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Writing a book is a horrible,
exhausting struggle, like a long
bout with some painful illness. One
would never undertake such a thing
if one were not driven on by some
demon whom one can neither resist
nor understand.

– George Orwell



Abstract

T he non-rigid 3D shape correspondence problem is an important part of many algorithms
for geometry processing, and applications in virtual and augmented reality. However,

non-rigidity increases the degrees of freedom in comparison to the rigid problem and leads to
algorithms that need to compromise between runtime, and guaranteeing desirable properties,
like continuity, in the solution. In this thesis, we explore several efficient algorithms solving
for continuous correspondences between non-rigid shapes. The first considers taking a 2D
contour and a 3D shape as input. Trans-dimensional settings are especially hard, because
common descriptors are not comparable between different dimensions and a lot of methods
rely on projecting the higher dimensional shape down instead. This does not work for non-rigid
deformations on the 3D shapes, but we show that popular spectral descriptors for non-rigid
cases can be transferred to the 2D-3D setting with minimal adjustment. Using the special
1-dimensional structure of the solution for contour shapes, we pose the correspondence as
a shortest path problem on the product graph. This can be solved efficiently by Dijkstra’s
algorithm and a branch-and-bound strategy. In the case of two 3D input shapes the solution is
2-dimensional, so it is a minimal surface instead of a shortest path. This can be formulated as a
quadratic assignment problem (QAP) between kernels, and we show that using positive-definite
heat kernels has superior theoretical properties to previously used gaussian kernels. We solve
the QAP through difference of convex functions programming in a series of linear assignment
problems. Additionally, we introduce a multi-scale approach which separates the problem
into solvable subsets but can still propagate global information throughout. Furthermore, we
analyze the properties of maps on the product manifold to prove that conventional algorithms
do not make use of the optimal representation in the separable Laplace-Beltrami eigenbasis.
Based on this observation we show what the optimal representation is and proprose a novel, not
separable, localized basis that is better suited for correspondences, and we propose a framework
to refine correspondences directly on the product manifold. Finally, we introduce a method
that produces continuous correspondences based on a smooth, volume-preserving deformation
field. We argue that for most real-world objects not only is the correspondence smooth, but
there also exists a sequence of intermediate shapes with the same properties transforming
the source into the target. To this end, our algorithm solves for the correspondences and
the deformation jointly using an expectation-maximization approach. Because we represent
the deformation in a closed-form, frequency ordered basis, we can perform the optimization
efficiently on a subsampling but still retrieve a solution and interpolation for shapes of any
resolution with only linear overhead, and without discretization artifacts.
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Zusammenfassung

D as Korrespondenzproblem zwischen elastisch verformten, drei-dimensionalen Formen
spielt eine zentrale Rolle in vielen Algorithmen in der Geometrieverarbeitung und An-

wendungen in Virtual und Augmented Reality. Allerdings wächst die Anzahl der Freiheits-
grade im Vergleich zur starren Problemstellung enorm, was dazu führt, dass Algorithmen
Kompromisse zwischen Laufzeit und wünschenswerten Eigenschaften, wie Kontinuität, finden
müssen. In dieser Dissertation beschäftigen wir uns mit mehreren effizienten Algorithmen,
die verschiedene Variationen des kontinuierlichen Korrespondenzproblems für elastische For-
men lösen. Die erste Methode untersucht eine Situation, in der eine 2D Kontur und eine
deformierbare 3D Form gegeben sind. Transdimensionale Probleme sind besonders schwierig,
weil die meisten Deskriptoren nicht zwischen unterschiedlichen Dimensionen vergleichbar sind.
Viele Methoden lösen dies, indem sie die höher dimensionale Form in eine Niedrigere pro-
jezieren. Das funktioniert für elastisch deformierte Formen nicht, aber wir zeigen in dieser
Arbeit, dass die für elastische Formen populären, spektralen Deskriptoren auch mit wenig
Aufwand für Korrespondenzen zwischen 2D und 3D angepasst werden können. Diese neuen
Deskriptoren und der Fakt, dass die Lösungsstruktur von Konturen eindimensional ist, nutzen
wir, um das Korrespondenzproblem als Kürzeste-Wege-Problem auf einem Graphen zu for-
mulieren. Diese können durch Dijkstras Algorithmus und einen Branch-and-Bound Ansatz
effizient gelöst werden. Für zwei 3D Formen hat die Lösung eine zweidimensionale Struktur
und ist deswegen ein Minimale-Oberflächen-Problem anstatt eines Kürzeste-Wege-Problem.
Dieses kann durch ein quadratisches Zuordnungsproblem (QAP) zwischen Kerneln gelöst wer-
den. Wir zeigen, dass die positiv-definiten Heat-Kernel, die wir einsetzen, überlegene the-
oretische Eigenschaften gegenüber den vorher benutzten GauSS-Kerneln haben. Wir lösen
das QAP durch Difference-of-Convex-Functions Programmierung in einer Serie von linearen
Zuordnungsproblemen. Zusätzlich schlagen wir einen Multiskalen-Ansatz, der das Problem in
kleinere Lösbare zerlegt. Dadurch funktioniert unsere Methode für jede Auflösung, aber kann
gleichzeitig globale Informationen in alle Teilprobleme übertragen. Zusätzlich analysieren
wir die Eigenschaften von Abbildungen auf der Produktmannigfaltigkeit, um zu zeigen, dass
konventionelle Algorithmen oft nicht die optimale Representation in der separierbaren Laplace-
Beltrami Basis nutzen. Basierend auf dieser Beobachtung stellen wir die optimale Represen-
tation und eine neue, nicht-separierbare, lokalisierte Basis vor, die sich besser zum Darstellen
von Korrespondenzen eignet. Diese nutzen wir, um ein neues Framework zur Verfeinerung
der Korrespondenzen direkt auf der Produktmannifaltigkeit. Zuletzt stellen wir eine Methode
vor, die kontinuierliche Korrespondenzen basierend auf einem glatten, volumenerhaltenden
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Deformationsfeld berechnet. Die Idee entstammt der Beobachtung, dass die meisten echten
Objekte nicht nur eine kontinuierliche Korrespondenz haben, sondern auch durch eine Sequenz
von Zwischenzuständen mit den gleichen Eigenschaften wie den Eingangsformen verbunden
sind. Dafür entwickeln wir einen Algorithmus, der durch einen Expectation-Maximization
Ansatz gleichzeitig die Korrespondenz und die Deformation optimiert. Da wir die Deforma-
tionen in einer Basis mit analytischer, frequenz-geordneter Form darstellen, können wir die
Optimierung effizient auf einer kleinen Auswahl von Punkten ausführen. Trotzdem können
wir die Lösung und Interpolation ohne Diskretisierungsartefakte mit linearem Aufwand auf
beliebige Auflösungen übertragen.
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List of Frequently Used Symbols

Subscripts may be dropped if they are irrelevant or clear from context to improve readibility.

M,N (Riemannian) manifolds with arbitrary dimensions
X ,Y (Riemannian) manifolds with the same dimensions
ξi coordinate map
M×N ,X × Y Product manifolds
πM projection from M×N to M
∆X Laplace-Beltrami operator on X
A,S the discrete mass and stiffness matrix of the LBO
(Φ,Λ), (Ψ, µ) Pairs of eigenfunctions and eigenvalues
ϕi,λi,ψi, µi the i-th eigenfunction and value
Π ∈ Pn a permutation matrix from the set of n× n permutation matrices
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Nobody ever figures out what life is all
about, and it doesn’t matter. Explore
the world. Nearly everything is really
interesting if you go into it deeply
enough.

– Richard P. Feynman



CHAPTER 1
Introduction

The properties of shapes have been studied since ancient times. For example the relationships
in Euclid (300BC) ’s Elements describe how simple geometric objects can be constructed out
of each other. Within geometry, three dimensional shapes have a special meaning for humans,
because the world we live in and its objects are three dimensional. Deeper understanding
of those shapes comes natural to us, but it is also necessary to navigate our world. On the
other hand, the majority of research in computer vision has been done on 2D data, either
images or image collections, like videos. This has multiple reasons. First, capturing the entire
surface of a 3D object requires at least multiple view points. Second, storing information
on a 2D surface, like paper, was much more storage efficient before computers were invented.
Furthermore, through our vast experience in the 3D world, humans have enough intuition
about every day objects and our environment to imagine the correct 3D object from 2D,
or our stereo vision. It is even possible to play with our intuition of object projections by
drawing physically impossible objects that still look natural; a skill M.C. Escher became very
famous for. However, the projection of a 3D object on a 2D plane always comes with loss of
information, i.e. it can only show one view point and depth information is ambiguous, or it
is flattened out and metric distortion is unavoidable.

Some advantages of images also apply in digital representation. While images require less
space and are faster to process, both in reality as well as on computers, knowing the exact 3D
geometry is beneficial, or even a requirement, in many applications. One important application,
in which digital 3D representation has led to tremendous advances, is protein prediction. The
spatial structure of proteins is important for their effect on body functions, and simulations
of protein interactions can be done computationally to find new treatments (Knoverek et
al. 2019). This is impossible without an accurate and complete representation of the 3D
structure as well as efficient, stable 3D geometry processing algorithms. Other disciplines,
like architecture, have automated many previously tedious and complicated tasks with only
minimal user guidance. This allows to process small changes in the requirements within seconds
– instead of an expert manually redrawing plans –, and the result to be optimal in terms of
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material and space consumption. Again, this is only possible with exact 3D representation to
simulate static effects precisely. While these applications rely on accurate 3D models, they are
most likely directly modeled on a computer. This guarantees a certain quality and properties
in the representation. This is not always the case when 3D models are scans from the real
world.

The capture of real-world objects comes with many challenges, and, as a result, raw 3D scans
are often noisy, have missing parts, and fail to represent fine geometric details. Even clean,
artificial 3D models need to be discretized on the computer somehow, and different instances
can differ widely in resolution, structure and quality. While images are always represented as
a regularly spaced grid, 3D data has more flexibility. This adds expressiveness but reduces
efficiency in both processing and memory consumption. Furthermore, acquisition hardware
cannot capture the entire surface of a 3D object at once. Instead cameras or scanners are fixed
to one (or multiple) point(s) around the object and detect the surface from these view points.
This leads to a collection of 2D images which need to be merged into a 3D reconstruction; a
process that can introduce noise and errors. It is especially hard to reconstruct highly non-
convex surfaces, because more view points are needed to detect every point on the surface.
Thus, real-world 3D scans are always already processed versions of 2D data, and their quality
depends heavily on the acquisition setting and reconstruction algorithm. At the same time,
this shows how 3D data can be superior to images in applications where a single view is not
sufficient, because it cannot represent the full geometry. If multiple images are needed to
reconstruct the entire object, one image obviously does not contain all information, but the
3D model is a compact representation of a collection of images all showing the same object.

3D geometry and its processing are the backbone of Virtual and Augmented Reality (VR/AR)
applications. The illusion of virtual environments can only be maintained if a robust estimation
of the surroundings exists and objects are processed accordingly. In the beginning VR and AR
were mostly focused on entertainment applications, and, being restricted in their robustness
and flexibility, this made sense. In recent years medical and industry applications have taken
over. Here, virtual environments can provide safe and cheap training, or give visual feedback
for crucial operations in real-time. Many of these applications require correspondences between
seen objects to function properly. These correspondences can be used to highlight differences,
transfer information, improve the reconstruction, or alter the appearance of an object. The
correspondence problem for rigid objects has been extensively studied on images and (partial)
3D objects (Tam et al. 2013). The solution in this setting has only six degrees of freedom
in 3D (three for rotation, three for translation) and optimizing, even in the presence of severe
noise, can be done efficiently.

The non-rigid correspondence problem, which we will focus on in this thesis, includes any pair
of shapes that cannot be aligned by a single rigid transformation. Non-rigid deformations
can include basically anything but there are sub-classes with more restrictions, for example
isometric shapes. This includes humans who can move into a wide variety of poses and whose
tracking is an entire research direction (Leal-Taixé et al. 2017). Other examples of non-rigid
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deformations preserve properties like angles or volume only. What makes non-rigidity complex
is that a low-dimensional description of the deformation is usually not possible. Instead every
point on the surface can potentially deform in a different direction. This increases the size
of the solution space exponentially and makes finding the optimal solution hard, e.g. the
aforementioned isometric case was shown to be NP-hard. While isometric is a reasonable
assumption for deformable objects, real-world deformation are never perfect. Deformations
will stretch certain areas, scans induce noise by self-touching, or the matching is between the
same type not the same instance. Nevertheless, the majority of solid, real-world objects still
preserves neighborhood information on the surface when moving. Even a balloon that is filled
with air and completely changes shapes does not change the neighborhood of particles on the
surface. This thesis will focus on this kind of deformations, how to formalize them, and how
to develop efficient algorithms in spite of the high complexity of the problem.

1.1 Thesis Outline

The remainder of this thesis is organized as follows. The next sections will give an overview
over different categories and sub-fields in shape analysis and shape correspondence, along with
the most influential work in these areas. Additionally, the methodology chapters have their
own related work sections with a survey of publications directly related to the chapter. Chap-
ter 2 lines out the major contributions in this thesis and in which original papers these were
published. Additionally, Section 2.2.2 contains summaries of my publications not used in this
thesis. Part II introduces mathematical background and popular methods that are referenced
throughout the thesis and can be skipped by readers familiar with the topic. The background
includes basic differential geometry in Chapter 3, spectral shape analysis in Chapter 4 and
product spaces in Chapter 5. An introduction into 3D correspondences is given in Chapter 6.
It includes formal definitions and corresponding discretization. The main part of this thesis is
Part III, where each chapter goes into detail about the methodology of one shape correspon-
dence algorithm. In Chapter 7 we look at non-rigid correspondence between 2D and 3D shapes.
Solving the problem globally between two 3D shapes is provably harder, and in Chapter 8 we
propose an efficient multi-scale method aligning kernels for this case. Chapter 9 considers the
same problem and describes properties of the optimal solution on the product manifold as well
as how it can be represented in the best way. Last, we look at continuity from a different angle
in Chapter 10. There, we propose to solve for a smooth, volume-preserving deformation field
jointly with the correspondence. The thesis finishes with a discussion of the previous parts in
Chapter 11.

1.2 Shape Analysis

Shape analysis, as used in this thesis, refers to the at least partially automatic analysis of ge-
ometric objects. This includes any processing of geometric objects, or theoretical proofs, but
also the computation of properties, and discrete representation within a computer. These ques-
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tions have been tackled for a long time (Loncaric 1998), but recent advances in computing
power and 3D scanning hardware have brought the field to a new level. While some properties
and relationships are purely mathematical and timeless, it has become more important how
to efficiently calculate them and under which assumptions of the data. Different shape repre-
sentations can have a huge effect on computation time, and what the best representation is
may vary between applications. The topology of an object is important for many mathemat-
ical theories, and many algorithms fail when comparing two objects with different topology
(Lee and Kazhdan 2019). Semantics and human perception, on the other hand, are rarely
influenced by topology but instead depend on details that are hard to put in mathematical
formulas.

1.2.1 Representation

The first decision to make in shape analysis is how to define and represent a shape. Because
this thesis includes mostly 3D and 2D shapes, these will be our focus here. They have the
additional advantage of being easily visualized. Most real-world objects are solid, and a
complete representation would model the interior of them. However, acquisition of the interior
of an object is even more complicated than of the surface and requires special hardware, like
a CT-scanner. We call a representation that models the interior volumetric. It is possible
to infer certain information about the interior and physical properties of a volumetric shape
by observing its interactions with the physical world (Weiss et al. 2020), but the process is
very sophisticated. Moreover, the interior is not of interest in many application. 3D artists
usually just model the surface only, because this is the visible part, both in most acquisition
settings and during rendering. Therefore, in this thesis we focus our attention on shapes that
are represented as their surfaces. The usual assumption is that the surface is a Riemannian
manifold (in our case a 2D manifold embedded in 3D), more details on this can be found in
Chapter 3.

1.2.2 Intrinsic

Intrinsic in shape analysis refers to methods and properties that can be derived without relying
on any embedding information. This means they only rely on how the surface behaves relatively
to itself but not within the embedding space. On Riemannian manifolds this is captured
through the metric tensor attached at each point. The metric tensor defines an inner product
between vectors on the surface and, as an example, applying the same translation to each point
on the surface of an manifold does not change the inner product of vectors. This can also work
for more complicated, non-uniform deformations, and those are called isometries. Additionally,
it holds approximately for many deformable, real-world shapes. For example, humans can come
in many different poses, but these do not have a significant influence on distances measured
on the surface. Only relying on extrinsic properties, e.g. Euclidean distances, is problematic
when severe pose changes happen. Imagine the distance between a fingertip and tip of the
nose when standing normally versus when scratching the nose. Therefore, intrinsic properties,
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which are comparable when the inputs are two shapes of the same class but in different poses,
are advantageous for optimization, because they can be used without regularization or prior
knowledge. On the other hand, there exist intrinsic symmetries, e.g. the left and right side
of most objects, which cannot be captured by intrinsic features. Therefore, purely intrinsic
algorithms often mix up the left and right side.

Spectral A huge subfield of intrinsic methods is concerned with spectral shape analysis.
Spectral refers to the eigenfunction and -values (also called spectrum, hence the name) of the
Laplace-Beltrami operator (LBO) (Chavel 1984), a general version of the Laplace operator
on manifolds. Since the LBO is purely intrinsic, its eigendecomposition is also completely
invariant under isometries. This makes it predestined to be used for those classes of deformable
objects, like humans. An additional advantage is the frequency order of the eigenfunctions
which allow bandpass filters and basis construction similar to Fourier analysis (Canzani 2013).
Chapter 4 gives a detailed introduction into this topic, including how to discretize the LBO
and a list of its properties.

1.2.3 Extrinsic

On the other hand, extrinsic is the complement of intrinsic and includes everything that cannot
be derived thorough intrinsic information only. This means coordinates of surface points and
properties that are derived from that, like normals, most curvatures, or the Euclidean distance
between surface points. Some of these are invariant under special deformations, e.g. curvature
is invariant under translation and rotation, but in general this is not the case. Specifically,
isometries and near-isometries can change extrinsic properties drastically on different parts of
the shapes. However, extrinsic properties are often capable of capturing fine geometric details.
This class includes popular descriptors like SHOT (Tombari et al. 2010), the as-rigid-as-
possible regularization (Sorkine and Alexa 2007) and mean curvature.

1.2.4 Distances

Distances between points are an important measurement used to calculate properties, similar-
ity, or to be preserved during optimization. The Euclidean distance is the most known and
popular distance between points but has only limited use in the non-rigid deformation case we
focus on in this thesis, because large distortions can occur with pose changes. For isometries
and non-rigid cases the geodesic on the surface of shapes is often used. It describes the short-
est path between two points restricted to the surface of the manifold instead of the Euclidean
embedding space. The geodesic distance is very robust against pose changes but computation-
ally expensive (Surazhsky et al. 2005). As a result, several approximations of the geodesic
distance exist with different trade-offs between accuracy and speed. Fast Marching (Kimmel
and Sethian 1998) brings a considerable speed-up with small numerical errors as long as
the mesh fulfills certain properties. Less accuracy but a huge speed-up, including reusable
pre-factorization, can be achieved with Geodesics in Heat (Crane et al. 2017) which uses the
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relationship between the heat equation and geodesics. Geodesics in Heat can be applied to all
representations that allow a few operators like the divergence to be computed, and differen-
tiable which makes it interesting, especially for deep learning (Cosmo et al. 2020). However,
they are not guaranteed to be symmetric or to fulfill the triangle inequality, properties that are
crucial for some applications. Instead of distances between points, the Wasserstein or earth
movers distance calculates distances between probability distributions on the metric spaces. If
the space is the surface of a shape (Solomon et al. 2014b), this can be useful for soft maps,
or, if the space is the embedding space, used to interpolate between shapes (Solomon et al.
2015).

1.3 Correspondence

Shape correspondence describes the problem of deciding which parts or points of two shapes
belong to each other according to some meaningful criterion. The definition of meaningful is
highly dependent on the application and could be purely semantic, depend on mathematical
relations, or learned properties. We will look at the concrete definitions and properties used in
this thesis both in terms of mathematics and intuition in Chapter 6. We mostly concern our-
selves with shapes that are related, at least partially, through diffeomorphism, but completely
different definitions, e.g. based on functionality, are possible (Kaick et al. 2013),

1.3.1 Images

The correspondence problem also appears in many applications in image processing. In order
to reconstruct a shape from a collection of images without known camera positions, it is
necessary to find points which are visible in multiple images to determine how the images
overlap (Hartley and Zisserman 2004). Since images are bound to include a lot of clutter,
sparse descriptors are more popular than dense ones, e.g. most famously SIFT (Lowe 1999)
and SURF (Bay et al. 2006). However, other applications like optical flow aim to calculate
a dense displacement field, which is a kind a representation for correspondence, instead of a
sparse solution (Dosovitskiy et al. 2015; Lucas and Kanade 1981).

1.3.2 2D Shapes

The information on images comes purely from the color function on an equidistant grid. This
makes many operations easy but also adds pixels which do not actually depict a part of the
object and clutter to the result. Segmenting out the object of interest can help reduce the
complexity for point correspondence in images (Schoenemann and Cremers 2007) and
allows practical applications, like template matching, to work without much regard for color
or lighting inconsistencies as well as a certain robustness against occlusion (Y. Su et al.
2015). The closed silhouettes of (connected) objects are guaranteed to be 1D-manifolds and
as such any geometry processing tool can be applied to them (F. R. Schmidt et al. 2007).
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Additionally, silhouettes can be used as guidance for (real-time) posing, or for animating 3D
models based on a video stream (Dibra et al. 2017; Natsume et al. 2019).

1.3.3 3D Shapes

An additional complexity in 3D is added by the fact that the neighborhood size can vary a
lot. Additionally to not every point necessarily having the same amount of neighbors, the
neighborhood size can differ due to different discretization in between instances. This makes
the definition of consistency a lot harder when looking only at point-wise correspondence.
Nevertheless, putting only vertices in correspondence – as opposed to allowing sub-vertex
matchings – reduces the size of the solution space. Furthermore, assuming a bijection between
shapes gives many formulation beneficial properties and makes the problem manageable.

Rigid Deformations that apply the same translation and rotation onto the entire shape
are called rigid. They have six degrees of freedom in 3D. Therefore, the optimization for the
optimal rigid motion between twice the same rigid object has to find six parameters. Problems
may arise from scanning noise or partiality but the dimension of the solution is always fixed.
The most famous algorithm for rigid alignment is Iterative Closest Point (ICP) (Besl and
McKay 1992) which alternates between finding correspondences via nearest neighbor, and
solving for the optimal rigid motion to align these correspondences via the Procrustes problem.
However, ICP is prone to fail without a good initialization. More robust methods have been
proposed by using 3D descriptor information (Guo et al. 2016) and global optimization
(Zhou et al. 2016). Due to the low dimensionality, robust algorithms for rigid registration
have existed for years while other classes still pose open problems (Tam et al. 2013).

Non-Rigid Non-rigid deformations include anything that is not rigid. However, there are
more well-defined sub-classes of non-rigidity which preserve certain properties or add specific
classes of deformation to rotation and translation, e.g. shearing or conformal (which preserves
angles on the surface) (Yoshiyasu et al. 2014). This thesis is mostly concerned with the case
of isometries and near-isometric deformations. While rigid motion preserves the Euclidean
distance between all pairs of points, isometric deformations preserve the geodesic distance.
The next sections give an overview of different directions in near-isometric correspondence.

1.3.3.1 3D Descriptors

Similar to image correspondence, the majority of 3D correspondence methods rely on descrip-
tors to provide a similarity measure between two points in order to guide or initialize the
optimization. The two dominant types of descriptors are pointwise and pairwise.

Pointwise Descriptors In contrast to image descriptors, 3D correspondence methods rely
mostly on dense, pointwise descriptors. One reason is that occlusion and partiality are usually
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less prominent in 3D data and local neighborhood information is a lot more significant due to
this.

One line of descriptors commonly used in non-rigid correspondence is based on the spectral
properties of shapes. The most basic variant is the Global Point Signature (GPS) introduced
by Rustamov (2007) which consists of a series of the scaled eigenfunction values of the
Laplace-Beltrami operator at each point. The heat kernel signature (HKS) (J. Sun et al.
2009) and wave kernel signature (WKS) (Aubry et al. 2011) are based on physical phenomena
(heat diffusion and quantum particle movement respectively) and can be shown to have closed
form solutions using the spectral eigenfunctions and values. However, as they are based on
the spectral decomposition, which is invariant under isometries including self-symmetries, all
of these descriptors are unable to distinguish between the left and right part of a symmetric
shape.

Descriptors that are not purely intrinsic are able to capture differences between intrinsic sym-
metries but may also be inconsistent for different poses, especially when a lot of bending
happens. These descriptors are able to capture very fine geometric information, but, because
the finest scales are the most sensitive to noise, robust optimization is needed when processing
them. Some examples are Spin Images (Johnson and Hebert 1999) which store the orienta-
tion information of a neighborhood points in an image like representation, Fast Point Feature
Histogram (Rusu et al. 2009) which collects the geometric properties of each points neighbor-
hood in histogram, and the SHOT descriptor (Tombari et al. 2010) which builds a consistent
reference system at each point and collects a histogram of normals in the neighborhood of each
point.

The previously mentioned works are all hand-crafted with some geometric interpretation.
While having an interpretation can be useful in some scenarios, it is equally important that the
descriptor is also discriminative for points with only subtle differences in geometry. Litman
and A. M. Bronstein (2014) aimed at learning the best combination of spectral descriptors
for certain classes of shapes using Mahalanobis metric learning. Similar, Windheuser et al.
(2014) introduce Mercer kernels to find the provable optimal combination of input descrip-
tors using large margin nearest neighbor optimization. Learning optimal descriptors has been
refined by Boscaini et al. (2015) and Boscaini et al. (2016a). Not restricted to isome-
tries is Corman et al. (2014) which learns optimal descriptors for correspondence between
different classes of shapes if some ground-truth maps between these are given for training.
This is an example of a line of work which does not only look at descriptor properties during
optimization but includes the pipeline they will actually be used in in the energy functional.
Functional Maps are the most popular choice in this direction because they are differentiable
and low dimensional (Litany et al. 2017a). Instead of relying on optimizing input features,
Donati et al. (2020) learns descriptors to be used for Functional Maps directly from raw

geometry.
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Pairwise Descriptors Instead of just characterizing one point, pairwise descriptors describe
the relationship between pairs of points. This is more powerful than pointwise information
which is normally not unique, e.g. the pointwise descriptor of two fingertips is very similar
in any case, and therefore often leads to better results. On the other hand, the amount of
information increases from n pointwise to n2 pairwise values which increases the complexity of
any optimization. See Section 1.3.3.2 for an introduction to Quadratic Assignment Problems
that operate on pairwise descriptors.

Distance functions are the most common type of pairwise descriptors (also see Section 1.2.4).
The Euclidean distance between two points is quick and easy to compute but non-rigid corre-
spondence often relies on the geodesic distance instead (Surazhsky et al. 2005). Geodesics
are preserved under isometric deformations and are more reliable on non-isometric, deformable
shapes, because the Euclidean distance can change drastically with pose changes, but their
computation is computationally heavy. Another type of pairwise descriptors are kernel func-
tions, for example the Gaussian kernel or the heat kernel. An advantage of the heat kernel
is that it can be approximated by a finite sum of eigenfunctions and values of the Laplace-
Beltrami operator. This makes them efficient to compute. There is also a direct relation
between heat kernels and geodesic distances which was explored in Crane et al. (2017).

Global Descriptors Global descriptors are meant to describe the geometry of a shape in
its entirety and not distinguish parts within. As such they are not suited for correspondence
but more for retrieval of similar shapes. ShapeDNA describes a shape through its sequence
of eigenvalues (Reuter et al. 2006). While in theory this is not a unique signature for the
geometry of a shape (Canzani 2013), it was shown in practice that many shapes can be
reconstructed faithfully from its ShapeDNA (Cosmo et al. 2019), and the area of partiality
determined Rampini et al. (2019). The condition number of shapes captures its difficulty to
be robustly matched with other shapes based on symmetry information (Ovsjanikov et al.
2011).

1.3.3.2 Quadratic Assignment Problems

The Quadratic Assignment Problem (QAP) arises when looking for a permutation that pre-
serves pairwise descriptors in the optimal way. Assuming both shapes are samples with the
same number of vertices and given a pairwise descriptor matrix D ∈ Rn×n, the QAP can be
written the following way:

min
P∈Pn

∥DX − P⊤DYP∥22 (1.1)

QAPs have been studied extensively in literature, both in general and for shape correspon-
dence (Berg et al. 2005). There exist many variants, for example the Quadratic Assignment
Matching (Kezurer et al. 2015), but all of them have been shown to be NP-hard (Burghard
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and Klein 2017). Furthermore, even finding an ϵ-approximation of any QAP can only be
done in polynomial time if P=NP (Sahni and Gonzalez 1976).

QAPs are especially popular for isometric shape correspondence because setting D to be the
geodesic distance matrix has a zero energy solution exactly when the inputs are isometric.
Since 3D shapes are normally discretized with more vertices than feasible for solving a QAP
exactly, there exist a variety of relaxations and approximation algorithms. The most straight-
forward relaxation is replacing the permutation with a doubly-stochastic matrix (DS) for
which holds P1 = P⊤1 = 1 (Gold and Rangarajan 1996). The set of doubly-stochastic
matrices is the convex hull of permutation matrices, and variants that are provably tight exist
as shown by Dym et al. (2017) and Bernard et al. (2018). Another popular relaxation
called spectral relaxation was proposed in Leordeanu and Hebert (2005) and reduces the
solution to an eigenvector problem but is prone to produce noisy solutions. Rodolà et al.
(2013) added a L1-norm constraint to this approach which favors sparse solutions, leading to
few but robust matches.

Instead of relaxing the permutation constraint, another line of work aims at approximating
the solution to the QAP in different ways. Vestner et al. (2017) proposed to solve the
QAP including Gaussian kernels with a series of Linear Assignment Problems (LAPs) leading
to very smooth results. However, even if LAPs are not NP-hard, their complexity is still
close to cubic for general matrices and, therefore, not feasible for high resolution meshes. In
Vestner* et al. (2017) we extended this work to a multi-scale approach that can handle

high resolutions and inconsistent meshes, and, in addition, has improved theoretic properties.
Sahillioglu (2018) and Edelstein et al. (2020) apply variants of genetic algorithms for

QAPs which are specifically designed to tackle shape correspondence problems.

1.3.3.3 Functional Maps

The functional map framework was introduced in Ovsjanikov et al. (2012) and formulated
the correspondence problem as low-dimensional linear system which maps functions on func-
tions instead of points to points. Given two sets of compatible pointwise descriptor functions
F,G and two function bases Φ,Ψ on X ,Y respectively, the optimal functional map C can be
found by minimizing:

C∗ = argmin
C

∥CΦ−1F −Ψ−1G∥2F . (1.2)

Assuming the sets Φ,Ψ each contain k basis functions, C is a k × k matrix and Φ−1F,Ψ−1G

are each Rk×l where l is the number of descriptor functions. If Φ,Ψ are pointwise indica-
tor functions, which can be represented by a identity matrix (ignoring area weights for a
moment), their inverse is also the identity and this formulation is equivalent to a Linear As-
signment Problem because C becomes a permutation matrix. Instead of indicator functions
Ovsjanikov et al. (2012) proposed to use the first k Laplace-Beltrami (LB) eigenfunctions
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for Φ,Ψ. In principle functional maps simply do a basis change from an indicator basis to the
LB eigenfunctions in the linear assignment:

CA−B = CΦ−1F −Ψ−1G = ΨCΦ−1
| {z }

=P

F −G (1.3)

If Φ,Ψ are suitable the permutation P can be represented as C without any information
loss. If k << n there is likely to be some loss, but this is the trade-off for having a lot
less dimensional optimization problem. Part of the problem is then shifted to extracting the
correct pointwise correspondence from C (Rodolà et al. 2015), but there are also applications
were a functional map is as useful as a pointwise map (Rustamov et al. 2013). Additionally,
the LBO eigenfunctions are invariant (up to sign) under isometries. In theory results in only
needing to find the sign flips in the basis functions, i.e. C is a diagonal matrix with 1 and −1

as entries. Pure isometries basically never exist, even on artificial data, but the result will still
be approximately diagonal which is used for penalization during optimization (Ovsjanikov
et al. 2012; Rodolà et al. 2016).

The low dimension and linearity of functional maps has made it a popular tool for shape
correspondence, and the framework been extended with various regularizations and adapted
for different applications and settings. Rodolà et al. (2016) used the special behavior of
the LBO eigenfunctions on partial shapes, namely that C has a slanted instead of a straight
diagonal, to improve results on partial isometries. This gave rise to applications like non-rigid
puzzles where several non-rigidly deformed parts of an object are assembled to a whole (Litany
et al. 2016). In Q.-X. Huang et al. (2014) functional maps are used to consistently match
large collections of shapes; again, a setting that greatly benefits from dimensionality reduction.
Functional maps have even been applied to image segmentation problems in F. Wang et
al. (2013) although this did not take over. Due to the low dimension and differentiability,
functional maps are also one of the key building blocks for non-rigid correspondences in deep
learning (see Section 1.3.3.5).

1.3.3.4 Physical Deformation Models

Physical models are often used in shape interpolation (Heeren et al. 2012) or simulation
(Bender et al. 2015) to determine how shapes behave realistically and what are low energy
movements. If two shapes in different poses are given, it is reasonable to assume that the
deformation that leads to the correspondences with the least energy needed to align both is a
good correspondence. This was explored in Windheuser et al. (2011a) and Windheuser
et al. (2011b) where the authors discretize the notion of diffeomorphism for triangular meshes,
and use bending and stretching energy to find the lowest energy diffeomorphism that results in
the final correspondence. A similar energy was used by Ezuz et al. (2019) with a sub-vertex
placement of the correspondence instead of edge collapse. Also using a physical deformation
energy, Bernard et al. (2020) formulated the correspondence problem as a convex integer
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linear program which results in a sparse set of matches. Instead of bending and stretching
energy, Eisenberger et al. (2019) defined a basis for all volume-preserving deformation
fields and solved for the optimal correspondence within this constraint.

