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Summary

Although diffusion is a fundamental property in physics and materials science, the diffu-
sion mechanism in liquids is still not very well understood. For example, it is unclear how
structural properties like the atomic packing, topological and chemical short-range order
influence the atomic dynamics in metallic melts.

Objective of this work is a detailed study of the structure-dynamics relation in metal-
lic melts, which were processed using containerless levitation techniques. Quasielastic
neutron scattering (QENS), carried out at the multi-disc chopper time-of-flight spectrom-
eter TOFTOF at Heinz Maier-Leibnitz Zentrum (MLZ), was used to study the atomic
transport processes. In addition, structural investigations were conducted by neutron and
synchrotron X-ray diffraction experiments.

QENS measurements on pure Mercury revealed that at the melting point the diffusion
coefficient of pure metallic melts can be predicted according to atomic mass and packing
fraction, when assuming similar dynamics like these of the alkali metals. The semi-
empirical approach based on uncorrelated binary collisions, however, underestimates the
activation energy of the temperature dependence of the diffusion.

Binary mixtures of the Zr-Ti system exhibit for all concentrations a similar atomic packing
than pure Mercury. In Zr-rich mixtures, the Ti mobility obtained by QENS decreases with
increasing Ti content. Structural investigations revealed, that barely any chemical short-
range order is present in Zr-Ti melts. The concentration dependent dynamics can be
fully understood according to the prediction of the mode-coupling theory (MCT) on a
binary hard-sphere mixture and attributed to differences in the atomic radii, indicating a
dominant impact of the topological structure on the atomic motion.

Melts of the Zr-Cu(-Al/Ti) system exhibit higher packing fractions than Mercury and
Zr-Ti, what is accompanied by slower melt dynamics. Moreover, the minor addition of
only 4 at.% Al or Ti to Zr50Cu50 melts lowers the self-diffusivity almost by a factor of
two. Similar observations of slowing down of the dynamics upon minor Al addition can
be made also on the melt viscosity. Despite the different dynamics, the static structure
as well as the average packing fractions of Zr50Cu50 and (Zr50Cu50)96(Ti, Al)4 melts are
very similar. Therefore, whereas for Hg and Zr-Ti the dynamics can be understood by
topological effects, here apparently contributions from chemical interactions are expected
to dominate the atomic dynamics.





Zusammenfassung

Obwohl Diffusion eine funamentale Größe in der Physik und Materialwissenschaft ist, sind
die Diffusionsmechanismen in Flüssigkeiten noch nicht hinreichend verstanden. Beispiels-
weise ist unklar, wie strukturelle Eigenschaften wie die Atompackung sowie die topolo-
gische und chemische Nahordnung die atomare Dynamik in Metallschmelzen beeinflussen.

In dieser Arbeit wird die Struktur-Dynamik-Beziehung in Metallschmelzen, welche durch
tiegelfreie Levitationsverfahren prozessiert wurden, untersucht. Quasielastische Neutro-
nenstreuexperimente (QENS), die am Flugzeitspektrometer TOFTOF des Heinz Maier-
Leibnitz Zentrum (MLZ) durchgeführt wurden, geben dabei Rückschluss auf die atomaren
Transportprozesse. Zusätzliche wurde die Struktur mittels Beugung von Neutronen und
Synchrotron-Röntgenstrahlen untersucht.

QENS-Messungen von Quecksilber zeigen, dass der Diffusionskoeffizent reiner Metalle
am Schmelzpunkt mittels der Atommasse und Packungsdichte vorhergesagt werden kann,
wenn eine ähnliche Dynamik wie in Alkalimetallen angenommen wird. Der semi-empirische
Ansatz, welcher auf unkorrelierten binären Stöße beruht, ist jedoch bei der Vorhersage
der Temperaturabhängigkeit der Diffusion durch die Aktivierungsenergie ungenau.

Zusammensetzungen des binären Zr-Ti Systems haben ein ähnliches Packungsverhalten
wie Quecksilber. In Zr-reichen Mischungen verringert sich die mittels QENS bestimmte
Ti-Mobilität mit zunehmenden Ti-Gehalt. Durch Strukturmessungen lässt sich zeigen,
dass in Zr-Ti Schmelzen kaum chemische Nahordnung vorhanden ist. Die konzentra-
tionsäbhängige Dynamik kann durch Vorhersagen der Modenkopplungstheorie (MCT) von
binären Hartkugeln erklärt werden und auf die unterschiedlichen Atomradien des Systems
zurückgeführt werden. Dies weist auf einen vorherrschenden Einfluss der topologischen
Struktur auf die Atombewegung hin.

Zr-Cu(-Al/Ti) Schmelzen besitzen höhere Packungsdichten als Quecksilber und Zr-Ti,
was mit einer verringerten Dynamik einhergeht. Zudem führen geringfügige Zugaben von
nur 4 at.% Al oder Ti fast zu einer Halbierung des Selbstdiffusion in Zr50Cu50-Schmelzen.
Eine ähnliche Verlangsamung der Dynamik kann bei geringfügiger Al-Zugabe auch in der
Viskosität der Schmelze beobachtet werden. Trotz unterschiedlicher Dynamiken, sind
sowohl die statische Struktur als auch die makroskopische Packungsdichte von Zr50Cu50-
und (Zr50Cu50)96(Ti, Al)4-Schmelzen nahezu identisch. Während für Hg und Zr-Ti die
Dynamik durch topologische Effekte bestimmt wurde, sind hier dominante Beiträge von
chemischer Wechselwirkungen zu erwarten.
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1 Introduction

Diffusion describes the transport of mass via (random) walks. In condensed matter this
process is strongly influenced by the short-range order, which can be differentiated into the
topological arrangement of the atoms within the range of a few coordination shells around
a given atom (topological short-range order) and their chemical arrangement (chemical
short-range order).

In case of liquids the first theoretical consideration on diffusive motion was given by Albert
Einstein in his PhD thesis in 1905 [1]. Einstein described the mobility of glucose molecules
in solution by the internal friction of the solution. He connected the microscopic diffusion
coefficient obtained by Thomas Graham [2] with macroscopic viscosity data [3] and was
able to calculate the glucose molecule dimensions based on a hard-sphere model. In doing
so, Einstein obtained a - more or less - exact value of the Avogadro number [4]. It was
the very first explanation of the Brownian motion [5, 6] and a proof of the (at that time
controversial) existence of atoms.

Diffusion is a fundamental property in physics and materials science [7]. Examples are
chemical reactions in liquid [8] and solid states [9, 10], solidification [11, 12] and crystal
growth from melts [13, 14], or permeation trough membranes [15]. However, it is also
relevant to many other fields [16, 17]. For example, it can be used to describe the motion
of oceans and atmospheres to forecast the daily weather [18, 19] or to explain the dynamics
of population, e.g. how languages disperse [20, 21]. Furthermore, the mobility of human
travel can be explained by diffusive dynamics [22, 23] e.g. to forecast and control the
spreading of infectious diseases [24, 25], which are at the time this thesis is written (the
COVID-19 pandemic [26]) a topic of daily discourse.

In crystalline solids the diffusion mechanism is governed by to the periodic crystal struc-
ture. Here, atoms diffuse e.g.: via either interstitial, interstitialcy or vacancy mechanisms
[7, 27–32].

1
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Due to the disordered nature of the liquid structure such mechanisms are inapplicable
in liquids, where the diffusion mechanism is more complicated. For example, Einstein
assumed in his consideration the short-range order of the dissolved molecules to be homo-
geneous and completely structureless. In addition, describing molecules by hard-spheres
neglects the internal degrees of freedom and the bonding characteristics. In contrast,
metallic liquids are composed of single atoms without any internal degrees of freedom.
The repulsive nature of metallic bonds at short distances are making them a closer analogy
of hard-spheres and therefore an ideal candidate to investigate diffusion in the liquid.

