

TECHNISCHE UNIVERSITÄT MÜNCHEN

TUM SCHOOL OF ENGINEERING AND DESIGN

Aircraft Design Optimization
Informed by Stakeholder Wisdom

Thomas Skyler Sartorius

Vollständiger Abdruck der von der TUM School of Engineering and Design der
Technischen Universität München zur Erlangung des akademischen Grades
eines

Doktors der Ingenieurwissenschaften

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Markus Lienkamp

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Mirko Hornung

 2. Prof. Dr.-Ing. Manfred Hajek

Die Dissertation wurde am 22.09.2020 bei der Technischen Universität
München eingereicht und durch die TUM School of Engineering and Design am
21.04.2021 angenommen.

Sartorius i

Abstract
There are several aspects of the iterative design process that present
opportunities for innovation in the development of complex systems such as
aircraft. The focus of the work presented here lies on leveraging un- or under-
captured information for the purposes of improving design process outcomes.
The three main categories of information relate to assumptions, stakeholder
preferences, and system modeling. The method developed for this work not
only facilitates formally capturing this information, but also putting it to use
through automatic design space exploration employing an application of
numerical optimization algorithms.

The method is implemented in a software framework centering on the analytical
model of the system in question, a design variable class to capture information,
and a design space class to execute the searching and facilitate design
exploration and understanding. The searching results are a finite set of design
points likely to be of interest for further design iterations, along with other
artifacts to aid in gaining design insights and support decision-making. Example
cases presented include the prospective clean-sheet design of a small regional
airliner and another study examining a potential wing redesign with a winglet for
a narrow-body airliner. Several benefits were observed related to facilitating
effective design space exploration with reduced resources and reaping benefits
from utilizing optimization much earlier in the design and development process
than is otherwise normally practical.

Sartorius ii

Kurzfassung
Bei der Entwicklung von komplexen Systemen, wie zum Beispiel Flugzeugen,
gibt es verschiedene Aspekte des iterativen Entwurfsprozesses, die
Innovationsmöglichkeiten bieten. Der Fokus des hier präsentierten
Forschungsprojektes liegt darin, nicht bzw. nicht ausreichend erfasste
Informationen zu nutzen, um die Ergebnisse des Entwurfsprozess zu
verbessern. Die drei Hauptkategorien von Informationen beziehen sich auf
Annahmen, Stakeholderpräferenzen und Systemmodellierung. Die entwickelte
Methode dieser Arbeit erleichtert nicht nur die formale Erfassung dieser
Informationen, sondern auch deren Nutzung durch die automatisierte
Untersuchung des Entwurfsraumes und die Verwendung von numerischen
Optimierungsalgorithmen.

Die Methode ist in einer Softwareumgebung implementiert. Die Umgebung
basiert sich auf dem analytischen Modell des betreffenden Systems, einer
Objektklasse von Entwurfsvariablen zur Erfassung der Informationen und einer
Designraumobjektklasse für die Durchführung der Optimierung und ermöglichen
einer Parametervariation und dem Verständnis der Entwurfsergebnisse. Die
Optimierung ergibt eine Menge an Designpunkten, die mit großer
Wahrscheinlichkeit interessante Eigenschaften für weitere Entwurfsiterationen
darstellen, sowie weitere Hilfestellungen zur Gewinnung von Einblicken in den
Entwurf und zur Unterstützung von Designentscheidungen. Als Beispiel werden
folgende zwei Fallstudien durchgeführt: Der Neuentwurf eines kleinen
Regionalverkehrsflugzeugs und die Neugestaltung eines Flügels mit Winglet für
ein narrow-body Passagierflugzeug. Hierbei zeigt die Methode Vorteile
gegenüber dem Stand der Technik durch eine effektivere
Entwurfsraumuntersuchung mit reduzierten Ressourcen sowie durch die frühere
Anwendung von Optimierung im Verlauf des Entwurfsprozesses.

Sartorius iii

Contents
Abstract ... i
Kurzfassung .. ii
Contents ... iii
List of Figures ... vi
List of Tables .. viii
Nomenclature ... ix

Abbreviations and acronyms ... ix

Symbols .. x
1 Introduction ... 1

1.1 Design research domains .. 2
1.2 Design processes .. 4

1.2.1 Archetypal aircraft early design iteration process 4
1.2.2 Opportunities in the design iteration process 5

1.3 Motivation for exploring a different approach... 7
1.3.1 Software-centric contemporary workflows 7

1.3.2 Un- and under-captured stakeholder wisdom 7
1.3.3 Increasing chances of product success .. 9

1.3.4 Focus on early design ... 10
1.4 Objectives.. 12

1.4.1 Objective 1: Facilitate formally capturing stakeholder wisdom 12
1.4.2 Objective 2: Automate the integration of captured information in

design space exploration and decisions 12
1.5 Structure of this work ... 14

2 State of the Art .. 15
2.1 Requirements elicitation and analysis ... 16

2.1.1 Market research .. 16
2.1.2 Traditional aerospace and defense approach to requirements 16

2.1.3 Requirements traceability for verification and validation 18
2.2 Design exploration and decision techniques 20

2.2.1 Trade studies .. 20
2.2.2 House of quality .. 21

2.2.3 Design space understanding and visualization techniques 22
2.3 Accounting for uncertainty ... 28

2.4 Optimization .. 29
2.4.1 Single-objective search ... 29

2.4.2 Multi-objective search ... 31
2.4.3 Physical programming .. 33

2.5 Comparing optimization to other search techniques 36
3 Methodology .. 38

3.1 Applicability of approach ... 39
3.1.1 Early design studies .. 39

3.1.2 Moderate dimensionality ... 39
3.1.3 Mostly continuous design variables .. 40

3.1.4 Nominally convex design space .. 40
3.1.5 Tightly coupled parameters... 41

3.2 Issues with optimization in early design .. 42
3.2.1 Imperfectly defined requirements and objectives 42

3.2.2 Low-fidelity analytical models ... 42

Sartorius iv

3.2.3 Immature system models .. 42

3.2.4 Rigidity of optimization approach .. 42
3.2.5 Algorithms focused on final solution ... 43

3.3 Types of information captured ... 44
3.3.1 Example regional airliner design for illustration............................. 44

3.3.2 Assumption uncertainty .. 45
3.3.3 Preferences on figures of merit and design parameters 49

3.3.4 Known uncaptured system model behaviors 54
3.4 Application of optimization ... 58

3.4.1 Objective function ... 58
3.4.2 Introducing variation ... 58

3.4.3 Constraints.. 60
3.5 Understanding and decision-making ... 62

3.5.1 Nature of optimization results ... 62
3.5.2 Processing of optimization results .. 62

3.5.3 Iteration actions .. 63
4 Implementation .. 64

4.1 Overview ... 65
4.1.1 Implementation priorities and requirements 65

4.1.2 Nominal workflow .. 67
4.1.3 MATLAB as selected programming language............................... 69

4.1.4 Framework components and organization 70
4.2 System model function .. 72

4.2.1 Syntax ... 72
4.2.2 Input and output variable types ... 74

4.2.3 Typical evolution of system model function................................... 74
4.3 Design variable class .. 76

4.3.1 Descriptive and system model interfacing attributes 76
4.3.2 Attributes capturing preferences and other information 78

4.3.3 Design variable class methods ... 81
4.4 Design space class ... 85

4.4.1 User-facing design space attributes .. 85
4.4.2 Design space utility methods and attributes.................................. 86

4.5 WISDOM approach implementation .. 90
4.5.1 Batch analysis for sweeps and Monte Carlo analysis 90

4.5.2 WISDOM searching and optimization ... 90
4.5.3 Methods for understanding WISDOM results................................ 92

5 Example Cases ... 95
5.1 Regional airliner .. 96

5.1.1 System model ... 96
5.1.2 Design variable definitions .. 97

5.1.3 Searching with WISDOM approach .. 98
5.1.4 Comparison to value function methods 101

5.2 Wing redesign with winglet .. 103
5.2.1 System model ... 103

5.2.2 Design variable definitions .. 105
5.2.3 Searching results .. 108

6 Conclusion .. 111
6.1 Expected benefits .. 112

6.1.1 Allocation of resources ... 112

Sartorius v

6.1.2 Facilitating effective design iteration ... 112

6.1.3 Early optimization ... 113
6.2 Pitfalls and drawbacks ... 115

6.3 Future potential ... 117
6.3.1 Improvements ... 117

6.3.2 New capabilities .. 118
References ... 121

Appendix A: WISE Documentation ... 126
A1 README ... 126

A2 DesignVariable help block ... 127

A3 Select DesignSpace help documentation.. 129

Appendix B: Example Case Source Code .. 134
B1 Regional airliner system model function .. 134

B2 Regional airliner setup script ... 136
B3 Wing redesign with winglet system model function 138

B4 Wing redesign with winglet setup script ... 142

Sartorius vi

List of Figures
Figure 1-1. TRL scale summary. .. 3

Figure 1-2. Simple depiction of “V” model of development. 4
Figure 1-3. Typical design iteration process. .. 5

Figure 1-4. Illustration of early payload capacity trade study. 8
Figure 1-5. A disproportionate amount of definition is set in early design......... 10

Figure 2-1. DoD systems engineering process. .. 17
Figure 2-2. NASA systems engineering process. ... 18

Figure 2-3. Example stoplight chart decision matrix for an electric aircraft
propulsion-empennage configuration. ... 20

Figure 2-4. Tiered approach to decision matrix criteria prioritization and
weighting. .. 21

Figure 2-5. House of quality for a multirole jet fighter. 22
Figure 2-6. Example simple two-parameter plot for a solid-core UAV wing. 23

Figure 2-7. Example sensitivity analysis for a HALE ISR UAV. 23
Figure 2-8. Example constraint diagram for airplane conceptual wing and

powerplant sizing visualization. ... 24
Figure 2-9. Example carpet plot with single figure of merit on the ordinate axis.

 .. 25
Figure 2-10. Constraint matrix for conceptual helicopter sizing. 26

Figure 2-11. Pareto set visualizer with data brushing for design space
exploration. .. 27

Figure 2-12. Local search iteratively following steepest descent to local
minimum near starting point. ... 30

Figure 2-13. Various roles of multi-objective methods. 31
Figure 2-14. Physical programming preference classification. 33

Figure 2-15. Physical programming class function ranges. 34
Figure 2-16. Linear physical programing class function.................................... 35

Figure 3-1. Example of 'micro' non-convexity typical of iterative methods used in
early aircraft design. .. 41

Figure 3-2. Regional jet transport empty weight fraction trend. 45
Figure 3-3. Assumptions set to fixed values early in analysis........................... 45

Figure 3-4. Triangular distributions for uncertain technical assumptions. 46
Figure 3-5. Resulting gross weight estimate distribution, propagating

uncertainty. .. 47
Figure 3-6. PERT distributions for uncertain technical assumptions. 48

Figure 3-7. Resulting distribution when using PERT-distributed assumptions
instead of triangular. .. 49

Figure 3-8. Regional jet gross weight versus passenger capacity. 51
Figure 3-9. Basic preference map of passenger capacity................................. 51

Figure 3-10. Clustering of design results driven by preferences captured in a
preference map. .. 53

Figure 3-11. Linear preference map for gross weight, the surrogate objective to
minimize. ... 55

Figure 3-12. Preference map for capturing known system model characteristics.
 .. 55

Figure 3-13. Gross weight as a function of aerodynamic efficiency. 56
Figure 3-14. Extents of the effect of L/Dmax preference map on qualitative nature

of system modeling behavior. .. 57

Sartorius vii

Figure 3-15. Flowchart of objective function integrating preference maps. 60

Figure 3-16. Flowchart of objective function with constraints. 61
Figure 4-1. Nominal workflow for WISE framework. ... 68

Figure 4-2. Top-level organization of the WISE framework setup of a design. . 71
Figure 4-3. Traditional MDO typical required syntax for objective function. 72

Figure 4-4. Typical MDO required syntax for defining nonlinear constraints. ... 73
Figure 4-5. System model function syntax.. 73

Figure 4-6. System model function syntax and pseudocode with additional
typical features. ... 75

Figure 4-7. Illustration of various possible PDFs based on distribution

attribute. .. 79
Figure 4-8. Screenshot of design variable class plot method. 82

Figure 4-9. GUI window for the design variable editmap method. 83

Figure 4-10. Design variable editing using the built-in variable editor. 84

Figure 4-11. Example code output from design variable export method. 84

Figure 4-12. Name-based command-line design variable referencing in
DesignSpace object o. .. 85

Figure 4-13. Tabular display of DesignSpace objects or arrays of

DesignVariable objects. ... 86

Figure 4-14. The design space class toggle method. 88

Figure 4-15. Routine used by run method for evaluating design points. 89

Figure 4-16. Operations used by searching method to generate a variety of

optimized designs. ... 91

Figure 4-17. Method for more in-depth analysis of a design point. 94
Figure 5-1. Simple mission profile for regional airliner system model. 96

Figure 5-2. Regional airliner design variable plots. ... 98
Figure 5-3. Regional airliner results visualization with clustering. 99

Figure 5-4. Regional airliner results visualization with data brushing. 101
Figure 5-5. Wing of Boeing 737-700 narrow-body airliner with winglet. 103

Figure 5-6. Narrow-body airliner baseline half-wing modeled in AVL. 104
Figure 5-7. Wing redesign design variables. .. 105

Figure 5-8. Preference maps for root bending moment and winglet structural
aspect ratio used as surrogates for structural modeling. 106

Figure 5-9. Preferences driving toward favorable structural alignment and load
paths. .. 107

Figure 5-10. Capturing binary possibilities of gross weight increase or useful
load decrease. ... 107

Figure 5-11. Preferences on winglet and total span. 108
Figure 5-12. Wing redesign results visualization with clustering. 109

Figure 5-13. Representative alternative wing geometries............................... 110
Figure 6-1. Granular preference map for payload capacity of a personal-use

homebuilt aircraft. .. 116

Sartorius viii

List of Tables
Table 1-1. Typical categories of un- and under-captured information. 8

Table 2-1. Market research techniques overview. .. 16
Table 2-2. Attributes of alternative approaches to design space search. 37

Table 3-1. The basic six design variables of airplane conceptual design. 39
Table 3-2. Example design case range and payload requirements. 44

Table 4-1. Comparison of DesignVariable and DesignSpace classes...... 85

Table 5-1. Mission profile parameters and assumptions. 97
Table 5-2. Table of design points representative of regional airliner clusters. 100

Table 5-3. Regional airliner design points from weighted sum method. 102
Table 5-4. Wing redesign study modeling summary. 104

Table 5-5. Data for representative alternative designs. 110

Sartorius ix

Nomenclature

Abbreviations and acronyms

14 CFR Code of Federal Regulations Title 14
ADDAM Aircraft Design DAta Model
AVL Athena Vortex Lattice
CORE Conceptual Optimization of Rotorcraft Environment
CPACS Common Parametric Aircraft Configuration Scheme
DAL Development assurance level
DO Document
DoD US Department of Defense
DUEL Design Understanding and Exploration Library
ELECTRE Elimination Et Choix Traduisant la REalité (Elimination and

Choice Expressing Reality)
FAA US Federal Aviation Administration
FOM Figure of merit
GUI Graphical user interface
HALE High altitude, long endurance
HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications

with Noise
IDE Integrated development environment
IFR Instrument flight rules
ISR Intelligence, surveillance, reconnaissance
KTAS Knots true airspeed
MDO Multidisciplinary design optimization
NASA US National Aeronautics and Space Administration
OEI One engine inoperative
OEW Operational empty weight
PDF Probability density function
PERT Program Evaluation and Review Technique
SFC Specific fuel consumption
TOGW Takeoff gross weight
TRL Technology readiness level
UAV Unmanned aerial vehicle
V&V Verification and validation
WISDOM Well-Informed Search Design Optimization Method
WISE Well-Informed Search Environment

Sartorius x

Symbols

 𝐴𝑅 Aspect ratio

𝑏 Span

𝐷 Drag

𝐸 Endurance

𝑓 Objective function

𝑔 Inequality constraint function

ℎ Equality constraint function

𝐿 Lift

𝐿𝐵 Lower bound

𝑃 Power

𝑝 Preference mapping function of parameter

𝑅 Range

𝑺 System model function

𝑆 Wing planform area

𝑇 Thrust

𝑈𝐵 Upper bound

𝑉 Speed

𝑊 Weight

𝑊0 Gross weight

𝒙 Design variables

𝑋 Random number

𝒙∗ Design variable values at optimum

𝒙0 Design variable values at search starting point

𝛼 Beta distribution shape parameter

𝛽 Beta distribution shape parameter

𝜆 PERT distribution shape parameter, taper ratio

𝜌 Uncertainty scaling factor

𝝎 Stochastic assumption parameters

 1 Introduction

Sartorius 1

1 Introduction

The aim of any research endeavor is to further the state of the art or add to the
general body of knowledge. The body of work described in this document
focuses on improving process outcomes in the design and development of
aerospace products, with a focus on early and conceptual aircraft design. In this
chapter, a discussion of the domain of development processes, a subset of the
broader aerospace research categories, lends context to the motivation for the
specific topic, namely exploring a new technique to leverage a software-based
process to achieve improved design process outcomes.

 1 Introduction

Sartorius 2

1.1 Design research domains

When discussing research in the field of aeronautics, there are several high-
level domains of exploration. One such domain is pure scientific discovery, a
focus that is more closely related to the natural sciences than the engineering
that aeronautics is normally associated with. This type of search for pure
knowledge is characterized by discovery and seeking a better understanding of
phenomena in the physical world as it is, as opposed to the creation of
something new.

Another domain of research in aeronautics is that of creation, evaluation, and
refinement of domain-specific analyses. These are methods of prediction and
are often associated with the classic disciplines such as structures and
materials, aerodynamics, stability and control, propulsion, etc. Improving
prediction methods increases the likelihood that after the heavy investment of
time and resources into developing an aerospace product, the product will,
when the program is at a stage of verification and validation, meet requirements
and expectations.

The creation and evaluation of new and novel technologies and concepts is yet
another distinct domain of research within aerospace. When it is not yet certain
if or under what circumstances a novel invention, configuration, or other concept
is feasible or viable, research in this domain aims to mature the technology,
increasing the so-called technology readiness level. The technology readiness
level, or TRL, is a measure of maturity commonly used by aerospace and
defense organizations, particularly government organizations. The TRL scale
ranges from 1 (just an idea based on observed scientific principles, transitioning
from scientific to applied research) to 9 (a proven and deployed product). The
definitions of the various stages of TRL are summarized in Figure 1-1, and
these definitions are similar for organizations such as the US Department of
Defense (Defense Acquisition University Press, 2001), NASA (NASA, n.d.),
ESA (ESA, n.d.), and ISO (ISO/TC 20/SC 14, 2013). The TRL scale correlates
to research and development activities within an organization whereby
investigations of low-TRL technologies and ideas are typically categorized as
research, and the work on higher-TRL concepts is called development or
product development.

 1 Introduction

Sartorius 3

Figure 1-1. TRL scale summary. (NASA public domain image)

Finally, research in aerospace can instead focus on the processes individuals
and organizations utilize. Of interest, and the focus of this body of work, are the
processes used in designing new aerospace products, particularly early design
of aircraft. A preliminary examination of the processes used in design exposes
potential gaps or weakness, and these yield potential research opportunities.

 1 Introduction

Sartorius 4

1.2 Design processes

The aim of research in the area of aerospace design and development
processes is essentially centered on arriving at a better resulting product and/or
arriving at the same result more quickly and with fewer resources. The
processes for aircraft design have the potential for exploitation for innovation.

1.2.1 Archetypal aircraft early design iteration process

The design process, particularly as it relates to early aircraft conceptual design,
lives on the upper left side of the classic development “V” model (see Figure
1-2). Early design has significant overlaps with requirements and begins with
initial requirements, including both elicitation of new requirements as well as
analysis of existing requirements.

Figure 1-2. Simple depiction of “V” model of development.

Design is a continuous iterative cycle of investigations, refinements, trade
studies, and decision-making. Iterating and making engineering design
decisions in the early conceptual phase of design can be as much art as
science in that it is non-deterministic, and results may vary depending on the
individuals involved (and their creativity). While each project and every iteration
within that project are unique, a typical individual generic trade study within
early design can be broken down into roughly six subprocesses as labeled and
defined by this author as follows:

1. The triage phase, for lack of a better term, is a precursor to making
formal decisions. It is when the decision is made regarding which trade-
off studies to investigate. This is the key step of selecting with each
iteration which areas are worth investigating and which trade studies are
the best use of limited resources to maintain a balanced design effort.

2. The identification phase is when the designer identifies alternatives as
potential candidates for a final design choice. This could be identifying
distinct alternatives or a continuous trade space or design domain.

3. The analysis phase is when alternatives are analyzed. The result is
complete (or as complete as practical at the given design phase)
information regarding performance of potential candidates or
performance variations across the design domain.

Requirements Validation

Design Verification

Implementation

 1 Introduction

Sartorius 5

4. The communication/understanding phase is when the results of the
preceding phases, particularly the analysis phase, are communicated to
stakeholders as well as the designer(s) themselves for the purpose of
understanding the alternatives or design domain.

5. The decision phase is when a single alternative or design point is
chosen from the many possibilities.

6. The documentation activity, which ideally runs continually in parallel
with all the previous phases, is when all key inputs and results of the
previous five phases are preserved for future reference and for inclusion
in reports, proposals, etc.

These activities are depicted graphically in the flowchart in Figure 1-3.

Figure 1-3. Typical design iteration process.

1.2.2 Opportunities in the design iteration process

In the context of conceptual design and the iteration process outlined above,
there exist several deficiencies and shortcomings. Some of these shortcomings
have potential to be overcome, creating opportunities for further advancement.

The triage phase should involve some formal processes for down-selecting
trade-off studies to conduct, for example by doing some cursory parametric
sensitivity analyses. This can be recursive in that the triage phase can be
treated as a design decision making process in and of itself. However, there
often are insufficient resources for such a formal process, and the selection of
which trade-offs to investigate is often made using experience and instinct
and/or by higher-ups within an organization with a different set of motivations
and incentives.

Triage

Identification

Analysis

Communication
Understanding

Decision

D
o

c
u
m

e
n
ta

ti
o

n

Iteration

 1 Introduction

Sartorius 6

The identification phase in some cases must rely heavily on the creativity and
inventiveness of the designer. This is especially the case when configuration
alternatives must be synthesized. Because of the reliance of the very subjective
experience, meme pool, and creativity of the designer, design synthesis in the
identification phase runs the risk of overlooking potentially superior alternatives.

Most shortcomings and therefore most potential advances in the analysis phase
of decision making are discipline- and industry-specific. Engineers and
scientists are constantly striving to make estimations of system performance
more quickly, more accurately, and more robustly. One potential opportunity to
improve the analysis phase that is not quite as discipline-specific lies in more
efficient ways of linking analysis modules together in the larger context for
purpose of, for example, speed of convergence.

The communication & understanding phase suffers from a lack of easy-to-use
and accessible multi-dimensional visualization tools. More importantly, there
can be significant overhead and effort involved in good communication, e.g.
setting up and running parametric analyses and/or making clear, well-formatted
visualizations of results. This overhead represents a barrier to creating artifacts
useful for understanding and communication. An example of this would be a
designer modifying input cells in a spreadsheet-based analysis tool until the
resulting outputs “look good.” Doing this, despite the full analysis capability
being repeatably in place as software, the designer gains only a modest
understanding of the problem, and other stakeholders have no way of gaining
even that much understanding.

If the understanding of the problem is thorough, a good result from the decision
phase is likely. However, even with good understanding, this is not guaranteed.
Decisions can be made that are not entirely justified. Sometimes the final
decision is not 100% supported by the preceding objective analysis, for
example to capture a qualitative preference or quantitative information not
explicitly integrated into analysis. In this case, a decision is made, and a design
alternative is chosen that is not directly supported by the quantitative analysis
alone. Conversely, when making an objective decision based solely on analysis
results, a decision is possible that goes against the intuition of an experienced
designer or other stakeholder.

The documentation phase, like the communication phase, can be labor-
intensive and without immediate gratification. There is significant overhead
involved in producing proposal-quality text and figures, and the step of
documenting decisions may be left out at the time the decision process is
actually conducted. Delaying documentation introduces the risk that the
justification for the decision will be forgotten.

Examining the typical iterative design process exposes some potential
opportunities for novel approaches, as well as revealing some weaknesses in
the process that translate into additional opportunities for improvement. These
opportunities and the desire to create advances in the design process sparked
the motivation for exploring new design process techniques for this work.

 1 Introduction

Sartorius 7

1.3 Motivation for exploring a different approach

Several factors combined make up the motivation and inspiration for
undertaking this work and create the rationale for why the work is worthwhile.

1.3.1 Software-centric contemporary workflows

Computers and software play an intrinsic role in contemporary aircraft design
and trade studies. At each stage of a project, not only has software replaced
manual calculations, but software is often written even for the simplest of tasks.
From day one of any type of new technical design investigation, for example,
conducting initial ‘back of the envelope’ hand calculations using pencil, paper,
and a calculator has been replaced by writing formulae into a spreadsheet or a
simple software script. In this way, the designer has access not only to the
results of initial calculations but has concurrently created a useful tool whereby
calculations are repeatable at very low cost with different inputs and
assumptions.

Unfortunately, this is where much of the advantage often ends, as those low-
cost repetitions of calculations are too often only repeated with very manual
modification of the inputs and assumptions. This still offers a significant
advantage for speed and consistency, but, crucially, the mental and decision
processes of the designer remain the same as when the investigation is done
without software at all. Other aspects of this workflow also remain the same, for
example still only examining a very small number of parameters (usually only
one or two) simultaneously.

Because software is ubiquitous in design as an instrument to be wielded by the
designer, it is worthwhile to explore techniques that have the potential to
augment the mutualistic and complementary relationship between designers
and their software. In this way, more of the potential advantages of already
software-intensive workflows can be leveraged, and further synergies between
human designers and computer-based software can be realized.

1.3.2 Un- and under-captured stakeholder wisdom

Information that is un- and under-captured is an untapped resource that could
be further exploited in the early design process. While the whole body of
knowledge of the designers and others involved constitutes all the information
available, in the context of this work, the term “stakeholder wisdom” is used to
more exclusively describe the knowledge that exists among participants but that
is not fully captured in the modeling and usually also not in documentation. This
is similar to the term “expertise” in describing some of the less tangible
knowledge that is nevertheless still respected and may still influence design
results through other parts of the process such as design reviews or subjective
design decisions.

There are three typical categories of information that affect the outcome of a
design that are relevant to this un- and under-captured stakeholder wisdom.
Assumptions are the inputs to the design and modeling that are defined by
stakeholders (usually designers) other than documented requirements and
specifications. Preferences are traditionally documented by customers as

 1 Introduction

Sartorius 8

requirements; slightly more nuanced preference information is commonly
expressed, for example, when requirements are defined with both a threshold
and an objective value. Model behavior determines the predicted performance
of the system and therefore influences decisions that are based on these
predictions. The typically under-captured stakeholder wisdom associated with
these categories is summarized in Table 1-1 below and discussed in more
detail in the context of an example in Section 3.3.

Table 1-1. Typical categories of un- and under-captured information.

Category Typical under-captured information

Assumptions
Nuanced and richer information regarding the
assumptions used for analyses.

Preferences
Preference information, not explicitly written in
requirements or specifications, on figures of merit
(FOMs) and other design parameters.

Model behavior
Known behaviors of the analyses in modeling the
system behavior and faithfully capturing (or not
capturing) the true physics of the system.

To illustrate the role stakeholder wisdom plays and the effect it has on the

design process, consider a simple abstract example of an early trade study in a
new aircraft design project: payload capacity, which the customer already
specified as a requirement or preference, versus the operational cost per unit of
payload carried for the mission distance (the notional figure of merit to be
minimized to achieve the ‘best’ system), shown in Figure 1-4.

Figure 1-4. Illustration of early payload capacity trade study. (Sartorius & Hornung,
2018, p. 3)

In this situation, a significant cost improvement is possible with a system
designed with a payload capacity several times larger than originally requested
by the customer. In the hypothetical case that numerical optimization would be
used for this study, the resulting design would either have the payload
stipulated by the customer (if set as a constraint) or it would be a system
several times larger than what the customer originally requested. However, the
choice made by the designer was neither, with a point in between selected
instead.

 1 Introduction

Sartorius 9

What preference information led to the decision, and how much of that
information was easily accessible to the designer before the shape of the curve
was known? This question is the inspiration for the technique presented in this
work.

The answer is that a significant amount of this information is present early in
design but is simply not captured in a conventional design workflow. However, it
is there, waiting to be exploited. Capturing this stakeholder wisdom in a formal
manner should therefore be low-hanging fruit for taking advantage of. With the
right software-enabled techniques, we can not only harvest that information,
which has hitherto been out of reach, but we can also put it to use in meaningful
ways that can improve design development and product outcomes.

1.3.3 Increasing chances of product success

Innovation in design processes increases the chances of a product or program
being successful by reducing time and resources needed for converging on an
acceptable result or by increasing the quality or refinement of the results of a
given iteration or trade study. By exploring a technique that captures un- and
under-captured information, there is potential for significant benefits to the
design process for the reasons discussed here.

 Access to unexplored areas of the design space

It is often the case that as design progresses, certain design variables,
parameters, requirements, and decisions transition from a free, undetermined
state to being set to a fixed value. This is often necessary for the design to
move forward. However, every time a parameter is fixed, the design space is
effectively pruned of possibilities. This means that there is a potential for
excellent design possibilities to be undiscovered and unexplored. By
maintaining richer information about design parameters for longer in the design
process instead of locking them in to fixed values prematurely, the pruning
process is delayed for as long as possible, and the chances of discovering
better solutions improves.

 Delaying locking in requirements

This pruning of possibilities also applies to requirements. Product failure often
results from requirements that are locked in prior to fully understanding the
costs and compromises of those requirements. Maintaining flexibility on the
requirements until later in design avoids this. However, doing so normally
carries an extreme burden and significantly slows the pace of development, so
there are strong incentives to fix requirements as early as possible. By
facilitating carrying uncertainty in the requirements deeper into the design and
development instead of prematurely pruning the product space, the
development can adapt and make necessary changes in reaction to new
insights and information.

 Design decision freedom, tracked and justified

As illustrated in the example payload capacity shown in Figure 1-4 above, it is
possible for a given trade study to result in a spectrum of possible decisions. In
this case, two decisions are easily justified: either the decision is conforming to

 1 Introduction

Sartorius 10

a provided specification or it is based upon optimizing an objective, quantitative
parameter. It is all the possibilities in between where decision-making is not
always easily justified. Conversely, sometimes the objective analyses and data
drive towards a decision that goes against the wisdom of the designer or other
stakeholders. This wisdom should not be undervalued, and if it is, the pressure
to make easy-to-justify decisions can prevent better design possibilities from
being selected. By explicitly capturing the information in a formal way that is
documented and traceable, designers have the justification in hand to enable
the freedom to make decisions that will lead to better results.

 Process efficiency

One consequence of stakeholder wisdom sometimes being undervalued is that
research or other efforts are spent only to reach a conclusion that could have
been found using only the existing knowledge on hand amongst the designers
and stakeholders. By enabling and leveraging the use of that knowledge, some
of those superfluous efforts can be short-circuited, making better use of
resources in design and accelerating development or, conversely,
accomplishing the development with fewer resources spent.

1.3.4 Focus on early design

In a typical aircraft development program, the decisions that have the greatest
effects on the ultimate outcome are made early on before the majority of the
effort has been spent. In other words, only a relatively small early investment
has a disproportionate impact on the overall program (see Figure 1-5), and
there is quickly decreasing flexibility to make changes to the design definition
that is set in this early time. This means that new processes and approaches
that can yield gains will have a greater relative impact when the improvements
are realized in the earlier design states. Therefore, the focus of this work is on
early design studies for superior returns in making better decisions when so
much is in flux and the development is less hindered by high programmatic
inertia.

Figure 1-5. A disproportionate amount of definition is set in early design.