1.3.3.5 Learning Methods

Learning has found its way into 3D non-rigid correspondences lately. As discussed in Sec-
tion 1.3.3.1 a large collection of works focus on learning optimal descriptors. One of the
first papers to apply learning as the matching pipeline itself was Rodolà et al. (2014a)
which utilizes random forests to learn how to form correspondences between different classes
of shapes. In Groueix et al. (2018) the correspondence is learned through learning the
optimal parameters of a template. Functional maps has been incorporated into many learning
pipeline because it is low-dimensional and fully differentiable. This is done by providing exam-
ple maps in Litany et al. (2017a) but has been extended to an unsupervised approach using
geodesic distances in Halimi et al. (2019), using properties of the functional map matrices in
Roufosse et al. (2019) and cycle-consistency (Ginzburg and Raviv 2019). A completely

different approach is taken by Zhu et al. (2017) where a shape space is learned to judge the
plausibility of a correspondence, and then sub-parts of the shapes are hierarchically matched
through deformation energies.
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CHAPTER 2
Contribution

This chapter will line out the contributions made in this thesis, my research contributions in
publication during my PhD candidacy and how these topics relate to each other.

2.1 Major Contributions

The main topic of this thesis focuses on calculating continuous correspondences between non-
rigid shapes of varying dimensionality. The standard assumption for such cases is one of a
diffeomorphism between the given inputs. Unfortunately, there are few properties or descrip-
tors that are preserved under general diffeomorphisms, and even very restrained subclasses
like isometries still pose a NP-hard problem. The major contributions in thesis are several
efficient algorithms tackling variations of this continuous non-rigid correspondence problem
and are laid out in Chapters 7-10. Except in Chapter 10 the optimal solution is explicitly or
implicitly formulated through minimal surface submanifolds in product space, an interpreta-
tion that is known to represent a diffeomorphism between the inputs. Chapter 10 looks at the
same problem from the viewpoint of deformation fields and how in many cases a continuous
correspondences comes from a continuous deformation.

Chapter 7 A very challenging case considers input shapes that are of different dimension-
ality, i.e. the source shape is assumed to be a slice of the target shape. Theoretically this
can be modeled through a local diffeomorphism but in practice more problems arise. First,
a non-local diffeomorphism implies a bijective relation which is often implicitly or explicitly
modeled but does not transfer to this case. Second, a set of comparable descriptors on both
shapes is the backbone of basically any correspondence method, either to guide the optimiza-
tion or at least to obtain a good initialization. We solve the setting with a given 2D and 3D
shape, the most common dimensions for geometric data, and provide a provably continuous
solution utilizing a shortest path algorithm on the product graph. The global optimum can
found in polynomial time, but we propose an additional approximation scheme that improves
the runtime in practice even more. Additionally, we show that spectral descriptors, which are
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2.1. Major Contributions

popular for non-rigid shape analysis due to their invariant under isometric deformations, can
also be used for comparison of 2D and 3D shapes. Because the 2D shape is a slice of the 3D
shape, we can treat it as a nearly isometric part and show that it can be used to match 2D
and 3D shapes in which the 2D shape is not a projection of the same pose into 2D. This is the
first method that can tackle this setting.

Chapter 8 introduces an efficient non-rigid correspondence method for 3D shapes. The
method combines a theoretically sound relaxation of the underlying quadratic assignment
problem (QAP) with an efficient multi-scale approach. We show that that our relaxation
preserves the global optimum of the original problem using the positive definite property of
heat kernels and can be interpreted as an approximation of a minimal surface correspondence
on the product manifold which represents a diffeomorphism. The QAP in general poses a
NP-hard problem and its optimization usually does not scale to high resolutions. However,
our proposed multi-scale approach separates the problem into smaller ones while propagating
the same continuity information through all scales. Each scale solves a smaller QAP through
difference of convex functions (DC) programming in a series of linear assignment problems.
The algorithm produces state-of-the-art results on several isometric datasets but can also
tackle non-isometric pairs and topological changes, cases that most state-of-the-art isometric
methods fail in.

Chapter 9 considers the same setting between two 3D shapes but the focus lies on analyzing
the relationship between maps and their representation on the product manifold further. We
show that the coefficients used in the functional map framework are not optimal in terms of
low-dimensional representation by looking at the corresponding product eigenfunctions and
their coefficients. The separable relationship of product properties from their source manifolds
can be used to transfer many traditional methods into an equivalent representation on the
product manifold and look at their properties there. This observation leads to our derivation
of non-separable, localized harmonics in the product space that are better suited to represent
accurate map information with as few parameters as possible. We show the applicability of
the new basis in a framework for refining correspondences directly on the product manifold.

Chapter 10 approaches the same problem from a different angle. Instead of preserving
properties in the correspondence or explicitly modeling continuity in correspondence space,
we relate the correspondence to a volume-preserving deformation aligning both shapes. This
is based on the observation that pose changes in the real world do not happen through ar-
bitrary deformation but through a sequence of intermediate shapes that all similar to the
source and target. To that end, we jointly solve for the correspondence and a smooth,
volume-preserving deformation field aligning these correspondences. This can be done with
an expectation-maximization optimization alternating between the correspondence and the
deformation parameters which come from a low-dimensional basis representing all volume-
preservation deformation fields. We show that this basis has a closed-form solution, which
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2. Contribution

means our deformations do not have any discretization artifacts. Volume-preservation is re-
lated to but not the same as isometric, however in the real world most objects approximately
preserve their volume when moving. The resulting algorithm is efficient even for very high
resolution shapes, because the optimization does not need to be done on all points, and the
closed-form deformation field can still produce a correspondence and an interpolation sequence
on the full resolution with only linear computational overhead.

2.2 List of Publications

This is a list of all my publications that were published during my PhD. Section 2.2.1 lists all
publications that were used in this thesis and Section 2.2.2 contains all additional publications
including short summaries.

2.2.1 Publications in this Thesis

The following publications are the basis for this thesis.

• Z. Lähner, E. Rodolà, F. R. Schmidt, M. M. Bronstein, and D. Cremers (May
2016b). Efficient Globally Optimal 2D-to-3D Deformable Shape Matching. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

• M. Vestner*, Z. Lähner*, A. Boyarski*, O. Litany, R. Slossberg, T. Remez, E.
Rodolà, A. M. Bronstein, M. M. Bronstein, R. Kimmel, and D. Cremers (Oct.
2017). Efficient Deformable Shape Correspondence via Kernel Matching. In: Interna-
tional Conference on 3D Vision (3DV).
Authors with * contributed equally.

• E. Rodolà, Z. Lähner, A. M. Bronstein, M. M. Bronstein, and J. Solomon
(2019). Functional Maps Representation on Product Manifolds. In: Computer Graphics
Forum (CGF) 38.1.

• M. Eisenberger, Z. Lähner, and D. Cremers (2019). Divergence-Free Shape Corre-
spondence by Deformation. In: Computer Graphics Forum (CGF) 38.5.

Chapter 7 is based on Lähner et al. (2016b). There we solve for a provable continuous
correspondence between a 1D and a 2D manifold using spectral descriptors that are both
suited for non-rigid deformations as well as the different dimensions between the inputs. In
Vestner* et al. (2017), the basis for Chapter 8, we calculate correspondences between two 2D
manifolds and incentivize smoothness in the correspondences through heat kernels which are
efficient to compute and have beneficial theoretical properties when solving a QAP. Chapter 9
explores the relation between representing maps and the product manifold of the inputs based
on Rodolà et al. (2019). Lastly, we look at continuity from a slightly different perspective in
Chapter 10. This is based on Eisenberger et al. (2019) where we calculate divergence-free
deformation fields between shapes in order to compute a correspondence.
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2.2. List of Publications

2.2.2 Other Publications

I published the following additional publications throughout the duration of my PhD, but they
are not part of this thesis due to having a different focus.

• Z. Lähner, E. Rodolà, M. M. Bronstein, D. Cremers, O. Burghard, L. Cosmo,
A. Dieckmann, R. Klein, and Y. Sahillioglu (May 2016a). SHREC16: Matching of
Deformable Shapes with Topological Noise. In: Eurographics Workshop on 3D Object
Retrieval (3DOR).

• Z. Lähner, D. Cremers, and T. Tung (Sept. 2018). DeepWrinkles: Accurate and
Realistic Clothing Modeling. In: European Conference on Computer Vision (ECCV).

• M. Eisenberger, Z. Lähner, and D. Cremers (2020). Smooth Shells: Multi-Scale
Shape Registration with Functional Maps. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

In Lähner et al. (2016a), we published a dataset on non-rigid correspondence with topological
noise and organized a SHREC contest evaluating the performance of submitted methods under
these perturbations. This noise is modeled after scanning noise in real-world object that occurs
when two parts of it that are actually separated are touching. Since the scanning hardware can
only perceive the visible surface, it is nearly impossible to deduct that touching parts should
be separated in the 3D model. The dataset is based on artificial models and therefore we have
very accurate ground-truth correspondences, but the topological changes are more severe than
in other datasets of this kind. The results showed a huge gap to the performance of state-of-
the-art methods on clean non-rigid datasets. To this day no method was shown to achieve the
same quality of results on this dataset as is state-of-the-art on non-topologically perturbed,
artificial data. The effects of topological perturbations are discussed in Section 6.2.2, but this
paper was not included in the thesis because it focuses on the dataset and contest only.

Modeling and learning very fine wrinkles on clothing is the topic of Lähner et al. (2018).
Previous methods focused on learning wrinkles as part of the 3D mesh. This can be done
accurately and cleanly by physical simulation, but representing really fine, realistic wrinkles
requires a very high resolution mesh which in turn leads to high computation costs and de-
manding large amounts of training data. Instead, our approach is to separate the wrinkles in
low and high frequency. The lower frequency wrinkles are represented as vertex offsets of the
3D triangular mesh, and learned as a statistical model. This is a standard representation in
clothing animation and similar to Pons-Moll et al. (2017). In contrast to other methods, we
represent the fine, high frequency wrinkles as normal maps. Normal maps are images that are
mapped onto the surface via a UV map and each pixel gives a normal direction that is used for
rendering instead of the mesh normal. The advantages of normal maps are that images can be
processed efficiently at a much higher resolution than meshes, and applying neural networks
to images is also more advanced than on 3D data. Using this representation we were able to
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train a LSTM (Hochreiter and Schmidhuber 1997) to predict the coefficients for the low
frequency wrinkles and a cGAN (Isola et al. 2017) generating a normal map with fitting high
frequency details. Because we moved the high frequency details to an image, we were able to
produce much more detailed results than state-of-the-art at nearly real-time speed.

In Eisenberger et al. (2020) we explore the idea of aligning shapes by starting with very
coarse geometric cues, and then adding and aligning more fine-scale details. To this end, we
introduce a concept called Smooth Shells which can produce a sequence of smoothed versions
of an input shape. The two main properties of Smooth Shells are: 1) the amount of detail
increases constantly within the sequence, and 2) the gap between two consecutive shapes in the
sequence is minimal. This is incredibly useful for iterative methods which use the result of the
previous iteration as initialization for the next. Additionally, we represent the alignment of two
input shapes as a deformation function projected onto the Laplace-Beltrami eigenfunctions.
This allows us to efficiently sample from the space of deformations, and keep the optimization
fast when high frequency information in the deformation is not needed. Based on this we
propose a framework that is able to match isometric and non-isometric shapes as long as their
rough geometric shapes are similar.





PART II
Theoretical Background
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One geometry cannot be more true than
another; it can only be more convenient.
Geometry is not true, it is
advantageous.

– Robert M. Pirsig



CHAPTER 3
Differential Geometry

Although the world is filled with volumetric objects, normally only the surface is perceptible
through vision. Therefore, a reasonable and compact representation of objects is based on
their surface with the interior being implied if the surface is closed. Another advantage is
that if objects are only seen from one view, it is easier to represent partial surfaces instead of
having to guess volumetric properties. Two-dimensional manifolds are often used to describe
physical objects, because they exactly model this surface. This chapter gives an introduction
into (differentiable) manifolds and basic differential geometry, which is the standard tool for
handling these manifolds. In this work we restrict ourselves to Riemannian manifolds, differ-
entiable and with a metric attached. Additionally, the theory is only discussed for manifolds
without boundaries, except for very special cases in later chapters, to keep the math simple.
do Carmo (1976) and do Carmo (1992) serve as the basis for this chapter and further

details can be found in the books.

Figure 3.1: Three different world maps. The white grids indicate how the elements are dis-
torted from one map to the other, however, none of them completely preserves the real distance
between all places on earth. Images by Strebe (2011).
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3.1. Manifolds

(i)

a b

c

l/2 l/2

d

(ii)

a b

c

d

l/2 l/2

l

a b
c and d

Figure 3.2: Exampe of the Cartographer’s Dilemma. (i) The points a, b lie on opposite sides
of the equator and c on the northpole. The shortest path between a, b has length l, but there
are multiple (in fact infinite many) shortest paths between them. One of those goes through
the north pole c which lies exactly in the middle, and one goes over the equator with d in the
middle. Therefore, the distance from c and d to both a and b is l/2 and the distance between c
and d is greater zero. (ii) Embedding a, b, c, d into 2D (a map) is impossible while maintaining
all distances measured on the sphere.

3.1 Manifolds

A manifold of dimension d is a topological space that is locally identical to the Euclidean
space Rd. Locally identical means that the close neighborhood of each point on the surface
is homeomorphic to an open subset of Rd, but the similarity usually fades with increased
distance. The implications become clear from looking at different world maps: The surface of
our planet is 2-dimensional and parts of it can be well represented on a piece of paper. Small
excerpts of the globe can be projected onto a flat map with limited distance distortions, but
the entire world can only be represented by introducing a cut somewhere (often at the poles).
Additionally, for most pairs of places the distance measured with a ruler on a flat map will
not be consistent with the distance measured on a globe. See Figure 3.1.

This leads to what is known as the Cartographer’s Dilemma. It is impossible to preserve the
surface distance between all points on the globe when it is converted into a flat map. This is
most obvious when looking at the following four points on a stylized, spherical globe: two of
them a, b on opposite sides of the equator, d on the equator in the middle of a and b, and the
last point c on the north pole. The shortest path between a and b can go along the equator
as well as through the north pole. Both have the same length, let it be l. See Figure 3.2 for
a visualization. Since c and d are exactly in the middle of a and b along a shortest path with
length l, their distance to both a and b is l

2 . Furthermore, c does not lie on the equator, but d
does, so their distance is at least greater than zero. When trying to embed a, b, c, d into a plane
while maintaining their original distances to each other, the uniqueness of the shortest path
in Euclidean space leads to the fact that both c and d have to lie in the middle of the straight
line connecting a and b. This means they have to have the same coordinates and, therefore,
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3. Differential Geometry

distance zero. This violates the assumption that they are not the same point and have positive
distance. On standard world maps (Figure 3.1 left) the highest distortion is close to the north
and south poles – probably the places that are the least relevant to most people (Milnor 1969).
This visualizes that, while Euclidean geometry is suitable to represent manifolds locally, their
behavior is not entirely the same and motivates why differential geometry is important.

One solution for calculating accurate distances from maps is to use multiple maps instead of
just one and keeping track of which distortions are to expected in each map. If it is known how
and where a map is distored, the distortion can be inverted in order to retrieve the original
distance. Traditional globes are made by drawing maps on long, thin slices of paper which
are glued on the globe. In order to get all pieces to fit together perfectly onto the globe, the
slight curving of the slices has to be taken into account while drawing. The same idea is
applied in differential geometry. Properties are calculated in d-dimensional Euclidean space,
but a mapping to a curved d-dimensional surface is known such that – when done correctly –
a calculation taking into account the distortion of the mapping will return the result as if it
were done on the curved surface directly.

3.1.1 Coordinate Maps

In accordance to the intuition given in the last section, d-dimensional manifolds are defined
by mappings from Rd to parts of the surface of the manifold. These are called coordinate
maps and are the building blocks of manifolds. Each describes a part of the surface of the
manifold. A coordinate map can be imagined as the process of applying one long paper slice
on the spherical globe.

Definition 1. A coordinate map is a function ξ : U ⊂ Rm → Rn with m < n which is a
diffeomorphism. U is a connected and open subset of Rm.

See Figure 3.3 for an illustration of the terms. The surface S = ξ(U) is often called a regular
surface if ξ is a diffeomorphism. Depth maps are a kind of coordinate map, setting U =

(1 . . . w) × (1 . . . h) ⊂ N2 as the image domain and ξ(U) = (x, y, z) where z is the depth. Of
course, depth maps are discretized and may not be smooth, but the principle is the same.

Example 1. Let the unit sphere S2 =
{
(x, y, z) ∈ R3|x2 + y2 + z2 = 1

}
be an approximation

of the globe. A coordinate map of the nothern hemisphere can be given by ξ1 : U ⊂ R2 →
R3, ξ1(u, v) =

(
u, v,

√
1− u2 + v2)

)
with U =

{
u, v ∈ R2|u2 + v2 < 1

}
.

3.1.2 Differentiable Manifolds

One coordinate map may not be sufficient to describe the entire surface, therefore a manifold
M is a collection of coordinate maps that cover the entire surface of M and are consistent
with each other. We define differentiable manifolds according to do Carmo (1992) (except
condition 3 which is redundant):
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U
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Figure 3.3: (Left) Visualization of a coordinate map. The domain U is a subset of R2 and
ξ : R2 → R3 maps a point (p, q) ∈ U to the surface of M (gray). (Right) Visualization of
Example 2. The globe can be covered by six cooordinate maps each covering half of the earth.

Definition 2. A differentiable manifold of dimension d is a set M and a family of injective
coordinate maps xi : Ui ⊂ Rd → M such that:

1.
∪

i xi(Ui) = M

2. for any pair i, j with xi(Ui) ∩ xj(Uj) = W ̸= ∅, the sets x−1
i (W ) and x−1

j (W ) are open
sets in Rd and the mapping x−1

j ◦ xi is differentiable

Extending upon Example 1 the entire globe can be covered by the following coordinate maps:

Example 2. Let the unit sphere S2 =
{
(x, y, z) ∈ R3|x2 + y2 + z2 = 1

}
be an approximation

of the globe and again U =
{
u, v ∈ R2|u2 + v2 < 1

}
. Then the manifold of S2 can be defined

through the following collection of coordinate maps, describing a different half of the sphere
each:

S2 = {ξ1 : U ⊂ R2 → R3, ξ1(u, v) =
(
u, v,

√
1− u2 + v2) ,

ξ2 : U ⊂ R2 → R3, ξ1(u, v) =
(
u, v,−

√
1− u2 + v2) ,

ξ3 : U ⊂ R2 → R3, ξ1(u, v) =
(
u,
√
1− u2 + v2, v) ,

ξ4 : U ⊂ R2 → R3, ξ1(u, v) =
(
u,−

√
1− u2 + v2, v) ,

ξ5 : U ⊂ R2 → R3, ξ1(u, v) =
(√

1− u2 + v2, u, v) ,

ξ6 : U ⊂ R2 → R3, ξ1(u, v) =
(
−
√
1− u2 + v2, u, v)}

See Figure 3.3 for an illustration.

26



3. Differential Geometry

Notice that in this case the two coordinate maps describing the northern and southern hemi-
spheres do not suffice to cover the entire manifold, because their domains are open and the
equator is missing. However, the property of openness is needed for differentiability. The
example does not use the minimum number of coordinate maps possible (it is two but using
different mappings), and from a purely mathematical point of view there is no advantage in
using less coordinate maps.

3.1.3 Discretization

It would be possible to actually store manifolds as collections of coordinate maps, but there are
many reasons why this is impractical. Other representations that are not technically manifolds
by our definition exist, e.g splines, quad meshes, polygon meshes, and we look at two of them
in detail.

3.1.3.1 Triangular Meshes

A triangular mesh (V, F ) represents the surface as a collection of vertices V and faces F ⊂
V ×V ×V connecting elements of V , all of which are triangles. Normally additional constraints
are put into place to make the surface reasonable and non-degenerate, e.g. two vertices can only
be part of the same triangle twice. To get close to a manifold definition, each triangle can be
interpreted as a coordinate map from a basis triangle domain Ut = convex((0, 0), (1, 0), (0, 1))
to the triangle embedded in 3D. This is not sufficient for a manifold because i) Ut is not open
and ii) the triangles only overlap on their edges such that their composition might not be
differentiable. Technically triangle meshes are not manifolds, but most quantities can still
approximated in a meaningful way on discrete structures, and a lot of operations are very
efficient because the surface is a linear interpolation of a subset of vertices at all points.

Hat Functions The hat functions form a basis set on triangular meshes that are similar to
indicator functions and lead to piecewise linear functions on the surface that are consistent on
the edges connecting two triangles.

hi(x) =





1 if x = vi

0 if x = vj , i ̸= j

u · hi(v1) + v · hi(v2) + t · hi(v3) if x = u · v1 + v · v2 + t · v3,
u+ v + t = 1,

(v1, v2, v3) ∈ F

(3.1)

The hat functions are often used as the basis functions in finite element methods. For example,
they are used to derive the discrete Laplace Beltrami operator in the next chapter.
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3.2. The Differential and Tangent Spaces

3.1.3.2 Subdivision Surfaces

Subdivision surfaces use a series of control points to define the surface. The surface is di-
vided and interpolated in an iterative way and the limit of this refinement defines the surface.
There exists algorithms that can calculate this limit without the need for infinite iterations,
or approximate the limit through parametric patches like Bezier patches. Different from trian-
gle meshes, subdivision surfaces are actually differentiable manifolds but due to the implicit
definition it is harder to process them. Even simple operations, like sampling surface points,
are not straight-forward, because the control points normally do not lie on the surface. On
the other hand, smooth geometry can be represented through far fewer control points than
in triangular meshes, without leading to inaccuracies and numerical issues (Estellers et al.
2018).

3.2 The Differential and Tangent Spaces

We started the introduction of manifolds by stating that they are locally Euclidean spaces.
The tangent space can be imagined as exactly that Euclidean space for each point. In order
to define tangent spaces, we use the differential which is similar to coordinate maps but maps
vectors to vectors instead of points to points on the surface of M.

Definition 3. The differential maps vectors in the domain U to vectors on the surface of
M. For a differential manifold M at point p ∈ M with a coordinate map ξ : U ⊂ Rm → Rn

such that p =
(
ξ1(q), ξ2(q), . . . , ξn(q)

)
for some q ∈ U , it can be calculated as

dξp =




∂ξ1

∂d1
. . . ∂ξn

∂dm
∂ξ2

∂d1
. . . ∂ξ2

∂dm... . . . ...
∂ξn

∂d1
. . . ∂ξn

∂dm




(3.2)

where d1, . . . , dm are the dimensions of the domain Rm. The differential is a linear map.

Since all coordinate maps have to be consistent with each other, the differential will be the
same no matter what coordinate map is used to calculated it. Notice that the differential is a
general concept from calculus and can be calculated for other kinds of maps, for example, for
maps between two manifolds. These will turn vectors from the tangent space of one manifold
to the tangent space of another and are often called pushforward instead. But the basic
calculations stay the same, only U needs to be replaced with a different domain. For regular
surfaces the differential is always full-rank; in this case rank m. Similar to the distortion that
the coordinate maps can have on the distances between points, the differential can, and likely
will, introduce distortion to properties of vectors, for example the angle between them or their
length.
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Figure 3.4: Visualization of the tangent space. Each point p ∈ M has its own tangent space
TpM attached. Tangent spaces are vector spaces with the same dimension as M. Any vector
a ∈ U can be mapped to the tangent space by the differential dξp(a). Because the differential
is full-rank, if a, b span U then dξp(a), dξp(b) span TpM.

The tangent space at a point p ∈ M is the space spanned by all vectors in the image of
all differentials at p. This also means, like the differential, the tangent space is potentially
different at each surface point.

Definition 4. The tangent space TpM of point p ∈ M in a m-dimensional manifold M
is a m-dimensional vector space that contains all possible directions that can tangentially pass
through p. If the vectors v1, . . . , vm ∈ Rm span the domain U , the tangential space at p is
spanned by the vectors dξpv1, . . . , dξpv1. Since the differential is full-rank the tangent space
has the same dimension as U .

For infinitesimal neighborhoods around p the tangent space approximates the behavior of M
very well but not for farther areas. Using the definition of tangent space, it is possible to
define the gradient and vector fields on the surface of M.

3.3 Riemannian Manifolds

Previous definitions allow the transfer of points and vectors, but most applications are con-
cerned with properties like distances and areas. In order to be able to calculate these, we need
a metric on the surface. As in Euclidean spaces, a metric can be induced by the definition of
an inner product.

Definition 5. We define a Riemannian manifold (M, g) to be a differentiable manifold
with an inner product gp : TpM× TpM → R attached to each point p ∈ M. gp can be written
as a bi-form and is often called metric tensor.
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3.3. Riemannian Manifolds

As long as the metric tensor provides a proper inner product at each point any metric tensor
can be assigned. However, there is a natural form of the metric tensor which arises from
the inner product in Euclidean space and is used in most applications involving Riemannian
manifolds. It is called the first fundamental form and if u, v ∈ U are two vectors in the domain
of a coordinate map ξ then gp(u, v) = ⟨dξpu, dξpv where ⟨·, ·⟩ is the standard inner product in
Rn. Inserting ⟨a, b⟩ = a⊤b it is easy to see that gp = dξ⊤p dξp ∈ Rm×m should hold.

The metric tensor allows to calculate properties like angles, areas, and lengths on the surface.
For example, the length of a curve γ : [0, 1] → M can be calculated through:

ℓ(γ) =

∫ 1

0
∥γ̇(t)∥dt (3.3)

=

∫ 1

0

√
gp(γ̇(t), γ̇(t)) (3.4)

γ̇ refers to the derivative of γ. Notice that γ̇ ∈ RmU here, instead of Rn, because this holds
for every metric tensor. The surface M is defined through coordinate maps, therefore every
γ can and should be written by transitioning through coordinate maps. However, since not
every curve can be parameterized by a single coordinate map, we skip this part for simplicity.
See do Carmo (1992) for details.

3.3.1 Geodesic Distance

A geodesic is the generalization of a straight line on Riemannian manifolds. As such, the
geodesic distance is the length of the shortest path running over the manifold surface connect-
ing two points. Applying the formula for the lengths of curves from the last section, we can
find the geodesic distance by minimizing:

dgeo(a, b) = min
γ:[0,1]→M,γ(0)=a,γ(1)=b

∫ b

a

√
gγ(t)(γ̇(t), γ̇(t))dt (3.5)

Unfortunately, unlike for the Euclidean distance, there is no closed form solution, and calcu-
lating geodesic distances is computationally heavy.

3.3.2 Isometries

There are many classes of mappings between manifolds (and we will see a more in-depth
discussion in Chapter 6) but the one we use the most are isometries.

Definition 6. A manifold M is called a isometric to the manifold N if there exists a dif-
feomorphism φ : M → N such that it preserves the metric tensor at each point. In this case
φ is called an isometry.
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It is easy to see that this is equivalent to preserving the geodesic distance between all pairs
of points. We will use this class later one because many deformable objects, e.g. humans,
deform in an isometric way. Additionally, the correspondence problem for isometric shapes is
NP-hard, in contrast to, for example, rigid cases.

3.4 d-Dimensional Shapes

We define a d-dimensional shape to be the outer shell of an object in Rd, this leads the surface
of the shape to be a manifold of dimension d − 1. The object itself will be referred to as the
shape’s solid. For example, the 3D ball B = {x ∈ R3| ∥x∥ ≤ 1} is the solid of the sphere
S2 = {x ∈ R3| ∥x∥ = 1}. The following definition summarizes this convention:

Definition 7. A compact set S ⊂ Rd is called a shape of dimension d if it is a connected,
differentiable manifold and if it can be represented as the boundary S = ∂U of an open subset
U ⊂ Rd. In this case, we call U the solid of S.

Note that this definition implies that a 3D shape is a 2-dimensional manifold and a 2D shape
is a 1-dimensional manifold, and shapes cannot have self-intersections or boundaries.
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CHAPTER 4
Spectral Shape Analysis

Spectral shape analysis (or spectrum analysis) refers to utilizing properties derived from the
spectrum or frequencies of a shape. This is closely related to Fourier analysis where functions
are approximated by sums of periodic functions. The functions used in shape analysis are usu-
ally the eigenfunctions of the Laplace-Beltrami operator (LBO), which have similar properties.
They form a basis for the space of L2-functions on the surface of the manifold, are frequency
ordered and can be used to do bandwidth filtering.

The Laplace-Beltrami operator has a number of useful properties for non-rigid settings. It
was even called the "Swiss-army tool for Shape Analysis" (Solomon et al. 2014a). One of its
properties is that it is invariant under isometric deformations (see Section 3.3.2). As a result
methods based purely on the LBO cannot distinguish between different embeddings of the
same manifold. This is useful because even extreme pose changes are invisible to the LBO, a
setting other methods often struggle with, but isometries also include self-symmetries which
leads to LBO based method often having symmetric flips.

4.1 The Laplace-Beltrami-Operator (LBO)

The Laplace-Beltrami operator is a generalization of the Laplace operator but on Riemannian
manifolds. The curved surface of manifolds influences the behavior and has to be taken into
account. This makes the computation slightly more complicated. But as in the Euclidean
space, the Laplace-Beltrami operator calculates the second derivative and is defined as the
divergence of the gradient of a function:

∆f = div(∇f) (4.1)

Both divergence and gradient are of course also generalizations for curved spaces instead of
the Euclidean version.
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4.1. The Laplace-Beltrami-Operator (LBO)

4.1.1 Properties

The Laplace-Beltrami operator inherits many properties of the standard Laplace operator,
but additionally adds some that are specific for Riemannian manifolds, or simply trivial in
the Euclidean case. This section only includes properties that are used in later chapters and
is not comprehensive.

Linearity. The LBO is a linear operator which means for all functions f, g ∈ L2(M), a ∈ R
holds:

∆(a · f + g) = a ·∆f +∆g (4.2)

It follows that it can be written in matrix form.

Self-Adjointness. An operator is self-adjoint if it is its own adjoint operator which means

⟨∆Mf, g⟩M = ⟨f,∆Mg⟩M (4.3)

holds. For the LBO this holds as long as M has no boundary.

Positive Semi-Definiteness. The LBO is positive semi-definite which means that ⟨∆f, f⟩ ≥
0 for all f ∈ domain(∆).

Invariance under Isometry. Without going into too much detail the gradient and di-
vergence are both intrinsic operators, therefore, their composition, which is the LBO, is also
intrinsic. Intuitively, the LBO is a generalization of the adjacency matrix, which is completely
embedding variant. Additionally, we will see in the next section that the discrete LBO can
be written only using the edge lengths in a triangular mesh, and the preservation of all edge
lengths follows naturally from isometries.

4.1.2 Discretization

Many different ways to discretize the LBO exist, and Wardetzky et al. (2007) have shown
that no discretization can fulfill all properties of the continuous Laplacian. Therefore, choosing
a discretization is dependent on the application and which property is the least important for
it. In this thesis we will use the cotan-discretization introduced in Pinkall and Pothier
(1993). It does not fulfill the maximum principle which means that harmonic functions with
∆f = 0 in the interior of M have no local optima at interior points. This is not important in
later applications, thus we ignore it.

The cotan LBO can be derived through finite elements with hat functions (see Section 3.1.3.1)
as the basis set. This results in a mass matrix A and a stiffness matrix S, which can be
combined into the Laplacian L = A−1S. The mass and stiffness matrix take the following
form, see Figure 4.1 for the notation:
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4. Spectral Shape Analysis

(i)

αij βijT1 T2

vi

vj

(ii)

vi

Figure 4.1: Visualization of notation for the cotan matrices. (i) The stiffness matrix takes into
account the angles opposite to the edge eij and T1, T2 refer to the triangles on both sides of
eij in the mass matrix. (ii) The lumped mass matrix weights each vertex with the area of the
surrounding triangles. Each of the three vertices of a triangle gets assigned one third of the
area.

Sij =





cot(αij)+cot(βij)
2 if (i, j) ∈ E

−∑k∈N(i)Cik if i = j

0 otherwise
(4.4)

Using the following equality

cot(αij) =
ℓ2jk + ℓ2ki − ℓ2ij
4area(T1)

(4.5)

where ℓxy = ∥vx − xy∥2 the edge length between two vertices and vk is the third vertex in T1,
we can easily write S knowing only the edge lengths.

Aij =





area(T1)+area(T2)
12 if (i, j) ∈ E

−∑k∈N(i)
area(Tk)

6 if i = j

0 otherwise
(4.6)

Again the area can be calculated through edge lengths, making the discrete LBO completely
derivable from the edge lengths only. Often the mass matrix A is replaced with a lumped
version, in which

Aij =

{∑
k∈N(i)

area(Tk)
3 if i = j

0 otherwise
. (4.7)
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4.2. Eigendecomposition

This is faster to invert and leads to localization of L but is not consistent with the finite element
derivation. Other methods, for example taking into account the area of voronoi cells, exist
for the lumped mass matrix but this is the fastest to compute. Some of these computations
cannot be done if the mesh is non-manifold because some entries in the stiffness matrix are
not properly defined. Recently, Sharp and Crane (2020) introduced an extension for
calculating the LBO on non-manifold meshes with robust properties using a so-called tufted
cover.

4.2 Eigendecomposition

The eigendecomposition (or spectral decomposition) of the LBO is what gives spectral shape
analysis its name. Let ∆M be the LBO on M and

∆Mϕi = λiϕi (4.8)

then ϕi ∈ L2(M) are the Laplace-Beltrami eigenfunctions with corresponding eigenvalues λi.

We saw in Section 4.1.2 how the LBO can be written as the product A−1S of the mass and
stiffness matrix. The eigendecomposition can also be done through the generalized eigenvalue
problem, which is numerically more stable:

Sϕ = λMϕ. (4.9)

4.2.1 Eigenvalues

As mentioned above, because of the semi-positiveness of the LBO, its eigenvalues are real and
non-negative.

Real Semi-Positive Spectrum. The LBO is positive semi-definite and therefore has a
real, semi-positive spectrum. Technically, there appears a minus sign in the derivation which
is propagated into the operator. There exists literature with the minus left out, therefore, the
LBO is negative semi-definite sometimes but we use the positive definition here.

