easily running the system model to evaluate or close a 
single design point.  

The run method is the compilation of routines, shown in Figure 4-15, that 

allows for easy running of the system model function for a given partial design 
vector of the active (i.e., not fixed) input variables. It automatically populates 
fixed parameters with default values so that, when the run method is called by 

search optimizations, those algorithms must only deal with the fewest possible 
number of dimensions in the design space. It also handles turning the design 
vector into an input-output system structure. The run method is also useful as a 

standalone utility for evaluating the system model at a given design point as 
defined by the baseline value parameters of the design variables. 

>> o.toggle 

                     n    io    frdm      val        unt       distro  

                     _    __    _____    ______    ________    _______ 

    range            1    in    free       2500    nmi         uniform 

    passengers       2    in    free        100                uniform 

    grossMass        3    =     free     4409.2    lb          uniform 

    sfc              4    in    free        0.5    lb/hr/lb    pert,L8 

    maxLiftToDrag    5    in    fixed        17                pert,L3 

Toggle fixed/free (return to exit): 4 
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Figure 4-15. Routine used by run method for evaluating design points. 

When a user is examining only a single design point, however, is it significantly 
more meaningful if the result makes sense, or in other words, is a closed design 
where. For example, the estimated gross weight input should equal the 
calculated gross weight output. For this purpose, for designs that have these 
types of closing variables, the closedesign method is useful for analyzing a 

given design point (reverting to the run method if there are no closing type 

variables). 
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4.5 WISDOM approach implementation 

The bulk of the WISDOM approach methodology presented in Chapter 3 is 
brought to practice as methods of the design space class as described in this 
section. 

4.5.1 Batch analysis for sweeps and Monte Carlo analysis 

Instead of evaluating just a single design point at a time, there are use cases for 
evaluating many design points at once. This is one of the instances where 
significant advantage can be taken of MATLAB’s vectorization discussed in 
Section 4.1.3.6. The first use case is for sweeps of parameters, usually to make 
a simple plot of sensitives to one design variable, though vectors of multiple 
variables can be provided to the batchrun method for this purpose. The same 

method can also be used for running Monte Carlo simulations to understand the 
impacts of the assumption type parameters that are active in the design space, 
as discussed in Section 3.3.2. There is also a mechanism to run all 
combinations of the extrema of assumptions to ensure that the full spectrum of 
possible results is captured. 

In all cases, many design points are run using vectorized inputs to the system 
model function. This can still be done even if there is a closing type of design 
variable present via the automatic implementation of a vectorized root finding 
method, in this case a vectorized bisection method (Sartorius, 2015). If the 
system model function is not built in a vectorized way, or if there is more than 
one closing type of variable, then other approaches must be used. For 
parameter sweeps, the closedesign method can be used in a loop, and for 

Monte Carlo analysis, the searching method implementation of WISDOM 

optimization discussed below can be used with all parameters fixed except for 
the uncertain stochastic assumptions introduced in 3.4.2.3. This is a special 
simplified case of WISDOM searching that results in a Monte Carlo simulation. 

4.5.2 WISDOM searching and optimization 

The primary impetus for creating the WISE framework was to implement the 
WISDOM approach that is the primary subject of this work, and the design 
space searching method is the routine that executes it. Once a design space 

has been set up, with design variables and system model function set, the 
searching method implements search optimization that minimizes the 

objective function subject to constraints as described in Section 3.4. If running 
the method with only a single starting point, the simplified unvaried objective 
function of Equation (17) is used. With multiple starting points, the routine 
selects randomized inputs according to the specified starting distributions, 
generates randomized preference map uncertainty scaling factors, then 
minimizes the objective function defined in Equation (20) for each case one by 
one in a loop, as shown in Figure 4-16.  
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Figure 4-16. Operations used by searching method to generate a variety of 

optimized designs. 

The number of WISDOM constrained optimization search cases, and therefore 
the extensiveness of variation introduced by using different combinations of 
starting points, uncertainty scaling factors, and stochastic assumption 
parameters, is specified by the designer and is a compromise between 
computation time and breadth of exploration. Since this can be a time-
consuming method, especially with an expensive system model function or with 
many starts to run, features are in place to back up, interrupt, and restore large 
runs so that computational work is not lost. 

Because the WISDOM approach is relatively agnostic to the optimization 
algorithm used (though it should be a deterministic local search algorithm), the 
searching method can easily use different algorithms. Algorithms 

implemented include those supported by the Optimization Toolbox 
(Optimization Toolbox (Version 8.2), 2018) fmincon function, such as interior 

point (default), sequential quadratic programming, or active set algorithms. A 
constrained Nelder-Mead simplex search algorithm (D’Errico, 2012) is also 
implemented as an option (with fmincon used to quickly find a feasible starting 

point for algorithms that require it). 

The behavior regarding closing the design can also be changed as an option for 
the method, which can affect speed or results. Sometimes stability can be 
increased by making sure that search start points are closed design points. 
There may also be cases where it is desirable and worth the significant added 
computation time to close every single design point analyzed at every internal 
iteration of a search algorithm, so this option is also present. 

Another setting that can affect both the speed of searching and the results of 
the search itself is the so-called “ratcheting” functionality. This is an additional 
alternative approach to WISDOM searching whereby ‘soft’ lower and upper 
bounds are automatically inferred based on changes in slope of preference 
maps. Though normally unused and not required to yield useful results, if the 
design space ratchetBounds attribute is set, then the WISDOM method will 

be modified such that if the starting point for a parameter is on the valid side of 
an inferred bound, then that inferred bound will be enforced for the search with 
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Scale preferences

Constrained optimization
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Repeat
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that starting point. This is generally controlled at the design space level, but the 
behavior can be turned on or off individually for design variables as well. 

4.5.3 Methods for understanding WISDOM results 

The output of the searching method WISDOM implementation is a large set 

of designs optimized using slightly different starting points, objective functions, 
and assumptions. The design space class has some methods designed to help 
process these results to help the stakeholders harvest useful information in 
order to facilitate design decisions and the next iteration. 

 Results structuring and handling 

One important aspect of design iteration is documentation, and part of that 
documentation is keeping track of past iterations, their results, and the methods 
and assumptions that led to those results. To support this, the design space 
class has some features related to storing not only the results of the current 
iteration, but also for storing results for reference.  

A structure of results as generated by the WISDOM searching method is 

automatically stored in the design space results attribute. This is a structure 

that, in addition to containing some information related to the run that generated 
the results (such as a timestamp, search settings, and run duration), contains 
several sets of design points and related data (such as active preference map 
segment warning flags) filtered by different criteria. The standard fields for 
results are: 

• all: all design points. 

• valid: design points from searches that converged successfully to 

closed designs. 

• dominant: valid design points that are not Pareto dominated based on 

unscaled preference map values. 

Being a structure, additional fields can be added as more post-processing 
routines filter out other interesting sets of design points. 

To help track and document iterations, the sendresultstocache method 

sends the current results to the stack stored in the cachedResults attribute, 

along with date, time stamp, and optional iteration notes. The results attribute 

is then automatically cleared and made ready to store the results of the next 
iteration searching run. Alternatively, the appendresults method can be 

used to append a set of results to another to make a single larger set of results.  

Finally, the buildresulttable method turns a set of results into a data table 

that lists all design points and all design parameters. This table is not only 
useful for displaying design points in MATLAB, but an additional formatted table 
is created that easily pastes into a spreadsheet, including with useful headers. It 
is often the case that a spreadsheet, especially with, for example, cell coloring 
based on parameter values, can be an excellent approach to understanding and 
filtering a finite set of different design options. 
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 Visualization 

Visualizing a multi-dimensional design space can be quite useful for enhancing 
the understanding of the system for stakeholders. The built-in routine for doing 
this in the WISE framework is the scattermatrix method. This method 

implements two separate categories of visualization, but both are based on a 
matrix of two-dimensional plots such that every parameter of interest is plotted 
against every other. An additional useful element is plotting histograms of each 
parameter on the diagonal of the matrix. 

Sometimes the density of resulting design points can be valuable, in which case 
a corner plot, as implemented by Adler (2018), is available for visualizing the 
areas of the design space where search results may tend to cluster. The 
primary option, however, is a scatter matrix, whereby design points are plotted 
as icons whose color and size can be used to indicate any additional attributes 
of the design points, for example to indicate designs with preference map 
segment warning flags, designs with better preference values, etc. Significant 
additional value comes from this type of plot via interactively brushing the data, 
which lets stakeholders get an extra intuitive understanding for the higher 
dimensions of the design space. Scatter matrix examples are shown in Chapter 
5 in Figure 5-3, Figure 5-4, and Figure 5-12.  

 Clustering 

From a large set of results, often a key step in iteration and decision making is 
reducing that set to only a handful of representative design points from which a 
selection or selections can be made. In rare cases, a useful first step in paring 
down a set of design points to a manageable few can be to simply eliminate 
design candidates that are Pareto dominated by other designs, as is done 
automatically as part of the searching method. This is rarely highly fruitful in 

significantly reducing the set, however, as the implementation of the searching 
is normally quite efficient in returning primarily Pareto-efficient sets. In other 
cases, just looking at points in the design space where many searches 
converged to, i.e., the ‘popular’ areas of the design space, can be useful. 

Other approaches to yielding a small and succinct set of design points hinge on 
identifying clusters of design points. There are many existing clustering 
algorithms, and several were evaluated for use with the types of data sets that 
are produced by this method. In this case, effectiveness of an algorithm is 
based on clustering design points into groups that are qualitatively different from 
each other, what might be called different ‘subspecies’ of designs. The most 
useful algorithms are also those that preserve outliers, since outliers are 
frequently interesting design points. 

The off-the-shelf algorithm examined yielding the best results regarding 
effectively identifying clusters of design points is Hierarchical Density-Based 
Spatial Clustering of Applications with Noise (HDBSCAN) (Sorokin, 2018). 
However, this algorithm still requires some tuning for each use case, and the 
field of clustering in general is geared more toward training models that can 
identify future points rather than focusing solely on the data set at hand. So, 
some other clustering ideas were explored.  



  4 Implementation 
 

Sartorius  94 

 

One new solution created for this task is simple but promising for its robustness 
and quality of the results. This algorithm builds clusters of all members that are 
neighbors, neighbors of neighbors, neighbors of neighbors of neighbors, and so 
on. Neighbors are determined by their distance apart (as determined by some 
norm such as the Euclidean norm) being less than some percentile threshold. 
There are other settings, such as the minimum number of neighbors before a 
point is no longer considered an outlier or the scheme used to assign a point 
when it could belong to multiple clusters. However, the distance threshold is the 
main parameter for tuning, but even then, significant tuning is not usually 
required to achieve useful clustering results. Using clustering to reduce a large 
set of designs to a small number of distinct alternatives is shown for both 
example cases presented in Chapter 5. 

 Scrutinizing individual design points 

Clustering may yield a small and manageable set of design points, but it may be 
desirable to look deeper into those points to gain more insights before decisions 
are made for the next iteration. The design space postevaluation method 

does just that by re-running the system model function with all additional system 
model parameters (stored in the extraModelArguments attribute) passed to 

it, as discussed in Section 4.2.3. It then runs the resulting input-output system 
model structure through each specified additional system analysis function 
(indicated by array of function handles stored in the extraSystemFunctions 

attribute), which each in turn may add to the information contained in that 
structure. A flowchart of this process is shown in Figure 4-17. The user is 
alerted to any preference map segment warning flags at this time as well. 

