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Machine Learning Stability and Bandgaps of Lead-Free
Perovskites for Photovoltaics

Jared C. Stanley, Felix Mayr, and Alessio Gagliardi*

Compositional engineering of perovskites has enabled the precise control of
material properties required for their envisioned applications in photovoltaics.
However, challenges remain to address efficiency, stability, and toxicity
simultaneously. Mixed lead-free and inorganic perovskites have recently
demonstrated potential for resolving such issues but their composition space
is gigantic, making it difficult to discover promising candidates even using
high-throughput methods. A machine learning approach employing a
generalized element-agnostic fingerprint is shown to rapidly and accurately
predict key properties using a new database of 344 perovskites generated with
density functional theory. Bandgap, formation energy, and convex hull
distance are predicted using validation subsets to within 146 meV, 15 meV per
atom, and 11 meV per atom, respectively. The resulting model is used to
predict trends in entirely different chemical spaces, and perform rapid
composition and configuration space sampling without the need for
expensive ab initio simulations.

There is growing evidence that inorganic lead-free mixed halide
perovskites hold promise for resolving current issues in stabil-
ity, toxicity, and efficiency. A mixed cation and anion strategy
has enabled compositional engineering of bandgaps, enhanced
cell stability, and extension of the available composition space
for a diverse array of compounds.[1–3] Recent progress in all-
inorganic perovskite solar cells (PSCs) has garnered excitement
for their potential to address long term stability issues and tune
performance,[4,5] and toxicity has been partially resolved, for ex-
ample, through the homovalent substitution of Pb2+ with Ge2+

and Sn2+.[6–8]

J. C. Stanley, F. Mayr, Prof. A. Gagliardi
Department of Electrical and Computer Engineering
Technische Universität München
München 80333, Germany
E-mail: alessio.gagliardi@tum.de
J. C. Stanley
Department of Physics
Technische Universitsät München
München 85748, Germany

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/adts.201900178

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1002/adts.201900178

However, major challenges remain in iden-
tifying good candidate compounds and
charting out material trends. One problem
is that even the smallest composition spaces
can be surprisingly complex: for example,
MABI3 with Sn2+/Pb2+ mixing at the B-
site can display highly non-trivial bandgap
trends[9] while X-site mixing of CsPbX3
with I−, Br−, or Cl− can produce anoma-
lous alloy effects.[10] Making matters more
difficult, single perovskite compositions
alone can exhibit rich phase behavior,[11,12]

complex sublattice ordering,[13] and lat-
tice distortion.[14] A comprehensive search
for meaningful material–property relation-
ships therefore requires a dense sampling
of both the composition and configuration
spaces, and quickly becomes intractable be-
yond consideration of only a few elements
under strict constraints. To effectively en-
gineer the properties of lead-free inorganic

perovskites, a new approach is needed to draw meaningful
inferences from limited data and accurately model compli-
cated trends.
Supervised machine learning (ML) can be applied to over-

come these challenges. Statistical learning techniques have al-
ready been successfully applied to a range of materials science
problems[15–19] and in particular to predict many properties for
perovskites including the bandgap,[20] density of states,[21] di-
electric breakdown strength,[22] structural classification,[23] and
stability.[24,25] Here we show that our machine is capable of learn-
ing highly complex relationships using kernel ridge regression
(KRR), yielding an effective model for the rapid prediction of
electronic, geometric, and thermodynamic properties. This is
achieved by shifting focus from the composition to a shared set
of fundamental elemental properties, making the inputs to the
algorithm both chemically intuitive and extremely versatile.
We started by creating a new database of 344mixed perovskites

using density functional theory (DFT) with the Virtual NanoLab
Atomistix Toolkit (VNL-ATK).[26] In contrast to previous stud-
ies, 2 × 1 × 2 supercells are generated with randomized compo-
sitions such that the possible mixing fractions for each cation
species are given by n

4
, n ∈ 1, 2, 3, 4 while anions are restricted to

n
6
, n ∈ 1, 2, 3, 4, 5, 6. Random initialization is necessary as many

of the compositions available to this supercell have no direct
analogies for the columnar, layered, and rock-salt orderings of
the A-, B-, and X-site sublattices. The possible ions at each lattice
site are given by A = Cs+, Rb+, K+, or Na+, B = Sn2+ or Ge2+, and
X = I−, Br−, or Cl−.
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Figure 1. a) Example of Eg (bandgap) prediction using 80 pdf features selected by the model M = Mbest. Shown is the training data, where the actual
KRR model was trained on, as well as the test data for a specific train/test split. b) Learning curves for the bandgap, with the R2/cross-correlation metric
plotted against the number of samples used for training the KRRmodel (total of train/test set). c) Overview of the formation energies compared with the
OQMD values, computed using corrected and uncorrected chemical potentials. d) ΔHf prediction example computed with 164 features forM = Mform.
e) ΔEhull prediction example computed with 81 features forM = Mhull.