Since decades, a lot of research efforts have been put in measuring and understanding
the diffusion in metallic melts [33–38]. Classically, diffusion coefficients in metallic liquids
are measured in long capillaries, where thin cylindrical sample couples are molten under
inert atmosphere and annealed at a certain temperature [34, 39–43]. After cooling, one
can then determine ex-situ the diffusion coefficients by analyzing the diffusion profile.
However, this method comes with some disadvantages, which sum up in deviations of up
to 100 % [44]. These are mainly:

1. The volume change of the sample as a function of temperature, also through a phase
transition, and, therefore, the diffusion length is different in the melted and the solid
phase due to thermal expansion. Known thermal expansion coefficients are subject to
error.

2. As it is an ex-situ method, the melting and solidification process of the material give
certain inaccuracy to the diffusion profile due to sedimentation and concentration change
during phase transition. In case of non-congruent melting materials the diffusion profile
can be destroyed during solidification.

3. Already existing density or temperature gradients (Buoyancy and Marangoni conve-
tion) in the melt can create convection within the sample and also affect the result.

Another method to determine diffusion coefficients is quasielastic neutron scattering
(QENS), which allows an in-situ observation of atomic transport processes [45]. Due
to their wavelength, which is comparable to typical interatomic spacings of 1-2 Å and
energies similar to excitation energies in condensed matter, neutrons enable a detailed
microscopic probing of the liquid-state structure and dynamics [46–48]. Structural in-
formation is obtained by those neutrons, which are elastically scattered by the nuclei of
the sample components. In addition to this, an energy transfer occurs in case of atomic
movement within the sample. This is known as inelastic scattering, through which neu-
trons lose or gain energy as a result of their interaction with the sample and, therefore,
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change their velocity / wavelength. In case of self-diffusion in liquids, this energy transfer
is rather small, in the order of some tens to hundreds of µeV [49]. Since QENS probes
atomic motion directly on a pico-to-nano-second time scale, which is not affected by any
convective flow, this allows a rather accurate determination of the self-diffusion coefficient
on an absolute scale, nevertheless this technique is limited to incoherent scatterers [50].

Using quasielastic neutron scattering accurate studies of atomic diffusion in pure elements
like the alkali metals [51], Al [52, 53], Cu [54], Fe [55], Ge [56] and Ni [57] were carried
out.

In case of Nickel the self-diffusivity was not only investigated for the pure element, but
also for Ni-P, Pd-Ni-P and Pd-Ni-Cu-P alloys [58], where the mixing has a drastic effect on
the liquidus temperature of the respective alloys. Therefore, the atomic dynamics could
be studies in a broad temperature range of almost 1.000 K. A decreased Nickel mobility
towards lower temperatures was found, which is suggested to be related to the packing
fraction of atoms [58].

Also in binary Zr-Cu melts a slower self-diffusion of Cu in Cu-rich concentrations is
accompanied with an increased packing fraction [59]. Similar observations were made in
case of Al-Ni melts. Here, the overall Nickel self-diffusion remains unchanged in different
Ni-rich binary alloys, where also the atomic volume is similar. The diffusivity is correlated
to the density of packing over the entire composition range [60]. In case of the Al-rich
concentration a denser packing causes slower diffusion, which could be explained by an
increased chemical interactions between the constituents in this alloys [61].

Pronounced chemical short-range order explains also slower atomic dynamics in Zr-Co and
Zr-Ni melts when Aluminum is added [62]. However, the packing fraction is contrarily
decreased in ternary Zr-(Co,Ni)-Al alloys when compared to the binary Zr-Co and Zr-Ni
mixtures.

In case of Zr-Ni and Hf-Ni melts, where Zr is substituted by Hf, the packing fraction is
also not suitable to explain changes in the melt dynamics [63]. Here, directly measured
partial structure factors reveal that structural changes at the atomic scale influence atomic
diffusion [64].

Hence, for some binary systems a slower diffusion could be correlated to a higher packing
fraction, whereas for other systems no correlation was found. Here, increased chemical
interactions were found to explain the slower dynamics. This raises the question how
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packing fraction and chemical short-range order influence the atomic dynamics in metallic
melts.

The diffusion mechanism in liquids can best be studied for single component metallic
melts. Subject of the first result section of this work is the investigation of the self-
diffusion of Mercury, which exhibits the lowest melting point (Tm = 234.3 K) of all metallic
elements and hence small kinetic energy of the atoms in the melt. A number of models
describing the mass transport in metallic liquids end up in semi-empirical terms with
thermodynamic parameters [33–38]. Comparing Mercury to the other single component
liquid metals reveals if the diffusion coefficient and the activation energy of atomic motion
can be related. Additionally, the large density of 13.5 g/cm3 of Mercury leads to the
question how the diffusion in liquids depends on the atomic mass, the atomic radii and
the atomic packing.

Next, the binary Zr-Ti system is investigated. Zirconium and Titanium are both Group
4 elements and show very similar chemical and structural properties [65, 66]. However,
both elements exhibit slightly different atomic radii [67], which leads to the question, how
the structure and dynamics depend on the composition. Therefore, the melt properties
are comprehensively studied. Neutrons and x-rays from sychrotron radiation are used to
investigate the liquid structure. From density measurements the molar volume, volume
expansion, excess volume and packing fraction are derived, which can be related to the
structure on the atomic scale and the melt dynamics as investigated using QENS. A link
of structure and dynamics is given by theoretical considerations, e.g. the mode-coupling
theory [68], which is used to predict diffusion coefficients.

Since Zr-Ti melts are chemically very reactive containerless electromagnetic levitation
(EML) is used to process the melts in order to avoid reactions with the crucible materials
[69]. In combination with neutron and x-ray scattering this leads also to an excellent
signal-to-noise ratio [70–73].

If even minor composition changes can affect the melt dynamics, is discussed in the third
result section of this work. For example, in bulk metallic glass forming liquids, where
cooling the melt under a critical temperature leads to a suppression of crystallization
while forming an amorphous structure, minor additions can have a huge influence on
properties like e.g. the glass-forming ability [74–78]. One example is the Zr-Cu system,
where minor Al and Ti additions cause a rather large improvement of the glass-forming
ability [77, 79]. This work investigates, if the melt dynamics can be sensitive to minor
composition changes, which is in contrast to an average packing fraction description.
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Therefore, (Zr50Cu50)96(Ti, Al)4 melts are processed in electrostatic levitation (ESL) in
combination with experiments using neutron and x-ray scattering [80, 81]. Complemen-
tary, macroscopic melt properties like the viscosity and density can be studied with high
accuracy [82–85].





2 Theoretical Background
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Objective of this chapter is to present all the necessary basic information and principles
for the following experiments. These mainly deal with theoretical concepts of diffusion,
the structure of metallic melts and how those quantities can be investigated using neutron
scattering.

2.1 Diffusion mechanism in condensed matter

Diffusion comes from the Latin verb “diffundere”, which means “spreading out” and de-
scribes particle displacement in matter by internal and external driving forces. In 1855 the
physician Adolf Fick first described diffusion mathematically by concentration gradients
on water-permeable membranes [86]. For systems in thermodynamic equilibrium, where
all external factors are constant per definition, there are no concentration gradients. On
a macroscopic scale this means a homogeneous particle distribution.

The microscopic motion then is only driven by internal kinetic energy, as reflected by
the temperature [87]. Random motion was already described in 1827 by Robert Brown
and is also known as Brownian motion or “pedesis” (ancient greek for “leaping”) [5].
This broad theory, however, got a physical crosslink in 1905 by Albert Einstein via the
diffusion coefficient [6]. It describes the thermally driven random transport of matter and
is a temperature and pressure dependent material parameter.

Figure 2.1: The two main types of diffusion processes, where (a.) refers to self-diffusion and (b.)
to inter-diffusion at the interface between two substances

Generally speaking, diffusion describes the long-range transport of particles within matter
(i.e. gases, liquids and solids) by thermal motion. It plays an important role in various
fields of nature, technology and society [16, 17]. Relevant literature can be found in in
[88–91].
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Two main types of diffusion can be distinguished, which are sketched in Fig. 2.1. In
the case of no chemical concentration gradients, self-diffusion (Fig. 2.1.a.) represents
the long-range transport of a single particle in a uniform system via thermal motion and
concomitantly density fluctuations.