0 = λ0λ1 ≤ λ2 ≤ · · · → ∞ (4.10)

Weyl’s law. Weyl’s law (Weyl 1911) describes how the growth of magnitude of eigenvalues
is linear with the incline depending on the area of the shape:

λj ≈
π

area(M)
j for j → ∞ (4.11)

This is of course just an approximate relationship.
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4. Spectral Shape Analysis
ϕ0 ϕ1 ϕ2 ϕ3 ϕ10 ϕ20

Figure 4.2: The same eigenfunctions on two approximately isometric Stanford armadillos. The
eigenfunctions are the same up to sign flips (yellow and blue swapped here). Higher frequency
functions are more sensitive to small inaccuracies in the isometry assumption leading to some
distortions in ϕ10 and ϕ20.

4.2.2 Eigenfunctions

The eigenfunctions inherit a natural ordering from their corresponding eigenvalues.

Orthogonality. It follows from the self-adjointness that the eigenfunctions are orthogonal
to each other and form a basis set.

⟨∆ϕi,ϕj⟩ = ⟨∆ϕj ,ϕi⟩ (4.12)
⇔ λi⟨ϕi,ϕj⟩ = λj⟨ϕj ,ϕi⟩ (4.13)
⇒ ⟨ϕi,ϕj⟩ = ⟨ϕj ,ϕi⟩ = 0 (4.14)

The basis is for the set of square-differentiable functions L2(M).

Dirichlet energy. The eigenvalue λi describes exactly the Dirichlet energy of each corre-
sponding eigenfunction ϕi:

∫

M
∥∇ϕi(x)∥2dx =

∫

M
⟨∇ϕi(x),∇ϕi(x)⟩dx (4.15)

= −
∫

M
ϕi(x)(−∆)ϕi(x)dx (4.16)

= λi

∫

M
ϕi(x)ϕi(x)dx (4.17)

= λi (4.18)
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4.2. Eigendecomposition

Figure 4.3: Spectral reconstruction of the left-most armadillo with an increasing number of
eigenfunctions. From left to right: The original shape and using 10, 250, 1000 eigenfunctions
for the spectral reconstruction.

We have to use −∆ here because of our semi-positive definite definition above. Only constant
functions have Dirichlet energy zero, it directly follows the first eigenfunction corresponding
to λ0 = 0 is constant.

Optimal Basis Set. The eigenfunctions are not only a basis for their function space L2(M)

but it can be shown that the set of the first k eigenfunction is the optimal choice for a basis
set with magnitude k in sense of representation error (Aflalo et al. 2015a). This explains
why, when a dimensionality reduction is required, a function f is often represented in as the
coefficients a = Φ⊤Af in the first k eigenfunctions.

f̃ =
k∑

i=0

aiϕi (4.19)

If f can be completely arbitrary, f̃ is the optimal k-dimensional representation.

Low Pass Filter. The increase of the Dirichlet energy can also be used in applications
where a low pass filter is required. Because the low frequency eigenfunctions come first, pro-
jecting f on a certain k will produce a low pass filtered version of f . The higher f the more
high frequency information is added. This is, for example, applied in spectral reconstruction
to produce a smoothed out version of a shape by projecting the coordinate functions onto k

eigenfunctions and back, see Figure 4.3.
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CHAPTER 5
Product Spaces

The product × of two structures is the combination of all their elements while preserving the
intial properties, for example neighborhood information. Most commonly known is probably
the Cartesian product of two sets

A×B = {(a, b) | a ∈ A and b ∈ B}. (5.1)

This produces a set which includes a tuple (a, b) for any combination of elements a ∈ A and
b ∈ B. The same can be done with two graphs or two manifolds by combining all the nodes
or points. Since sets are unordered collections without additional properties the Cartesian
product has no special properties. But, for example, the product of two graphs is still a graph,
and a product node is still connected to nodes derived from its graph neighbors. See Section
5.1 for details. This can be done with all kinds of geometric structures. In the next sections
we will look at the exact definitions of product graphs (Section 5.1) and product manifolds
(both continuous and discrete, Section 5.2).

5.1 Product Graphs

Let F = (VF , EF ), H = (VH , EH) be two graphs with sets of nodes VF , VH and edges EF ⊂
VF × VF , EH ⊂ VH × VH . The product graph F ×H = (VP , EP ) should contain all possible
combinations of VF and VH as nodes which means VP = VF × VH is the Cartesian product of
both sets (see Eq. (5.1)). Therefore, every node of the product graph is a tuple of a node of
F and H and every possible combination of nodes exists once in VP . Any edge in the product
graph is a tuple of two nodes, therefore EP ⊂ VP × VP = (VF × VH) × (VF × VH) contains
tuples of tuples of nodes of F and H.

EP is supposed to preserve the connectivity information of F and H but there are several
ways to achieve this. Hammack et al. (2011) gives an overview of the three most widely
used variations of product graphs which define the connectivity in different ways. Figure 5.1
shows examples of each type.
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5.1. Product Graphs

Cartesian Product GCF

H

Direct Product GDF

H

Strong Product GSF

H

Figure 5.1: Examples of the Cartesian product (left), direct product (middle) and strong
product (right) of two line graphs F and H.

Definition 8. The Cartesian product of two graphs F,H is the graph GC = (VP , EC) such
that VC = VF × VH and

EC =
{
((f1, h1), (f2, h2)) ∈ (VF × VH)2 | f1 = f2, (h1, h2) ∈ EH or (f1, f2) ∈ EF , h1 = h2

}
.

In the Cartesian product of graphs two nodes (f1, h1), (f2, h2) are connected by an edge if one
pair of elements are the same and the other was connected in the original graph.

Definition 9. The direct product of two graphs F,H is the graph GD = (VP , ED) such that
VD = VF × VH and

ED =
{
((f1, h1), (f2, h2)) ∈ (VF × VH)2 | (f1, f2) ∈ EF and (h1, h2) ∈ EH

}
.

The direct product of graphs only connects two nodes (f1, h1), (f2, h2) if both f1, f2 and h1, h2
were connected by an edge in the original graphs.

Definition 10. The strong product of two graphs F,H is the graph GS = (VP , ES) such
that VS = VF × VH and

ES = EC ∪ ED.

The strong product of graphs combines all edges from the Cartesian and direct product.

By definition each product graph is also a normal graph, and any graph algorithm can be
applied to it. However, not every graph can be decomposed into the product of two non-
trivial graphs.

5.1.1 Projection

For later analysis, we define the projections of elements of the product graph (nodes and edges)
back onto its source graphs. As each element is constructed by combining elements of F and
H, the projection deconstructs elements of the product back into their elements of F and H.
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5. Product Spaces

Definition 11. The node projection πF of a node in the product graph F × H to F is
defined as

πF : VP → VF

πF ((f, g)) = f

The definition is equivalent for πH .

Definition 12. The edge projection ΠF of an edge in the product graph F × H to F is
defined as

ΠF : EP → VF × VF

ΠF (((f1, g1), (f2, g2))) = (f1, f2)

The definition is equivalent for ΠH .

By construction ΠF (e) ∈ EF holds for any e ∈ EP . An important property is that the
projections of EC , ED, ES onto F (and H) return exactly the original edge sets EF (and EH).

ΠF (EC) = EF

ΠF (ED) = EF

ΠF (ES) = EF

The same is true for ΠH and EH . Therefore, the original connectivity of F,H is preserved
through all definition of the product graph. Neither definition is inherently superior to the
others. Rather, which is preferable depends on the intended application.

5.2 Product Manifolds

This section considers the product of two manifolds M,N as defined in Definition 2. Similar
to graphs, the surface of the product manifold consists of all combination of points from
M,N , and the connectivity is preserved through combination of the coordinate maps. Because
manifolds are continuous (in contrast to edges in graphs) there are no variations in how to
combine them.

Definition 13. Let
{
xMi : Rm → Rn | i ∈ {1, . . . ,M}

}
,
{
xNj : Rk → Rl | j ∈ {1, . . . , N}

}
be

the set of coordinate maps defining two manifolds M,N . The product manifold M×N of
M and N is described by the set of coordinate maps

{
xM×N
i,j : Rm+k → Rn+l | k ∈ i{1, . . . ,M}, j ∈ {1, . . . , N}

}

such that
xM×N
i,j (x1, x2) =

(
xMi (x1), x

N
j (x2)

)
.
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5.2. Product Manifolds

(i)

x 0

x 1
(ii)

⊂ R2

⊂ R2

⊂ R4

×

Figure 5.2: (i) Visualization which parts the two coordinate maps x0, x1 cover. (ii) Example
of the product manifold of two circles. Each slice of the torus is a copy of a circle, the colors
indicate how the circles are related to the originals. Mathematically M×N is a 2D manifold
embedded in 4D but shown here is low dimensional embedding in 3D, topology is the same
but it is not entirely metric preserving.

Again the product manifolds inherits most properties of M,N . If both are differentiable
manifolds, the product manifold will also be a differentiable manifold. If M,N are m- and k-
dimensional manifolds embedded in Rn and Rl respectively, M×N will be a m+k-dimensional
manifold embedded in Rn+l. This is straight-forward as all coordinate maps are concatenations
of the original coordinate maps.

Example 3. Let X = Y = {x0 : (0, 1.5π) → R2, t 7→ (cos(t), sin(t));x1 : (π, 3π) → R2, t 7→
(cos(t), sin(t))} be the parametrization of two (identical) circles with radius 1. In this case, the
product manifold X × Y contains four coordinate maps.

X × Y = {x0×0 : (0, 1.5π)× (0, 1.5π) → R4, (t1, t2) 7→ (cos(t1), sin(t1), cos(t2), sin(t2))

x0×1 : (0, 1.5π)× (π, 3π) → R4, (t1, t2) 7→ (cos(t1), sin(t1), cos(t2), sin(t2))

x1×0 : (π, 3π)× (0, 1.5π) → R4, (t1, t2) 7→ (cos(t1), sin(t1), cos(t2), sin(t2))

x1×1 : (π, 3π)× (π, 3π) → R4, (t1, t2) 7→ (cos(t1), sin(t1), cos(t2), sin(t2))}

They describe a torus embedded in R4. See Figure 5.2 for a visualization of this example.

5.2.1 Projections

As for graphs each element of the product manifold M×N is constructed from elements of
M,N and therefore backprojections exist:

Definition 14. The projection πM : M×N → M from the product manifold back onto M
is defined as:

πM : M×N → M
πM( (m,n) ) = m
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5. Product Spaces

The definition is equivalent for πN .

Again, as πM(M×N ) = M holds, the entire connectivity of each manifold is preserved in the
product. Furthermore, since all elements of M are combined with each element of N exactly
once the following holds: πM(π−1

N (n)) = M for any n ∈ N , π−1
N (n) maps to the set of points

in M×N that are backprojected onto n. This means M×N consists of a collection of copies
of M, as well as of N because of the symmetric definition. See Figure 5.2 how the torus is
just a lot of copies of the circles from Example 3.

5.2.2 Properties and Operators

All product manifolds inherit the properties that their origins hold in some way. For example,
the product of two Riemannian manifolds (M, gM), (N , gN ) will be a Riemannian manifold
again and as such be equipped with a metric tensor gM ⊕ gN =

(
gM 0
0 gN

)
(Guillemin and

Pollack 2010). The dimension of the product manifold and its embedding are the sum of the
dimensions of the original manifold. The area elements are the products of the original area
elements. But since the size of the product manifold is the product of the sizes of the original
manifolds, calculating certain properties and operators can become infeasible. The product
manifold of two shapes with 1, 000 vertices already has 1, 000, 000 vertices.

Nevertheless, one can leverage the fact that each coordinate map, and therefore the surface
of the product manifold, is a pure concatenation of the original coordinate map and in many
cases can be calculated just from these.

5.2.3 Laplace-Beltrami Operator

Looking at adjacency matrices of graphs and the rules from constructing product graphs, it is
not hard to see that there are closed form solutions for constructing the adjacency matrix of
the product graph. The Laplace-Beltrami operator (LBO, see Chapter 4) is a generalization
of the adjacency information on Riemannian manifolds. It is not surprising that a closed form
solution also exists for this case.

More interesting for some applications is that the solution of the eigen decomposition of the
LBO can also be directly derived from the eigen decomposition of M,N . Chavel (1984)
showed that the LBO ∆M×N obeys the (outer) product rule identity for f ∈ F(M), g ∈ F(N )

in some function spaces F(M),F(N ):

∆M×N (f ⊗ g) = (∆Mf)⊗ g + f ⊗ (∆N g) (5.2)

where f ⊗ g : (x, y) 7→ f(x)g(x) denotes the outer product of two functions and ∆M,∆N the
LBO of the manifolds M,N . Using this property leads to
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5.3. Product of Discrete Meshes

(i) (ii) (iii)
Figure 5.3: Examples of the product of base elements of meshes. The dimension of each
product is colored by the shape it comes from. (i) The product of two lines is a rectangle,
resulting in a quad mesh for contours. (ii) The product of a line and a triangle is a cylinder
with a triangle base. (iii) The product of two triangles is 3-3 duo prism. It is a 4D structure,
here represented by its Schlegel diagram. It has 9 vertices, 18 edges, 9 quad faces and 6 triangle
faces.

∆M×N (ϕ⊗ ψ) = (∆Mϕ)⊗ ψ + ϕ⊗ (∆Nψ) (5.3)
= (α+ β)(ϕ⊗ ψ) (5.4)

with ∆Mϕ = αϕ and ∆Nψ = βψ the eigen decomposition of M and N respectively. This
leads to the following characterization from Berger et al. (1971), Proposition A.II.3:

Corollary 1. Let ξ be an eigenfunction of the product LB operator ∆M×N with the corre-
sponding eigenvalue γ. Then, there exist some eigenfunctions ϕ of ∆M and ψ of ∆N with the
eigenvalues α and β, respectively, such that ξ = ϕ⊗ ψ and γ = α+ β.

It is also easy to check that the set of eigenfunctions {ϕi ⊗ ψj}i,j is orthogonal:

∫

M×N
(ϕi ⊗ ψj)(ϕk ⊗ ψℓ) da =

∫

×
ϕi(x)ψj(y)ϕk(x)ψℓ(y) da

∫

ϕ
iϕkx.

∫

ψ
jψℓdy (5.5)

= δikδjℓ =

{
1 (i = k) and (j = ℓ);

0 otherwise,
(5.6)

where δij is the Kronecker delta.

5.3 Product of Discrete Meshes

Discrete meshes are not defined by coordinate maps but by sets of vertices V and faces F ,
see Chapter 3. As for product graphs (Section 5.1) the vertices of the product mesh are
the products of the sets of vertices. The faces act like coordinate maps from a base face
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5. Product Spaces

to the actual embedded face (see Section 3.1.3.1 for triangles). Therefore, following directly
from Definition 13 the product of two discrete meshes is built by taking the product of all
combination of faces.

Line Products. In the case of contours, which are collections of lines, each face of the
product mesh is a rectangle, which is the product of two lines (see Figure 5.3). Mathematically
the two lines are ℓ0 = [0, 1] and ℓ1 = [0, 1], therefore only one combination exists which
is exactly ℓ0×1 = [0, 1] × [0, 1]. This means the product of two contours is a quad mesh
embedded in 4D. See Figure 5.2 where the quads are indicated on the torus. The quads are
connected exactly on the product as the lines were connected on the contour. Furthermore, as
we already saw for the LBO in Eq. (5.2) functions can be transferred to the product space by
taking the outer product. This works for any function and, for example the natural extension
of hat basis functions on contours are bi-linear hat functions on the product quads.

Triangle Products. The product of two triangle meshes consists of a 3-3 duo prisms which
is a 4D shape embedded in 6D and therefore hard to visualize. Figure 5.3 shows its Schlegel
diagram (Schlegel 1883). Nevertheless, the product follows the same rules as before and its
construction is not complicated. We will revisit these products in Chapter 9. In Chapter 7 we
also consider the product of lines with triangles which results in a cylinder with a triangular
base as the product face.
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CHAPTER 6
Correspondences

Single 3D shapes can be useful for a wide variety of applications, including but not limited
to Virtual Reality, 3D printing, architectural design, or video games. The processing of single
objects can be utilized for applications like 3D printing or verifying the structural analysis
of a planned building. However, if multiple shapes are given – either as separate objects or
as a composition – knowing the relationship between them can generate a lot of knowledge
about both of them without any semantic information necessary. Knowing which parts of two
objects are the same in certain aspects makes it possible to automatically replace them with
parts of equal functionality, or transfer information, style and pose to a new object. This
could be about finding out which parts in a collection of chairs are to be sat on, or designing
new chairs with given functionality that fit the style of a room. The information which parts
or points are the same is called correspondence and notoriously hard to find if the objects
are not mere copies of each other. Section 6.1 will introduce the mathematical definition
of correspondences and Section 6.2 will focus on what we call continuous correspondences.
This roughly means that if two parts are in correspondences their immediate neighborhood
should also be in correspondence. Continuity is a property that is meaningful in almost all
scenarios because what is a shape except the specific arrangement of its parts? Mathematically
continuity in correspondences between manifolds is related to diffeomorphism and Section 6.3
looks at how to characterize diffeomorphisms on discretized shapes.

6.1 General Correspondence

A correspondence defines which points of two shapes "belong to each other". What exactly
qualifies two points to belong to each other might be up to interpretation and vary widely from
application to application. However, the set that was chosen can be defined mathematically
by selecting the appropriate subset of the product of both shapes which by definition includes
all possible combinations of points. See Chapter 5 for an introduction into product spaces.
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6.1. General Correspondence

Definition 15. A correspondence C between two shapes X ,Y is a subset of their product.

C ⊂ X × Y (6.1)

We call a single element c = (x, y) ∈ C a match. If C describes a proper function1 φ : X → Y,
we call C = Γφ = {(x,φ(x))|x ∈ X} ⊂ X × Y the correspondence graph.

If the pair (x, y) is contained in C, it means x ∈ X is in correspondence to y ∈ Y. Normally
algorithms define specific properties that C or its elements are assumed to have and the
optimization tries to minimize a certain energy E(C) that penalizes when this property is
not fulfilled. A common scenario includes two representations of the same object, maybe
scanned at two different times, and then it is obviously meaningful to put points that depict
the same point on the objects surface into correspondence. Another application might include
two different objects, for example two styles of chairs, but since they belong to the same
class of objects some parts have the same function or semantic meaning and therefore should
correspond. In the first example it is intuitive that every point is only part of exactly one
match, whereas in the second example it could be multiple or none – think of a standard
four-legged diner chair and an office chair with five legs and arm rests. This thesis will focus
on algorithms dealing the first scenario.

Example 4. A simplified assumption is that both input shapes are sampled with the same
number of points n and each point on X corresponds to exactly one point on Y. This transfers
to C by imposing that C is a bijective2 function and in this case C can be represented by a
permutation matrix P ∈ {0, 1}n×n, P⊤P = 1n. Given a point property on both shapes (e.g.
curvature or heat kernel signature (J. Sun et al. 2009)) a very simple optimization would be
to find the permutation between the points of X and Y that preserves this property in the best
possible way:

P ∗ = argmin
P∈Pn

∥FP −G∥1 (6.2)

Here, Pn is the set of n × n permutation matrices and F,G ∈ Rn are comparable, point-wise
properties on X ,Y respectively. P ∗ can be found by solving a Linear Assignment Problem.
However, a single descriptor function would probably not suffice to give a good solution to (6.2)
because as soon as F or G contain a value twice the solution is not unique anymore. We will
see more sophisticated formulation in later parts of this thesis. Additionally, it is important
that F and G are comparable, i.e. they assume approximately the same value on points that
are supposed to match. For example, some notions of curvature are extrinsic and therefore not
well suited for matching deformed but isometric shapes, instead an intrinsic descriptor will fit
much better.

1A function f : A → B is a binary relation f ⊂ A × B such that ∀a ∈ A ∃ b ∈ B : (a, b) ∈ f and
∀a ∈ A, b1 ∈ B, b1 ∈ B : (a, b1) ∈ f ∧ (a, b2) ∈ f =⇒ b1 = b2.

2A function f : A → B is bijective iff. ∀b ∈ B ∃! a ∈ A : f(a) = b.
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(i) (ii)
Figure 6.1: Examples of correspondence visualization throughout this thesis. (i) Color Transfer.
Each point on X is marked with a unique color, each point on Y takes it color from its match
such that color(x) = color(y) when (x, y) ∈ C. Small distortions are often not visible in this
representation, and some information is lost should y have two matches. But it gives a good
idea of the overall correctness and critical areas. (ii) Texture Transfer. X is textured and the
texture transferred to Y via the correspondence. This representation makes small distortions
visible when the texture has clean geometry but when larger errors occur it is not immediately
obvious what exactly is wrong. Additionally, producing smooth texture maps on X is not a
trivial problem.

Once a correspondence is found, we can visualize it in various ways to make it more easily
accessible to human readers than the set of tuples. Figure 6.1 shows a few examples of
correspondences and how they can be visualized. We will use these throughout this thesis.

We will begin by looking at pairs of shapes that can be deformed into each other through
an isometry and later relax to unconstrained diffeomorphisms and only partially overlapping
shapes as well as topological changes.

One subclass of isometries are rigid deformations (only allowing rotation and translation of the
entire shape). Because a rotation and translation combined only have six degrees of freedom
(in three dimensional space), the problem is not very complex and we focus on the non-rigid
case here.

6.1.1 Vertex-to-Vertex Correspondence

If the shapes are discretized through point clouds or meshes, the most common representation
of correspondences is to match pairs of vertices. In that case the correspondence is a subset of
the vertex sets C ⊂ VM ×VN . This has many advantages because the vertex sets are normally
already explicitly stored, most descriptors return vertex-wise values and imposing constraints
like bijectivity is straight-forward. On the other hand, the underlying assumption is that both
shapes are at least approximately meshed consistently. In real-world data this basically never
happens due to suboptimal scanning conditions and areas that are densely sampled on one
shape might only contain a few vertices on the other shape. This poses problems especially
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when unrealistic assumption about (near) bijectivity are made.

Soft Correspondences A variant of point-to-point correspondences are soft correspon-
dences. Instead of a permutation the correspondences is stored in a matrix S ∈ [0, 1]n×n

where the value in Sij indicates how likely the vertices xi ∈ X and yj ∈ Y are to match. This
can be extended to represent a probability by enforcing the rows or columns to sum up to one,
S1 = 1 and 1⊤S = 1. If n = m and S1 = 1⊤S = 1, S is called bi-stochastic. The set of
bi-stochastic matrices is a popular replacement for the set of permutation matrices because
it is a superset of permutations and convex. A more general form of soft correspondences,
namely soft maps, have been introduced in Solomon et al. (2012). These maps are already
capable of capturing inconsistent meshing by distributing the probabilities over a larger area.

6.1.2 Subvertex Correspondence

To overcome the problem of incompatible meshing, point-to-point correspondences can also
be represented with subvertex accuracy. As the name implies, a vertex of X cannot only
match with a vertex of Y but also lie in-between. On triangular meshes this is realized by
letting the C(p) lie on the interior of a triangle of Y instead of just on the corners. If an
area of X is much more densely sampled then the corresponding area in Y this allows all
points of X to match onto the same triangle without collapsing into the same vertex. This
is mathematically beneficial because the differential of the correspondence does not become
low rank. Similarly for point clouds the match can be a combination of points from Y.
Ezuz et al. (2019) demonstrated how important subvertex accuracy can be when optimizing
for deformation energies. Bending energy can be very distorted when points are inaccurately
placed due to meshing inconsistencies and the advantages outweigh the additional complexity
here.

6.1.3 Registration

A highly related problem to correspondence is the registration problem (and sometimes the
names are used interchangeably). Instead of finding a mapping C : X → Y a registration finds
a mapping R : X → R3 that aligns the surface of X tightly with Y. A registration R can
be easily converted into a point-to-point correspondence by doing a nearest neighbor search
of R(X ) in Y or a subvertex correspondence by projecting R(X ) onto the surface of Y. The
advantage is that points of X can be set in meaningful relation with Y, even if there is no point-
wise relation. For example, if Y has large holes, the surface of R(X ) can span over this hole
whereas a correspondences would force points to be projected on Y somehow. On the other
hand, transferring information through alignment does not always work, e.g. a registration
cannot be used to transfer a UV map to a different surface. We use this in Chapter 10. In the
end, it depends on the application and algorithm whether a correspondence or registration is
more beneficial.
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6.2 Continuous Correspondences

A common property of non-rigid real-world objects is that they are deformable but not dis-
mountable. This means they can be reposed but only through a smooth movement of some
parts, and not by de- and reattaching them. Humans are a good of example of deformable be-
cause they can move into a wide variety of poses, but it is obvious that limbs of humans should
not be removed in the process. On the other hand, a figure made out of LEGO bricks can be
reposed (even into an isometric counterpart), but it can only be done by removing some or all
bricks and then assembling them in a different way. We will call a correspondence that can
be achieved by posing without decomposing smooth. This can be expressed mathematically
as follows:

Definition 16. We call a correspondence C : X → Y continuous iff. C is a diffeomorphism.

A diffeomorphism from X to Y is a differentiable function f : X → Y and its inverse f−1

is also differentiable. This also implies that C is a bijection, which is not meaningful in
all cases. We will relax this definition later. A diffeomorphism can be meaningful in cases
where a full correspondence is possible. We discuss partiality and other deviations from this
case in Section 6.2.1. Furthermore, diffeomorphisms imply natural properties, e.g. that the
neighborhood of each point is preserved after applying C. However, showing that a function
is a diffeomorphism for discrete X ,Y is not straightforward, and it might be easier to look
for properties that are equivalent to the diffeomorphism. We discuss this in more detail in
Section 6.3. The following statements are equivalent:

Theorem 1. Given a correspondence C : X → Y the following properties are equivalent:

(i) C is a diffeomorphism,

(ii) all differentiable paths r ⊂ X are mapped to differentiable paths C(r) on Y and vice
versa,

(iii) for every point p ∈ X and its ϵ-neighborhood N (p) holds C is a local diffeomorphism
N (p) → Y and equivalently also for every point p ∈ Y,

(iv) Γφ is a differentiable, connected, closed surface in the product manifold X × Y with
the projections πX : Γφ → X and πY : Γφ → Y both diffeomorphisms. It follows that
dim(Γφ) = dim(X ) = dim(Y).

The equivalence of the first three properties is straight-forward to see because (ii) and (iii)
just deconstruct the differentiable property into its local components. (iv) was proposed and
proven by Windheuser et al. (2011a).
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Defining the same property on discretized surfaces is not that obvious. See Figure 6.4 for an
example where neighborhood preservation does not lead to the expected behavior. This is
due to the fact that approximating a continuous surface is possible through many different
discretizations, which are unlikely to be neighborhood preserving everywhere.

Diffeomorphisms are not meaningful in all cases. For example, they imply a bijective between
X and Y which does not hold if the shapes have a partial relationship.

6.2.1 Partiality

With a few tweaks the above theory can be applied when X ⊂ Y, i.e. X is assumed to
described a strict subset of Y. We call this a partial shape. Assuming φ : X → Y to be a
diffeomorphism, enforces φ−1 : Y → X to be a function which implies that every y ∈ Y is
mapped to some x ∈ X . However, the partiality assumption means that there are points on
Y which do not have a counterpart on X because they show a part that is missing there. Put
differently, a diffeomorphism is bijective but in partiality φ is only injective. A function that
fulfills all properties of a diffeomorphism but is injective instead of bijective is called a local
diffeomorphism:

Definition 17. A function f : X → Y between two Riemannian manifolds X,Y is called a
local diffeomorphism if for each x ∈ X exists an open set U with x ∈ U such that f(U) is
open in Y and f |U : U → f(U) is a diffeomorphism.

This is basically a diffeomorphism between X and the image C(X ). A similar definition can
be made when Y ⊂ X . The definition of local diffeomorphism is especially interesting because
it allows X to be of lower dimension than Y. In that case, the dimension of Γφ is equal to the
dimension of the domain of φ. This is the exact case we explore in Chapter 7.

Two-Sided Partiality In the case of two-sided partiality neither X nor Y are a subset of the
other, instead they are assumed to have a common part such that SX ⊂ X and SY ⊂ Y and
SX and SY are diffeomorphic. Unfortunately, C : SX → SY cannot be written as a function
X → Y or vice versa, but this is an implicit assumption in almost any algorithm. To adapt
for this setting, it is necessary to also optimize the subsets SX , SY in addition to the matching
energy E(SX , SY ). Since the matching is never perfect E will not be zero and often improve by
just removing points from SX , SY with SX = SY = ∅ often the minimal energy solution. This
can be counteracted by either knowing the area of SX or SY , which is unrealistic, or adding
a penalization term for a small overlap. However, the amount of penalization will have a high
effect on the solution, and the correct weight will depend heavily on the type of data, which
makes this approach unstable. Another way to look at this is that many methods implicitly
solve for a minimum area surface C ⊂ X × Y. This is a good approximation when the final
solution is constrained to have at least area area(X ) · area(Y), but if this constraint does not
hold (because the correspondence is allowed to be partial on both sides) the minimal surface
solution is always the empty set. This is a reason why there is no state-of-the-art method that
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can handle two-sided partiality in the general case without a template, learning or other prior
information.

6.2.2 Surface Merging

When acquiring 3D data from real-world objects, the scanner is normally only able to sense the
surface information. When two separate parts of the same object touch each other, despite
not being physically connected, it is basically impossible to detect this from typical sensor
data, e.g. camera images. Therefore, the resulting 3D scan will show the parts with a merged
surface. This is especially a problem if the object is deformable, for example a human, and the
merged parts vary between different scans that are to be set in correspondence. This behavior
is also called topological merging, even if the topology does not necessarily change.

Let Y be a full model and X the same object but with topological merging. While for partiality
a local diffeomorphism was sufficient, in this case, additionally to some parts missing on X ,
there are also additional connections on the surface. These connections have to be "broken"
in the correspondence which is not possible through a differentiable function.

We published a dataset and associated SHREC contest with artificial shapes containing topo-
logical noise in Lähner et al. (2016a). At the time no participating method was able to
achieve a comparable quality of results as usual on data sets with similar structure but without
topological noise. Since then some methods have shown improved results, but not close to the
level that one could consider the problem solved.

6.2.3 Example: Contour-to-Contour Correspondence

The following example will explain and visualize the above properties on two contours. For
two 2D shapes the product space become a 4D manifold which is hard to visualize, but the
same concepts apply.

Let X = Y = {x0 : (0, 1.5π) → R2, t 7→ (cos(t), sin(t));x1 : (π, 3π) → R2, t 7→ (cos(t), sin(t))}
be two circles (the same as in Example 3). While there are some obvious choices for the
correspondence between them, like the identity as well as all rotations of it, these are not
all possible diffeomorphisms between X and Y. For example using ν : [0, 2π] → R, t 7→
π · sgn( t2 − 1) ·

(
t
2 − 1

)2 we could take C1 = (cos(t), sin(t), cos(ν(t)), sin(ν(t))). This is still a
diffeomorphism but the correspondences are not equally distributed over the surface. On the
other hand, C2 : X → Y, (x, y) 7→ (0, 1) is not a diffeomorphism because it is not invertible.

C3 : X → Y, (x, y) 7→
{
(x, y) if y >= 0

(−x, y) if y < 0

is not a diffeomorphism because its not differentiable at (−1, 0) and (1, 0). See Figure 6.2 for
a visualization of C1 to C3.

It is easy to see where neighborhoods and paths are preserved on 1D manifolds, but we look at
the submanifold property in detail now. The product manifold X ×Y has the form of a torus
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C1: C2: C3:
Figure 6.2: Visualization of C1-C3. The leftmost circle depicts the base coloring on X , the
other circles show how Ci transfers the coloring from X to Y via the correspondence. C2 maps
every point to (0, 1) which maps all points, and therefore colors, over each other.

Id: C1: C2: C3:
Figure 6.3: (Top) The torus can be cut open and be laied out flat for better visualization
(see colors). Apart from the discontinuities, the flat patch actually preserves the metric of the
4D torus better than the 3D torus. (Bottom) The identity and each Ci and their subsets of
the product manifold are shown in red. Id and C1 are both connected, smooth and have an
invertible projection on the edges which means they are diffeomorphisms. C2 is only projected
onto one point on the vertical edge which means this backprojection is not invertible. C3 can
be properly projected but is not connected, not even when the torus would be wrapped up.

and is a 2D manifold embedded in 4D. See Example 3 and Figure 5.2 for a visualization and
the complete parametrization of the torus. Because each correspondence graph ΓC is a subset
of X × Y we can visualize each match c ∈ C as a point on this torus. Theorem 1-(iii) states
that ΓC should be a differentiable, closed and connected surface on X × Y which means the
collection of points in ΓC needs to completely describe this surface. By construction c ∈ ΓC

can be represented as (u,C(u)) ⊂ X ×Y and assuming that X ,Y, C are differentiable transfers
this property to ΓC and vice versa. Figure 6.3 shows the correspondence graphs of each Ci

and makes clear where these properties are violated.
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The constraint that πX ,πY need to be diffeomorphism includes that they are invertible, which
means there needs to be exactly one point in each row and column of the flat torus. Due
to being differentiable, the surface (or line in this example) should be smooth and not have
boundaries. It becomes obvious by trying around a little that the only way to draw the line
differentiable (i.e. without boundary points) and without drawing two points in one row or
column is by doing it in a connected way (ignoring discontinuities that came from flattening
the torus). Although there are infinitely many possible diffeomorphisms between two circles,
from our examples only the identity and C1 fulfill the stated criteria.

6.3 Discrete Diffeomorphisms

While it is in theory possible to represent surfaces as collections of differentiable coordinate
maps on the computer, the vast majority of shapes is not actually represented as manifolds
(see Section 3.1). In this section we will look at how the notion of diffeomorphism can be
discretized for triangular meshes, one of the most popular representations for 3D surfaces.
In particular, triangular meshes are not differentiable at their edges and our best result will
therefore be a continuous correspondence but not a differentiable map.

6.3.1 Neighborhood Preservation

Property (iii) in Theorem 1 states that the neighborhood of each point should be mapped
to the neighborhood of its match. This cannot be directly transferred to triangular meshes
because even when there exists a perfect bijection between the vertex sets, the triangulation
does not need to be consistent. See Figure 6.4.