 1 Introduction

Sartorius 11

For conceptual aircraft design, ‘early design’ would typically fall prior to a
conceptual design review for a larger program, prior to a preliminary design
review for a small program in a small company, and prior to the use of formal
requirements and change management tools and processes. In the context of
this work, ‘early design’ also spans into market analysis, requirements
elicitation, and other activities sometimes conventionally thought of as
preceding the design phase. That said, not all ‘early design studies’ take place
in the early phases of a program like in a conceptual design phase. The term as
used here applies to any effort that has a combination of the following attributes
or characteristics:

• The study is part of the early stages of any trade study or exploration of
the design space.

• It is part of the initial investigations into some aspect of an aircraft or
system that has not been previously given significant consideration in the
overall development.

• Project requirements and/or objectives are unlikely to be extremely well
defined and understood.

• The analytical models in use have a lack of maturity and/or fidelity.

• There is a high likelihood, or even a near certainty, that the design will
change in future iterations.

• The designer and other stakeholders are more interested in
understanding the design space and the decisions bringing the design
closer to a good area of the design space, rather than a single best and
final design decision.

These motivations coalesce to inspire the undertaking that is the focus of this
work, where there is surmised to be a potential for a new approach to leverage
the already software-centric workflows to capture additional information and put
it to use to improve the results of early design processes.

 1 Introduction

Sartorius 12

1.4 Objectives

The objectives of this new approach are split into two main parts:

1.4.1 Objective 1: Facilitate formally capturing stakeholder
wisdom

The first and primary objective of the work is to create a method for formally and
quantitatively capturing the aforementioned un- and under-captured information
and knowledge. This makes available preferences and other types of
information that are present a priori in early design but not normally explicitly
used. The aim of the technique is to capture as much as possible of the
preference information designers normally do have a priori but typically only use
to make design decisions after completing activities that make the design space
and trade-offs better understood.

This requires first devising a format that can effectively capture often qualitative
information in a way that can be at least roughly quantified for use by automatic
processing methods. There is also the important aspect of making sure that the
approach to capturing is as low effort and low friction as possible. Since the
information for the most part already exists in the knowledge base of the
stakeholders, if the approach is ever to see practical real-world usage, it is
crucial that the process for capturing the information is relatively low overhead
and does not present an unpalatable burden to stakeholders.

1.4.2 Objective 2: Automate the integration of captured
information in design space exploration and decisions

Simply capturing the stakeholder information has limited usefulness by itself.
There are many potential ways to put the captured information to good use. The
primary aim here is to use the information in such a way as to automate some
of the design space exploration and decision making. In this fashion, it is
possible to accelerate the design and decision-making process with the
automated search process, but with an automated search that is informed with
as much available information and knowledge as possible. This essentially adds
automation where the additional captured information makes it possible but
keeps the designer and other stakeholders in the loop for decisions where it
makes sense to do so.

This work explores an approach to use the power of computational tools,
specifically existing optimization search algorithms, to put the information to
good use for automating design space exploration. The stakeholder wisdom
information involved here is, by definition, not normally used in multidisciplinary
design optimization (MDO), so to meet this objective, it is necessary to capture
this type of often nuanced and nonlinear information and knowledge in a
quantitative way that can enable leveraging the power of these search
algorithms to provide a useful result. Thus, the aim is to accelerate the design
and decision-making processes and accelerate design iteration cycles through
automatic searching of the design space that is as informed as possible to let
the search algorithms, at every step, to be driven toward similar design
directions that a human-in-the-loop designer would be.

 1 Introduction

Sartorius 13

Capturing knowledge and putting that captured information to good use were
the two primary objectives of the work, which came with certain anticipated
benefits. However, in executing the project, certain unplanned secondary
benefits were also realized, which will also be discussed.

 1 Introduction

Sartorius 14

1.5 Structure of this work

The present thesis describes the specific approach used to achieve the primary
objectives for improving design processes. A theoretical discussion is
supplemented by specific discussion of implementation and experiments with
example design cases.

Chapter 2 discusses the state of the art related to capturing stakeholder
preferences and information, particularly in the domain of requirements
elicitation. Some prior work is also summarized regarding design processes and
techniques for conducting trades studies and visualizing and understanding the
design space, including techniques for accounting for uncertainty and numerical
optimization.

Chapter 3 begins to go deeper into the applicability of the approach and the
issues to resolve in developing the new technique, called the Well-Informed
Search Design Optimization Method (WISDOM). The specific types of
information targeted for formal capturing and implementation are illustrated with
a simple regional airliner sizing example, and then the approach to
implementation of that information in an optimization workflow is presented.

Because this technique is meant to be a relatively integral part of a design and
development process, the specific implementation in software is important.
Chapter 4 lays out the workflow, architecture, and algorithms involved, along
with some of the reasoning behind certain implementation decisions.

To further solidify the illustration of the usage of the technique in design
processes, example cases are laid out in Chapter 5. The regional airliner from
Chapter 3 is used as one example case, and the second example case
explores the possible redesign of a narrow-body airliner wing with a winglet.

Chapter 6 concludes with a discussion on how the technique performs against
the objectives of this work, some of the unexpected side benefits that were
realized, and also some drawbacks and areas where future improvements or
new capabilities may be worthwhile to build.

 2 State of the Art

Sartorius 15

2 State of the Art

The typical aerospace program process begins with requirements, and there
are established approaches for eliciting, formulating, and analyzing
requirements. During the iterative development of the system, design decisions
must be made, and there are many techniques proposed and in use for formally
structuring trades studies and decision-making. A large subcategory of
decision-making approaches is the broad field of multidisciplinary design
optimization. Finally, there are additional approaches and techniques in
development that aim to account for various types of uncertainty in design and
optimization.

 2 State of the Art

Sartorius 16

2.1 Requirements elicitation and analysis

One primary objective of this work is to facilitate formally capturing stakeholder
knowledge. Though the focus is on capturing the types of knowledge and other
information that is often un- or under-captured in typical design, there are still
many areas where information is formally captured, particularly in developing
requirements. It is therefore worthwhile to take stock of some of the established
approaches used for capturing stakeholder preferences and knowledge in the
creation of system requirements.

2.1.1 Market research

Briefly, market research is any effort that seeks to gain insights about
customers or potential customers in order to support business and product
decisions. In the context of the commercial aerospace industry, this applies to
sectors such as airliners, business jets, general aviation, and even experimental
kit planes and ultralights. In these industry sectors, market research translates
into figuring out what the company should build that will have a market fit and
profitable sales. The aforementioned “what” translates into top-level
requirements. In other words, market research seeks to determine the
requirements for the next product, and there are several categories of
techniques available in the domain of market research (McQuarrie, 2016), as
summarized in Table 2-1.

Table 2-1. Market research techniques overview.

Category Example technique

Archival

Secondary research: Search existing information collected for

another purpose.

Big data analytics: Special kind of secondary research

characterized by large datasets and software-based analysis.

Qualitative /

interview

Customer visits: Researcher and colleagues visit multiple

customers.

Focus groups: Multiple customers are brought to the researcher

at one facility.

Quantitative

Descriptive survey: Collecting data from multiple respondents

using specific, quantifiable (e.g. multiple choice) questions.

Experimentation: Multiple ‘treatments’ (e.g. product features)

applied to different groups.

Conjoint analysis: Multiple treatments applied to an individual.

2.1.2 Traditional aerospace and defense approach to
requirements

Many requirements formulation approaches that are advocated for in the
aerospace and defense domain acknowledge that requirements, at least to
some extent, must be allowed to iterate, for example in response to the program
progressing and new information becoming available. However, as larger
programs progress, the cost of any changes to requirements makes changes

 2 State of the Art

Sartorius 17

infeasible. This is especially true of top-level customer requirements and system
goals, and this is one reason that, for example, the US Department of Defense
systems engineering process, shown in Figure 2-1, which evolved for the
development of very large, complex, and expensive programs, features only a
one-way flow of customer requirements and needs into the process.

Figure 2-1. DoD systems engineering process. (Defense Acquisition University
Press, 2001, p. 31)

Many of the requirements applied to aircraft certified for civil aviation are
enshrined in law and regulation and are understandably also taken as
immutable inputs. The prevalent recommended practice for development and
certification of civil aircraft and an accepted means of compliance with key
regulations, ARP4754A (SAE S-18, 2010), focuses primarily on safety
assurance in a “development” phase that is a mostly separate follow-on to a
“concept” phase. However, it is during this concept phase, which “determines
the overall aircraft performance and configuration” (SAE S-18, 2010), when top-
level requirements would have an opportunity for analysis and iteration.

The NASA systems engineering process, shown in Figure 2-2, also features a
primarily one-way flow of customer requirements (also called “mission
requirements” or “stakeholder expectations”) and constraints into the design
and implementation process. However, it also explicitly advocates for an
iterative feedback loop that includes involving stakeholder expectations.

 2 State of the Art

Sartorius 18

Figure 2-2. NASA systems engineering process. (Hoffpauir, 2017, p. 68)

Since the flow of information from customer top-level requirements all the way
down to detailed design and implementation is often unidirectional, it is
important that the process of formulating and deriving requirements has some
structure and robustness. With primary focus on the development of
requirements for software-intensive systems such as avionics and other real-
time embedded systems, the FAA’s Requirements Engineering Management
Handbook (Lempia & Miller, 2009) prescribes formulating qualitative system
goals and highly structured derived use cases. Since the top-level system goals
are less likely to change, high quality requirements are more likely due to the
strict adherence to linking and deriving a) use cases from goals, b) high-level
requirements from use cases, and c) low-level requirements from higher-level
requirements.

2.1.3 Requirements traceability for verification and validation

Early in a program or for smaller projects, it is straightforward to record
requirements in a text document or other simple format such as a spreadsheet

 2 State of the Art

Sartorius 19

in such a way that an individual can have both a broad and deep understanding
of all requirements. As development progresses, further low-level requirements
are derived, and the system is designed and built to the requirements (left side
of the classic development “V” model). When progressing up the right side of
the development “V” model, however, two activities add additional burden to the
formats and tools used for recording and managing requirements: a) the
verification that the system conforms to specifications and b) validation that the
system meets objectives, together known as verification and validation (V&V).

Additional needed capabilities for requirements management led to the
development of specialized requirements management tools. A prevalent tool
for aerospace applications is IBM’s Rational DOORS software, which facilitates
tracking of both requirements and compliance with requirements (IBM, 2016).
Complex or software-intensive systems present additional challenges for
requirements traceability and V&V, particularly those that must conduct a
rigorous safety assessment process, e.g., for certified civil aircraft, follow
ARP4761 (SAE S-18, 1996), or comply with a rigorous development assurance
level (DAL), such as by following DO-178C (RTCA SC-205, 2011). These
processes, when traditionally implemented, have many manual steps required
for maintaining requirements traceability.

 2 State of the Art

Sartorius 20

2.2 Design exploration and decision techniques

Development activities, i.e., iteratively moving down the left side of the
development “V” model, consist of constantly making a series of design
decisions. The second objective of this work is to use the formally-captured
information in a useful way such to facilitate better design decision making.
Better decisions lead to better results (as measured by system performance,
but also by reduced risk, cost, schedule, etc.), so to establish context for the
WISDOM technique that is the subject of this work, a sampling of common
established approaches to trade studies and decision-making is summarized
here.

2.2.1 Trade studies

A trade study is a process to support decision making. It is an objective
comparison of as many realistic alternatives as possible while considering as
many figures of merit as is reasonable. A good trade study will lead to a sound
engineering design decision. Not only must the trade study be well executed
using appropriate tools and methods for both the trade study process and
technical analysis, but it should also be well communicated such that the results
are clear to the designer, decision-maker, and other stakeholders.

Trade studies and other design decision techniques may be applicable to
discrete decisions (choosing between two or more distinct alternatives),
selection of one from an infinite number of design alternatives on a continuous
design domain, or a discrete-continuous combination of the two. In many cases,
the technique for conducting a basic discrete trade study is some variation on
the decision matrix. One of the simplest forms of the decision matrix is the fully
qualitative stoplight chart, an example of which is shown in Figure 2-3, with a
row for each alternative and a column for each figure of merit. The stoplight
chart is a visual representation of pros and cons of alternatives against various
figures of merit.

Figure 2-3. Example stoplight chart decision matrix for an electric aircraft
propulsion-empennage configuration. (Atanasov, 2011, p. 20)

The next level of decision matrix quantifies or assigns a weighting to each of the
figures of merit and uses a quantitative score in lieu of qualitative color coding,
yielding a quantitative measure for each alternative considered. Further
variations on the decision matrix approach to trade studies delve deeper into
the various elements, for example a tiered approach for criteria prioritization and

 2 State of the Art

Sartorius 21

weighting, illustrated in Figure 2-4, or accounting for team dynamics or
uncertainty (Ullman & Spiegel, 2006).

Figure 2-4. Tiered approach to decision matrix criteria prioritization and
weighting. (Felix, 2004, p. 5)

2.2.2 House of quality

A further variation on the decision matrix approach, the house of quality is a
semi-quantitative graphical technique that is applicable to early development
while also spanning the divide between requirements development and
facilitating making early design decisions. It is often used as a means to
facilitate discussions amongst various stakeholders regarding priorities and
desirability of various design features and attributes (Hauser & Clausing, 1988;
King, 1987).

In the house of quality technique, customer needs are prioritized and weighted.
For each design feature, its correlation with a customer need is recorded in the
central matrix region of the house of quality. Each level of correlation (e.g.
strong, medium, weak, or none) is assigned a value, which when multiplied by
the customer priority weighting and summed yields a quantitative guidance on
design feature priorities.

The house of quality has a role in early aircraft design for providing diverse and
multidisciplinary teams and stakeholders a common artifact to reference for a
basis of discussion. Figure 2-5 shows an example house of quality for a
multirole jet fighter.

 2 State of the Art

Sartorius 22

Figure 2-5. House of quality for a multirole jet fighter. (Brandt et al., 2004, p. 32)

One drawback of the house of quality is that it “lacks an explicit indication of the
cost of each design priority and decision” (Brandt et al., 2004, p. 31). On the
other hand, somewhat mitigating this and a somewhat underrated feature is the
design feature correlation matrix in the ‘attic’ of the house of quality. Despite
having no quantitative impact on the bottom-line results of the house of quality
technique, the design feature correlation matrix in the attic serves to offer a
common basis for discussion on the constant compromises that must be made
in aircraft design.

2.2.3 Design space understanding and visualization techniques

One way that trade studies and other design decision aides and techniques
could be described is simply as activities in expressing a complex situation in a
way that a decision-maker can understand in order to make well-informed
decisions. To this end, there are several different ways that designers create
visual artifacts in order to better understand the design space. These types of
plots are most common for examining and better understanding trade studies
on a continuous domain.

Figure 2-6 shows an example of one of the simplest forms of design space
visualization: a plot in cartesian coordinates examining the effects of a single
design parameter upon a sole other parameter or figure of merit of interest. In

 2 State of the Art

Sartorius 23

this case it is an examination of the effect of wing aspect ratio on the overall
weight of a UAV wing built with a solid foam core and composite skin and spar.

Figure 2-6. Example simple two-parameter plot for a solid-core UAV wing.

An extension of the simple sweep of a single parameter is examining the effects
of multiple parameters. This, with an example shown in Figure 2-7, is commonly
called a sensitivity analysis, and it is an extremely useful technique for
understanding which parameters have the strongest effect on the design. Not
only does this information help inform immediate design changes or
adjustments, but it also provides benefits in directing limited resources in future
design iterations and trade studies.

Figure 2-7. Example sensitivity analysis for a HALE ISR UAV. (Nicolai & Carichner,
2010, p. 662)

There are other common visualizations used in early aircraft design to better
understand the design space. A classic example is the very common constraint
diagram, which shows various design constraints (dictated by requirements) on

 2 State of the Art

Sartorius 24

a field of all the possibilities of wing size and powerplant size, for example in
terms of wing loading and inverse power loading, as shown in Figure 2-8.

Figure 2-8. Example constraint diagram for airplane conceptual wing and
powerplant sizing visualization.

Many variations on design space visualizations exist. A relatively common
variation on the constraint plot adds information in the form of contours of some
objective function or figure of merit. Transforming the axes such that this FOM
is on the ordinate axis can yield a simple carpet plot, shown in Figure 2-9 for a
similar wing size and powerplant size visualization. Variations on the carpet plot
can add further independent and/or dependent variables to the visualization (for
example by using the abscissa for either), and the type of visualization can be
used to understand a myriad of different aspects of a design or trade-off.

 2 State of the Art

Sartorius 25

Figure 2-9. Example carpet plot with single figure of merit on the ordinate axis.
(Oberhauser, 2013, p. 32)

Visualizations of the design space become more challenging when a higher
number of variables, or design space dimensions, is involved. It is common to
examine two or three design variables at a time for early aircraft design
because usually these two variables (commonly wing size and powerplant size)
have an oversized and dominant effect on the design’s performance and
outcome. However, there are many applications, within and outside of simple
airplane design, where understanding more parameters simultaneously is
advantageous. Three-dimensional plots, color, marker size, and other tools can
be used to capture higher dimensions, but one slightly more scalable method is
to use a matrix of two-dimensional plots, effectively visualizing planar slices of
the design space taken about some baseline point. Two visualizations that
leverage this approach are shown in Figure 2-10 and Figure 2-11. Both are in
the context of initial helicopter sizing and design space understanding. The
nature of rotary wing aircraft means that it is very difficult to make effective
design decisions examining only two design parameters simultaneously.

 2 State of the Art

Sartorius 26

Figure 2-10. Constraint matrix for conceptual helicopter sizing. Three design
variables (cardinal axes), six constraints with 1% margin contours (colored lines), and

objectives with sensitivity (gray). (Sartorius, 2011c, p. 8)

 2 State of the Art

Sartorius 27

Figure 2-11. Pareto set visualizer with data brushing for design space
exploration. (Sartorius, 2011c, p. 7)

 2 State of the Art

Sartorius 28

2.3 Accounting for uncertainty

While it is possible, with the understanding that comes from the design space
visualization techniques discussed above in Section 2.2.3, to account for some
uncertainties in calculations, add margins, and similar, there are also
techniques to integrate information regarding uncertainty more directly into
engineering analysis and calculations.

Normally, design and analysis calculations are executed using certain variables
and parameters as inputs that take on a singular value. The yield stress of a
material, for example, may be taken as 50,000 psi (345 MPa). However, it is
known that this value will not be exact. Instead of executing design and analysis
calculations with these singular values, it is possible to perform the calculations
using distributions with probabilistic design and analysis (Haugen, 1980). This
allows the yield stress input to instead be, for example, a normal (Gaussian)
distribution. Similarly, instead of defining the input variables and parameters as
a probability distribution, fuzzy sets can be used to define the inputs to
calculations (Wood et al., 1992), which has been shown to have some
computational advantages for preliminary design over probabilistic design and
analysis (Wood et al., 1989).

The concept of accounting for uncertainty can be extended to the field of
optimization as well (optimization is discussed in Section 2.4 below) in the field
of robust optimization. A survey of robust optimization is presented by Sözüer
and Thiele (2016), which contains a broad survey that includes a discussion of
applications of robust optimization beyond just engineering design.

A basic form of robust optimization simply introduces worst-case tolerances to
input parameters to ensure feasibility of resulting designs. This can be
overconservative in applications where performance is demanding or margins
must be kept small, so statistical tolerances, an extension of the concepts of
probabilistic design and analysis, can be used instead. These types of robust
optimization approaches are typically to ensure feasibility. However, another
type of robustness involves minimizing the sensitivity of the design solution’s
performance to variations, either in the input parameters, the design variables,
or both (Parkinson et al., 2018, Chapter 9). Fuzzy optimization is a similar
extension of the concept of using fuzzy sets for engineering calculations applied
to optimization to account for uncertainty (Rao, 2009, Chapter 13).

 2 State of the Art

Sartorius 29

2.4 Optimization

Many capabilities are available to designers by the simple presence of the
nearly-free repetitions of a given analysis inherent to computers and software
being so central to modern development work. One prominent example is
optimization, which employs a variety of search algorithms to automatically
search the design space to find an optimal design. Optimization is an excellent
tool that has unique capability for handling design problems with numerous
variables of interest that all interact, which is the normal situation in aeronautical
design.

While it is straightforward to fully understand a problem and make an informed
design decision using plots and visualizations of only a few design variables
and a handful of dependent parameters, most optimization algorithms easily
scale up to larger problems that a human designer can only grasp a few
dimensions at a time. Consequently, optimization also enables exploring these
higher-dimension design spaces, not only to find optimal solutions, but also
often enabling or accelerating discovery of feasible solutions in cases of highly
constrained problems and identifying and gaining insight into driving design
constraints.

There exist a variety of algorithms, techniques, and off-the-shelf software
toolboxes for optimization. Various approaches are typically either deterministic
or stochastic in nature. There is also a categorization of approaches into
methods that minimize a single objective function versus those that account for
multiple objective functions.

2.4.1 Single-objective search

The basic form of optimization is a minimization of a single function of one or
more design variables, typically of the form

 𝒙∗ = min
𝒙

𝑓(𝒙) , (1)

where 𝒙 is a vector containing 𝑛 design variables (also known as decision
variables),

 𝒙 = {

𝑥1

𝑥2

⋮
𝑥𝑛

} , (2)

𝑓 is a function returning a single objective value, and 𝒙∗ is an optimized design
solution.

It is typical in engineering optimization to also have many constraints that must
be satisfied for a solution to be valid, feasible, and meet requirements. The
most basic constraints are the simple lower or upper bounds (𝐿𝐵 and 𝑈𝐵,
respectively), also called side constraints, on the values of the design variables
themselves,

 𝐿𝐵𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝐵𝑖 , 𝑖 = 1,2,3, … , 𝑛 . (3)

 2 State of the Art

Sartorius 30

It is quite common to also have nonlinear inequality constraints,

 𝑔𝑗(𝒙) ≤ 0, 𝑗 = 1,2,3, … , 𝑚 , (4)

and nonlinear equality constraints,

 ℎ𝑘(𝒙) = 0, 𝑘 = 1,2,3, … , 𝑝 . (5)

Sometimes simple linear constraints are also imposed, either equality

constraints (𝐴𝒙 = 𝑏) or inequality constraints (𝐴𝒙 ≤ 𝑏).

There are many valid approaches and algorithms for single-objective search, as
well as a variety of associated methods for handling constraints. While there is
no single taxonomy of single-objective optimization algorithms, it is common to
label algorithms as deterministic versus stochastic, local versus global, and
sometimes also unimodal versus multimodal. Further differentiation between
search methods is often associated with how constraints are addressed and
integrated into the algorithm.

Deterministic algorithms will yield the same result for a given objective function,
constraints, search starting conditions, and algorithm parameters. Stochastic
approaches, on the other hand, are less dependent on starting conditions but
are not guaranteed to yield consistent, repeatable results due to the intentional
introduction of randomness.

A common theme in local search methods is, from a given starting point in the
design space, to determine the direction of steepest change of the objective
function and step in that direction. This is done iteratively until certain
convergence criteria are reached. Local search methods, following some sort of
steepest descent direction of search from a starting point, often result in finding
one of the minima near the search starting point (Figure 2-12).

Figure 2-12. Local search iteratively following steepest descent to local minimum
near starting point.

Global search methods, on the other hand, are designed to seek the global
optimum design point in a way that is somewhat independent of the starting
conditions. One of the simplest approaches to global search is to execute local
search at multiple (often random) starting points. There is a correlation between
local and deterministic search methods, and likewise a correlation between
global and stochastic search methods such as evolutionary algorithms or
simulated annealing. References such as Vanderplaats (2007), Rao (2009), and
Parkinson et al. (2018) provide more in-depth descriptions of the various
common single-objective optimization algorithms.

 2 State of the Art

Sartorius 31

Instead of finding a local minimum near a starting point or a single global
optimum, sometimes it is desirable to instead find multiple local minima for
multimodal functions. These are objective functions that may have several
peaks and valleys in the design space and therefore several local minima that
may be interesting and valid design solutions. Because of the similarity to a
global search task, multimodal search algorithms are often variations on global
search algorithms such as genetic algorithms and other evolutionary algorithms
(Wong, 2015).

2.4.2 Multi-objective search

It is often the case in real-world engineering development, especially in early
aircraft design, that there will be several competing interests and therefore
compromises to be made. In many cases, a single-objective optimization
formulation with constraints will not adequately represent the design challenges
at hand. In these situations, a formulation is needed that seeks to
simultaneously minimize multiple objective functions,

 𝑓1(𝒙), 𝑓2(𝒙), … , 𝑓𝑘(𝒙) . (6)

The optimization task therefore becomes

 min
𝒙

𝐹(𝒙) , (7)

where 𝐹(𝒙) is the vector of all objective functions, and the optimization is still
subject to the same side, inequality, and equality constraints as with single-
objective optimization.

Multi-objective optimization and other multi-criteria decision methods can
support the designer in several ways: Many approaches select a single design
point, some rank various alternatives, others use clustering to classify
alternatives and sort them into groups, and others compare and prioritize
between two or more alternatives. These method roles are summarized in
Figure 2-13.

Figure 2-13. Various roles of multi-objective methods. (Schneiderbauer, 2013, p. 3)

It is rarely the case that a single design point, 𝒙, can simultaneously minimize all
objective functions, and compromises must therefore be made by trading off

 2 State of the Art

Sartorius 32

one objective for another. If an objective cannot be improved from a given
design point without a detriment to another objective, then that design point is
considered Pareto optimal. It is therefore desirable for multi-objective methods
to yield Pareto optimal results. A priori methods typically require additional
inputs prior to using the algorithm with the aim of identifying and selecting a
single optimum design point. A posteriori methods, on the other hand, more
typically focus on identifying a full Pareto set, and after the algorithm is run is
when the designer or decision maker will integrate further information to make a
design selection from this set. See Loehr (2013) and Schneiderbauer (2013) for
further discussion of more multi-criteria and multi-objective search and decision-
making methods and their taxonomies.

It is common with multi-objective optimization to create a single objective
function that is itself some function of the multiple objectives. This normally
involves creating a single all-encompassing value function to represent overall
goodness of a design as a single figure of merit. One of the most common of
these value function methods is the simple weighted sum model, whereby, as
the name suggests, weights, 𝑤, are assigned to each objective and the sum of
the results is the new single objective function to minimize, as in

𝒙∗ = min

𝒙
∑ 𝑤𝑖𝑓𝑖 (𝒙)

𝑘

𝑖=1

 .

(8)

This and similar methods, such as the less common weighted product method,

 𝒙∗ = min
𝒙

∏(𝑓𝑖(𝑥))
𝑤𝑖

𝑘

𝑖=1

 , (9)

require significant and precise a priori knowledge of design preferences, which
is rarely available in early design. There are also mathematical issues that can
sometimes make compromise solutions unlikely to be found in cases of simple
formulations of value functions.

Lexicographic ordering, another a priori method, requires the designer to rank
objectives in order of absolute importance. Often in real-world cases, the
method results in ignoring all objectives except for the most important one. The
method also requires foreknowledge of the absolute importance of objectives,
which is not always the case in early design.

Methods such as Nash arbitration, goal programming, achievement scalarizing,
and similar methods integrate more specific knowledge and preferences
regarding objectives, but only in the form of a single goal or reference value for
each objective. This can result in ignoring any benefits of exceeding goal values
and/or effectively over- or under-weighting objectives based on the distance
from the reference value.

The ELECTRE (Elimination Et Choix Traduisant la REalité / Elimination and
Choice Expressing Reality) family of multi-criteria decision methods is more of a
decision analysis method than a multi-objective optimization. However, it does
facilitate selection, ranking, or sorting (depending on which ELECTRE method)

 2 State of the Art

Sartorius 33

of a set of alternatives based multiple factors. Some ELECTRE methods use
multiple thresholds (e.g. indifference, preference, and veto thresholds) for each
criterion to mimic real decision-maker preferences. Another feature of the
method is that it allows for non-binary comparison of alternatives (two
alternatives can be “just as good” or “incomparable” in addition to simply “better”
or “worse”), which accounts for common real-world decision-maker preference.
(Schneiderbauer, 2013)

2.4.3 Physical programming

Physical programming, introduced by Messac (1996), along with applications in
aircraft design (Messac & Hattis, 1996), is the multi-objective optimization
method that carries most similarities to the new technique presented in this
work for capturing and using preference information in early design. Physical
programming captures richer preference information for each objective, with
four different classes of information that could be associated with a given
objective and an associated ‘hard’ or ‘soft’ mapping of preferences to the
objectives. Figure 2-14 shows the classification of preference, �̅�, to each design

objective, 𝑔.

Figure 2-14. Physical programming preference classification. (Loehr, 2013, p. 20)

One of the weak points of several multi-objective methods is the need to adjust
relative weights or goals for each objective. Physical programming addresses
this by mapping distinct qualitative attributes (highly desirable, desirable,
tolerable, undesirable, highly undesirable, and unacceptable), which can be
applied somewhat consistently across objectives, to various values of each
objective, shown for the soft classifications in Figure 2-15. Furthermore,

 2 State of the Art

Sartorius 34

application of physical programming techniques has shown to be effective in
both robust design and in the generation of full and well-distributed Pareto
optimal solutions (Chen et al., 2000; Messac & Mattson, 2002).

Figure 2-15. Physical programming class function ranges. (Loehr, 2013, p. 21)

Variations of physical programming have been explored. The physical
programming described above is sometimes called nonlinear physical
programming to distinguish it from the more common linear physical
programming whereby instead of using a type of smooth spline function, a
simple linear piecewise function is used for the class functions, for example as
shown in Figure 2-16.

 2 State of the Art

Sartorius 35

Figure 2-16. Linear physical programing class function. (Messac, 2015, p. 431)

There are other variations as well, such as fuzzy and global physical
programming, though the majority of applications of physical programming use
linear physical programming, and the plurality of applications are in the field of
engineering design (Ilgin & Gupta, 2012). The exercise presented by Ilgin
(2019) is a recent example of employing linear physical programming in
aerospace for selecting an aircraft for an airline fleet.

In the work of Yatsuka et al. (2018), the linear physical programming concept of
a preference class function is used as a way to non-linearize a goal
programming multi-objective optimization problem. The authors then used this
approach to capture preference functions for multiple stakeholders with
competing interests in what they call multi-player multi-objective decision
making. This creates a method whereby a priori information from the
stakeholders is used to automate arriving at compromise solutions.
Furthermore, robust optimization was applied to capture uncertainty information
to allow minimization of the worst case under uncertainty, mitigating effects of
biases.

 2 State of the Art

Sartorius 36

2.5 Comparing optimization to other search techniques

The design space exploration and decision techniques discussed in Section 2.2
and particularly Section 2.2.3 – the so-called ‘classical’ design space search
and decision methods – have been practiced since before design and
engineering with modern computing speed and power was possible. Tools for
this classical approach include the decision matrix, house of quality, two-,
three-, and four-variable plots, etc. These classical techniques essentially
encompass the identification, analysis, communication and understanding, and
decision phases of the archetypal aircraft design iteration process discussed in
Section 1.2.1. Done well, documentation is also done simultaneously as part of
the process.

The essential advantage of these classical approaches is that the designer and
other stakeholders retain the freedom to intervene and deviate from the
mathematical models if deemed necessary. This means that the designer has
the option to challenge design requirements, compensate for deficiencies in
analysis tools and methods, and account for a value function or figure of merit
that does not capture all value information or preferences. The designer can
also use experience to arbitrarily add margins to the process as needed.

The disadvantages of the classical approaches derive from the inability to
simultaneously examine a trade space with many dimensions. Being unable to
examine all relevant parameters simultaneously means that it is difficult or
impossible to find the absolute (mathematically) best alternative. As the
complexity of the problem increases, the advantages of the classical
approaches further diminish to the point that establishing a full understanding of
the design space becomes difficult to the extent that an optimal or Pareto
optimal solution is not guaranteed, even for smooth, differentiable, convex
problems.

Optimization methods, discussed in Section 2.4, by leveraging automated
analysis tools to arrive at an optimal solution, address the analysis phase and
the decision phase of the archetypal aircraft design iteration process discussed
in Section 1.2.1. Unfortunately, this means that the communication and
understanding phase is mostly or entirely omitted when implementing
optimization methods.