Inter-diffusion (Fig. 2.1.b.) describes collective mass transport due to the presence of a
chemical potential gradient in multi-component systems. Conventionally, inter-diffusion
is depicted as occurring from regions of high concentrations to regions of lower concen-
trations along a concentration gradient, as implied by the arrows in Fig. 2.1.b.. However,
diffusion can also happen in same direction as the concentration gradients, e.g. in case
of thermodynamic forces, which lower the total free energy in the systems. This can
happen for example during spinodal decomposition or on defects, impurities and during
nucleation. It is so-called “uphill” diffusion.

In crystalline materials, atoms form a long-range ordered arrangement. Within this struc-
ture, single atoms are surrounded by nearest neighbors on well-defined lattice sites and
localized around an equilibrium position. Diffusion can occur, for example, via the hop-
ping of single atoms through vacancies within the lattice, on interstitial lattice sites or
highly correlated motion of several atoms at the same instant. In gaseous materials, whose
dynamics can be described by ideal gas theory, particle displacement is generally free and
continues uninterrupted until collision.

However, in liquids, the diffusion mechanism is situated somewhere between that of crys-
tals and gases. In liquids, atoms are surrounded at short times by a highly dynamic “cage”
with a cage-escape frequency dominated by random collisions (see 2.5). In the limit of
long time and length scales, this results in translational diffusion described by Brownian
motion.

Mathematically, random walk diffusion can be described by the mean-squared displace-
ment W (t) with the equation

W (t) ≡< |r(t)− r0|2 >, (2.1)

where r(t) is the position of an atom at time t, r0 is the position of the center of mass at
t = 0, and the brackets < . . . > denote an ensemble averaging.

In isotropic media, diffusion occurs randomly in all directions with equal probability.
As such, the single average particle displacement < δr(t) > tends towards zero in the
long-time limit and is therefore not a suitable metric.
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According to Albert Einstein’s relation, the diffusion constant is defined by the thermal
motion of atoms

D = µkBT, (2.2)

where µ is the atomic mobility, kB the Boltzmann constant and T the temperature. This
equation can also be expressed by the (one dimensional) attempt frequency ν and diffusion
length l.

D = 1
2 l

2ν. (2.3)

Due to the absence of external forces, the mean squared displacement is only due to
thermal motions and can be expressed by

Ws(t) = 2Dt. (2.4)

Diffusional mass transport also result from gradients in concentration. A mathematical
depiction is given by Adolf Fick’s laws. The first law describes the particle flux ~J in
relation to a concentration gradient δc/δx. Because uphill diffusion occurs seldom diffusion
is usually considered to run against the concentration gradient. The particle flux is
conventionally expressed with a minus sign as follows:

~J = −D δ

δx
c = −D∇c. (2.5)

Since mass is neither created nor destroyed during motion, it is considered as conserved
and Fick’s second law can be obtained employing the continuity equation

δc

δt
= −δ

~J

δx
, (2.6)

which yields the space and time dependence of the concentration profile

δc

δt
= δ

δx

(
D
δ

δx
c

)
≡ ∇ (D∇c) . (2.7)

In case of self-diffusion, microscopic concentrations are expressed as atoms per unit vol-
ume, which can be described by the probability density function P (r, t). Assuming
isotropic motion, Fick’s second law can be rewritten as

δ

δt
P (~r, t) = D

[
δ2

δx2 + δ2

δy2 + δ2

δz2

]
P (~r, t) ≡ D∇2P (~r, t) , (2.8)

for a diffusion in direction ~r = ~r(x, y, z). The three dimensional mean-squared displace-
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ment can be expressed by adding two dimensions to the already described one dimensional
Einstein relation:

Ws(t) = 6Dt. (2.9)

Using the correlation of the mean-squared displacement and the probability density func-
tion

Ws(t) =
∫

d~r r2P (~r, t), (2.10)

the probability density function is expressed

P (~r, t) = 1
[4πDt]

3
2
/ exp

(
− r2

4Dt

)
, (2.11)

which is a Gaussian function with a width increasing in time.
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2.2 Introduction to neutron scattering

The 1994 Nobel laureates in physics (for pioneering contributions to the development of
neutron scattering techniques for studies of condensed matter) Clifford Shull and Bertram
Brockhouse are quoted with the phrase “neutrons tell us where atoms are and how they
move” [92]. Neutrons interact as uncharged particles with nuclei in condensed matter and
are very sensitive to light elements, in contrast to x-rays and electrons, which interact with
the electron cloud. Relevant literature of the scattering theory can be found in [46–48].

2.2.1 Neutron source

The objective of a neutron source is to produce a high flux of free neutrons, which have
an average lifetime of 879.4 ± 0.6 seconds [93, 94]. There are many processes that can
produce free neutrons as final products, including nuclear reactions (indeed, this was
the first reported production of free neutrons as a released product after bombarding
beryllium nuclei with α-particles [95]), decay of radioisotopes [96] or through manipulation
of plasma [97], electric fields [98] or photofission [99]. Currently, there are two commonly
used techniques to specifically achieve a high neutron flux: fission and spallation.

Nuclear fission was discovered by Meitner and Hahn [100, 101]. High performance fission
neutron research sources such as the High Flux Isotope Reactor (HFIR) in Oak Ridge, the
Institut Laue-Langevin (ILL) in Grenoble and the Heinz Maier-Leibnitz Zentrum (MLZ)
in Munich all use the uranium isotope 235U , which produces, by absorbing slow neutrons,
2 or 3 free neutrons (on average 2.4) and emits an average energy of about 192.9 MeV
[102].

235U + neutron→ fission fragments+ 2.4 neutrons+ 192.9 MeV (2.12)

This reaction runs typically within ps-ns and the produced neutrons can cause by their
own the fission of another 2 or 3 nuclei to initiate thereby a chain reaction. In order to
increase the reaction probability the neutrons have to be decelerated, which is likely done
by collisions with energy absorbing light elements, such as in heavy water D2O. Typical
fission fragments are 93Kr or 141Ba, which can also emit “delayed” neutrons after some
seconds, which are, however, very important to control the chain reaction, even though
they mark only about 0.64 % of the total amount of produced neutrons. By allowing some
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of the moderated neutrons to escape or by use of proper neutron absorbers, a constant
neutron flux can be adjusted.

Spallation is another method of generating a high neutron flux [103]. Here, high-energy
protons are accelerated to an energy up to 1 GeV and hit targets made from heavy ele-
ments like lead, mercury, uranium or tungsten, which excites the nuclei to “evaporate” up
to 20 high-energy neutrons. As this process is directly linked to the incoming particles,
spallation generates not a continuous flux of neutrons, but rather a pulsed neutron beam.
This principle is used e.g. at ISIS in UK, SNS in USA, J-SNS in Japan and will be imple-
mented in the European Spallation Source (ESS), which is currently under construction
in Lund, Sweden. Even though spallation might produce an order of magnitude higher
flux in the pulse the fine average flux remains in the same order as for high performance
continuous sources. This is due to the limits of the necessary heat dissipation during one
pulse. Lastly, laser-induced fusion has been announced as an alternative neutron source
and is recently under research to reach applicability [104–106].

2.2.2 Scattering cross-section

For a neutron scattering experiment an incident neutron beam of well defined wavelength
hits a sample consisting of neutron scatterers. The beam is scattered in different directions
in space. By analyzing the scattered intensity as a function of the scattering angle and/or
the energy of the scattered neutrons, diverse measurements can be performed, which are
expressed in terms of a quantity called the double differential scattering cross-section.
This is the physical quantity measured by a scattering experiment and is related to the
detected intensity.