A different approach would be to utilize the ϵ-neighborhood of a point instead of using the
edge information and compare it to the ϵ-neighborhood of its match. Since diffeomorphism do
not necessarily preserve metric this does not need to hold. In fact, the metric distortion can
be arbitrary and different in every direction, therefore, not even scaling the neighborhood or
enforcing convexness leads to an equivalent result.

6.3.2 Path preservation

Similar to the neighborhood property, the path preservation also suffers from inconsistent
meshing. To check continuity the path has to be traced over the surface, i.e. the faces, which
could potentially be split up into arbitrarily many. To check the continuity of the splitting, the
new faces and their neighbors have to be aligned, This is equivalent to modeling continuity of
the entire surface (as described in Section 6.3.3) so there is no advantage in looking at paths.
Additionally, a swap of two vertices in the solution can still be converted into a continuous
path, although the correspondence itself is not continuous anymore. The length of any path
is also not necessarily preserved in general diffeomorphism, but, if this is made an assumption,
it can be used on discrete meshes in a clean way.
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(i) (ii)
Figure 6.4: (i) Although both meshes discretize the same surface, the neighborhood of the
red point changes. The neighborhood can change arbitrarily through remeshing. (ii) Wind-
heuser et al. (2011a) model continuity in different meshing by allowing all elements (triangles,
edges and corners) to shrink and extend into degenerated versions. Like this, neighborhood
can be preserved, even though the meshing changed. For example, the blue edge is flipped,
this causes the yellow and green triangle to degenerate into corners, whereas the purple and
orange corners extended into triangles.

Isometries Isometries are one case that can be easily transferred to discrete meshes. The
definition of an isometry is that all geodesic distances are preserved and is a popular formula-
tion for shape correspondence through a Quadratic Assignment Problem (see Section 1.3.3.2).

min
P

∥DX − P⊤DYP∥1 (6.3)

Since every geodesic distance is actually the length of the shortest geodesic path between two
points, there is a direct relationship to Theorem 1-(ii). In fact, every isometry between two
Riemannian manifolds is a diffeomorphism. Therefore, QAPs using geodesics are indirectly
optimizing for a diffeomorphism. Each segment of a geodesic is also a geodesic between its
endpoints and by enforcing all of them to be length-preserving, continuity is enforced implicitly.
This does not work for general diffeomorphisms because they do not need to preserve geodesic
distances nor geodesics themselves.

6.3.3 Product Submanifolds

The authors of Windheuser et al. (2011a) introduced the fourth property from Theorem 1
and transferred it onto triangular meshes. The original theorem in Windheuser et al.
(2011a) also includes a third property about orientations, but this one is only needed for ori-
entation preserving diffeomorphisms, which we skip here. They formulate the transformation
as deformation of the triangles, edges, and corners. But in order to handle inconsistent meshes,
triangles can shrink into an edge or corner, edges can extend to a triangle, or shrink into a
corner and vice versa. This can model arbitrary meshing changes but still guarantees a contin-
uous solution because neighboring elements stay neighboring. The method combines this with
penalizing bending and stretching in the solution to find the least energy diffeomorphism.
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In the end, these constraints are used in an Integer Linear Program (ILP) to find a discrete
diffeomorphism between two shapes. This is combined with penalizing bending and stretching
in the solution to find the least energy diffeomorphism. However, ILP is NP-complete and the
algorithm takes a few hours for shapes with a hundred vertices.





PART III
Methodology
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Equations are just the boring part of
mathematics. I attempt to see things in
terms of geometry.

– Stephen Hawking



CHAPTER 7
Correspondences as a Shortest Path

Problem

This chapter looks at the problem of finding a correspondence between a 1D and a 2D manifold.
The underlying assumption is that the 1D manifold describes the contour or a meaningful slice
of the shape of the 2D manifold, and the task is to find out where this slice on the 2D manifold
is (see Figure 7.1 for an example). This can be used for more intuitive interaction of humans
with 3D data. When searching for a specific 2D object in a large, unlabeled collection, it is
easier for the average user to produce a sketch of an object than querying with a similar 3D
object. An easy way to do this for rigid objects is comparing a projection of the 3D object onto
the plane to the drawing but deformable shapes can have widely varying projections which are
hard to compare. If the user wants any human from the collection, they do not know which
they have to draw. The natural step would be to draw a standing, neutral pose as a query
because it is easy to produce. Rigid methods could only retrieve standing similar poses from
this sketch but the presented method is the first that can also retrieve isometrically deformed
3D shapes.

Additionally to the complexity of the standard correspondence problem, this setting presents
two more challenges. First, the inputs have different dimensionality which makes feature-
based approaches hard because many features do not translate well – or at all – between
different dimensional surfaces. Second, the result should be invariant to isometries in 3D
and to a certain extend in 2D. In previous work about (rigid) retrieval the dimensionality
problem is often solved by projecting the higher dimensional shape onto the plane which
breaks down if poses vary too much. Isometric approaches fail in the case of inputs of different
dimensionality because they rely on descriptors to define a notion of similarity and choosing
descriptors that are invariant across dimensions is highly dependent on the application, the
type of dimensionality reduction and most examples focus on multi-modal settings with images
and text where geometry is irrelevant (Masci et al. 2013).

As pointed out in the previous chapter, the correspondence problem itself is hard but, if one
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Figure 7.1: We propose a shape matching method between a 2D query shape (left) and a 3D
target shape (right), both of which are allowed to deform non-rigidly. The globally optimal
matching (shown on top of the 3D target) is guaranteed to be continuous.

of the manifolds involved is 1-dimensional, it becomes feasible because the solution is also
1-dimensional. Finding an optimal 1-dimensional structure can often be reformulated as a
shortest path problem in a fitting embedding space, and this has been studied extensively. We
will make use of this relationship to propose an efficient algorithm in this setting.

This chapter is an extended version of Z. Lähner, E. Rodolà, F. R. Schmidt, M. M.
Bronstein, and D. Cremers (May 2016b). Efficient Globally Optimal 2D-to-3D Deformable
Shape Matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

The remainder of the chapter is organized as follows: In Section 7.2.1 we will formulate the
2D-to-3D shape matching problem as an energy minimization problem on the product graph,
which we will globally optimize and approximate in Section 7.4. To this end, we assume that
descriptive features for both shapes are given and that it is possible to measure the dissimilarity
between 2D and 3D features. The specific choice of such features depends on the application.
For the application of shape retrieval that we discuss in Section 7.6.3 we use purely spectral
features.

7.1 Related Work

This section gives an overview on work directly related to the results of this chapter. A more
extensive and general overview can be found in Chapter 1.
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7.1.1 2D and 3D shape correspondence.

In the domain of 3D-to-3D shape matching, a major challenge is to have theoretical guarantees
about the optimality and quality of the correspondence. Several popular methods try to find
a correspondence that minimally distorts intrinsic distances between pairs of corresponding
points by approximate solution to the quadratic assignment problem (A. M. Bronstein et
al. 2006b; Leordeanu and Hebert 2005; Mémoli and Sapiro 2005; Rodolà et al. 2012;
Rodolà et al. 2013). A recent line of works builds upon the functional representation (Ovs-

janikov et al. 2012; Pokrass et al. 2013a; Rodolà et al. 2016; Rodolà et al. 2015),
where a point-wise map is replaced by a linear map between function spaces. While these
approaches solve many challenging problems, they lack theoretical guarantees on the quality
of the final solution. In particular, none of these methods yields provably continuous maps
between the given shapes. This seems to be surprising, since the functional maps are linear.
Nonetheless, linear operators between function space do not need to be continuous. Hence,
finding continuous matchings is still a challenging task in the area of 3D-to-3D matching ap-
plications. A notable exception is the work of Windheuser et al. (2011a). Similarly to
Windheuser et al. (2011a), our method comes with the theoretical guarantee of a continuous
solution. In contrast to Windheuser et al. (2011a), our method can compute a matching
in under half a minute instead of several hours. In our 2D-to-3D correspondence problem,
the 2D shape is modeled as a closed planar curve and the 3D shape as a surface in R3. To
find the correspondence, we look for a closed curve on the surface. From this perspective, our
method can be seen as an extension of an image segmentation task that looks for a closed
curve within a 2D image domain. It was shown in Schoenemann and Cremers (2010)
that this segmentation problem can be formulated as finding a shortest path in the product
graph of the 2D image domain and the 1D curve domain, where the size of the graph depends
on the Lipschitz constant of the mapping. The drawback is that this constant is typically
unknown in advance. Differently from Schoenemann and Cremers (2010), the size of the
constructed graph with our method is independent of the Lipschitz constant.

Furthermore, one of the main challenges in our method is to find an initial match on the product
graph. In Schoenemann and Cremers (2010) this problem was solved by parallelization.
As a result, the overall computation time is not reduced but just distributed intelligently
among several computational cores. Instead, we use a branch-and-bound approach that only
computes shortest paths in those regions that are most ’promising’. This strategy reduces the
runtime substantially (especially with well-chosen shape descriptors), while still converging to
a global optimum.

Even in the simpler 2D-to-2D setting, the computation of a globally-optimal correspondence
can be very slow if we do not know an initial match. For example, the runtime of Dynamic
Time Warping methods is O(n2) if an initial match is given, and O(n3) if every possible
initial match is tested independently, where n is the number of shape samples. It was shown
that by exploiting the planarity of the involved graph, the runtime of the whole matching
including an initial match can be reduced to O(n2 log(n)) by using shortest circular path or
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graph cut approaches (Maes 1991; F. R. Schmidt et al. 2009; F. Schmidt et al. 2007).
A competitive approach is the branch-and-bound approach of Appleton and C. Sun (2003).
While this does not reduce the worst case time complexity of O(n3), it is rather fast in practice.
Since this method does not use the planarity of the involved graph, we can adapt it to our
scenario in order to reduce the practical runtime substantially.

7.1.2 Sketch-based retrieval

One of the important applications of 2D-to-3D matching is shape-from-sketch retrieval. This
problem has recently drawn the attention of the machine learning community as a fertile
playground for cross-modal feature learning (Eitz et al. 2012; Furuya and Ohbuchi 2014;
Hueting et al. 2015; B. Li et al. 2015; H. Su et al. 2015). Herzog et al. (2015) recently
proposed to learn a shared semantic space from multiple annotated databases, on which a
metric that links semantically similar objects represented in different modalities (namely 2D
drawings and 3D targets) is learned. Although this approach yields promising results in the
rigid setting and can address some variability of the shapes, its applicability to the non-rigid
setting is an open question. In contrast, our method targets explicitly the setting when both
the 3D target and the 2D query are allowed to deform in a non-rigid fashion. Furthermore, the
method of Herzog et al. (2015) as well as other existing approaches mostly focus on finding
similarity between a 2D sketch and a 3D shape while we solve the more difficult problem of
finding correspondence (from which a criterion of similarity is obtained as a byproduct).

7.2 Continuous Problem Formulation

We consider the case of shape matching between a 2D query shape and a 3D target shape
(see Definition 7). The problem to be solved is to find a correspondence between a closed 1D
manifold M ⊂ R2 and a 2D manifold N ⊂ R3. The solution should be a continuous mapping
φ : M → N . As discussed in Section 6.2.1 a local diffeomorphism is possible between manifolds
of different dimensionality. A local diffeomorphism is a special case of an immersion, i.e. the
differential dφ is of maximal rank at every point. While this is weaker than the diffeomorphism
constraint it still means the mapping is differentiable and cannot collapse into a single point
anywhere, i.e. , for any x, y ∈ M such that φ(x) = φ(y) = q there has to exist a point z ∈ M
in-between x, y for which φ(z) ̸= q holds. This local similarity may lead to a point n ∈ N to
be matched multiple times but we still exclude the collapsed solution where all m ∈ M are
matched with the same n. Additionally, this relaxation will allow us to apply an optimization
technique with local operations which makes our entire algorithm efficient.

7.2.1 Energy formulation

The goal is to find a continuous 2D-to-3D matching that sets points that look alike into
correspondence. Here similarity will be modeled by using point-wise features and a good
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correspondence will put points with similar features with respect to some distance function
into correspondence.

Features. Constructing features that are comparable between structures of different di-
mension is not trivial and we will discuss our specific choice in more detail in Section 7.5.
Without going into detail, we name the two feature maps on M,N as fM : N → RkM and
fN : N → RkN respectively. The dimensions kM and kN do not need to agree as long as a
positive distance function dist : RkM × RkN → R+

0 that can relate the 2D feature fM (x) of
x ∈ M and the 3D feature fN (y) of y ∈ N exists. This distance takes care of the difficult
task of comparing 2D features with 3D features and depends of course on the chosen features.
The following energy and optimization is completely independent of the choice of features
and distance function, except different optima, but a concrete choice that works well in our
scenarios is presented in Section 7.5.

Given the two feature maps fM and fN as well as the distance function, we call a 2D-to-3D
correspondence φ optimal if it minimizes the following energy

E(φ) : =

∫

Γφ

dist(fM (s1), fN (s2)) ds, (7.1)

where Γφ = {(s1, s2) ∈ M×N|s2 = φ(s1)} ⊂ M×N denotes the correspondence graph of
φ as defined in Definition 15. The energy E accumulates the distance between the features
of any pair of matched points (s1, s2) in φ which means a good solution will place points
of the query onto points on the 3D shapes with similar features. Since φ is assumed to be
continuous, this is not a simple nearest neighbor problem but takes the geometry of M and N
into account. Note that Γφ is a simplicial complex due to the immersion property of φ. E is
therefore defined as a line integral. Calculating the area elements needed for the line integral
on Γφ is not straight-forward. Instead we substitute φ with a higher-dimensional mapping
φ̂ : M → M × N , x 7→ (x,φ(x)). φ̂ conveys the same information as φ but, as we will see
below, integrates on M with known area elements. The definition of φ̂ leads to the following
equations s = (s1, s2) = (x,φ(x)), φ̂(M) = Γφ and therefore fN (s2) = fN ◦ φ(x). We apply
these in the substitution rule with φ̂ which results in the following energy function:

E(φ̂) =

∫

M
dist(fM (x), fN ◦ φ(x)) · ∥φ̂′(x)∥ dx (7.2)

Since M is a one-dimensional manifold, the norm can be calculated as ∥φ̂′(x)∥ =
√

dφ̂⊤dφ̂.
Fortunately, dφ̂ only depends on dφ(x) with an additional constant entry from where x was
mapped to itself:

dφ̂(x) : TxM → TxM × TyN (7.3)

v 7→
(

v

dφ(x)v

)
=

(
1

dφ(x)

)
v (7.4)
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7.2. Continuous Problem Formulation

Figure 7.2: Matching between a 2D query shape (left) and a 3D target shape achieved by
solving a LAP between the same point-wise features our method uses (middle) and our shortest-
path method (right).

Including this in Eq. (7.2) leads to the following energy function which depends only on φ

again:

E(φ) =

∫

M
dist(fM (x), fN ◦ φ(x))

√
1 + dφ⊤

x dφx dx (7.5)

Hence, the energy E can be broken down into the data term dist(fM (·), fN ◦ φ(·)) comparing
feature values and the regularizer

√
1 + dφ⊤dφ penalizing stretching.

Regularization. If we ignore the data term, the global minimum of E would result in a
constant φ. This φ is continuous, but matches every point on M to the same point on
N . It therefore ignores the similarity information stored in the data term.

Data term. If we ignore the regularizer, the global minimum of E can be computed by select-
ing for each x ∈ M a y ∈ N that minimizes the given feature distance dist(fM (x), fN (y)).
In this case, the minimizer of E will match similar points but φ might be neither injective
nor continuous. Combining the data term with the regularization results in a smooth
matching function φ that also takes similarity into account.

Alternatively to the energy described here, one could also choose to enforce injectivity of
φ : M → N . This would lead to a linear assignment problem (LAP), which normally results in
non-continuous matchings and is rather slow. If the shapes M and N are discretized at m and
n points, respectively, the overall run time of the Hungarian method (Munkres 1957) to solve
this problem is O(n3). The method that we propose does not only provide for a smooth and
continuous solution, but also has a better worst case run time complexity than the LAP (cf.
Theorem 2). Exploring the run time of the LAP approach for one matching instance resulted
in a run time of 11 hours instead of just a few seconds for our method. The LAP matching
result using the same features as in our experiments can be seen in Figure 7.2.
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(i)

GM×N

Li

Li+1

Li+2

(i, j)

(i+ 1, k)

i

GM

j

GN

(ii)
Figure 7.3: Connections in the product graph. (i) A node (i, j) in the product graph GM×N

represents a match between the vertex i ∈ VM of the contour M and the vertex j ∈ VN of the
surface N . All feasible matches with respect to vertex i form the layer Li = {i} × VN . Edges
are defined between a node (i, j) and (i + 1, j) as well as (i, k) and (i + 1, k) for all surface
vertices k ∈ VN that are adjacent to j. All these edges are directed and enforce a continuous
matching. (ii) Different from Section 5.3 we take the product of a line and the edges of each
triangle, not the triangle itself, because this results in a graph and we want to apply a graph
algorithm.

7.3 Discrete Problem Formulation

In the discrete case we represent the contour M by a series of line segments such that M =

(VM , EM ) and VM = {0, . . . ,m} and EM = {(i0, i1) ∈ VM × VM |i0 ∈ VM and i1 = (i0 +

1) mod (m + 1)}. The 3D shape N is represented by a triangle mesh N = (VN , FN , EN )

although we will not make use of FN here. Solving for the optimal correspondence could
be formulated through a linear program, as has been done in Windheuser et al. (2011a)
for two 3D shapes. This case has one major advantage over the setting in Windheuser
et al. (2011a) because we know that the solution is 1-dimensional itself (see Section 6.2.1).
Optimization problems where the dimension or co-dimension of the solution is 1 can be solved
more efficiently, and in this case we see that our problem can be formulated as a shortest path
problem.

As discussed in Section 5.3 the discrete product would include the product of each face of M
and N , so the product of a each line segment and a triangle. The resulting components are
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3-dimensional and have the form of cylinders with triangle bases (see Figure 5.3). In order
to be able to apply a graph algorithm later on, we choose to only use the edge information
of the triangle mesh, which directly translate to an undirected graph, and use the product of
these two graphs. We use the strong product of both graphs which can be seen in Figure 7.3.
Using the direct product would enforce the non-collapsing property of immersions but in the
discrete case this is only meaningful if the sampling density of both inputs is comparable. See
Definition 10 and Definition 9 for the difference between the graph products. This is not given
in most data, therefore we choose to allow collapsing. However, as we will see later on, a
collapsed area does not have zero energy but is instead penalized and this is the reason why
this relaxation does not lead to zero solutions.

Finally, the product graph of M and N looks as follows:

VM×N ={0, . . . ,m} × {0, . . . , n− 1} (7.6)
EM×N =

{
[(i0, j0), (i1, j1)] ∈ V 2

M×N

�� (7.7)
(i1 = i0) ∧ (yj1 , yj0) ∈ EN or (7.8)
(i1 = i0 + 1) ∧ (j1 = j0) or (7.9)
(i1 = i0 + 1) ∧ (yj1 , yj0) ∈ EN} (7.10)

An edge between two vertices vi,j , vk,l exists if both vMi , vMk and vNj , vNl are either the same
or neighboring on M and N respectively. Therefore, the adjacency information of M,N is
preserved in the product graph.

By leveraging the product graph and the fact that the solution is a 1D path, the optimal path
can be found efficiently by Dijkstra (1959) ’s algorithm. This prevents non vertex-to-vertex
solutions which might be reasonable, for example, a vertex lying in the middle of a face but
improves computational efficiency drastically. It does still allow shrinking and stretching of
the solution through multi matches.

7.4 Optimization

The problem has many similarities to a shortest path problem. But instead of a fixed source
and target point, the path should start at an unknown, optimal vertex on the product graph,
go around the product graph once visiting one match for each point on M and end up in the
first vertex again. Assuming the starting point is given, the product graph can be "cut open"
and the solution will be the shortest path of this point to a copy of itself on the other side. We
will use branch-and-bound to find the optimal starting point instead of considering it given.

We propose both a method to find the global optimum in Section 7.4.1 as well as an arbitrary
good approximation in Section 7.4.2. Finding the approximation is more efficient in terms of
run time, and we saw in our experiments that many approximate solutions are qualitatively
comparable to the global optimum.
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7. Correspondences as a Shortest Path Problem

Furthermore, we will be interested in edge-wise instead of point-wise costs to solve the shortest
path problem with Dijkstra (1959) ’s algorithm. We use the distances as stored in D at each
endpoint of one edge [(i0, j0), (i1, j1)] ∈ EM×N

Di0,j0 = dist (fM (xi0), fN (yj0))

Di1,j1 = dist (fM (xi1), fN (yj1))

and linearly interpolate the costs along the edge. This is equal to integrating over the average
of both values and results in the cost function

CM×N [(i0, j0), (i1, j1)] =

Di0,j0 +Di1,j1

2
· ∥(xi0 , yj0)− (xi1 , yj1)∥ .

(x, y) is a 5D-coordinate with the stacked coordinate values from x ∈ M (2D) and y ∈ N (3D).
This is a discretization of the line integral between both vertices from equation 7.1.

7.4.1 Global Optimization

To solve the shortest path problem, a fixed source and target set is needed. We have no
information about which vertices are contained in the solution but to have a circular path,
we know that each x ∈ M has to represented at least once in the solution. Therefore, the
representation of the 2D shape M is cut at an arbitrary x and is extended by having two
copies of x0, namely at position i = 0 and at position i = m. As a result, any continuous
matching can be represented by a path from (0, j) to (m, j). Hence, an optimal matching can
be cast as finding a shortest path in a graph if an initial match (x0, yj) ∈ Γφ is given. Such
a computation can easily be done Dijkstra (1959) ’s algorithm. Using a priority heap the
computation takes O(mn · log(mn)) steps. Since there is no path from (i1, j1) to (i0, j0) if
i1 > i0, we associate to each layer {i}×{0, . . . , n− 1} a different priority heap and reduce the
runtime to O(mn log(n)). These observations lead to the following theorem and the fact that
we have to test n different initial matches.

Theorem 2. Given a 2D query shape M and a 3D target shape N , discretized by m and n

vertices, respectively, we can find a minimizer of (7.1) in O(mn2 log(n)) steps. If n = O(m2),
this leads to the subcubic runtime of O(n2.5 log(n)).

This theorem shows that we can find a globally optimal matching in polynomial time. Nonethe-
less, this may still lead to a high runtime since we have to find for each vertex y ∈ VN a shortest
path in GM×N . In order to circumvent this problem we follow a branch-and-bound strategy
inspired by the method of Appleton and C. Sun (2003).

The main idea is to follow a coarse-to-fine strategy. First we compute the shortest path
between the sets {0}×R and {m}×R, which connects (0, i) with (m, j). In the first iteration,
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Figure 7.4: Exemplary first two iterations of the branch-and-bound algorithm. Paths are
projected from the product manifold on the 3D shape. (Left) Absolute energy minimal path
p1 through the cut product manifold. (Middle Left) 3D Shape is separated in two subareas.
One containing the source and the other the sink point of p1. (Middle Right) In the next
iteration one area is chosen; blue in this example but red will be processed later in the same
way. The source and sink of the optimal path p2 have to lie in the blue area. The rest of the
path can go anywhere. This excludes the previous minimum p1. (Right) If the source and
sink of p2 do not conincide, the blue area is again split in two.

we set R = VN . In this case i and j do not need to coincide but the energy of this path provides
a lower bound on the optimal closed solution. If this path connects the corresponding points,
i.e. i = j, we found a valid path. Otherwise, we separate the region R into two sub-regions,
R1 containing i and R2 containing j, and recompute shortest paths starting and ending in
{0} × Ri and {m} × Ri respectively. Since the shortest path of corresponding sub-regions
will exclude the previously computed path, the optimal path in both R1 and R2 will have a
larger energy than from the previously computed path. Thus, a natural order in which the
subregions should be processed is induced. We propose to separate R with respect to the
geodesic distance distN on the target shape N . We continue this process until we find our
first matching path with i = j. Then, we still have to process those subdomains whose lower
bound is smaller than the computed matching path. Afterwards, we are sure we found the
globally optimal matching path Γφ. See Figure 7.4 for an illustration of one iteration.

7.4.2 Approximation

We observe that in practice already a few iterations of Algorithm 1 suffice if the features are
distinctive and give a clear optimum. But in some cases, especially interclass matchings where
the global optimum is not natural, branch-and-bound is converging very slowly because many
equally bad solutions exist. To circumvent this we implemented an extension using both an
upper and lower bound of the optimal solution. If both are within a certain range of each
other, the branch-and-bound stops. This guarantees a solution that is provably close to the
optimum.
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7. Correspondences as a Shortest Path Problem

Algorithm 1 2D-to-3D matching via branch-and-bound.The blue code denotes the addition
needed for the approximation algorithm.
Input: GM×N = (VM×N , EM×N , CM×N ), ϵ
Output: Matching path Γφ

Let R := {0, . . . , n− 1} ;
Define = {R} and b : → R via b(R) = 0 ;
Define isFound=false ;
while isFound=false do

lowerbound=min b ;
Let R ∈ argmin b; = \{R} ;
Find shortest path Γ in GM×N

from {0} ×R to {m} ×R ;
Γ is a path from (0, i) to (m, j) ;
if i = j then

isFound=true;Γφ = Γ
else

Find indices l, k ∈ R with minimal Euclidean distance such that the shortest path
in GM×N to (m, k) originates in (0, l) ;
upperbound = dist((0, k), (m, l)) + dist((m, l), (m, k)) in GM×N

if lowerbound ≥ (1− ϵ)· upperbound then
Γφ = dist((0, l), (m, l)) ; break ;

end if
Divide R into R = R1 ∪R2 such that

x ∈ R1:
⇔ distN (x, i) < distN (x, j) ;
Set := ∪{R1, R2} ;
Set b(R1) = b(R2) = length(Γ) ;
if length(Γ) ≤ min b then

isFound=true ;
end if

end if
end while

The lower bound comes, as in the previous section, from paths with i ̸= j. The upper bound
is obtained by choosing the open path in the current region whose endpoints (0, i) and (m, j)

have the smallest Euclidean distance between i and j. We then extend the path on the product
manifold via Dijkstra to be a closed path. Because each closed path is a valid solution the
energy of this path is an upper bound for the global optimum. Notice that there are no
guarantees on the tightness of this upper bound. If the upper bound is within some chosen ϵ

of the lower bound from the previous region (see global optimization) we know we are close to
the global optimum and stop. The ϵ can indicate the absolute or relative error but we choose
it as the relative one to be insensitive to the scale of the energies.

To keep the solution as close to the optimum as possible, we recompute the path between the
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(0, i) and (m, i) that closed the distance between the bounds. As a result of approximating the
closing of the path from (m, j), a different path between (0, i) and (m, i) might have a lower
energy. We keep the starting point as the initial match and recompute the shortest path in
the product manifold. Because we can compute the optimum with respect to a given starting
point, the energy of this path will be lower or equal to the energy of the upper bound.

7.5 Trans-Dimensional Features

Defining descriptors between dimensional structures with different dimensions is challenging
because the geometry cannot be identical by construction. Therefore, a comparison has to
be done with a clear idea of what relationship exists between the different dimensions or
metric learning can be applied as in B. Li et al. (2015). In the following, we argue for
the adoption of spectral quantities for applications including 2D contours of 3D shapes. Note
that differently from existing methods for 2D-to-3D correspondence, we compute local features
independently for each given pair of shapes, i.e. no cross-modal metric learning is carried out.
Our approach is based on the observation that the contour describes the boundary of what is
supposedly visible of the 3D shape. This implies that the contour is a kind of projection of
the 3D geometry. We do not restrict ourselves to perspective projection though because it is
not invariant to pose changes. This means the interior of the contour is actually a meaningful
shape and (at least in parts) has a meaningful counterpart on the 3D surface.

7.5.1 Spectral Features

Spectral properties are often used in non-rigid shape analysis due to their isometry invariance.
They have not been adapted for the 2D-3D case, in large parts because different dimensional
structures are not isometric. Features like curvature can work in between dimensions but are
not suitable for deformable shapes. This makes this setting extremely challenging. Learning
features invariant to dimension and pose might be possible but it has not been done before.

To this end, we consider the solid U of M , i.e. ∂U = M (cf. Definition 7). In other words, we
model the 2D query as a flat 2-manifold with boundary. This new manifold can be regarded
as a nearly isometric transformation (due to flatness and possibly a change in pose) of a
portion of the full 3D target (see Fig. 7.5). Taking this perspective allows us to leverage
some recent advances in partial 3D matching (Rodolà et al. 2016), namely that partiality
transformations of a surface preserve the Laplacian eigenvalues and eigenfunctions, up to some
bounded perturbation.

An implication of this is that we can still compute spectral descriptors on the flat solid U and
expect them to be comparable with those on the full 3D target. By doing so, we make the
assumption that U can be approximated as a part of nearly-isometrically deformed M for the
features to be comparable. We then define the feature maps fHKS

M , fWKS
M : M → Rd on M by

restricting the descriptors computed on U to its boundary curve ∂U = M (see Fig. 7.6, top
row). In other words, we have the spectral features fM = fU |M for the query shape M .
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(a) input 2D (b) (c) (d) input 3D

isometric
≈

Figure 7.5: Spectral features are constructed by considering the query shape (a) as the bound-
ary of a 2D region (b), which is assumed to be a near-isometric deformation of a sub-region
(c) of the 3D target shape (d). The 2D tessellation (b) is obtained via Shewchuk (2002).

Popular spectral features are the scaled Heat Kernel Signature (HKS) (J. Sun et al. 2009)
and the Wave Kernel Signature (WKS) (Aubry et al. 2011),

fHKS
k (x) =

∑

j≥1

e−tkλjψ2
j (x), (7.11)

fWKS
k (x) =

∑

j≥1

e−
(log ek−log λj)

2

2σ2 ψ2
j (x), (7.12)

where k = 1, . . . , d are the dimensions of the descriptors. We use both without adjustments
directly on N and M by using the equality ∂U = M . In our experiments, we used d = 100

and the parameters t1, . . . , td of HKS and e1, . . . , ed,σ of WKS were taken as suggested by
the respective authors. All descriptors were normalized to have maximum value 1 in order to
improve their robustness.

7.5.2 Segment Features

Spectral properties are inheritly unaware of intrinsic symmetries and therefore any feature
derived from them will also be symmetry invariant. As shown in Figure 7.9 our features
suffer from the same ignorance. To improve the visual quality of our result, we use a ’coarse’
feature of the corresponding regions on the 2D query and the 3D shape. This is purely
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Figure 7.6: (a) Computation of local features for elastic matching. Top: L1-distance (blue
to red) between spectral 3D descriptors of a reference point (white dot) and 3D descriptors
computed on the remaining shape (left) as well as 2D descriptors on the tessellated query solid
(middle). Bottom: Consensus regions detected in 3D and 2D using Rodolà et al. (2014b).
The restricted features (right) are used in the energy (7.1) to drive the matching process. (b)
Sensitivity of the spectral features to increasing number of eigenfunctions. On the right we
show typical solutions obtained when using 25 (blue) and 200 (red) eigenfunctions.

for visual reason and we show in Section 7.6.3 that the retrieval results are not affected
by not using this feature. Based on the previous observations about spectral compatibility,
we are able to automatically extract compatible regions on the two objects (namely on U

and N) by consensus segmentation (Rodolà et al. 2014b), a deformation-invariant region
detection technique which directly operates with the Laplace-Beltrami eigenfunctions of a
given shape. The region detection step on the two shapes is performed independently; we
then obtain the 2D-to-3D region mapping by solving a simple linear assignment problem via
the Hungarian algorithm (Munkres 1957). Note that this assignment problem is typically
very small. Assuming we have r regions per shape (usually in the range of 5 to 10), the final
result of this procedure is a pair of corresponding labelings f SEG

M : M → Nr and fSEG
N : N → Nr

(see Fig. 7.6, bottom row).

7.5.3 Distance function

The final feature maps are obtained by simple concatenation, namely f := (fHKS, fWKS, fSEG).
In order to compare the feature maps on M and N , we define the distance function:

dist(fM (x), fN (y)) = ∥fHKS
M (x)− fHKS

N (y)∥1 (7.13)
+ ∥fWKS

M (x)− fWKS
N (y)∥1
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if fSEG
M (x) = fSEG

N (y), and set dist(fM (x), fN (y)) = τ otherwise. Here, τ > 0 is a large positive
value to prevent matching points belonging to different regions. In our experiments, we used
τ = 103.

7.5.4 Sensitivity analysis

In most shape analysis applications, only the first k eigenfunctions of ∆ are used to define
fWKS and fHKS. In the classical 3D-to-3D setting, for large k the resulting descriptors tend to
be more accurate, but at the same time become more sensitive to the lack of isometry relating
the two shapes. We performed a sensitivity analysis of our elastic matching method on a
subset of our FAUST-derived dataset with annotated ground-truth to determine the optimal
number of eigenfunctions.

We observed a similar trend to the 3D-to-3D case in our 2D-to-3D setting where naturally
the isometry is only approximate giving better results for a low k, as reported in Fig. 7.6.
From this analysis we selected k = 25 as the fixed number of eigenfunctions for all subsequent
experiments. In the figure, we plot cumulative curves showing the percent of matches with a
geodesic error smaller than a variable threshold (see Eq. (7.14)).

7.6 Experiments

In this section, we apply the proposed method to the problem of sketch-based deformable
shape retrieval. We emphasize that our method is parameter-free, and the only choice is with
respect to the 2D and 3D features fM (·), fN (·) as well as the distance function dist(·, ·) between
them. These choices depend on the specific application and help to illustrate the flexibility of
our general 2D-to-3D shape matching approach.

7.6.1 Setting

We consider a particular shape retrieval setting in which the dataset is assumed to be a collec-
tion of 3D shapes and the query is a 2D silhouette (possibly drawn by a human) represented by
a closed planar curve. Differently from previous techniques (Eitz et al. 2012; Furuya and
Ohbuchi 2014; B. Li et al. 2015; H. Su et al. 2015), our method does not use learning to
compute features and most importantly, we allow the shapes to deform in a non-rigid fashion.
The 2D-to-3D shape similarity is obtained by considering the minimal value of the energy
E(φ∗) obtained by our optimization problem.