Features are constructed from the final configurations of the
relaxed structures using a newmaterial fingerprint extending the
partial radial distribution function (PRDF)[27] called the property
density distribution function (PDDF) depicted in the abstract.
The PDDF computes the density for an atomic property p in a
shell of radius r and width dr centered around atom 𝛼i by sum-
ming the values 𝛽j,p of that property for each atom j where the
pair-wise distance d𝛼i ,𝛽j satisfies r ≤ d𝛼i ,𝛽j < r + dr using theHeav-
iside step functions Θ. We then take an average of this density
over the N𝛼 atoms in the unit cell, repeating the calculation at
each atomic center 𝛼i and summing over the N𝛽 atoms in the lo-
cal atomic neighborhood defined by rmax. Finally, we normalize
by the shell volume Vr to yield

PDDF(p, r) = 1
VrN𝛼

N𝛼∑

i=1

N𝛽∑

j=1
Θ(d𝛼i ,𝛽j − r)Θ(r + dr − d𝛼i ,𝛽j )𝛽j,p (1)

for a given property and radial distance. As in the PRDF case,
the PDDF is globally valid and has the advantage that it can be
applied to supercells of arbitrary size and complexity.
The PDDF values were calculated with dr = 0.2 Å up to

rmax = 15 Å for the Pauling’s electronegativity, first and second
ionization energies, the s- and p-orbital radii, empirical atomic
covalent radius, lowest unoccupied atomic orbital, highest occu-
pied atomic orbital, Fermi level, ionic Shannon radii, and the va-
lence s- and p-orbital electron occupations for the isolated neutral

elements. The values used in these calculations can be found in
Table S3, Supporting Information. Property densities are
concatenated into a feature vector x⃗ and then the entire set of ob-
servations are preprocessed by scaling each feature to the interval
[0, 1], applying a variance selection threshold 𝜎th, and finally
down-selecting the remaining features using an ElasticNet rou-
tine with a Select From Model (SFM) weight threshold SFMth.
This feature-selection approach is conceptually similar to the one
applied in ref. [20] on perovskites, as well as the one successfully
applied in ref. [28]. “The dr and rmax values are also varied such
that a given “feature selection” model M can be denoted by its
parameters as M = (𝜎2th, Ncv, dr, SFMth, rmax)

T , where Ncv is the
number of cross-validation folds to use during training of the
actual KRR predictor, which is fed the features from the selection
routine.
360 different selectionmodels, each exploring a range of Gaus-

sian kernel and regularization hyper-parameters for the KRR pre-
dictor in a cross-validation procedure, were surveyed to iden-
tify the best model for prediction of the direct fundamental
bandgap Eg. Model errors tend to be mainly introduced through
uncertainty in the final crystal structure governed by both the
DFT simulation parameters and dr, which effectively limits
the resolution of configuration information seen by the algo-
rithm. These results are addressed in more depth in Section S2,
Supporting Information, where trends in marginalized model
parameters indicate a relationship between information and
performance.
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An average root mean square error (RMSE) of Eg,RMSE = 146 ±
19 meV was achieved for Mbest = (0.001, 8, 0.2, 0.1, 15.0)T when
applying it to over 100 random test–train splits of the observation
data of 10% and 90%, respectively. An example of one such split is
shown in Figure 1a, the prediction KRRmodel was parametrized
by cross-validation on the training set and tested against a
set-aside test set. Prediction performance was then measured for
Mbest as a function of dataset size bymeasuring theR2 score value
for eightfold cross-validated Nsubset-sized subsets of the data to
produce the learning curve in Figure 1b. Our fit indicates that
bias and variance are well balanced and that further expansion of
the training dataset will likely help improve performance since
the gap between the training and testing curves continues to de-
crease.
In addition to the bandgap, we also included predictions of sta-

bility metrics by calculation of the formation energy

ΔHf = Etot −
∑

i

ni𝜇i (2)

and convex hull distance

ΔEhull = ΔHf − ΔHf ,OQMD (3)