Considering the Fraunhofer approximation (neutron detector is located at a distance
larger compared to the dimensions of the scattering system and detector itself [107]), the
number n′ of scattered neutrons per unit time in a given direction dΩ (in terms of θ and
φ as defined in Fig. 2.2) can be counted as a function of energy at the scattered neutrons
in an interval between E ′ and E ′ + dE ′. The double differential cross-section is defined
by

d2σ

dΩdE ′ = n′

jdΩdE ′ , (2.13)

where j refers to the incident neutron flux (number of neutrons per unit area and sec-
ond).
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Figure 2.2: The general geometry of an experiment, where an incident beam is scattered by a
sample. E indicates the energy and ~k the wave vector [108]

If information about possible energy changes by the scattering process is not relevant or
detectable, then the angular dependence is described by the differential cross-section

dσ

dΩ = n′

jdΩ =
∫ ∞

0

d2σ

dΩdE ′dE
′. (2.14)

Finally, the scattering cross-section, which, as the name implies, has the dimensions of an
area, gives a measure of the total number of scattered neutrons in all directions

σ =
∫
all directions

δσ

δΩdΩ. (2.15)

For a fixed target in the origin of the illustration in Fig. 2.2, the wave function of the
incident neutrons, which travel in the direction of ~k, can be represented by a plane wave

Ψincident = exp(i~kz). (2.16)

Since the range of nuclear forces (in fm) that cause scattering is much smaller than the
wavelength of the incident neutrons (in Å), in case of nuclear scattering the scattered
neutron wave can be considered as spherical

Ψscattered = −b
r

exp(i~k~r), (2.17)
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where b is the direction-independent scattering length (in fm), which depends on the type
of the scattered nucleus and its spin state. The scattering cross-section can be expressed
by

σ = 4πb2. (2.18)

The cross-sectional unit is typically expressed in barn, which is defined as 10−28 m2.

2.2.3 Elastic and inelastic scattering

Referring back to Fig. 2.2, a scattering vector ~Q can be defined as

~Q = ~k − ~k′. (2.19)

In case of elastic scattering, the incident and scattered wave vector have the same length
(|~k| = |~k′|), as no energy transfer occurs (∆E = 0). The kinetic energy of neutrons is
quantified with the reduced Planck constant ~ and neutron mass mn by

E = ~2k2

2mn

, (2.20)

using
k = 2π

λ
. (2.21)

According to de Broglie [109], the magnitude of the scattering vector under elastic scat-
tering conditions is then equal to the Bragg condition [110]

Qelastic = 4π
λ

sin(θ). (2.22)

Inelastic scattering is accompanied by energy exchange, e.g. due to atomic motion, i.e.
∆E = Ef −Ei, where Ef and Ei are the final and incident neutron energies, respectively.
According to the Planck-Einstein relation [111], ∆E can be described as a wave frequency
ω as

∆E = ~ω. (2.23)

The relation between momentum transfer and inelastic scattering is then described by

Qinelastic =
( 1

2m~2

{
2Ei + ~ω − 2 [Ei (Ei + ~ω)]

1
2 cos(θ)

}) 1
2
. (2.24)
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2.2.4 Coherent and incoherent scattering

Coherent scattering occurs when there is a phase relationship between the scattered neu-
trons. This is measured when the empirical scattering length b from equation 2.18 is
equal between nuclei in the scattering system. In practice, the scattering length has some
random variability due to the presence of different isotopes or nuclear spin states (or
both!). So, for a certain part of the scattered wave amplitudes there is no phase rela-
tionship between the scattered neutron waves. The intensity of that is called incoherent.
Usually, in a neutron scattering experiment the sum of coherent and incoherent scattering
contribution is measured.

If the scattering system consists of a large number of nuclei, the measured double dif-
ferential cross-section according to equation 2.13 can be expressed by the distribution
average(

d2σ

dΩdE ′

)
coh

= σcoh
4π

k′

k

1
2π~

∑
jj′

∫ ∞
−∞

{
exp

(
−i ~Q~Rj′(0)

)
exp

(
−i ~Q~Rj(t)

)}
exp (−iωt) dt

(2.25)(
d2σ

dΩdE ′

)
inc

= σinc
4π

k′

k

1
2π~

∑
j

∫ ∞
−∞

{
exp

(
−i ~Q~Rj(0)

)
exp

(
−i ~Q~Rj(t)

)}
exp (−iωt) dt,

(2.26)
where ~Rj is the position of the jth scattering nuclei (with j = 1, ..., n) with respect to the
origin [48].

Here the scattering cross-section from equation 2.18 is separated as follows:

σcoh = 4πb2 (2.27)

σinc = 4π(b2 − b2) (2.28)

The mean scattering area (squared scattering length) is defined with the relative frequency
pj as

bjbj′ = b
2 =

∑
j

pjbj

2

(2.29)

bjbj = b2 =
∑
j

pjbj
2. (2.30)

Coherent scattering gives information about inter-atomic correlations, which correspond
to static structural information in the elastic case and to information about collective
motion (e.g. phonons, magnons) in the inelastic case.
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Incoherent scattering gives information about the self-correlation. In the elastic case, this
relates atomic positions (which appear in a scattering experiment except for the Debye-
Waller factor as a flat background in the Q-space) and, in the inelastic this is described
by single atom motion (e.g. diffusive motion and atomic or molecular vibrations).

Beside scattering, there is a certain, isotope-specific possibility that incident neutrons
perform nuclear reactions, i.e. are considered as absorbed. This is described by the
absorption cross-section σabs, which is proportional to the neutron wavelength λ. Ele-
ments with a comparatively high absorption cross-sections are e.g. Boron (σabs(B) = 767
barn), Cadmium (σabs(Cd) = 2520 barn), Gadolinium (σabs(Gd) = 49700 barn), Helium-3
(σabs(3He) = 5333 barn) and Mercury (σabs(Hg) = 372.3 barn) (all at a neutron wave
length of λ = 1.798 Å [112]) can be used as neutron absorbers for shielding applications
or the detection of thermal neutrons.

The total cross-section quantifies the sum of coherent scattering, incoherent scattering
and neutron absorption during the scattering process.

σtot = σcoh + σinc + σabs (2.31)

The respective characteristic parameters can be measured [112].

2.2.5 Correlation function

Correlation functions allow a description of nuclei motion by relating the spatial time
dependent distances to the respective parts in the cross-section. The measured total
double differential cross-section is thus made up of equation 2.25 and equation 2.26 and
can be written together as

d2σ

dΩdE ′ = N

4π
k′

k

(
σcohScoh

(
~Q, ω

)
+ σincSinc

(
~Q, ω

))
, (2.32)

where S( ~Q, ω) is the scattering function (also called dynamic structure factor). Here, N
is the number of particles in the system.

Scoh
(
~Q, ω

)
= 1

2πN~
∑
jj′

∫ ∞
−∞

{
exp

(
−i ~Q~Rj′(0)

)
exp

(
−i ~Q~Rj(t)

)}
exp (−iωt) dt (2.33)

Sinc
(
~Q, ω

)
= 1

2πN~
∑
j

∫ ∞
−∞

{
exp

(
−i ~Q~Rj(0)

)
exp

(
−i ~Q~Rj(t)

)}
exp (−iωt) dt (2.34)
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S( ~Q, ω) can be expressed as the temporal Fourier transform of the dimensionless inter-
mediate scattering function I( ~Q, t).

Scoh/inc
(
~Q, ω

)
= 1

2π~

∫
Icoh/inc

(
~Q, t

)
exp (−iωt) dt (2.35)

Similar to S( ~Q, ω), I( ~Q, t) also exists in two versions, considering pairs of particles (co-
herent) or only one particle (incoherent). The incoherent part is also referred to as the
self-intermediate scattering function.

Icoh
(
~Q, t

)
= 1
N

∑
jj′

{
exp

(
−i ~Q~Rj′(0)

)
exp

(
−i ~Q~Rj(t)

)}
(2.36)

Iinc
(
~Q, t

)
= 1
N

∑
j

{
exp

(
−i ~Q~Rj(0)

)
exp

(
−i ~Q~Rj(t)

)}
(2.37)

Figure 2.3: a. Pair correlation, where a particle j is at time t in position ~r and a particle j′ has
been in the origin ~r = 0 at time t = 0; b. self correlation, where one and the same
particle is at time t when it has been in the origin ~r = 0 at time t = 0.

Furthermore, an additional Fourier back transform from reciprocal space to space yields
the time-dependent Van Hove correlation function G(~r, t) [113] with dimension of an
inverse volume. The coherent part of G(~r, t) relates to the pair correlation function
Gpair(~r, t), which is the probability to find an atom j at time t at the place ~r, if j or
another atom j′ was at time t = 0 in the origin ~r = 0. This is sketched in Fig. 2.3.a..
The signal emanating from incoherent scattering relates to the self-correlation function
Gself (~r, t), which gives the probability to find one atom at time t at place ~r, if this atom
was at time t = 0 in the origin ~r = 0 (2.3.b.).