The main advantage of optimization methods, and the main reason that they
are currently used effectively in aerospace development and other fields, is that
it is likely that an optimal design solution can be found that is superior in every
way to the best solution findable with the ‘classical’ methods alone. However,
this feature comes at a cost. With optimization methods, many of the
advantages of the classical approach are lost, including the ability to challenge
requirements, add margin, account for analysis tool deficiencies, and integrate
more subtle preference information. Extra effort must be exerted as well in order
to formulate the optimization problem in a way that the analyses and the search
algorithm are compatible. In addition, the designer must have some level of
optimization expertise in addition to discipline-specific expertise to effectively
wield optimization as a tool and avoid potential pitfalls such as those caused by
noisy data, discontinuities, etc.

 2 State of the Art

Sartorius 37

A rough qualitative comparison between the classical approach and the
optimization methods are shown below in Table 2-2, with optimization’s strength
lying in the attributes at the top of the table and the classical approach’s
strengths falling primarily in the attributes at the bottom of the table.

Table 2-2. Attributes of alternative approaches to design space search.

Approach attribute Approach

Classical Optimization

Examine many parameters simultaneously ⬤ ⬤

Find feasible domain ⬤ ⬤

Find precisely optimal solution(s) ⬤ ⬤

Understand problem and design space ⬤ ⬤

Account for known modeling deficiencies ⬤ ⬤

Identify design drivers ⬤ ⬤

Challenge requirements ⬤ ⬤

Deviate from established figures of merit ⬤ ⬤

Account for extra preference information ⬤ ⬤

Key: Strong ⬤ ⬤ ⬤ ⬤ Weak

The newly developed approach and supporting tools described in this work
strive to retain most of the advantages of the classical approach while being
able to use numerical optimization and other techniques requiring intense
computation to find good design solutions. The approach allows for finding
optimal solutions while integrating more preference information in a methodical,
justifiable fashion but without the need to formulate an elaborate and precisely
informed value function or objective weightings. It thereby helps achieve greater
understanding of the problem, account for known or discovered analysis
deficiencies, and retain the ability to challenge requirements and take into
consideration the cost of requirements. The method semi-quantitatively
captures preference information that, for technical or other reasons, cannot be
integrated into an all-encompassing value function. The lack of said value
function is accounted for by keeping the designer in the loop.

 3 Methodology

Sartorius 38

3 Methodology

The two primary objectives of this work are to a) formally capture stakeholder
knowledge and b) put that knowledge to good use in the design and
development cycle. For each of these objectives, both in isolation and in
conjunction, there are multiple possibilities for how to approach the execution.
This chapter describes the specific method used for this work, called the Well-
Informed Search Design Optimization Method (WISDOM), based primarily on
utilizing preference maps coupled with numerical optimization. The WISDOM
approach described in this chapter is relatively independent from the specific
software implementation of the approach.

 3 Methodology

Sartorius 39

3.1 Applicability of approach

It is important to first discuss the conditions under which this approach is and is
not appropriate to apply as intended.

3.1.1 Early design studies

This work is primarily developed with early design studies in mind. As discussed
in Section 1.3.4, the term ‘early design’ as used here refers to the early stages
of a trade study or exploration of the design space. This could typically be the
first sizing estimate made in the first days after either encountering a new set of
air vehicle requirements or a decision to pursue internal development of a new
product. More broadly, however, an early design study is simply the initial
investigation into some vehicle or system aspect that has not been previously
given significant attention in the overall development effort.

3.1.2 Moderate dimensionality

Early aircraft design studies involve multiple degrees of freedom. However,
because it is early design, the total number of design variables that are truly of
interest is usually limited. Very early airplane design, for example, may only be
interested in two: powerplant size and wing size (thrust-to-weight ratio and wing
loading, e.g.). Even as conceptual design progresses quite far, there are still
only six basic design variables that are the most important in conceptual design
(Raymer, 2002), with the wing geometry being the main focus:

Table 3-1. The basic six design variables of airplane conceptual design.

Design variable Description

𝑇 𝑊⁄ or 𝑃 𝑊⁄ Engine size

𝑊 𝑆⁄ Wing loading

𝐴𝑅 Wing aspect ratio

𝜆 Wing taper ratio

𝛬 Wing sweep

𝑡 𝑐⁄ Wing airfoil thickness ratio

Unlike airplanes, for rotorcraft there is typically no phase early enough where
only examining two main design variables is appropriate. For traditional single
main rotor, single tail rotor helicopters, instead of the dominant two parameters
for an airplane, it may be appropriate for the very earliest investigations for the
helicopter to examine a minimum of four parameters relating to rotor disc area,
rotor speed, rotor solidity (the reference area of the blades in relation to the disc
area), and the engine size. The typical analogue to the most important
conceptual design parameters for airplanes may also include the number of
blades and the twist of the rotor blades. Finally, for a compound helicopter, the
typical set of conceptual design parameters also includes the lift-compounding
wing area and aspect ratio and the thrust-compounding forward propulsion
system size (Sartorius, 2011a), for a total of seven to nine design variables that
would be in the earliest design studies.

Since most early design studies for aircraft will likely only examine perhaps two
to six design variables simultaneously, the approach here is intended only to be
used for design studies with up to about a dozen design variables (plus about

 3 Methodology

Sartorius 40

twice that many constraints, measures of merit, and other parameters of
interest). Problems with higher dimensionality are not necessarily infeasible with
the approach, but they are not the intended application.

3.1.3 Mostly continuous design variables

In early design of air vehicles, massive discontinuities in the design space are
rare and are usually small in comparison to the scale of the overall design
space. One cause of this is that there are not too many discrete parameters in
early design. Discrete design variables that do come up are often a countable
number that is quite small, with just a small and manageable number of distinct
alternatives, for example a design variable for the number of engines or number
of rotor blades. For early design studies, many other discrete parameters can
be effectively ‘smeared’ into a continuous parameter for purposes of early
design iterations, for example the number of cells in a battery pack for electric
propulsion. So, while the approach should be able to handle some discrete
variables, it is more as an exception and not as the norm.

3.1.4 Nominally convex design space

Like enormous discontinuities, a design space with multiple major ‘humps,’ i.e.
qualitatively multiple highly disparate but valid and viable local optima, are rare
in the design experience of this author. Non-convex and non-smooth design
spaces can often be present at a much smaller scale, however. An example
source of this is the prevalence of analytic methods that rely on discretization
(for example for piecewise integration), methods that have limited precision (for
example limited significant figures from the output of a separate integrated tool
that the design has no control over), and/or methods that rely on iteration to find
solutions for analyses that are difficult or impossible to invert into a closed-form
equation. An example of this type of ‘micro’ non-convexity is shown in Figure
3-1 for a case where gross weight of an aircraft is solved as a function of fuel
fraction using an uninvertible equation for empty weight fraction as a function of
gross weight. At the macro level, the method appears smooth and continuous
but in fact, due to the iterative method of solving, has significant nonconvexity
and discontinuity at the ‘micro’ scale. This type of ‘noise’ must be kept in mind
as an expected and likely phenomenon to encounter when applying the design
space exploration approach discussed in this work. However, because the
approach uses off-the-shelf existing optimization tools and algorithms that may
have trouble handling this kind of ‘micro’ noise, the approach, just like most
applications of MDO, is expected to perform better when the analytical tools
used are truly smooth and continuous.

 3 Methodology

Sartorius 41

Figure 3-1. Example of 'micro' non-convexity typical of iterative methods used in
early aircraft design.

3.1.5 Tightly coupled parameters

A key element of the method is capturing of stakeholder knowledge. One aspect
that the approach does not explicitly account for is tightly coupled parameters.
While it is generally the case, especially in aircraft design, that very few
parameters are truly independent, the WISDOM approach operates under the
assumption that most parameters are independent, with mechanisms in place to
compensate for the inevitable but assumed small coupling of parameters.
Therefore, it is primarily left to the designer to recognize tightly coupled
parameters and compensate for these themselves. A simple example is that the
designer should be cognizant that the empty weight of an aircraft and its gross
weight are tightly correlated and that assigning similar strong preferences to
both is effectively double bookkeeping of the true underlying preference. A more
advanced case may be where two technical assumptions are treated
independently but are in fact correlated, for example aerodynamic efficiency
and structural efficiency. In this situation, a designer would be better off
transforming this to be an assumption applying only to one of the technology
levels and roughly modeling the other as a dependent function of the first,
possibly introducing an alternate assumption regarding the strength of the
correlation. In summary, the applicability is limited to cases where the coupling
of the parameters is understood well enough by the designer to be able to
sufficiently compensate for it manually in the setup of the problem.

 3 Methodology

Sartorius 42

3.2 Issues with optimization in early design

Besides the tendency in early design to have non-convexity, discontinuities,
etc., there are some additional characteristics of early design studies which
pose a challenge to leveraging traditional optimization in the process.

3.2.1 Imperfectly defined requirements and objectives

The first of these characteristics is that the requirements and objectives for the
project are unlikely to be precisely defined and well understood, and they may
in fact be in a state of flux as the early design efforts are under way. This is
especially true for product design as opposed to, for example, a traditional
defense program where the objectives and metric(s) to maximize or minimize
may be explicitly stated. Even then, the explicit objectives are only a best effort
by the requirements’ author(s), and a faithful, literal adherence to those
objectives may not result in fulfilling the true underlying needs or satisfying all
the ultimate decision-makers.

3.2.2 Low-fidelity analytical models

Conventional wisdom regarding the analytical models used in optimization is
captured well by Vanderplaats (2007): “The underlying analysis must properly
model the true physics or optimization will generate unrealistic designs.” In
addition to uncertain requirements, another common trait of early design studies
is a lack of maturity or fidelity of the analytical models employed. Models
appropriate for conceptual aircraft design, by definition, do not capture the
effects of all possible design parameters simply because these parameters are
unknown at the conceptual design stage. One positive side benefit is that these
models used in early design tend to be relatively simple and computationally
inexpensive, easing what can be one of the pain points in implementing
optimization search algorithms: long computation times.

3.2.3 Immature system models

Models may also lack maturity because it is possible in early design that the
models are being built in parallel to the design effort itself. When unique design
problems or solutions are involved (or problems or solutions novel to the
particular organization in question), it may be a necessity to develop novel
models at the same time as the design definition is maturing. Compared to
established models that have been used before, under-construction models are
less tested and validated, and the users have less experience with them, so the
models have a higher chance of leading the searches astray through
unaccounted for responses to certain combinations of inputs.

3.2.4 Rigidity of optimization approach

Even if the deficiencies of modeling are known and acknowledged, system
models are still unsuitable for use with automated search due to the inability to
integrate more subtle types of information into optimization in the early design
stages. Subtle preference information and knowledge is usually very active in
early design as an efficient shortcut to maturing the design, the requirements, or
both. Implementing optimization, where the design decisions are being made

 3 Methodology

Sartorius 43

behind the obscuring curtain of the algorithm, strips away some of the ability to
use that information for making quicker or better decisions or, in some cases,
challenge design requirements based on gained insights from more manually
exploring the design space using more classical design space exploration and
decision techniques.

3.2.5 Algorithms focused on final solution

A final aspect of early design studies posing a challenge to using optimization is
that the fundamental aims of early design projects are not well aligned with the
goals of more typical optimization. Mathematical optimization is focused on
finding optima, and, in most cases, this is an optimal design solution according
to a single all-encompassing objective function that attempts to capture all
facets of value and desires for all stakeholders.

In early design studies, in contrast to focusing on finding the single best design
point, the designer is more likely concerned with identifying ‘interesting’ regions
of the design space for investigation in future iterations and informing human-in-
the-loop decision making. One major reason for this is that any single design
point chosen in early design is certain to change. Especially when working on a
novel design problem or solution, the designer may also simply be more
focused during this stage on building and maturing the analytical models.
Another reason that early design is not as focused on selecting a single design
point is that the designer is often more interested in increasing understanding of
the design problem as opposed to allowing a search algorithm explore the
design space as a black box operating behind a veil of abstraction and
obscurity.

 3 Methodology

Sartorius 44

3.3 Types of information captured

The method here is designed to facilitate capturing types of stakeholder
knowledge, wisdom, and preferences that normally are un- or under-captured,
especially a priori. The three main categories of information type are
assumption uncertainty, preferences on requirements and other parameters,
and known modeling idiosyncrasies and deficiencies.

3.3.1 Example regional airliner design for illustration

To illustrate all three of these categories, a textbook early aircraft fuel fraction
sizing example is used. For this example, a hypothetical company that already
has a product portfolio of business jets and small regional jets is interested in
developing a larger aircraft: a small regional airliner. The example is based on
the initial sizing of such a vehicle to the requirements in Table 3-2 below using
the fuel fraction sizing method, with the gross weight of the vehicle being used,
as is common practice in aircraft design, as an unrefined though meaningful
surrogate for higher-level figures of merit such as operating costs.

Table 3-2. Example design case range and payload requirements.

Requirement Value

Range 2500 nmi (4630 km)

Payload 100 passengers + flight deck and cabin crew

The fuel fraction sizing method is named for how a given mission profile is

analyzed to find the weight fraction for each mission segment flown, i.e., what
portion of the starting weight for that segment is expended as fuel. Typically, in
conceptual design, several segments are assigned a fixed, assumed weight
fraction such as for taxi, takeoff, and even climb, while for calculating weight
fractions of cruising or loitering mission segments, various forms of the Breguet
range equation are used, for example

𝑊𝑒𝑛𝑑

𝑊𝑠𝑡𝑎𝑟𝑡
= 𝑒

−𝑅∙𝑆𝐹𝐶

𝑉∙𝐿 𝐷⁄ or
𝑊𝑒𝑛𝑑

𝑊𝑠𝑡𝑎𝑟𝑡
= 𝑒

−𝐸∙𝑆𝐹𝐶
𝐿

𝐷⁄ , (10)

where endurance, 𝐸, range, 𝑅, specific fuel consumption, 𝑆𝐹𝐶, speed, 𝑉, and
aerodynamic efficiency, 𝐿 𝐷⁄ , are estimated or assumed with a level of fidelity
appropriate for early conceptual design.

The product of all the weight fractions for all the mission segments reveals how
much fuel is consumed through the mission as a portion of the starting gross
weight of the aircraft. This fuel fraction (usually with some margin added),
combined with the empty weight fraction and the known payload weight, yields
the gross weight of the aircraft.

If an estimated fixed constant value is used for the empty weight fraction, then
this is where the fuel fraction sizing method ends. However, the empty weight
fraction is commonly expressed as a function of gross weight based on a
historical regression, usually of the form

𝑊𝑒𝑚𝑝𝑡𝑦

𝑊0
= 𝐴 ∙ 𝑊0

𝐶 , (11)

 3 Methodology

Sartorius 45

where the constants 𝐴 and 𝐶 are taken based on a fit for a given category or

class of aircraft. For the example here, constants (for 𝑊0 in units of pounds) 𝐴 =
0.902 and 𝐶 = −0.0385 are used to be representative for the small jet transport
category, resulting in the relationship shown in Figure 3-2.

Figure 3-2. Regional jet transport empty weight fraction trend.

3.3.2 Assumption uncertainty

Using this simple example case of the regional airliner, we can illustrate how
information regarding technical assumptions is often uncaptured in early design.
Note how the weight fractions calculated using the Breguet range equation,
Equation (10), are highly affected by the assumptions used in early conceptual
design for specific fuel consumption and aerodynamic efficiency. It would be the
normal situation for these assumption parameters to be set to singular, fixed
values at the beginning of some analysis script (Figure 3-3), which for the

regional airliner example here are set as 𝐿 𝐷⁄ = 17 and 𝑆𝐹𝐶 = 0.5 𝑙𝑏 ℎ𝑟⁄ 𝑙𝑏⁄ .

Figure 3-3. Assumptions set to fixed values early in analysis.

These assumptions could very well be set spontaneously by an experienced
designer or could be somewhat informed by some preliminary analysis. In either
case, there is significant information that is not being captured here.

With the baseline requirements and assumptions, the resulting gross weight of
the sized aircraft is 124,000 pounds (56.1 tonnes). The designer knows at this
point that this is only an estimate based on the best assumptions available at
the time, and that there is in fact significant possible variation in this result.
Whenever this result is presented, it must be accompanied by a “depending on
the assumptions” disclaimer.

maxLiftToDrag = 17; % L/D

sfc = 0.5; % Thrust specific fuel consumption (lb/hr/lb)

 3 Methodology

Sartorius 46

If the designer can come up with a best estimate baseline value for a given
technical assumption, he or she should also, at a minimum, have a reasonable
guess for what a worst-case and best-case value for the parameter might be.
However, what if instead of just a singular value for an assumption, a probability
distribution is captured? Creating such a distribution can be as straightforward
as a simple triangular distribution (Figure 3-4), which only requires the three
pieces of information that are likely to be readily at hand:

• Best and most likely estimate

• Most optimistic possible estimate

• Most pessimistic possible estimate

Figure 3-4. Triangular distributions for uncertain technical assumptions.

Now, significantly more information that was already available for the designer
is formally captured. With this range of possible values for the technical
assumptions, there is now a range of possibilities for the resulting gross weight,
with a most-optimistic gross weight of 95,700 pounds (43.4 tonnes) and a most-
pessimistic gross weight of 284,000 pounds (129 tonnes). In fact, a distribution
of probabilities exists across that range, which is easily obtained by a simple
Monte Carlo simulation approach, as shown by the histogram of the results in
Figure 3-5 below (result with baseline assumptions shown in red).

 3 Methodology

Sartorius 47

Figure 3-5. Resulting gross weight estimate distribution, propagating
uncertainty.

Visualizing the distribution (with a histogram or with some other method such as
a whisker plot) is crucial to gaining a better understanding of the effects of the
assumptions beyond the basic understanding that comes from simply
examining the optimistic and pessimistic cases. In this situation, the pessimistic
case is over double the gross weight of the baseline, but when examining the
histogram, it is apparent that the pessimistic extreme is very extreme and highly
unlikely. This contrasts with results in the region of the optimistic case, which
are much more realistic to consider.

A triangular distribution makes sense when the only information on hand about
a parameter’s assumption is the minimum realistic value, the maximum realistic
value, and a best guess. However, with that same set of information, slightly
more realistic distributions can be used without significant added effort. Taken
to the extreme, a technical assumption’s uncertainty can be captured in the
form of any arbitrary probability density function (PDF) that the designer or
stakeholder might choose or may even be informed by experimentation
involving many samples.

When picking a probability density function for capturing technical assumption
uncertainty in early design, it is important in some cases when generating
random values of the parameter for analysis that hard bounds on the
parameter’s value are possible so that values that simply do not make physical
sense can be precluded. A normal (Gaussian) distribution does not fulfill this
requirement, but one flexible distribution that is versatile for many situations
(while also being free of the discontinuity of the triangular distribution) is the

beta distribution, which has the PDF on the 𝑥 interval from zero to one of

 𝑓(𝑥) = 𝐾 ∙ 𝑥𝛼−1(1 − 𝑥)𝛽−1 , (12)

where the two shape parameters, 𝛼 and 𝛽, determine the shape of the
distribution. The normalization constant 𝐾 is equal to the reciprocal of the beta

 3 Methodology

Sartorius 48

function of the shape parameters 𝛼 and 𝛽, which ensures that the total
probability is one.

The beta distribution is most useful for capturing assumptions when modified to
a PERT (Program Evaluation and Review Technique) beta distribution (London,
2013; The Beta-PERT Distribution, n.d.) such that the function is again
characterized by a minimum value, maximum value, and best estimate (the
mode of the distribution). While the beta distribution needs two parameters, 𝛼
and 𝛽, to determine its shape, the PERT distribution only requires a single
parameter for the best estimate. That is because the PERT distribution also
allows one to capture an additional shape parameter defining how ‘peaky’ the
distribution is and reflecting how confident one is in the best guess estimate.
With the PERT distribution, the shape parameters of Equation (12) are defined

in terms of the mode, 𝑚, and this more meaningful shape parameter, 𝜆, as

 𝛽 =
𝛼(1 − 𝜇)

𝜇
 , (13)

and

 𝛼 =
𝜇(2𝑚 − 1)

(𝑚 − 𝜇)
 , (14)

where

 𝜇 =
(𝜆𝑚 + 1)

(𝜆 + 2)
 . (15)

For comparison to the above example, Figure 3-6 and Figure 3-7 represent
assumptions and results, respectively, when using a PERT distribution in lieu of
a triangular distribution. The result is qualitatively the same, though with slightly
more results toward a lower gross weight and somewhat more tightly clustered.

Figure 3-6. PERT distributions for uncertain technical assumptions.

 3 Methodology

Sartorius 49

Figure 3-7. Resulting distribution when using PERT-distributed assumptions
instead of triangular.

The ability to capture technical assumptions not just as a singular value, but as
a probability density function, is an important feature of the method. With that
additional information in hand, the uncertainty about assumptions can be
propagated to final analysis results, for example through examining the
distribution of results of many Monte Carlo trials as shown in the example here.
This yields significant additional insight into the design possibilities early in
design and without requiring significant effort beyond inputting simple
information that is already on hand for the designer.

3.3.3 Preferences on figures of merit and design parameters

Another category of information captured by the technique is preferences on
figures of merit, design requirements and specifications, and other design
parameters. Different projects in different aerospace sectors may have varying
degrees of solidity of definition of certain metrics, as experienced by this author.
A small general aviation aircraft may be an example of one end of this
spectrum, as these may be purchased by pilots or passengers for whom the
financial costs of aviation are of secondary importance to aesthetic or other
emotional factors. At the other end of this spectrum may be an airliner product,
where there is well-understood existing business model along with a small set
of clear, overarching value functions to minimize or maximize (costs and
profits). In addition, there is often a connection with customers to support
market research with airliners, as well as commitments from customers to
further enhance confidence in the requirements for a new design. Across this
entire spectrum, however, there can be un- and under-captured stakeholder
wisdom in the form of preferences on various requirements, design parameters,
and figures of merit.

For the regional airliner example, consider the passenger capacity requirement
from Table 3-2 in Section 3.3.1. Like the earlier motivational example (Section
1.3.2 Figure 1-4), a fixed value for the payload requirement does not fully

 3 Methodology

Sartorius 50

capture the entirety of the knowledge available regarding the desired passenger
capacity of the to-be-developed new regional airliner. Even if an extremely
refined cost and profits model exists, blindly minimizing or maximizing to these
parameters, respectively, still may omit some key information from the decision-
making process.

The one hundred passenger capacity is the specified requirement, which could
have been dictated by careful market research or just a rough initial guess. In
either case, there are some pieces of information that a designer would still use
when examining the whole spectrum of possible passenger capacities to design
to. Some examples of these extra pieces of information take the form of
qualitative preferences, such as:

A. Other things being equal, it is good to comply with the specified
requirement of a one hundred passenger capacity, avoiding challenging
requirements and conflicting with what was specifically requested for the
new product. Given the roughness of any results early in design, any
result that is close to what is asked (within, say, five passengers) might
as well simply default to the specified requirement and avoid the hassle
of challenging a requirement.

B. It is slightly preferable to develop a smaller aircraft if possible, given that
it would require a smaller overall investment of time and resources to
achieve the goal of bringing a new airplane to market. It is also closer to
the experience base of the company, with increased chances of recycling
design aspects and expertise.

C. In this hypothetical scenario, the manufacturer already has existing
products with a smaller capacity of fifty passengers, and there is
therefore a strong preference not to develop a small aircraft that will
impinge on sales of existing aircraft, even if the new product could be
potentially very profitable by itself.

D. In line with preference C above, there is a hard lower limit on passenger
capacity at around fifty passengers, where there would essentially be
direct duplication of an existing product in the portfolio.

E. Like the internal competition on the small side, there is also significant
competition on the larger side of the range of possibilities, though with
other companies and not within the hypothetical firm, in the form of the
prolific existing narrow-body airliners in the ca. 150-seat capacity range.
Therefore, there is a preference for making sure that whatever new
aircraft is developed will be in a capacity category far away from those
competitors.

If the passenger capacity is plotted against a meaningful metric or figure of
merit (such as in Figure 3-8), and then some decision-makers decide on a
specification based on this plot, then they can integrate the preference
information that they carry in their minds at that time. However, it is an objective
of this work to automate such decisions while keeping them just as informed by
that preference information in order to yield similar results.

 3 Methodology

Sartorius 51

Figure 3-8. Regional jet gross weight versus passenger capacity.

In the WISDOM approach that is the subject of this work, the tool used for
capturing preference information is called a preference map. The preference
map is simply a map of some penalty or value as a function of a given
parameter to which the preference is attached. An example of a basic
preference map is shown below in Figure 3-9 for preference penalty as a
function of passenger capacity, with regions reflecting the qualitative
preferences A through E listed above called out on the map.

Figure 3-9. Basic preference map of passenger capacity.

In this case, the penalty on the ordinate axis of Figure 3-9 is arbitrary. What is
more important is the qualitative shape of the preference map:

• Preference A, a desire to comply with the original requirements, is
reflected in the steep trough surrounding the baseline value, such that in

 3 Methodology

Sartorius 52

this region, designs will be strongly driven to minimize penalty and
gravitate toward the baseline value.

• Preference B, a slight drive toward a smaller and less resource-intensive
development program, is captured by the gently increasing penalty in the
region surrounding the baseline specification.

• Preference C, not competing with existing smaller products of the
company, is captured by the increase in penalty on the left, with a type of
‘soft’ lower bound on passenger capacity created by the sudden change
in preference map slope near ca. 75 passengers.

• Preference D, a hard limit on duplicating an existing product of the
company, is implemented with a hard lower bound on passenger
capacity.

• Preference E, not competing with the existing narrow-body market, like
preference C, is reflected by the increased slope at the right and its
associated ‘soft’ upper bound at the kink in the curve at 135 passenger
capacity.

To get design results that integrate this preference information, preference
maps from all parameters and figures of merit that have associated preferences
are combined into a single objective function. Local minima are then found while
searching through this design space using optimization algorithms. Further
information on this can be found in Section 3.4, with information on the
implementation details in Chapter 4.

With other preferences on weight, cost, productivity, revenue, and other figures
of merit also influencing the direction the design takes, one would expect, based
on the preference map in Figure 3-9, that the interesting designs would likely be
clustered around 75, 100, and 135 passenger capacity vehicles. Some
combinations of preferences on the other figures of merit (and with variations in
their relative importance) may also drive some designs to be compromises that
come between or go beyond these points. For the sake of this illustrative
example, simple linear preferences are also captured for two other competing
preferences:

• The desire to minimize development and operating cost, using gross
weight as a surrogate for both (see also the preference map for gross
weight shown in Figure 3-11 in Section 3.3.4 below).

• The desire to maximize revenue, both in sale price for the manufacturer
and lucrative fares for the airline, using the product of passenger
capacity and design range as a surrogate utility metric.

All penalties from the preference maps are summed to yield a single objective
function to be used by search algorithms to find a varied set of design
candidates. A histogram of the results when using this type of automated
search of the design space integrating the information captured in preference
maps is shown in Figure 3-10 (for ca. one thousand total design trials), with the
preference map from Figure 3-9 in the background for reference.

 3 Methodology

Sartorius 53

Figure 3-10. Clustering of design results driven by preferences captured in a
preference map.

As expected, the results are clustered at the baseline specification, the ‘soft’
lower bound, the ‘hard’ lower bound, and a somewhat at the ‘soft’ upper bound.
Due to variations in relative weighting of preferences, there are also some
designs that do not close and/or are driven off the chart to the right with
runaway weight.

Where the most frequent designs lie is an indicator of the interesting regions of
the design space for further investigation. A qualitative interpretation of these
results could be:

• A design that complies with the original specification of 100 passenger
capacity is probably quite acceptable.

• Alternatively, an appealing new product development option could
instead focus on a design philosophy of pursuing the smallest, least
expensive, fastest development that would still be in a larger size class
and give the company access to some new markets. This would likely be
around a 75 passenger capacity aircraft.

• Or, given other drivers, quantitative or qualitative, that may be present,
any passenger capacity in between the 75 and 100 points is justifiable,

• Capacities above 100 passengers would also be justifiable with a
potential design philosophy of pursuing the largest, highest-revenue
vehicle that is not in competition with existing narrow-body airliners.

Of course, the same conclusions could be reached in this example by
inspection without the need to implement this analytical process. The difference
is that the technique of capturing preferences to preference maps can scale up
to higher dimensions with multiple parameters with complex and competing
preferences in play. In this way, this type of exploration and decision making
can be automated in the design loop such that the design decisions made using
the algorithm are aligned with those that would be made by a human designer

 3 Methodology

Sartorius 54

examining the same area of the design space with deep understanding of all the
factors and issues present for a given case.

There is no limit to the total number of preference maps that can be combined.
For this example, a natural additional dimension to add when exploring which
class of aircraft to develop would be a preference map for the aircraft range,
with a resulting set of design candidates clustering at the most interesting
potential combinations of passenger capacity and range.

3.3.4 Known uncaptured system model behaviors

A third type of information that the technique can capture and account for is the
known deficiencies, idiosyncrasies, and other behaviors in the system model
and its constituent analytical methods. It is often the case, especially in early
design, that the modeling of the system under investigation is being built in
parallel with the design progression. As the designer(s) and other stakeholders
build up these models, they are aware of the analytical methods being
employed and how the models are built. They therefore have a reasonable idea
of where the models fall short, potentially having sets of inputs where accuracy
is questionable or where a specific phenomenon is known to not be captured by
the methods.

Going back to the illustrative example of using the fuel fraction method to size a
small regional airliner, the fuel fraction sizing method is a very simple approach
that is appealing for its usefulness very early in design studies when not many
inputs for higher fidelity methods are known. However, just because it is early
does not mean that some of these shortcomings should not be taken into
account. The deficiencies are known, and that knowledge can be captured, at
least roughly, and be integrated into the design iteration cycle.

Let us examine for an example the weight modeling used in the method. At its
core, it relies on a model of the empty weight fraction of the vehicle as a simple
function of the gross weight of the aircraft (Figure 3-2). Obviously, however,
many other factors besides gross weight affect the ultimate empty weight
fraction of the final design.

One common trade-off in aircraft development is aerodynamic efficiency versus
weight and cost. Higher aspect ratio wings, for example, have less structural
depth and require more material to sustain the same loads (not to mention
aeroelastic constraints). If using gross weight as the top-level surrogate metric
to minimize as a design objective, some of the qualitative information that can
be captured is:

A. The empty weight fraction trend is based on typical existing aircraft in this
category. If the aerodynamic efficiency (characterized by lift to drag ratio)
is higher than is typical for the category, the weight should be higher than
the trend.

B. Conversely, if aerodynamic efficiency is significantly lower than typical,
there may be a slight weight decrease below the trend.

C. The magnitude of the effects from items A and B above on the resulting
gross weight is not precisely understood or quantified.

 3 Methodology

Sartorius 55

D. Designs that incorporate an aerodynamic efficiency that is significantly
higher than is typical for the category should be viewed with skepticism,
possibly prone to aeroelastic or other unmodeled effects (for example
fuel volume constraints created by a high aspect ratio wing) that could
invalidate the design.

The classic fuel fraction sizing method does not take these factors into account,
but with this method, a preference map, the same as discussed in Section
3.3.3, can be used to capture some of this knowledge. Because the gross
weight of the aircraft is used as a surrogate primary metric to minimize for this
example, the preference associated with gross weight is a simple linear
function, as shown in the preference map in Figure 3-11 (which also features a
hard lower bound to preclude what would be non-sensical negative values).

Figure 3-11. Linear preference map for gross weight, the surrogate objective to
minimize.

Combined with this is the preference map associated with aerodynamic
efficiency, shown below in Figure 3-12, which captures the qualitative
information listed above.

Figure 3-12. Preference map for capturing known system model characteristics.

 3 Methodology

Sartorius 56

Captured information items A and B are reflected by the varying slopes to the
left and right of the baseline. Item C, the uncertainty in defining these slopes, is
represented graphically by the shaded region showing the extents of the
possible variation in scaling of the preference map. Finally, the information in D,
the skepticism that should be attributed to designs with very high aerodynamic
efficiency, is captured not by the shape of the preference map, but rather by
explicitly defining the region where, for designs that fall in this domain for this
parameter, a flag will be raised to make sure the designer is aware of the
potential issue.