 

Figure 4-17. Method for more in-depth analysis of a design point. 
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To round out the explanation of the WISDOM technique and its implementation 
in the WISE framework, two example cases are presented to illustrate the 
usage, the workflow, and most importantly, the artifacts produced and results. 
The regional airliner introduced in Chapter 3 to illustrate the types of information 
captured by the WISDOM technique is taken through an iteration as the first 
example case. The second example case, a more rigorous test of the approach 
with more parameters and complexity, is the early investigation of a possible 
redesign of the wing tip of an existing narrow-body airliner, including the 
possibility of adding a winglet. 
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5.1 Regional airliner 

Recall the regional airliner market analysis and initial sizing scenario introduced 
in Section 3.3. In this fictional case, a manufacturer of small business jets is 
seeking to enter the regional airliner market with an all-new aircraft design. For 
this illustration, a simple system model function is built to analyze a given 
defined aircraft, and a design space is set up with design variables and 
preference maps. The results of an iteration show various artifacts useful for 
gaining insight and driving decisions, particularly when compared to a more 
traditional optimization method. 

5.1.1 System model 

The Breguet range equation and the fuel fraction sizing analysis method used 
have been described in Section 3.3.1, including the empty weight fraction trend 
parameters, 𝐴 and 𝐶. The payload mass is assumed to be 95 kg per passenger, 
including baggage, cargo, cabin furnishings, etc. The crew mass is assumed to 
be 80 kg per crewmember, which includes two flight deck crew plus a number of 
cabin crew that is an affine function of the number of passengers based on the 
flight attendant requirements of 14 CFR § 121.391. 

The system model implements a calculation of the fuel fraction based on the 
Breguet range equations of Equation (10) and an IFR (instrument flight rules) 
mission profile, shown in Figure 5-1, that includes a diversion of 200 nautical 
miles plus a 45-minute reserve.  

 

Figure 5-1. Simple mission profile for regional airliner system model. 

The mission profile model uses certain fixed assumptions for flight speed, fuel 
margin, weight fractions for non-cruising, non-loitering flight phases, and other 
parameters as listed in Table 5-1. There is no range credit for climb or descent.  
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Table 5-1. Mission profile parameters and assumptions. 

Parameter Value 

Cruise speed 450 KTAS 

Cruise & diversion condition 
√3

2
𝐿 𝐷⁄

𝑚𝑎𝑥 

Reserve condition 𝐿 𝐷⁄
𝑚𝑎𝑥 

Startup & taxi mass fraction 0.98_ 

Takeoff & climb mass fraction 0.985 

Descent & landing mass fraction 0.99_ 

Additional fuel margin 6% 

Other important elements of the regional airliner system model are input 

handling to allow usage as a script as discussed in Section 4.2.3 and the setting 
of additional simple fields that represent useful information for easy access 
later, for example useful load or empty weight. The full source code for the 
system model and mission profile are in Appendix B1. 

5.1.2 Design variable definitions 

Only six DesignVariable objects must be defined for this simple example 

case. A tabular display of these variables was shown in Figure 4-13. Full source 
code for the design space setup and design variable definitions is in appendix 
B2, and a graphical display of the design variables in the design space, as 
produced by the plot method, is shown in Figure 5-2. Note that the plots with 

grayed-out background signify design variables that are fixed at their nominal 
value for the iteration. In this case, the parameter assumption type variables are 
kept fixed for the initial searching runs. Also important to the visualization of all 
the design variables together is that all of the preference maps use the same 
scale for all the ordinate axes. 
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Figure 5-2. Regional airliner design variable plots. 

5.1.3 Searching with WISDOM approach 

After the setup of the design space, searching the design space using the 
WISDOM approach is a straightforward single call to the searching method, 

e.g. o.searching('nStarts', 500). For these five hundred searches and 

the default searching settings, 235 system model function evaluations were 
required on average for each search, for a total run time of a couple of minutes.  

The design space in this example is particularly small, so many traditional 
options for visualization are possible, for example a three-dimensional scatter 
plot. The scattermatrix method, which easily scales up to higher 

dimensions, yields the array of plots shown in Figure 5-3 below. A handy step 
can be to use the custom clustering algorithm or HDBSCAN to sort resulting 
design points into their various ‘subspecies.’ In the case of Figure 5-3, color is 
used to signify membership in different clusters as determined by the custom 
clustering algorithm described in Section 4.5.3.3 (outliers are light gray).  
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Figure 5-3. Regional airliner results visualization with clustering. The main 
diagonal shows the preference maps for reference and histograms to indicate design 

point distribution and density. 

While this type of visualization can be useful for gaining a greater understanding 
of the nuances of the design space, sometimes the best tool for facilitating a 
conversation between stakeholders is a fair and quantitative comparison 
between a small number of design alternatives. In the scatter matrix in Figure 
5-3 above, marker size is used to indicate the design points that are most 
representative of their respective clusters as measured by being closest to the 
mean position of the cluster.  

Utility methods make it straightforward to turn a set of design points into a data 
table, including in a format that can be easily exported outside of MATLAB, for 
example to spreadsheets. The type of tabulated data of the cluster-
representative design points such as in Table 5-2 below can be a useful artifact 
to facilitate discussions and decision-making between stakeholders. Additional 
columns in exported data (not shown) include preference map segment flags, 
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information on whether the design point is closed and valid, and if the design 
point is Pareto dominated by another design point.  

Table 5-2. Table of design points representative of regional airliner clusters. 

∑p(S(x)) Range 
(nmi) 

Passengers Gross weight 
(lb) × 103 

Utility 
(lb-nmi) × 106 

-0.58 3609 100 182.4 76 

-0.47 2105 100 110.0 44 

-0.39 3302 75 127.5 52 

-0.24 2029 75 83.6 32 

-0.09 3912 135 264.6 111 

0.72 4000 180 348.1 151 

Note that even when the assumption type parameters are allowed to vary in a 

search, this type of clustering analysis and the representative design points are 
still useful and can provide insight. With large searching sets and PDFs of the 
assumptions that have a small standard deviation, the cluster-representative 
design points will be close to a fair comparison using similar assumptions. Or, 
sometimes different assumptions will lead to a multimodal result, whereby the 
assumptions are a determining factor in the optimal subspecies (i.e. cluster 
membership) for a search. 

Since the assumption type parameters were fixed above, variations in the found 
optimum results came only from variation in starting points and relative 
uncertainty scaling of the preferences. When the uncertain assumption type 
parameters for specific fuel consumption and maximum lift-to-drag ratio are free 
to be randomized for each search, significantly more variation is introduced. 
The resulting design points for 2000 searches is shown in Figure 5-4. For this 
visualization case, color is used to visualize the sum of preference penalty 
values (unscaled by uncertainty factors).  
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Figure 5-4. Regional airliner results visualization with data brushing. 

Both because of the significant additional variation and because it is now a 
higher-dimensional design space to visualize, data brushing becomes a 
powerful tool for interactively exploring the design space and gaining a deeper 
understanding. As an example, the brushed data (magenta markers) in Figure 
5-4 highlight design points resulting from a narrower range of possibilities for 
technical assumptions for specific fuel consumption and maximum lift-to-drag 
ratio. 

5.1.4 Comparison to value function methods 

As discussed above, one of the key results of applying the WISDOM approach 
to this problem is a small set of alternative design points that are all valid 
designs that could each be a viable result, depending on preferences and 
requirements. Each of these possible designs, such as those in Table 5-2 
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above, is optimized for the given circumstance. The same regional airliner 
example case can be used in a much more conventional optimization approach 
for an illustrative comparison to using the WISDOM approach for early design 
space exploration and optimization. 

One of the most common value function methods for multi-objective 
optimization is the weighted sum method (as discussed in Section 2.4.2). The 
WISE framework can be easily used for a weighted sum approach by simply 
ensuring that all preference maps are linear and that all assumption type 
parameters are fixed. Using a least squares fit to linearize the preference maps, 
the optimum result (no matter the search starting point) is an aircraft with a 
capacity of 50 passengers and a 4,000 nautical mile range. Preference map 
uncertainty scaling can be used to mimic the full range of possible ‘tunings’ of 
the parameter weights for the weighted sum approach. Even when doing so, all 
resulting designs, as is a common pitfall with the weighted sum method, are still 
pinned against the hard constraints for passenger capacity (50 or 180 
passengers) or range (400 or 4,000 nautical miles). The cluster-representative 
designs are shown in Table 5-3 below (short-range, high-capacity designs were 
infrequent and considered outliers by the clustering algorithms). To drive the 
optimum to any sort of compromise solution, either significant effort must be put 
into careful fine-tuning the objective weights, or the hard constraints must be 
changed. 

Table 5-3. Regional airliner design points from weighted sum method. 

Range 
(nmi) 

Passengers Gross weight 
(lb) × 103 

Utility 
(lb-nmi) × 106 

4000 50 124.4 42 

4000 180 348.1 151 

400 50 38.5 4.2 
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5.2 Wing redesign with winglet 

The regional airliner example case provides a simple illustration of the 
mechanics of the approach and the framework, and the case is simple enough 
to allow straightforward inspection of the results to verify that method yields 
sensible designs. The next example case, originally presented by Sartorius and 
Hornung (2018), goes further towards testing and demonstrating some of the 
advantages of capturing more information early and putting it to use with 
optimization. The scenario in this example case is that a wing redesign is being 
considered for an existing, in-production narrow-body airliner.  

The objective of the study is to determine, with minimal expended effort, what a 
redesigned wing might look like, what gains may be possible in performance, 
and what compromises are likely necessary to achieve those gains. This 
scenario is similar to the Boeing 737-700 airliner, and wing geometry for the 
example case were measured from 737-700 drawings (Jackson et al., 2004) for 
both the baseline wing and for the version of the 737-700 that features a winglet 
(Figure 5-5).  

 

Figure 5-5. Wing of Boeing 737-700 narrow-body airliner with winglet. 

5.2.1 System model 

The modeling used for this example case is simple and does not capture the full 
physics of the system, as is typical in early design studies. While simple 
conceptual design methods and models are used to estimate other parameters 
of interest such as weight or parasite drag, the employed vortex lattice method 
is a relatively fast and simple analysis method that can still effectively capture 
the effects on induced drag and aerodynamic loads due to variations in three-
dimensional wing geometry and twist. The primary analysis for lift, induced 
drag, and loads is therefore based on the vortex lattice method as implemented 
in Athena Vortex Lattice (AVL) (Drela & Youngren, 2017). For this study, the 
modifications to the wing are limited to the tip section that is entirely outboard of 
the aileron and slat. Figure 5-6 shows the half-wing AVL model of the baseline 
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wing along with arrows marking the wing station outboard of which 
modifications are considered. 

 

Figure 5-6. Narrow-body airliner baseline half-wing modeled in AVL. The tip region 
subject to redesign is marked. (Sartorius & Hornung, 2018, p. 6) 

Since it is a very early design study, additional simplifications are made for the 
modeling. The key results of the modeling are the changes in performance 
rather than absolute performance, so modeling that is somewhat inaccurate is 
acceptable if it appropriately captures the correct trends. One simplification is 
that the vehicle is analyzed at a single flight condition, flying at Mach 0.78 at 
38,000 ft at a weight of gross weight minus five tonnes (about one third of fuel 
capacity). Two conditions are analyzed with AVL at this flight condition: one at 
level cruise lift coefficient to determine induced drag and another at a high load 
factor to determine bending loads. Other simplifications are that airfoils with 
zero camber are used for the vortex lattice model and the main wing is 
untwisted from root to tip. For numerical stability, winglets with span less than 
five centimeters are not included in the vortex lattice model. 