Gpair (~r, t) = ~
(2π)3

∫ ∫
Scoh

(
~Q, ω

)
exp

(
−i
(
~Q~r − ωt

))
d ~Qdω (2.38)
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Gself (~r, t) = ~
(2π)3

∫ ∫
Sinc

(
~Q, ω

)
exp

(
−i
(
~Q~r − ωt

))
d ~Qdω. (2.39)

The van Hove correlation function G(~r, t) is therefore the inverse Fourier transform in
time and space of the measured scattering function S( ~Q, ω). Thus, S(Q,ω) contains, in
theory, all relevant physical information about the atomic positions and motions of the
scattering system.

2.2.6 Scattering from diffusive processes

Figure 2.4: Schematic of different excitation modes and their resulting scattering contributions
in the dynamic structure factor S(Q,ω) [114]

In Fig. 2.4 S(Q,ω) is depicted for different dynamical modes. The elastic line is located
at zero energy transfer (ω = 0). In a neutron scattering experiment it is the delta function
of the elastic scattering convoluted by the instrumental energy resolution. In the inelastic
case, scattering is proportional to the density of states. Without going into the details;
this refers on a 10−12 s to 10−13 s time scale to phonons and to molecular vibrations on a
10−14 s to 10−15 s time scale [115–117].

Quasielastic neutron scattering (QENS) refers to small energy transfers statistically dis-
tributed around zero energy transfer. Typically, QENS spectra show energy distributions
from a few meV to infinite small energy. In the time domain this corresponds to 10−14

s and much lower times. Whereby the smallest energy and longest time is given by the
energy / time resolution of the respective QENS instrument [45]. The QENS intensity
consists of both coherent and incoherent scattering information.



20 2 Theoretical Background

In case of metallic melts in the hydrodynamic limit, i.e. in the limit of small wavenumbers
Q and low frequencies ω the coherent inelastic scattering is described by a Lorentzian
shaped line, emerging from thermal diffusivity due to temperature fluctuation and two
Lorentzian shaped Brillouin lines, emerging from collective atom motion due to density
fluctuations [118]. However, the Brillouin lines lie outside the relevant energy range of
quasielastic neutron scattering. Moreover, the Rayleigh line appears in this energy range
as a flat background [50].

For incoherent quasielastic scattering, the self-correlation function Gself (~r, t) is equal to
the probability described in 2.1. In the following, only the case of an isotropic medium
(e.g. liquids) is considered, where only the magnitude of the wave vector ~Q is necessary.
Fick’s second law according to equation 2.7 can then be rewritten

d

dt
Gself (~r, t) = D∇2Gself (~r, t) . (2.40)

For diffusive motion, the probability density function according to equation 2.11 can be
expressed as a solution of the differential equation 2.40, given the boundary condition of
a delta function in the probability distribution for ~r = 0, t = 0 in three dimensions by

Gself (~r, t) = 1
[4πDt]

3
2

exp
(
− r2

4Dt

)
, (2.41)

which gives a direct relation to the diffusive motion. Inserting equation 2.41 into equation
2.39 and equation 2.35 gives [118]

Is (Q, t) = exp
(
−Q2Dt

)
(2.42)

Sinc (Q,ω) = 1
π

DQ2

ω2 + (DQ2)2 . (2.43)

Equation 2.43 has the form of a Lorentzian, with a half width at half maximum Γ of
[119]

Γ(Q) = ~DQ2. (2.44)

Plotting the different Γ values divided by ~ as a function of Q2 allows then a direct
determination the self-diffusion coefficient by extracting the linear slope.

I(Q, t) gives access to the structural relaxation of atoms in the time domain. At short
times in the liquid (≤ 1 ps), fast atomic motion within transient cages formed by nearest-
neighbors (see 2.1) result in a rapid decay of atomic correlations. At later times, escape
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from these cages eventually occurs with a relaxation time τ . For dense liquids, which
can form glasses during rapid cooling, the shape of I(Q, t) can be modeled using a phe-
nomenological stretched exponential decay described by the Kohlrausch-Williams-Watts
function [120].

Is (Q, t) = fq exp
[
−
(
t

τ

)β]
(2.45)

where fq gives the amplitude of the atomic vibrations. The parameter β < 1 specifies the
stretching of the relaxation process, resulting in a distribution of τ . In general, however,
the microscopic dynamics of non-glass-forming liquids can be described with a simple
exponential decay as in e.g. equation 2.42, corresponding to a value of β = 1 in equation
2.45. Equating equation 2.42 with equation 2.45 and β = 1 gives the diffusion coefficient
as a function of τ determined from I(Q, t); namely,

D = 1
τQ2 . (2.46)

Similar to equation 2.44, the diffusion coefficient D can be obtained through the linear
slope of 1/τ as a function of Q2.

2.2.7 Structural analysis of binary alloys

A time independent averades expression of the structure is given by the static structure
factor, which can be directly determined (following equation 2.14) by integrating the
dynamical structure factor S(Q,ω) over the inelastic signal ω.

S(Q) =
∫ ∞
−∞

S (Q,ω) d (~ω) (2.47)

In case of binary mixtures the total structure factor S(Q) consists of three partial struc-
ture factors, which origin from the specific atomic correlation of the alloyed components A
and B: SAA, SBB and SAB. According to Faber-Ziman’s formalism those partial structure
factors are related to the measured differential cross-section with the respective concen-
tration c and coherent scattering length b [121].

(
δσ

δΩ

)
coh

= c2
AbA

2

b2
SAA(Q) + c2

BbB
2

b2
SBB(Q) + 2cAcBbAbB

b2
SAB(Q) + b2 − b2

b2
(2.48)
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Here the mean scattering length is given by:

b = cAbA + cBbB (2.49)

b2 = cAb2
A + cBb2

B (2.50)

This formalism can be rewritten in terms of the topological and chemical short-range
order. Following Bathia-Thornton’s formalism [122] the partial structure factors SNN ,
SCC and SNC can be related to the measured differential cross-section by

(
δσ

δΩ

)
coh

= b
2

b2
SNN(Q) +

cAcB
(
bA − bB

)2

b2
SCC(Q) +

2
(
bA − bB

)
b

b2
SNC(Q). (2.51)

Here SNN refers to the topological short-range order, SCC to the chemical short-range
order and SNC to a correlation of particle density and chemical composition.

The partial structure factors SAA, SBB and SAB and accordingly SNN , SCC and SNC can
be directly determined by solving a system of linear equations. Therefore, measurements
of three independent total structure factors S(Q) with different scattering contrast are
needed. This can be achieved by employing different scattering methods, e.g. neutron
scattering and x-ray diffraction. Additionally, neutron scattering offers the possibility to
detect total structure factors with varying scattering contrast by using elemental isotopes
with different coherent scattering lengths bcoh.

In Fig. 2.5 the neutron scattering lengths of elements are depicted. As can be seen, five
elements - namely Hydrogen (bcoh(H) = −3.74 fm), Lithium (bcoh(Li) = −1.90 fm),
Titanium (bcoh(Ti) = −3.438 fm), Vanadium (bcoh(V ) = −0.38 fm) and Manganese
(bcoh(Mn) = −3.73 fm) - own a negative coherent scattering length (total values for
all elements and isotopes can be found in [112]). In binary mixtures containing one of
those elements an alloy composition can be found which mean scattering length equals
zero according to equation 2.49. In case of this zero scattering composition the partial
contribution of SNN and SNC in equation 2.51 vanish. A neutron diffraction experiment
investigates then the chemical short-range order characterized by SCC directly.
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Figure 2.5: Scattering length b in fm as a function of the atomic number Z of elements [123].
Some elements are labeled. Here, the red lines refer to elements with positive scatter-
ing length and the blue lines to elements with negative scattering length. Unmarked
elements are referred by green lines.