Here, Etot is the DFT-computed total energy for the supercell,
ni is the number of atoms in the cell of chemical species i, and 𝜇i
is the corrected chemical potential of the element computed from
the 0 K reference state. ΔHf ,OQMD is the convex hull energy com-
puted using the open quantummaterials database (OQMD).[29,30]

More details on these calculations can be found in Section S3,
Supporting Information.
Using individually selected optimal models Mform = (0.001, 8,

0.2, 0.01, 15.0)T for ΔHf and Mhull = (0.001, 8, 0.2, 0.0001, 15.0)T

for ΔEhull, and averaging over 100 test–train splits, test errors
as low as ΔHf ,RMSE = 15 ± 3 meV per atom, and ΔEhull,RMSE =
11 ± 1 meV were achieved for these stability metrics. Examples
for ΔHf and ΔEhull predictions are shown in Figure 1d,c, re-
spectively. Though relative error calculations do not make sense
for these interval scales, the dispersion indicates that formation

Figure 2. a) Bandgap and b) formation energy prediction for caesium compounds using 115 training examples. c) Bandgap predictions for lead-based
compositions compared to our DFT-computed values. The entire dataset is used to train the model before it is applied to lead compounds.
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energy is generally a simpler quantity to predict than both the
bandgap and hull distance.
Remarkably, similar predictions can be made for new chem-

ical spaces. For example, we removed the 229 compounds con-
taining Cs from the dataset and used the remaining 115 for
training a KRR model using features from M = Mbest. Over 25
trials, we found that the averageEg,RMSE of theCs-containing com-
pounds was 220±3meV , while the averageΔHf ,RMSE withmodel
M = Mform was 120 ± 3 meV per atom.
However, performance was poorer when we used the full

dataset to train an model, then predict the bandgaps of eight
Pb-containing compounds taken from the Materials Project de-
tailed in Section S4, Supporting Information, as expected when
applying a model to a test set from a different distribution than
the training data. While we could roughly capture the correct
bandgap trends, the large bias for these compounds indicates that
a more chemically diverse training set, and also perhapsmore ac-
curate DFT methods to address known inaccuracies in bandgap
calculations specifically for Pb, will be needed to fully extend the
algorithm to these compounds (for spin–orbit coupling in lead-
containing perovskites see ref. [31]). The highlighted outliers that
break from the dotted trend line represent crystals with B-site va-
cancies. These crystals are likely in a more distant part of config-
uration space that the model cannot easily generalize to since it
has been trained on only nearly cubic configurations. These re-
sults are summarized in Figure 2.
Despite the excellent performance of this algorithm, a major

drawback is the requirement for an input geometry to construct
features—typically themost computationally intensive part when
doing DFT calculations is relaxing a given composition to an
energetic minimum. However, with rapid prediction speeds for
bandgaps and an optimized feature construction process, there is
essentially no cost for simply trying an input geometry. We there-
fore created large sets of trial geometries—so-called “dummy”
crystals—in an attempt to discover chemical trends by dense
sampling of both compositional and configuration spaces.
As an example, we explored the bandgap and stability trends

of two sets of trial geometries by randomly varying the atomic
positions and lattice constants uniformly around a cubic geome-
try initialized with la = lc = 11.7 Å, and lb = 5.4 Å. To simulate a
lack of knowledge about the true DFT-computed geometry, each
atomic position in a crystal was allowed to vary up to ±3% and
each lattice vector up to ±10%. Twenty variations of atomic posi-
tion for each of 20 lattice distortion variations were computed for
every possible configuration of mixing for a Sn-Ge dataset of the
form A4BxB

′

4−xX12 with x ∈ {0, 2, 4} and a I-Cl-Br halide mixing
dataset of the form A4B4X12X

′

x−12 with x ∈ {0, 6, 12}, resulting in
two datasets of 19 200 and 28, 800 crystals, respectively. In only a
couple of hours on a standard laptop, this set could be generated
and fed to theMbest andMhull models to predict the trends shown
in Figure 3.
Beyond different A-site cation “classes”[2] we can identify a rise

in the bandgap with decreasing period number of the halide an-
ions (Figure 3b, in accordance with calculations of ref. [6]), with
50/50 mixed compounds occupying a middle ground between
the one-anion only ones. As all structures where of the same
phase this variation is in accordance with experiments.[32–35] For
different mixing ratios of tin and germanium we do not know of
any experimental work, as ref. [6] is only considering ratios far