Datasets. Due to the novelty of the application, to date there is no benchmark available
for evaluating deformable 2D-to-3D shape retrieval methods. We therefore construct such
a benchmark using the FAUST (Bogo et al. 2014), TOSCA (A. M. Bronstein et al.
2008) and a subset of Non-rigid world (A. M. Bronstein et al. 2006a) (additional poses for
TOSCA, gorilla, lioness and seahorse) datasets. The FAUST dataset consists of 100 human
shapes, subdivided into 10 classes (different individuals), each in 10 different poses. The latter
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Figure 7.7: Handdrawn query for a cat shape and the extracted contour from the image. The
image was simply thresholded to get a binary segmentation and then the contour extracted.
Personal experience showed that drawing a solid silhouette is easier than directly drawing the
contour. This also guarantees a shape as defined in Def. 7 without self-intersections or other
degenerations.

two consist of over 100 shapes, subdivided into 12 classes (humans and animals in different
poses). Shape sizes are fixed to around 7K (FAUST) and 10K (TOSCA) vertices.

In FAUST each class comes with a ‘null’ shape in a “neutral pose”, where no deformation
has been applied, which we use to define the 2D queries. To this end we cut each null shape
across a plane of symmetry and project the resulting boundary onto a plane. This gives rise
to 2D queries of 200-400 points on average. Note that by doing so we retain the ground truth
point-to-point mapping between the resulting 2D silhouette and the originating 3D target.
This allows us to define a quantitative measure on the quality of the 2D-to-3D matching
between objects of the same class. In the extended dataset, silhouettes of one shape showing
all important extremities of the class are produced and the 2D query is extracted from the
binary image. Hence, no point-to-point but only class ground truths are available. The same
method can be applied to hand-drawn silhouettes1.

As an addition to the queries produced through the actual 3D data, we drew a human by hand
and used this as an additional query for the retrieval to show that the method also works on
queries not produced using the targets. See Figure 7.7 for the sketch and query.

Error measure. Let M be a 2D shape represented as a planar curve and N a 3D shape
represented as a surface. Let φ : M → N be a matching between a 2D query shape and a
3D target shape, and let φ0 be the ground-truth matching. The matching error of φ at point
x ∈ M is given by

εφ(x) =
distN (φ(x),φ0(x))

diam(N)
, (7.14)

1The dataset containing shapes and matchings is publicly available at
https://vision.in.tum.de/~laehner/Elastic2D3D/
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Figure 7.8: Blue: Mean runtime with standard deviation shaded. Red: Optimal curve of form
a · xb fitted to the data. (Left) Runtime of our matching method on 3D targets with ∼7k
vertices (FAUST dataset). On the x axis we vary the size of the 2D query from 25 to 400
points. The fitted curve has a = 0.0245 and b = 1.1518 so the real runtime is nearly linear in
m. (Right) Runtime with a 100 vertex query and upsampled FAUST shapes. On the x axis
we vary the size of the 3D targets from 7k to 24k. The fitted curve has a = 2.6466 · 10−7 and
b = 2.1147 making the real runtime nearly quadratic in n with a really small constant.

where distN : N×N → R+
0 denotes the geodesic distance on N and diam(N) = maxx,y∈N distN (x, y)

the geodesic diameter of N . Note that due to the normalization, the values of the error ε are
within [0, 1].

7.6.2 Runtime

We implemented our method in C++ and ran it on an Intel Core i7 3.4GHz CPU. In Figure 7.8
we show the execution times of our method on the FAUST dataset (10 queries and 100 targets).
The plotted results show that for 3D shapes of fixed size, in practice the runtime grows linearly
with the number of 2D query points m and quadratic with the number of points on the 3D
target n.

Figure 7.9 shows the decrease of the average runtime with growing parameter ϵ for the approx-
imation algorithm. The plot shows that after decreasing rapidly over ϵ ≈ 0.05 the runtime
stays relatively constant with no change in the MAP. Therefore, choosing a small ϵ leads to a
good quality-runtime ratio.

7.6.3 Sketch-based shape retrieval

The 2D-to-3D shape similarity is obtained by ranking the matching energy E(φ∗) obtained
by our optimization problem. We evaluated the performance of our retrieval pipeline on the
extended 2D-to-3D TOSCA dataset. As baselines for our comparisons we use the spectral
retrieval method of Reuter et al. (2006) and a pure region-based retrieval technique using
segments computed with Rodolà et al. (2014b); both are the foundation for the features
we use. The rationale of these experiments is to show that these features are not sufficient to
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Figure 7.9: (Left) The average runtime of the TOSCA dataset with values between 0 (globally
optimal) and 0.3 (within 30% of the optimum). The runtime nearly stagnates after ϵ = 0.05
(only one or two iterations) but small ϵ already lead to significant improvement in the runtime
and comparable results (as shown in Table 7.1). The segmentation feature was not used.
(Right) Example of the same query matched to the same shape, once using the segmentation
features (left) and once without (right). Dashed lines indicate a path on the backside normally
not visible in this perspective. The matchings are very similar but without segments the path
only considers one of the symmetric sides (normally because it is slightly shorter).

guarantee good retrieval performance. However, using these quantities in our elastic matching
pipeline enables promising results even in challenging cases.

The first baseline method we compare against is Shape-DNA (Reuter et al. 2006) using the
(truncated) spectrum of the Laplace-Beltrami operator as a global isometry-invariant shape
descriptor. We apply this method to compare targets in the 3D database with flat tessellations
of the 2D queries.

The second method used in the comparisons is a simple evaluation of the matching cost
obtained when putting the consensus regions into correspondence via linear assignment (see
Fig. 7.6). Since this step typically produces good coarse 2D-to-3D matchings, it can be used
as a retrieval procedure per se.

We test the global optimization using all features we presented before. For the approximate
optimization we use all features except the segment features. The reason is we noticed that
the energies without the segments are comparable for same-class matching; the only difference
being the matchings only take place on one symmetric half of the 3D shape (see Fig. 7.9).
Although this is not the favored solution, since it does not substantially change the energy,
it is suitable for retrieval. Unfortunately, without the coarse matching of the segments the
globally optimal solution for interclass matchings can take longer to converge because there
are many equally good solutions - still with a high energy in comparison. Therefore, we use
the segment features for the globally optimal method but show that we can get similar results
without this feature using the approximate method.

The results of the shape retrieval experiments are reported in Table 7.1. ϵ = 0.001 was used for
the approximation experiments. We used average precision (AP) and mean average precision
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7. Correspondences as a Shortest Path Problem

Global Approx. sDNA Consensus
cat 1.0000 1.0000 0.2852 0.2518
dog 1.0000 0.9615 0.3519 0.3970
horse 0.9987 0.9313 0.4469 0.3432
human 1.0000 1.0000 0.7447 0.9985
lioness 0.9984 0.9587 0.7022 0.5419
seahorse 1.0000 1.0000 0.0779 1.0000
wolf 1.0000 0.8082 0.2230 0.2470
human (hd) 1.0000 1.0000 0.7096 0.9462
cat (hd) 0.9888 0.9772 0.8622 -
MAP 0.9984 0.9597 0.4720 0.5907

Table 7.1: Retrieval results on the 2D-to-3D extended dataset. For each method we show
per-class AP and, in the last row, the MAP. The global algorithm uses all features and the ap-
proximation does not use the segmentation. ϵ was chosen to be 0.001. hd refers to handdrawn
sketches. sDNA refers to Reuter et al. (2006) and Consensus to Rodolà et al. (2014b).

(MAP) as measures of retrieval performance2. The results slightly differ from the ones reported
in Lähner et al. (2016b) due to a small bug in the code. Additional qualitative examples
of solutions obtained with our method are shown in Fig. 7.10.

7.7 Conclusion

This chapter introduced a polynomial-time solution for matching deformable planar contours
to 3D shapes. Although the different dimensionality poses additional problems in terms of
comparing features and defining the optimal solution, the one dimensional structure of the
submanifold of the solution allows us to perform an efficient optimization using Dijkstra’s
algorithm. Additionally, the output is guaranteed to be a continuous correspondence. This is
due to the co-dimension of the problem being 1. In the next chapters, we will see that in the
higher dimensional case, where the co-dimension is 2, the problem cannot be solved efficiently
to the global optimum anymore.

While the manifold structure may limit the expressiveness of the sketch in some cases, it
allows to prove that the worst-case complexity of this algorithm is O(mn2 log(n)), where
m and n denote the number of samples on the query curve and the 3D shape respectively.
But our experiments show that in practice the runtime remains linear with respect to m,
even when employing a branch-and-bound strategy, making this a very efficient approach
that matches queries with hundreds of vertices to 3D shapes with over 10k vertices in a few
seconds. Additionally, the algorithm can compute the globally optimal or a ϵ-tight solution.

2Precision measures the percentage of correctly retrieved shapes.
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Figure 7.10: Retrieval examples on the TOSCA dataset. Two of the three 2D queries (cat and
wolf) have missing parts (two legs in contrast to Fig. 7.7). Each row shows the top 5 results
(ranked by matching energy) provided by our method. The corresponding matching curves
are shown on top of the 3D targets. Note that the dataset only contains 3 wolf shapes, which
show up as the top 3 matches. The next matches are shapes of the class “dog”, which is a
semantically similar class.

The approximate method is more efficient if the features are not discriminative enough which
causes many iterations in the branch-and-bound strategy. An interesting extension would
be to replace the product graph with the proper discrete product manifold and use a fast
marching algorithm to find the optimal path. While this would increase the complexity, it is
a more faithful discretization of the geodesic in the product space. Additionally, it can return
correspondences that are immersions, even under inconsistent sampling.
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CHAPTER 8
Kernel Matching between 2D Manifolds

Figure 8.1: Qualitative examples on FAUST models (left), SHREC’16 (middle) and SCAPE
(right). In the SHREC experiment, the green parts mark where no correspondence was found.
Notice how those areas are close to the parts that are hidden in the other model. The missing
matches marked in black in the SCAPE pair are an artifact due to the multiscale approach.

This chapter looks at the problem of correspondence between two two-dimensional manifolds
instead of a one- and two-dimensional manifold as in the last chapter. The previous method
utilized the fact that the submanifold describing an diffeomorphism (see Chapter 6) has the
same dimension as the lowest dimensional input, for contours this means one-dimensional.
In the case of two two-dimensional manifold, both the dimension of the solution as well as
the co-dimension to the solution space are two. This leads to a more complex problem.
Windheuser et al. (2011a) formulated the solution as an Integer Linear Program (ILP) using
similar geometric consistency constraints as we did in the previous chapter, see Section 6.3.3.
Unfortunately, solving ILPs is NP-complete, and the optimization takes a few hours for meshes
with only 1k vertices. The method introduced in this chapter has a similar interpretation
optimizing for a submanifold in the product space, but we proposed an efficient optimization
trading guarantees on the optimality of the solution against applicability to arbitrarily high
resolutions. The geometric interpretation of our method is discussed in detail in Section 8.4.
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8.1. Related work

This chapter is based on M. Vestner*, Z. Lähner*, A. Boyarski*, O. Litany, R. Sloss-
berg, T. Remez, E. Rodolà, A. M. Bronstein, M. M. Bronstein, R. Kimmel, and
D. Cremers (Oct. 2017). Efficient Deformable Shape Correspondence via Kernel Matching.
In: International Conference on 3D Vision (3DV). The major novelty is a simple method that
works out-of-the-box for finding a high quality, continuous correspondence between two not
necessarily isometric shapes. The method is an improved version of Vestner et al. (2017)
and adds scalability, and superior theoretical properties. Additionally, we provide theoretical
insights and several possible mathematical interpretations of the algorithm that shed light on
its effectiveness. In particular, we contrast the method with other shape matching approaches
and elaborate on the computational benefits of using kernels rather than distances as pairwise
descriptors. The key insight is the realization that a high quality regular correspondence can
be obtained from a rough irregular one by a sequence of smoothing and projection operations.
We report drastic runtime and scalability improvements compared to Vestner et al. (2017),
and present an extension to the setting of partial shape correspondence as well as an effective
multi-scale approach.

8.1 Related work

This section focuses on work related directly to this chapter, see Chapter 1 for a more general
survey. Finding correspondences between shapes is a well-studied problem. Traditionally, the
solution involves minimization of a distortion criterion which fits into one of the two categories:
pointwise descriptor similarity (Aubry et al. 2011; M. M. Bronstein and Kokkinos
2010; J. Sun et al. 2009), or pairwise relations (Chen and Koltun 2015; Coifman
et al. 2005; Mémoli and Sapiro 2005; Torresani et al. 2008). In the former case,
matches are obtained via nearest neighbor search or, when injectivity is required, by solving
a linear assignment problem (LAP). Pairwise methods usually come at a high computational
cost, with the most classical formulation taking the form of an NP-hard quadratic assignment
problem (QAP) (Pardalos and Wolkowicz 1994). Several heuristics have been proposed to
address this issue by using subsampling in Tevs et al. (2011) or coarse-to-fine techniques
in Sahillioglu and Yemez (2011); C. Wang et al. (2011). Various relaxations have been
used to make the QAP problem tractable (Aflalo et al. 2015b; Chen and Koltun 2015;
Kezurer et al. 2015; Leordeanu and Hebert 2005; Rodolà et al. 2012), however they
result in approximate solutions. In addition, pairwise geodesics are computationally expensive,
and sensitive to noise. In Hu and Guibas (2013) the use of heat kernels was proposed as
a noise-tolerant approximation of matching adjacency matrices. In Vestner et al. (2017)
dense bijective correspondences were derived from sparse and possibly noisy input using an
iterative filtering scheme, making use of geodesic Gaussian kernels.

A different family of methods look for pointwise matches in a lower-dimensional “canonical”
embedding space. Such embedding can be carried out by multidimensional scaling (A. M.
Bronstein et al. 2006a; Elad and Kimmel 2003) or via the eigenfunctions of the Laplace-
Beltrami operator (LBO) (Mateus et al. 2008; Shtern and Kimmel 2014b). The corre-
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8. Kernel Matching between 2D Manifolds

spondence is then calculated in the embedding space using a simple rigid alignment technique
such as ICP (Besl and McKay 1992). Functional maps (Kovnatsky et al. 2015; Ovs-
janikov et al. 2012) can be seen as a sophisticated way to initialize ICP when using this
spectral embedding. Other bases can be used within the functional map framework (Kov-
natsky et al. 2013). In particular, the eigenspaces arising from the spectral decomposition
of the geodesic distance matrices have been shown to outperform the LBO basis for the case
of isometric shapes (Shamai and Kimmel 2016). In Windheuser et al. (2011a) the
matching problem is phrased as an integer linear program, enforcing continuity of the cor-
respondence via a linear constraint. This additional constraint however makes the problem
computationally intractable even for modestly-sized shapes, requiring the use of relaxation
and post-processing heuristics.

Most recent works attempt to formulate the correspondence problem as a learning problem
(Rodolà et al. 2014a) and design intrinsic deep learning architectures on manifolds and point
clouds (Boscaini et al. 2016a; Litany et al. 2017a; Masci et al. 2015; Monti et al. 2017).
As of today, these methods hold the record of performance on deformable correspondence
benchmarks; however, supervised learning requires a significant annotated training set that is
often hard to obtain.

8.2 Problem Formulation

The underlying assumption in this method is that the solution can be described by a one-to-one
point correspondence, which means a permutation. We have both a pointwise term aligning
descriptors as well as a pairwise feature term which we optimize through a series of Linear
Assignment Problems using the theory of difference of convex functions. While the energy
might look like an off-the-shelf Quadratic Assignment Problem, we show that our method
allows for several geometric interpretations in Section 8.4. One of them includes finding a
submanifold in product space that arises from an underlying diffeomorphism as we discussed
in Chapter 6.

8.2.1 Linear Assignment Problem

Similarity of points is often measured with the help of pointwise descriptors fX : X → Rq,
fY : Y → Rq that are constructed in a way such that similar points on the two shapes are
assigned closeby (in the Euclidean sense) descriptors, while dissimilar points are assigned
distant descriptors. In the discrete case, the descriptors fX , fY can be encoded as matrices
FX , FY ∈ Rn×q giving rise to the optimization problem

argmin
Π∈Pn

∥ΠFX − FY∥2F = argmax
Π∈Pn

⟨Π, FYF⊤
X ⟩ . (8.1)

Problem (8.1) is linear in Π and is one of the rare examples of combinatorial optimization
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8.2. Problem Formulation

problems that can be globally optimized in polynomial time; the best known complexity
O(n2 log n) is achieved by the auction algorithm (Bernard et al. 2016).

Over the last years, intrinsic features have extensively been used due to their invariance to
isometry. However, they come with two main drawbacks: First, the implicit assumption that
the shapes at hand are isometric is not always met in practice. Some of the best performing
approaches partially tackle this problem using deep learning (Boscaini et al. 2015; Boscaini
et al. 2016a; Boscaini et al. 2016b; Masci et al. 2015; Monti et al. 2017). Secondly,
many natural shapes come with at least one intrinsic (e.g., bilateral) symmetry that is impos-
sible to capture by even the perfect purely intrinsic features, be these handcrafted or learned.
Additionally, correspondences obtained through (8.1) may suffer from severe discontinuities
due to some points being mapped to the desired destination, and others to the symmetric
counterpart.

8.2.2 Quadratic Assignment Problem

Another family of methods consider pairwise descriptors of the form dX : X × X → R, dY :

Y × Y → R encoded in the discrete setting as symmetric matrices DX , DY ∈ Rn×n. These
methods aim at solving optimization problems of the form

Π∗ = argmin
Π∈Pn

∥ΠDX −DYΠ∥2 (8.2)

= argmax
Π∈Pn

⟨Π, DYΠDX ⟩ , (8.3)

which is a variant of the Quadratic Assignment Problem (QAP) as was discussed in Sec-
tion 1.3.3.2. A typical way to circumvent the complexity issue of QAPs is to relax the integer
constraint πij ∈ {0, 1} and optimize the objectives (8.2)-(8.3) over the convex set of bistochas-
tic matrices Bn = {P ≥ 0 : P⊤1 = P1 = 1}. Note that when viewed as functions over this
convex set, the objectives (8.2)-(8.3) are no longer equivalent. In particular, (8.2) will always
be convex, while the convexity of (8.3) depends on the eigenvalues of the matrices DX and
DY , as shown in the following theorem.

Theorem 3. Let DX , DY be symmetric. The function h(P ) = ⟨P,DYPDX ⟩ over the set of
bistochastic matrices Bn is (strictly) convex iff all eigenvalues of DX and DY are (strictly)
positive.

Additionally, the following holds:

Corollary 2. If all eigenvalues of DX and DY are strictly positive, the optimum of the relaxed
problem coincides with that of the original combinatorial problem:

argmax
P∈Bn

h(P ) = argmax
Π∈Pn

h(Π) . (8.4)

Notice that we can add a linear term (weighted by a scalar factor α), such as the one in (8.1),
while still keeping this property: E(P ) = α⟨P, FYF⊤

X ⟩+ ⟨P,DYPDX ⟩ .
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Figure 8.2: Spectrum of distance matrix (left) vs. spectrum of heat-kernel matrix (middle)
for several values of t ∈ [0.01, 5] computed on the cat shape from TOSCA. (Right) Runtime
comparison of matching shapes with varying number of vertices using our algorithm with heat
kernels compared to Gaussian kernels Vestner et al. (2017).

As discussed in Section 1.3.3.2 using geodesic distances in the QAP models isometries, and
other pairwise descriptors exist for specific classes of deformations, e.g. equi-affine Raviv et
al. (2011). Kernels are also a popular choice in literature (Liu et al. 2008; Shtern and Kim-
mel 2014a; Vestner et al. 2017) and in what follows, we advocate the superiority of using
kernels over distances. Additionally, we show the relation of heat kernels to diffeomorphisms
in Section 8.4.3.

8.2.2.1 Pairwise Distances

A common choice for pairwise descriptors are geodesic distances dX (xi, xj), a choice motivated
by the fact that, for isometric shapes, these are preserved by the optimal permutation Π. While
accompanied with some nice theory from metric geometry (A. M. Bronstein et al. 2008),
and providing some versatility as to the types of transformations they describe via the choice
of the metric, using pairwise distances as descriptors comes with drawbacks, both from the
modeling and computational point of view. To cope with these problems, different choices
of distances can be used, like diffusion distances (A. M. Bronstein et al. 2010), which
are less sensitive to topological noise, and different robust norms which are less sensitive to
outliers (Chen and Koltun 2015). While diffusion distances relax the computational burden
of computing geodesic distances, the issue of optimization still exists. This issue, as mentioned
above, is usually coped with by means of relaxation.
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8.2.2.2 Heat Kernel

Heat kernels are fundamental solutions to the heat diffusion equation on manifold X ,

∂u(t, x)

∂t
= ∆Xu(t, x) , (8.5)

with the initial condition u(0, x) = u0(x) and additional boundary conditions if applicable.
Here u : [0,∞)× X → R represents the amount of heat at point x at time t. The solution is
linear in the initial distribution and is given by

u(t, x) =

∫

X
k(t, x, x′)u0(x′)dx′ , (8.6)

where k : R+ ×X ×X → R is the heat kernel and its values can be interpreted as the amount
of heat transported from x′ to x in time t. In the Euclidean case, the heat kernel is an isotropic
Gaussian kernel with the variance proportional to the diffusion time t.

For a compact manifold X , the heat kernel can be expressed as the exponent of the Laplacian
operator ∆X ,

k(t, x, x′) =
∑

i

e−λitϕi(x)ϕi(x
′), (8.7)

where ∆Xϕi(x) = λiϕi(x) is the eigendecomposition of the Laplacian with eigenvectors ϕ1,ϕ2, . . .

and corresponding eigenvalues 0 = λ1 ≤ λ2 ≤ . . . .

In the discrete setting, the heat kernel is given by the positive-definite matrix KX = et∆X =

ΦetΛXΦ⊤. The constant eigenvector corresponds to the unit eigenvalue, KX1 = 1.

An issue that is often overlooked is the relation between the original and relaxed solution of
(8.3), which is tightly connected to the choice of pairwise descriptors. Corollary 2 asserts the
sufficient condition under which this relaxation is exact. Whereas heat kernels, being (strictly)
positive definite, satisfy this condition, distance matrices never do. A distance matrix, having
non-negative entries and trace zero, will always, by the Perron-Frobenius theorem, have one
large positive eigenvalue and several low magnitude negative eigenvalues1 (Bogomolny et al.
2003). This distribution of eigenvalues is illustrated in Figure 8.2.

8.2.3 Relaxing Bijectivity

The requirement of bijectivity is what makes a problem (8.2) computationally hard. A variety
of relaxation techniques can be applied to alleviate this complexity. Amongst the most popular
are relaxing the column or row sum constraints, relaxing the integer constraints, or restricting
the matrix to a sphere of constant norm (Leordeanu and Hebert 2005). A bijective mapping

1In the Euclidean case, a distance matrix has exactly one positive eigenvalue and all the rest are negative
with small magnitude.
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can then be recovered by a post processing step, such as projection onto the set of permutation
matrices

Π∗ = argmin
Π∈Pn

∥Π− P∥2 = argmax
Π∈Pn

⟨Π, P ⟩ . (8.8)

One popular technique in recent years replaces the combinatorially hard pointwise map recov-
ery problem with the simpler problem of finding a linear functional map instead of a permuta-
tion Ovsjanikov et al. (2012). See Section 1.3.3.3 for an analysis of the relation. The fact
that the map is band-limited is often erroneously referred to as smoothness in the literature;
however, the bijective map recovered from such a band-limited map is not guaranteed to be
continuous let alone smooth (i.e., continuously differentiable). Some incentive for smoothness
exist, but the problem is now shifted to extracting a pointwise correspondence with certain
properties from the functional map which is far from an easy one (Rodolà et al. 2015).

8.3 Optimization

We aim at maximizing E(Π) over Pn, which by Corollary 2 has the same optimum as the
relaxed problem

argmax
P∈Bn

E(P ) = argmax
P∈Bn

⟨P,αFYF⊤
X +KYPKX ⟩ (8.9)

where FX , FY are matrices of pointwise descriptors and KX ,KY are the positive-definite heat
kernel matrices on X and Y, respectively. This maximization problem can be seen as the
minimization of the difference of convex functions:

argmin
P∈Rn×n

B(P )− E(P ). (8.10)

where B is the (convex) indicator function on the set of bistochastic matrices Bn.

A renowned way to optimize this type of energy is the difference of convex functions (DC)
algorithm that starts with some initial P 0 and then iterates the following two steps until
convergence:

• Select Qk ∈ ∂E(P k).

• Select P k+1 ∈ ∂B∗(Qk).

Here, B∗ denotes the convex conjugate of B, and ∂E, ∂B∗ denote the subdifferentials (set of
supporting hyperplanes) of E and B∗, respectively.

For a differentiable E, the step of the DC algorithm assumes the form

P k+1 = argmax
P∈Bn

⟨P,∇E(P k)⟩ . (8.11)
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Moreover, the value of the objective is an increasing sequence, E(P k+1) > E(P k), and each
iterate P k is a permutation matrix. We provide the proof in the supplementary material.
Figure 8.3 illustrates this iterative process. Since P k is guaranteed to be a permutation
matrix, we use Πk to denote the iterates. For our choice of E, the gradient is given by

∇E = αFYF⊤
X +KYΠKX (8.12)

yielding the step

Πk+1 = argmax
Π∈Bn

⟨Π,αFYF⊤
X +KYΠkKX ⟩ . (8.13)

In the experiments presented in this paper, we use the data fidelity term ⟨Π, FYF⊤
X ⟩ mainly

to initialize the process:

Π0 = argmax
Π∈Bn

⟨Π, FYF⊤
X ⟩. (8.14)

Figure 8.3: Schematic illustration of the proposed algorithm for maximizing a convex quadratic
objective over a convex polytope, by successively maximizing a linear sub-estimate of it. The
hot color map encodes the function values. The jet color map encodes the values of the linear
sub-estimate. The point around which the objective is linearized is depicted in red. The global
maximum is depicted in blue. The maximum of the linear sub-estimate is depicted in green.
Notice that the algorithm travels between extreme but not necessarily adjacent points of the
polytope, until it converges to a local maximum.

8.3.1 Partial Matching using Slack Variables

In a general setting, we will be dealing with shapes having different number of vertices. Let
us denote by nX the number of vertices on X and by nY the number of vertices on Y, and
assume w.l.o.g. nX ≥ nY . We aim at optimizing
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Input Iter 1 Iter 2 Iter 3
Figure 8.4: Our approach can tackle the challenging scenario of partial correspondences. As a
proof of concept we initialized our method with sparse correspondences, indicated by spheres.
We simulated noise by mapping a point on the left hand of the woman to the right foot of
the man. At the first iteration all points spread their information, leading to a discontinuity
of the mapping at the hand of the woman. After three iterations the method converged to
the correct solution. This example was generated with Gaussian kernels. The proper choice
of boundary conditions when using heat kernels will be discussed in future work.

argmax
Π∈PnY

nX

⟨Π,αFYF⊤
X +KYΠKX ⟩ (8.15)

where the space of rectangular permutation matrices PnY
nX is given by PnY

nX = {Π ∈ {0, 1}nY×nX :

Π1 ≤ 1,Π⊤1 = 1}. Analogously to the previously discussed case in which we had nX = nY =

n, we iteratively solve

Πk+1 = argmax
Π∈PnY

nX

⟨Π,αFYF⊤
X +KYΠkKX ⟩ . (8.16)

In order to solve these optimization problems we pad the rectangular matrix αFYF⊤
X +KYΠkKX

with constant values c (slack variables) such that it becomes square. After the correspondence
is computed, we discard the ones belonging to the introduced slack variables. While such a
treatment does not affect the value of the maximum, the constant c has to be chosen appropri-
ately to avoid ambiguity between the slacks and the actual vertices on X . A drawback of this
approach is that there are (nX − nY)! solutions achieving the optimal score, leading to worse
runtime in the presence of many slacks. See Figure 8.4 for a proof of concept of this approach.

8.3.2 Multiscale acceleration

Solving the LAP (8.16) at each iteration of the DC algorithm has a super-quadratic complexity.
As a consequence, the proposed method is only feasible for small n (up to 15k on the hardware
we used in our experiments). Therefore, we propose a multiscale approach that enables us to
find correspondences between larger meshes.
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8.3. Optimization

Initilization. We start by resampling both shapes to n0 vertices by Euclidean farthest point
sampling (FPS) and solving for a bijection π0 : X0 → Y0, where X0,Y0 are the resampled
shapes of iteration 0. n0 can either be the maximum amount of vertices that can be handled
(around 15k in our experiments) or smaller if runtime is crucial. This set of initial vertices is
called seeds. The seeds on X are clustered into n0/(k ·maxP ) voronoi cells V0

X = {V 0
X ,i | i ∈

{1, . . . , k}, V 0
X ,i ⊂ X0}, and these cells are transferred to Y via π0 in V0

Y = {V 0
Y,i = π0(V

0
X ,i) | i ∈

{1, . . . , k}, V 0
Y,i ⊂ Y0}. The parameter maxP is the maximum problem size for LAPs allowed

in later iterations and normally much smaller than n0. k determines how many new samples
are added to the voronoi cells in each iteration. A small maxP makes the method faster but
less robust, and a small k slower but more robust. We always choose maxP = 1500 and k = 3

in our experiments. Assuming that π0 describes a good correspondences, the underlying idea
is that an unsampled point in the vicinity of V0

X ,j should be matched to a point in the vicinity
of V0

Y,j to preserve smoothness in the solution. This is also important to reduce the problem
size of later iterations, because under this assumption we can optimize the neighborhood of
each V 0

X ,j , V
0
Y,j independently.

Iterations. At the first iteration (i = 1) and any following iteration i, ni = k × ni−1 new
points are sampled in a farthest point manner on both shapes to create Xi,Yi. Each new
point is assigned to the same Voronoi cell as its nearest neighbor in Xi−1,Yi−1 resulting in the
new cells ViX ,ViY

. If any cell has more than maxP vertices, the number of cells is increased
until this is not the case anymore. Next, we solve for πi : Xi → Yi by solving for a mapping
from the m-th cell of V i

X to the m-th of V i
X using the proposed method and combining them

into a global permutation πi. There cannot be contradicting entries in πi, because every
sampled point belongs to exactly one voronoi cell. Notice that the m-th cells of both shapes
correspond to roughly the same areas as long as the previous matching πi−1 is reasonable.
Nevertheless, the cells could include a different amount of points due to discretization errors
and inconsistencies in the Euclidean farthest point sampling. Therefore, we need to apply the
partial matching scheme to each cell and some points may stay unmatched (in this iteration).
Again, X is divided into ni/(k · maxP ) Voronoi cells and these are transferred to Y via πi.
The voronoi cells of previous iterations are discarded to allow exchange of points between cells.
This is especially important on the boundary between cells because inconsistencies between
Xm and Ym are likely happening there. This proceeds until all points have been sampled. We
use Euclidean FPS in all cases and build approximate Voronoi cells on remeshed versions of
the shape to keep the runtime small. See Figure 8.5 for a visualization of the process.

Global Alignment. Each πi is solved for by using descriptors and initial matches from the
previous iteration in the same cell. Additionally, we add 1000 equally distributed matches
from π0 to every problem which aligns the solution along the boundaries of the cells with each
other. This is important because in cells with no distinctive descriptors (mostly flat areas)
the optimal solution inside one cell might be rotated and not align with the global solution
anymore. Notice that, even if the shapes have the same number of vertices at the beginning,
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8. Kernel Matching between 2D Manifolds

(a) (b) (c) (d)

Figure 8.5: Conceptual illustration of our multiscale approach: (a) correspondence at
a coarse scale is given; (b) vertices on the source shape are grouped into sets (left), and the
known correspondence is used to group vertices on the target shape (right); (c) vertices at a
finer scale are added and (d) included in the group they reside in; finally, a correspondence is
calculated for each group separately.

due to the sampling and decoupling of each cell, not all vertices might be matched.

Partiality. If the matched shapes are partial versions of each other, this information needs
to be propagated from the first iteration on since all later cells are solved independently and
can therefore not see partiality. In this case, n0,X , n0,Y can be chosen dependently on the ratio
of areas or number of vertices between X and Y, either assuming the scale or the discretization
is comparable. Then certain points of the initial sampling will stay unmatched and be marked
forbidden. They are handled exactly like any other seed but have their own Voronoi cell, and
any point that gets a assigned to the forbidden Voronoi cell is also marked forbidden such that
the information spreads into the neighborhood.

8.4 Interpretation

In what follows we provide different, yet complementary interpretations of the proposed
method, shedding light on its effectiveness.

8.4.1 Alternating diffusion

To intuitively understand the efficacy of kernel alignment for the purpose of finding correspon-
dences, consider the k-th iteration (without data term):

max
Π∈Pn

⟨Π,KYΠkKX ⟩ . (8.17)

Let us denote by δj the discrete indicator function of vertex j on shape X , representing initial
heat distribution concentrated at vertex j. This heat is propagated via the application of the
heat kernel KX to the rest of the vertices, resulting in the new heat distribution on X given
by kjX = KXδj . This heat distribution, whose spread depends on the time parameter t, is
mapped via Πk onto the shape Y, where it is propagated via the heat kernel KY . The ij-th
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8.4. Interpretation

element of the matrix KYΠkKX ,

(KYΠkKX )ij = (kiY)
⊤ΠkkjX

=
∑

m

(KY)i,πk(m)(KX )jm, (8.18)

represents the probability of a point i on Y being in correspondence with the point j on X .
This is affected by both the distance between i and πk(m) on Y for every m on X , encoded in
the entries of (KY)i,πk(m), and by the distance between m and j on X , encoded in the entries
of (KX )jm.

This process, as illustrated in Figure 8.6, resembles the alternating diffusion process described
in Lederman and Talmon (2015). Its success in uncovering the latent correspondence is
based on the following statistical assumptions on the distribution of correspondences in the
initial assignment: we tacitly assume that a sufficiently large number of (uniformly distributed)
points are initially mapped correctly while the rest are mapped randomly, such that when
averaging over their “votes” they do not bias towards any particular candidate.