Introducing this very coarse preference map on aerodynamic efficiency affects
the design results by effectively ‘thumbing the scales’ using the captured
knowledge to modify the behavior of the system modeling as a function of
aerodynamic efficiency, particularly the objective metric to minimize (in this case
gross weight). Consider the gross weight as a function of aerodynamic
efficiency, 𝐿 𝐷⁄

𝑚𝑎𝑥, in Figure 3-13. Since the preference map for gross weight

(Figure 3-11) is linear, the abstracted gross weight penalty as a function of
aerodynamic efficiency is the identical shape.

Figure 3-13. Gross weight as a function of aerodynamic efficiency.

With the addition of the preference map for aerodynamic efficiency on top of the
preference map for gross weight, however, it is possible to have a qualitative
shift in the trend. As shown in Figure 3-14, the extents of the possible relative
weighting of the aerodynamic efficiency preference map (captured information
item C) is captured in weightings relative to the gross weight penalty.

 3 Methodology

Sartorius 57

Figure 3-14. Extents of the effect of L/Dmax preference map on qualitative nature
of system modeling behavior.

Without this added information, designs that feature very high aerodynamic
efficiency are artificially appealing. Normally, when conducting initial sizing of an
aircraft using the fuel fraction sizing method, if aerodynamic efficiency is treated
as a design variable, there is nothing in the mathematical system modeling that
creates any driver at all for moderate and reasonable values for L/D. With the
information added, however, the fact that there are some unmodeled
consequences to very high 𝐿 𝐷⁄

𝑚𝑎𝑥 is captured and integrated into the

information that an optimization solver would use to explore the design space.

If the aerodynamic efficiency is treated as an uncertain assumption parameter
instead of a design variable, the integration of the preference map still plays an
important role. In this case, whichever designs that benefit from an unusually
high assumption for aerodynamic efficiency will not be unduly elevated to be top
candidates. Conversely, designs with somewhat lower aerodynamic efficiency
assumptions will not be inappropriately discarded due to the potential incorrect
conclusion that the adverse weight impact is too great.

As discussed previously, the greatest benefits from this approach come when
all the preference maps are combined such that the automatic search
algorithms can make informed decisions that are as aligned as possible with the
decisions an experienced human designer would make. The other great benefit
is the significant difference in effort required to capture certain phenomena. To
capture the effects of high aerodynamic efficiency (primarily achieved via high
aspect ratio wings) on weight, significant research and modeling of structures,
aerodynamics, dynamics, etc. could be spent, but instead a simple preference
map is drawn using information and designer wisdom on hand, allowing the
design process to progress quickly.

 3 Methodology

Sartorius 58

3.4 Application of optimization

As mentioned, the goal of the approach here is for the automated search, i.e.,
optimization algorithms, to make decisions that are as close as possible to the
decisions that a human designer would make. This requires mapping
preference maps onto an optimization problem in a certain way to integrate all
captured information into the search algorithm. There are a multitude of existing
off-the-shelf optimization algorithms, and in order to be able to leverage them,
design variable preference information can be transformed into a standard-
format for a single-objective optimization problem, which typically takes the form

 𝒙∗ = min
𝒙

𝑓(𝒙) subject to {

𝐿𝐵𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝐵𝑖, 𝑖 = 1,2,3, … , 𝑛

𝑔𝑗(𝒙) ≤ 0, 𝑗 = 1,2,3, … , 𝑚

ℎ𝑘(𝒙) = 0, 𝑘 = 1,2,3, … , 𝑝

 . (16)

3.4.1 Objective function

The objective function transformation that includes the preference maps is given
by the sum of design variable preferences:

 𝑓(𝒙) = ∑ 𝑝𝑖(𝑺(𝒙))

𝑘

𝑖=1

 , (17)

where 𝑺 is the system model function that analyzes a design defined by design

variables contained in design variable vector 𝒙 and returns all figures of merit
and parameters, including design variables themselves, to which preferences
may be attached. Each of 𝑘 preference functions, 𝑝, acts on its respective
output parameter of 𝑺 and yields the preference penalty value mapped to that

parameter value based on the 𝑖th preference map corresponding to the 𝑖th
parameter returned by the system model function.

3.4.2 Introducing variation

A primary result of the method presented here is generating interesting and
useful sets of multiple design points from which insights can be gained and
decisions can be made. There are three main elements that by themselves or
combined lead to creating diverse sets of results.

 Multi-start multimodal search

This method seeks to find many unique local minima by searching from many

different starting points, 𝒙0. This is a simple but effective approach to
multimodal optimization and finding multiple local optima, and each resulting 𝑗th
local optimization solution,

𝒙𝑗

∗ = min
𝒙

𝑓(𝒙) ∀𝑗 ∈ {1,2, … , 𝑛} ,

(18)

is associated with its 𝑗th search starting point, 𝒙0,𝑗 ∀𝑗 ∈ {1,2, … , 𝑛}.

 3 Methodology

Sartorius 59

 Preference map uncertainty scaling

The other mechanism for adding variation to the resulting set of design
optimization solutions leverages the parameter preference map property that is
a measure of uncertainty in the preference map magnitude. This property is
depicted visually as the shaded region C of Figure 3-12 in Section 3.3.4 above.
This property is integrated into the objective function mathematically by adding
a factor such that Equation (17) becomes:

 𝑓𝑗 (𝒙) = ∑ 𝜌
𝑖

𝑋𝑖,𝑗 ∼ 𝑈(−1,1)
∙ 𝑝𝑖(𝑺(𝒙))

𝑘

𝑖=1

 , (19)

where in addition to using a different starting point, 𝒙0,𝑗, for each search, the

uncertainty factor, 𝜌, for each preference map is used to scale the ordinate of
the preference map stochastically. This random scaling is based on uniformly
distributed random number 𝑋 between minus one and one. An uncertainty
factor value of 4 assigned to a given preference map, for example, means that
the preference map may be scaled by between ¼ and 4, for a total ratio of
maximum possible scaling to minimum possible scaling of 16.

 Stochastic assumption parameters

Recall from the illustration in Section 3.3.2 that significant additional information
is captured by using probability distributions in lieu of singular parameter values
for uncertain technical assumptions. To additionally capture the variation due to
uncertain assumptions, these parameters are randomly assigned values
according to their respective specified probability density functions. These
parameters are used in the system model objective function separately from the
design variables, 𝒙, that are allowed to vary during each search. Each 𝑗th
solution, 𝒙𝑗

∗, in addition to being affected by its starting point, 𝒙0,𝑗, is influenced

by the randomly generated uncertain assumption parameters, 𝝎𝑗:

 𝒙𝑗
∗ = min

𝒙
∑ 𝜌

𝑖

𝑋𝑖,𝑗 ∼ 𝑈(−1,1)
∙ 𝑝𝑖 (𝑺(𝒙, 𝝎𝑗))

𝑘

𝑖=1

 . (20)

A flowchart representation of how the objective function is constructed is shown
in Figure 3-15.

 3 Methodology

Sartorius 60

Figure 3-15. Flowchart of objective function integrating preference maps.

Observe that if there are no uncertain assumptions at play and all preference
maps are linear or affine without uncertainty scaling factors, the technique
simply regresses to a weighted sum approach to multi-objective optimization. In
the case that the system modeling is also smooth and convex, i.e., convergence
to the one existing local and global optimum is ensured, only the uncertainty
factors, not the varying start points, form variation in the resulting design point
set. If all uncertainty factors, 𝜌, are equal to one, then there will be no variation

in results and each 𝑗th optimization will converge to the same solution, reducing
to a conventional implementation of optimization.

3.4.3 Constraints

Preference information attached to design parameters often contains hard
bounds on the parameter. The treatment of these hard bounds depends on if
the parameter is an input to the system model function, i.e., it is a design
variable, or if it is an output. Upper or lower bounds are implemented as simple
side constraints for input design variables and as nonlinear inequality constraint
functions for bounds on output design variables.

There are many cases in design iteration where it is also desirable to set an
output of the system model function to a fixed value. In this case it is
appropriate to enforce this as nonlinear equality constraint functions. It is also
sometimes the case that parameters are both inputs and outputs and that they
must be consistent for the design to make sense or close. An example would be
an estimated gross weight input and a calculated gross weight output. These

𝒙𝝎

System model function

Uncertain

parameters

Design

variables

Preference map function

Uncertainty scaling

System
parameters

Preference penalty

values

𝑓

∑

Scaled preference

penalty values

 3 Methodology

Sartorius 61

would also be enforced as nonlinear equality constraints. This provides the side
benefit of removing the need for the implementation of the system model to
inefficiently converge internally.

Figure 3-16 shows a version of Figure 3-15 that integrates a flowchart of how
some of the constraints are implemented.

Figure 3-16. Flowchart of objective function with constraints.

𝒙

𝝎

System model function

Uncertain

parameters

Design

variables

Preference map function

Uncertainty scaling

System
parameters

Preference penalty

values

𝑓

∑

𝑔 ℎ

Bounds

Side constraints

Scaled preference

penalty values

S
y
s
te

m
 c

o
n
v
e
rg

e
n
c
e

 3 Methodology

Sartorius 62

3.5 Understanding and decision-making

The application of optimization is not the final step in the process for this
method. The variety of results yielded by that step must be reduced to
manageable and understandable alternatives from which insights can be
gained, decisions can be made, and the next iteration can proceed with further
changes and refinements.

3.5.1 Nature of optimization results

The optimization process in this method involves running multiple optimization
studies, and the results of each optimization will vary from one to the next due
to the factors discussed in Section 3.4.2 above that introduce variation. The
total number of optimization runs is determined by the designer as a
compromise between computing time, thoroughness of the search of the design
space, and statistical significance of the stochastically derived insights that can
come from the results. This could mean that there are dozens, hundreds, or
thousands of possible design alternatives. Assuming optimization convergence,
all of these results are closed designs that are locally optimized for the given
assumptions and preferences, so any selection of a single alternative from
these will be a valid and justifiable design option.

3.5.2 Processing of optimization results

Given that in many cases the total number of design results will be far too many
for a designer to individually scrutinize, some tools are necessary to reduce the
set of results down to a comprehensible form for designers and other decision
makers. This form may be a condensed set of candidates that is finite enough
for comprehension, but it may also take the form of some other kind of analysis
or visualization of the results as a whole.

A simple histogram is one of the tools available for gaining insight into results.
Not only, as per the examples shown in Figure 3-5 and Figure 3-7 in Section
3.3.2, can it provide information on the relative likelihood of outcomes, but it can
also show where results are clustered, indicating potentially interesting regions
of the design space for further exploration, as in Figure 3-10 in Section 3.3.3.
This type of clustering visualization can be extended to other types of
visualizations, such as scatter matrices similar to Figure 2-11 or corner plots (a
related multidimensional visualization technique presented in Chapter 4),
revealing where, despite variations in search starting points, relative
preferences, or even uncertain assumptions, similar or identical designs still
arise.

Outliers, the converse to clustered and high-frequency regions of the design
space shown by the results, can also serve a function in providing further
understanding of the design space. Besides being valid and potentially
interesting design alternatives themselves, experience has shown that the
existence and location of outliers can provide information that may call into
question certain assumptions or the way in which the system is modeled.

It can also be useful, instead of visualizing the entire set of results, to focus on
reducing a large set of results down to a more manageable set of distinct design

 3 Methodology

Sartorius 63

alternatives that are representative or indicative of the larger set. Since in most
cases most or all resulting design points are Pareto dominant, reducing to only
a Pareto set does not usually prove a significant enough reduction to be useful.
More often, other methods of classification and clustering are required. Again,
methods for doing so are discussed further in Chapter 4. The result of clustering
is a handful of representative or interesting design candidates that are few
enough that they can all be laid out in front of stakeholders and act as artifacts
to facilitate understanding and informed discussion.

3.5.3 Iteration actions

Whatever form the processed results take, usually the aim is not particularly
focused on explicit ranking, prioritization, or selection of designs. Rather, the
primary purpose is to direct actions that will influence the approach and
outcome of the next iteration.

In the design process of any moderately complex system, there are a significant
number of areas where efforts can be spent or changes can be made from one
design iteration to the next. A very common activity in iterating in early design is
continual improvement and refinement of the system modeling, and the
understanding provided in this method can help direct those efforts. The other
major activity between iterations is locking in or narrowing down on
requirements, design decisions, and other design parameters. This is the
design space ‘pruning’ that was discussed Section 1.3.3. The specific
implementation of the method, discussed in the next Chapter, provides several
features and tools designed to facilitate this design refinement and pruning
process in an efficient and flexible manner.

 4 Implementation

Sartorius 64

4 Implementation

The method as described in the previous chapter is in principle sufficient for
prototyping and demonstrating the technique and assessing how it fulfills the
two primary objectives of this work. However, the implementation of the
technique in a way that is practical for real use is not entirely straightforward
and contains some interesting challenges that must be addressed. This chapter
lays out the specific workflow, the architecture of the software implementation,
and the details of some of the key components in their current state at the time
of this writing, along with some of the reasoning behind implementation
decisions.

 4 Implementation

Sartorius 65

4.1 Overview

When building a set of software tools for a one-off design task, it is often not a
terribly significant additional step to put those tools together into a single design
tool or design suite to be used for a later project. However, the moment that any
new design challenge deviates qualitatively from the original design task, the
all-encompassing design tool requires significant modification to be applicable
and useful. Recognizing this, instead of building a software suite with the
intention of quickly and easily re-using it for each new design undertaking, this
author simply maintains a library of tools that are useful for various design-
related tasks and analyses, with the expectation that each new project, which
will likely be fundamentally different from the last, will require putting these tools
together in a new and unique way. The library is called the Design
Understanding and Exploration Library, or DUEL, so named also for the nature
of engineering design and development as always being characterized by
conflict and competition between various drivers and aspects. The Well-
Informed Search Design Optimization Method (WISDOM) approach that is the
subject of this work was implemented as a tool within DUEL as a framework
called the Well-Informed Search Environment (WISE).

4.1.1 Implementation priorities and requirements

Just like with the design of a new air vehicle product, it can be helpful when
developing a new piece of software to keep in mind some explicit priorities that
help inform design decisions and requirements. These priorities can also be
thought of as themes or, per Lempia & Miller (2009), goals. In any case, for this
software development project, the general themes and priorities are usefulness,
usability, flexibility and reusability, and speed, expounded below:

 Early and broad utility

The tool is explicitly meant to be used in early design studies, as discussed in
Section 3.1. However, it is also important to try to make the tool useful in
activities that both precede and follow early design. In this way, the user is more
likely to begin to use the tool or at least think about using the tool from day one
and, for example, build system models and analyses with usage of the tool in
mind. Conversely, the tool should be built in such a way that minimal
requirements are inflicted on the system model so that the model can be useful
on its own before integration and use with the framework. If the tool is not useful
from extremely early on, the likely alternative scenario is that the designer
becomes too committed down one path, and the friction involved in pivoting to
use of the tool is too great to make its use appealing.

This usefulness goal is also a driver for making the framework useful for
additional activities within and beyond early design studies. For moving beyond
early design, it is desirable that the framework be useful in preliminary design or
at least keeping the transition to preliminary design in mind for projects that get
that far. For activities within early design studies, what this means is that there
is a high desirability for the framework to be built in such a way that it makes
sense to implement some design tasks within the framework, unrelated to the
WISDOM searching, that would otherwise be done externally. A good example
of this is creating plots, parametric sweeps, or tables of design data. These

 4 Implementation

Sartorius 66

types of artifacts are often needed for the design reviews, proposals, or reports
that are common deliverables in design projects.

 Usability

The WISE tool should not only be useful, but highly usable. What this means is
that the tool should be low effort to use and should not introduce significant
unnecessary burdens or barriers to entry in the form of superfluous activities or
added cognitive load. A derived goal of this usability priority is that, at least for
some activities, using the framework should not only result in a long-term
reduction in overall effort or improvement in outcomes, but also provide a near-
term reduction in effort. In other words, a designer may have many alternatives
in the toolbox for accomplishing a given task, and the tools that are easy to use
early may be selected over those that are high effort early on but save effort in
the long term. The design of the framework therefore should seek to represent a
similar or decreased level of effort as comparable alternatives.

An example of this is implementing the common task of closing a design. It can
be very quick to build a simple analysis script or spreadsheet that, for a given
set of design parameters describing a system, provides a computed result. In
some cases, writing the loops or implementing the functions to make the design
converge can take more time than implementing the analysis itself. This is an
opportunity for the WISE framework to be an attractive option. For applications
such as setting up and running an optimization problem, the framework has
even more potential to not just match the status quo level of effort as a
conventional optimization implementation, but to offer significantly reduced
effort.

 Flexibility and reuse

The architecture of the software should be built keeping in mind the wide variety
of design tasks for which it might be used. This stems from lessons learned in
developing the Conceptual Optimization of Rotorcraft Environment (CORE)
(Sartorius, 2011b) for this author’s Master’s thesis. In the case of CORE, a
useful framework was built for exploring the design space and optimizing
helicopters or lift- and/or thrust-compounding helicopters. However, the parts of
the tools that were specific to helicopter design and analysis were intimately
embedded in the parts of the tool that facilitated design, optimization,
understanding, and visualization of the design space – so much so that neither
aspect was at all useful alone or reusable for other tasks. With this in mind, the
WISE framework should have the flexibility to be applied to any type of early
design task. This means not just independent of aircraft type, but also not
restricted to just aeronautical applications. Along these same lines, there should
also be the flexibility with the framework to build and use a wide variety of
domain-specific tools and resources, including those not written in the same
language as the framework itself.

The reusability priority refers not just to the framework, but also the artifacts that
are created on a project-by-project basis. There may be very little or significant
overlap from one project to the next, and in the latter case it can represent not
only significant effort savings but also valuable preservation of expertise if some
project-specific artifacts can be reused. This carries implications on the format

 4 Implementation

Sartorius 67

with which information is captured as well as drives for features that facilitate,
for example, good documentation. Both flexibility and reusability drive towards a
level of modularity in the architecture, especially with an emphasis on making
sure it is possible to cleanly keep separate anything project-specific from the
framework tool.

 Speed

One of the pain points of using optimization and MDO in design can be long
computation times. The WISDOM approach relies not only on optimization, but
on running each optimization tens, hundreds, or even thousands of times just
for one iteration of the method. Because the approach is known to be
fundamentally computationally expensive, thought should be given from the
very beginning to profiling the software and making sure that any possible
bottlenecks and any possible additional overhead resulting from the
implementation are kept to a minimum.

The speed theme applies not just to use, but also to development of the
framework. Speed of development creates yet another incentive for some
modularity in the architecture. Modularity facilitates tests as well as experiments
to try out new approaches to determine if better results can be achieved. An
example of this is the use of a standard interface to optimization algorithms,
which not only allows for easily experimenting with alternatives (and even
making it easy to offer alternatives to users), but also makes it much easier to
integrate some new and possibly superior and faster off-the-shelf option if and
when it becomes available.

4.1.2 Nominal workflow

A nominal workflow is envisioned for the use of the framework. The workflow
should support the typical iterative process of aircraft design, as discussed in
Section 1.2.1 and illustrated in Figure 1-3. In addition, as shown in Figure 4-1
below, it is important for the initial setup to be possible without significant
burden imposed by system model syntax restrictions. What is unavoidable,
however, is the sometimes-tedious step of formally capturing, in the form of
preference maps, all relevant information on hand about parameters of interest.
This exercise in itself can sometimes require some back and forth with
adjustments to the specific input/output scheme of the system model, but as will
be shown in Section 4.2 below, it is possible to segregate these activities and
be able to build a system model independent of the initial creation of design
variables.

 4 Implementation

Sartorius 68

Figure 4-1. Nominal workflow for WISE framework.

Once initial setup is complete, the iteration workflow is designed to be flexible
enough to allow the framework to continue to be useful as design continues to
mature beyond just the early studies, with seamless transition to more
advanced design stages. The key activities at each iteration involve continuing
down the iterative design spiral, continually increasing the definition of the
design, understanding of the performance, and increased confidence in the
analytical results.

Build or provide system model
(with known input and output parameters)

Capture information for all
parameters of interest

Search design space

In
it
ia

l
s
e

tu
p

Start

Use gained insights to direct iteration

Make decisions

and narrow

parameter

space (pruning)

Refine system

model analyses

Add detail and

introduce new

parameters

Process, visualize, and

understand search results

 4 Implementation

Sartorius 69

4.1.3 MATLAB as selected programming language

One of the first decisions to make in creating the WISE framework is the
language to write it in. Because the rest of DUEL is already almost entirely
written in MATLAB, it is a natural choice for WISE implementation. The tool is
built with MATLAB up to version R2018b (MATLAB (Version 9.5), 2018) and
relies on the Optimization Toolbox (Optimization Toolbox (Version 8.2), 2018).
Still, other languages were considered. Python 3 is the most attractive
alternative since it is free and therefore easy to distribute. Python also has a
wide variety of freely available packages built by a strong developer community.
However, MATLAB was selected for implementation because it provides some
other key advantages:

 Common environment

MATLAB is a programming language, but it also refers to the integrated
development environment (IDE) that is used for editing and running MATLAB
code. Having a single common IDE that is used by every single user of a
language provides many advantages for development. The WISE framework is
built for exploring a design, interacting with the models, and making
adjustments. It is therefore fundamentally interactive, meaning that there are
necessarily some graphical user interface (GUI) elements. Using MATLAB
allows for piggybacking on the common IDE for creating some of the desired
GUI capabilities.

 Command line use

Along the same lines as having an environment that is fundamentally
interactive, it is helpful that MATLAB is built with command line usage as a
primary use case interface. This means that, unlike other languages that may
necessitate importing packages or defining variables at the top of every source
file, MATLAB allows for relatively seamless on-the-fly interaction with the
defined variables and objects in the workspace via the command line. This is a
very useful feature when exploring a new design space, as the direction the
designer may want to go is not always known ahead of time.

 Designed for technical computing

At its core, MATLAB is targeted almost exclusively at scientists and engineers.
This means that there are tools that make it useful for engineering-related tasks
such as analysis and optimization.

 Popularity and familiarity

Being an excellent tool for scientists and engineers has led MATLAB to become
a very popular programming language and IDE with engineers. Since it is
popular with the type of users to whom the WISE framework is targeted also
means that many potential users will already have a level of familiarity with
MATLAB. The popularity of MATLAB has also led to a strong user community,
including an active exchange of freely available tools and modules.

 4 Implementation

Sartorius 70

 Interaction with other languages

One central element of the WISOM approach is the system model. One highly
desirable feature of the implementation is that whatever language is chosen
does not necessarily dictate the language in which the system model must be
written. MATLAB accomplishes this by having relatively straightforward means
available to call functions written in other languages such as C or Python.

 Vectorization

The word ‘MATLAB’ comes from ‘matrix laboratory,’ so at its core it is very fast
and efficient at dealing with vectors, arrays, and even multi-dimensional arrays
of data. This characteristic can be quite useful for tasks that involve repeating
similar operations that in other languages would normally be done using some
sort of loop. In MATLAB, loops can be avoided, and a workflow is feasible
whereby initial development is done using scalar data and little to no
modification is required to repeat the analysis with large arrays of inputs.

 Object-oriented

MATLAB supports object-oriented programming. Though much typical usage of
MATLAB takes on a functional programming paradigm, the object-oriented
capability and the ability to define new custom classes is an invaluable tool in
keeping the WISE framework organized and usable. As will be shown in the
discussion of the framework organization in Section 4.1.4 below, encapsulating
data relevant to design variables and the design space in defined objects is an
essential feature for keeping the design organized and reducing the burden
involved in implementing key design space search and exploration functions.

4.1.4 Framework components and organization

The two major components of the WISE framework (whose readme file is
included in Appendix A1) are the DesignSpace class and the

DesignVariable class. In addition to these two main classes, a central part of

any project is the system model function that analyzes the expected
performance of a given system. A DesignSpace object defines a given project

by containing a vector of DesignVariable objects and a pointer to the system

model function (in the form of a function handle), as shown in Figure 4-2. This
architecture lends to a certain amount of modularity inasmuch as the system
model can stand and be useful on its own. Each design variable can also be
handled and manipulated in isolation.

 4 Implementation

Sartorius 71

Figure 4-2. Top-level organization of the WISE framework setup of a design.

The primary interface between the design variables and the system model
function is the input-output system structure. This structure defines the system
and is a simple MATLAB standard data type (a struct) that provides

significant flexibility in working with the system model, which is discussed in
Section 4.2.

Much of the information contained in a DesignSpace setup, such as defining

exactly which design variables are inputs, outputs, or both, lies in the
DesignVariable objects. The design variable class, its attributes, and its

methods for defining and iterating design variable attributes are discussed in
Section 4.3.

Further DesignSpace class attributes and methods facilitate conducting

WISDOM searching, including processing and storing results, details of which
are discussed in Section 4.4.

DesignSpace object

Handle to system model function

DesignVariable object array:

DesignVariable1

DesignVariable2

DesignVariable3

DesignVariable4

…

DesignVariablek

Additional system model parameters

Handles to additional system analysis functions

Search results

Search results history

Search methods

Results processing, visualization, and

understanding methods

In
p
u
t-

o
u
tp

u
t

s
y
s
te

m

s
tr

u
c
tu

re

System model

function

Inputs

Outputs

 4 Implementation

Sartorius 72

4.2 System model function

The system model function has already been mentioned in Section 3.4.1. It is,
abstractly, an arbitrary function that takes as inputs all design variables and
returns all parameters of interest related to the system. However, consideration
has been given to the syntax and other aspects to increase flexibility and
accommodate an early design workflow.

4.2.1 Syntax

The system model function syntax is an important contributor to the usability
and flexibility of the framework, especially compared to more traditional MDO
setup requirements. A standard-format optimization problem in MATLAB (as is
also typical of optimization formulations in other languages) requires an
objective function to be defined as a function of a single input variable that is a
vector of floating-point numbers (example in Figure 4-3). Note how this means
that a necessary task for the designer is keeping track of which parameters lie
at which index of the design vector, x. Not only is this bookkeeping an extra

burden and error-prone, the list also requires revision whenever a new
parameter is added, say to increase the fidelity of the analysis, or whenever a
design parameter is removed by locking it into a set value.

Figure 4-3. Traditional MDO typical required syntax for objective function.

In addition, the constraints for a typical MDO setup must often be defined in an
entirely separate function (example in Figure 4-4). Again, the same burden of
tracking parameter indices is present (and it must be kept synchronized with the
list in the objective function). It is also highly likely in early aircraft design that
the same or similar analysis will inform both the objective function and the
constraints. The analysis that determines the performance of the vehicle over a
mission profile, for example, would likely play a role in informing some objective
value to minimize while also being a key part of informing key constraints on
minimum performance.

function objectiveValue = objective_function(x)

input_1 = x(1);

input_2 = x(2);

input_3 = x(3);

...

input_n = x(n);

...

Analysis

...

objectiveValue = ...;

 4 Implementation

Sartorius 73

Figure 4-4. Typical MDO required syntax for defining nonlinear constraints.

The syntax for the system model function in the WISE framework breaks away
from the traditional MDO pattern by a) putting all threads of analysis in a single
function and b) leveraging MATLAB’s struct data type for inputs and outputs.

The struct data type stores data in an unlimited number of named containers

called fields. This significantly eases the burden on the designer by using a
meaningful name instead of numeric indices and allowing for an arbitrary
number of additional fields. An example syntax for a WISE system model
function is shown in Figure 4-5.

Figure 4-5. System model function syntax.

The variable S is the input-output system structure as depicted earlier in Figure

4-2, and its fields contain rich descriptive system data. It is important to note
that the implementation here puts no restrictions at all on what fields are or are
not required in the system model, and it is entirely up to the designer for each
new project to decide on the naming and organization of the relevant input-
output system structure fields. This lack of enforced names and organization is
a valuable feature for facilitating early design workflows but can also present a
hazard as a project may grow, particularly if it grows to the point where many
individuals are authoring submodules of the system analyses. At that point, it
may begin to be prudent to implement an organized mapping of input-output
system structure fields onto pre-standardized aeronautical system
parameterizations such as the Common Parametric Aircraft Configuration

function [inequalities, equalities] = constraint_function(x)

input_1 = x(1);

input_2 = x(2);

input_3 = x(3);

...

input_n = x(n);

...

Analysis

...

inequalities(1) = ...;

inequalities(2) = ...;

...

inequalities(m) = ...;

equalities(1) = ...;

equalities(2) = ...;

...

equalities(p) = ...;

function S = system_model_function(S)

intermediateParameter = foo(S.input_1, S.input_2);

...

Analysis

...

S.output_1 = bar(S.intermediateParameter, S.input_n);

S.output_2 = ...;

...

Analysis

...

S.output_k = ...;

 4 Implementation

Sartorius 74

Scheme, CPACS (Nagel et al., 2012), or ADDAM, the Aircraft Design DAta
Model (Herbst & Hornung, 2015). In this way, the set of design parameters
within the WISE framework is still limited and manageable while the system
model analysis can be done collaboratively or easily implemented efficiently
with existing tools.

4.2.2 Input and output variable types

Another advantage of the struct data type is that a field can contain data of

any type (even another sub-structure), unrestricted to the floating-point numbers
in a typical MDO function input vector. Therefore, the most meaningful and
appropriate data type can be used on a per-parameter basis, and there is also
added flexibility for a parameter to take on non-scalar values ad hoc, which can
be leveraged for parameter sweeps, Monte Carlo analyses, plotting, etc.

There are two types of continuous variables that are typically useful for aircraft
design and are supported as system model inputs and outputs. The first is the
classic MATLAB double-precision floating-point double (the default numeric

data storage type in MATLAB). The second is the DimVar (“dimensioned

variable”) data type, which is similar in functionality to double but carries with

each variable meaningful physical units. This data type and the associated
Physical Units Toolbox (Sartorius, 2019a) enables the use of the most
meaningful unit for a given parameter without the need to implement any unit
conversions in software, along with the added benefit of catching unit-related
coding errors by enforcing unit consistency (adding a mass to a weight, for
example, results in an error). An additional benefit of the struct data type is

that is displays by default in the MATLAB command window in a compact and
meaningful way. Dimensioned variables also display along with their units,
including when displayed as part of the input-output system structure.

Discrete system model inputs and outputs have even more flexibility regarding
data type and can be nearly any MATLAB type or class. Some aircraft-related
examples of leveraging discrete data types include using the logical (true or

false) data type to indicate the presence or absence of a feature, system, or
characteristic, e.g. S.is_pressurized, or using the string data type to

distinguish between several named alternatives, e.g. S.spar_material =

"2024-T6 Aluminum".

4.2.3 Typical evolution of system model function

One path to creating a system model function is the simple use of an existing
analysis suite, in which case the only additional step is creating a MATLAB
function wrapper. Another typical case for early aircraft design involves not only
creating a system model function from scratch but doing so in a way that is a
natural progression and evolution from the very first lines of code up through a
complex multi-module analysis that works with the framework.

The first lines of code are usually in a simple script with inputs (key design
variables and assumptions) declared near the beginning, followed by some
analysis that adds variables of interest to workspace. A simple script such as
this is quite useful for setting up the analytical approach, debugging, and for

 4 Implementation

Sartorius 75

some very initial understanding of the system and its modeling. For use with the
WISE framework, the key variables of interest, both inputs and outputs, should
be made fields of the system structure instead of standalone variables by simply
prepending e.g. “S.” to the variable names. This script can then be easily made

into a function by adding a function header with the simple syntax shown in
Figure 4-5 above.

Instead of removing all lines that declare the key input variables, the created
system model function can remain a useful stand-alone script by adding a
switch for different behavior based on if it is being used as a function or a script.
Also, additional parameters can be passed to the function when the function is
being used for one-off analysis instead of inside WISDOM search loops.
Pseudocode for these features is shown in Figure 4-6.

Figure 4-6. System model function syntax and pseudocode with additional
typical features.

The additional inputs to the system model function are the ‘additional system
model parameters’ shown previously in Figure 4-2, and they enable code that
normally should not run during optimization to nevertheless remain in the
system model code. Examples of this are more expensive analyses, code that
displays parameters in the command window, code that creates plots, or code
that does not run properly with the array inputs sometimes used in the
framework. In lieu of or in addition to building this directly into the system model
function, the “handles to additional system analysis functions” from Figure 4-2
also enable extra functionality for the case of performing richer depth of analysis
on a one-off design. These additional system analysis functions use the same
simple structure-in, structure-out syntax as the primary system model function,
and they can be chained together such that each subsequent function can
utilize information generated by the last, as discussed further in Section 4.5.3.4.
An example of an in-depth additional system analysis function would be a
module that creates a 3D model of a design point for visualization and
generating a drawing.

function S = system_model_function(S_in, flag_1, flag_2, ...)