Figure 3. Direct bandgap trends for a) B-site and b) X-sitemixing, and con-
vex hull trends for c) B-site and d) X-site mixing using the dummy crystal
method. Nearly 50, 000 crystals and their features could be constructed in
a couple of hours while the predictions are computed in a few seconds.
Note that the values at each composition are averaged for clarity.

from 1:1, but theoretic work on tin/lead indicates similar con-
stant variation[36] (when keeping A-site cation and anions fixed).
However a precise prediction of these properties might necessi-
tate the consideration of spin–orbit coupling in the calculation.[31]

The stability trends in Figure 3c,d indicate that the stability de-
creases with the period for halides (mixing), which is in line with
other calculations.[37] The Sn/Ge data is only showing a very slight
variation, which could be another subject of further study. For A-
site cations, the overall trend of Rb/Cs perovskites being more
stable than K/Na based is well documented in the literature.[1]

The main issue with relating this data to experiments is that
stability is typically impacted by a wide array of factors (atmo-
sphere, illumination) beyond the static crystal structure—also
methods vary in which dissociation paths are considered. Thus
the results should be seen as providing a guideline of likely trends
for informing experimental research.
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Interestingly, the plots can also help delineate the relative ef-
fect of targeting A-, B-, or X-site ions for property tuning. In
Sn2+/Ge2+ mixing, for example, it is clear that choice of A-site
and X-site ions drastically offsets the absolute values of bandgap
in a largely predictable fashion, while the range affected by B-site
substitution is relatively minimal.
While it is encouraging that a fast-screening dummy crystal ap-

proach can uncover non-trivial trends and reproduce work from
the literature, the 400 random configurations explored here at
each composition barely scratch the surface of the possibilities
available to the perovskites. A more comprehensive set of train-
ing geometries and elemental compositions will ultimately be re-
quired to gain higher confidence in trend and property predic-
tion. This could be achieved, for example, via full integration of
large existing datasets such as the OQMD,[30] utilizing force-field
approximations to produce more realistic initial geometries,[38,39]

or bootstrapping of cheaper DFT calculations using co-kriging
methods.[40] Additionally, major gains are expected from a more
advanced feature construction process. One can imagine tun-
ing rmax and dr, perhaps non-uniformly, to control feature spar-
sity, and even adding angular resolution to encode vector fields
to capture effects such as van der waals interactions. Additional
elemental properties and their combinations should also be ex-
plored in detail beyond those presented here to find the best de-
scriptors for key material properties.
Nevertheless, our successful application of this algorithm in

predicting Eg, ΔHf , and ΔEhull shows that the method can be
an efficient and accurate new tool for rapid exploration of sev-
eral important properties for photovoltaics in this composition
space. By transforming our descriptor space from atomic labels
to a set of shared elemental properties, we can easily generalize to
new chemical spaces and crystal configurations while simultane-
ously connecting feature construction to physically meaningful
atomic properties. We are therefore able to control how informa-
tion enters the machine and identify experimentally accessible
factors relevant for the rational design of new perovskite materi-
als through a careful selection of the descriptors.

Experimental Section
The Virtual NanoLab Atomistix Toolkit 2017 (VNL-ATK)[26] was used

to generate the database of 344 perovskite crystals. 2 × 1 × 2 super-
cells of the mixed compositions were initialized with lattice constants
la = lc = 11.7 Å, and lb = 5.4 Å. The generalized gradient approxima-
tion (GGA) functional of Perdew–Burke–Ernzerhoff (PBE) was used for
the exchange-correlation energies. A linear combination of atomic or-
bitals (LCAO) basis set and medium[26] Schlipf–Gygi optimized norm-
conserving Vanderbilt pseudopotentials (SG15)[41] are used, with the den-
sity mesh cutoff energy set to 200 Hartree. The Brillouin zone is sam-
pled with a 6 × 12 × 6 Γ-centered Monkhorst–Pack k-point grid. Force and
stress tolerances are set to 10meV Å−1 and 0.01 GPa, respectively, and the
limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) geometry
optimization procedure is applied with the self-consistent-field (SCF) tol-
erance set to 5 × 10−5.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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