There is an inherent trade-off between the stability of the process and its accuracy, controlled
by the time parameter t. Smaller t enables more accurate correspondence, but limits the
ability of far away points to compensate for local inaccuracies in the initial correspondence,
while larger t allows information to propagate from farther away, but introduces ambiguity at
the fine scale. Examining the extremities, when t → 0 each point is discouraged to change its
initial match, while as t → ∞ every point becomes a likely candidate for a match. In practice,
we approximately solve a series of problems parametrized by a decreasing sequence of t values,
as explained in the experimental section.

8.4.2 Iterated blurring and sharpening

An alternative point of view is to recall that a diffusion process corresponds to a smoothing
operation, or low-pass filtering in the spectral domain. To that end we view each iteration
(8.13) as an application of a series of low-pass filters (smoothing) followed by a projection
operation (deblurring/sharpening). To see that, we use the spectral decomposition of the heat
kernels to rewrite the payoff matrix in (8.13)

KYΠKX = Ψe−tΛYΨ⊤ΠΦe−tΛXΦ⊤

= Ψe−tΛYCe−tΛXΦ⊤. (8.19)

where the functional map C is seen as a low-pass approximation of the permutation matrix
in the truncated Laplacian eigenbasis, Π ≈ ΨCΦ⊤. Equation (8.19) can thus be interpreted
as applying a low-pass filter to the functional map matrix C. The second step in (8.13) can
be regarded as a projection of the smoothed correspondence on the set of permutations (8.8),
producing a pointwise bijection. A similar approach, but without the heat kernels, can be
seen in Melzi et al. (2019).
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1 8 16 20 25 1 8 16 20 25

diffusion

1 8 16 20 25 1 8 16 20 25

diffusion

π

Figure 8.6: Illustration of the alternating diffusion process initialized with a noisy
correspondence that wrongly maps π(8) = 16 and π(16) = 8 but correctly maps π(x) = x
elsewhere. Top left: Indicator functions on the source shape, one on a point with a wrong
correspondence (red) and one with a correct correspondence (blue). Top right: Both indicator
functions are diffused. Bottom left: The diffused functions are transported to the target shape
via π. Bottom right: Diffusion on the target shape.

8.4.3 Kernel density estimation in the product space

Similar to the interpretation in Vestner et al. (2017), our approach can be seen as reg-
ularizing the correspondence graph Γπ = {(x,π(x)) : x ∈ X} of the latent correspondence
π : X → Y on the product manifold X × Y. In case of a bijective, continuous π, the graph
Π is a submanifold without a boundary of same dimension as X (2 here, see Section 6.2). In
each iteration of the process a probability distribution P : X × Y → [0, 1] is constructed by
placing kernels (geodesic Gaussian kernels in Vestner et al. (2017), and heat kernels in our
case) on the graph of the previous iterate and maximizing

π̂ = argmax
π̂:X 1:1→Y

∫

X
P (x, π̂(x)) dx (8.20)

over the set of bijective but not necessarily continuous correspondences. Notice that the
maximum of this function is achieved if Γπ is a connected, minimal surface submanifold of
X × Y, because the overlap of kernels peaks in this case. Therefore, our approach actually aims
at finding a diffeomorphism. A result of this appears when maximizing above function for two
input with widely different resolutions. The result will often match all points in a connected
region instead of an equal covering of the target, even if this would be semantically meaningful.
The cluttered result is closer to a local diffeomorphism than the distributed solution would
be.
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Figure 8.7: Correspondence accuracy on the SCAPE and TOSCA datasets. We compare
against SGMDS (Aflalo et al. 2016), Functional Maps (Ovsjanikov et al. 2012), Blended
Intrinsic Maps (Kim et al. 2011), Möbius Voting (Lipman and Funkhouser 2009) and
Best Conformal Mappings (Kim et al. 2011).

8.5 Experiments

We performed an extensive quantitative evaluation of the proposed method on four different
benchmarks. All datasets include several classes of (nearly) isometric shapes, with the last
one additionally introducing strong topological noise (i.e., mesh ‘gluing’ in areas of contact).
In our experiments we used the SHOT (Tombari et al. 2010) and heat kernel signature
(HKS) (J. Sun et al. 2009) descriptors with default parameters. For the computation of
heat kernels we used 500 Laplacian eigenfunctions. We provide comparisons with complete
matching pipelines as well as with learning-based approaches, where we show how using our
method as a post-processing step leads to a significant boost in performance. In addition
Figure 8.2 provides runtime comparison against Vestner et al. (2017) which uses a similar
method with geodesic Gaussian kernels. Code of our method is available at https://github.

com/zorah/KernelMatching.

Error measure. We measure correspondence quality according to the Princeton benchmark
protocol (Kim et al. 2011). Assume to be given a match (x, y) ∈ X ×Y, whereas the ground-
truth correspondence is (x, y∗). Then, we measure the geodesic error ϵ(x) = dY(y, y∗)/diam(Y)

normalized by the geodesic diameter of Y. Ideal correspondence should produce ϵ = 0. We plot
cumulative curves showing the percentage of matches that have error smaller than a variable
threshold.

Parameters. The optimal choice of parameters does not only depend on properties of the
considered shapes (such as diameterand density of the sampling) but also on the noise of the
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Figure 8.8: (Left) Correspondence accuracy on FAUST (Bogo et al. 2014). Dashed curves in-
dicate the performance of recent deep learning methods (FMNet (litany2017fmnet), ACNN
(boscaini2016learning) and MoNet (monti2016geometric)), solid curves are obtained us-
ing our method as post-processing. Our method based on handcrafted descriptors (SHOT)
is denoted as ‘Handcrafted+Ours’. (Right) Correspondence accuracy on TOPKIDS (Lähner
et al. 2016a) comparing against EM (Sahillioglu and Yemez 2012), GE (Lähner et al.
2016a), RF (Rodolà et al. 2014a), FSPM (Litany et al. 2017b) and PFM (Rodolà et al.
2016).

input correspondence. The exact dependencies in particular on the latter will be investigated
in follow up works.

8.5.1 Quantitative Evaluation

We evaluate our method on four common datasets for non-rigid correspondence.

TOSCA. The TOSCA dataset (A. M. Bronstein et al. 2008) contains 76 shapes divided
into 8 classes (humans and animals) of varying resolution (3K to 50K vertices). We match each
shape with one instance of the same class. For shapes having more than 10K vertices we use
our multiscale acceleration with an initial problem size of 10K and a maximum problem size
of 3K for all further iterations. The parameters were set to α = 10−10 and t = [300 100 50 10],
with 5 iterations per diffusion time. Figure 8.7 shows a quantitative evaluation.

SCAPE. The SCAPE dataset (Anguelov et al. 2005) contains 72 clean shapes of scanned
humans in different poses. For this test we set α = 10−7, t = [0.1 0.05 0.009 0.001 0.0001],
and 5 iterations per diffusion time. We used multiscale acceleration with initial size equal to
10K vertices, and equal to 1K for subsequent iterations. Quantitative and qualitative results
are given in Figure 8.7, Figure 8.9 and 8.1 (right) respectively.

FAUST. The FAUST dataset (Bogo et al. 2014) contains 100 human scans belonging to
10 different individuals; for these tests we used the template subset of FAUST, consisting of
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8.5. Experiments

Figure 8.9: (Left) Example of an non-isometric correspondence between a horse and an ele-
phant. Because we use local heat kernels as opposed to geodesic distances, we are not bound to
isometric cases. (Middle) The multi-scale approach is not guaranteed to be consistent between
cells and might create sparse non-matched points even when a bijection is possible. (Right)
Example of an failure case where the upper body has a left right swap. The method got stuck
in a local minimum here.

shapes with around 7K vertices each. This allowed us to run our algorithm without multiscale
acceleration. We set α = 10−7 and t = [500 323 209 135 87 36 23 15 10]. Differently from
the previous experiments, here we employ our method as a refinement step for several deep
learning-based methods, demonstrating significant improvements (up to 50%) upon the ‘raw’
output of such approaches. The results are reported in Figure 8.8. Our results contain a few
shapes in which body parts were swapped, preventing us from reaching 100%. An example is
presented in the supp. material.

SHREC’16 Topology. This dataset by Lähner et al. (2016a) contains 25 shapes of
the same class with around 12K vertices, undergoing near-isometric deformations in addi-
tion to large topological shortcuts (see Figure 8.1 middle). Here we use only SHOT as a
descriptor, since HKS is not robust against topological changes. We used α = 10−6 and
t = [2.7 2.44 2.1 1.95 1.7], using multiscale with an initial problem of size 12k and the follow-
ing problems with maximum size 1k. Quantitative results are reported in Figure 8.8.

8.5.2 Run time comparison

The run time experiments, were conducted on a MacBook pro with a 2.5 GHz Intel Core i7
processor and 16 GB RAM running Matlab 2016b. The experiments were conducted using 9

pairs of shapes with a varying number of vertices from the TOSCA high and low resolution
meshes as well as FAUST registrations set. The complete results are presented in Table 8.1.
We ran all our tests using SHOT descriptors, 10 iterations with α = 1/108, 400 eigenvectors
to construct the heat kernels and a logarithmic scale of time parameters between 400 and 10.
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8. Kernel Matching between 2D Manifolds

shapes in experiment #vertices heat kernel in sec Gaussian kernel in sec
Tosca: cat0 to cat2 3400 29.25 97.77
Tosca: dog0 to dog2 3400 36 98.43
Tosca: centaur0 to centaur1 3400 25.31 98.91
Tosca: wolf0 to wolf1 4344 60.7 192.72
Faust models: 000 to 098 6890 109.477019 639.9
Faust models: 001 to 031 6890 104.68 609.56
Faust models: 002 to 039 6890 104.5 611.24
Faust models: 003 to 021 6890 106.41 614.23
Faust models: 004 to 033 6890 106.28 652.58

Table 8.1: Runtime comparison of matching between shapes with different number of vertices
using heat kernels and Gaussian kernels.

8.6 Conclusions

In this chapter, we considered a quadratic assignment formulation for finding a continuous, pos-
sibly partial, correspondence between two non-isometric shapes using pointwise and pairwise
descriptors. We showed that choosing the pairwise descriptors to be positive-definite kernel
matrices (unlike the traditionally used distance matrices) makes the NP-hard QAP admit an
exact relaxation over the space of bistochastic matrices, which we proposed to solve using a
projected descent procedure motivated by the DC algorithm. The resulting iterations take the
form of LAPs, and we solve them using a multi-scale version of the auction algorithm. The
experimental evaluation on various datasets shows that the method scales well to settings with
hundred thousand vertices, and that our method significantly improves the output obtained
by the best existing correspondence methods.

Additionally, we provided several theoretical interpretations of our algorithm, including al-
ternating diffusion and finding the minimal surface submanifold of the product space. As
discussed before, this is a property of diffeomorphisms and our results show this in their re-
markable smoothness of the correspondences. This presents a similar discretization as a QAP
for diffeomorphisms as we already saw for isometries in Section 6.3.2. In the next chapter, we
analyze similar properties directly on the product manifold instead of operating on each shape
separately. In case of alternating diffusion, the diffusion process can be applied jointly on the
product manifold instead of alternating between X and Y.
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CHAPTER 9
Functional Map Representation on the

Product Manifold

In the last chapter we saw how our alternating diffusion algorithm could be interpreted as
acting on the product manifold. In this chapter, we deepen our understanding of posing cor-
respondence — and understanding relationships between the existing representations above

— in terms of functions on the product manifold of the source and target. A motivating
observation is that functional maps approximate a distribution representing the correspon-
dence in the product space as a linear combination of separable tensor-product basis functions.
This distribution, however, is supported on a manifold with a dimension lower than that of
the product space: For a pair of two dimensional shapes, the distribution is supported on a
two-dimensional manifold embedded in a four-dimensional space. Consequently, most of the
support of the basis functions is wasted on unneeded regions of the product space.

We will see how point-to-point maps, functional maps, and soft maps all can be understood
as (signed) measures on the product and how these representations might be converted to
one another. More importantly, this viewpoint suggests new techniques to represent and
approximate mappings directly on the product, e.g. by building a basis from eigenfunctions of
the product Laplace–Beltrami operator potentially after filtering undesirable matches. After
discretizing product manifolds and their Laplace–Beltrami operators, we consider map design
and processing problems among two- and three-dimensional shapes. Reasoning about the
product manifold leads to compact, understandable bases for map design that focus resolution
in the part of the product most relevant to a correspondence task. One of such means is the
construction of inseparable bases. To this end, we compute localized harmonics on the product
manifold, and discuss a numerical scheme that keeps the complexity of such a computation
comparable to that of the construction of a separable localized basis.

This chapter is based on E. Rodolà, Z. Lähner, A. M. Bronstein, M. M. Bronstein, and
J. Solomon (2019). Functional Maps Representation on Product Manifolds. In: Computer
Graphics Forum (CGF) 38.1.
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9.1 Related Work

The first class of methods represents the correspondence on the Cartesian product of the two
shapes. First methods of this type were formulated using graph matching (Zeng et al. 2010).
Windheuser et al. optimize in a product space (Windheuser et al. 2011a), preserving impor-
tant differential geometric properties. A similar approach was applied in (laehner20162D3D)
for 2D-to-3D matching. In Vestner et al. (2017), correspondence is formulated as kernel
density estimation on the product manifold, interpreted as alternating diffusion-sharpening
process in (Vestner* et al. 2017).

Soft maps (Solomon et al. 2012) represent correspondence between shapes as a distribution
on the product manifold with prescribed marginals reflecting area preservation. Non-convex
objectives can be used to incorporate metric information into optimization for soft maps (Mé-
moli 2011; Solomon et al. 2016), while other objectives on soft maps can be understood as
probabilistic relaxations of classical distortion measures from differential geometry (Mandad
et al. 2017; Solomon et al. 2013). These methods suffer from high complexity, usually
quadratic in the number of shape vertices.

Functional maps (Ovsjanikov et al. 2017) abandon pointwise correspondence, instead mod-
eling correspondences as linear operators between spaces of functions. An approximation of
such operators in a pair of truncated orthogonal bases dramatically reduces the problem com-
plexity. One of the key innovations of the functional maps framework is allowing to bring
a new set of algebraic methods into the domain of shape correspondence. Several follow-up
works tried to improve the framework by employing sparsity-based priors (Pokrass et al.
2013b), manifold optimization (Kovnatsky et al. 2013; Kovnatsky et al. 2016), non-
orthogonal (Kovnatsky et al. 2015) or localized (Choukroun et al. 2018; Melzi et al.
2017) bases, coupled optimization over the forward and inverse maps (Eynard et al. 2016;
Ezuz and Ben-Chen 2017; R. Huang and Ovsjanikov 2017), and combination of

functional maps with metric-based approaches (Aflalo et al. 2016; Shamai and Kim-
mel 2016). Recent works of Nogneng and Ovsjanikov (2017) and Nogneng et al.
(2018) considered functional algebra (function point-wise multiplications together with addi-
tion). Generalizations addressing the settings of multiple shape (Q.-X. Huang et al. 2014;
Kovnatsky et al. 2016), partial (Litany et al. 2016; Rodolà et al. 2016) or cluttered

correspondence (Cosmo et al. 2016) have been proposed as well. Most recently, functional
maps have also been used in conjunction with intrinsic deep learning methods (Litany et al.
2017a). For a comprehensive survey of functional maps and related techniques, we refer the
reader to Ovsjanikov et al. (2017).

9.2 Discretization

We show how to discretize the main quantities involved in our framework on 1D and 2D
manifolds, as well as their products. There are slight overlaps with the introductions in
Chapter 3 and Chapter 5 but this section adds concrete formulas to all notions.
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Figure 9.1: Discretization of the Laplace-Beltrami operator on a cycle graph (a) and on a
triangular mesh (b) for interior (green) and boundary edges (red). We also show the hat basis
function on the graph.

9.2.1 1D shapes (curves)

We model 1D manifolds equivalent to Chapter 7 as closed contours with circular topology
(no boundary), discretized as 2-regular cycle graphs G = (N , E) with n ≥ 3 nodes N and as
many edges E . The Laplace-Beltrami operator ∆ is discretized using standard finite element
method with linear hat functions (see Chapter 4); in the hat basis, scalar functions on G are
approximated piecewise-linearly on the edges. The Laplacian takes the form of a n×n sparse
matrix ∆ = A−1S, where:

sij =





− 1
∥eij∥ eij ∈ E

−∑i̸=k wik i = j

0 otherwise

(9.1)

aij =





1
6∥eij∥ eij ∈ E
1
3

∑
k∈N (i) ∥eik∥ i = j

0 otherwise

(9.2)

and the notation is according to Figure 9.1, with N (i) being the set of the neighbors of node
i. Note that in our tests we use non-lumped masses aij .

The product of two boundary-free 1D manifolds M,N is a 2D manifold (a surface) × with
torus topology. For the discretization of the Laplacian on M×N , we appeal to the following:

Theorem 4. (Discrete product Laplacian) Let M, N be 1D manifolds with no boundary,
discretized as 2-regular cycle graphs, and let AM, SM and AN , SN be the mass and stiffness
matrices for ∆M and ∆N respectively, obtained via FEM with respect to piecewise linear (hat)
basis functions. Then,

AM×N = AM ⊗AN (9.3)
SM×N = SM ⊗ SN + SM ⊗ SN (9.4)
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are the mass and stiffness matrices for the product manifold Laplacian ∆M×N with respect
to piecewise bilinear basis functions, defined on a quad meshing of the toric surface M×N .
Here, ⊗ denotes the Kronecker product.

Proof. See Appendix B.

Corollary 3. The LB operator ∆M×N is discretized as:

∆M×N = ∆M ⊗ IN + IM ⊗∆N , (9.5)

where IM, IN are nM × nM and nN × nN identity matrices.

Proof. See Appendix B.

The discretization of ∆M×N does not require the explicit construction of a quad mesh embed-
ded in R4; the toric shapes shown in these pages only serve visualization purposes. Further, the
discretization (9.5) is consistent with the spectral decomposition identities (5.4); see Fiedler
(1973) and Hammack et al. (2011), Proposition 33.6 for additional discussion.

9.2.2 2D shapes (surfaces)

As before, we model 2D surfaces as manifold triangle meshes (V , E ,F) with n vertices V
connected by edges E = Ei∪Eb (where Ei and Eb are interior and boundary edges, respectively)
and triangle faces F . In analogy to the 1D case, the discretization of the LB operator is
obtained using FEM with piecewise linear basis functions on triangle elements Duffin (1959),
taking the form of an n× n sparse matrix ∆ = A−1S, where

sij =





(cotαij + cotβij)/2 ij ∈ Ei
(cotαij)/2 ij ∈ Eb
−∑k ̸=iwik i = j

0 otherwise, and

(9.6)

aij =





(area(Thij) + area(Tijk))/12 ij ∈ Ei
area(Tijk)/12 ij ∈ Eb
1
6

∑
k∈(i)A(Tk) i = j

0 otherwise.

(9.7)

Here, area(T ) denotes the area of triangle T and N (i) is the set of the neighbors of vertex i;
see Figure 9.1 for notation. These are equivalent to the matrices from Chapter 4, except they
allow shapes with boundary.

Given two 2D manifolds M and N , their product is a 4D manifold M×N . The LB operator
on M×N is discretized similarly the lower-dimensional case:
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Corollary 4. Let M, N be surfaces discretized as triangle meshes, and let SM,WM and
SN ,WN be the mass and stiffness matrices for ∆M and ∆N . Then, equations (9.3)-(9.5)
provide a valid discretization of the LB operator ∆M×N . This discretization is equivalent to
the application of FEM on a 3-3 duoprism tessellation of the 4D product manifold M × N
using multilinear basis functions.

Proof. See Appendix B.

We emphasize that the computation of the product Laplacian does not require constructing
a high-dimensional embedding for M×N , avoiding cumbersome manipulation of duoprismic
product elements.

Finally, scalar functions on a manifold M are represented by n-dimensional vectors f =

(f(x1), . . . , f(xn))
⊤, where x1, . . . , xn denote graph nodes and mesh vertices in the 1D and

2D case respectively. Inner products ⟨f, g⟩M are discretized as f⊤Ag, where A is the mass
matrix. On product manifolds, scalar functions are represented as nM × nN matrices F ,
usually deriving from an outer product f ⊗ g discretized as fg⊤; inner products are computed
as vec(F )⊤A vec(G).

9.3 Map representation on the product manifold

In the following we will analyze the structure of certain type of maps from M to N on the
product manifold. Our results are based on the functional map framework (Ovsjanikov
et al. 2012). A functional map T associated to a map π̃ : M → N is a linear mapping
T : F(N ) → F(M) defined as in Ovsjanikov et al. (2012):

T (g) = g ◦ π̃ . (9.8)

Note how this construction allows to move from identifying a map between manifolds to
identifying a linear operator between Hilbert spaces. The functional map T admits a matrix
representation wrt. orthogonal bases {ϕi}i≥1, {ψj}j≥1 on F(M) and F(N ) respectively, with
coefficients C = (cij) determined as follows:

T (g) =
∑

i,j≥1

⟨ψj , g⟩N ⟨ϕi, T (ψj)⟩M| {z }
cij

ϕi . (9.9)

Soft correspondences can be represented by their densities, i.e. nonnegative scalar functions
µ : X ×Y → [0, 1] defined on the product manifold X ×Y satisfying µ̃(x)(B) =

∫
B⊆Y µ(x, y) dy

for all x ∈ and all measurable subsets B ⊆ Y . As a particular case, a bijection π̃ : X → Y
induces a soft map µ̃ by requiring, for all x ∈ X , that µ̃(x)(B) = 1 if and only if π̃(x) ∈ B ⊆ Y,
i.e. the image µ̃(x) is a unit Dirac mass δπ̃(x) centered at π̃(x).
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(a) (b) (c)

Figure 9.2: The ground truth map (here the identity) between the two shapes on the left
as reconstructed using (a) the functional map representation with respect to LB eigenbases
of the two shapes, (b) the separable LB eigenfunctions of the product manifold (here a flat
torus, represented in the parametric domain), and (c) the inseparable localized harmonics
on the product manifold. The black dots represent the maximum likelihood estimate for the
underlying pointwise map (ideally, the identity).

9.3.1 Soft functional maps

It will be instrumental for our purposes to introduce a “soft” generalization of functional maps.
For soft maps µ̃ : M → Prob(N ) with associated density µ ∈ L1(M × N ), we define a soft
functional map T as the expectation

Tµ(g)(x) =

∫

N
g(y)µ(x, y) dy . (9.10)

It is easy to check that Tµ is linear in g, hence admitting a matrix representation with co-
efficients defined as in (9.9). If the density µ encodes a non-soft map (i.e. whenever µ(x, ·)
is concentrated at one point), the definition (9.10) boils down to the original definition (9.8),
T (g)(x) =

∫
N g(y) δπ̃(x)(y) dy = (g ◦ π̃)(x), where the last equivalence stems from the sampling

property of Dirac deltas.

We begin our discussion by deriving a connection between functional map matrices and ex-
panding soft map measures in the Laplace–Beltrami basis:

Theorem 5 (Equivalence). Let Tµ : F(N ) → F(M) be a soft functional map (9.10) with
underlying density µ ∈ L1(M×N ). Further, let cij = ⟨ϕi, Tµ(ψj)⟩M be the matrix coefficients
of Tµ in the orthogonal bases {ϕi}i≥1, {ψj}j≥1, and let pij = ⟨ϕi⊗ψj , µ⟩M×N be the expansion
coefficients of µ in the product basis {ϕi⊗ψj}i,j, such that µ =

∑
ij(ϕi⊗ψj)pij. Then, cij = pij

for all i, j.
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9. Functional Map Representation on the Product Manifold

Proof. The functional map matrix coefficients are computed as:

cij = ⟨ϕi, Tµ(ψj)⟩M =

∫

M
ϕi(x)Tµ(ψj)(x) dx (9.11)

=

∫

M
ϕi(x)

∫

N
ψj(y)µ(x, y) dy dx (9.12)

=

∫

M×N
ϕi(x)ψj(y)µ(x, y) da , (9.13)

while the expansion coefficients of µ are given by

pij = ⟨ϕi ⊗ ψj , µ⟩M×N =

∫

M×N
ϕi(x)ψj(y)µ(x, y) da . (9.14)

Comparing equations (9.13) and (9.14), we see that cij = pij for any choice of i, j ≥ 1.

Note that Theorem 5 applies to any choice of orthogonal bases {ϕi}i≥1 ∈ F(M), {ψj}j≥1 ∈
F(N ).

9.3.2 Spectral representation

Consider the order-k, band-limited approximation of µ:

µ ≈
k∑

ℓ=1

ξℓpℓ , (9.15)

where each ξℓ is an eigenfunction of ∆M×N which uniquely identifies, via (5.4), a pair of eigen-
functions ϕi,ψj on M and N respectively. According to Theorem 5, the expansion coefficients
pℓ are exactly those appearing in the functional map matrix C, when this is expressed in the
Laplacian eigenbases of M and N as originally proposed by Ovsjanikov et al. (2012). There
is, however, a crucial difference in the way the two sets of coefficients are stored. We come to
the following observation:

Truncation. The product eigenfunctions ξℓ appearing in the summation (9.15) are asso-
ciated to the product eigenvalues αi + βj , which are ordered non-decreasingly. In contrast,
in Ovsjanikov et al. (2012) it was proposed to truncate the two summations in (9.9) to
i = 1, . . . , kM and j = 1, . . . , kN , where indices i and j follow the non-decreasing order of the
eigenvalue sequences αi and βj separately.

We see that, due to the different ordering, the eigenfunctions ϕi,ψj involved in the approxima-
tion (9.15) of µ are not necessarily all those involved in the construction of C (9.9), assuming
k = kMkN . In the former case we operate with a reduced basis directly on M × N , while
in the latter case we consider two reduced bases on M and N independently. This has direct
implications on the quality of the approximated maps, as illustrated in Figure 9.2.
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Figure 9.3: (Left) The k = 100 frequencies involved in the construction of a 10×10 functional
map matrix C correspond to an irregular sampling of the Laplacian spectrum of the product
manifold. (Right) In turn, only some of the coefficients cij of matrix C appear among the first
k expansion coefficients pij of the map in the product eigenbasis. Here C is framed in black,
while the blue dots identify the first k coefficients pij .

9.3.3 Relation to finite sections

The functional map representation was originally introduced in Ovsjanikov et al. (2012)
as a convenient language for solving map inference problems of the type:

CA = B , (9.16)

where matrices B = (⟨ϕi, fj⟩M), A = (⟨ψi, gj⟩N ) contain Fourier coefficients of a given set
of corresponding “probe” functions fj , gj , j = 1, . . . , q on M and N , respectively. Typically,
descriptors are used. In the problem above, one is asked to estimate the functional map C.

By truncating the matrix C to the left upper kM×kN submatrix as proposed in Ovsjanikov
et al. (2012), one obtains a finite-dimensional approximation of the infinite linear system
(9.16). This procedure, known as the finite section method (Gröchenig et al. 2010), does not
always guarantee convergence, and a series of remedies using rectangular sections (kM ̸= kN )
have been proposed in the literature for general systems (see Glashoff and Ortlieb (2017)
for a discussion pertaining to functional maps).

Recall that, according to Theorem 5, the matrix elements cij correspond to the expansion
coefficients pij appearing in (9.15). Thus, the approximation carried out in (9.15) can be
regarded as a kind of “irregular” finite section (see Figure 9.3). In contrast with purely
algebraic approaches considering general systems of linear equations, however, our approach
carries a geometric meaning in that it directly reflects the geometry of the correspondence
manifold.
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9. Functional Map Representation on the Product Manifold

9.4 Spectral Map Processing

We consider curves and surfaces as our shapes. Despite their different intrinsic dimensions,
our framework applies to both without specific adjustment.

9.4.1 Localized Spectral Encoding

Theorem 5 establishes the equivalence between the soft functional map Tµ representation
coefficients cij in the bases {ϕi}i≥1 ⊆ F(M) and {ψj}j≥1 ⊆ F(N ) and the coefficients pℓ
of the underlying density µ Fourier series (9.15) in the eigenbasis {ξℓ}ℓ≥1 ⊆ F(M × N ) of
the product manifold Laplacian ∆M×N . This equivalence directly stems from ξℓ’s having
the separable form ϕi ⊗ ψj , see Section 5.2.3. It may be advantageous, however, to consider
different orthonormal bases on M × N that are not necessarily separable. In particular, we
observe that µ tends to be localized on the product manifold M × N (see Figure 9.2), and
thus the standard outer product basis is extremely wasteful as it is supported on the entire
M×N .

A better alternative is the use of localized manifold harmonics (Choukroun et al. 2018;
Melzi et al. 2017). Assume that we are given a rough indication of the support of µ in the
form of a step potential function

V (x, y) =

{
ν µ(x, y) ≈ 0;

0 otherwise.
(9.17)

where ν ≥ 1. Then, the variational problem

min
ξ1,...,ξk

k∑

ℓ=1

∫

M×N

(
∥∇M×N ξℓ∥2gM⊕gN + V ξ2ℓ

)
da (9.18)

s.t. ⟨ξℓ, ξℓ′⟩F(M×N ) = δℓ,ℓ′

produces a set of orthonormal functions denoted by ξ̂1, . . . , ξ̂k that, for a sufficiently large
value of ν, are also localized in the support of V . Note that this new basis {ξ̂ℓ}kℓ=1 is no more
separable, i.e., the functions ξ̂ are not in general expressible as outer products of functions
defined on the originating domains. See Figures 9.4 and 9.5 for an illustration.

The basis {ξ̂ℓ}kℓ=1 turns out to be the eigenbasis of the Hamiltonian operator (Choukroun
et al. 2018) H = ∆M×N +V and can be computed by the eigendecomposition of the product
Laplacian matrix with the addition of diagonal potential. We note that the size of such problem
can be huge (if the shapes are discretized with n ∼ 103 points, the product Laplacian matrix
has size n2×n2 = 106×106; see Theorem 4), and despite its extreme sparsity, computationally
expensive.

As an alternative, we consider a patch P ⊂ M×N of the product manifold corresponding to
V > 0, and define the eigenproblem

∆P ξ̄ℓ(x, y) = γℓξ̄ℓ(x, y) (x, y) ∈ int(P)

ξ̄ℓ(x, y) = 0 (x, y) ∈ ∂P
(9.19)
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Eigenfunction 1 3 5 10 20

Figure 9.4: Examples of basis functions on the product manifold (here visualized as a torus
embedded in R3) of two 1D shapes. We plot a few standard LB eigenfunctions (top row) and
localized manifold harmonics (bottom row). The first basis function in the bottom row also
indicates the used region. Here and in the following, we use the present color scheme (blue
denotes negative values, red positive values, white is zero).

(i) (ii)
Figure 9.5: Projecting the basis functions on the product manifold of horse and elephant back
onto the factor shapes (here only the horse projection is visualized). (i) Projection of three
product LB eigenfunctions, which correspond exactly to three standard LB eigenfunctions
on the horse shape. (ii) Projection of three localized harmonics; these projections do not
correspond to any LB eigenfunction on the horse. Still, note how they capture the geometric
features of the underlying shape.

of the product patch Laplacian ∆P with Dirichlet boundary conditions. If the patch is selected
in such a way that its size scales as O(n) rather than O(n2) in the size of the shapes (in
practice, this can be achieved by taking a fixed-size band around the initial correspondence),
the computation of the localized basis {ξ̄ℓ}kℓ=1 has the same complexity as eigendecomposition
of the individual Laplacians ∆M,∆N .

9.4.2 Map refinement

As an illustrative application of our framework, we introduce a simple procedure for recovering
dense maps from sparse inputs.

We start with an initial, possibly sparse and noisy, correspondence which will be iteratively
refined. The input correspondence can be used to define a heat distribution u0 on the product
manifold that is zero everywhere except on the vertices representing the input correspondence.
u0 is diffused generously such that information about the spatial closeness is exchanged be-
tween neighboring inputs, u = hd(u0, t). This function can be approximated using the LB
eigenfunctions and eigenvalues for the entire product manifold which can be easily constructed
as described in Section 5.2.2. We threshold u to a connected region R spanning each of the orig-
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Figure 9.6: Product space approximation of the correspondence between one-dimensional
shapes with k = 100 basis functions. Bases constructed on bands of different size (1%, 5%,
25% and 90% of the total product manifold area) around the true correspondence are shown.
Separable basis (FM) is shown as a reference. Left: accuracy of the correspondence increases
the product space basis becomes more localized. Right (top row): image of a delta function by
the functional maps. Right (bottom row): True correspondence (curve) and its approximation
in inseparable product space bases with a varying degree of localization. The product manifold
is depicted as a two-dimensional torus (first row).
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Figure 9.7: Map approximation between two-dimensional shapes (surfaces) with k = 500
basis functions on bands of different size (10% and 15% of the total 4D product manifold
area) around the true correspondence. We also show images on the horse of delta functions
supported at three points (red, green, blue) on the elephant. Here, the functional map (FM)
was calculated using 30× 30 = 900 basis functions.

inal shapes completely. This can be solved using a simple min-max optimum and the region can
be expanded until connected if not initially the case. A dense, intermediate correspondence is
found by solving a sparse LAP (using the previously extracted region) or maximum likelihood.
This correspondence defines the initial heat distribution u0 for the next iteration, but this time
the heat is only diffused on R using spectral approximation with Dirichlet eigenfunctions on
R and a for a shorter time. The decreased region makes it possible to increase accuracy in the
approximation with the same amount of eigenfunctions. This process is repeated until R is
really tight around the found correspondence. An example result on two surfaces can be seen
in Figure 9.8. Notice that the heat distribution in the first iteration does not need to come
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Figure 9.8: (Left) AUC at increasing number k of basis functions, respectively localized har-
monics on the product manifold (PM) and standard LB eigenfunctions (FM); note that FM
can only be applied for factorizable k due to the construction of matrix C (in this plot,
k = 36, 49, 64). (Right) An example of the proposed map refinement. We show the input
correspondence on top (sparse point-to-point matches, ∼ 10% of all points) and the recovered
dense map below. The heatmap on the bottom right encodes geodesic error of the recovered
correspondence.

from a input correspondence, but can be constructed from any pointwise similarity function.