2.3 Short-range order in metallic melts

Decades of research show interest in the short-range order of atoms in metallic melts.
Already in 1952 Frank postulated an icosaedral short-range of monoatomic melts [124] as
explanation for Turnball’s investigation on the supercooling of metallic liquids [125]. A
melt with icosaedral structure has a coordination number of Z = 12, which is equivalent
to 12 nearest neighbors. It is densely packed and has a symmetry, which is incompatible
with the translation invariance of crystals. Therefore it is impossible to assemble solid
crystals out of icosaeda. The resulting rather high differences in surface energy between
the liquid and solid phases yield a high energy barrier ∆G for nucleation, which leads to
a good undercoolability of melts.

In monoatomic metallic melts - namely the early transition metal group 4 elements Ti
and Zr as well as for late transition metals like Fe or Ni - an icosaedral short-range order
was found by neutron diffraction experiments combined with simulations of the structure
factor [65, 66].

For metallic alloys it is rather complicated - and for multi-component systems even im-
possible - to investigate the atomic short-range order of single alloy components, since
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partial structure factors can just be obtained indirectly employing independent measure-
ments with different scattering contrasts. In some metallic alloys with strong chemical
interactions icosaedral short-range order was found [72, 126]. Detailed research was fo-
cused to obtain the partial structure factors in binary metallic melts. For Ni-Nb [127],
Ni-Si [128], Zr-Ni [64, 129] and Hf-Ni [63] the short-range order was investigated. The
preferred nearest neighbors and the coordination numbers could be obtained, indicating
no dominance of icosaedral short-range order for these alloys.

Sometimes, only total structure factors are obtained and the total pair-correlation function
is discussed [83, 130, 131]. However, the total pair-correlation function is not suitable for
a detailed investigation of the atomic short-range order. In contrast, partial structure
factors defined by ab initio MD simulations are available for Al-Ni [132], Li-Bi [133],
Ag-Ge [134], Zr-Ni [135] and Al-Cu [136].

In all referred reports the interplay between the short-range order and the dynamical
properties of the respective components are discussed. Many suggest an influence of the
chemical short-range order on the dynamical properties of the melt. However, the detailed
mechanisms remain still largely unknown, which requires detailed investigations of short-
range order in combination with the atomic dynamics to explain melt properties.
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2.4 Packing fraction

The effect of packing has a huge impact on the microscopic and macroscopic dynamics
in metallic melts [58]. Normally, a higher packing fraction of melts correlates with lower
melt dynamics.

The packing fraction can be calculated based on the melt density. Therefore, at first
the mean atomic volume Vat needs to be defined, using the mean molar mass M of the
respective alloy components, the measured density ρ and the Avogadro constant NA.

Vat = M

ρNA

(2.52)

Furthermore, the calculated atomic volume is needed:

VA = 4
3πr

3 (2.53)

Here r is the mean of the alloy components radii. Here one can consider either covalent
radii [67] or Goldschmidt radii, which correspond to atomic distances in the solid [137].
However, due to the disordered nature of liquids like metallic melts it is rather difficult
to depict the atomic radii. This topic is comprehensively discussed in the first results
section of this work. Nevertheless, in case of metallic melts the absolute scale of the pack-
ing fraction is less important than the actual discrepancies in packing between different
systems [127]. Therefore, a consistent set of radii needs to be considered, what is in any
case topic of discussion [138]. The packing fraction φ is then given by

φ = VA
Vat

. (2.54)
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2.5 Mode-coupling theory

The mode-coupling theory (MCT) of the glass transition provides a direct link between
the dense liquid’s structure and its dynamics [68]. MCT takes as input the equilibrium
partial static structure factor of the liquid and is able to predict the dynamical behavior,
e.g. self- and inter-diffusion coefficients [139–143]. At the critical temperature Tc MCT
predicts an ideal glass transition, where the diffusion coefficient converges to zero [144].

Figure 2.6: Schematic 2D model of a monoatomic melt to visualize the "cage effect" in MCT.
The red sphere depicts the center atom, which is surrounded by the cage formed by
the violet atoms.

In liquids atoms are surrounded by a dynamic cage of nearest neighbors. This "cage
model" is an intuitive picture of MCT [145]. The motion of atoms in densely packed
liquids are highly correlated. A self-diffusion process of the central atom can take place
by structural relaxation if the collective dynamics cause an opening of the cage. This
refers to the relaxation described in 2.2.6. Hence, atomic motion of a tagged particle is
described by a density correlator φsQ(t), which is the equilibrium average of the density
fluctuations:

φsQ(t) =
〈
%∗~Q(t)% ~Q(0)

〉
(2.55)

Here, % ~Q is the Fourier-transformed tracer particle density % (~r) = δ (~r − ~rs). With
increasing temperature (and lower packing) the microscopic density correlations decay
faster, what is equivalent to smaller relaxation time and greater diffusion coefficient. By
lowering the temperature down to Tc (or increasing the packing fraction φc) density corre-
lations mark a finite value, the relaxation time diverges τ =∞ and the diffusion coefficient
equals D = 0. The liquid passed the glass transition and composed a solid glassy structure
[144].
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The equations of motion are similar to that of a time-dependent harmonic oscillator

φ̈sQ(t) + Ω2
Qφ

s
Q(t) + Ω2

Q

∫ t

0
ms
Q (t− t′) φ̇sQ (t′) dt′ = 0, (2.56)

with Ω2
Q = v2Q2. Here v is the thermal velocity. An essential element is here the memory

kernel ms
Q (t− t′) which is a force-force correlation function describing the cage dynamics

from the density fluctuations. Particles in motion can interact at time t with the density
wave they induced by density fluctuations at time t′. ms

Q(t) is expressed by

ms
Q(t) = F

[
φsQ (t) , φαβQ (t)

]
=
∑
k,αβ

VQ,kpφ
s
k(t)φαβp (t) (2.57)

with p =
∣∣∣ ~Q− ~k∣∣∣. Here, φαβQ (t) is the density-correlation function of the bulk, where α

and β represent the respective components of the mixture. φαβp (t) is expressed by a ma-
trix, which can be derived similar to equation 2.56 and 2.57 [143]. The coupling vertices
VQ,kp include the static structure factor SQ, which can be measured in diffraction exper-
iments (e.g. using neutrons or synchrotron x-rays). Following, MCT predicts transport
coefficients such as the self-diffusion of atoms or inter-diffusion coefficients.

MCT can be used to analyze different diffusive regions and investigate the effect of pack-
ing [143]. In addition, it considers the influence of the chemical short-range order on
mass transport. Recently, a decoupling of diffusion coefficients as seen by quasielastic
neutron scattering could be explained by MCT [63]. In conclusion, MCT is a useful
tool to understand the dynamics of glass-forming liquids and the corresponding transport
mechanism.
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2.6 Viscosity

Another important thermophysical property of the melt is the viscosity, which describes -
in contrast to the atomic motion (diffusion) - the macroscopic dynamics. Its inverse value
is the fluidity. It can be described by the shearing of layers within the liquid.

Figure 2.7: Schematic model of viscosity η. A is the surface layer of the liquid, where the force
F causes a displacement with the velocity profile dv

dy

In Fig. 2.7 different layers along the surface A are arranged in y-direction. If the topmost
layer gets displaced in x-direction by a certain force F and velocity v, a velocity profile
in y-direction dv

dy
results, which is proportional to the force F .

F = ηA
dv

dy
(2.58)

Here η is the viscosity. Hence, the viscosity describes the friction between the different
liquid layers. In case of a Newtonian fluid, the viscosity is independent from the shear
velocity [146]. Metallic melts can be considered as Newtonian fluids.
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2.7 Stokes-Einstein relation

One of the empirical relation between both dynamical quantities, the macroscopic viscosity
and the microscopic diffusion of atoms, is given by the empirical Stokes-Einstein relation.
It is derived in order to describe the motion of spherical particles within a homogeneous
liquid [6, 147] and supposes the validity of Stoke’s law of friction [148] for spherical
particles of the radius r within a homogeneous liquid of the viscosity η.

FR = 6πvηr (2.59)

Here v is the velocity of the spherical particles, which are affected by the force of friction
FR. In the work on the theory of Brownian motion Albert Einstein related in 1905 the
diffusion coefficient D of spherical particles to the viscosity η of the liquid at a given
temperature T [6].