% Set static inputs, parameters, and assumptions:

S.input_1 = ...;

S.input_2 = ...;

...

S.input_n = ...;

if input provided

 overwrite fields of S with fields of S_in

end

...

Analysis and setting additional fields of S

...

if flags set or running as script

 run additional expensive analyses

 display parameters of interest

 produce plots and reports

end

 4 Implementation

Sartorius 76

4.3 Design variable class

One of the primary objectives of this work is to formally capture stakeholder
knowledge and wisdom, and the design variable class is what facilitates this. As
such, the DesignVariable class has many attributes (called properties in

MATLAB terminology). The main user-facing attributes fall into a few categories,
which are described in this section along with descriptions of some of the user-
facing design variable class methods. In addition, many dependent properties,
set/get methods, and other utility methods, not discussed here, are present in
the class to further enable the capabilities and bolster ease of use of the class.
The top-level help block documentation of the class is in Appendix A2.

4.3.1 Descriptive and system model interfacing attributes

Each parameter described by a design variable object should be easy to work
with for the system model function, the WISE framework, and for the humans
interacting with the parameter. To this end, there are a few basic user-facing
attributes that the designer sets to make a given parameter easy to understand
for human and machine.

 Name

The name attribute is used as the field name for the input-output system

structure. There are therefore some hard restrictions regarding making sure it is
a valid string of characters to use for a field name, and there are also some
softer practical restrictions. Even though this name acts as the primary
shorthand reference to the parameter, it may still be referenced frequently in the
system model function, so it should be both descriptive and succinct.

 Description

To capture more information about the parameter than what can just be
captured in the name, the optional description attribute is available.

Normally this is simply used with a descriptive string. However, as an arbitrary
container, it can also hold more complete information that may be useful to
have co-located with the other parameter attributes, including structured
information that could be, for example, links or references to external
documentation.

 Label

The framework uses plotting in many places, and the name attribute, with its

restrictions, does not always make for the clearest of most attractive label for
things like plot axes. The optional label attribute fills this role. The label is a

simple TeX-interpretable string, but it makes the plots generated within the
framework clearer, with a shorter path with less labor required from generation
to inclusion in a report, memo, design review, or other deliverable.

 Units

It is greatly beneficial when discussing requirements, design parameters, and
preferences to be able to have that quantitative discussion using the physical
units that are most natural and that the stakeholders are most used to thinking

 4 Implementation

Sartorius 77

in for that parameter. Length dimensions of an air vehicle may best be thought
of in inches or millimeters, for example, while altitudes are best discussed in
terms of feet and long distances in terms of kilometers or nautical miles. That is
why it is so important to be able to attach physical units to each design variable
using the units attribute.

If specified for a given design variable, the appropriate dimensioned variable will
be passed to, and expected from, the system model function. Through the use
of the Physical Units Toolbox, not only are unit conversions unnecessary within
the system model function or anywhere else, but the preferred unit for working
with a given parameter can be easily changed, without affecting the preferences
or analyses, simply by changing the units attribute. The units are also

automatically included wherever the design variable is displayed, including
when labeling plot axes.

 Input-output type

Features of the design space search methods (see Section 4.4 below) mean
that when searching the design space, for the most part, the designer does not
have to think about parameters that are inputs to the system model differently
than outputs from the system model. These features make it so that when
building the system model function, the most straightforward and fastest to
develop analyses can be used without the need to try to invert complex
equations or iteratively converge to solutions.

Still, the tool requires some indication of what the system model expects, so the
ioType attribute allows the user to distinguish between parameters that are

inputs to the system model function, outputs, or both. A parameter can be both
if its value is used as an input to some analysis but ultimately a better estimate
is calculated as part of the system model function. A common example is
aircraft gross weight, which is used for almost all performance calculations but
is also used itself as an input to calculate the weights of various components for
the sake of a gross weight buildup. If a parameter is both an input and an
output, this is signaled by specifying a required ‘greater than’ relationship (input
must be greater than output), ‘less than’ relationship, or ‘equal to’ relationship to
be enforced as a constraint as described in Section 3.4.3.

 Closing flag

The closing attribute is only used for parameters that are both inputs and

outputs. If the closing flag is set (i.e., its logical value is set to true), this is an

indication that if the input does not equal the output for a given parameter, the
design is not considered a ‘closed’ design. A design that is not closed is a
design that does not make physical sense and is considered invalid.

 Smallest meaningful step

It is typical for optimization algorithms to use very small finite differences to
determine gradient-based search directions. For some types of analyses,
however, the precision is much more granular than is compatible with these
minute differences used by the algorithms. The optional
smallestMeaningfulStep attribute captures the smallest change in a

 4 Implementation

Sartorius 78

design variable that will produce meaningful changes with the analytical
methods being used.

4.3.2 Attributes capturing preferences and other information

Beyond the descriptive and interfacing design variable attributes discussed
above, the most critical attributes for using the WISE framework for exploring
the WISDOM approach are discussed below:

 Assumption type parameter flag

The parameter attribute, like the closing flag, is another simple logical

true/false switch to indicate, for input variables, if the variable is an input that the
designer has control over or is more of an assumption. This distinction comes
into play during search optimization, where the uncertainty of an assumption is
captured but it is not made available as a design variable to an optimization
algorithm. This may be because the designer truly has no control over the
parameter, but the distinction may be driven simply by what phenomena are or
are not captured by the analyses employed (and the assumption may become a
design variable in later iterations as the system model evolves).

 Lower and upper bounds

Every design variable can have optional upper and/or lower bounds (simply set
to +/- infinity when not in force). These are hard bounds, defined by the
lowerBound and upperBound attributes. As discussed in Section 3.4.3, the

bounds are internally treated differently for inputs (enforced as side constraints)
as for outputs (enforced as inequality constraints), but there is no difference
from the user perspective.

 Starting lower and upper bounds

While hard lower and upper bounds are dictated by physics or requirements,
the domain that is selected as the starting point for a search may be subject to
different bounds. This is especially true if the parameter has no hard bounds,
when it must still have a defined reasonable and finite domain for the starting
point. The startLowerBound and startUpperBound attributes are what set

these bounds for stochastic starting points as described in Section 3.4.2.1.

For variables where the assumption type parameter flag is set, the variable is
not part of the optimization search space. Instead, the startLowerBound and

startUpperBound attributes are what set the bounds on the randomly

generated uncertain assumption parameters, 𝝎𝑗, as described in Equation (20).

 Value

The value attribute of a design variable indicates the baseline, default value for

that parameter, which is usually the designer’s best reasonable guess. As
iteration proceeds, design decisions are made, and the parameter that was a
free design variable may be set to this fixed value by setting the fixed attribute

to true (or the free attribute to false). When variables that are outputs of the

system model function are set to fixed values, equality constraints are used to
enforce their values. With fixes input variables, the tool automatically removes

 4 Implementation

Sartorius 79

them from the problem presented to optimization algorithms, reducing the
dimensionality of the optimization and greatly increasing the efficiency of future
searches.

 Starting distribution

The value attribute is also used as the mode of the probability distribution used

for randomly generated input starting points or for randomly generated
uncertain assumption parameters. The specific PDF to use is determined by the
distribution attribute. The starting distribution can be used to direct

searching to focus on certain areas of the design space by having relatively
more searches start in those regions. Often, however, especially for convex
search spaces, the results may be relatively independent of the starting point for
certain parameters, in which case a simple uniform distribution or single starting
point is sufficient (and the designer does not have to be burdened with thinking
about defining the ideal distribution).

For assumption type parameters, however, the starting distribution is the
primary tool for capturing the designer and expert knowledge about the
assumption, so in these cases a more nuanced PDF can be indicated using the
distribution attribute. The triangular and PERT distributions, whose merits

for this task were described in Section 3.3.2, are implemented using simple
functions built with engineering estimates in mind (Sartorius, 2019b). The
control over the starting PDF afforded by modifying the value and starting upper
and lower bound attributes is illustrated in Figure 4-7, where numeric values

correspond to the shape parameter, 𝜆, of the PERT distribution (with 𝜆 = 4 for

default "pert").

Figure 4-7. Illustration of various possible PDFs based on distribution

attribute.

 Preference map abscissa and ordinate points

As introduced in Figure 3-9, the preference map is one of the core tools for
capturing preferences and other types of information. The preference map is a
simple polyline / table lookup defined by a set of abscissa and ordinate points

 4 Implementation

Sartorius 80

(stored as floating-point vectors in the prefAbscissa and prefOrdinate

attributes) that together define some preference as a function of that design
variable’s value. In the case of discrete parameters, the prefAbscissa

attribute is not a floating-point array but rather a cell or string array data type
containing the arbitrary discrete values. A prefMap attribute allows the option

for straightforward and clear setting of both the abscissa and ordinate points
simultaneously, optionally along with the preference map node information
described in Section 4.3.2.11 below.

The preference ordinate can be expressed as a penalty or, as determined by
the prefType attribute, as a value, depending on in which sense it is more

natural to think about a given parameter. The penalty or value associated with
the preference ordinate of a preference map is arbitrary and can be an
abstracted point system or something more concrete, such as a dollar cost
associated with values of the parameter. The important thing is that whatever
scale is used is kept consistent across all design variable objects’ preference
maps used in a design space.

 Active or inactive preference map

The preferenceOn flag is a simple tool that can be used to easily turn off the

preference map of a parameter for a given search. This is equivalent to setting
all preference map ordinate points to zero while maintaining the other aspects
such as the upper and lower bounds and flagged regions. This can be a useful
tool to, for example, answer what-if questions related to customer preferences
and desires.

 Preference map uncertainty

Despite attempts to keep the scale consistent between preference maps used
in the same design space, the designer will never be able to achieve perfect
consistency. This is not only acknowledged in the WISDOM approach but is
embraced and utilized to yield a richer set of useful search results. The
prefUncertainty attribute captures the level of confidence in the ordinate

scale for a given preference map, as discussed in Section 3.4.2.2.

 Preference map slope

In some cases, it can be useful when defining preference maps to think of the
preference ordinate penalties or values in absolute terms. It is sometime more
natural to think in terms of the slope or relative slopes of the preference map, as
this occasionally better captures designer intent or results in more expected
behavior. The prefSlope attribute can be used either as a read-only

reference, for modifying the slopes of individual preference map segments, or to
adjust the slope of the entire preference map.

Slopes of preference map segments tend to be more aligned with what drives
real-world designer decision-making behavior when presented with similar
regions of the design space. Using finite slopes and ramps instead of hard
steps in preference maps also introduces fewer numerical issues and tends to
yield more useful WISDOM search results in terms of creating an environment

 4 Implementation

Sartorius 81

for the search algorithms to make design ‘decisions’ similar to those that a
human designer might make.

 Preference map smoothing

Most of the time, the designer or other stakeholders do not have highly detailed
preferences with any level of fidelity or confidence to warrant anything more
granular than a simple polyline function. Still, the discontinuities inherent in a
polyline function may in some applications be undesirable, particularly if the
discontinuities cause numerical issues with an optimization algorithm, so the
optional prefSmoothing attribute is available to round off the junctions of the

polyline function. It does this by using nested blending functions based on the
hyperbolic tangent function (Sartorius, 2016).

 Preference map node information

Each node in a preference map can be tagged with unstructured additional
information using the optional prefInfo attribute. This additional information

can be as simple as notes to the designer. Another use case can be linking to
requirements, which can be quite informal or employing a formal requirements
tool such as IBM’s Rational DOORS or other requirements management
schemes such as that presented by Glas and Sartorius (2012). This helps make
the defined design variables useful sources of documentation as well as
reusable artifacts for future projects in cases where similar design drivers are
present.

 Preference map segment warning flags

The optional prefFlags attribute allows for attaching warnings to certain

segments of the preference map, as introduced in Figure 3-12. The flags can
contain rich information, for example notes on the reasons why a given segment
is flagged. These flags are automatically raised when examining an individual
design point that has a parameter that falls in one of these marked segments.
This becomes a valuable tool as the complexity of the design tasks increases,
when it can become easier for a design to seem appealing despite some
unnoticed detrimental characteristic.

4.3.3 Design variable class methods

The main user-facing design variable class methods are oriented toward
helping the user capture information. These methods therefore focus on
creating, viewing, and editing DesignVariable objects.

 Plotting and visualization

Most of the key information about a design variable can be visualized using the
plot method. This method creates a plot of the preference map that is overlaid

with other information. Additional plot elements such as the axis labels are used
to convey some additional information contained in the object’s attributes. An
annotated example screenshot of the plotted information (based off the
passenger capacity preference map of Figure 3-9) is shown below in Figure 4-8.
The annotations on the plot are created using a customization of the built-in
MATLAB data tip capability, allowing users to interactively and graphically

 4 Implementation

Sartorius 82

access node information, segment warning flags, or other additional information
about the design variable object without overly cluttering the usable graphics
area. Implied soft bounds signified by orange triangle markers are discussed in
Section 4.5.2.

Figure 4-8. Screenshot of design variable class plot method.

 Real-time editing

The typical way to define a DesignVariable object is by setting the attributes

in a script. The plotting and visualization method discussed above is then an
excellent tool for verifying those attributes. However, especially with the
preference map abscissa and ordinate points, the cycle of editing a script,
plotting the results, further revising, and re-plotting is inefficient and can become
tedious. To address this, the editmap method creates a basic graphical

interface for interactively editing design variable attributes.

There are two elements to the editing interface. The first is the GUI window
(Figure 4-9), whose main element is the same visualization as created by the
plot method. Added to this are areas where certain attributes can be modified,

with the visualization updating immediately when any valid change is made.

 4 Implementation

Sartorius 83

Figure 4-9. GUI window for the design variable editmap method.

It is possible to add to the main GUI window a table that would also allow users
to make real-time edits to the other attributes related to the preference map
such as the abscissa and ordinate points, the additional information attached to
nodes, and information for flagged map segments. However, these attributes
are not scalar and could have an unwieldy size that is difficult to edit in a
relatively static GUI window. Instead, the editmap method brings up an

additional window of MATLAB’s built-in variable editor loaded with a special
array (Figure 4-10) that can be used for simultaneously editing some of these
non-scalar design variable attributes. The most important capability offered by
this approach, though, is the intuitive context menu and keyboard shortcuts that
can be used to add or remove columns, creating a very quick and usable
approach to growing or shrinking the number of nodes in a preference map.

 4 Implementation

Sartorius 84

Figure 4-10. Design variable editing using the built-in variable editor.

 Export

Design variable attributes can be modified by making changes to attributes on
the command line, for example, or by using the editmap method discussed

above. In any case, the changes often need to be recorded, and this is
facilitated by the design variable export method. Instead of exporting the

design variable information as a file to be saved to the hard drive, a simpler
approach is taken whereby the export function creates a string that, when
executed, recreates the design variable and its attributes and assigns the
DesignVariable object to a specified variable name.

If no output is specified from the method, it simply copies the string to the
system clipboard for easy pasting into a setup script. The export capability is
also built into the design variable editing GUI (note the “export as” cell in the
lower left of Figure 4-9 above). An example of the resulting exported string is
shown in Figure 4-11.

Figure 4-11. Example code output from design variable export method.

% passengers

v = DesignVariable();

v.name = "passengers";

v.label = 'pax';

v.distribution = "triangular";

v.prefUncertainty = 2;

v.prefAbscissa = [60 75 95 100 105 135 150];

v.prefOrdinate = [0.9 0.415 0.435 0.14 0.445 0.475 0.69];

v.prefInfo = {"encroaching on firm's existing portfolio" [] [] ...

 "original requirement specification" [] [] ...

 "competing with established narrow-bodies"};

v.prefFlags = {[] [] [] [] [] [] [] "runaway size"};

v.lbvub = [50 70 85 140 200];

 4 Implementation

Sartorius 85

4.4 Design space class

While the design variable class creates a framework for capturing and refining
information, the function of putting that information to good use in searching the
design space falls to the DesignSpace class. Because of this segregation of

purposes, there are some contrasts between the nature of the two classes,
summarized in Table 4-1.

Table 4-1. Comparison of DesignVariable and DesignSpace classes.

Characteristic DesignVariable DesignSpace

User-facing attributes Many Few

User-facing methods Few Many

Objects in a project Many One

As with the design variable class, there are many additional dependent
properties, set/get methods, and other background utilities present in the class
but not discussed here. Select documentation of the DesignSpace class and

methods are included in Appendix A3.

4.4.1 User-facing design space attributes

The most important user-facing attributes for the design space class have
already been mentioned in Section 4.1.4 and shown in Figure 4-2. Namely, the
handle to the system model function is held in the systemModel attribute, and

the DesignVariable object array is held in the variables attribute.

One of the issues with storing all design variables in an array is that referencing
them must be done using indices in the array. When dealing with dozens of
design variables, it can be quite cumbersome to remember which design
variable occupies which position in the array, made more complicated by any
changes in the design space or setup. To address this, an alternative reference
to design variables can be made using the design variables’ names and dot
referencing of the v attribute of the DesignSpace class. In this way, there are

two alternative ways to access or edit a design variable in a design space, as
shown in Figure 4-12, which also illustrates the added usability added by using
suggestions and tab completion with this scheme.

Figure 4-12. Name-based command-line design variable referencing in
DesignSpace object o.

>> o.variables(5).fixed = true;

>> o.v.range.value

ans =

 2500

>> o.v.

 4 Implementation

Sartorius 86

4.4.2 Design space utility methods and attributes

There are also design space class methods that allow for more guided
inspection and modification of design variables. Most of these methods, though
belonging to the design space class, act simply as wrappers to the
corresponding method of the design variable class. Some of these methods
have different behavior, however, when operating on an array of design variable
objects instead of a scalar object, so they are discussed here instead of in
Section 4.3.3.

A significant portion of the other utility attributes and methods of the design
space class are primarily used in adjusting the design space, design variables,
and search behavior affecting design iteration outcomes.

 Display

When working with a conventional MATLAB structure or object, the display of
the object in the MATLAB command window is usually a simple list of object
attributes and their values. However, a couple of factors make this default
display behavior undesirable for display of a design space object. The first
factor is that most of the information in a design space is in the contained array
of design variables, not the design space object itself. So, display of a design
space object should bring forward significant information from the design
variables. The second factor is that, if displaying an array of objects such as the
array of design variable objects, the default display behavior lists attribute
names only and not attribute values.

These issues prompted creating custom display methods. Non-scalar design
variable objects, instead of the common list display, are displayed as a table
with only the most relevant attributes included as columns. The display method
for the design space primarily calls the display method for the design variable
array. It also adds some additional information such as the system model
function name, as shown in Figure 4-13 for a design space for the regional
airliner illustration example from Section 3.3.

Figure 4-13. Tabular display of DesignSpace objects or arrays of

DesignVariable objects.

 Plotting and editing design variables

The plot method for the design space class is a straightforward wrapper for

the plot method for the design variable class. The design space class also

implements a method that calls the editmap method of a single design variable

in the design space as identified by its name.

When plotting the multiple design variables in a vector of DesignVariable

objects, such as would be contained in a design space, the plot method

systemModel: duel_wise_demos.regional_jet.system_model

 io frdm unc traits unt LB sLB val sUB UB dist…

 ___ ____ ___ _______ ________ ______ ______ ______ ______ ____ ____…

range in free 2 nmi 400 500 2500 3500 4000 unif…

passengers in free 2 50 70 100 140 180 unif…

grossMass = free 1 closing lb 2204.6 4409.2 4409.2 4409.2 unif…

utility out free 4 lb-nmi - - - …

sfc in free 1 param lb/hr/lb 0.45 0.5 0.65 pert…

maxLiftToDrag in free 3 param 13 17 22 pert…

 4 Implementation

Sartorius 87

automatically plots all design variables in a single figure window and by default
will also make sure that all of the ordinate axes of the preference maps are
using the same scale (examples of which are shown in Chapter 5 Figure 5-2
and Figure 5-7). This is immensely valuable in sanity checking the defined
preferences and making sure that their prefOrdinate values are defined on

an appropriate range. The background color of the plot is also grayed out for
variables currently fixed at their value and therefore not active for the current
iteration.

 Processing and utility attribute setting

One approach to keeping a class organized is to implement set and get
methods for attributes. Set methods or validators instantly check the validity of
what the user is trying to set as a value for an attribute. Get methods are useful
when some useful parameter is a function of one or more other attributes and
the get method is called whenever that parameter is needed.

However, the process of building up a design space and its design variables
can be messy, so strictly checking for errors for every setting of an attribute and
enforcing consistency can get in the way of the process. Secondly, and most
importantly, many of the useful parameters that would normally be made
available using get methods are called many times during a given run of the
system model function. These tend to relate to the trimming away of inactive
variables, converting a conventional numeric design vector into an input-output
system structure, calculating preference values based on system parameter
values, etc.

Even for operations that would not necessarily need their own get method to get
the needed parameter(s), even simple steps, for example concatenation of all
design variable default values, may be run so many times during a search that
meaningful speed gains can be made by pre-setting utility parameters. For this
purpose, the design variable class implements a processvariables method,

which sets many useful utility attributes of the design space class for use in
other exploration and understanding methods. Part of this method makes sure
to run the runchecks method on the design variable array, which checks the

design variable definitions for completeness and consistency, offering useful
warnings and error messages to help the user correct any errors.

 Toggling active and fixed variables

One of the most basic adjustments that is made from one iteration to the next is
adding or removing design freedoms from the design space. Keeping certain
design parameters fixed makes for quick exploration and easier understanding,
while allowing more design variables to vary facilitates more design refinement.
Because it is so common to want to adjust the set of design parameters under
current investigation, the toggle method provides a quick, command-prompt-

based interface for changing the fixed or free state of design variables, as
shown in Figure 4-14.

 4 Implementation

Sartorius 88

Figure 4-14. The design space class toggle method.

 Memoization

Some design space attributes are simply settings for controlling the behavior of
other methods, particularly the search and optimization methods. Some of the
settings are regarding the use of memoization. Memoization is the technique of
storing the inputs and outputs of a process and using the stored outputs instead
of re-running the computationally expensive process when identical inputs are
provided. Typical implementations of memoization store all unique sets of inputs
and outputs, making a trade of storage and memory against potentially very
expensive processes. However, in the WISE framework, by far the most
common repeated calls to a process are back to back, so the memoization
implementations can be simplified to have a short ‘memory’ that can be used
not just for expensive processes, but even for only moderately repetitive
processes to make meaningful gains in speed.

The processes that are optionally memoized based on their
use{Process}Memoization settings are calculating preference map values,

converting a traditional design vector to an input-output system structure,
closing a design, and running the system model function. The latter provides by
far the most benefit due to it being the mechanism by which only one system
model function call is necessary for analyzing a given optimization search point.
Traditional search algorithms run separate functions to analyze objectives and
constraints, while the WISE framework uses only one function and, with
memoization, one system model function call.

 Evaluating a design point

At the core of the WISE framework and an essential part of several other
methods, including the implementation of the WISDOM approach, are the
methods that allow for easily running the system model to evaluate or close a
single design point.

The run method is the compilation of routines, shown in Figure 4-15, that

allows for easy running of the system model function for a given partial design
vector of the active (i.e., not fixed) input variables. It automatically populates
fixed parameters with default values so that, when the run method is called by

search optimizations, those algorithms must only deal with the fewest possible
number of dimensions in the design space. It also handles turning the design
vector into an input-output system structure. The run method is also useful as a

standalone utility for evaluating the system model at a given design point as
defined by the baseline value parameters of the design variables.

>> o.toggle

 n io frdm val unt distro

 _ __ _____ ______ ________ _______

 range 1 in free 2500 nmi uniform

 passengers 2 in free 100 uniform

 grossMass 3 = free 4409.2 lb uniform

 sfc 4 in free 0.5 lb/hr/lb pert,L8

 maxLiftToDrag 5 in fixed 17 pert,L3

Toggle fixed/free (return to exit): 4

 4 Implementation

Sartorius 89

Figure 4-15. Routine used by run method for evaluating design points.

When a user is examining only a single design point, however, is it significantly
more meaningful if the result makes sense, or in other words, is a closed design
where. For example, the estimated gross weight input should equal the
calculated gross weight output. For this purpose, for designs that have these
types of closing variables, the closedesign method is useful for analyzing a

given design point (reverting to the run method if there are no closing type

variables).

System model function

Convert to input

system structure

Return system structure

of evaluated design

Matches prior

function call?

Memoize

results

Stop, return

memoized results

Baseline

values

Update active baseline values

with partial design vector

Partial

design vector

No

Yes

 4 Implementation

Sartorius 90

4.5 WISDOM approach implementation

The bulk of the WISDOM approach methodology presented in Chapter 3 is
brought to practice as methods of the design space class as described in this
section.

4.5.1 Batch analysis for sweeps and Monte Carlo analysis

Instead of evaluating just a single design point at a time, there are use cases for
evaluating many design points at once. This is one of the instances where
significant advantage can be taken of MATLAB’s vectorization discussed in
Section 4.1.3.6. The first use case is for sweeps of parameters, usually to make
a simple plot of sensitives to one design variable, though vectors of multiple
variables can be provided to the batchrun method for this purpose. The same

method can also be used for running Monte Carlo simulations to understand the
impacts of the assumption type parameters that are active in the design space,
as discussed in Section 3.3.2. There is also a mechanism to run all
combinations of the extrema of assumptions to ensure that the full spectrum of
possible results is captured.

In all cases, many design points are run using vectorized inputs to the system
model function. This can still be done even if there is a closing type of design
variable present via the automatic implementation of a vectorized root finding
method, in this case a vectorized bisection method (Sartorius, 2015). If the
system model function is not built in a vectorized way, or if there is more than
one closing type of variable, then other approaches must be used. For
parameter sweeps, the closedesign method can be used in a loop, and for

Monte Carlo analysis, the searching method implementation of WISDOM

optimization discussed below can be used with all parameters fixed except for
the uncertain stochastic assumptions introduced in 3.4.2.3. This is a special
simplified case of WISDOM searching that results in a Monte Carlo simulation.

4.5.2 WISDOM searching and optimization

The primary impetus for creating the WISE framework was to implement the
WISDOM approach that is the primary subject of this work, and the design
space searching method is the routine that executes it. Once a design space

has been set up, with design variables and system model function set, the
searching method implements search optimization that minimizes the

objective function subject to constraints as described in Section 3.4. If running
the method with only a single starting point, the simplified unvaried objective
function of Equation (17) is used. With multiple starting points, the routine
selects randomized inputs according to the specified starting distributions,
generates randomized preference map uncertainty scaling factors, then
minimizes the objective function defined in Equation (20) for each case one by
one in a loop, as shown in Figure 4-16.

 4 Implementation

Sartorius 91

Figure 4-16. Operations used by searching method to generate a variety of

optimized designs.

The number of WISDOM constrained optimization search cases, and therefore
the extensiveness of variation introduced by using different combinations of
starting points, uncertainty scaling factors, and stochastic assumption
parameters, is specified by the designer and is a compromise between
computation time and breadth of exploration. Since this can be a time-
consuming method, especially with an expensive system model function or with
many starts to run, features are in place to back up, interrupt, and restore large
runs so that computational work is not lost.

Because the WISDOM approach is relatively agnostic to the optimization
algorithm used (though it should be a deterministic local search algorithm), the
searching method can easily use different algorithms. Algorithms

implemented include those supported by the Optimization Toolbox
(Optimization Toolbox (Version 8.2), 2018) fmincon function, such as interior

point (default), sequential quadratic programming, or active set algorithms. A
constrained Nelder-Mead simplex search algorithm (D’Errico, 2012) is also
implemented as an option (with fmincon used to quickly find a feasible starting

point for algorithms that require it).

The behavior regarding closing the design can also be changed as an option for
the method, which can affect speed or results. Sometimes stability can be
increased by making sure that search start points are closed design points.
There may also be cases where it is desirable and worth the significant added
computation time to close every single design point analyzed at every internal
iteration of a search algorithm, so this option is also present.

Another setting that can affect both the speed of searching and the results of
the search itself is the so-called “ratcheting” functionality. This is an additional
alternative approach to WISDOM searching whereby ‘soft’ lower and upper
bounds are automatically inferred based on changes in slope of preference
maps. Though normally unused and not required to yield useful results, if the
design space ratchetBounds attribute is set, then the WISDOM method will

be modified such that if the starting point for a parameter is on the valid side of
an inferred bound, then that inferred bound will be enforced for the search with

Generate randomized
parameters and start points

Scale preferences

Constrained optimization

Store results

Repeat

𝝎 𝒙0 𝜌X

 4 Implementation

Sartorius 92

that starting point. This is generally controlled at the design space level, but the
behavior can be turned on or off individually for design variables as well.

4.5.3 Methods for understanding WISDOM results

The output of the searching method WISDOM implementation is a large set

of designs optimized using slightly different starting points, objective functions,
and assumptions. The design space class has some methods designed to help
process these results to help the stakeholders harvest useful information in
order to facilitate design decisions and the next iteration.

 Results structuring and handling

One important aspect of design iteration is documentation, and part of that
documentation is keeping track of past iterations, their results, and the methods
and assumptions that led to those results. To support this, the design space
class has some features related to storing not only the results of the current
iteration, but also for storing results for reference.

A structure of results as generated by the WISDOM searching method is

automatically stored in the design space results attribute. This is a structure

that, in addition to containing some information related to the run that generated
the results (such as a timestamp, search settings, and run duration), contains
several sets of design points and related data (such as active preference map
segment warning flags) filtered by different criteria. The standard fields for
results are:

• all: all design points.

• valid: design points from searches that converged successfully to

closed designs.

• dominant: valid design points that are not Pareto dominated based on

unscaled preference map values.

Being a structure, additional fields can be added as more post-processing
routines filter out other interesting sets of design points.

To help track and document iterations, the sendresultstocache method

sends the current results to the stack stored in the cachedResults attribute,

along with date, time stamp, and optional iteration notes. The results attribute

is then automatically cleared and made ready to store the results of the next
iteration searching run. Alternatively, the appendresults method can be

used to append a set of results to another to make a single larger set of results.

Finally, the buildresulttable method turns a set of results into a data table

that lists all design points and all design parameters. This table is not only
useful for displaying design points in MATLAB, but an additional formatted table
is created that easily pastes into a spreadsheet, including with useful headers. It
is often the case that a spreadsheet, especially with, for example, cell coloring
based on parameter values, can be an excellent approach to understanding and
filtering a finite set of different design options.

 4 Implementation

Sartorius 93

 Visualization

Visualizing a multi-dimensional design space can be quite useful for enhancing
the understanding of the system for stakeholders. The built-in routine for doing
this in the WISE framework is the scattermatrix method. This method

implements two separate categories of visualization, but both are based on a
matrix of two-dimensional plots such that every parameter of interest is plotted
against every other. An additional useful element is plotting histograms of each
parameter on the diagonal of the matrix.

Sometimes the density of resulting design points can be valuable, in which case
a corner plot, as implemented by Adler (2018), is available for visualizing the
areas of the design space where search results may tend to cluster. The
primary option, however, is a scatter matrix, whereby design points are plotted
as icons whose color and size can be used to indicate any additional attributes
of the design points, for example to indicate designs with preference map
segment warning flags, designs with better preference values, etc. Significant
additional value comes from this type of plot via interactively brushing the data,
which lets stakeholders get an extra intuitive understanding for the higher
dimensions of the design space. Scatter matrix examples are shown in Chapter
5 in Figure 5-3, Figure 5-4, and Figure 5-12.

 Clustering

From a large set of results, often a key step in iteration and decision making is
reducing that set to only a handful of representative design points from which a
selection or selections can be made. In rare cases, a useful first step in paring
down a set of design points to a manageable few can be to simply eliminate
design candidates that are Pareto dominated by other designs, as is done
automatically as part of the searching method. This is rarely highly fruitful in

significantly reducing the set, however, as the implementation of the searching
is normally quite efficient in returning primarily Pareto-efficient sets. In other
cases, just looking at points in the design space where many searches
converged to, i.e., the ‘popular’ areas of the design space, can be useful.