9.5 Conclusion

This chapter introduced a novel perspective on map representation and processing, where
pointwise, functional, and soft maps can be understood as densities on the product of the
input shapes. We saw that the Laplace-Beltrami operator can be discretized on the product
manifold and has both separable default eigenfunctions to which we proposed the adoption
of inseparable localized harmonics for compactly encoding correspondences while ensuring
minimal energy dispersion. We applied a similar strategy as in Chapter 8 to solve for a
minimal surface submanifold in the product space representing a diffeomorphism. However,
this time we operated directly on the product manifold. Our theoretical contributions suggest
a new perspective on properties of the correspondence manifold as well as the possibilities of
more accurate representation for map inference and processing.

The main limitation of the approach lies in its scalability. While we showed that one can
reduce the computational complexity to O(n) by appropriately selecting a localization region,
considering (as a possible extension) higher-dimensional products to encode cycle-consistent
maps in shape collections may soon become prohibitive. With the current approach we trade
off scalability for accuracy: Maps are encoded much more precisely in the localized basis, but
this requires the explicit computation of inseparable basis functions that do not admit an
efficient representation in terms of outer products.

A promising direction is the introduction of product spaces within geometric deep learning
pipelines, where the data is in the form of signals defined on top of a manifold. Our proposed
discretization of the product Laplace-Beltrami operator, as well as its spectral decomposition,
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can be directly employed in such pipelines, enabling new forms of structured prediction in a
range of challenging problems in vision, graphics and geometry processing.
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CHAPTER 10
Continuous Deformation for

Correspondence

The previous chapters looked at correspondences mostly in the form of (local) diffeo- or homeo-
morphisms. This is meaningful in terms of preserving neighborhood information on the surface,
but most shapes are not uniquely defined through their surface. Imagine a balloon, once de-
flated and once inflated, and ignoring stretching of the material for a moment. Although the
two surfaces are identical, it is often hard to tell what shape the balloon will assume before
filling it with air. The missing information is how the volume is distributed on the inside. In
this chapter we will look at how to model continuity, but not through surface alignment as
before, but instead in how the inputs were deformed into each other. To that end, we consider
two shapes with the same volume and try to find a volume-preserving deformation field that
aligns their surfaces. The main idea is that a good correspondence will come from physically

Figure 10.1: Given two input shapes, we propose to morph the source shape along a divergence-
free deformation field in order align it with the target. (Left) Example of a deformation field
in 3D. (Right) Example of the results of our framework. We alternate between optimizing
for the deformation field and calculating correspondences. As a result, we generate highly
accurate correspondences (color coded) as well a sequence of natural intermediate shapes as a
by-product (white). Translation is only added for clearness in the figure.
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meaningful deformation. This deformation is supposed to be low energy if it was based on a
good correspondence, because no unnecessary stretching or bending is needed. We model low
energy through smoothness of the deformation field. To achieve this, we do not only have to
solve for the correspondence but also for the deformation field. We will show here that both
benefit a joint optimization.

By definition this method cannot be purely intrinsic because volume is an extrinsic property.
Therefore, it does not suffer from common problems of purely intrinsic methods like confusing
left and right side, as can happen to the Kernel Matching approach from Chapter 8. On
the other hand, intrinsic or very local measures are robust against extreme extrinsic changes,
but we will show that the volume-preservation constraint is strong enough to not constantly
fall into local optima. Directly deforming the geometry in the embedding space often yields
very regular correspondences without extreme outliers (Ma et al. 2014). In particular, this
direction allows for the creation of new, intermediate versions of the input shapes. But these
methods are in general more prone to get stuck in local minima and therefore dependent on
a good initial alignment of the inputs. Unfortunately, many extrinsic matching methods use
linear mappings to model surface deformations (Ma et al. 2014; Myronenko and Song
2010). While this is feasible for small changes, it is often not compatible with how objects
deform in the real world. On the other hand, finding a physically correct morphing between two
shapes is highly complex and computationally intense, even when the perfect correspondence
or prior knowledge about the input is given (Gao et al. 2017; Wirth et al. 2011).

This chapter looks at a more plausible morphing model than linear which takes into account
volume-preservation during the entire deformation and can optimize for a correspondence
and an interpolation at the same time. This is possible by modeling volume-preservation
through zero divergence in a deformation field. This property makes our intermediate shapes
more natural and our results are less likely to end up in a local minimum than with a linear
mapping. In our method, the deformation field is represented in a spatially continuous, coarse-
to-fine basis which allows for an efficient optimization and incentivizes low energy deformations.
Moreover, the optimization can be decoupled from the resolution of the shape, and we can
process shapes of arbitrary resolution with a minimal increase in complexity.

This chapter is based on M. Eisenberger, Z. Lähner, and D. Cremers (2019). Divergence-
Free Shape Correspondence by Deformation. In: Computer Graphics Forum (CGF) 38.5.

10.1 Related Work

This section focuses on work directly related to this chapter. A more general overview can be
found in Chapter 1.

10.1.1 Shape Registration and Matching

One recent line of work in shape matching is based on spectral decomposition of the surface
Laplace-Beltrami operator (Dubrovina and Kimmel 2010). This is popular, because it
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reduces the dimensionality of the problem from the number of vertices to the number of basis
functions chosen (Ovsjanikov et al. 2012). Nevertheless, extracting the correspondence from
the low dimensional representation is still a complex problem and often the retrieved solutions
are noisy or hard to compute (Rodolà et al. 2015). One major problem with purely spectral
approaches is that intrinsic symmetries can not be distinguished, Ren et al. (2018) being
one of few exceptions. We also use a spectral approach, but, instead of a basis for functions on
the surface, we represent deformation fields in the embedding space using the eigenfunctions
of the standard Laplacian. Among other things, the embedding space allows us to distinguish
between intrinsincally symmetric but opposite points.

Methods based on Multi-Dimensional Scaling find correspondences by re-embedding and then
aligning shapes in a (possibly smaller) embedding space with reduced complexity (Aflalo
et al. 2016; A. M. Bronstein et al. 2006b). Chen and Koltun (2015) calculate a
robust non-rigid registration based on Markov random fields but cannot retrieve a continuous
deformation which we do. In Myronenko and Song (2010) and Ma et al. (2014) the
authors address the non-rigid registration problem by modeling one point cloud as a Gaussian
mixture model, similar to our method. Moreover, they also determine the correspondences and
point mappings in an alternating manner using a expectation maximization algorithm. This
work is strongly related to our framework, but no intermediate deformation is modeled. There
also exist extensions of this method which additionally include descriptor values (Ma et al.
2017; Ma et al. 2016). Q.-X. Huang et al. (2008) achieve accurate non-rigid alignments
but rely on good initial correspondence and expensive geodesic distance computation to find
these.

10.1.2 Deformation Fields

Deformation fields have a long history in image registration. One of the first approaches in
that direction is the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework
(Beg et al. 2005). Ashburner (2007) made use of deformation fields for autonomous shape
morphing. They consider temporally constant deformation fields offering limited flexibility to
capture more complex deformations. Solving for a space and time dependent deformation field
is a highly under-determined problem. A remedy for this issue is provided by the geodesic
shooting approach advocated by Miller et al. (2006) which only estimates the initial velocity
field for each pixel. Then the velocity propagates in the image domain in order to preserve the
kinetic energy and the momentum of the whole system. Further improvements of this frame-
work were proposed in subsequent work, including a Gauss-Newton approach (Ashburner
and Friston 2011) and a particularly efficient adjoint calculation (Vialard et al. 2012).

Closely related to our work is Funck et al. (2006) in which the authors also model volume
preserving shape deformations using divergence-free vector fields. Here, deformation fields
are constructed from hand crafted templates which are meant to be used as interactive shape
transformation tools, whereas our method is fully automated. As in our work, in Adams
et al. (2008) the deformations are based on a subsampling of the input shapes and can be
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efficiently applied to the full resolution, but the correspondence is assumed to be given.

Probabilistic interpretations of deformation fields are a popular formulation. Such a model
for image registration and 2D shape registration with a Gaussian process modeling of the
correspondence mapping is proposed in Albrecht et al. (2008). Further work specified how
one can extend this approach to Gaussian processes on the surface of a three dimensional shape
(Dölz et al. 2017; Lüthi et al. 2016). Bregler et al. (2000), Torresani et al. (2008),
Albrecht et al. (2008) and Paladini et al. (2009) also model non-rigid transformations
using a PCA type representation of permitted motions. Analogously, Myronenko and Song
(2010) and Ma et al. (2014) pursue a reproducing kernel Hilbert space approach to model
the vector field interpolation. However, for all these references the respective vector fields
are not defined on the whole embedding space surrounding the shapes but rather only at
the elements of the considered point clouds. Hence, they do not admit an interpretation as a
deformation field which makes is harder to impose global properties, e.g. volume-preservation.

Another classical approach to shape deformation is based on a rotation invariant representation
of triangle meshes (Lipman et al. 2005). In Zhang et al. (2008) this deformation model
is used to compute a sparse set of correspondences but this method is hard to scale to high
resolutions.

10.2 Contribution

We introduce a mathematical framework which solves the correspondence problem on two
shapes with approximately the same volume. For this purpose, we propose to alternate be-
tween estimating the correspondences and a smooth 3D deformation field aligning the two
input shapes. Our shape morphing model solves an initial value problem to shift the first
shape along this deformation field. Numerically, this differential equation is integrated using a
second order Runge-Kutta scheme. Our framework allows us to incorporate physical assump-
tions about the deformations by directly building them into the model. We suggest to impose
volume preservation by enforcing the deformation fields to have zero divergence. More specif-
ically, we define a coarse-to-fine basis representation of these vector fields where each basis
function is divergence-free. This allows us to reduce the complexity by optimizing only over the
most significant coefficients. We use an expectation-maximization approach to simultaneously
compute a subset of the unknown point-to-point correspondences and the optimal deformation
field coefficients. A schematic diagram of the complete pipeline can be found in Figure 10.2.
We demonstrate that the proposed framework can be used to solve for correspondences which
are on par with state-of-the-art methods. Moreover, our method can produce a sequence of
reasonable intermediate shapes between the inputs as a by-product. Both can be scaled up to
arbitrary resolution without a significant increase in complexity which we demonstrate on on
a dataset of real scans with over 100k vertices.
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10.3 Problem Formulation

In the following, we define the problem we want to solve and the mathematical background
we use in later sections. In general we consider two point clouds X = {x1, . . . , xN} ⊂ Ω

and Y = {y1, . . . , yM} ⊂ Ω contained in a compact domain Ω ⊂ RD. In practice we choose
Ω = [0, 1]D. The points xn and ym are samples from the surface of two similar (D − 1)-
dimensional Riemannian manifolds embedded in RD. Our method aims at aligning the point
clouds X and Y in a meaningful manner. In particular, we are looking for a mapping f : X → Ω

which provides the coordinates for a new embedding of each point on X . In the end, f(X )

should be well aligned with Y.

10.3.1 Deformation field shape morphing

We propose to model the shape morphing f : X → Ω using the following initial value problem:
{
ẋ(t) = v(x(t)).

x(0) = xinit.
(10.1)

In this context, v : Ω → RD is some fixed deformation field shifting any point xinit ∈ Ω

over time. If we solve this differential equation until some fixed time teval, we get the flow
φ : [0, teval] × Ω → Ω of Eq. (10.1). The flow φ morphs the space Ω over time, it maps any
input point xinit to its destination φ(t, xinit) at time t ∈ [0, 1]. Applying Eq. (10.1) to all points
xinit := xn ∈ X yields a morphing model for the source shape X :

f(xn) := fn := φ(teval, xn). (10.2)

In order to make those shape deformations more plausible, we require them to be smooth in
space and in time. For this purpose, we assume that the deformation fields v ∈ C∞(Ω,RD)

which, according to the Picard-Lindelöf Theorem, yields smooth point trajectories x(·) :=

φ(·, xinit) ∈ C∞([0, 1],Ω), see Teschl (2012), Lemma 2.3, Theorem 2.5. For convenience we
choose teval = 1 in our experiments.

Our morphing model computes natural shape deformations which can be transformed into
correspondences through nearest neighbor search (See Section 10.4.3). Due to the time depen-
dency of the flow, we additionally get intermediate poses of the input shape at times t ∈ (0, 1)

which constitute the underlying transformation. Those are typically more meaningful than
naive approaches like linear interpolation between the points. We believe that having a con-
tinuous correspondence and a natural deformation are inherently connected, and solving for
both simultaneously improves the results considerably.

10.3.2 Divergence-free deformations

One advantage of our morphing model Eq. (10.1) is that it allows us to incorporate assumptions
about the deformation fields v into our model. In our framework we restrict these velocity
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Figure 10.2: (Left) Overview over our complete pipeline. (Right) Cross section of some de-
formation field basis functions vk : Ω → R3 at x3 = 0.5. Notice the low frequency structures
for low k and increasing frequencies with higher indices. Furthermore, one can see that our
deformation fields have no flow in and out of the domain Ω at the boundary.

fields to be divergence-free, an assumption that is commonly used in mathematical modeling
of in-compressible fluids (Chorin and Marsden 1993):

∇ · v = 0. (10.3)

A well known consequence of this local property is that it yields volume preservation over
time for any subset U ⊂ Ω of the embedding space. In particular, we can consider the set of
solutions of Eq. (10.1):

U(t) :=
{
φ(t, xinit) ∈ Ω

��xinit ∈ U
}
. (10.4)

Then the assumption in Eq. (10.3) yields that each morphed set U(t) has the same volume as
U (Teschl 2012, Lemma 8.8). Therefore, each subvolume of the input shape X , as well as of
the embedding space, is preserved at any given time. Notice that this property is stronger than
global volume preservation of the interior of X only. In general, two very differently shaped
objects can have the same volume. However, for our method the volume of all, potentially
very small, subparts is preserved. In our experiments, we found that this is a reasonable
assumption for real world deformations and it provides a good regularization of our morphing
model Eq. (10.1).

118



10. Continuous Deformation for Correspondence

10.3.3 Helmholtz decomposition

Helmholtz’s theorem (Rutherford 1962) implies that any sufficiently smooth vector field
on the compact domain Ω can be decomposed into the sum of a curl-free, a divergence-free
and a harmonic component. It furthermore provides us with an explicit construction of the
divergence-free component that we are interested in:

v := ∇× Φ. (10.5)

In this context, Φ : Ω → RD is a potential function and ∇ × · is the curl operator. Indeed,
Creusé et al. (2015), Lemma 2.2 shows that such a Φ exists for any divergence-free, C∞

vector field v : Ω → RD with no outflow at the boundary:

⟨v, n⟩ = 0 on ∂Ω. (10.6)

Furthermore, for a given Φ we always get a divergence-free vector field v as a basic property
of the curl operator:

∇ · (∇× Φ) = 0. (10.7)

To further restrict the space of admissible deformation fields, we additionally require the
potential functions to admit Dirichlet boundary conditions Φ|∂Ω = 0. This guarantees that
the potential functions are tangential to the outer normals at ∂Ω, which is a necessary condition
in the existence proof, see Creusé et al. (2015), Lemma 2.2. Moreover, we are only interested
in a high expressibility in the interior of Ω, and choosing Dirchlet boundary conditions makes
the representation of our deformation fields even more compact. Intuitively, it guarantees that
for the resulting deformation fields v there is no flow in and out of the domain Ω (see Equation
(10.6)). In the case of D = 3 spatial dimensions the construction of v in Eq. (10.5) admits the
following form:

v =



∂2Φ3 − ∂3Φ2

∂3Φ1 − ∂1Φ3

∂1Φ2 − ∂2Φ1


 =




0

∂3Φ1

−∂2Φ1


+



−∂3Φ2

0

∂1Φ2


+




∂2Φ3

−∂1Φ3

0


 . (10.8)

Remark. The harmonic component in the Helmholtz decomposition corresponds to global
translations of the input shape X , but we refrain from including them in our framework. For
once, we would like the flow φ : [0, 1] × Ω → Ω to map all points xn ∈ Ω back to the same
domain. Furthermore, modeling global translations is not necessary because we shift the input
shapes a priori such that their empirical mean corresponds to the center of Ω.

10.4 Method

In the following, we outline the core components of our method. First, we construct a
coarse-to-fine deformation field basis with certain built-in properties like volume preserva-
tion (Section 10.4.1). Then, we show how to integrate the initial value problem of Eq. (10.1)
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(Section 10.4.2). Finally, we provide details about our expectation maximization algorithm
(Section 10.4.3). There, we simultaneously optimize for the unknown correspondences and
an appropriate deformation field. Regarding relevant applications, we will mainly restrict
ourselves to the case of 2D shapes embedded in R3.

10.4.1 Spatial representation

Standard discretizations of vector fields v using voxel grids have cubic complexity which makes
them too costly for any reasonable resolution. To get a more compact representation, we
introduce a low rank basis {v1, ..., vK} of spatially dense, divergence-free deformation fields.
The number of basis functions can be adjusted for either speed or expressiveness. Without
loss of generality we set the domain to a D-dimensional cube Ω := [0, 1]D. In practice, we then
translate and scale any shape to generously fit inside. We begin with defining a basis for the
potential fields Φ. For this purpose, consider the eigenfunctions {ϕ1,ϕ2, ...} and eigenvalues
{λ1,λ2, ...} of the scalar Laplacian ∆ on Ω:

∆ϕk = λ∆
k ϕk. (10.9)

This basis of eigenfunctions {ϕ1,ϕ2, ...} is ordered with descending eigenvalues 0 ≥ λ∆
1 ≥

λ∆
2 ≥ .... Furthermore, we require the potential fields to admit Dirichlet boundary conditions

Φ|∂Ω = 0. These ϕk can be computed analytically, because they are exactly the sine elements
of the Fourier basis:

Bϕ =

{
ϕ : [0, 1]D → R, x 7→

D∏

d=1

1

2
sin(xdπjd)

����j ∈ ND

}
. (10.10)

The set Bϕ = {ϕ1,ϕ2, ...} is ordered by ascending Dirichlet energy of the ϕk. These ϕk form
an orthonormal basis wrt. the ⟨·, ·⟩L2(Ω) inner product for scalar functions on Ω. We can now
use Bϕ to construct a basis for the deformation fields Bv according to Eq. (10.5). Note that
the basis Bϕ consists of scalar functions while the potential functions Φ : Ω → RD are vector
valued. However, due to the linearity of the curl ∇× ·, we obtain a basis by using Eq. (10.5)
one entry at a time. For D = 3 this can be done as follows:

Bv =

∞∪

k=1

{
∇×



ϕk

0

0


 ,∇×




0

ϕk

0


 ,∇×




0

0

ϕk



}

=
∞∪

k=1

{



0

∂3ϕk

−∂2ϕk


 ,



−∂3ϕk

0

∂1ϕk


 ,




∂2ϕk

−∂1ϕk

0



}
. (10.11)
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We get three deformation basis functions for each ϕk in Eq. (10.10). Analogously to the po-
tential fields, the basis elements Bv = {v1, v2, ...} are again sorted according to the eigenvalues
λ∆
k of the corresponding ϕk in descending order. Note that there are in general multiple basis

functions vk for each eigenvalue λ∆
k . Overall, we obtain arbitrary deformation fields v as the

linear combination of the first K basis elements vk with some coefficients ak:

v(x) =
K∑

k=1

vk(x)ak. (10.12)

Remark. One aspect we would like to discuss in this context is our choice of domain Ω =

[0, 1]D. The first basis function v1 in Figure 10.2 is equivalent up to first order to a rotation
around the x3 axis. This especially holds near the center of the domain Ω and deteriorates
at its boundary ∂Ω. Those considerations raise the question whether a cubic domain Ω is the
best choice for our purposes. Following the work in Zhao and Burge (2007); Zhao and
Burge (2008), we could pursue our approach in a spherical domain. This would lead to more
complex basis functions vk but the first three eigenfunctions would span the space of rotations
without undesirable artifacts at the boundaries of the domain. Although this would be a
nice theoretical property, we refrain from using these basis functions here due their complex
structure.

10.4.2 Temporal discretization

In order to evaluate the correspondence mapping f in Eq. (10.2), we have to solve the initial
value problem Eq. (10.1) with a numerical integration scheme. The simplest choice in this
context is the explicit Euler method. However, we decided to use a second order Runge-Kutta
method (Griffiths and Higham 2010, Ch. 9), because it has a significantly higher accuracy
and, therefore, allows for a coarser time discretization. We subdivide the time domain in an
equidistant grid with T ∈ N intervals and set the step size h = 1

T . This yields an explicit
iteration scheme: 




x
(0)
n := xn.

x
(t+1)
n := x

(t)
n + hv

(
x
(t)
n + h

2v
(
x
(t)
n

))
.

fn := x
(T )
n .

(10.13)

We typically choose T ∈ {1, ..., 100} in our experiments. In general, we have to make a
trade off between runtime and accuracy when selecting an appropriate number of steps T .
If we choose T too small, we lose some key properties of our framework like the volume
preservation. This effect is illustrated in Figure 10.3 for the 2D shape of a bat transformed
by a 90 degree rotation around the center. Note that the deformation field corresponding to
this transformation is only approximately contained in our framework due to our choice of
domain and boundary conditions, see discussion in the previous subsection. If we choose too
few time steps T , the shape shifts outward and the area expands. On the other hand, this
effect becomes insignificantly small if we choose T ≥ 10.
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Figure 10.3: Area expansion with different step sizes using the Runge-Kutta integration. Left:
Rotation around 90 degrees on a bat shape of the MPEG-7 dataset (Ralph n.d.) (black). If
executed in one step (T = 1), the shape expands (red), whereas for ten steps T = 10 the area
of the interior stays nearly the same (green). Right: Relative area expansion when performing
the same deformation with an increasing number of steps T .

10.4.3 Optimization

In the previous sections we derived a coherent description of shape morphing using volume
preserving deformation fields. We can now use this framework to construct an algorithm that
matches two given point clouds X and Y by calculating a volume preserving deformation
field between them. In order to do that, we simultaneously optimize for the deformation field
coefficients a and the unknown correspondences.

Similar to Myronenko and Song (2010) and Ma et al. (2014), we approach shape
registration in a probabilistic manner. We interpret the point cloud X as a Gaussian mixture
model with the means located at the shifted points fn = x

(T )
n and the covariance σ2ID ∈ RD×D

for some σ > 0. This enables us to simultaneously determine the deformation field coefficients
a ∈ RK and the correspondences W ∈ [0, 1]N×M by applying an expectation maximization
approach. Expectation maximization alternates between optimizing the deformation field
coefficients and the correspondence while assuming the other to be fixed.

Expectation step. The expectation step calculates correspondences for a fixed deformation.
We represent the correspondences between the morphed f(X ) = {f1, . . . , fN} and the reference
point cloud Y = {y1, . . . , yM} as soft correspondence matrices W ∈ [0, 1]N×M which arise
naturally from the Gaussian mixture model assumption. High values of Wnm ≈ 1 indicate a
high correspondence probability for the point pair (xn, ym), while values close to zero indicate
low probability. The expectation maximization framework yields an explicit update rule for
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W given the deformation coefficients a:

Wnm :=

exp

(
− 1

2σ2d
2
nm

)

(2πσ2)
D
2 +

∑N
ñ=1 exp

(
− 1

2σ2d
2
ñm

) . (10.14)

Intuitively, Wnm describes the value of a Gaussian with center fn and variance σ at point ym.
In the E-step soft correspondences W ∈ [0, 1]N×M are determined as a relaxed version of the
latent variables Z:

Wnm = EZ|Y,a(Znm) = p(Znm = 1|ym, a)

=
p(ym|Znm = 1, a)

p(ym|a) =
p(ym|Znm = 1, a)

∑N+1
ñ=1 p(ym|Zñm = 1, a)

. (10.15)
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Figure 10.4: Quantitative evaluation using the Princeton benchmark protocol on the TOSCA
data set (A. M. Bronstein et al. 2008) (left), the SCAPE data set (Anguelov et al. 2005)
(middle), and the high-resolution TOPKIDS (Lähner et al. 2016a) (right). On TOSCA and
SCAPE we compare against SGMDS (Aflalo et al. 2016), Functional Maps (Ovsjanikov et
al. 2012), BIM (Kim et al. 2011), Möbius Voting (Lipman and Funkhouser 2009), CPD
(Myronenko and Song 2010) and Kernel Matching (Vestner* et al. 2017). On TOPKIDS
we compare against the competitors of the original paper IE-EM (Sahillioglu and Yemez
2012), GE (Burghard et al. 2017), RF (Rodolà et al. 2014a)), FSPM (Litany et al.
2017b), PFM (Rodolà et al. 2016) and Kernel Matching (KM) (Vestner* et al. 2017).
Both the TOSCA as well as the TOPKIDS dataset contain cases which are critical for our
method but our results are still on a par with state-of-the-art. See Section 10.5.1 for details.
We additionally evaluate our method without using features on the TOSCA data set. The
drop in performance shows that features are crucial to avoid unwanted optima.

The data likelihood terms p(ym|Znm = 1, a) are defined in (C.3) and (C.4). This leads to the
expression proposed in (10.14).
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The E-step consists of minimizing the following energy with respect to a:

EZ|Y,a

(
− log p(a|Z,Y)

)

= − log p(a)−
M∑

m=1

N+1∑

n=1

Wnm log p(ym|Znm = 1, a)

∝ 1

2
aTL−1a+

1

2σ2

M∑

m=1

N∑

n=1

Wnm∥ym − fn∥22. (10.16)

In this context the shifted points fn depend on the unknown coefficients a. However, the
descriptor distances dSHOT are independent of a, therefore, they vanish in the last step in
(C.7) (see Appendix).

Similar to Myronenko and Song (2010), the normalization factor in the denominator comes
from the mixture model assumption combined with an explicit modeling of outliers. In order
to prevent our method from getting stuck in incorrect local optima, we include SHOT descrip-
tors (Tombari et al. 2010) with standard parameters from the authors’ implementation. We
combine them with Euclidean distances to define a metric for pairs of points xn and ym:

d2nm :=
ym − fn

2
2
+ d

SHOT(xn)− SHOT(ym)
2
2
. (10.17)

We introduce the factor d ≥ 0 to ensure that both metrics have a comparable scaling. In
particular, we require both summands to have the same mean value for all point pairs X
and Y. Note that we use descriptor values SHOT(xn) on the original shape X instead of the
morphed shape f(X ) in order to not recompute them at every iteration.

Maximization step. The maximization step updates the deformation field for given soft
correspondences W . Intuitively, we are looking for the deformation field coefficients a that
best align points with high correspondence probability Wnm. For this purpose, we interpret
the coefficients a = (a1, .., aK)⊤ as random variables with a normal distribution a ∼ N (0, L),
where L := diag(λ1, ...,λK). If we compute the pushforward of this Gaussian according to
Eq. (10.12), we get a prior distribution of deformation fields v. The weights λk are constructed
from the eigenvalues λ∆

k as follows:

λk :=
(
−λ∆

k

)−D
2 =

(
π2

D∑

d=1

j2d

)−D
2

. (10.18)

The mathematical background of this choice for the weights λk is provided by the Karhunen-
Loève expansion (Sullivan 2015, Ch. 11) which is an extension of the principal component
analysis (PCA) for function spaces. See Appendix C.3 for details on this choice. Intuitively,
this kind of weighting promotes a damping of the high frequency components and smoothness
of the deformation field v. The maximization step optimizes the coefficients a for their posterior
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10. Continuous Deformation for Correspondence

Figure 10.5: Examples of texture transfer done with our method. For each object the first
image shows the source shape and texture, the second image the texture transferred with the
ground-truth map and the third image the texture transferred with our correspondences. Our
results are nearly identical to the ground-truth except for the dog which shows some artifacts
on tail and chest.

distribution given the current correspondences which describes how well the deformation field
of a explains W . This results in the following energy for a:

E(a) :=
σ2

2
a⊤L−1a+

M∑

m=1

N∑

n=1

Wnmρ(∥ym − fn∥2). (10.19)

This energy E is the sum of the negative log prior including the weights λk (left term) and
the negative log likelihood (right term) of a. The function ρ : R → [0,∞) is the Huber loss
Huber (1964) which helps to account for outliers and makes the deformation field estimation
more robust:

ρ(r) =

{
1
2r

2 |r| ≤ r0.

r0|r|− 1
2r

2
0 otherwise.

(10.20)

In our experiments we choose the outer slope as r0 := 0.01. Furthermore, we apply a Gauss-
Newton type approach to minimize the energy in (10.19). This results in an iterative method
similar to the Levenberg-Marquardt algorithm (Levenberg 1944). For this purpose, the
residual term ∥ym − fn∥2 is linearized in each iteration. This requires a differentiation of the
Runge-Kutta scheme (10.13) wrt. the weights a, see Appendix C.2 for an explicit formulation
of the derivative d

dafn and the Gauss-Newton update step for the energy in Equation (10.19).

To summarize, our method alternates between computing the weights W (i) according to (10.14)
and performing one Gauss-Newton update step for (10.19) to obtain a(i). To initialize the
algorithm, we set the deformation field to zero a(0) := 0.
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10.5 Experiments

We evaluate our method for several applications to show that it is general and flexible. Al-
though we handle shapes with up to 200k and more vertices, the computation of the deforma-
tion field is always done on a downsampled version of the inputs with 3000 vertices and then
applied to the full resolution. We use Euclidean farthest point sampling. The downsampled
shape should include points of all relevant large and fine scale structures in order for the de-
formation field to move these correctly, but we found 3000 sufficient for our applications. As
a preprocessing step we shift both inputs such that the mean of their vertex positions is in
the center of the domain and align them using principle component analysis (PCA). To avoid
wrong alignments along the principle component axes, we choose the orientation that mini-
mizes Eq. (10.17). When averaging over all experiments presented here, our algorithm takes
about 370 seconds to compute the deformation and correspondences for one pair of shapes.
Due to our a priori downsampling the runtime is only linearly dependent on the number of
vertices, see Section 10.5.4 for a discussion of this property. All experiments were performed
with MATLAB on a system with an Intel Core i7-3770 CPU clocked at 3.40GHz, 32 GB RAM
and a GeForce GTX TITAN X graphics card running a recent Linux distribution. In all our
experiments we only use the raw shape data, and, in particular, do not need any ground truth
information or user input.

10.5.1 Matching

We verify our method using the TOSCA (A. M. Bronstein et al. 2008), SCAPE (Anguelov
et al. 2005) and high-resolution TOPKIDS (Lähner et al. 2016a) data sets. All these
shapes are synthetic and the exact intra-class correspondences are known. TOSCA contains
76 triangular meshes with 8 classes of humans and animals, SCAPE consists of 72 poses of
the same person and TOPKIDS contains 26 poses of the same person in which topological
merging, as it might appear in real scanning, is imitated.

We set the hyperparameters σ2 := 0.01, T := 20 and choose K = 3000 basis functions for the
deformation field. Because W (i) only contains 3000 correspondences, we perform a nearest-
neighbor search with respect to the metric in Eq. (10.17) to obtain a dense mapping. The
evaluation is done with the Princeton benchmark protocol as introduced in Kim et al. (2011).
Given the ground-truth match (x, y∗) ∈ X ×Y , the error of the calculated match (x, y) is given
by the geodesic distance between y and y∗ normalized by the diameter of Y:

ϵ(x) =
dGeo
Y (y, y∗)√

area(Y)

We plot cumulative curves showing the percentages of matches that are below an increasing
threshold. As zero is the value for ground-truth matches, the ideal curve would be con-
stant at 100. See Figure 10.4 for our results and Figure 10.5 for example matching results
showing texture transfer. On SCAPE we are able to reach state-of-the-art results whereas
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Figure 10.6: Example registrations from the FAUST scan data set. The surface color cor-
responds to the Euclidean surface distance between scan and registration. The scale of the
scans is in real cm values and the same on all plots. We report the average and maximum
error under each image. Many errors occur due to the SHOT descriptors being corrupted at
holes and in noisy areas (e.g. the hands). Furthermore, in some case the assumption of exact
volume preservation is too restrictive for real scans with noise and topological changes (see
especially second to the right).

on TOSCA the intrinsic Kernel Matching method is slightly better. Our extrinsic approach
makes self-touching poses more challenging and these cases occur fairly often in TOSCA. Al-
though TOPKIDS is synthetic, the self-touching poses are actually merged in the geometry
which makes it more challenging. On this dataset we are slightly better than Kernel Matching
(see Figure 10.4).

To show the influence of features on the results, we do an evaluation of our method without
using features at any point during the optimization. Instead the distance of Equation (10.17) is
replaced with the pure Euclidean distance between the coordinates. The result can be seen in
Figure 10.4. The performance without features decreases substantially because the Euclidean
distance is a weak indicator when large deformations take place. Therefore, our method gets
stuck in local optima more often without feature guidance.

10.5.2 Registration

We apply our framework to the FAUST Scan dataset (Bogo et al. 2014) which contains data
from scans of real humans in different poses. Each of these shapes has approximately 200k

vertices, they are sampled inconsistently and some of them are severely affected by scanning
noise, holes and topological changes. We match the null shape of every person to its other
poses. In Figure 10.6 we display the surface distance of the morphed shapes to the goal shape
for some examples. We reach very tight alignments except in very challenging cases, like
topological changes. Furthermore, the scanned volume varies slightly even between different
poses of the same humans which induces small errors in our method.
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a) Centaur. b) Human.

c) Armadillo.

Figure 10.7: Three examples of shapes that are morphed into one another according to the
initial value problem of Eq. Eq. (10.1). The centaur (a) and the human (b) are from the
TOSCA A. M. Bronstein et al. (2008) and FAUST Bogo et al. (2014) dataset re-
spectively. The armadillo (c) is from the AIM@SHAPE shape repository AIM@SHAPE
repository (n.d.). (b) is a scan of a real person and very high resolution (214k vertices). The
source and target shape are shown in white and the interpolations at times t = 0.25, 0.5, 0.75
in blue. The translation is not part of our deformation and was only introduced for clarity in
the figures/divfree.