The main design freedoms available to adjust are the wing tip panel trapezoidal 
geometry, the winglet area, and the winglet rigging (twist and incidence). The 
weight change of the wing is based on an assumed weight per unit planform 
area, and parasite drag change is based on an assumed average section drag 
coefficient. Table 5-4 shows a summary of the modeling methods, with the 
source code in Appendix B3. 

Table 5-4. Wing redesign study modeling summary. 

Calculation Method 

Lift & aerodynamic loads Vortex lattice (AVL) 

Induced drag Vortex lattice (AVL) 

Parasite drag, fuselage and tail Constant 

Parasite drag, wing & winglet Fixed drag coefficient × reference area 

Wing weight Parameter × reference area 

Winglet weight Parameter × reference area 
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Other key modeling outputs of interest are the change in drag at the cruise 

condition and the change in the root bending moment at the high load factor 
condition. At the limit load factor condition, some bending relief by the masses 
of the wing tip and winglet is accounted for, but no alleviation due to deflections 
is included. 

5.2.2 Design variable definitions 

A total of sixteen design variables were defined for this example case, shown in 
Figure 5-7 below.  

 

Figure 5-7. Wing redesign design variables. 

This case exemplifies the versatility of the structure of the design variable class, 
as it contains a mix of design variables that are inputs and outputs, with and 
without preferences attached. Many of the inputs with no preferences attached, 
such as those for the winglet rigging, are simply to allow for any resulting design 
points presented to stakeholders to be optimal for the given conditions. Many 
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inputs also feature upper and lower bounds simply for keeping the analysis in a 
reasonable domain where the analysis will be computationally stable. Other 
design variables are kept fixed (in addition to some fixed parameters hard 
coded into the system model). Some parameters are simply included as a likely 
output variable of interest to bring to the surface for discussions without any 
specific preference information or bounds attached (hence the blank plot for the 
change in the weight of the wing tips). Some of the more interesting design 
variables for this example are discussed in more detail below. Source code for 
all design variable definitions is in Appendix B4. 

 Change in cruise drag 

For this case, all preference maps are drawn keeping in mind changes in cruise 
drag as an explicit unit of value or penalty for the ordinate. A reduction of cruise 
drag of one percent is used as one unit of ‘currency’ when recording the 
preference. That is why the preference map for change in cruise drag is not only 
linear with a unit slope, it also is the only preference map with an uncertainty 
factor of unity, indicating no uncertainty, as cruise drag change is the anchor for 
other preferences.  

 Loads and structures 

One of the reasons that the system model can be built very quickly with very 
little effort is because the system model features no structural analysis at all. 
Instead, captured preferences for winglet structural aspect ratio (aspect ratio 
using structural span instead of span normal to the freestream) and wing root 
bending moment (Figure 5-8) act as surrogates for any structural modeling. 
Increases in root bending or winglet structural aspect ratio are progressively 
penalized. Any root bending moment increase of 10% or more is flagged as 
highly likely to require structural redesign effort that is more major than might be 
worthwhile in scope of the project. 

 

Figure 5-8. Preference maps for root bending moment and winglet structural 
aspect ratio used as surrogates for structural modeling. 

 Spar alignment with winglet root 

It is desirable that the major structural elements in the wing do not have to 
follow convoluted load paths in the redesign. To capture this desire, preference 
maps are attached to locations on the root of the winglet where the forward and 
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aft main wing spars align (Figure 5-9). In the case that a main wing spar is close 
to being aligned with the thicker areas of the winglet root section, the slopes of 
the preference maps in this region help drive the search toward designs with 
better alignment. 

 

Figure 5-9. Preferences driving toward favorable structural alignment and load 
paths. 

 Weight changes 

At the outset of the study, it is not clear if an increase in gross weight of the 
aircraft is a possibility in the scope of the project. The technique allows for 
moving forward with both possibilities given equal consideration. A discrete 
design variable (Figure 5-10, left) that captures this is a simple input flag 
determining if any additional wing weight should result in a direct increase in 
gross weight or, alternatively, a decrease in useful load, as measured in 
passengers. A gross weight increase is indirectly penalized in the change in 
root bending discussed above, while the preference against any loss in useful 
load is captured in its own design variable (Figure 5-10, right). 

 

Figure 5-10. Capturing binary possibilities of gross weight increase or useful 
load decrease. 

 Span 

If a winglet is present, the aerodynamics of the wing should be allowed to be 
optimized to the furthest extent possible, so there are therefore no explicit 
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preferences on the winglet geometry. The exception that the winglet span 
preference map (Figure 5-11, left) captures is that if considering designs that 
have only a very tiny winglet, it is desirable to simplify the design and reduce 
part count by not having any winglet at all. 

For various reasons, ranging from hangar space to roll and yaw inertia to tip 
strike angle, a shorter overall wingspan is desirable, all other factors being 
equal. Hence, the preference map on overall wingspan (Figure 5-11, right) has 
a gentle positive slope to capture this incentive. In addition, the overall aircraft 
wingspan preference map captures the significant penalty for exceeding the 
ICAO Code C span limit of 36 meters (and with a hard bound at the Code D 
limit). What is captured is the designer instinct that an optimized aircraft that 
features a wingspan only slightly above 36 meters is unlikely to be a sufficiently 
superior product to one with wings ‘clipped’ to be within ICAO Code C. 

  

 

Figure 5-11. Preferences on winglet and total span. 

5.2.3 Searching results 

This scatter matrix visualization of the results for the wing redesign study is 
shown in Figure 5-12. Clustering analysis shows some distinct subspecies of 
interest, with some interesting variation within clusters as well. Note that 
parameters related to the weight changes discussed above in Section 5.2.2.4 
were not included for the clustering analysis, so each cluster contains designs 
both with and without gross weight increases.  
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Figure 5-12. Wing redesign results visualization with clustering. 

The wing geometries for the cluster-representative designs (indicated with 
larger markers in Figure 5-12) are shown in Figure 5-13, with data for each 
representative design in Table 5-5. In this case, the WISDOM search has 
yielded a variety of interesting potential alternatives. The design in Figure 
5-13(a) is representative of design options that, once having violated the ICAO 
Code C span limit, are very high span, giving a significant drag reduction in 
exchange for very high root bending moments (flagged as possibly 
unmanageably high). Figure 5-13(c) shows a design representative of a very 
simple redesign of the wing tip that does not add a winglet, but rather is simply 
a small extension up to 36-meter limit for moderate drag reduction. In this case, 
the tuning of the clustering algorithm resulted in two representative designs that 
both feature winglets. Both utilize the full 36 m span, but the design in Figure 
5-13(b) features a much smaller winglet (and slightly less drag reduction) than 
the design in Figure 5-13(d). 
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Figure 5-13. Representative alternative wing geometries. Triads are one meter for 
scale. 

Table 5-5. Data for representative alternative designs. 

Design ΔWempty ΔMroot ΔDcruise Span 

a 1.04% 15.0% -7.5% 42.5 m 

b 0.53% 5.3% -4.0% 36.0 m 

c 0.23% 3.5% -2.4% 36.0 m 

d 0.76% 6.1% -4.5% 36.0 m 

These kinds of results represent the end of one iteration of the WISDOM 
searching process, to be used to inform the next iteration. For example, with the 
given results, the benefits of a high-span design such as in Figure 5-13(a) are 
quantified, potentially justifying exploration into more detailed structural analysis 
to better understand cost and feasibility. Or, it may prompt exploration into 
clever ways to circumvent span limits such as folding wingtips. The marginal 
benefits of the design of Figure 5-13(c) may be weighed against doing nothing 
at all. The alternatives that feature a winglet may be further refined with more 
design freedoms added to the setup to optimize airfoils, planform shapes, and 
riggings.   
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By implementing a new approach to achieve the objectives of capturing 
stakeholder knowledge and automating the integration of that information into 
the design iteration process, several benefits were observed. In this chapter, 
some of those benefits of the method and implementation developed for this 
work are discussed, along with some of the weaknesses. The motivations and 
objectives are related to the key results based on experience with the technique 
and tools so far. Experience has also revealed some pain points that will lead to 
likely future work to address them and/or increase capability.  
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6.1 Expected benefits 

Many of the expected benefits of the WISDOM approach, the primary subject of 
this work, can be discussed in the context of the early design example cases. 
These benefits have been observed anecdotally in the test cases described in 
this document as well as additional cases, for example a personal homebuilt 
airplane case used for software development and testing. Experience utilizing 
the approach in the various cases has even indicated additional benefits not 
originally intended with the project. 

6.1.1 Allocation of resources  

Part of the motivation for undertaking this body of work was the potential to 
increase the efficiency of design processes in early design. One of the key 
benefits of the approach is the relatively low amount of effort needed to build 
preference maps compared to alternate activities where resources might be 
placed. Because the approach simply captures information that is already 
available, it provides an alternative path to putting significant effort, with 
associated diminishing returns, into market research to lock in requirements, 
building more in-depth and elaborate system models, or getting better technical 
assumption estimates. 

The wing redesign example case system model described in Section 5.2.1 was 
written and tested in a matter of hours, benefitting from simple models and 
existing tools for integration with AVL. The resulting wing tip geometries in the 
use case presented here are quite reasonable and realistic without requiring 
any major effort in order to have informed analysis for structures or weights that 
normally constrain such a design. The preference maps used as surrogates 
were created using exclusively a priori knowledge and therefore did not require 
any research to develop, and the only effort was recording those surrogate 
preferences in the setup script. There was no need to edit or tune preference 
maps after initial searches to get reasonable results, either, as the uncertainty 
factors thoroughly capture the ‘roughness’ with which preferences are recorded 
at early stages of design.  

6.1.2 Facilitating effective design iteration 

It was found that the approach sometimes forces stakeholders to think more 
critically than they normally might. If there is foreknowledge that the approach 
will be used, for example, then this will influence how the system models are 
built, which assumptions are brought to the surface versus buried in the 
analysis, and which methods and analyses to choose. The activity of building 
preference maps is also a forcing function for stakeholders to introspect and 
sometimes gain insight about their own preferences and about the engineering 
and technical issues associated with a problem. 

On the other end of the WISDOM process, the important next step after 
searching is for the designer and other stakeholders to use the results, along 
with the available artifacts that help facilitate conversation, to make human-in-
the-loop design decisions to narrow down the design space and allow 
proceeding with the next iteration. The technique enables this by generating 
qualitatively distinct alternatives and presenting primarily those that are likely to 



  6 Conclusion 
 

Sartorius  113 

 

be of interest for further exploration or that reveal new insights about the design 
problem. In addition, through tools such as clustering and the scatter matrix 
visualization with interactive data brushing, the framework enables exploration 
and understanding of the quantitative tradeoffs between design alternatives and 
the driving issues. These sets of information yield the insights needed for 
accelerated design cycles, quick triaging of resources, and informed design 
decision-making. Also, because part of the information acquired in an iteration 
is the effects due to uncertain assumptions, the phrase “depending on the 
assumptions” becomes less frequent and design reviews and conversations 
become more productive. 

Another way that the approach helps facilitate more effective iteration and 
decision-making is by presenting equally ‘fair’ alternatives in the results. In other 
words, a wide search through the design, requirements, and assumptions space 
still presents designs that, given their conditions, are optimized with the same 
fidelity as the others. Importantly, compared to more ‘hunt and peck’ 
approaches to design iterations, no time is wasted examining Pareto-dominated 
designs or designs that are not closed (possibly due to infeasibility). 