Dη = kBT

6πrH
(2.60)

Here kB is the Boltzmann constant and rH is the hydrodynamic radius.

Although the Stokes-Einstein relation was found to be valid in liquids like e.g. Benzene
and Tetramethylsilan [149], a breakdown was reported in a variety of metallic melts
[80, 82, 150–156]. This is due to several reasons. For example, in multi-component
systems a dynamical heterogeneity is found, which can cause deviations of several orders
of magnitudes [157]. However, a major problem is, that the hydrodynamic radius ahyd is
an arbitrary quantity, which just gets estimated and often deviates from actual atomic
radii. This applies also in case of single component melts. Here, a detailed investigation
of the relation between hydrodynamic radius and atomic radii is discussed in the first part
of this work on the basic example of Mercury. In addition, Stoke’s law of friction (see
equation 2.59) scales macroscopic particles, which are orders of magnitudes larger than
the atomic dimension in metallic melts.

To analyze the Stokes-Einstein relation in metallic melts a high quality of diffusion and
viscosity data is required. Precise diffusion coefficients can be measured by quasielas-
tic neutron scattering. Viscosity data, which are rather complicated to determine due
to the high applied temperatures and reactive nature of metallic melts, can be reliably
determined using the oscillating droplet method in levitation. The combination of these
methods enables an accurate investigation of the validity of the Stokes-Einstein relation
in metallic melts, for which reason the breakdown predominantly got reported within the
recent decade and still is subject of research.
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3.1 Levitation

The widely-used levitation techniques for container-less processing of liquid metallic sam-
ples are aerodynamic levitation (ADL) [158, 159], electrostatic levitation (ESL) [160, 161]
and electromagnetic levitation (EML) [70, 162]. In ADL the samples are blown by a
gas jet nozzle, in ESL samples are levitated by an electrostatic field and in EML using
electromagnetic forces.

In this work, electrostatic and electromagnetic levitation was used to study the physical
properties of liquid metals. The specific characteristics and benefits of both techniques in
the laboratory setup and in combination with scattering experiments (e.g. neutron diffrac-
tion, quasielastic neutron scattering and x-ray diffraction) are specified below. A detailed
overview of the different levitation techniques when combined with neutron scattering can
be found in reference [163].

3.1.1 Electrostatic levitation (ESL)

Electrostatic levitation (ESL) is one of the most powerful and promising ways of accu-
rately studying reactive metallic melts over a broad temperature range, and thus allows to
explore the deeply undercooled liquid and to form new metastable and glassy phases [164].
By avoiding 1. heterogeneous nucleation at the container wall, 2. chemical reactions of
the melt and the container materials and 3. melt contamination from e.g. the atmo-
sphere, dirt or adsorbate at the container, this state-of-the-art technique enables highly
accurate measurements of important thermophysical melt properties. In the stationary
laboratory setup melt properties like density [165–171], viscosity [82, 85, 170–174], ratio
of specific heat capacity to total hemispherical emissivity [166, 175, 176], undercoolabilty
and nucleation behaviour [177–179] as well as crystal growth velocity [13, 14, 180–183]
can be investigated.

Mobile ESL setups can be installed at neutron and synchrotron scattering beam lines for
highly accurate measurements of the atomic dynamics [50, 59, 63, 80, 184–186], as well
as in-situ structural studies [130, 165, 184, 187–189].

In Fig. 3.1 a schematic sketch of an ESL is depicted. To levitate the sample in vertical
direction samples are positioned in an electrostatic field between the top and bottom elec-
trode, which is created by a high-voltage. The sample levitates if the Coulomb force on
a charged sample is greater than gravity. The sample position is stabilized by two pairs
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of horizontally arranged side electrodes with polar voltages. To minimize any flashovers
the samples are processed under ultra high vacuum (≈ 10−7 mbar). According to Ear-
shaw’s theorem no potential minimum exists in electrostatic fields [190]. Therefore, active
controlling of both the vertical and the horizontal position is necessary [161, 191].

Figure 3.1: Schematic sketch of a sample processed in electrostatic levitation (ESL). The sample
is levitated between the top and bottom electrode. The four surrounding electrodes
control the horizontal sample position. [192]

The sample position is logged by two perpendicularly oriented position sensitive detector
(PSD), which record the sample shadow induced by the position lasers. In case of a
shadow movement the electrode voltage gets adjusted actively. Heating and melting of
the sample is conducted by a 75 W infrared laser (λ = 808 nm). Any charge loss during
heating, which might be induced by evaporation of impurities dissolved in or adsorbed on
the sample, is compensated using a UV-lamp, which charges the sample positively due
to the photoelectric effect. This charging by illumination with UV-light is essential at
temperatures below ca. 1000 K. At higher temperatures thermionic emission is sufficiently
strong.

As depicted in Fig. 3.2 only the sample appears in the levitation plane, leading to an
excellent signal-to-noise ratio in scattering experiments. In addition, essentially no sec-
ondary scattering from the experimental setup affects the measurement. This is an issue
for electromagnetic levitation, which requires a careful shielding of the levitation coil
during scattering experiments.
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Figure 3.2: A molten metallic sample in electrostatic levitation (ESL). Image by courtesy of
DLR-MP.
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3.1.2 Electromagnetic levitation (EML)

Another method to process metallic melts is elctro-magnetic levitation (EML), which first
was introduced in 1954 by Westinghouse [69]. Samples get both levitated and heated by
a radio frequency electromagnetic field due to Lorenz force in a specially winded copper
coil.

~FG = m ∗ g = ~FL = −∇
~B2

2µ0

2π
3 r3

dQ(q) (3.1)

Here µ0 is the magnetic permeability, rd the sample radius, q a dimensionless parameter
with q = rd/δ, δ =

√
2ρe

µ0
the skin depth of a magnetic field ~B with frequency ω, the

efficiency ratio Q(q) and the electrical resistivity ρe. The magnetic field induces eddy
currents within the sample, which heat it. The respective heating power PH is

PH =
~B2ω

2µ0
V H(q) (3.2)

with the sample volume V and efficiency ratio of power absorption H(q) [146].

Figure 3.3: Sketch of the occurring Lorenz force in electromagnetic levitation (EML). Drawing
by courtesy of DLR-MP.

For EML the heating and levitation process are coupled. Since ~B includes the mass the
heating can only be modified by the levitated sample dimension. A certain minimum of
the field is required to levitate the sample, which induce a certain temperature (heating).
In addition, an active gas cooling (see nozzle in Fig. 3.4) is applied to further enlarge the
accessible temperature range, especially towards lower temperatures. Processing takes
place under inert gas atmosphere. Therefore, the sample chamber gets first evacuated to
ultra high vacuum (≈ 10−7 mbar) and is afterwards flooded by ultra purity gas.
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Figure 3.4: A molten metallic sample in electromagnetic levitation (EML). The sample is levi-
tated and heated by the coil system. Gas cooling can be applied through the bottom
nozzle. Image by courtesy of DLR-MP.

Whereas in EML only conductive samples can be processed (according to Lorenz force)
ESL also allows the levitation of non-conductive materials. Another major difference
is marked by the processing under gas-atmosphere. This allows the measurement of
materials with high vapor pressure, which would tend to evaporate in the ESL vacuum. On
the other hand impurities within the gas atmosphere may lead to sample contamination.
With laboratory setups experiments like density measurements [146, 193–195] and surface
tension investigations [146, 193, 196] are feasible by use of EML. Additionally, mobile
EML setups have been developed for use at large scale facilities, which can be utilized for
instance to investigate the melt dynamics [57, 60, 73, 197–199] and structure [65, 66, 70–
72, 129, 200, 201].

Since the induced Lorenz force points from the coil towards the sample position (see 3.3)
different from ESL the samples are levitated under stable conditions. However, these
forces deform the melt as well (as one can see in 3.4). Therefore, viscosity measurements
are impossible in ground-based EML.