Other approaches to yielding a small and succinct set of design points hinge on
identifying clusters of design points. There are many existing clustering
algorithms, and several were evaluated for use with the types of data sets that
are produced by this method. In this case, effectiveness of an algorithm is
based on clustering design points into groups that are qualitatively different from
each other, what might be called different ‘subspecies’ of designs. The most
useful algorithms are also those that preserve outliers, since outliers are
frequently interesting design points.

The off-the-shelf algorithm examined yielding the best results regarding
effectively identifying clusters of design points is Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN) (Sorokin, 2018).
However, this algorithm still requires some tuning for each use case, and the
field of clustering in general is geared more toward training models that can
identify future points rather than focusing solely on the data set at hand. So,
some other clustering ideas were explored.

 4 Implementation

Sartorius 94

One new solution created for this task is simple but promising for its robustness
and quality of the results. This algorithm builds clusters of all members that are
neighbors, neighbors of neighbors, neighbors of neighbors of neighbors, and so
on. Neighbors are determined by their distance apart (as determined by some
norm such as the Euclidean norm) being less than some percentile threshold.
There are other settings, such as the minimum number of neighbors before a
point is no longer considered an outlier or the scheme used to assign a point
when it could belong to multiple clusters. However, the distance threshold is the
main parameter for tuning, but even then, significant tuning is not usually
required to achieve useful clustering results. Using clustering to reduce a large
set of designs to a small number of distinct alternatives is shown for both
example cases presented in Chapter 5.

 Scrutinizing individual design points

Clustering may yield a small and manageable set of design points, but it may be
desirable to look deeper into those points to gain more insights before decisions
are made for the next iteration. The design space postevaluation method

does just that by re-running the system model function with all additional system
model parameters (stored in the extraModelArguments attribute) passed to

it, as discussed in Section 4.2.3. It then runs the resulting input-output system
model structure through each specified additional system analysis function
(indicated by array of function handles stored in the extraSystemFunctions

attribute), which each in turn may add to the information contained in that
structure. A flowchart of this process is shown in Figure 4-17. The user is
alerted to any preference map segment warning flags at this time as well.

Figure 4-17. Method for more in-depth analysis of a design point.

extraSystemFunctions

extraSystemFunctions

System structure

System structure

System structure

Design point

system structure

System model function

System structure

Extra routines

extraModelArguments

extraSystemFunctions

 5 Example Cases

Sartorius 95

5 Example Cases

To round out the explanation of the WISDOM technique and its implementation
in the WISE framework, two example cases are presented to illustrate the
usage, the workflow, and most importantly, the artifacts produced and results.
The regional airliner introduced in Chapter 3 to illustrate the types of information
captured by the WISDOM technique is taken through an iteration as the first
example case. The second example case, a more rigorous test of the approach
with more parameters and complexity, is the early investigation of a possible
redesign of the wing tip of an existing narrow-body airliner, including the
possibility of adding a winglet.

 5 Example Cases

Sartorius 96

5.1 Regional airliner

Recall the regional airliner market analysis and initial sizing scenario introduced
in Section 3.3. In this fictional case, a manufacturer of small business jets is
seeking to enter the regional airliner market with an all-new aircraft design. For
this illustration, a simple system model function is built to analyze a given
defined aircraft, and a design space is set up with design variables and
preference maps. The results of an iteration show various artifacts useful for
gaining insight and driving decisions, particularly when compared to a more
traditional optimization method.

5.1.1 System model

The Breguet range equation and the fuel fraction sizing analysis method used
have been described in Section 3.3.1, including the empty weight fraction trend
parameters, 𝐴 and 𝐶. The payload mass is assumed to be 95 kg per passenger,
including baggage, cargo, cabin furnishings, etc. The crew mass is assumed to
be 80 kg per crewmember, which includes two flight deck crew plus a number of
cabin crew that is an affine function of the number of passengers based on the
flight attendant requirements of 14 CFR § 121.391.

The system model implements a calculation of the fuel fraction based on the
Breguet range equations of Equation (10) and an IFR (instrument flight rules)
mission profile, shown in Figure 5-1, that includes a diversion of 200 nautical
miles plus a 45-minute reserve.

Figure 5-1. Simple mission profile for regional airliner system model.

The mission profile model uses certain fixed assumptions for flight speed, fuel
margin, weight fractions for non-cruising, non-loitering flight phases, and other
parameters as listed in Table 5-1. There is no range credit for climb or descent.

Startup

& taxi

Takeoff

& climb

Cruise

Diversion

Reserve

Taxi &

shutdown

Descent

& landing

 5 Example Cases

Sartorius 97

Table 5-1. Mission profile parameters and assumptions.

Parameter Value

Cruise speed 450 KTAS

Cruise & diversion condition
√3

2
𝐿 𝐷⁄

𝑚𝑎𝑥

Reserve condition 𝐿 𝐷⁄
𝑚𝑎𝑥

Startup & taxi mass fraction 0.98_

Takeoff & climb mass fraction 0.985

Descent & landing mass fraction 0.99_

Additional fuel margin 6%

Other important elements of the regional airliner system model are input

handling to allow usage as a script as discussed in Section 4.2.3 and the setting
of additional simple fields that represent useful information for easy access
later, for example useful load or empty weight. The full source code for the
system model and mission profile are in Appendix B1.

5.1.2 Design variable definitions

Only six DesignVariable objects must be defined for this simple example

case. A tabular display of these variables was shown in Figure 4-13. Full source
code for the design space setup and design variable definitions is in appendix
B2, and a graphical display of the design variables in the design space, as
produced by the plot method, is shown in Figure 5-2. Note that the plots with

grayed-out background signify design variables that are fixed at their nominal
value for the iteration. In this case, the parameter assumption type variables are
kept fixed for the initial searching runs. Also important to the visualization of all
the design variables together is that all of the preference maps use the same
scale for all the ordinate axes.

 5 Example Cases

Sartorius 98

Figure 5-2. Regional airliner design variable plots.

5.1.3 Searching with WISDOM approach

After the setup of the design space, searching the design space using the
WISDOM approach is a straightforward single call to the searching method,

e.g. o.searching('nStarts', 500). For these five hundred searches and

the default searching settings, 235 system model function evaluations were
required on average for each search, for a total run time of a couple of minutes.

The design space in this example is particularly small, so many traditional
options for visualization are possible, for example a three-dimensional scatter
plot. The scattermatrix method, which easily scales up to higher

dimensions, yields the array of plots shown in Figure 5-3 below. A handy step
can be to use the custom clustering algorithm or HDBSCAN to sort resulting
design points into their various ‘subspecies.’ In the case of Figure 5-3, color is
used to signify membership in different clusters as determined by the custom
clustering algorithm described in Section 4.5.3.3 (outliers are light gray).

 5 Example Cases

Sartorius 99

Figure 5-3. Regional airliner results visualization with clustering. The main
diagonal shows the preference maps for reference and histograms to indicate design

point distribution and density.

While this type of visualization can be useful for gaining a greater understanding
of the nuances of the design space, sometimes the best tool for facilitating a
conversation between stakeholders is a fair and quantitative comparison
between a small number of design alternatives. In the scatter matrix in Figure
5-3 above, marker size is used to indicate the design points that are most
representative of their respective clusters as measured by being closest to the
mean position of the cluster.

Utility methods make it straightforward to turn a set of design points into a data
table, including in a format that can be easily exported outside of MATLAB, for
example to spreadsheets. The type of tabulated data of the cluster-
representative design points such as in Table 5-2 below can be a useful artifact
to facilitate discussions and decision-making between stakeholders. Additional
columns in exported data (not shown) include preference map segment flags,

 5 Example Cases

Sartorius 100

information on whether the design point is closed and valid, and if the design
point is Pareto dominated by another design point.

Table 5-2. Table of design points representative of regional airliner clusters.

∑p(S(x)) Range
(nmi)

Passengers Gross weight
(lb) × 103

Utility
(lb-nmi) × 106

-0.58 3609 100 182.4 76

-0.47 2105 100 110.0 44

-0.39 3302 75 127.5 52

-0.24 2029 75 83.6 32

-0.09 3912 135 264.6 111

0.72 4000 180 348.1 151

Note that even when the assumption type parameters are allowed to vary in a

search, this type of clustering analysis and the representative design points are
still useful and can provide insight. With large searching sets and PDFs of the
assumptions that have a small standard deviation, the cluster-representative
design points will be close to a fair comparison using similar assumptions. Or,
sometimes different assumptions will lead to a multimodal result, whereby the
assumptions are a determining factor in the optimal subspecies (i.e. cluster
membership) for a search.

Since the assumption type parameters were fixed above, variations in the found
optimum results came only from variation in starting points and relative
uncertainty scaling of the preferences. When the uncertain assumption type
parameters for specific fuel consumption and maximum lift-to-drag ratio are free
to be randomized for each search, significantly more variation is introduced.
The resulting design points for 2000 searches is shown in Figure 5-4. For this
visualization case, color is used to visualize the sum of preference penalty
values (unscaled by uncertainty factors).

 5 Example Cases

Sartorius 101

Figure 5-4. Regional airliner results visualization with data brushing.

Both because of the significant additional variation and because it is now a
higher-dimensional design space to visualize, data brushing becomes a
powerful tool for interactively exploring the design space and gaining a deeper
understanding. As an example, the brushed data (magenta markers) in Figure
5-4 highlight design points resulting from a narrower range of possibilities for
technical assumptions for specific fuel consumption and maximum lift-to-drag
ratio.

5.1.4 Comparison to value function methods

As discussed above, one of the key results of applying the WISDOM approach
to this problem is a small set of alternative design points that are all valid
designs that could each be a viable result, depending on preferences and
requirements. Each of these possible designs, such as those in Table 5-2

 5 Example Cases

Sartorius 102

above, is optimized for the given circumstance. The same regional airliner
example case can be used in a much more conventional optimization approach
for an illustrative comparison to using the WISDOM approach for early design
space exploration and optimization.

One of the most common value function methods for multi-objective
optimization is the weighted sum method (as discussed in Section 2.4.2). The
WISE framework can be easily used for a weighted sum approach by simply
ensuring that all preference maps are linear and that all assumption type
parameters are fixed. Using a least squares fit to linearize the preference maps,
the optimum result (no matter the search starting point) is an aircraft with a
capacity of 50 passengers and a 4,000 nautical mile range. Preference map
uncertainty scaling can be used to mimic the full range of possible ‘tunings’ of
the parameter weights for the weighted sum approach. Even when doing so, all
resulting designs, as is a common pitfall with the weighted sum method, are still
pinned against the hard constraints for passenger capacity (50 or 180
passengers) or range (400 or 4,000 nautical miles). The cluster-representative
designs are shown in Table 5-3 below (short-range, high-capacity designs were
infrequent and considered outliers by the clustering algorithms). To drive the
optimum to any sort of compromise solution, either significant effort must be put
into careful fine-tuning the objective weights, or the hard constraints must be
changed.

Table 5-3. Regional airliner design points from weighted sum method.

Range
(nmi)

Passengers Gross weight
(lb) × 103

Utility
(lb-nmi) × 106

4000 50 124.4 42

4000 180 348.1 151

400 50 38.5 4.2

 5 Example Cases

Sartorius 103

5.2 Wing redesign with winglet

The regional airliner example case provides a simple illustration of the
mechanics of the approach and the framework, and the case is simple enough
to allow straightforward inspection of the results to verify that method yields
sensible designs. The next example case, originally presented by Sartorius and
Hornung (2018), goes further towards testing and demonstrating some of the
advantages of capturing more information early and putting it to use with
optimization. The scenario in this example case is that a wing redesign is being
considered for an existing, in-production narrow-body airliner.

The objective of the study is to determine, with minimal expended effort, what a
redesigned wing might look like, what gains may be possible in performance,
and what compromises are likely necessary to achieve those gains. This
scenario is similar to the Boeing 737-700 airliner, and wing geometry for the
example case were measured from 737-700 drawings (Jackson et al., 2004) for
both the baseline wing and for the version of the 737-700 that features a winglet
(Figure 5-5).

Figure 5-5. Wing of Boeing 737-700 narrow-body airliner with winglet.

5.2.1 System model

The modeling used for this example case is simple and does not capture the full
physics of the system, as is typical in early design studies. While simple
conceptual design methods and models are used to estimate other parameters
of interest such as weight or parasite drag, the employed vortex lattice method
is a relatively fast and simple analysis method that can still effectively capture
the effects on induced drag and aerodynamic loads due to variations in three-
dimensional wing geometry and twist. The primary analysis for lift, induced
drag, and loads is therefore based on the vortex lattice method as implemented
in Athena Vortex Lattice (AVL) (Drela & Youngren, 2017). For this study, the
modifications to the wing are limited to the tip section that is entirely outboard of
the aileron and slat. Figure 5-6 shows the half-wing AVL model of the baseline

 5 Example Cases

Sartorius 104

wing along with arrows marking the wing station outboard of which
modifications are considered.

Figure 5-6. Narrow-body airliner baseline half-wing modeled in AVL. The tip region
subject to redesign is marked. (Sartorius & Hornung, 2018, p. 6)

Since it is a very early design study, additional simplifications are made for the
modeling. The key results of the modeling are the changes in performance
rather than absolute performance, so modeling that is somewhat inaccurate is
acceptable if it appropriately captures the correct trends. One simplification is
that the vehicle is analyzed at a single flight condition, flying at Mach 0.78 at
38,000 ft at a weight of gross weight minus five tonnes (about one third of fuel
capacity). Two conditions are analyzed with AVL at this flight condition: one at
level cruise lift coefficient to determine induced drag and another at a high load
factor to determine bending loads. Other simplifications are that airfoils with
zero camber are used for the vortex lattice model and the main wing is
untwisted from root to tip. For numerical stability, winglets with span less than
five centimeters are not included in the vortex lattice model.

The main design freedoms available to adjust are the wing tip panel trapezoidal
geometry, the winglet area, and the winglet rigging (twist and incidence). The
weight change of the wing is based on an assumed weight per unit planform
area, and parasite drag change is based on an assumed average section drag
coefficient. Table 5-4 shows a summary of the modeling methods, with the
source code in Appendix B3.

Table 5-4. Wing redesign study modeling summary.

Calculation Method

Lift & aerodynamic loads Vortex lattice (AVL)

Induced drag Vortex lattice (AVL)

Parasite drag, fuselage and tail Constant

Parasite drag, wing & winglet Fixed drag coefficient × reference area

Wing weight Parameter × reference area

Winglet weight Parameter × reference area

 5 Example Cases

Sartorius 105

Other key modeling outputs of interest are the change in drag at the cruise

condition and the change in the root bending moment at the high load factor
condition. At the limit load factor condition, some bending relief by the masses
of the wing tip and winglet is accounted for, but no alleviation due to deflections
is included.

5.2.2 Design variable definitions

A total of sixteen design variables were defined for this example case, shown in
Figure 5-7 below.

Figure 5-7. Wing redesign design variables.

This case exemplifies the versatility of the structure of the design variable class,
as it contains a mix of design variables that are inputs and outputs, with and
without preferences attached. Many of the inputs with no preferences attached,
such as those for the winglet rigging, are simply to allow for any resulting design
points presented to stakeholders to be optimal for the given conditions. Many

 5 Example Cases

Sartorius 106

inputs also feature upper and lower bounds simply for keeping the analysis in a
reasonable domain where the analysis will be computationally stable. Other
design variables are kept fixed (in addition to some fixed parameters hard
coded into the system model). Some parameters are simply included as a likely
output variable of interest to bring to the surface for discussions without any
specific preference information or bounds attached (hence the blank plot for the
change in the weight of the wing tips). Some of the more interesting design
variables for this example are discussed in more detail below. Source code for
all design variable definitions is in Appendix B4.

 Change in cruise drag

For this case, all preference maps are drawn keeping in mind changes in cruise
drag as an explicit unit of value or penalty for the ordinate. A reduction of cruise
drag of one percent is used as one unit of ‘currency’ when recording the
preference. That is why the preference map for change in cruise drag is not only
linear with a unit slope, it also is the only preference map with an uncertainty
factor of unity, indicating no uncertainty, as cruise drag change is the anchor for
other preferences.

 Loads and structures

One of the reasons that the system model can be built very quickly with very
little effort is because the system model features no structural analysis at all.
Instead, captured preferences for winglet structural aspect ratio (aspect ratio
using structural span instead of span normal to the freestream) and wing root
bending moment (Figure 5-8) act as surrogates for any structural modeling.
Increases in root bending or winglet structural aspect ratio are progressively
penalized. Any root bending moment increase of 10% or more is flagged as
highly likely to require structural redesign effort that is more major than might be
worthwhile in scope of the project.

Figure 5-8. Preference maps for root bending moment and winglet structural
aspect ratio used as surrogates for structural modeling.

 Spar alignment with winglet root

It is desirable that the major structural elements in the wing do not have to
follow convoluted load paths in the redesign. To capture this desire, preference
maps are attached to locations on the root of the winglet where the forward and

 5 Example Cases

Sartorius 107

aft main wing spars align (Figure 5-9). In the case that a main wing spar is close
to being aligned with the thicker areas of the winglet root section, the slopes of
the preference maps in this region help drive the search toward designs with
better alignment.

Figure 5-9. Preferences driving toward favorable structural alignment and load
paths.

 Weight changes

At the outset of the study, it is not clear if an increase in gross weight of the
aircraft is a possibility in the scope of the project. The technique allows for
moving forward with both possibilities given equal consideration. A discrete
design variable (Figure 5-10, left) that captures this is a simple input flag
determining if any additional wing weight should result in a direct increase in
gross weight or, alternatively, a decrease in useful load, as measured in
passengers. A gross weight increase is indirectly penalized in the change in
root bending discussed above, while the preference against any loss in useful
load is captured in its own design variable (Figure 5-10, right).

Figure 5-10. Capturing binary possibilities of gross weight increase or useful
load decrease.

 Span

If a winglet is present, the aerodynamics of the wing should be allowed to be
optimized to the furthest extent possible, so there are therefore no explicit

 5 Example Cases

Sartorius 108

preferences on the winglet geometry. The exception that the winglet span
preference map (Figure 5-11, left) captures is that if considering designs that
have only a very tiny winglet, it is desirable to simplify the design and reduce
part count by not having any winglet at all.

For various reasons, ranging from hangar space to roll and yaw inertia to tip
strike angle, a shorter overall wingspan is desirable, all other factors being
equal. Hence, the preference map on overall wingspan (Figure 5-11, right) has
a gentle positive slope to capture this incentive. In addition, the overall aircraft
wingspan preference map captures the significant penalty for exceeding the
ICAO Code C span limit of 36 meters (and with a hard bound at the Code D
limit). What is captured is the designer instinct that an optimized aircraft that
features a wingspan only slightly above 36 meters is unlikely to be a sufficiently
superior product to one with wings ‘clipped’ to be within ICAO Code C.

Figure 5-11. Preferences on winglet and total span.

5.2.3 Searching results

This scatter matrix visualization of the results for the wing redesign study is
shown in Figure 5-12. Clustering analysis shows some distinct subspecies of
interest, with some interesting variation within clusters as well. Note that
parameters related to the weight changes discussed above in Section 5.2.2.4
were not included for the clustering analysis, so each cluster contains designs
both with and without gross weight increases.

 5 Example Cases

Sartorius 109

Figure 5-12. Wing redesign results visualization with clustering.

The wing geometries for the cluster-representative designs (indicated with
larger markers in Figure 5-12) are shown in Figure 5-13, with data for each
representative design in Table 5-5. In this case, the WISDOM search has
yielded a variety of interesting potential alternatives. The design in Figure
5-13(a) is representative of design options that, once having violated the ICAO
Code C span limit, are very high span, giving a significant drag reduction in
exchange for very high root bending moments (flagged as possibly
unmanageably high). Figure 5-13(c) shows a design representative of a very
simple redesign of the wing tip that does not add a winglet, but rather is simply
a small extension up to 36-meter limit for moderate drag reduction. In this case,
the tuning of the clustering algorithm resulted in two representative designs that
both feature winglets. Both utilize the full 36 m span, but the design in Figure
5-13(b) features a much smaller winglet (and slightly less drag reduction) than
the design in Figure 5-13(d).

 5 Example Cases

Sartorius 110

Figure 5-13. Representative alternative wing geometries. Triads are one meter for
scale.

Table 5-5. Data for representative alternative designs.

Design ΔWempty ΔMroot ΔDcruise Span

a 1.04% 15.0% -7.5% 42.5 m

b 0.53% 5.3% -4.0% 36.0 m

c 0.23% 3.5% -2.4% 36.0 m

d 0.76% 6.1% -4.5% 36.0 m

These kinds of results represent the end of one iteration of the WISDOM
searching process, to be used to inform the next iteration. For example, with the
given results, the benefits of a high-span design such as in Figure 5-13(a) are
quantified, potentially justifying exploration into more detailed structural analysis
to better understand cost and feasibility. Or, it may prompt exploration into
clever ways to circumvent span limits such as folding wingtips. The marginal
benefits of the design of Figure 5-13(c) may be weighed against doing nothing
at all. The alternatives that feature a winglet may be further refined with more
design freedoms added to the setup to optimize airfoils, planform shapes, and
riggings.

 6 Conclusion

Sartorius 111

6 Conclusion

By implementing a new approach to achieve the objectives of capturing
stakeholder knowledge and automating the integration of that information into
the design iteration process, several benefits were observed. In this chapter,
some of those benefits of the method and implementation developed for this
work are discussed, along with some of the weaknesses. The motivations and
objectives are related to the key results based on experience with the technique
and tools so far. Experience has also revealed some pain points that will lead to
likely future work to address them and/or increase capability.

 6 Conclusion

Sartorius 112

6.1 Expected benefits

Many of the expected benefits of the WISDOM approach, the primary subject of
this work, can be discussed in the context of the early design example cases.
These benefits have been observed anecdotally in the test cases described in
this document as well as additional cases, for example a personal homebuilt
airplane case used for software development and testing. Experience utilizing
the approach in the various cases has even indicated additional benefits not
originally intended with the project.

6.1.1 Allocation of resources

Part of the motivation for undertaking this body of work was the potential to
increase the efficiency of design processes in early design. One of the key
benefits of the approach is the relatively low amount of effort needed to build
preference maps compared to alternate activities where resources might be
placed. Because the approach simply captures information that is already
available, it provides an alternative path to putting significant effort, with
associated diminishing returns, into market research to lock in requirements,
building more in-depth and elaborate system models, or getting better technical
assumption estimates.

The wing redesign example case system model described in Section 5.2.1 was
written and tested in a matter of hours, benefitting from simple models and
existing tools for integration with AVL. The resulting wing tip geometries in the
use case presented here are quite reasonable and realistic without requiring
any major effort in order to have informed analysis for structures or weights that
normally constrain such a design. The preference maps used as surrogates
were created using exclusively a priori knowledge and therefore did not require
any research to develop, and the only effort was recording those surrogate
preferences in the setup script. There was no need to edit or tune preference
maps after initial searches to get reasonable results, either, as the uncertainty
factors thoroughly capture the ‘roughness’ with which preferences are recorded
at early stages of design.

6.1.2 Facilitating effective design iteration

It was found that the approach sometimes forces stakeholders to think more
critically than they normally might. If there is foreknowledge that the approach
will be used, for example, then this will influence how the system models are
built, which assumptions are brought to the surface versus buried in the
analysis, and which methods and analyses to choose. The activity of building
preference maps is also a forcing function for stakeholders to introspect and
sometimes gain insight about their own preferences and about the engineering
and technical issues associated with a problem.

On the other end of the WISDOM process, the important next step after
searching is for the designer and other stakeholders to use the results, along
with the available artifacts that help facilitate conversation, to make human-in-
the-loop design decisions to narrow down the design space and allow
proceeding with the next iteration. The technique enables this by generating
qualitatively distinct alternatives and presenting primarily those that are likely to

 6 Conclusion

Sartorius 113

be of interest for further exploration or that reveal new insights about the design
problem. In addition, through tools such as clustering and the scatter matrix
visualization with interactive data brushing, the framework enables exploration
and understanding of the quantitative tradeoffs between design alternatives and
the driving issues. These sets of information yield the insights needed for
accelerated design cycles, quick triaging of resources, and informed design
decision-making. Also, because part of the information acquired in an iteration
is the effects due to uncertain assumptions, the phrase “depending on the
assumptions” becomes less frequent and design reviews and conversations
become more productive.

Another way that the approach helps facilitate more effective iteration and
decision-making is by presenting equally ‘fair’ alternatives in the results. In other
words, a wide search through the design, requirements, and assumptions space
still presents designs that, given their conditions, are optimized with the same
fidelity as the others. Importantly, compared to more ‘hunt and peck’
approaches to design iterations, no time is wasted examining Pareto-dominated
designs or designs that are not closed (possibly due to infeasibility).

6.1.3 Early optimization

One realized benefit that was not an explicit objective of the work was an ability
to use optimization much earlier in a design process than would normally be
appropriate. Optimization is a powerful tool, and one of its key benefits is
searching in higher dimensions than humans are capable of similarly
comprehending. The nature of the WISDOM approach is that requirements,
design parameters, and assumptions are intentionally left unfixed for as long as
possible, so not only is optimization essential, by allowing for a ‘messier’
problem setup than traditional optimization approaches, optimization can be
used earlier to get closer to optimal designs.

Normally, optimization is a “garbage in, garbage out” process that requires the
modeling of the system and the objectives to faithfully capture the physics of
reality. With early design studies, the system model and/or requirements are
normally too immature to be appropriate for use with optimization. With the
technique presented in this work, however, the process can proceed under
significant but explicitly captured uncertainty in modeling and requirements. As
an example, when the winglet study case was run as a weighted sum multi-
objective optimization, the resulting design point was a high span and very high
bending moment design similar to that in Figure 5-13(a). With the WISDOM
approach, “garbage in” is now allowed if, instead of putting significant effort into
refining the input to optimization, a small effort is put into capturing the
information on hand.

One of the other obstacles to using optimization earlier in design processes is
simply the effort required to set up optimization and the inflexibility of that setup
in keeping up with a quickly evolving design. With the WISE framework, setting
up an optimization problem, especially one that takes care of the key speed-
related pitfalls that can otherwise take some effort to avoid, is simple and
straightforward to execute without mistakes in implementation. So, the

 6 Conclusion

Sartorius 114

framework is quite a useful tool for a traditional optimization problem, even
without taking the time to capture granular preferences and other knowledge.

 6 Conclusion

Sartorius 115

6.2 Pitfalls and drawbacks

The primary objectives of this work were to formally capture additional
information on hand and to put that information to good use in early design, and
it should be acknowledged that there are potential alternative approaches to
accomplishing either of these objectives. In the course of developing the
specific approach that is the subject of this work, some alternatives were
examined or trialed and not selected for various reasons. While the approach
presented here has shown to yield many benefits, there are also some
drawbacks, weaknesses, and pitfalls to highlight.

The learning curve can be one issue with both the WISDOM approach to design
space exploration and the WISE framework and workflow. Because it presents
a slightly different way of thinking about a design problem, it takes some
practice to get used to thinking critically and introspecting about each
requirement, how the analyses are formulated, and so on. What can also take
some getting used to is the extent to which the designer and other stakeholders
must acknowledge and accept a lack of certainty and a recognized level of
incorrectness that is being carried through the design iteration process. Without
this, there is a danger of falling into the trap of spending too much time trying to
get a ‘correct’ optimization setup when it usually is much more efficient to simply
use uncertainty factors to avoid this type of paralysis.

Various forms of over-capturing information can also have detrimental effects
on the usefulness of the approach. One instance is the danger of double or
triple bookkeeping of preferences. Notice for example that in the preferences in
the wing redesign example of Section 5.2.2, there is no preference map
attached to the magnitude of the span extension of the wing tips because the
preference is fully captured in the preference map for the overall aircraft span.
Fortunately, the method is somewhat robust to small amounts of double
bookkeeping, but it primarily relies on the diligence of the designer to recognize
and avoid the issue.

The root of other adverse effects from over-capturing information can often be
traced to the nature of the underlying optimization algorithms employed and
how their behavior may worsen the further away the problem is from being
smooth and convex. In designing a personal airplane for one’s own personal
use, for example, a preference map on aircraft range may have two or three
distinct steps to reflect the distances of specific frequent destinations from a
known home airport. There may also be specific discontinuities and steps in the
preference map for payload capacity based on precisely known weights of one’s
self and spouse, for example, such as in Figure 6-1. However, taking this same
idea of capturing such granular preferences to the extreme would be, for an
airliner example, to have a step change in value every time a new city pair in an
airline’s network can be serviced or have a step change in value whenever a
single additional passenger seat can be added. Instead of yielding richer, more
useful, and interesting results, this can lead to useless results due to effectively
adding more noise than information to the design problem presented to the
optimization algorithm.

 6 Conclusion

Sartorius 116

Figure 6-1. Granular preference map for payload capacity of a personal-use
homebuilt aircraft.

The handling of discrete variables in the framework requires compromises to
make them compatible with search algorithms that are not normally designed to
accept them. Therefore, over-capturing information in the form of discrete
variables can also lead to less useful results. The resulting values of discrete
input variables is driven entirely by their associated starting probability density
functions, so these parameters are determined in more of an ‘open loop’ fashion
than from an informed search. Discrete output variables can be very useful for
presenting information to human stakeholders, but because they present such a
sharp step in the objective function that the optimization algorithm must work
with, discrete output variables with attached preferences are often detrimental
to the convergence performance of the algorithms.

Finally, one of the biggest downsides to the approach is the time required to
execute a search. One of the features of the approach is that is allows retaining
more design freedom later into the design process, but this also means that the
optimizations being solved tend to have some more dimensions than the
equivalent traditional design optimization setup might feature. This means that
each search may be marginally slower, but the major source of long search
times is the requirement to conduct dozens to hundreds of these sub-searches
for each WISDOM iteration so that a significant sample of starting points,
preferences, and assumptions can be captured.

 6 Conclusion

Sartorius 117

6.3 Future potential

Initial experience using the WISDOM technique and WISE framework for
development test cases, example cases, and other projects in industry has
shown enough promise to warrant further development and exploration. The
architecture of the framework makes it straightforward to implement changes.
Continuing to use the approach and framework for real-world projects will drive
efforts for further improvements and new capabilities.

6.3.1 Improvements

Recall from Section 4.1.1 that the requirements and drivers for creating the
WISE framework center around utility, ease and flexibility of use, and speed.
Most anticipated improvements will focus on increasing applicability to later
stages of design, where it is anticipated that the usefulness of the technique will
diminish as uncertainty is significantly reduced, requirements are solidified, and
system models more closely capture true physics. So, though there may be less
of a place for the WISDOM approach in later stages, the WISE framework can
work well for carrying on iterating and optimizing the design.

 Multi-level system model structure

The decision to use a structure data type as the representation of the system
led to a workflow and design space that is intuitive to work with, with no need to
use or track any positions of design variables in a vector, for example. However,
this structure is flat, i.e., the framework is only able to work with the top-level
fields of the main input-output system structure, precluding the use of nested
structures, which can be a more intuitive way to manage system information as
the complexity increases. The background process of conversion to and from
the system structure happens every time the system model is run, so the
decision to deprecate a category design variable attribute and impose a flat

structure restriction was to reduce the overhead and increase the speed of
design space exploration. This yields measurable speed gains for the simple
system model functions used for development. However, it is also one of the
few hurdles that can cause friction in continuing to use the framework beyond a
very early design. In a more mature project, more parameters of the system are
tracked, and a flat structure is a less appropriate format for describing the
system.

One solution is to build a wrapper inside the system model function. This keeps
the framework simple but in addition to creating a burdensome step of
reparametrizing and rebuilding the system model and introducing some
bookkeeping tasks, it also reduces the utility of the system structure itself, which
has high visibility and usefulness in being viewed, passed to additional
analyses, etc. Instead, the speed cost of the additional overhead, which is minor
compared to system model evaluation with more realistic system models, can
be absorbed to un-deprecate the capability to allow for multi-level system
structures.

 6 Conclusion

Sartorius 118

 Speed improvements

In addition to the system parameterization becoming more complicated and
involved as design progresses, so too do system models and analyses become
more elaborate and higher fidelity. This usually comes with a significant
increase in computation time needed to evaluate just a single design point. As
the project progresses out of early design studies, it also becomes much less
likely that the system model function can be easily built to be vectorized such
that many design points can be evaluated in a similar amount of time as it takes
to evaluate just one.