6.1.3 Early optimization  

One realized benefit that was not an explicit objective of the work was an ability 
to use optimization much earlier in a design process than would normally be 
appropriate. Optimization is a powerful tool, and one of its key benefits is 
searching in higher dimensions than humans are capable of similarly 
comprehending. The nature of the WISDOM approach is that requirements, 
design parameters, and assumptions are intentionally left unfixed for as long as 
possible, so not only is optimization essential, by allowing for a ‘messier’ 
problem setup than traditional optimization approaches, optimization can be 
used earlier to get closer to optimal designs. 

Normally, optimization is a “garbage in, garbage out” process that requires the 
modeling of the system and the objectives to faithfully capture the physics of 
reality. With early design studies, the system model and/or requirements are 
normally too immature to be appropriate for use with optimization. With the 
technique presented in this work, however, the process can proceed under 
significant but explicitly captured uncertainty in modeling and requirements. As 
an example, when the winglet study case was run as a weighted sum multi-
objective optimization, the resulting design point was a high span and very high 
bending moment design similar to that in Figure 5-13(a). With the WISDOM 
approach, “garbage in” is now allowed if, instead of putting significant effort into 
refining the input to optimization, a small effort is put into capturing the 
information on hand. 

One of the other obstacles to using optimization earlier in design processes is 
simply the effort required to set up optimization and the inflexibility of that setup 
in keeping up with a quickly evolving design. With the WISE framework, setting 
up an optimization problem, especially one that takes care of the key speed-
related pitfalls that can otherwise take some effort to avoid, is simple and 
straightforward to execute without mistakes in implementation. So, the 
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framework is quite a useful tool for a traditional optimization problem, even 
without taking the time to capture granular preferences and other knowledge.  
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6.2 Pitfalls and drawbacks 

The primary objectives of this work were to formally capture additional 
information on hand and to put that information to good use in early design, and 
it should be acknowledged that there are potential alternative approaches to 
accomplishing either of these objectives. In the course of developing the 
specific approach that is the subject of this work, some alternatives were 
examined or trialed and not selected for various reasons. While the approach 
presented here has shown to yield many benefits, there are also some 
drawbacks, weaknesses, and pitfalls to highlight. 

The learning curve can be one issue with both the WISDOM approach to design 
space exploration and the WISE framework and workflow. Because it presents 
a slightly different way of thinking about a design problem, it takes some 
practice to get used to thinking critically and introspecting about each 
requirement, how the analyses are formulated, and so on. What can also take 
some getting used to is the extent to which the designer and other stakeholders 
must acknowledge and accept a lack of certainty and a recognized level of 
incorrectness that is being carried through the design iteration process. Without 
this, there is a danger of falling into the trap of spending too much time trying to 
get a ‘correct’ optimization setup when it usually is much more efficient to simply 
use uncertainty factors to avoid this type of paralysis.  

Various forms of over-capturing information can also have detrimental effects 
on the usefulness of the approach. One instance is the danger of double or 
triple bookkeeping of preferences. Notice for example that in the preferences in 
the wing redesign example of Section 5.2.2, there is no preference map 
attached to the magnitude of the span extension of the wing tips because the 
preference is fully captured in the preference map for the overall aircraft span. 
Fortunately, the method is somewhat robust to small amounts of double 
bookkeeping, but it primarily relies on the diligence of the designer to recognize 
and avoid the issue. 

The root of other adverse effects from over-capturing information can often be 
traced to the nature of the underlying optimization algorithms employed and 
how their behavior may worsen the further away the problem is from being 
smooth and convex. In designing a personal airplane for one’s own personal 
use, for example, a preference map on aircraft range may have two or three 
distinct steps to reflect the distances of specific frequent destinations from a 
known home airport. There may also be specific discontinuities and steps in the 
preference map for payload capacity based on precisely known weights of one’s 
self and spouse, for example, such as in Figure 6-1. However, taking this same 
idea of capturing such granular preferences to the extreme would be, for an 
airliner example, to have a step change in value every time a new city pair in an 
airline’s network can be serviced or have a step change in value whenever a 
single additional passenger seat can be added. Instead of yielding richer, more 
useful, and interesting results, this can lead to useless results due to effectively 
adding more noise than information to the design problem presented to the 
optimization algorithm.  
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Figure 6-1. Granular preference map for payload capacity of a personal-use 
homebuilt aircraft. 

The handling of discrete variables in the framework requires compromises to 
make them compatible with search algorithms that are not normally designed to 
accept them. Therefore, over-capturing information in the form of discrete 
variables can also lead to less useful results. The resulting values of discrete 
input variables is driven entirely by their associated starting probability density 
functions, so these parameters are determined in more of an ‘open loop’ fashion 
than from an informed search. Discrete output variables can be very useful for 
presenting information to human stakeholders, but because they present such a 
sharp step in the objective function that the optimization algorithm must work 
with, discrete output variables with attached preferences are often detrimental 
to the convergence performance of the algorithms. 

Finally, one of the biggest downsides to the approach is the time required to 
execute a search. One of the features of the approach is that is allows retaining 
more design freedom later into the design process, but this also means that the 
optimizations being solved tend to have some more dimensions than the 
equivalent traditional design optimization setup might feature. This means that 
each search may be marginally slower, but the major source of long search 
times is the requirement to conduct dozens to hundreds of these sub-searches 
for each WISDOM iteration so that a significant sample of starting points, 
preferences, and assumptions can be captured.  
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6.3 Future potential 

Initial experience using the WISDOM technique and WISE framework for 
development test cases, example cases, and other projects in industry has 
shown enough promise to warrant further development and exploration. The 
architecture of the framework makes it straightforward to implement changes. 
Continuing to use the approach and framework for real-world projects will drive 
efforts for further improvements and new capabilities.  

6.3.1 Improvements 

Recall from Section 4.1.1 that the requirements and drivers for creating the 
WISE framework center around utility, ease and flexibility of use, and speed. 
Most anticipated improvements will focus on increasing applicability to later 
stages of design, where it is anticipated that the usefulness of the technique will 
diminish as uncertainty is significantly reduced, requirements are solidified, and 
system models more closely capture true physics. So, though there may be less 
of a place for the WISDOM approach in later stages, the WISE framework can 
work well for carrying on iterating and optimizing the design. 

 Multi-level system model structure 

The decision to use a structure data type as the representation of the system 
led to a workflow and design space that is intuitive to work with, with no need to 
use or track any positions of design variables in a vector, for example. However, 
this structure is flat, i.e., the framework is only able to work with the top-level 
fields of the main input-output system structure, precluding the use of nested 
structures, which can be a more intuitive way to manage system information as 
the complexity increases. The background process of conversion to and from 
the system structure happens every time the system model is run, so the 
decision to deprecate a category design variable attribute and impose a flat 

structure restriction was to reduce the overhead and increase the speed of 
design space exploration. This yields measurable speed gains for the simple 
system model functions used for development. However, it is also one of the 
few hurdles that can cause friction in continuing to use the framework beyond a 
very early design. In a more mature project, more parameters of the system are 
tracked, and a flat structure is a less appropriate format for describing the 
system.  

One solution is to build a wrapper inside the system model function. This keeps 
the framework simple but in addition to creating a burdensome step of 
reparametrizing and rebuilding the system model and introducing some 
bookkeeping tasks, it also reduces the utility of the system structure itself, which 
has high visibility and usefulness in being viewed, passed to additional 
analyses, etc. Instead, the speed cost of the additional overhead, which is minor 
compared to system model evaluation with more realistic system models, can 
be absorbed to un-deprecate the capability to allow for multi-level system 
structures. 



  6 Conclusion 
 

Sartorius  118 

 

 Speed improvements 

In addition to the system parameterization becoming more complicated and 
involved as design progresses, so too do system models and analyses become 
more elaborate and higher fidelity. This usually comes with a significant 
increase in computation time needed to evaluate just a single design point. As 
the project progresses out of early design studies, it also becomes much less 
likely that the system model function can be easily built to be vectorized such 
that many design points can be evaluated in a similar amount of time as it takes 
to evaluate just one.  

To address the speed issues, there are two likely strategies to pursue for 
improvement. The first is to improve coverage of the WISDOM search space by 
implementing alternative sampling techniques. Currently, only simple random 
sampling is used to generate starting points, scale preference maps, or choose 
assumption type parameters. Alternative sampling techniques, for example 
Latin hypercube sampling, have the potential to provide similar coverage of the 
search space using significantly fewer total searches of the design space. 

The other speed improvement strategy is to enable parallelization. The 
WISDOM approach is ideally suited for parallelization, as after the randomized 
parameters are established for a given search, every search is fully 
independent of each other (assuming a thread-safe system model function). 
With multi-core processors now common in nearly all devices and especially in 
workstations, this is low-hanging fruit for a speed improvement, which, 
especially when combined with alternative sampling techniques, has the 
potential to yield an order of magnitude speed improvement for a WISDOM 
search. Unfortunately, both speed improvement strategies highlight one of the 
downsides of the choice of MATLAB as an environment for developing the 
framework, as both strategies, especially parallel processing, require additional 
toolboxes, reducing the accessibility of the framework. 

6.3.2 New capabilities 

In addition to improvements to the existing capabilities and workflow, there are 
several possibilities to expand on the approach and/or leverage the approach 
and the framework to build in new capabilities. In general, new capabilities are 
built when there is driving need coming from the requirements of a given 
project. 

 Correlation between technical assumptions 

Currently, the simple random sampling used for uncertain assumption type 
parameters assumes that all these parameters are fully independent from each 
other. However, in many cases there is a known correlation, at least 
qualitatively, between parameters. This is something that the house of quality 
technique, discussed in Section 2.2.2, captures in its design feature correlation 
matrix. It would be beneficial in some cases to capture this additional available 
a priori information.  

This could be useful, for example, in the case of the regional airliner example. 
Instead of penalizing designs based on aerodynamic efficiency using a 
preference map (Figure 3-12), an alternative formulation could instead use an 
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additional structural efficiency assumption type parameter that would act as a 
correction factor for the empty weight fraction function in Equation (11). The 
negative correlation between structural efficiency and aerodynamic efficiency 
could then be captured in the sampling used to stochastically generate these 
assumption parameters for search. Capturing this correlation may not only be a 
more realistic way to capture the information, but, crucially, it can sometimes be 
a more natural way to conceptualize the information for the designer and other 
stakeholders to capture. Sampling with correlation and arbitrary PDFs is an 
established and off-the-shelf capability, for example the correlated Latin 
hypercube sampling provided by Iman (2017). 

 Generation of additional information and artifacts 

Setting up a design space in the WISE framework means that significant 
information is captured and available for use in generating other useful 
information and artifacts with uses not explicitly supporting optimization. 
Parameter sensitivities are one of the pieces of information that can be useful 
and acquired easily from the framework. A searching results set contains 
several perturbations of the design space, and this information can be 
processed to automatically estimate sensitivities and create a report or visual 
depiction.  

Other types of visual artifacts can be useful for inclusion in reports, proposals, 
design reviews, etc. There is potential to leverage the framework to quickly and 
easily generate attractive constraint diagrams or carpet plots, for example, 
using the information in design variables to avoid the often significant burden 
associated with formatting and labeling plots for clarity.  

 Automated surrogate modeling 

Because the technique already involves significant exploration of various parts 
of the design space, the framework lends itself well to the potential of being a 
platform for building surrogate models and hybrid analyses for computationally 
expensive system model functions. Initial rounds of searching can yield the data 
necessary to generate response surfaces that can be used in lieu of the 
expensive system model for much faster future iterations. A hybrid approach is 
also possible, whereby the more expensive higher-fidelity analyses are only 
used to occasionally calibrate correction factors on a much simpler and faster 
system model function.  