10.5.3 Effect of the basis size

In our evaluations we consistently use K = 3000 deformation field basis functions. To justify
this choice empirically, we compute the mean geodesic errors of each TOSCA pair for several
basis sizes K ∈ {1, . . . , 3000}, see Figure 10.8. We observe that while the accuracy increases
significantly for small K ≤ 1000, after some point it starts plateauing. In our evaluations, we
choose K = 3000 because we aim for a high accuracy. However, for some applications where
runtime is more important than accuracy a smaller basis size K < 3000 might be sufficient.
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Figure 10.8: (Left) Dependency of the mean geodesic errors on TOSCA on different basis
sizes K ∈ {1, . . . , 3000}. In particular, we show the elements at the 0%, 25%, 50%, 75%, and
100% quantile. (Right) Runtime of our method for the full resolution shape deformation for
different number of vertices N ∈ {3000, . . . , 100000}. The full pipeline has two steps: (1) a
fixed size optimization over 3000 vertices which takes around 360 seconds on average (blue
dashed line), (2) applying the deformation field to the full resolution shape and extracting
the correspondence for the full shape. The plot shows that our method scales linearly in
the number of vertices and is therefore still feasible for very detailed shapes with over 100k
vertices.

10.5.4 Runtime for high resolution

One major advantage of our method is that it is scalable to high resolution input shapes like
those from FAUST because we optimize for the deformation field on downsampled shapes
(3000 vertices). One point that we want to stress in this context is that this is not the same as
computing matchings only on low resolution shapes. For many matching methods this scaling
to the full resolution is challenging, most methods need to come up with a custom coarse-to-
fine strategy. In general, it is not straightforward to extend a shape matching or deformation
from a downsampled shape to the rest of the vertices. However, for our method this upscaling
is trivial because the deformation field basis functions Eq. (10.11) are defined densely on the
whole embedding space, therefore they can be evaluated anywhere in Ω. This upsampling
scales linearly in N because the Runge-Kutta method (10.13) is computed independently for
all vertices xn. See Figure 10.8 for an empirical verification of this property. Here, the runtime
for the shape deformation is computed for various downsampled versions of one high resolution
shape. To sum it up, the runtime for computing shape morphings is relatively low and increases
only linearly in the number of vertices N which makes our method scalable for high resolution
input shapes.

10.5.5 Shape Interpolation

Interpolation. Our method morphs the input shape X by solving the ODE Eq. (10.1) up
to time teval = 1. If we now instead evaluate it at an intermediate time t ∈ (0, 1), we get
interpolated shapes as a byproduct of our matching pipeline. Just like the morphed shapes
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Figure 10.9: (Left) Example of an extrapolated shape from the KIDS dataset (Rodolà et al.
2014a). The extrapolation was achieved by using the temporally fixed deformation field v for
simulating the initial value problem from Eq. (10.1) up to the time t = 1.3. Source and target
shape are white, one interpolated shape is shown in blue and the extrapolation is pink. (Right)
Example of a failure case. The source and target shapes are white, the interpolated shape at
t = 0.5 is blue and the resulting shape at t = 1 is yellow. The yellow shape is supposed to
be as close to the target as possible but the fingers are pushed away from each other instead.
Here, the thumb and index finger are supposed to move in spatially very close areas. We are
only calculating one deformation field for all time steps, therefore it is not clear for our method
what motion to assign for contradicting motions. In order to resolve this problem, we need
to either assign different motions to different subparts of the objects or make the deformation
fields time dependent.

f(X ) those intermediate shape morphings are smooth and volume preserving which makes
them look natural. Three examples with interpolated shapes are displayed in Figure 10.7.

Extrapolation. Similarly to the idea of interpolating shapes as a byproduct of our method
we can also use the computed deformation field v to solve the initial value problem Eq. (10.1)
up to times t > 1. This results in extrapolated shapes, see Figure 10.9. In contrast to
shape interpolation, extrapolation is a severely underdetermined task and it is hard to eval-
uate quantitatively. Nevertheless, we observed that for moderate time spans t ∈ [1, 1.5] our
method produces reasonable results. In general, the morphing speed slows down at some
point, especially when the shape is moving in previously unoccupied space. Intuitively, for the
optimization there is no incentive to impose any particular movement on these parts of the
domain Ω, if it is not relevant for the surface alignment. Still, our extrapolated shapes are
visually appealing and not severely affected by distortions.

10.6 Conclusion

This chapter introduced a extrinsic shape correspondence method optimizing for both a dense
surface correspondence as well as a physically meaningful deformation field aligning the inputs.
Our morphing model shifts the source shape X along a smooth, volume preserving deformation
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field using a second order Runge-Kutta integration scheme in order to align it with the reference
shape Y. Additionally to aligning the inputs, this model can also be used to efficiently calculate
plausible interpolated, and even extrapolated, shapes.

Our method addresses the coupled problem of finding an unknown deformation and unknown
correspondence with an expectation maximization approach. Furthermore, we represent our
morphing model with a low rank deformation field basis which reduces the degrees of free-
dom and show that this makes the optimization problem well constrained. As a result, this
allows subsampling the inputs to make the problem computationally feasible, even for high
resolution meshes, with only a linear increase in runtime. Quantitative evaluations for shape
correspondence partly prove state-of-the-art performance of our method. Moreover, we show
convincing examples of shape interpolation and extrapolation that arise naturally from our
pipeline.

10.6.1 Limitations

This method works really well when some assumptions hold but is by construction not suited
for some cases. The first is that the volume-preservation cannot be relaxed and therefore arti-
facts are bound to appear when the inputs do not have the same volume. Second, the volume
preservation property applies to every subregion of the domain Ω, including the intermediate
space between parts of the shape. Therefore, separating two touching parts (for example two
hands) is in theory possible, but it requires many high frequency deformation basis elements
which would make the optimization costly. Additionally, the assumption of Eq. (10.1) being
autonomous can be problematic if different parts of the shape move through the same region
of the embedding space in a contradictory manner. One example for this is a hand closing to
a fist. At first the index and middle finger occupy parts of the embedding space before the
thumb moves in the same area but in a different direction. See Figure 10.9.

10.6.2 Continuity

Because we make use of the global, extrinsic volume property, we can constrain our opti-
mization with a small, subsampled version of the input shapes. Smoothness and volume-
preservation guarantee that applying the deformation to the full resolution will yield mean-
ingful results. However, smoothness in the deformation does not imply continuity in the
correspondence as we defined it in Chapter 6. First, the soft correspondence W needs to be
converted into a pointwise correspondence in order for the theory to apply. This is normally
done by taking the column-wise maximum or some weighted nearest neighbor computation but
this thresholding may lead to broken continuity in areas where the alignment is not very tight.
Non-tight alignment happens regularly because high frequency details need many degrees of
freedom to be properly aligned. If the deformation field would guarantee a perfect alignment,
it could be used to directly extract the diffeomorphism. However, there is no guarantee on
continuity in a pointwise solution of an approximate alignment. But in our experiments we
saw that our method produces only very few discontinuities. Furthermore, the solution is
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smooth by construction in terms of the deformation field which means that without projecting
onto a pointwise correspondence the solution is continuous and can serve well in applications
that do not require the mesh information of Y. Second, the divergence-free vector field does
not have an equivalent on the product manifold or the product embedding space. This is
because volume-preservation assumes that X and Y are embedded in the same embedding
space. But the product manifold is embedded in the product of the original embedding spaces,
therefore, there is no straightforward equivalent of the divergence-free vector field in the prod-
uct embedding space. As a result, this approach could not be used for different dimensional
shapes, but, if volume-preservation holds, adds meaningful constraint that lead to an efficient
optimization.



PART IV
Closure
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"Poirot," I said. "I have been thinking."
"An admirable exercise my friend.
Continue it."

– Agatha Christie, Peril at End
House



CHAPTER 11
Conclusion

11.1 Summary

We saw several algorithms solving for continuous, non-rigid correspondences between 2D and
3D shapes and looked at their interpretation on the product manifold.

Transdimensional Correspondences. In the case of a 2D contour and a 3D shape, we can
guarantee a continuous solution due to the one-dimensional structure of the solution. This
is possible by explicitly modeling the product graph and, then, applying a combination of
Dijkstra’s algorithm and branch-and-bound to find a shortest path on it. Additionally, the
oriented and multi-level structure of the product graph allows us to reduce the computational
complexity by processing the graph level by level. This led to a polynomial time algorithm for
finding the global optimum as well as an approximation scheme with considerable speed-up.
The second hurdle in this setting is finding descriptors that are comparable between different
dimensional objects but robust against pose changes at the same time. We proposed a way to
use spectral features, which are commonly used on deformable 3D shapes, on 2D contours by
filling their interior. This solid can be seen as an approximately isometric part of the 3D shape.
Our experiments show that this combination is well-suited for correspondence and retrieval
between 2D and 3D shapes with isometric deformations, and, to the best of our knowledge, it
is the first algorithm to combine different dimensionality with deformable shapes.

Minimal Surface Submanifolds. The second setting includes two shapes of dimension
three; a case in which the solution is two-dimensional and cannot be found through a shortest
path problem anymore. Instead the solution is a two-dimensional submanifold of the four-
dimensional product manifold. Our first approach optimized a QAP using heat kernels and
we showed that its maximum corresponds to a minimal surface in the product. QAPs in
general are NP-hard and our proposed solution is only approximate. But we used the positive-
definiteness of heat kernels to show that the relaxation preserves the optimum of the original
problem. We solve the QAP as a sequence of LAPs, but these also become inefficient on high
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resolutions. To counteract this, we proposed a multi-scale approach that propagates global
information into each subproblem. Using this framework we showed state-of-the-art results on
several isometric correspondence datasets. Additionally, our method can handle non-isometric
cases, including topology changes and partiality, without expensive adjustments.

Many other methods also have an interpretation on the product manifold, although this is
rarely explored in literature. We explored this relation for the functional map framework and
showed that the coefficients used in functional maps are not optimal in terms of representation.
This result arises from the special structure of the product manifold and the separability
of all elements into their counterparts on the original manifolds. We applied this to the
LB eigenfunctions and -values used in functional maps to show suboptimality, but the same
holds for other properties and is independent of dimensions. Furthermore, we used the same
observation to construct a new non-separable basis that is well suited for the correspondence
problem on the product manifold and showed its applicability on a framework for refinement
of correspondences.

Correspondence through Deformation. In the last chapter we looked at continuity from
a different viewpoint. Instead of only considering the structure of the map M → N , our
approach imposed properties in the sequence of intermediate shapes depicting a deformation
between M and N . This was done by jointly optimizing for the point-wise correspondence
and the volume-preserving deformation field in an expectation-maximization scheme. The
underlying idea is that the knowledge about one improves the result of the second. To that
end, we constructed a basis for volume-preserving deformation fields that is both frequency-
ordered and has a closed-form solution. The frequency ordering performs a sort of low-pass
filtering on the solution that is both efficient in terms of optimization and incentivizes a smooth
deformation in the end. The closed-form solution enables optimization on a subset of vertices
but allows to apply the result without discretization errors to any mesh resolution. Finally, we
saw that by restricting the solution space to volume-preserving deformations scattered outliers
are nearly impossible, and the low-frequency deformations get seldom stuck in local optima.
Apart from state-of-the-art correspondence results, we get a realistic interpolation sequence
between the input shapes as a by-product without any computation overhead.

11.2 Discussion

The methods above show great results on certain type of data, namely isometric and non-
isometric cases that are enable a nearly bijective solution. Non-bijectivity and two-sided
partiality is still a problem for many state-of-the-art methods. Both might require that a
certain amount of vertices stays unmatched. If the exact amount is not known beforehand,
it is hard to find a balance between not matching at all and matching a not-perfect pair.
If not matching a vertex is not penalized at all, the optimal solution will nearly always be
the empty one, because it has zero energy. Forcing every vertex to be matched, results in
parts that have no ground-truth correspondence to be matched anyway, and similarity based
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approaches might suffer from weird optima because of their large influence on the energy
function. However, choosing the right penalization depends heavily on the amount of noise in
the data, prior assumptions about overlap and the method itself. This makes finding a general
approach really hard, and most strategies unstable. As a result, there exist no methods that
can handle two-sided partiality for non-rigid applications without having prior knowledge
about the classes of shapes. This is a challenge that future methods still have to tackle.

The majority of methods in this thesis have a clean interpretation on the product manifold,
even if they were not modeled like this explicitly. This is not surprising, because the product
manifold itself does not have its own geometry and properties but just concatenates properties
of its factors. In fact, any notion on the base manifolds has a counterpart on the product. For
most local and intrinsic properties these counterparts are meaningful, and the product space
can be used to obtain a clearer view of the relationship between two shapes. This can be
informative even though no new information is added, because the construction is complete.
Whereas comparing properties of two manifolds might lead to omitting implicit relations, the
geometry of the product manifold will make these shortcomings clear. On the other hand,
certain extrinsic relations are not represented on the product manifold. In Chapter 10 we con-
sidered volume-preserving deformation fields. These assume that the source and target shape
are embedded in the same embedding space, and this makes volume-preservation meaningful.
However, volume-preservation does not directly translate to the product manifold, because
the embedding space, that was assumed to be the same, is also multiplied into its product. It
means that the volume of one slice of the product manifold is still equal to the volume of the
original shape, but the 3D vector field deforming one shape into the other does not have a
straight-forward 6D equivalent. This is beneficial, because it means the product manifold does
not assume anything about where the shapes were embedded. As an example, any product
manifold method still works two two-dimensional manifolds were embedded in three and four
dimensions, respectively. It is not necessarily a good assumption for every application though.

Directly working on the product manifold can be expensive and constructing it explicitly will
probably exceed memory availability for most input shapes. But we saw in Chapter 7 and
Chapter 9 that these issues can be overcome by only constructing locally or using closed-form
solutions that exist for basically all properties. Even when operating directly on the product
is not feasible, doing a theoretical analysis there is always free (in terms of computation time)
and can lead to more in-depth understanding of the energy function, the optimization problem
or the properties of the solution, as we saw in Chapter 8. Especially diffeomorphism, which
are hard to characterize in discretized settings, have an equivalent minimal surface formulation
in the product space which can be discretized and validated. Therefore, I advocate to revisit
the interpretation of known algorithms on the product space to understand their theoretical
properties, and keep these relationships in mind when designing new ones.





PART V
Appendix
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Little details have special talents in
creating big problems.

– Mehmet Murat Ildan



APPENDIX A
Appendix for Chapter 8

In Section 8.3 we propose to use the DC algorithm to optimize

argmin
P∈n×n

B(P )− E(P ). (A.1)

where B is the convex indicator function of the set of bistochastic matrices and E is strictly
convex and differentiable. We will now prove that the two steps

• Select Qk ∈ ∂E(P k)

• Select P k+1 ∈ ∂B∗(Qk).

of the DC algorithm are equivalent to

P k+1 = argmax
P∈Bn

⟨P,∇E(P k)⟩ , (A.2)

that each iterate P k can be chosen to be a permutation matrix, and that E(P k) is a strictly
increasing.

A.1 Details about the DC Algorithm

We assume that the reader is familiar with the concepts of convex conjugates and sub-gradients
and just recall the following Lemma

Lemma 1. Let X be a Banach space and f : X → (−∞,∞] with ∂f ̸= ∅. Then f∗∗(x) = f(x)

and

x∗ ∈ ∂f(x) ⇔ x ∈ ∂f∗(x∗) (A.3)

Moreover for convex functions f , 0 ∈ ∂f(x) is equivalent to

x∗ = argmin
x

f(x) (A.4)
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A.1. Details about the DC Algorithm

Let now E be convex differentiable and B the (convex) indicator function of a convex set C.
We will derive equivalent expressions for the two steps in the DC algorithm for solving (A.1).
Since E is differentiable, its subdifferential at any point has one element, namely the gradient
at that point:

Qk ∈ ∂E(P k) ⇔ Qk = ∇E(P k) (A.5)

The second step P k+1 ∈ ∂B∗(Qk) can be rewritten using Lemma 1:

P k+1 ∈ ∂B∗(Qk) ⇔ Qk ∈ ∂B(P k+1)

⇔ 0 ∈ −Qk + ∂B(P k+1)

⇔ P k+1 = argmin
P

− ⟨Qk, P ⟩+B(P )

⇔ P k+1 = argmax
P∈C

⟨Qk, P ⟩ (A.6)

Thus the DC algorithm in this special case reads

P k+1 = argmax
P∈C

⟨P,∇E(P k)⟩ . (A.7)

In our case the convex set C is the polyhedron of bi-stochastic matrices. Since linear functions
defined on a polyhedron attain their extrema at the vertices of the polyhedron, we can choose
the maximizer to be a permutation matrix.

Due to the strict convexity of E we further see:

E(P k+1) > E(P k) + ⟨P k+1 − P k,∇E(P k)⟩
≥ E(P k) + ⟨P k − P k,∇E(P k)⟩
= E(P k) (A.8)

where the strong inequality holds until convergence and the weak inequality follows directly
from (A.7).
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APPENDIX B
Appendix for Chapter 9

We provide proofs for the main propositions of the paper.

B.1 Proof of Theorem 4

Following standard FEM, we discretize the Poisson equation ∆M×N f = g via the weak for-
mulation

⟨∆M×N f,Hj⟩ = ⟨g,Hj⟩ , (B.1)
where functions are expressed in the hat basis {Hj : M×N → R}, and are thus approximated
piecewise-linearly via the expansion f(x) ≈ ∑n

i=1 f(vi)hi(x). The left-hand side of (B.1) can
be written as

⟨∆f,Hj⟩ = −⟨∇f,∇Hj⟩ = −
∑

i

f(vi) ⟨∇Hi,∇Hj⟩| {z }
sij

, (B.2)

where sij are elements of the stiffness matrix S. The right-hand side of (B.1) can be written
as

⟨g,Hj⟩ = ⟨
∑

i

g(vi)Hi(x), Hj⟩ =
∑

i

g(vi) ⟨Hi, Hj⟩| {z }
aij

, (B.3)

where aij are elements of the mass matrix A.

The Cartesian product of the two graphs discretizing M and N has grid topology, as illustrated
in Figure B.1, and the resulting bilinear hat basis functions are expressed via the outer product
He = hj⊗hq. We can then compute the mass values (refer to the Figure for the color notation):

aee = ⟨He, He⟩ = ⟨hj ⊗ hq, hj ⊗ hq⟩

=

∫

Qabde∪Qbcef∪Qdegh∪Qefhi

hj(x)hq(y)hj(x)hq(y)dxdy

=

∫

Eijk

hj(x)hj(x)dx

∫

Epqr

hq(y)hq(y)dy

= ajjaqq (B.4)
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B.1. Proof of Theorem 4

aae = ⟨Ha, He⟩ = ⟨hi ⊗ hr, hj ⊗ hq⟩

=

∫

Qabde

hi(x)hr(y)hj(x)hq(y)dxdy

=

∫

Eij

hi(x)hj(x)dx

∫

Eqr

hr(y)hq(y)dy

= aijaqr (B.5)

ade = ⟨Hd, He⟩ = ⟨hi ⊗ hq, hj ⊗ hq⟩

=

∫

Qabde∪Qdegh

hi(x)hq(y)hj(x)hq(y)dxdy

=

∫

Eij

hi(x)hj(x)dx

∫

Epqr

hq(y)hq(y)dy

= aijaqq (B.6)

Similarly, the stiffness integrals read:

see = ⟨∇He,∇He⟩ = ⟨∇hj ⊗ hq,∇hj ⊗ hq⟩
= ⟨∇hjhq,∇hjhq⟩+ 2⟨hj∇hq,∇hjhq⟩+ ⟨hj∇hq, hj∇hq⟩

=

∫

Qabde∪Qbcef∪Qdegh∪Qefhi

⟨∇hj(x)hq(y),∇hj(x)hq(y)⟩dxdy + · · ·

=

∫

Qabde∪Qbcef∪Qdegh∪Qefhi

hq(y)hq(y)⟨∇hj(x),∇hj(x)⟩dxdy + · · ·

=

∫

Eijk

⟨∇hj(x),∇hj(x)⟩dx
∫

Epqr

hq(y)hq(y)dy + · · ·+ · · ·

= sjjaqq + ajjsqq (B.7)

sae = ⟨∇Ha,∇He⟩ = ⟨∇hi ⊗ hr,∇hj ⊗ hq⟩
= ⟨∇hihr,∇hjhq⟩+ ⟨hi∇hr, hj∇hq⟩
= sijaqr + aijsqr (B.8)

sde = ⟨∇Hd,∇He⟩ = ⟨∇hi ⊗ hq,∇hj ⊗ hq⟩
= ⟨∇hihq,∇hjhq⟩+ ⟨hi∇hq, hj∇hq⟩
= sijaqq + aijsqq (B.9)
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Figure B.1: Left: The product of two closed contours discretized as cycle graphs (in blue
and red) is a quad mesh with toric topology (in grey). Uniform edge lengths are used for
illustration purposes. Right: Two overlapping bilinear hats He and Hf . On the quad element
Qefhi (marked in red) there is non-zero overlap, hence it contributes to the computation of
mass and stiffness values.

where we applied the outer product rule for the gradient operator, and used the fact that
⟨∇f,∇g⟩ = 0 for any pair of functions on the two cycle graphs. Note the integrals aae and sae
are non-zero even if nodes a and e are not connected in the product graph.

In matrix notation, formulas (B.4)-(B.9) can be succinctly written as:

A = A⊗A

S = S ⊗A+A⊗ S ,

completing the proof. □

B.2 Proof of Corollary 3

The proof is straightforward and follows from substituting the expressions (9.3), (9.4) into the
general formula ∆ = A−1S:

∆M×N = A−1
M×NWM×N

= (AM ⊗ SN )−1(SM ⊗AN +AM ⊗ SN )

= (A−1
M ⊗A−1

N )(SM ⊗AN ) + (A−1
M ⊗A−1

N )(AM ⊗ SN )

= (A−1
MSM)⊗ (A−1

N AN ) + (A−1
MM)⊗ (A−1

N SN )

= ∆M ⊗ IN + IM ⊗∆N . □

B.3 Proof of Corollary 4

Since triangular (3-3) duoprisms are, by definition, the Cartesian product of two triangles,
we can define a multilinear basis function on the product complex as the outer product of
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two standard hats defined on triangle meshes. We are now in the same setting as the lower
dimensional case, and in particular Equations (B.4)-(B.9) remain valid. □
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APPENDIX C
Appendix for Chapter 10

In section 10.4.3 of the paper, we outlined our expectation maximization framework. Here,
we want to provide a more detailed description of the method. At the same time, we try to
keep it as brief as possible, because most parts of this summary are standard techniques when
dealing with Gaussian mixture models.

C.1 Gaussian Mixture Model

As outlined before, we interpret the shifted points fn = x
(T )
n as the centers of Gaussian

distributions with the covariance matrix σ2ID ∈ RD×D which in the end should describe Y
well. Furthermore, each point ym is assumed to correspond to some point xn. This relationship
is encoded by the correspondence matrix Z ∈ {0, 1}(N+1)×M , where

∑N+1
n=1 Znm = 1. If

Z(N+1)m = 1 for some m, the point ym does not correspond to any point xn and it is assumed
to be uniformly sampled from Ω instead. This way we acknowledge the presence of outliers
and counteract them by explicitly modeling them.

According to Bayes’ theorem the posterior probability distribution of the desired parameters
ak in (10.12) given the latent correspondences Znm and the observed points Y is defined as
follows:

p(a|Z,Y) ∝ p(a)p(Y|Z, a) = p(a)

M∏

m=1

p(ym|Z, a) (C.1)

= p(a)

M∏

m=1

N+1∏

n=1

p(ym|Znm = 1, a)Znm . (C.2)

In Section 10.4.3 it was mentioned that the prior of the parameters ak is a Gaussian distribution
ak ∼ N (0,λk). As a shorthand notation we define the diagonal matrix L := diag(λ1, ...,λK)

and set the prior a ∼ N (0, L) for the coefficient vector a. In order to explicitly evaluate the
posterior density of a in (C.1), we have to investigate the data likelihood p(ym|Znm = 1, a) in
detail. For n < N + 1 it is a Gaussian distribution in the product space of the embedding
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space Ω and the space of descriptor values:

p(ym|Znm = 1, a) =
1

(2πσ2)
D
2

exp

(
− 1

2σ2
d2nm

)
. (C.3)

For the case n = N + 1 it is simply a uniform distribution, because ym is considered to be an
outlier:

p(ym|Z(N+1)m = 1, a) = 1. (C.4)

Note that the GMM is not only defined on the D dimensional embedding space but rather on
the product space of Ω and the (possibly high dimensional) feature space. However, this only
affects how the correspondences are assigned and can be considered a theoretical nuance.

C.2 Expectation Maximization

We want to determine the coefficients a by applying an expectation maximization approach
similar to Myronenko and Song (2010). In the E-step, soft correspondences W ∈ [0, 1](N+1)×M

are determined as a relaxed version of the latent variables Z:

Wnm = EZ|Y,a(Znm) = p(Znm = 1|ym, a) (C.5)

=
p(ym|Znm = 1, a)

p(ym|a) =
p(ym|Znm = 1, a)

∑N+1
ñ=1 p(ym|Zñm = 1, a)

. (C.6)

The data likelihood terms p(ym|Znm = 1, a) are defined in (C.3) and (C.4). This leads to the
expression proposed in (10.14).

The M-step now consists of minimizing the following energy with respect to a:

EZ|Y,a

(
− log p(a|Z,Y)

)
= − log p(a)−

M∑

m=1

N+1∑

n=1

Wnm log p(ym|Znm = 1, a) (C.7)

∝ 1

2
aTL−1a+

1

2σ2

M∑

m=1

N∑

n=1

Wnm∥ym − fn∥22. (C.8)

In this context the shifted points fn depend on the unknown coefficients a. However, the
descriptor distances dSHOT are independent of a, therefore, they vanish in the last step in
(C.7).

C.2.1 Robust Correspondences

As proposed in (10.19) we will reformulate the correspondence penalization term 1
2∥ym− fn∥22

in (C.7) in order to make our method more robust:

ρ(∥ym − fn∥2). (C.9)
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Note that this has a probabilistic interpretation as a mixture of Huber densities. We choose
the outer slope as r0 := 0.01. For values ∥ym − fn∥2 ≤ r0 the term in (C.9) remains the same
but for bigger residua the penalization by the Huber loss grows linearly. Due to this property
the Huber norm does not penalize outliers exorbitantly high and is therefore more robust than
the standard least squares loss.

C.2.2 Gauss Newton

In order to compute the optimal deformation parameters a, we have to minimize the energy
E(a) defined in (10.19). For this purpose, we first derive how to optimize the following
simplified energy and later derive how to handle the Huber loss distance penalization:

ELS(a) :=
1

2
aTL−1a+

1

2σ2

M∑

m=1

N∑

n=1

Wnm∥ym − fn∥22. (C.10)

We assume in this context that the correspondences W are fixed. For the optimization we
use a Gauss-Newton type method which yields an iteration scheme minimizing ELS. Like in
the Levenberg-Marquardt algorithm (Levenberg 1944) the iteration contains an additional
damping term L−1 which is added to the Hessian of the non-linear least squares term.

Applying the standard Gauss-Newton methodology, we get an iterative method to determine
the weights a. The general idea of this approach is that the shifted points fn(a) are linearized
around the current iterate a(i) in the energy (C.10):

ELS(a) ≈ 1

2
aTL−1a +

1

2σ2

M∑

m=1

N∑

n=1

Wnm∥ym −
(
fn(a

(i)) +Dafn(a
(i))(a− a(i))

)
| {z }

≈fn(a)

∥22. (C.11)

This approximate energy is linear in the current unknown a, so the remaining task is a simple
linear least squares problem. The recursion formula to compute the approximate deformation
parameters a(i) admits the following explicit form:

a(i+1) := a(i) −
(
JT W̃J + σ2L−1

)−1(
JT r − σ2L−1a(i)

)
. (C.12)

In this context J consists of the Jacobians of fn, r of the (weighted) distance residuals and
W̃ is a diagonal matrix containing the column sums of W . Let eD = (1, ..., 1)T ∈ RD, eM =

(1, ..., 1)T ∈ RM , then these quantities are explicitly defined as:

J =




Daf1
...

DafN


 ∈ RND×K . (C.13a)
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r =




∑M
m=1W1m(f1 − ym)

...
∑M

m=1WNm(fN − ym)


 ∈ RND. (C.13b)

W̃ = diag
(
(WeM )⊗ eD

)
= diag




eD
∑M

m=1W1m

...
eD
∑M

m=1WNm


 ∈ RND×ND. (C.13c)

What is left to specify is how to compute the derivatives Dafn ∈ RD×K in (C.13a). Note
that fn = x

(T )
n is recursively defined in (10.13), therefore we need to apply the chain rule. As

a result the derivative Dax
(t)
n is passed from the first time step t = 0 to the last t = T and

gradually modified in each step. Inserting the Karhunen-Loève representation (10.12) in the
definition (10.13) yields the following recursive formula:

x(t+1)
n (a) := x(t)n + h

K∑

k=1

vk

(
x(t)n +

h

2

K∑

k=1

vk
(
x(t)n

)
ak

)
ak. (C.14)

The dependencies on a are denoted explicitly in order to make it more comprehensible. The
quantities x

(t)
n (a) can now be differentiated wrt. a:

Dax
(0)
n = 0. (C.15a)

Dax
(t+1)
n = Dax

(t)
n + h

K∑

k=1

Dxvk
(
·
)((

ID +
h

2

K∑

k=1

Dxvk
(
x(t)n

)
ak

)
Dax

(t)
n +


v1

(
x
(t)
n

)
. . . vK

(
x
(t)
n

)


)
ak + h


v1

(
·
)

. . . vK
(
·
)

 . (C.15b)

Note that the Jacobian Dxvk ∈ RD×D can be computed analytically for any basis element vk.
In this context ID ∈ RD×D is the identity matrix.

The only thing left to discuss is how to extend this approach for the Huber loss penalization
of the energy E in (10.19). For point distances ∥ym − fn∥2 ≤ r0 the Huber loss and the
least squares loss are the same. For residual values ∥ym − fn∥2 > r0 the derivate wrt. the
deformation parameters a is the following:

Daρ(∥ym − fn∥2) = r0
(fn − ym)T

∥fn − ym∥2
Dafn. (C.16)

This eliminates the possibility of a direct Gauss-Newton type optimization which requires non
linear least squares terms. We can, however, incorporate this in our algorithm using a simple
heuristic. For this purpose we multiply the respective weights Wnm with the factor r0 1

∥fn−ym∥2
for ∥ym − fn∥2 > r0 in each iteration.
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C. Appendix for Chapter 10

C.3 Karhunen-Loève expansion of the deformation field

Here, we provide some theoretical justification for the particular choice of basis in (10.11) and
the construction of the weights (10.18). These λk can be interpreted to be the eigenvalues of the
linear operator C := (−∆)−

D
2 corresponding to the eigenfunctions ϕk. We can then apply the

so-called Karhunen-Loève expansion (Sullivan 2015, Ch. 11) to our setup. This framework
provides us with an alternative representation of the potential field Φ which can in turn be
used to define the deformation field v. For further reference concerning the mathematical
foundation of this approach the interested reader is referred to Stuart (2010), Cotter et al.
(2013) and Dashti and Stuart (2017). Following this approach, one can now derive a
construction which enables us to sample arbitrary square integrable scalar fields Φ̂ : Ω → R:

Φ̂(x) =
∞∑

k=1

ϕk(x)
√
λkξk. (C.17)

According to the Karhunen-Loève expansion the coefficients are samples of the Gaussian dis-
tributions ξk ∼ N (0, 1). This approach can be applied to get an alternative description of
each entry of the potential vector field Φ. Inserting it in (10.5), we obtain an alternative
representation of the deformation field v. In particular, we get the summation (10.12) for
the basis elements (10.11) in the 3D case. Indeed we can derive the following Gaussian prior
distribution for the weights ak:

ak =
√
λkξk ∼ N (0,λk). (C.18)

Remark The choice of the exponent D
2 in the definition of the weights λk (10.18) is not

arbitrary. In general it is supposed to be chosen strictly larger than D
2 for our resulting basis

to fulfill certain approximation properties in the limit of infinitely many basis functions, see
Dashti and Stuart (2017), Ch. 2.4. However, we achieved good results in our experiments
by choosing it as small as possible in order to not suppress the high frequencies more severely
than necessary. In particular, the expressiveness of or method seems to deteriorate when a
large exponent is chosen because the weights (10.18) decay too rapidly. Therefore, we typically
set it to D

2 which works fine, although this is not theoretically justified when the number of
basis functions approaches infinity. On the other hand, choosing it smaller than D

2 causes the
expected value of the velocity series to diverge for K → ∞.

To conclude this section, we want to motivate our choice of the Karhunen-Loève framework
and the particular linear operator C to model the deformation fields v. In the context of the
Karhunen-Loève expansion the operator C is called covariance operator. It is typically chosen
to incorporate some assumptions about the regularity of the produced sample functions. A
natural assumption about the deformation fields v is that they are as uniform as possible. This
yields that the resulting correspondence mappings are to some degree spatially continuous.
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C.3. Karhunen-Loève expansion of the deformation field

Therefore, we require the Dirichlet energy to be small:

∥∇v∥2L2
=

D∑

d=1

∫

Ω
∥∇vd(x)∥22dx. (C.19)

We can achieve this by penalizing the high frequency components of v. These frequencies
are strongly related to those of the potential field Φ, because according to (10.5) the basis
elements are simply mapped onto the velocity basis elements. This mapping does not change
the frequencies:

∥∇v∥L2 = ∥∇(∇× Φ)∥L2 = ∥∇Φ∥L2 . (C.20)

If we choose, e.g. D = 2, one can prove that the Dirichlet energy ∥∇v∥2L2
is equivalent to the

squared ℓ2 norm of the weights ξ:

∥ξ∥2ℓ2 = ∥∇v∥2L2
, for D = 2. (C.21)

A derivation of this property can be found in Dashti and Stuart (2017), Ch. 7.1.3. In the
case of finitely many parameters ξ1, ..., ξK the norm ∥ξ∥ℓ2 is equivalent to the Euclidean norm
∥ξ∥2 of the vector ξ = (ξ1, ..., ξK)T . The term ∥ξ∥22 is in turn proportional to the negative log
likelihood of the standard normal distributed parameter ξ ∼ N (0, IK):

− log(p(ξ)) =
K

2
log(2π) +

1

2
∥ξ∥22 ∝

1

2
∥ξ∥22. (C.22)

This indicates that a maximum likelihood approach involving ξ leads to an enforcement of
uniformity of the vector field v. This can be extended to the case D = 3 in a similar manner
but we refrain from providing more details here for the sake of brevity.
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