To address the speed issues, there are two likely strategies to pursue for
improvement. The first is to improve coverage of the WISDOM search space by
implementing alternative sampling techniques. Currently, only simple random
sampling is used to generate starting points, scale preference maps, or choose
assumption type parameters. Alternative sampling techniques, for example
Latin hypercube sampling, have the potential to provide similar coverage of the
search space using significantly fewer total searches of the design space.

The other speed improvement strategy is to enable parallelization. The
WISDOM approach is ideally suited for parallelization, as after the randomized
parameters are established for a given search, every search is fully
independent of each other (assuming a thread-safe system model function).
With multi-core processors now common in nearly all devices and especially in
workstations, this is low-hanging fruit for a speed improvement, which,
especially when combined with alternative sampling techniques, has the
potential to yield an order of magnitude speed improvement for a WISDOM
search. Unfortunately, both speed improvement strategies highlight one of the
downsides of the choice of MATLAB as an environment for developing the
framework, as both strategies, especially parallel processing, require additional
toolboxes, reducing the accessibility of the framework.

6.3.2 New capabilities

In addition to improvements to the existing capabilities and workflow, there are
several possibilities to expand on the approach and/or leverage the approach
and the framework to build in new capabilities. In general, new capabilities are
built when there is driving need coming from the requirements of a given
project.

 Correlation between technical assumptions

Currently, the simple random sampling used for uncertain assumption type
parameters assumes that all these parameters are fully independent from each
other. However, in many cases there is a known correlation, at least
qualitatively, between parameters. This is something that the house of quality
technique, discussed in Section 2.2.2, captures in its design feature correlation
matrix. It would be beneficial in some cases to capture this additional available
a priori information.

This could be useful, for example, in the case of the regional airliner example.
Instead of penalizing designs based on aerodynamic efficiency using a
preference map (Figure 3-12), an alternative formulation could instead use an

 6 Conclusion

Sartorius 119

additional structural efficiency assumption type parameter that would act as a
correction factor for the empty weight fraction function in Equation (11). The
negative correlation between structural efficiency and aerodynamic efficiency
could then be captured in the sampling used to stochastically generate these
assumption parameters for search. Capturing this correlation may not only be a
more realistic way to capture the information, but, crucially, it can sometimes be
a more natural way to conceptualize the information for the designer and other
stakeholders to capture. Sampling with correlation and arbitrary PDFs is an
established and off-the-shelf capability, for example the correlated Latin
hypercube sampling provided by Iman (2017).

 Generation of additional information and artifacts

Setting up a design space in the WISE framework means that significant
information is captured and available for use in generating other useful
information and artifacts with uses not explicitly supporting optimization.
Parameter sensitivities are one of the pieces of information that can be useful
and acquired easily from the framework. A searching results set contains
several perturbations of the design space, and this information can be
processed to automatically estimate sensitivities and create a report or visual
depiction.

Other types of visual artifacts can be useful for inclusion in reports, proposals,
design reviews, etc. There is potential to leverage the framework to quickly and
easily generate attractive constraint diagrams or carpet plots, for example,
using the information in design variables to avoid the often significant burden
associated with formatting and labeling plots for clarity.

 Automated surrogate modeling

Because the technique already involves significant exploration of various parts
of the design space, the framework lends itself well to the potential of being a
platform for building surrogate models and hybrid analyses for computationally
expensive system model functions. Initial rounds of searching can yield the data
necessary to generate response surfaces that can be used in lieu of the
expensive system model for much faster future iterations. A hybrid approach is
also possible, whereby the more expensive higher-fidelity analyses are only
used to occasionally calibrate correction factors on a much simpler and faster
system model function.

 More suited optimization algorithms

One of the largest risks when beginning to explore this work was that existing
optimization algorithms would not be suitable for the WISDOM approach.
Fortunately, this risk was not realized, and suitable performance was achieved
using existing off-the-shelf optimization algorithms. However, these algorithms
are not formulated with this unique type of search problem in mind, so there is
potential for improvements in speed or usefulness of searching results if
alternative optimization algorithms are explored or if a customized algorithm is
created that is specifically suited and tuned for this type of application.

 6 Conclusion

Sartorius 120

 Configuration synthesis applications

The WISE framework creates a kind of language that captures a design space.
There is therefore a potential to use the framework with configuration synthesis,
such as the shape grammars used for aircraft configuration synthesis presented
by Oberhauser et al. (2015). In this way, artificially generated unique
configurations can be coupled with their respective design variables and a
design space for that specific configuration. This setup would automatically
create a runnable WISE optimization setup alongside synthesizing the
configuration itself, allowing for fair comparisons of optimized versions of
entirely different species of design solutions.

References

Sartorius 121

References
Adler, W. (2018). cornerplot. GitHub. https://github.com/wtadler/cornerplot

Atanasov, G. (2011). Preliminary Design of a Two Seat General Aviation
Electric Aircraft: EGL-K. Unpublished semester thesis LS-SA 11/11.
Institute of Aircraft Design, Technische Universität München, Garching,
Germany.

Brandt, S. A., Bertin, J. J., Stiles, R. J., & Whitford, R. (2004). Introduction to
Aeronautics: A Design Perspective (2nd ed.). American Institute of
Aeronautics and Astronautics. https://doi.org/10.2514/4.862007

Chen, W., Sahai, A., Messac, A., & Sundararaj, G. J. (2000). Exploration of the
Effectiveness of Physical Programming in Robust Design. ASME Journal of
Mechanical Design, 122(2), 155. https://doi.org/10.1115/1.533565

D’Errico, J. (2012). fminsearchbnd, fminsearchcon (1.4). MATLAB Central File
Exchange. https://www.mathworks.com/matlabcentral/fileexchange/8277

Defense Acquisition University Press. (2001). System Engineering
Fundamentals. http://www.dtic.mil/docs/citations/ADA606327

Drela, M., & Youngren, H. (2017). Athena Vortex Lattice (AVL) (3.36).
https://web.mit.edu/drela/Public/web/avl/

ESA. (n.d.). Technology Readiness Levels (TRL). Retrieved January 19, 2019,
from
https://www.esa.int/Our_Activities/Space_Engineering_Technology/Shapin
g_the_Future/Technology_Readiness_Levels_TRL

Felix, A. (2004). Standard Approach to Trade Studies : A Process Improvement
Model that Enables Systems Engineers to Provide Information to the
Project Manager by Going Beyond the Summary Matrix. International
Council on Systems Engineering (INCOSE) Mid-Atlantic Regional
Conference.

Glas, M., & Sartorius, S. (2012, March). Towards a Continuous Build-up
Process of a Reusable Requirements-based System Model. 2012 IEEE
Aerospace Conference. https://doi.org/10.1109/AERO.2012.6187338

Haugen, E. B. (1980). Probabilistic Mechanical Design. Wiley.

Hauser, J. R., & Clausing, D. (1988). The House of Quality. Harvard Business
Review. https://hbr.org/1988/05/the-house-of-quality

Herbst, S., & Hornung, M. (2015, June 22). ADDAM: An Object Oriented Data
Model for an Aircraft Design Environment in MATLAB. AIAA Modeling and
Simulation Technologies Conference. https://doi.org/10.2514/6.2015-3243

Hoffpauir, D. (2017). NASA Systems Engineering Handbook. In NASA/SP-
2016-6105 REV 2.
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170001761.pdf

References

Sartorius 122

IBM. (2016). IBM - Rational DOORS. Rational DOORS.
https://www.ibm.com/us-en/marketplace/rational-doors

Ilgin, M. A. (2019). Aircraft Selection Using Linear Physical Programming.
Journal of Aeronautics and Space Technologies, 12(2), 121–128.

Ilgin, M. A., & Gupta, S. M. (2012). Physical Programming: A Review of the
State of the Art. Studies in Informatics and Control, 21(4), 359–366.
https://doi.org/10.24846/v21i4y201201

Iman. (2017). lhsgeneral (1.2). MATLAB Central File Exchange.
https://www.mathworks.com/matlabcentral/fileexchange/56384

ISO/TC 20/SC 14. (2013). Space systems – Definition of the Technology
Readiness Levels (TRLs) and their criteria of assessment. In ISO/FDIS
16290:2013.

Jackson, P., Munson, K., & Peacock, L. (Eds.). (2004). Jane’s All the World’s
Aircraft, 2004-2005. Jane’s Information Group.

King, R. (1987). Listening to the Voice of the Customer: Using the Quality
Function Deployment System. National Productivity Review, 6(3), 277–281.
https://doi.org/10.1002/npr.4040060312

Lempia, D. L., & Miller, S. P. (2009). Requirements Engineering Management
Handbook. In DOT/FAA/AR-08/32.
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/
AR-08-32.pdf

Loehr, F. (2013). Survey of Multiobjective Optimization. Unpublished semester
thesis LS-SA 12/26. Institute of Aircraft Design, Technische Universität
München, Garching, Germany.

London, F. L. (2013). Analytic Method for Probabilistic Cost and Schedule Risk
Analysis. In National Aeronautics and Space Administration (NASA) Office
of Program Analysis and Evaluation (PA&E) Cost Analysis Division (CAD)
Contract Number NNH10PR24Z Final Report.
https://www.nasa.gov/pdf/741989main_Analytic Method for Risk Analysis -
Final Report.pdf

MATLAB (Version 9.5) (9.5 (R2018b)). (2018). The MathWorks, Inc.
https://www.mathworks.com/products/matlab.html

McQuarrie, E. F. (2016). The Market Research Toolbox: A Concise Guide for
Beginners (4th ed.). SAGE Publications, Inc.

Messac, A. (1996). Physical Programming: Effective Optimization for
Computational Design. AIAA Journal, 34(1), 149–158.
https://doi.org/10.2514/3.13035

Messac, A. (2015). Optimization in Practice with MATLAB®: For Engineering
Students and Professionals. In Cambridge University Press.

Messac, A., & Hattis, P. D. (1996). Physical Programming Design Optimization

References

Sartorius 123

for High Speed Civil Transport. Journal of Aircraft, 33(2), 446–449.
https://doi.org/10.2514/3.46961

Messac, A., & Mattson, C. A. (2002). Generating Well-Distributed Sets of Pareto
Points for Engineering Design using Physical Programming. Optimization
and Engineering, 3(4), 431–450. https://doi.org/10.1023/A:1021179727569

Nagel, B., Böhnke, D., Gollnick, V., Schmollgruber, P., Rizzi, A., La Rocca, G.,
& Alonso, J. J. (2012). Communication in Aircraft Design: Can We
Establish a Common Language? 28th International Congress of the
Aeronautical Sciences.
http://www.icas.org/ICAS_ARCHIVE/ICAS2012/ABSTRACTS/201.HTM

NASA. (n.d.). Definition Of Technology Readiness Levels. Retrieved December
26, 2018, from https://esto.nasa.gov/files/trl_definitions.pdf

Nicolai, L. M., & Carichner, G. E. (2010). Fundamentals of Aircraft and Airship
Design. American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/4.867538

Oberhauser, M. (2013). Carpet Plots in Parametric Trade Studies: Development
of a Matlab Tool to Create Carpet Plots. Unpublished semester thesis LS-
SA 12/24. Institute of Aircraft Design, Technische Universität München,
Garching, Germany.

Oberhauser, M., Sartorius, S., Gmeiner, T., & Shea, K. (2015). Computational
Design Synthesis of Aircraft Configurations with Shape Grammars. Design
Computing and Cognition ’14, 54(2), 21–39. https://doi.org/10.1007/978-3-
319-14956-1_2

Optimization Toolbox (Version 8.2) (8.2 (R2018b)). (2018). The MathWorks, Inc.
https://www.mathworks.com/products/optimization.html

Parkinson, A. R., Balling, R., & Hedengren, J. D. (2018). Optimization Methods
for Engineering Design (2nd ed.). Brigham Young University.
http://apmonitor.com/me575/index.php/Main/BookChapters

Rao, S. S. (2009). Engineering Optimization: Theory and Practice (4th ed.).
Wiley.

Raymer, D. (2002). Enhancing Aircraft Conceptual Design Using
Multidisciplinary Optimization (Issue May). (PhD Thesis). Royal Institute of
Technology.

RTCA SC-205. (2011). Software Considerations in Airborne Systems and
Equipment Certification (DO-178C).

SAE S-18. (1996). Aerospace Recommended Practice 4761, Guidelines and
Methods for Conducting the Safety Assessment Process on Civil Airborne
Systems and Equipment. https://www.sae.org/standards/content/arp4761

SAE S-18. (2010). Aerospace Recommended Practice 4754 Rev. A, Guidelines
for Development of Civil Aircraft and Systems.
https://www.sae.org/standards/content/arp4754a/

References

Sartorius 124

Sartorius, S. (2011a). A Tool for Rotorcraft Pre-Design Sizing. 67th Annual
Forum of the American Helicopter Society.

Sartorius, S. (2011b). CORE: Conceptual Optimization of Rotorcraft
Environment (0.7). MATLAB Central File Exchange.
https://www.mathworks.com/matlabcentral/fileexchange/41725

Sartorius, S. (2015). Bisection Method Root Finding (1.14). MATLAB Central
File Exchange.
https://www.mathworks.com/matlabcentral/fileexchange/28150

Sartorius, S. (2016). BLEND: utility for smoothly blending functions or creating
piecewise functions. MATLAB Central File Exchange.
https://www.mathworks.com/matlabcentral/fileexchange/56530

Sartorius, S. (2019a). Physical Units Toolbox (4.1). GitHub.
https://github.com/sky-s/physical-units-for-matlab

Sartorius, S. (2019b). Pseudorandom number generation for engineering
estimates. GitHub. https://www.github.com/sky-s/randx

Sartorius, S. (2011c). Optimization and Design Space Visualization Applied to
Early Conceptual Design of Compound Helicopters. 52nd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference, 1–10. https://doi.org/10.2514/6.2011-1832

Sartorius, S., & Hornung, M. (2018). A Technique for Capturing Stakeholder
Preferences and Knowledge in Early Design Studies. 31st Congress of the
International Council of the Aeronautical Sciences.
http://www.icas.org/ICAS_ARCHIVE/ICAS2018/data/preview/ICAS2018_02
08.htm

Schneiderbauer, D. (2013). Airbus A380 Multi-Objective Redesign. Unpublished
semester thesis LS-SA 12/23. Institute of Aircraft Design, Technische
Universität München, Garching, Germany.

Sorokin, J. (2018). HDBSCAN. GitHub.
https://github.com/Jorsorokin/HDBSCAN

Sözüer, S., & Thiele, A. C. (2016). The State of Robust Optimization. In
International Series in Operations Research and Management Science
(Vol. 241, pp. 89–112). https://doi.org/10.1007/978-3-319-33121-8_5

The beta-PERT Distribution. (n.d.). Retrieved February 12, 2019, from
http://www.riskamp.com/beta-pert

Ullman, D. G., & Spiegel, B. P. (2006). Trade Studies with Uncertain
Information. Sixteenth Annual International Symposium of the International
Council On Systems Engineering (INCOSE).

Vanderplaats, G. N. (2007). Multidiscipline Design Optimization. Vanderplaats
Research & Development, Inc.

Wong, K.-C. (2015). Evolutionary Multimodal Optimization: A Short Survey.

References

Sartorius 125

http://arxiv.org/abs/1508.00457

Wood, K. L., Antonsson, E. K., & Beck, J. L. (1989). Representing Imprecision
in Engineering Design – Comparing Fuzzy and Probability Calculus.
Research in Engineering Design, 1(3–4), 187–203.
https://doi.org/10.1007/BF01581211

Wood, K. L., Otto, K. N., & Antonsson, E. K. (1992). Engineering Design
Calculations with Fuzzy Parameters. Fuzzy Sets and Systems, 52(1), 1–20.
https://doi.org/10.1016/0165-0114(92)90031-X

Yatsuka, T., Ishigaki, A., Ijuin, H., Kinoshita, Y., Yamada, T., & Inoue, M.
(2018). Mathematical Modeling of Multi-player Multi-objective Decision
Making by Linear Physical Programming. Proceedings - 2018 7th
International Congress on Advanced Applied Informatics, IIAI-AAI 2018.
https://doi.org/10.1109/IIAI-AAI.2018.00147

Appendix A

Sartorius 126

Appendix A: WISE Documentation

A1 README

DUEL WISE

Copyright 2018 Sky Sartorius. All rights reserved. No license offered.

Contact: www.mathworks.com/matlabcentral/fileexchange/authors/101715

DUEL is the Design Understanding and Exploration Library. WISE, the Well-Informed Search Environment, is

a DUEL tool that facilitates optimization and search of the design space.

Part of WISE core functionality is facilitating a technique for capturing and using additional knowledge,

captured in the DesignVariable class, such as preferences and uncertainties, for automated design space

exploration. The DesignSpace class is the container for a design problem. It has as key properties a handle

to the function that physically models the system and the vector of DesignVariables.

The DesignSpace class has most methods needed for working with the design.

Demos

Three demos demonstrate the workflow and features using a personal homebuilt airplane design test case,

a winglet design test case, and a regional jet test case.

Dependencies

DUEL WISE requires several dependencies. Some dependencies are required for specialized functionality

only, while others are required for even basic functionality.

.dependencies directory

Most dependencies are in the .dependencies directory. Many of the files that are p code here have

source available on the File Exchange.

Matlab version

DUEL-WISE is built primarily on and for R2018b but should work on later versions.

Installed toolboxes required

• Matlab Optimization Toolbox

• Physical Units Toolbox

http://www.mathworks.com/matlabcentral/fileexchange/authors/101715
https://www.mathworks.com/matlabcentral/fileexchange/?term=profileid:2407391
https://www.mathworks.com/matlabcentral/fileexchange/38977

Appendix A

Sartorius 127

A2 DesignVariable help block
A DesignVariable describes the variable as well as contains preferences for

the variable. Also, how it interfaces with the system function.

In design, there is typically a LOT of information to be collected for each

variable beyond simply a nominal baseline value. Most of this information is

normally easily known a priori, so typically the only effort is the input

process, without significant research and analysis effort needed.

 DesignVariable properties:

 name = The system model works with name as a field of the I/O struct.

 description = Optional long description (user reference only).

 label = Optional (TeX-interpreted} string to use for labeling of e.g.

 plot axes instead of using name.

 units = String representing preferred working units for the variable.

 Evaled by str2u when set (stored in hidden unitsDv property).

 ioType = I/O expectation of system model: input, output, <, >, or =.

 Default ioType is "input".

 closing - Variable is a closing variable (for ioType <, >, or =).

 discrete - Set to true if variable is discrete.

 parameter = Set to true for assumption-like input variables that have

 uncertainty but should hold constant for a given local search.

 free = Value is allowed to vary in searching.

 fixed = ~free (fixed pure outputs enforced with equality constraints).

 preferenceOn = If set to false, preferences evaluate to zero (flat

 preference), but bounds and, if on, ratcheting bounds, are

 still active.

 ratcheting - Toggle ratcheting behavior on/off for this variable.

 lowerMultiBounds - Inferred lower bounds when ratcheting.

 upperMultiBounds = See lowerMultiBounds.

 lowerBound - Lower bound.

 startLowerBound = Used for distribution of search starting points for

 search. Inputs only.

 value = Nominal value. Index for discretes.

 startUpperBound = Upper bound of distribution of search starting points.

 upperBound = Upper bound.

 lbvub = A shorthand 5-element vector for setting (or getting)

 [lowerBound startLowerBound value startUpperBound upperBound].

 distribution - PDF of starting point for inputs.

 smallestMeaningfulStep - Affects min step size for finite differences.

 Preference map properties:

 prefType = Specifies preference as "penalty" (default) or "value"

 (negative penalty).

 prefAbscissa - Preference map abscissa values (1-by-n).

 prefOrdinate - Preference map ordinate values (1-by-n).

 prefMap = A shorthand to set [prefAbscissa', prefOrdinate']. May have

 unexpected behavior with discretes.

 prefSmoothing - Width(s) of smoothing region between preference map

 segments.

 prefUncertainty - Parameter to characterize uncertainty of prefOrdinate.

 prefInfo = Array of info associated with each preference map node.

 prefFlags - Flags on preference map segments that should be highlighted

 in results (n+1 elements).

 prefSlope = Slopes of preference map (n-1 elements). Setting this

 changes only the ordinate value immediately to the right of

 the segment.

 flatPreference = True if all ordinate values are the same. Setting this

 (to anything but false) erases ordinate data and sets all

 ordinate points to zero.

DesignVariable methods:

Appendix A

Sartorius 128

 DesignVariable = Constructor where first argument is name and following

 arguments are property/value pairs.

 runchecks = Checks if DesignVariable(s) make sense and cleans up.

 plot - Plots preference map.

 editmap - Simple interface for editing a preference map.

 flip = Multiplies ordinate values by -1, switches prefType

 between "value" and "penalty", and adjusts origin.

 export - Create mcode that captures the DesignVariable.

 DesignVariable static methods are a convenient shorthand for capturing

 certain common variable types:

 assumption - Assumption-like input parameter.

 error - Output enforced to be equal to zero.

 margin - Output enforced to be greater than zero.

 See also DesignSpace, duel_wise_demos.

Appendix A

Sartorius 129

A3 Select DesignSpace help documentation

A3.1 DesignSpace help block
A DesignSpace object contains a vector of DesignVariables and has the methods

in place to facilitate searching, exploration, understanding, and

optimization of the design as analyzed by the systemModel function.

 DesignSpace properties:

 variables = Vector of DesignVariables.

 v - Struct for quick name-based access to variables.

 systemModel = Function handle to the system model function. The system

 model function has the syntax S = systemModel(S), where S is

 the I/O struct.

 extraModelArguments - Extra arguments for DesignSpace.postevaluation.

 extraSystemFunctions - Extra functions for DesignSpace.postevaluation.

 Run settings, mostly for DesignSpace.searching:

 useRunMemoization - Memoizes systemModel function.

 usePrefrencesMemoization - Memoizes preference map interpolation.

 useConvertXMemoization - Memoizes conversion from design vector to I/O

 struct.

 useCloseDesignMemoization - Memoizes initial closing of design.

 ratchetBounds - Uses lower- and upperMultiBounds for variables

 with ratcheting set to true. Default = false.

 Useful read-only properties (mostly set by DesignSpace.processvariables):

 prefFuncs = Function handles that yield preference penalty values.

 inputVariables = Vector of DesignVariables that are inputs.

 free = Free input variables (logical array).

 active = Struct with various useful indices of active inputs.

 LB = Input variables lower bounds.

 UB = Input variables upper bounds.

 ind = Struct with various useful indices of variables.

 n = Struct with various useful numbers of variables.

 names = Struct with various useful names of variables.

 vars = Struct with various useful DesignVariable vectors.

 unitsDvs = Struct for storage of evaled units.

 abscissas = Struct with various useful abscissas.

 Properties for handling results:

 cachedResults = Table containing previous results.

 results - Struct with results of searching.

 DesignSpace methods:

 DesignSpace = Constructor with property/value pairs.

 processvariables - Processes variables and populates useful properties.

 run - Runs the systemModel function.

 batchrun - Run Monte Carlo or parameter sweep batch runs.

 closedesign - Return a closed design.

 searching - Explore the design space by optimizing from various start

 points.

 Post-searching tools:

 appendresults - Append searching results to other results obtained with

 similar settings. Use for expanding results set.

 cluster - Use clustering algorithm to cluster results.

 scattermatrix - Plots a scatter matrix visualization of design points.

 postroutine_cluster = A script that implements cluster and scattermatrix

 with some typical settings.

 buildresulttable - Create / copy for export formatted table of results.

 dominantstruct - Returns a struct of only dominant designs from specified

 results substruct.

 Tools for evaluating individual designs:

 preferences - Returns raw preferences for a given design.

Appendix A

Sartorius 130

 postevaluation - Runs systemModel with extraModelArguments and

 extraSystemFunctions.

 Iteration tools:

 sendresultstocache = Saves a copy in cachedResults and clears results.

 toggle = Presents a text menu-based prompt for changing the

 fixed/free property of variables.

 Working with DesignVariables (mostly leveraging DesignVariable methods):

 plot = Calls plot method on variables.

 refreshplot = Refreshes plot data.

 editmap - Calls editmap method for variable specified by name.

 add - Appends specified DesignVariable to the variables vector.

 See also DesignVariable, duel_wise_demos.

A3.2 DesignSpace.run help block
run Runs the system model function.

 [S, Sin, X] = run(o, x, active, X)

 o.run(x, free, X) populates the free elements of X with x, converts the

 result to an input struct for the system function, and runs the system

 function with that input. x is the design point vector for a shrunken

 problem that only deals with the free variables, while X is the full design

 vector that has enough information to populate a full input struct.

 If X is not provided, x must be a full design vector with enough information

 to populate an input struct.

 This function is memoized such that two runs in a row with the same point

 don't evaluate the system model function twice (doubles the speed, since

 systemModel is required both for fun and nonlcon functions, which solvers

 call separately.

 See also DesignSpace, DesignSpace/scattermatrix.

A3.3 DesignSpace.batchrun help block
batchrun Runs the system model with select input struct fields as vectors,

closing the design if needed and possible. An output struct is returned.

 Monte Carlo

 batchrun(o, n) Does a Monte Carlo run of n trials using randomized (based on

 their respective distributions), vectorized inputs for free parameter input

 variables.

 batchrun(o, n, dim) Makes sure that vectors fed into the system model are

 non-singleton along the dimension specified by dim.

 Additional name/value pairs are passed to bisection.

 If n is -2, batchrun runs every combination of sLb and sUb for every

 parameter (2^nParameters cases total). If n is -3, batchrun runs every

 combination of sLb, val, and sUb (3^nParameters points). batchrun(o, -n)

 Runs every combination of linspace(sLb, sUb, n) for every parameter.

 Parameter sweeps

 batchrun(o, n, dim, names) Runs with vectors on named input variables

 (cellstr or string array) that are on the range of sLb to sUb for that

 particular named DesignVariable.

 Pass extra name/value pairs sweepStarts and sweepEnds to get away from the

 default start and end of input sweep vectors. Value should be a cell array

 of the same number of elements as names, with empty elements to use the

 default. Points should carry dimensions.

Appendix A

Sartorius 131

 Append 'bisectionArgs', ArgsCell to any call to pass extra arguments and

 options to the bisection function.

 Example usage for sweep:

 o.batchrun(100, 1, ["param1" "param2"], 'sweepStarts', {[] 5*u.ft});

 See also bisection, histcounts, histfitpert.

A3.4 DesignSpace.searching help block
o.searching Search the design space by running minimizations with varying

start points and uncertainty factor scaling.

 If no output, the results are written to the DesignSpace results property.

 Additional options to pass in name/value pairs:

 nStarts: Number of random starting points. Default nStarts = 1. If

 nStarts = 1, the start is at the nominal DesignVariable

 values, search is without uncertainty scaling, and

 o.results is not written and the output is simply

 returned instead.

 closing: "first" (default): Closes start point before searching.

 "on": Closes for every point evaluated during search.

 "off": No closing behavior.

 closingOptions: Cell list of additional arguments passed to optimioptions

 for closing.

 runMinimization: Run a search to minimize preferences. Default = true. Set

 to false if all you want is a closed point.

 algorithm: Type of minimization algorithm as used by fmincon.

 Default is fmincon default 'interior-point'. Additional

 option of 'simplex' uses fmincon to find a feasible

 starting value that is fed to fminsearchcon.

 backup: Saves each iteration of the sometimes very long loop,

 allowing, e.g., interrupting the loop but preserving the

 points run thus far. Set to "on" (default) to back up

 (will not back up with nStart = 1), "off" to not back up.

 Set to "recover" or "restore" to skip search and recover

 the last search from .searching_backup.mat. Set to a file

 name for load to restore from some other .mat file.

 showProgressBar: If set (default), shows progress bar for nStarts > 1.

 searchOptions: Cell list of additional arguments to pass to optimoptions

 (or optimset for simplex search).

 See also fmincon, DesignSpace, DesignSpace/appendresults.

A3.5 DesignSpace.cluster help block
cluster Clusters results using selected algorithm.

 [clusterId, clusterCenter, clusterSize, (hdbOjb)] = cluster(o, varargin)

 After the DesignSpace object, parameters are passed as name/value pairs:

 designPoints: Struct array of design points (S). If a string,

 o.results.(designPoints) data is used, including

 o.results.(designPoints).S. Default = 'valid'.

 paramInd: Logical indices of DesignVariables (o.variables) that are of

 interest for clustering. Default paramInd = o.ind.input

 (non-varying are automatically removed). Or, if a string

 array, the field names in the designPoints struct that are

 of interest.

 writeTo: If provided, writes clusterId and clusterCenters to

 o.results.(writeTo). Default is designPoints if

 designPoints is a string.

 clusterSubresult: A new results substruct, o.results.(clusterSubresult),

 containing only the cluster center design points. Default is

 'interesting'.

 normalize: If set, will normalize data to all be from 0 to 1 prior to

Appendix A

Sartorius 132

 clustering. Default normalize = true.

 algorithm: Algorithm to use for clustering. Default = 'neighbor chain'.

 Other options are 'HDBSCAN' or 'ffcmw'.

 Additional parameters are passed to the clustering algorithm to adjust

 clustering settings.

 For 'neighbor chain', example parameters are:

 threshold: The percentile of the distances between all pairs below

 which two points are considered connected neighbors.

 Default = 0.25 (lower quartile).

 minNeighbors: Minimum number of neighbors for a point to not be considered

 an outlider. Default = 1.

 For 'HDBSCAN', example parameters are:

 minpts: The nearest 'minpts' neighbor used for core distance

 calculation for each point in X. Default = 5. I have the

 best luck using the minimum (2).

 minclustsize: The minimum # of points necessary for a cluster to be deemed

 valid. Default = 5.

 minClustNum: The minimum # of clusters to be realized. Default = 1.

 outlierThresh: A cutoff value between [0,1], where any X(i) with an

 outlier score (see below) greather than 'outlierThresh' is

 assigned as an outlier (ID = 0). Default = 0.9.

 For 'ffcmw', parameters are:

 nClusters: Number of clusters (providing this is MANDATORY).

 options: Options vector for ffcmw function.

 outlierThresh: If provided, points with maximum grade of membership less

 than outlierThresh are considered outliers.

 See also HDBSCAN, neighborchainclustering, ffcmw, colormap, scattermatrix.

A3.6 DesignSpace.scattermatrix help block
scattermatrix Plots a scatter matrix visualization of multiple design points.

 scattermatrix(o, varargin), where o is a DesignSpace object.

 Additional arguments in name/value pairs:

 designPoints: Struct array of design points. If a string,

 o.results.(designPoints) data is used, including

 o.results.(designPoints).S. Default = 'valid'.

 paramInd: Logical indices of DesignVariables (o.variables) that are of

 interest for plotting. Default paramInd =

 o.ind.careAboutPrefs & o.ind.preferenceOn. Or, if a string

 array or cellstr, the field names in the designPoints struct

 that are of interest.

 plotType: 'scatter' (default) or 'corner'.

 plotPrefMaps: If true (default), preference maps are overlaid on the

 diagonal histograms.

 linking: If true, scatter matrix axis linking and data brushing will

 be used. Default linking = false (for speed).

 CData: CData passed directly to scatter plots unless CData is a

 string. 'rawprefs' will use o.results.rawPrefSum. 'flagged'

 uses ~cellfun('isempty', o.results.(designPoints).prefFlags.

 'clusters' uses o.cluster with some defaults (get more

 control over the clustering by running o.cluster yourself

 with your own settings then using

 o.results.(writeTo).clusterId with zeros replaced by NaNs),

 with outliers as NaN. Other strings will use

 [o.results.S.(CData)]. Default CData = [] to skip any

 customization (all will be one color).

 GData: Indices of points whose color should be made quite gray.

 Default is o.results.(designPoints).dominated. Only works

 with n x 3 CData (or 'flagged').

 SizeData: If provided, will override scatter SizeData. If SizeData =

 'flagged', flagged points will have their SizeData value

 halved.

Appendix A

Sartorius 133

 variationTol: Parameters (indicated by paramInd) will not be used if there

 is no variation, as determined by variationTol. Default

 variationTol = 1e-5 (set to 0 to include everything).

 [s,ax,bigAx,h,hAx,hP,vars] = scattermatrix(o)

 See also scatter, histogram, colormap, DesignVariable/plot.