 More suited optimization algorithms 

One of the largest risks when beginning to explore this work was that existing 
optimization algorithms would not be suitable for the WISDOM approach. 
Fortunately, this risk was not realized, and suitable performance was achieved 
using existing off-the-shelf optimization algorithms. However, these algorithms 
are not formulated with this unique type of search problem in mind, so there is 
potential for improvements in speed or usefulness of searching results if 
alternative optimization algorithms are explored or if a customized algorithm is 
created that is specifically suited and tuned for this type of application.  
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 Configuration synthesis applications 

The WISE framework creates a kind of language that captures a design space. 
There is therefore a potential to use the framework with configuration synthesis, 
such as the shape grammars used for aircraft configuration synthesis presented 
by Oberhauser et al. (2015). In this way, artificially generated unique 
configurations can be coupled with their respective design variables and a 
design space for that specific configuration. This setup would automatically 
create a runnable WISE optimization setup alongside synthesizing the 
configuration itself, allowing for fair comparisons of optimized versions of 
entirely different species of design solutions.  
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Appendix A: WISE Documentation 

A1 README 

DUEL WISE  

Copyright 2018 Sky Sartorius. All rights reserved. No license offered. 

Contact: www.mathworks.com/matlabcentral/fileexchange/authors/101715 

DUEL is the Design Understanding and Exploration Library. WISE, the Well-Informed Search Environment, is 

a DUEL tool that facilitates optimization and search of the design space. 

Part of WISE core functionality is facilitating a technique for capturing and using additional knowledge, 

captured in the DesignVariable class, such as preferences and uncertainties, for automated design space 

exploration. The DesignSpace class is the container for a design problem. It has as key properties a handle 

to the function that physically models the system and the vector of DesignVariables. 

The DesignSpace class has most methods needed for working with the design. 

Demos 

Three demos demonstrate the workflow and features using a personal homebuilt airplane design test case, 

a winglet design test case, and a regional jet test case. 

Dependencies 

DUEL WISE requires several dependencies. Some dependencies are required for specialized functionality 

only, while others are required for even basic functionality. 

.dependencies directory 

Most dependencies are in the .dependencies directory. Many of the files that are p code here have 

source available on the File Exchange. 

Matlab version 

DUEL-WISE is built primarily on and for R2018b but should work on later versions. 

Installed toolboxes required 

• Matlab Optimization Toolbox 

• Physical Units Toolbox 

  

http://www.mathworks.com/matlabcentral/fileexchange/authors/101715
https://www.mathworks.com/matlabcentral/fileexchange/?term=profileid:2407391
https://www.mathworks.com/matlabcentral/fileexchange/38977
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A2 DesignVariable help block 
A DesignVariable describes the variable as well as contains preferences for 

the variable. Also, how it interfaces with the system function. 

 

In design, there is typically a LOT of information to be collected for each 

variable beyond simply a nominal baseline value. Most of this information is 

normally easily known a priori, so typically the only effort is the input 

process, without significant research and analysis effort needed. 

   

  DesignVariable properties: 

    name      = The system model works with name as a field of the I/O struct. 

    description = Optional long description (user reference only). 

    label     = Optional (TeX-interpreted} string to use for labeling of e.g.  

                plot axes instead of using name. 

    units     = String representing preferred working units for the variable. 

                Evaled by str2u when set (stored in hidden unitsDv property). 

    ioType    = I/O expectation of system model: input, output, <, >, or =. 

                Default ioType is "input". 

    closing   - Variable is a closing variable (for ioType <, >, or =). 

    discrete  - Set to true if variable is discrete.  

    parameter = Set to true for assumption-like input variables that have  

                uncertainty but should hold constant for a given local search. 

 

    free      = Value is allowed to vary in searching.  

    fixed     = ~free (fixed pure outputs enforced with equality constraints). 

    preferenceOn = If set to false, preferences evaluate to zero (flat 

                   preference), but bounds and, if on, ratcheting bounds, are 

                   still active. 

 

    ratcheting       - Toggle ratcheting behavior on/off for this variable. 

    lowerMultiBounds - Inferred lower bounds when ratcheting. 

    upperMultiBounds = See lowerMultiBounds. 

 

    lowerBound       - Lower bound. 

    startLowerBound  = Used for distribution of search starting points for  

                       search. Inputs only. 

    value            = Nominal value. Index for discretes.  

    startUpperBound  = Upper bound of distribution of search starting points. 

    upperBound       = Upper bound. 

 

    lbvub            = A shorthand 5-element vector for setting (or getting)  

                [lowerBound startLowerBound value startUpperBound upperBound]. 

 

    distribution - PDF of starting point for inputs.  

    smallestMeaningfulStep - Affects min step size for finite differences. 

 

  Preference map properties: 

    prefType     = Specifies preference as "penalty" (default) or "value"  

                   (negative penalty). 

    prefAbscissa - Preference map abscissa values (1-by-n). 

    prefOrdinate - Preference map ordinate values (1-by-n). 

    prefMap      = A shorthand to set [prefAbscissa', prefOrdinate']. May have 

                   unexpected behavior with discretes.  

    prefSmoothing - Width(s) of smoothing region between preference map 

                    segments. 

    prefUncertainty - Parameter to characterize uncertainty of prefOrdinate. 

    prefInfo     = Array of info associated with each preference map node. 

    prefFlags    - Flags on preference map segments that should be highlighted 

                   in results (n+1 elements). 

    prefSlope    = Slopes of preference map (n-1 elements). Setting this  

                   changes only the ordinate value immediately to the right of 

                   the segment. 

    flatPreference = True if all ordinate values are the same. Setting this  

                     (to anything but false) erases ordinate data and sets all 

                     ordinate points to zero. 

 

DesignVariable methods: 
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    DesignVariable = Constructor where first argument is name and following 

                     arguments are property/value pairs.          

    runchecks      = Checks if DesignVariable(s) make sense and cleans up.      

    plot           - Plots preference map. 

    editmap        - Simple interface for editing a preference map. 

    flip           = Multiplies ordinate values by -1, switches prefType  

                     between "value" and "penalty", and adjusts origin. 

    export         - Create mcode that captures the DesignVariable. 

 

  DesignVariable static methods are a convenient shorthand for capturing 

  certain common variable types: 

    assumption - Assumption-like input parameter. 

    error      - Output enforced to be equal to zero. 

    margin     - Output enforced to be greater than zero. 

 

  See also DesignSpace, duel_wise_demos.  
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A3 Select DesignSpace help documentation 

A3.1 DesignSpace help block 
A DesignSpace object contains a vector of DesignVariables and has the methods 

in place to facilitate searching, exploration, understanding, and 

optimization of the design as analyzed by the systemModel function. 

 

  DesignSpace properties: 

    variables   = Vector of DesignVariables. 

    v           - Struct for quick name-based access to variables. 

    systemModel = Function handle to the system model function. The system  

                  model function has the syntax S = systemModel(S), where S is 

                  the I/O struct. 

 

    extraModelArguments  - Extra arguments for DesignSpace.postevaluation. 

    extraSystemFunctions - Extra functions for DesignSpace.postevaluation. 

 

  Run settings, mostly for DesignSpace.searching: 

    useRunMemoization         - Memoizes systemModel function. 

    usePrefrencesMemoization  - Memoizes preference map interpolation. 

    useConvertXMemoization    - Memoizes conversion from design vector to I/O 

                                struct. 

    useCloseDesignMemoization - Memoizes initial closing of design. 

    ratchetBounds             - Uses lower- and upperMultiBounds for variables 

                                with ratcheting set to true. Default = false. 

 

  Useful read-only properties (mostly set by DesignSpace.processvariables): 

    prefFuncs      = Function handles that yield preference penalty values. 

    inputVariables = Vector of DesignVariables that are inputs. 

    free           = Free input variables (logical array). 

    active         = Struct with various useful indices of active inputs.  

    LB             = Input variables lower bounds. 

    UB             = Input variables upper bounds. 

    ind            = Struct with various useful indices of variables. 

    n              = Struct with various useful numbers of variables. 

    names          = Struct with various useful names of variables. 

    vars           = Struct with various useful DesignVariable vectors. 

    unitsDvs       = Struct for storage of evaled units. 

    abscissas      = Struct with various useful abscissas.  

 

  Properties for handling results: 

    cachedResults  = Table containing previous results. 

    results        - Struct with results of searching. 

 

  DesignSpace methods: 

    DesignSpace = Constructor with property/value pairs. 

    processvariables - Processes variables and populates useful properties. 

    run         - Runs the systemModel function. 

    batchrun    - Run Monte Carlo or parameter sweep batch runs. 

    closedesign - Return a closed design. 

    searching   - Explore the design space by optimizing from various start 

                  points. 

 

  Post-searching tools: 

    appendresults  - Append searching results to other results obtained with 

                     similar settings. Use for expanding results set. 

    cluster        - Use clustering algorithm to cluster results.  

    scattermatrix  - Plots a scatter matrix visualization of design points. 

    postroutine_cluster = A script that implements cluster and scattermatrix  

                          with some typical settings.  

    buildresulttable - Create / copy for export formatted table of results. 

    dominantstruct - Returns a struct of only dominant designs from specified  

                     results substruct. 

 

  Tools for evaluating individual designs: 

    preferences    - Returns raw preferences for a given design. 
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    postevaluation - Runs systemModel with extraModelArguments and 

                     extraSystemFunctions. 

 

  Iteration tools: 

    sendresultstocache = Saves a copy in cachedResults and clears results.  

    toggle             = Presents a text menu-based prompt for changing the  

                         fixed/free property of variables.   

 

  Working with DesignVariables (mostly leveraging DesignVariable methods): 

    plot        = Calls plot method on variables. 

    refreshplot = Refreshes plot data. 

    editmap     - Calls editmap method for variable specified by name. 

    add         - Appends specified DesignVariable to the variables vector. 

 

  See also DesignVariable, duel_wise_demos. 

A3.2 DesignSpace.run help block 
run  Runs the system model function.  

 

  [S, Sin, X] = run(o, x, active, X) 

 

  o.run(x, free, X) populates the free elements of X with x, converts the 

  result to an input struct for the system function, and runs the system 

  function with that input. x is the design point vector for a shrunken 

  problem that only deals with the free variables, while X is the full design 

  vector that has enough information to populate a full input struct. 

 

  If X is not provided, x must be a full design vector with enough information 

  to populate an input struct. 

 

  This function is memoized such that two runs in a row with the same point 

  don't evaluate the system model function twice (doubles the speed, since 

  systemModel is required both for fun and nonlcon functions, which solvers 

  call separately. 

 

  See also DesignSpace, DesignSpace/scattermatrix. 

A3.3 DesignSpace.batchrun help block 
batchrun  Runs the system model with select input struct fields as vectors, 

closing the design if needed and possible. An output struct is returned. 

 

  ***Monte Carlo***     

  batchrun(o, n) Does a Monte Carlo run of n trials using randomized (based on 

  their respective distributions), vectorized inputs for free parameter input 

  variables. 

 

  batchrun(o, n, dim) Makes sure that vectors fed into the system model are 

  non-singleton along the dimension specified by dim. 

 

  Additional name/value pairs are passed to bisection. 

 

  If n is -2, batchrun runs every combination of sLb and sUb for every 

  parameter (2^nParameters cases total). If n is -3, batchrun runs every 

  combination of sLb, val, and sUb (3^nParameters points). batchrun(o, -n) 

  Runs every combination of linspace(sLb, sUb, n) for every parameter. 

 

  ***Parameter sweeps***  

  batchrun(o, n, dim, names) Runs with vectors on named input variables 

  (cellstr or string array) that are on the range of sLb to sUb for that 

  particular named DesignVariable. 

 

  Pass extra name/value pairs sweepStarts and sweepEnds to get away from the 

  default start and end of input sweep vectors. Value should be a cell array 

  of the same number of elements as names, with empty elements to use the 

  default. Points should carry dimensions. 
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  Append 'bisectionArgs', ArgsCell to any call to pass extra arguments and 

  options to the bisection function. 

 

  Example usage for sweep:  

      o.batchrun(100, 1, ["param1" "param2"], 'sweepStarts', {[] 5*u.ft}); 

 

  See also bisection, histcounts, histfitpert. 

A3.4 DesignSpace.searching help block 
o.searching  Search the design space by running minimizations with varying 

start points and uncertainty factor scaling. 

 

  If no output, the results are written to the DesignSpace results property. 

   

  Additional options to pass in name/value pairs: 

    nStarts:         Number of random starting points. Default nStarts = 1. If 

                     nStarts = 1, the start is at the nominal DesignVariable 

                     values, search is without uncertainty scaling, and 

                     o.results is not written and the output is simply 

                     returned instead. 

    closing:         "first" (default): Closes start point before searching. 

                     "on": Closes for every point evaluated during search. 

                     "off": No closing behavior. 

    closingOptions:  Cell list of additional arguments passed to optimioptions  

                     for closing. 

    runMinimization: Run a search to minimize preferences. Default = true. Set 

                     to false if all you want is a closed point. 

    algorithm:       Type of minimization algorithm as used by fmincon. 

                     Default is fmincon default 'interior-point'. Additional 

                     option of 'simplex' uses fmincon to find a feasible 

                     starting value that is fed to fminsearchcon. 

    backup:          Saves each iteration of the sometimes very long loop, 

                     allowing, e.g., interrupting the loop but preserving the 

                     points run thus far. Set to "on" (default) to back up 

                     (will not back up with nStart = 1), "off" to not back up. 

                     Set to "recover" or "restore" to skip search and recover 

                     the last search from .searching_backup.mat. Set to a file 

                     name for load to restore from some other .mat file. 

    showProgressBar: If set (default), shows progress bar for nStarts > 1. 

    searchOptions:   Cell list of additional arguments to pass to optimoptions  

                     (or optimset for simplex search). 

 

  See also fmincon, DesignSpace, DesignSpace/appendresults. 

A3.5 DesignSpace.cluster help block 
cluster  Clusters results using selected algorithm. 

  [clusterId, clusterCenter, clusterSize, (hdbOjb)] = cluster(o, varargin) 

 

  After the DesignSpace object, parameters are passed as name/value pairs: 

    designPoints: Struct array of design points (S). If a string, 

                  o.results.(designPoints) data is used, including 

                  o.results.(designPoints).S. Default = 'valid'. 

    paramInd:     Logical indices of DesignVariables (o.variables) that are of 

                  interest for clustering. Default paramInd = o.ind.input 

                  (non-varying are automatically removed). Or, if a string 

                  array, the field names in the designPoints struct that are 

                  of interest. 

    writeTo:      If provided, writes clusterId and clusterCenters to 

                  o.results.(writeTo). Default is designPoints if 

                  designPoints is a string. 

    clusterSubresult: A new results substruct, o.results.(clusterSubresult), 

                  containing only the cluster center design points. Default is 

                  'interesting'. 

    normalize:    If set, will normalize data to all be from 0 to 1 prior to 
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                  clustering. Default normalize = true. 

    algorithm:    Algorithm to use for clustering. Default = 'neighbor chain'.  

                  Other options are 'HDBSCAN' or 'ffcmw'. 

     

  Additional parameters are passed to the clustering algorithm to adjust 

  clustering settings.  

  For 'neighbor chain', example parameters are: 

    threshold:    The percentile of the distances between all pairs below 

                  which two points are considered connected neighbors. 

                  Default = 0.25 (lower quartile). 

    minNeighbors: Minimum number of neighbors for a point to not be considered  

                  an outlider. Default = 1. 

   

  For 'HDBSCAN', example parameters are: 

    minpts:       The nearest 'minpts' neighbor used for core distance 

                  calculation for each point in X. Default = 5. I have the 

                  best luck using the minimum (2). 

    minclustsize: The minimum # of points necessary for a cluster to be deemed  

                  valid. Default = 5. 

    minClustNum:  The minimum # of clusters to be realized. Default = 1. 

    outlierThresh: A cutoff value between [0,1], where any X(i) with an 

                  outlier score (see below) greather than 'outlierThresh' is 

                  assigned as an outlier (ID = 0). Default = 0.9. 

 

  For 'ffcmw', parameters are: 

    nClusters:    Number of clusters (providing this is MANDATORY). 

    options:      Options vector for ffcmw function. 

    outlierThresh: If provided, points with maximum grade of membership less 

                  than outlierThresh are considered outliers. 

 

  See also HDBSCAN, neighborchainclustering, ffcmw, colormap, scattermatrix. 

A3.6 DesignSpace.scattermatrix help block 
scattermatrix  Plots a scatter matrix visualization of multiple design points. 

 

  scattermatrix(o, varargin), where o is a DesignSpace object. 

 

  Additional arguments in name/value pairs: 

    designPoints: Struct array of design points. If a string, 

                  o.results.(designPoints) data is used, including 

                  o.results.(designPoints).S. Default = 'valid'. 

    paramInd:     Logical indices of DesignVariables (o.variables) that are of 

                  interest for plotting. Default paramInd = 

                  o.ind.careAboutPrefs & o.ind.preferenceOn. Or, if a string 

                  array or cellstr, the field names in the designPoints struct 

                  that are of interest. 

    plotType:     'scatter' (default) or 'corner'. 

    plotPrefMaps: If true (default), preference maps are overlaid on the  

                  diagonal histograms. 

    linking:      If true, scatter matrix axis linking and data brushing will 

                  be used. Default linking = false (for speed). 

    CData:        CData passed directly to scatter plots unless CData is a  

                  string. 'rawprefs' will use o.results.rawPrefSum. 'flagged' 

                  uses ~cellfun('isempty', o.results.(designPoints).prefFlags. 

                  'clusters' uses o.cluster with some defaults (get more 

                  control over the clustering by running o.cluster yourself 

                  with your own settings then using 

                  o.results.(writeTo).clusterId with zeros replaced by NaNs), 

                  with outliers as NaN. Other strings will use 

                  [o.results.S.(CData)]. Default CData = [] to skip any 

                  customization (all will be one color). 

    GData:        Indices of points whose color should be made quite gray. 

                  Default is o.results.(designPoints).dominated. Only works 

                  with n x 3 CData (or 'flagged'). 

    SizeData:     If provided, will override scatter SizeData. If SizeData = 

                  'flagged', flagged points will have their SizeData value 

                  halved. 
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    variationTol: Parameters (indicated by paramInd) will not be used if there 

                  is no variation, as determined by variationTol. Default 

                  variationTol = 1e-5 (set to 0 to include everything). 

 

  [s,ax,bigAx,h,hAx,hP,vars] = scattermatrix(o) 

 

  See also scatter, histogram, colormap, DesignVariable/plot. 
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Appendix B: Example Case Source Code 

B1 Regional airliner system model function 
function S = system_model(S_in, varargin) 

% This system model models sizing of a jet. It is intended to demonstrate three 

% general categories of usually under-captured knowledge and preferences in 

% early design. 

%  

% Copyright 2018 Sky Sartorius. All rights reserved. 

% Contact: www.mathworks.com/matlabcentral/fileexchange/authors/101715  

  

%% Inputs. 

% We can define all of our inputs here so we can run this by itself, e.g. for 

% development or debugging, but we make sure to override anything here with 

% function inputs. Note that not everything has to be overwritten, so an inputs 

% list at the top can be quite long. 

  

S.range = 2500 * u.nmi; 

S.passengers = 100; 

S.maxLiftToDrag = 17;  

S.sfc = 0.5 * 1/u.hr; 

S.grossMass = 50*u.tonne; 

  

if nargin 

    nms = fieldnames(S_in); 

    for i = 1:numel(nms) 

        S.(nms{i}) = S_in.(nms{i}); 

    end 

end 

  

%% Parameters and assumptions. 

  

% Average payload including cargo, furnishings, etc. 

S.payloadMassPerPax = 95*u.kg;  

  

% Average crew per 14 CFR § 121.391. 

S.crewMass = 80*u.kg * (2 + 0.5 + S.passengers/50);  

  

% Empty weight fraction trend parameters. 

A = 0.902; 

C = -0.0385; 

  

%% Analysis and outputs. 

S.emptyWeightFraction = A * (S.grossMass/u.lbm).^C;  

S.fuelFraction = ifr_mission_profile(S); 

S.payloadFraction = 1 - (S.fuelFraction + S.emptyWeightFraction); 

  

S.passengerMass = S.passengers * S.payloadMassPerPax; 

S.payloadMass = S.passengerMass + S.crewMass; 

S.grossMass = S.payloadMass ./ S.payloadFraction; 

  

S.utility = S.passengerMass .* S.range; 

  

%% Populate additional useful parameters. 

S.emptyMass = S.emptyWeightFraction .* S.grossMass; 

S.fuelMass = S.grossMass .* S.fuelFraction; 

S.usefulLoad = S.fuelMass + S.payloadMass; 

  

S.techFactor = S.maxLiftToDrag./S.sfc/u.hr; 

  

end 

  

function fuelFraction = ifr_mission_profile(S) 

% Fuel fraction for IFR flight profile with 200 nm diversion and several fixed 

% assumptions. 

  

cruiseSpeed = 450*u.kts; 
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startupTaxiFrac = 0.98; 

takeoffClimbFrac = 0.985; 

cruiseFrac = exp(-S.range.*S.sfc./(cruiseSpeed.*0.866*S.maxLiftToDrag)); 

diversionFrac = exp(-200*u.nmi.*S.sfc./(cruiseSpeed.*0.866*S.maxLiftToDrag)); 

% SFC improvement factor of 0.9 for lower Mach (per Raymer). 

reserveFrac = exp(-45*u.min.*(S.sfc*0.9)./S.maxLiftToDrag); 

descentLandingFrac = 0.99; 

  

missionFrac = startupTaxiFrac.*takeoffClimbFrac.*cruiseFrac.*diversionFrac... 

    .*reserveFrac.*descentLandingFrac; 

  

% Find fuel fraction with 6% margin added. 

fuelFraction = 1.06*(1 - missionFrac); 

end 

% NBAA IFR profile reference: 

% awin.aviationweek.com/portals/awin/pdfs/bc_05_01_2013_p33a-33f_howtochart.pdf 
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B2 Regional airliner setup script 
%% Set up workspace. 

cch all 

clear global % Reset memoization. 

rng(0); % Make repeatable. 

displayUnits = {'lb', 'nmi', 'lbf'}; 

  

%% Set up design space. 

o = DesignSpace('systemModel', @duel_wise_demos.regional_jet.system_model); 

  

%% Define design variables. 

% Define "range" design variable. 

v = DesignVariable('range', 'units', 'nmi'); 

v.prefType = 'value'; 

v.prefUncertainty = 2; 

v.prefMap = { 

... absc.   ord.    info 

    400     0       '' 

    1000    0.7     'still a useful part of fleets' 

    1500    1       'can do vast majority of routes' 

    3000    1.3     'can do some really long routes' 

    }; 

v.lowerBound = 400; 

v.startLowerBound = 500; 

v.value = 2500; 

v.startUpperBound = 3500; 

v.upperBound = 4000; 

% v.lbvub = [400 500 2500 3500 4000]; % Alternate shorthand of 5 lines above. 

  

o.v.range = v; % Assign design variable to design space. 