Appendix B

Sartorius 134

Appendix B: Example Case Source Code

B1 Regional airliner system model function
function S = system_model(S_in, varargin)

% This system model models sizing of a jet. It is intended to demonstrate three

% general categories of usually under-captured knowledge and preferences in

% early design.

%

% Copyright 2018 Sky Sartorius. All rights reserved.

% Contact: www.mathworks.com/matlabcentral/fileexchange/authors/101715

%% Inputs.

% We can define all of our inputs here so we can run this by itself, e.g. for

% development or debugging, but we make sure to override anything here with

% function inputs. Note that not everything has to be overwritten, so an inputs

% list at the top can be quite long.

S.range = 2500 * u.nmi;

S.passengers = 100;

S.maxLiftToDrag = 17;

S.sfc = 0.5 * 1/u.hr;

S.grossMass = 50*u.tonne;

if nargin

 nms = fieldnames(S_in);

 for i = 1:numel(nms)

 S.(nms{i}) = S_in.(nms{i});

 end

end

%% Parameters and assumptions.

% Average payload including cargo, furnishings, etc.

S.payloadMassPerPax = 95*u.kg;

% Average crew per 14 CFR § 121.391.

S.crewMass = 80*u.kg * (2 + 0.5 + S.passengers/50);

% Empty weight fraction trend parameters.

A = 0.902;

C = -0.0385;

%% Analysis and outputs.

S.emptyWeightFraction = A * (S.grossMass/u.lbm).^C;

S.fuelFraction = ifr_mission_profile(S);

S.payloadFraction = 1 - (S.fuelFraction + S.emptyWeightFraction);

S.passengerMass = S.passengers * S.payloadMassPerPax;

S.payloadMass = S.passengerMass + S.crewMass;

S.grossMass = S.payloadMass ./ S.payloadFraction;

S.utility = S.passengerMass .* S.range;

%% Populate additional useful parameters.

S.emptyMass = S.emptyWeightFraction .* S.grossMass;

S.fuelMass = S.grossMass .* S.fuelFraction;

S.usefulLoad = S.fuelMass + S.payloadMass;

S.techFactor = S.maxLiftToDrag./S.sfc/u.hr;

end

function fuelFraction = ifr_mission_profile(S)

% Fuel fraction for IFR flight profile with 200 nm diversion and several fixed

% assumptions.

cruiseSpeed = 450*u.kts;

Appendix B

Sartorius 135

startupTaxiFrac = 0.98;

takeoffClimbFrac = 0.985;

cruiseFrac = exp(-S.range.*S.sfc./(cruiseSpeed.*0.866*S.maxLiftToDrag));

diversionFrac = exp(-200*u.nmi.*S.sfc./(cruiseSpeed.*0.866*S.maxLiftToDrag));

% SFC improvement factor of 0.9 for lower Mach (per Raymer).

reserveFrac = exp(-45*u.min.*(S.sfc*0.9)./S.maxLiftToDrag);

descentLandingFrac = 0.99;

missionFrac = startupTaxiFrac.*takeoffClimbFrac.*cruiseFrac.*diversionFrac...

 .*reserveFrac.*descentLandingFrac;

% Find fuel fraction with 6% margin added.

fuelFraction = 1.06*(1 - missionFrac);

end

% NBAA IFR profile reference:

% awin.aviationweek.com/portals/awin/pdfs/bc_05_01_2013_p33a-33f_howtochart.pdf

Appendix B

Sartorius 136

B2 Regional airliner setup script
%% Set up workspace.

cch all

clear global % Reset memoization.

rng(0); % Make repeatable.

displayUnits = {'lb', 'nmi', 'lbf'};

%% Set up design space.

o = DesignSpace('systemModel', @duel_wise_demos.regional_jet.system_model);

%% Define design variables.

% Define "range" design variable.

v = DesignVariable('range', 'units', 'nmi');

v.prefType = 'value';

v.prefUncertainty = 2;

v.prefMap = {

... absc. ord. info

 400 0 ''

 1000 0.7 'still a useful part of fleets'

 1500 1 'can do vast majority of routes'

 3000 1.3 'can do some really long routes'

 };

v.lowerBound = 400;

v.startLowerBound = 500;

v.value = 2500;

v.startUpperBound = 3500;

v.upperBound = 4000;

% v.lbvub = [400 500 2500 3500 4000]; % Alternate shorthand of 5 lines above.

o.v.range = v; % Assign design variable to design space.

% Define "passengers" design variable.

v = DesignVariable('passengers');

...

v.prefUncertainty = 2;

v.prefAbscissa = [60 75 95 100 105 135 150];

v.prefOrdinate = [1 0.5 0.5 0.2 0.5 0.5 0.7];

v.prefSlope = 0.001; % Slightly favor smaller aircraft

v.prefInfo{1} = "encroaching on firm's existing portfolio";

v.prefInfo{4} = 'original requirement specification';

v.prefInfo{7} = 'competing with established narrow-bodies';

v.lbvub = [50 70 100 140 180];

% The field name used for assignment to the utility dependent property v does

% not matter.

o.v.pax = v;

% grossMass

v = DesignVariable("grossMass", 'units', 'tonne', 'label', 'm_0');

v.ioType = "=";

v.prefUncertainty = 4;

v.closing = 1;

v.prefAbscissa = [0 60]; % This is my "currency".

v.prefOrdinate = [0 .8];

v.lbvub = [1 40 40 40 inf];

v.units = 'lb'; % Do a unit conversion (may throw a warning).

o.v.w0 = v;

% utility

v = DesignVariable("utility",'units','lb-nmi');

v.ioType = "output";

v.prefUncertainty = 4;

v.prefAbscissa = [0 100*200*2500];

v.prefOrdinate = [.4 0];

v.flip;

o.v.utility = v;

% sfc

v = DesignVariable();

Appendix B

Sartorius 137

v.name = "sfc";

% v.label = "Specific fuel consumption";

v.units = 'lb/hr/lb';

v.parameter = true;

v.distribution = 8;

v.lbvub(2:4) = [0.45 0.50 0.65];

% Raymer for high BPR turbofan: 0.5/hr for cruise, 0.4/hr for loiter.

o.v.sfc = v;

% maxLiftToDrag

v = DesignVariable("maxLiftToDrag",'label','L/D_{max}');

v.parameter = true;

v.prefUncertainty = 3;

v.startLowerBound = 13;

v.startUpperBound = 22;

v.distribution = 3;

v.value = 17;

v.prefAbscissa = [10 17 21 25];

v.prefOrdinate = [0 0.1 0.2 .3];

v.prefFlags{4} = "Suspiciously high L/D";

o.v.maxLiftToDrag = v;

Appendix B

Sartorius 138

B3 Wing redesign with winglet system model function
function S = sys_winglet(S_in, varargin)

%% Inputs.

S.allowWeightIncrease = 1;

S.tipSpan = 0.5*u.m; % 2.15/2 = 1.075 for -700 winglet.

S.tipChordShrinkRatio = 0.6; % 0.73 for -700 winglet.

% 1 means continue straight LE and TE. 0.73 for baseline winglet. 0.6 for

% baseline wing.

S.tipTeKink = 0*u.deg; % 0 means straight TE.

S.tipTwist = 0*u.deg;

S.tipExtraDihedral = 0*u.deg;

S.wingletSpan = 2.315*u.m;

S.wingletRootInc = 0*u.deg;

S.wingletTwist = 0*u.deg;

S.wingletAngle = 86*u.deg;

S.wingletExtraLeSweep = 0*u.deg; % Min 0.

S.wingletTaperRatio = 0.33;

S.wingTwist = 0*u.deg;

S.surfaceMassPerArea = 10*u.lb/u.sqft;

% Checked on Roskam. Checks out on

% aircraftengineering.wordpress.com/category/boeing/boeing-737/page/2/

%% Replace inputs above with those provided in S_in.

if nargin

 nms = fieldnames(S_in);

 for i = 1:numel(nms)

 S.(nms{i}) = S_in.(nms{i});

 end

end

%% Fixed parameters

m0 = 70*u.t;

% ~70 t burning 1/3rd of the fuel for a 737-700-like aircraft.

designMass = m0 - 5*u.t;

sectionCd = 0.011;

nonWingCd = 0.01;

sRef = 140.54*u.sqm; % From my base planform; JAWA ref: 125.23 sqm.

bRef = 112*u.ft+7*u.in; % 737-700 spec w/o winglets (w/ winglets: 117'5")

% x_ac = 4.24*u.m; % From my base planform.

cRef = 4.829*u.m; % From my base planform.

arRef = bRef.^2./sRef;

leSweep = 25.3*u.deg; % Measured from drawing.

% qcSweep = 25*u.deg; % Spec.

leSweepInboard = 39.8*u.deg; % Measured from drawing.

% kinkBl = 15*u.ft+10*u.in; % 4.826 m

kinkBl = 10.1*u.m/2;

dihedral = 6*u.deg; % Spec.

% wingRootC = 8.86*u.m; % - 2.387*u.m; % Measure. Alt: 25*u.ft+10.12*u.in;

basicTipSpan = 0.5*u.m; % Outboard of slats and ailerons.

fuseWidth = 3.8*u.m; % 3.76*u.m;

bodySideC = 7.27*u.m; %wingRootC-fuseWidth/2*tan(leSweepInboard);

% wingTipC = 4*u.ft + 1.25*u.in;

% More 737 info for sanity checking at

% http://www.b737.org.uk/techspecsdetailed.htm

% ICAO Annex 14 - Aerodrome Reference Code

% (Aeroplane Wingspan; Outer Main Gear Wheel Span)

%

Appendix B

Sartorius 139

% Code A - < 15m (49.2'); <4.5m (14.8')

% Code B - 15m (49.2') - <24m (78.7'); 4.5m (14.8') - <6m (19.7')

% Code C - 24m (78.7') - <36m (118.1'); 6m (19.7') - <9m (29.5')

% Code D - 36m (118.1') - <52m (170.6'); 9m (29.5') - <14m (45.9')

% Code E - 52m (170.6') - <65m (213.3'); 9m (29.5') - <14m (45.9')

% Code F - 65m (213.3') - <80m (262.5'); 14m (45.9') - <16m (52.5')

%% Load stored results from baseline run for later calculation of deltas.

baseline = duel_wise_demos.winglet.baseline_values;

%% Initialize VLModel.

vm = VLModel;

vm.title = 'Winglet VL';

vm.iYsym = 1;

vm.sRef = double(sRef);

vm.Cref = double(cRef);

vm.Bref = double(bRef);

%% Build base wing

P0 = FlyingSurfacePanel;

P0.name = 'fuseCarryover';

P0.span = fuseWidth/2;

P0.rootChord = bodySideC;

P0.location = u.ft*[0 0 0];

P0.x = -P0.rootChord/3; % Approximation for getting root bending moments.

% Root to kink.

P1 = FlyingSurfacePanel;

P1.name = 'rootToKink';

P1.span = kinkBl - P0.span;

P1.rootChord = P0.tipChord;

P1.sweepLoc = 0;

P1.sweep0 = leSweepInboard;

P1.tipChord = P1.rootChord - P1.span.*tan(leSweepInboard);

P1.dihedral = dihedral;

P1.location = [P0.xTip, P0.yTip, P0.zTip];

% Kink to outboard aileron.

P2 = FlyingSurfacePanel;

P2.name = 'kinkToTip';

P2.span = bRef/2 - (P1.span + P0.span) - basicTipSpan;

P2.rootChord = P1.tipChord;

P2.tipChord = 1.75*u.m;

P2.sweepLoc = 0;

P2.sweep0 = leSweep;

P2.dihedral = dihedral;

P2.location = [P1.xTip, P1.yTip, P1.zTip];

P2.tipInc = S.wingTwist;

% Tip panel.

P3 = FlyingSurfacePanel;

P3.name = 'tipPanel';

P3.location = [P2.xTip, P2.yTip, P2.zTip];

P3.span = S.tipSpan;

P3.rootChord = P2.tipChord;

P3.rootInc = P2.tipInc;

P3.taperAngle = P2.taperAngle;

P3.tipChord = P3.tipChord.*S.tipChordShrinkRatio;

P3.sweepLoc = 1;

P3.sweep100 = P2.sweep100 + S.tipTeKink;

P3.tipInc = S.tipTwist + P2.tipInc;

P3.dihedral = dihedral + S.tipExtraDihedral;

P = [P0 P1 P2 P3];

wing = Wing;

wing.panels = P;

s1 = wing.makeVLSurface([],'Nspan',18,'SSpace',-2,'name','wing');

s1.Ydupl = [];

%% Winglet.

wl = FlyingSurfacePanel;

Appendix B

Sartorius 140

wl.name = 'winglet';

wl.location = [P3.xTip, P3.yTip, P3.zTip];

wl.sweepLoc = 0;

wl.xRot = S.wingletAngle;

wl.span = S.wingletSpan;

wl.rootChord = P3.tipChord;

wl.tipChord = wl.rootChord.*S.wingletTaperRatio;

wl.rootInc = S.wingletRootInc;

wl.tipInc = S.wingletRootInc + S.wingletTwist;

wl.sweep0 = leSweep + S.wingletExtraLeSweep;

winglet = Wing;

winglet.panels = wl;

s2 = winglet.makeVLSurface([],'Nspan',6,'SSpace',-1,'name','winglet');

s2.Ydupl = []; % Get rid of default mirroring.

% Conservatively ignoring parasite drag for bending moments.

%% Estimate weight delta.

baseTipMass = baseline.panels(4).area.*S.surfaceMassPerArea;

S.tipMass = P3.area.*S.surfaceMassPerArea;

S.wingletMass = wl.area.*S.surfaceMassPerArea;

S.addedVehicleMass = 2*(S.tipMass - baseTipMass + S.wingletMass);

S.emptyWeightChange = S.addedVehicleMass./(38*u.t); %*

if S.allowWeightIncrease

 m0 = m0 + S.addedVehicleMass;

 S.usefulLoadDeltaPax = 0;

else

 S.usefulLoadDeltaPax = -S.addedVehicleMass/(100*u.kg); %**

end

% Assuming a limit load factor per 14 CFR § 25.337 calculation negligibly

% affected by weight change and not clipping to range of [2.5 3.8], though

% acceptable due to primarily only examining deltas.

n = 2.1 + 24000*u.lb/(m0 + 10000*u.lb);

limitLoad = n.*m0*u.g0;

if S.allowWeightIncrease

 % Also increase analysis weight.

 analysisWeight = u.g0*(designMass + S.addedVehicleMass);

else

 analysisWeight = u.g0*designMass;

 % Assume that you can take out all that extra mass in fuel for this

 % particular design point.

end

nForBendingCase = limitLoad./analysisWeight;

%% Determine run conditions.

fc = FlightCondition;

fc.h = u.FL*380;

fc.wS = analysisWeight./sRef;

fc.M = 0.78;

% Assuming same cruise speed is mostly limited by Mach and won't change with

% weight or drag polar.

rn = {sprintf('a c %.15f',fc.cL),...

 sprintf('a c %.15f',nForBendingCase.*fc.cL)};

%% Run vortex lattice.

if S.wingletSpan >= 5*u.cm % This is necessary for AVL to not die.

 vm.components = {[s1 s2]};

else

 vm.components = {s1};

end

vm.writeavl;

[fn, st] = runanalysis(vm.name,rn,{'fn' 'st'},false); % 21 s

Appendix B

Sartorius 141

S.vlModel = vm;

S.vlRuns = rn;

S.stabilityOutput = st;

% Debugging plots:

% vm.showinavl;

% plot([P P4]); aircraftview plan

%% Get some interesting outputs.

S.panels = [P wl];

% Get area of panels. Note: cos(dihedral) = S/area.

areas = [S.panels.area];

S.flyingSurfaceArea = sum(areas);

qS = fc.q.*sRef;

% Root bending moment.

tipLoad = n.*S.tipMass*u.g0;

wingletLoad = n.*S.wingletMass*u.g0;

bendingRunInd = 2;

rollMoment = qS.*bRef.*fn(bendingRunInd).Cl + ... % negative moment.

 (tipLoad.*P3.y_bar_abs + wingletLoad.*wl.y_bar_abs);

% Using st for pitching moment instead of cm since it has extra sig figs.

pitchMoment = qS.*cRef.*st(bendingRunInd).Cmtot/2 + ...;

 (tipLoad.*P3.x_ac_abs + wingletLoad.*wl.x_ac_abs);

S.rootBendingMoment = sqrt(rollMoment.^2 + pitchMoment.^2);

% Real limit load will likely put some significant deflection into the wing

% s.t. the load distribution looks quite different. Also, this also omits other

% elements such as drooped aileron. Much of this can be captured with

% preferences that flag a "definitely ok" zone, a maybe zone, and a danger zone.

S.rootBendingChange = S.rootBendingMoment./baseline.rootBendingMoment - 1;

% Fwd spar location on winglet root chord

sparSweep = P2.sweepX(0.2); % Hypothetical fwd spar location.

fwdSparTipX = (P2.xTip + 0.2*P2.tipChord) + P3.span.*sin(sparSweep);

S.fwdSparOnWingletRoot = (fwdSparTipX - wl.xRoot)./wl.rootChord;

% Aft spar location on winglet root chord

sparSweep = P2.sweepX(0.7); % Hypothetical aft spar location.

aftSparTipX = (P2.xTip + 0.7*P2.tipChord) + P3.span.*sin(sparSweep);

S.aftSparOnWingletRoot = (aftSparTipX - wl.xRoot)./wl.rootChord;

% Drag and L/D. Turn this into something useful.

parasiteDragArea = sum(areas).*sectionCd;

CD0 = 2*parasiteDragArea./sRef; % 2 x for mirroring.

% drag = qS.*fn(1).CD; % Not useful due to rounding in fn.CD.

% CDi = st(1).CDind

% e = st(1).e;

CDi = fc.cL.^2./(pi*st(1).e.*arRef); % e has the most sig figs.

S.liftToDragRatio = fc.cL./(CD0+CDi+nonWingCd); % 16.3 for A320-200 in cruise.

S.liftToDragChange = S.liftToDragRatio./baseline.liftToDragRatio - 1;

S.cruiseDrag = analysisWeight./S.liftToDragRatio;

S.cruiseDragChange = S.cruiseDrag./baseline.cruiseDrag - 1;

% Overall span.

S.span = max(wl.yTip*2,P3.yTip*2);

% Tip aspect ratio

S.tipAspectRatio = (wl.structuralspan + P3.structuralspan).^2./...

 (wl.area + P3.area);

% Limit this to something like 4.5 or 5;

S.wingletStructuralAr = wl.structuralspan.^2./wl.area;

% Limit this to something like 4;

Appendix B

Sartorius 142

B4 Wing redesign with winglet setup script
cch all

clear global % Reset memoization.

rng(0); % Make repeatable.

%% SET UP DESIGN SPACE.

o = DesignSpace();

o.systemModel = @duel_wise_demos.winglet.sys_winglet;

%% SET UP DESIGN VARIABLES.

% MAJOR INPUTS: tipSpan, tipChordShrinkRatio, wingletSpan, wingletRootInc,

% wingletTwist, wingtipMassPerArea

% OTHER INPUTS: allowWeightIncrease, tipTwist, tipExtraDihedral, wingletAngle,

% wingletExtraLeSweep, wingletTaperRatio

% The preference currency is percentage points of cruise drag improvement.

%% %%%%% INPUTS %%%%%

dX = 0.05; % Smallest meaningful step for low-precision method.

%% tipSpan

v = DesignVariable("tipSpan",'label','tip span','units','m');

v.lbvub = [.2 .3 0.5 2.5 6]; % Set UB to > ~1.3 to allow for >36 m span.

% 737-700 winglet: 2.15/2

% Overall span limit will take care of UB.

% LB is just so VL elements don't get too squished.

v.smallestMeaningfulStep = dX;

o.v.tipSpan = v;

%% tipChordShrinkRatio

v = DesignVariable("tipChordShrinkRatio",'label','tip \lambda ratio');

v.lbvub = [.2 .3 .6 1 1];

% 737-700 winglet: 0.73.

v.smallestMeaningfulStep = dX;

o.v.tipChordShrinkRatio = v;

%% wingletSpan

v = DesignVariable("wingletSpan",'label','winglet span','units','m');

v.lbvub = [.05 0.06 2.315 4 5]; % 5 cm span still runs without killing AVL.

v.prefAbscissa = [0 0.3 2];

v.prefOrdinate = [0 1 1];

v.prefInfo{2} = 'If it is going to be that small, better nothing at all.';

v.prefUncertainty = 2;

v.smallestMeaningfulStep = dX;

o.v.wingletSpan = v;

%% wingletRootInc

v = DesignVariable("wingletRootInc",'label','\alpha_{inc,root}','units','°');

v.lbvub = [-5 -1 2 4 10];

v.smallestMeaningfulStep = dX;%*2;

o.v.wingletRootInc = v;

%% wingletTwist

v = DesignVariable("wingletTwist",'label','twist','units','°');

v.lbvub = [-10 -6 -3 0 4];

v.smallestMeaningfulStep = dX;%*2;

o.v.wingletTwist = v;

Appendix B

Sartorius 143

%% surfaceMassPerArea

v = DesignVariable("surfaceMassPerArea",'label','areal mass','units','lb/sqft');

v.parameter = true;

v.value = 10;

v.startLowerBound = 4;

v.startUpperBound = 20;

v.free = 0; % Fix this to keep this test case conceptually simple.

v.distribution = 6;

o.v.surfaceMassPerArea = v;

%% allowWeightIncrease

v = DesignVariable("allowWeightIncrease");

v.discrete = true;

v.value = 1;

v.startLowerBound = .5;

v.startUpperBound = 2.5*(1-eps);

v.prefAbscissa = [false true];

v.prefOrdinate = [0 0]; % Pref taken care of by useful load prefs.

v.prefUncertainty = 2;

o.v.allowWeightIncrease = v;

%% wingletAngle

v = DesignVariable("wingletAngle",'units','°');

v.lbvub = [6 45 86 90 96];

v.free = 0;

v.smallestMeaningfulStep = .1;

o.v.wingletAngle = v;

%% %%%%% OUTPUTS %%%%%

% MAJOR OUTPUTS: usefulLoadChange, rootBendingChange, fwdSparOnWingletRoot,

% aftSparOnWingletRoot, cruiseDragChange, span

% OTHER OUTPUTS: liftToDragChange

%% usefulLoadChange

v = DesignVariable("usefulLoadDeltaPax",'label','\DeltaUL (pax)');

v.ioType = 'output';

v.prefAbscissa = [-1 -0.5 0 1];

v.prefOrdinate = 0.2*[0.15 0.05 0 -0.02];

v.prefInfo{1} = 'losing a pax';

v.prefUncertainty = 2;

o.v.usefulLoadChange = v;

%% addedVehicleMass

v = DesignVariable("addedVehicleMass",'label','\DeltaW_{tips}','units','kg');

v.ioType = 'output';

o.v.addedVehicleMass = v;

%% rootBendingChange

v = DesignVariable("rootBendingChange",'label','\DeltaM_{root}','units','%');

v.ioType = 'output';

v.prefAbscissa = [-1 0 5 10 15];

v.prefOrdinate = [0 0 .3 1 2];

v.upperBound = 15;

v.prefInfo{4} = 'probably the limit of what can be be glossed over for

aeroelasticity';

v.prefFlags{5} = 'getting unmanagably large bending moments';

v.prefFlags{6} = 'getting infeasibly large bending moments';

v.prefUncertainty = 3;

o.v.rootBendingChange = v;

%% fwdSparOnWingletRoot

v = DesignVariable("fwdSparOnWingletRoot",'label','x_{spar,fwd}','units','%',...

Appendix B

Sartorius 144

 'description','put the spar in the meaty bit if possible.');

v.ioType = 'output';

v.prefAbscissa = [0 12.5 20 70 80 100];

v.prefOrdinate = 0.2*[1 1 0 0 1 1];

v.prefUncertainty = 2;

o.v.fwdSparOnWingletRoot = v;

%% aftSparOnWingletRoot

v = DesignVariable("aftSparOnWingletRoot",'label','x_{spar,aft}','units','%',...

 'description','put the spar in the meaty bit if possible.');

v.ioType = 'output';

v.prefAbscissa = o.v.fwdSparOnWingletRoot.prefAbscissa;

v.prefOrdinate = o.v.fwdSparOnWingletRoot.prefOrdinate;

v.prefUncertainty = o.v.fwdSparOnWingletRoot.prefUncertainty;

o.v.aftSparOnWingletRoot = v;

%% cruiseDragChange

v = DesignVariable("cruiseDragChange",'label','\DeltaD_{cruise}','units','%',...

 'description','surrogate for cruise fuel burn');

v.ioType = 'output';

v.upperBound = 0; % Don't allow any designs that increase cruise fuel burn.

v.prefAbscissa = [-2 0];

v.prefOrdinate = [-2 0];

o.v.cruiseDragChange = v;

%% span

v = DesignVariable("span",'units','m');

v.ioType = 'output';

v.upperBound = 36;

v.upperBound = 52;

v.prefAbscissa = [26 36 38 48];

v.prefOrdinate = [1 1.1 4 4.1]*2/3;

v.prefUncertainty = 2;

o.v.span = v;

%% wingletStructuralAr

v = DesignVariable("wingletStructuralAr",'label','AR_{wl,structural}');

v.ioType = 'output';

v.upperBound = 4.5;

v.prefAbscissa = [0 3 4 5];

v.prefOrdinate = [0 .1 .3 .8];

v.prefUncertainty = 3;

v.prefFlags{4} = 'winglet aspect ratio getting quite high for structure';

o.v.wingletStructuralAr = v;

	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Abbreviations and acronyms
	Symbols

	1 Introduction
	1.1 Design research domains
	1.2 Design processes
	1.2.1 Archetypal aircraft early design iteration process
	1.2.2 Opportunities in the design iteration process

	1.3 Motivation for exploring a different approach
	1.3.1 Software-centric contemporary workflows
	1.3.2 Un- and under-captured stakeholder wisdom
	1.3.3 Increasing chances of product success
	1.3.3.1 Access to unexplored areas of the design space
	1.3.3.2 Delaying locking in requirements
	1.3.3.3 Design decision freedom, tracked and justified
	1.3.3.4 Process efficiency

	1.3.4 Focus on early design

	1.4 Objectives
	1.4.1 Objective 1: Facilitate formally capturing stakeholder wisdom
	1.4.2 Objective 2: Automate the integration of captured information in design space exploration and decisions

	1.5 Structure of this work

	2 State of the Art
	2.1 Requirements elicitation and analysis
	2.1.1 Market research
	2.1.2 Traditional aerospace and defense approach to requirements
	2.1.3 Requirements traceability for verification and validation

	2.2 Design exploration and decision techniques
	2.2.1 Trade studies
	2.2.2 House of quality
	2.2.3 Design space understanding and visualization techniques

	2.3 Accounting for uncertainty
	2.4 Optimization
	2.4.1 Single-objective search
	2.4.2 Multi-objective search
	2.4.3 Physical programming

	2.5 Comparing optimization to other search techniques

	3 Methodology
	3.1 Applicability of approach
	3.1.1 Early design studies
	3.1.2 Moderate dimensionality
	3.1.3 Mostly continuous design variables
	3.1.4 Nominally convex design space
	3.1.5 Tightly coupled parameters

	3.2 Issues with optimization in early design
	3.2.1 Imperfectly defined requirements and objectives
	3.2.2 Low-fidelity analytical models
	3.2.3 Immature system models
	3.2.4 Rigidity of optimization approach
	3.2.5 Algorithms focused on final solution

	3.3 Types of information captured
	3.3.1 Example regional airliner design for illustration
	3.3.2 Assumption uncertainty
	3.3.3 Preferences on figures of merit and design parameters
	3.3.4 Known uncaptured system model behaviors

	3.4 Application of optimization
	3.4.1 Objective function
	3.4.2 Introducing variation
	3.4.2.1 Multi-start multimodal search
	3.4.2.2 Preference map uncertainty scaling
	3.4.2.3 Stochastic assumption parameters

	3.4.3 Constraints

	3.5 Understanding and decision-making
	3.5.1 Nature of optimization results
	3.5.2 Processing of optimization results
	3.5.3 Iteration actions

	4 Implementation
	4.1 Overview
	4.1.1 Implementation priorities and requirements
	4.1.1.1 Early and broad utility
	4.1.1.2 Usability
	4.1.1.3 Flexibility and reuse
	4.1.1.4 Speed

	4.1.2 Nominal workflow
	4.1.3 MATLAB as selected programming language
	4.1.3.1 Common environment
	4.1.3.2 Command line use
	4.1.3.3 Designed for technical computing
	4.1.3.4 Popularity and familiarity
	4.1.3.5 Interaction with other languages
	4.1.3.6 Vectorization
	4.1.3.7 Object-oriented

	4.1.4 Framework components and organization

	4.2 System model function
	4.2.1 Syntax
	4.2.2 Input and output variable types
	4.2.3 Typical evolution of system model function

	4.3 Design variable class
	4.3.1 Descriptive and system model interfacing attributes
	4.3.1.1 Name
	4.3.1.2 Description
	4.3.1.3 Label
	4.3.1.4 Units
	4.3.1.5 Input-output type
	4.3.1.6 Closing flag
	4.3.1.7 Smallest meaningful step

	4.3.2 Attributes capturing preferences and other information
	4.3.2.1 Assumption type parameter flag
	4.3.2.2 Lower and upper bounds
	4.3.2.3 Starting lower and upper bounds
	4.3.2.4 Value
	4.3.2.5 Starting distribution
	4.3.2.6 Preference map abscissa and ordinate points
	4.3.2.7 Active or inactive preference map
	4.3.2.8 Preference map uncertainty
	4.3.2.9 Preference map slope
	4.3.2.10 Preference map smoothing
	4.3.2.11 Preference map node information
	4.3.2.12 Preference map segment warning flags

	4.3.3 Design variable class methods
	4.3.3.1 Plotting and visualization
	4.3.3.2 Real-time editing
	4.3.3.3 Export

	4.4 Design space class
	4.4.1 User-facing design space attributes
	4.4.2 Design space utility methods and attributes
	4.4.2.1 Display
	4.4.2.2 Plotting and editing design variables
	4.4.2.3 Processing and utility attribute setting
	4.4.2.4 Toggling active and fixed variables
	4.4.2.5 Memoization
	4.4.2.6 Evaluating a design point

	4.5 WISDOM approach implementation
	4.5.1 Batch analysis for sweeps and Monte Carlo analysis
	4.5.2 WISDOM searching and optimization
	4.5.3 Methods for understanding WISDOM results
	4.5.3.1 Results structuring and handling
	4.5.3.2 Visualization
	4.5.3.3 Clustering
	4.5.3.4 Scrutinizing individual design points

	5 Example Cases
	5.1 Regional airliner
	5.1.1 System model
	5.1.2 Design variable definitions
	5.1.3 Searching with WISDOM approach
	5.1.4 Comparison to value function methods

	5.2 Wing redesign with winglet
	5.2.1 System model
	5.2.2 Design variable definitions
	5.2.2.1 Change in cruise drag
	5.2.2.2 Loads and structures
	5.2.2.3 Spar alignment with winglet root
	5.2.2.4 Weight changes
	5.2.2.5 Span

	5.2.3 Searching results

	6 Conclusion
	6.1 Expected benefits
	6.1.1 Allocation of resources
	6.1.2 Facilitating effective design iteration
	6.1.3 Early optimization

	6.2 Pitfalls and drawbacks
	6.3 Future potential
	6.3.1 Improvements
	6.3.1.1 Multi-level system model structure
	6.3.1.2 Speed improvements

	6.3.2 New capabilities
	6.3.2.1 Correlation between technical assumptions
	6.3.2.2 Generation of additional information and artifacts
	6.3.2.3 Automated surrogate modeling
	6.3.2.4 More suited optimization algorithms
	6.3.2.5 Configuration synthesis applications

	References
	Appendix A: WISE Documentation
	A1 README
	A2 DesignVariable help block
	A3 Select DesignSpace help documentation

	Appendix B: Example Case Source Code
	B1 Regional airliner system model function
	B2 Regional airliner setup script
	B3 Wing redesign with winglet system model function
	B4 Wing redesign with winglet setup script