  

% Define "passengers" design variable. 

v = DesignVariable('passengers'); 

... 

v.prefUncertainty = 2; 

v.prefAbscissa = [60 75 95 100 105 135 150]; 

v.prefOrdinate = [1 0.5 0.5 0.2 0.5 0.5 0.7]; 

v.prefSlope = 0.001; % Slightly favor smaller aircraft 

v.prefInfo{1} = "encroaching on firm's existing portfolio"; 

v.prefInfo{4} = 'original requirement specification'; 

v.prefInfo{7} = 'competing with established narrow-bodies'; 

v.lbvub = [50 70 100 140 180]; 

  

% The field name used for assignment to the utility dependent property v does 

% not matter. 

o.v.pax = v;  

  

% grossMass 

v = DesignVariable("grossMass", 'units', 'tonne', 'label', 'm_0'); 

v.ioType = "="; 

v.prefUncertainty = 4; 

v.closing = 1; 

v.prefAbscissa = [0 60]; % This is my "currency". 

v.prefOrdinate = [0 .8]; 

v.lbvub = [1 40 40 40 inf]; 

v.units = 'lb'; % Do a unit conversion (may throw a warning). 

  

o.v.w0 = v; 

  

% utility 

v = DesignVariable("utility",'units','lb-nmi'); 

v.ioType = "output"; 

v.prefUncertainty = 4; 

v.prefAbscissa = [0 100*200*2500]; 

v.prefOrdinate = [.4 0]; 

v.flip; 

  

o.v.utility = v; 

  

% sfc 

v = DesignVariable(); 
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v.name = "sfc"; 

% v.label = "Specific fuel consumption"; 

v.units = 'lb/hr/lb'; 

v.parameter = true; 

v.distribution = 8; 

v.lbvub(2:4) = [0.45 0.50 0.65];  

% Raymer for high BPR turbofan: 0.5/hr for cruise, 0.4/hr for loiter. 

  

o.v.sfc = v; 

  

% maxLiftToDrag 

v = DesignVariable("maxLiftToDrag",'label','L/D_{max}'); 

v.parameter = true; 

v.prefUncertainty = 3; 

v.startLowerBound = 13; 

v.startUpperBound = 22; 

v.distribution = 3; 

v.value = 17; 

  

v.prefAbscissa = [10 17 21 25]; 

v.prefOrdinate = [0 0.1 0.2 .3]; 

  

v.prefFlags{4} = "Suspiciously high L/D"; 

  

o.v.maxLiftToDrag = v; 
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B3 Wing redesign with winglet system model function 
function S = sys_winglet(S_in, varargin) 

  

%% Inputs. 

  

S.allowWeightIncrease = 1; 

S.tipSpan = 0.5*u.m; % 2.15/2 = 1.075 for -700 winglet. 

  

S.tipChordShrinkRatio = 0.6; % 0.73 for -700 winglet. 

% 1 means continue straight LE and TE. 0.73 for baseline winglet. 0.6 for 

% baseline wing. 

  

S.tipTeKink = 0*u.deg; % 0 means straight TE. 

S.tipTwist = 0*u.deg;  

S.tipExtraDihedral = 0*u.deg; 

  

S.wingletSpan = 2.315*u.m; 

S.wingletRootInc = 0*u.deg; 

S.wingletTwist = 0*u.deg;  

S.wingletAngle = 86*u.deg;  

S.wingletExtraLeSweep = 0*u.deg; % Min 0. 

S.wingletTaperRatio = 0.33;  

  

S.wingTwist = 0*u.deg; 

  

S.surfaceMassPerArea = 10*u.lb/u.sqft;  

% Checked on Roskam. Checks out on  

% aircraftengineering.wordpress.com/category/boeing/boeing-737/page/2/ 

  

%% Replace inputs above with those provided in S_in. 

if nargin 

    nms = fieldnames(S_in); 

    for i = 1:numel(nms) 

        S.(nms{i}) = S_in.(nms{i}); 

    end 

end 

  

%% Fixed parameters 

  

m0 = 70*u.t; 

% ~70 t burning 1/3rd of the fuel for a 737-700-like aircraft. 

designMass = m0 - 5*u.t;  

  

sectionCd = 0.011; 

nonWingCd = 0.01; 

sRef = 140.54*u.sqm; % From my base planform; JAWA ref: 125.23 sqm. 

bRef = 112*u.ft+7*u.in; % 737-700 spec w/o winglets (w/ winglets: 117'5") 

% x_ac = 4.24*u.m; % From my base planform. 

cRef = 4.829*u.m; % From my base planform. 

arRef = bRef.^2./sRef; 

  

  

leSweep = 25.3*u.deg; % Measured from drawing. 

% qcSweep = 25*u.deg; % Spec. 

leSweepInboard = 39.8*u.deg; % Measured from drawing. 

% kinkBl = 15*u.ft+10*u.in; % 4.826 m 

kinkBl = 10.1*u.m/2; 

dihedral = 6*u.deg; % Spec. 

% wingRootC = 8.86*u.m; % - 2.387*u.m; % Measure. Alt: 25*u.ft+10.12*u.in; 

basicTipSpan = 0.5*u.m; % Outboard of slats and ailerons. 

fuseWidth = 3.8*u.m; % 3.76*u.m; 

bodySideC = 7.27*u.m; %wingRootC-fuseWidth/2*tan(leSweepInboard); 

  

% wingTipC = 4*u.ft + 1.25*u.in; 

  

% More 737 info for sanity checking at 

% http://www.b737.org.uk/techspecsdetailed.htm 

 

% ICAO Annex 14 - Aerodrome Reference Code 

% (Aeroplane Wingspan; Outer Main Gear Wheel Span)  

%  
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% Code A - < 15m (49.2'); <4.5m (14.8')  

% Code B - 15m (49.2') - <24m (78.7'); 4.5m (14.8') - <6m (19.7')  

% Code C - 24m (78.7') - <36m (118.1'); 6m (19.7') - <9m (29.5')  

% Code D - 36m (118.1') - <52m (170.6'); 9m (29.5') - <14m (45.9')  

% Code E - 52m (170.6') - <65m (213.3'); 9m (29.5') - <14m (45.9')  

% Code F - 65m (213.3') - <80m (262.5'); 14m (45.9') - <16m (52.5') 

 

%% Load stored results from baseline run for later calculation of deltas.  

baseline = duel_wise_demos.winglet.baseline_values; 

  

%% Initialize VLModel. 

vm = VLModel; 

vm.title = 'Winglet VL'; 

vm.iYsym = 1; 

vm.sRef = double(sRef); 

vm.Cref = double(cRef); 

vm.Bref = double(bRef); 

  

%% Build base wing 

P0 = FlyingSurfacePanel; 

P0.name = 'fuseCarryover'; 

P0.span = fuseWidth/2; 

P0.rootChord = bodySideC; 

P0.location = u.ft*[0 0 0]; 

P0.x = -P0.rootChord/3; % Approximation for getting root bending moments. 

  

% Root to kink. 

P1 = FlyingSurfacePanel; 

P1.name = 'rootToKink'; 

P1.span = kinkBl - P0.span; 

P1.rootChord = P0.tipChord; 

P1.sweepLoc = 0; 

P1.sweep0 = leSweepInboard; 

P1.tipChord = P1.rootChord - P1.span.*tan(leSweepInboard); 

P1.dihedral = dihedral; 

P1.location = [P0.xTip, P0.yTip, P0.zTip]; 

  

% Kink to outboard aileron. 

P2 = FlyingSurfacePanel; 

P2.name = 'kinkToTip'; 

P2.span = bRef/2 - (P1.span + P0.span) - basicTipSpan; 

P2.rootChord = P1.tipChord; 

P2.tipChord = 1.75*u.m; 

P2.sweepLoc = 0; 

P2.sweep0 = leSweep; 

P2.dihedral = dihedral; 

P2.location = [P1.xTip, P1.yTip, P1.zTip]; 

P2.tipInc = S.wingTwist; 

  

% Tip panel. 

P3 = FlyingSurfacePanel; 

P3.name = 'tipPanel'; 

P3.location = [P2.xTip, P2.yTip, P2.zTip]; 

P3.span = S.tipSpan; 

P3.rootChord = P2.tipChord; 

P3.rootInc = P2.tipInc; 

P3.taperAngle = P2.taperAngle; 

P3.tipChord = P3.tipChord.*S.tipChordShrinkRatio; 

P3.sweepLoc = 1; 

P3.sweep100 = P2.sweep100 + S.tipTeKink; 

P3.tipInc = S.tipTwist + P2.tipInc; 

P3.dihedral = dihedral + S.tipExtraDihedral; 

  

P = [P0 P1 P2 P3]; 

  

wing = Wing; 

wing.panels = P; 

s1 = wing.makeVLSurface([],'Nspan',18,'SSpace',-2,'name','wing'); 

s1.Ydupl = []; 

  

%% Winglet. 

wl = FlyingSurfacePanel; 
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wl.name = 'winglet'; 

wl.location = [P3.xTip, P3.yTip, P3.zTip]; 

  

wl.sweepLoc = 0; 

wl.xRot = S.wingletAngle; 

wl.span = S.wingletSpan; 

wl.rootChord = P3.tipChord; 

wl.tipChord = wl.rootChord.*S.wingletTaperRatio; 

  

wl.rootInc = S.wingletRootInc; 

wl.tipInc = S.wingletRootInc + S.wingletTwist; 

wl.sweep0 = leSweep + S.wingletExtraLeSweep; 

  

winglet = Wing; 

winglet.panels = wl; 

s2 = winglet.makeVLSurface([],'Nspan',6,'SSpace',-1,'name','winglet'); 

s2.Ydupl = []; % Get rid of default mirroring. 

% Conservatively ignoring parasite drag for bending moments. 

  

%% Estimate weight delta. 

baseTipMass = baseline.panels(4).area.*S.surfaceMassPerArea; 

S.tipMass = P3.area.*S.surfaceMassPerArea; 

S.wingletMass = wl.area.*S.surfaceMassPerArea; 

S.addedVehicleMass = 2*(S.tipMass - baseTipMass + S.wingletMass); 

S.emptyWeightChange = S.addedVehicleMass./(38*u.t); %* 

  

if S.allowWeightIncrease 

    m0 = m0 + S.addedVehicleMass; 

    S.usefulLoadDeltaPax = 0; 

else 

    S.usefulLoadDeltaPax = -S.addedVehicleMass/(100*u.kg); %** 

end 

  

% Assuming a limit load factor per 14 CFR § 25.337 calculation negligibly 

% affected by weight change and not clipping to range of [2.5 3.8], though 

% acceptable due to primarily only examining deltas. 

n = 2.1 + 24000*u.lb/(m0 + 10000*u.lb);  

limitLoad = n.*m0*u.g0; 

  

if S.allowWeightIncrease 

    % Also increase analysis weight. 

    analysisWeight = u.g0*(designMass + S.addedVehicleMass); 

else 

    analysisWeight = u.g0*designMass; 

    % Assume that you can take out all that extra mass in fuel for this 

    % particular design point. 

end 

nForBendingCase = limitLoad./analysisWeight; 

  

  

%% Determine run conditions. 

fc = FlightCondition; 

fc.h = u.FL*380; 

fc.wS = analysisWeight./sRef;  

fc.M = 0.78;  

% Assuming same cruise speed is mostly limited by Mach and won't change with 

% weight or drag polar. 

  

rn = {sprintf('a c %.15f',fc.cL),...  

    sprintf('a c %.15f',nForBendingCase.*fc.cL)};  

  

  

%% Run vortex lattice. 

if S.wingletSpan >= 5*u.cm % This is necessary for AVL to not die. 

    vm.components = {[s1 s2]};   

else 

    vm.components = {s1};  

end 

  

vm.writeavl; 

[fn, st] = runanalysis(vm.name,rn,{'fn' 'st'},false); % 21 s 
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S.vlModel = vm; 

S.vlRuns = rn; 

S.stabilityOutput = st; 

  

% Debugging plots: 

% vm.showinavl; 

% plot([P P4]); aircraftview plan 

  

%% Get some interesting outputs. 

S.panels = [P wl]; 

% Get area of panels. Note: cos(dihedral) = S/area. 

areas = [S.panels.area]; 

S.flyingSurfaceArea = sum(areas); 

  

qS = fc.q.*sRef; 

  

% Root bending moment. 

tipLoad = n.*S.tipMass*u.g0; 

wingletLoad = n.*S.wingletMass*u.g0; 

  

bendingRunInd = 2; 

rollMoment = qS.*bRef.*fn(bendingRunInd).Cl + ... % negative moment. 

    (tipLoad.*P3.y_bar_abs + wingletLoad.*wl.y_bar_abs); 

  

% Using st for pitching moment instead of cm since it has extra sig figs. 

pitchMoment = qS.*cRef.*st(bendingRunInd).Cmtot/2 + ...;  

    (tipLoad.*P3.x_ac_abs + wingletLoad.*wl.x_ac_abs); 

  

S.rootBendingMoment = sqrt(rollMoment.^2 + pitchMoment.^2); 

% Real limit load will likely put some significant deflection into the wing 

% s.t. the load distribution looks quite different. Also, this also omits other 

% elements such as drooped aileron. Much of this can be captured with 

% preferences that flag a "definitely ok" zone, a maybe zone, and a danger zone. 

S.rootBendingChange = S.rootBendingMoment./baseline.rootBendingMoment - 1;  

  

% Fwd spar location on winglet root chord 

sparSweep = P2.sweepX(0.2); % Hypothetical fwd spar location. 

fwdSparTipX = (P2.xTip + 0.2*P2.tipChord) + P3.span.*sin(sparSweep); 

S.fwdSparOnWingletRoot = (fwdSparTipX - wl.xRoot)./wl.rootChord;  

  

% Aft spar location on winglet root chord 

sparSweep = P2.sweepX(0.7); % Hypothetical aft spar location. 

aftSparTipX = (P2.xTip + 0.7*P2.tipChord) + P3.span.*sin(sparSweep); 

S.aftSparOnWingletRoot = (aftSparTipX - wl.xRoot)./wl.rootChord;  

  

% Drag and L/D. Turn this into something useful. 

parasiteDragArea = sum(areas).*sectionCd; 

CD0 = 2*parasiteDragArea./sRef; % 2 x for mirroring. 

% drag = qS.*fn(1).CD; %  Not useful due to rounding in fn.CD. 

% CDi = st(1).CDind 

% e = st(1).e; 

CDi = fc.cL.^2./(pi*st(1).e.*arRef); % e has the most sig figs. 

S.liftToDragRatio = fc.cL./(CD0+CDi+nonWingCd); % 16.3 for A320-200 in cruise. 

S.liftToDragChange = S.liftToDragRatio./baseline.liftToDragRatio - 1;  

  

S.cruiseDrag = analysisWeight./S.liftToDragRatio; 

S.cruiseDragChange = S.cruiseDrag./baseline.cruiseDrag - 1;  

  

% Overall span. 

S.span = max(wl.yTip*2,P3.yTip*2);  

  

  

% Tip aspect ratio 

S.tipAspectRatio = (wl.structuralspan + P3.structuralspan).^2./... 

    (wl.area + P3.area);  

% Limit this to something like 4.5 or 5; 

  

S.wingletStructuralAr = wl.structuralspan.^2./wl.area;  

% Limit this to something like 4;  
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B4 Wing redesign with winglet setup script 
cch all 

clear global % Reset memoization. 

rng(0); % Make repeatable. 

  

%% SET UP DESIGN SPACE. 

o = DesignSpace(); 

o.systemModel = @duel_wise_demos.winglet.sys_winglet; 

  

%% SET UP DESIGN VARIABLES. 

% MAJOR INPUTS: tipSpan, tipChordShrinkRatio, wingletSpan, wingletRootInc, 

% wingletTwist, wingtipMassPerArea 

  

% OTHER INPUTS: allowWeightIncrease, tipTwist, tipExtraDihedral, wingletAngle, 

% wingletExtraLeSweep, wingletTaperRatio 

  

% The preference currency is percentage points of cruise drag improvement. 

  

%% %%%%% INPUTS %%%%% 

dX = 0.05; % Smallest meaningful step for low-precision method. 

  

%% tipSpan 

v = DesignVariable("tipSpan",'label','tip span','units','m'); 

v.lbvub = [.2 .3 0.5 2.5 6]; % Set UB to > ~1.3 to allow for >36 m span. 

% 737-700 winglet: 2.15/2 

  

% Overall span limit will take care of UB. 

% LB is just so VL elements don't get too squished. 

  

v.smallestMeaningfulStep = dX; 

  

o.v.tipSpan = v; 

  

%% tipChordShrinkRatio 

v = DesignVariable("tipChordShrinkRatio",'label','tip \lambda ratio'); 

v.lbvub = [.2 .3 .6 1 1];  

% 737-700 winglet: 0.73. 

  

v.smallestMeaningfulStep = dX; 

  

o.v.tipChordShrinkRatio = v; 

  

%% wingletSpan 

v = DesignVariable("wingletSpan",'label','winglet span','units','m'); 

v.lbvub = [.05 0.06 2.315 4 5]; % 5 cm span still runs without killing AVL. 

  

v.prefAbscissa = [0 0.3 2]; 

v.prefOrdinate = [0 1   1]; 

v.prefInfo{2} = 'If it is going to be that small, better nothing at all.'; 

  

v.prefUncertainty = 2; 

  

v.smallestMeaningfulStep = dX; 

  

o.v.wingletSpan = v; 

  

%% wingletRootInc 

v = DesignVariable("wingletRootInc",'label','\alpha_{inc,root}','units','°'); 

v.lbvub = [-5 -1 2 4 10]; 

  

v.smallestMeaningfulStep = dX;%*2; 

  

o.v.wingletRootInc = v; 

  

%% wingletTwist 

v = DesignVariable("wingletTwist",'label','twist','units','°'); 

v.lbvub = [-10 -6 -3 0 4]; 

  

v.smallestMeaningfulStep = dX;%*2; 

  

o.v.wingletTwist = v; 
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%% surfaceMassPerArea 

v = DesignVariable("surfaceMassPerArea",'label','areal mass','units','lb/sqft'); 

v.parameter = true; 

v.value = 10; 

v.startLowerBound = 4; 

v.startUpperBound = 20; 

v.free = 0; % Fix this to keep this test case conceptually simple. 

v.distribution = 6; 

  

o.v.surfaceMassPerArea = v; 

  

%% allowWeightIncrease 

v = DesignVariable("allowWeightIncrease"); 

v.discrete = true; 

v.value = 1; 

v.startLowerBound = .5; 

v.startUpperBound = 2.5*(1-eps); 

  

v.prefAbscissa = [false true]; 

v.prefOrdinate = [0 0]; % Pref taken care of by useful load prefs. 

v.prefUncertainty = 2; 

  

o.v.allowWeightIncrease = v; 

  

%% wingletAngle 

v = DesignVariable("wingletAngle",'units','°'); 

v.lbvub = [6 45 86 90 96]; 

v.free = 0; 

  

v.smallestMeaningfulStep = .1; 

  

o.v.wingletAngle = v; 

  

  

%% %%%%% OUTPUTS %%%%% 

% MAJOR OUTPUTS: usefulLoadChange, rootBendingChange, fwdSparOnWingletRoot,  

% aftSparOnWingletRoot, cruiseDragChange, span 

% OTHER OUTPUTS: liftToDragChange 

  

%% usefulLoadChange 

v = DesignVariable("usefulLoadDeltaPax",'label','\DeltaUL (pax)'); 

v.ioType = 'output'; 

v.prefAbscissa = [-1 -0.5 0 1]; 

v.prefOrdinate = 0.2*[0.15 0.05 0 -0.02];  

v.prefInfo{1} = 'losing a pax'; 

v.prefUncertainty = 2; 

  

o.v.usefulLoadChange = v; 

  

%% addedVehicleMass 

v = DesignVariable("addedVehicleMass",'label','\DeltaW_{tips}','units','kg'); 

v.ioType = 'output'; 

  

o.v.addedVehicleMass = v; 

  

%% rootBendingChange 

v = DesignVariable("rootBendingChange",'label','\DeltaM_{root}','units','%'); 

v.ioType = 'output'; 

v.prefAbscissa = [-1 0 5 10 15]; 

v.prefOrdinate = [0 0 .3 1  2];  

v.upperBound = 15; 

v.prefInfo{4} = 'probably the limit of what can be be glossed over for 

aeroelasticity'; 

v.prefFlags{5} = 'getting unmanagably large bending moments'; 

v.prefFlags{6} = 'getting infeasibly large bending moments'; 

v.prefUncertainty = 3; 

  

o.v.rootBendingChange = v; 

  

%% fwdSparOnWingletRoot 

v = DesignVariable("fwdSparOnWingletRoot",'label','x_{spar,fwd}','units','%',... 
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    'description','put the spar in the meaty bit if possible.'); 

v.ioType = 'output'; 

v.prefAbscissa =     [0 12.5 20 70 80 100]; 

v.prefOrdinate = 0.2*[1 1    0  0  1  1  ];  

v.prefUncertainty = 2; 

  

o.v.fwdSparOnWingletRoot = v; 

  

%% aftSparOnWingletRoot 

v = DesignVariable("aftSparOnWingletRoot",'label','x_{spar,aft}','units','%',... 

    'description','put the spar in the meaty bit if possible.'); 

v.ioType = 'output'; 

v.prefAbscissa = o.v.fwdSparOnWingletRoot.prefAbscissa; 

v.prefOrdinate = o.v.fwdSparOnWingletRoot.prefOrdinate; 

v.prefUncertainty = o.v.fwdSparOnWingletRoot.prefUncertainty; 

  

o.v.aftSparOnWingletRoot = v; 

  

%% cruiseDragChange 

v = DesignVariable("cruiseDragChange",'label','\DeltaD_{cruise}','units','%',... 

    'description','surrogate for cruise fuel burn'); 

v.ioType = 'output'; 

v.upperBound = 0; % Don't allow any designs that increase cruise fuel burn. 

v.prefAbscissa = [-2 0]; 

v.prefOrdinate = [-2 0]; 

  

o.v.cruiseDragChange = v; 

  

%% span 

v = DesignVariable("span",'units','m'); 

v.ioType = 'output'; 

v.upperBound = 36; 

v.upperBound = 52; 

v.prefAbscissa = [26 36  38 48]; 

v.prefOrdinate = [1  1.1 4  4.1]*2/3; 

v.prefUncertainty = 2; 

  

o.v.span = v; 

  

%% wingletStructuralAr 

v = DesignVariable("wingletStructuralAr",'label','AR_{wl,structural}'); 

v.ioType = 'output'; 

v.upperBound = 4.5; 

v.prefAbscissa = [0 3  4  5]; 

v.prefOrdinate = [0 .1 .3 .8]; 

v.prefUncertainty = 3; 

  

v.prefFlags{4} = 'winglet aspect ratio getting quite high for structure'; 

  

o.v.wingletStructuralAr = v; 
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