With the TEMPUS facility a microgravity EML setup for parabolic flights was developed
to enable viscosity investigations [85, 146, 202–204]. Additionally, an EML setup aboard
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the Columbus module of the International Space Station (ISS) exists [205]. Due to the
small required forces of the levitation process a completely different coil design is ap-
plied in microgravity. The heating process and levitation are decoupled from each other
and generated by different coil systems. This allows detailed measurements of the ther-
mophysical properties and investigations of the undercooling and force-free solidification
behavior of metallic melts [12, 206].
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3.1.3 Temperature measurement

One technique to contact free determination of the sample temperature is to measure the
intensity of the thermal radiation emitted from the sample using a pyrometer [207]. It
relates the spectral radiance I at a wavelength λ with the surface temperature T emitted
by a black body in thermal equilibrium according to Planck’s law [208, 209]:

ε (λ, T ) I (λ, T ) = 2hc2

λ5

[
exp

(
hc

λkBT

)
− 1

]−1

(3.3)

Here ε (λ, T ) is the emissivity indicating the ratio between emitted power of physical
and black body. In case of a black body ε (λ, T ) = 1. The emissivity depends on the
wavelength λ, temperature T and the sample surface texture. However, for the study here
the emissivity is assumed to be temperature independent as long as no phase transitions
occur [210]. Therefore, ε ≈ const. at constant wavelength. To convert the temperature
T pyro measured with the pyrometer to the real temperature T real the Wien approximation
for small wavelengths is used [211].

ε (λ, T ) I (λ, T ) = 2hc2

λ5 exp
(
− hc

λkBT

)
(3.4)

If the measured spectral sample radiance remains unchanged the relation ε1I1 (λ, T1) =
ε2I2 (λ, T2) is given. The product of ε1,2 and I1,2 is then dependent on the temperature
T1,2 and it can be followed

1
T2
− 1
T1

= λkB
hc

ln
(
ε2

ε1

)
(3.5)

This equation applies for T real and T pyro with respective εreal and εpyro as well as for
the literature value of the liquidus temperature T litL and the measured value T pyroL with
respective εlitL and εpyro. Considering the assumption for liquid metals the relation εreal =
εlitL is found. Therefore, the real temperature values can be converted from the pyrometer
data as follows

1
T real

− 1
T pyro

= 1
T litL
− 1
T pyroL

(3.6)

Deviation in the temperature data may result from the uncertainty in the determination
of T pyroL and from the inaccuracy of the pyrometer ∆T/T ≈ 0.1− 0.3%. This sums up in
an absolute error of ∆T = ±5 K. The maximum sampling rate of the applied pyrometer
is 10 kHz, equivalent to a measurement time of 0.1 ms and the accessible temperature
range is 300°C to 2500°C [212]. In this work a sampling rate of ∆t = 0.01 s was applied.
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3.2 Scattering experiments

3.2.1 Quasielastic neutron scatting (QENS)

QENS probes the distribution of energy transfers by atomic motion, which appear as
a broadening of the elastically scattered spectrum. Since the incoherent QENS signal
emanates from single-particle dynamics, it is particularly suited to study process such as
self-diffusion. In principle, inter-diffusion coefficients can also be measured using QENS;
for that purpose, partial scattering functions must be obtained with sufficient accuracy.

Figure 3.5: Detailed sketch of the multi-disc chopper time-of-flight spectrometer TOFTOF at
the Heinz Maier Leibnitz Zentrum (MLZ) in Munich. Drawing by courtesy of TUM-
MLZ.

For the study here QENS measurements were carried out at the multi-disc chopper time-
of-flight spectrometer TOFTOF at the Heinz Maier-Leibnitz Zentrum (MLZ) in Munich
(see Fig. 3.5) [213, 214]. The cold source – a moderator of liquid deuterium D2 at a
temperature 25 K – provides TOFTOF with an integral white beam neutron flux of ca.
1010 n cm2 s−1, which gets pulsed and monochromatized by seven choppers before the
sample position. 1006 detectors provide a measurement of both, the angular information
and the energy transfer, which is detected by the change of the time-of-flight (or velocity)
of the neutron before and after the scattering process.

The neutron guide system of TOFTOF is divided in two parts: the primary s-shaped
guide and the secondary linear focusing guide in the chopper systems.
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The s-shaped curved neutron guide works as a velocity filter with a cutting edge wave-
length 1.38 Å, which can be calculated with the radius of the curvatures of rc = 2km and
the width of the guide of 44 mm. Furthermore a direct sight to the cold source is avoided,
which suppresses γ-radiation. Due to the s-shaped curvature over 46 m in the neutron
guide hall the resulting neutron beam profile is well symmetrically over the area of the
neutron guide.

In the secondary 12.2 m long linear focusing guide, the neutron beam cross-section is
compressed from 100× 44 mm2 to 44.8× 23 mm2. The guide system ends 20 cm in front
of the sample.

Due to the reflectivity of the guide system and the spectrum of the cold source, the upper
wavelength limit for usable neutrons is ca. 12 Å. Manipulation of the chopper system
allows for the incident neutron wavelength to be selected in a broad range from 1.38 Å to
12 Å.

Before interacting with the sample, the neutron beam passes through the primary spec-
trometer, which consists of seven choppers, actively controlled by magnetic bearings ar-
ranged in four housings. The chopper discs are made from a neutron absorbing 10B-coated
carbon-fiber-reinforced polymer with a diameter of 60 cm and a mass of 5.9 kg. The chop-
per discs can be rotated with a frequency of up to 22000 rpm.

Figure 3.6: (a) Picture of a chopper disc; (b) illustration of the chopper rotation frequency
according to equation 3.7. Figure and graph by courtesy of TUM-MLZ.

The seven choppers are arranged into three chopper pairs and one individual chopper,
and are contained within four separate chopper housings. The function of the different
choppers is as follows:
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1. Housing (Chopper 1 and 2): A pair of counter rotating choppers cut the white neutron
beam in polychromatic neutron pulses

2. Housing (Chopper 3): Elimination of higher order wavelengths

3. Housing (Chopper 4): Elimination of higher order wavelengths; (Chopper 5): Prevent-
ing frame overlap by blocking out several pulses

4. Housing (Chopper 6 and 7): A pair of counter rotating choppers cut out a small
wavelength range to monochromatize the neutron pulses

All choppers rotate with the same frequency, except for the frame overlap chopper 5,
which frequency (in rpm) can be calculated with respect to the present geometries and
allowing neutrons with a wavelength larger than 1.5 times the mean wavelength of the
incident neutrons λi (in Å) to overlap to [213]

vch = 1.978× 104 n

λi
. (3.7)

Here, n is the frame overlap ratio.

Between the primary spectrometer and the sample, a monitor (efficiency approximately
10−5) is located, which records the intensity of the incident neutrons by triggering a
detectable nuclear fission in fissile 235U.

After impinging on the sample, most of the neutrons pass directly through without inter-
acting and end up in the beam stop, which is located 16 cm behind the sample. Typically
the sample thickness is chosen such that 10 % of the monochromatic incident beam is
scattered by the sample. This compared to the incident beam small ratio of scattering
serves to keep multiple scattering events in sample small [215]. After passing through
a radial Gd2O3 collimator, the scattered neutrons enter the flight chamber, where 1006
3He-detectors are located tangential to the intersection lines of the Debye-Scherrer-cones
4 m away from the center of the sample. The detectable scattering angle 2θ covers the
regions −15◦ to −7◦ and 7◦ to 140◦.

The flight chamber, as well as the sample chamber, is filled with Argon gas to avoid
air scattering. Shielding of the detectors by polyethylene and B4C eliminates parasitic
neutrons. Both measures bring TOFTOF to an unsurpassed suppression of background.

Each of the 1006 detector tubes has an active area of 40× 3 cm2 and a mean thickness of
14.5 mm. The tubes are filled with 97 % 3He and 3 % CF4 at a total pressure of 10 bar,
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which react with the neutrons into charged tritium and protium

n+3 He→3 H +1 H + 0.764 MeV. (3.8)

The area between the detectors and the back wall of the flight chamber is shielded with
cadmium to avoid re-scattering already detected neutrons.

The instrumental energy resolution as well as the incident flux onto the sample depend
upon both the chopper rotation frame and the neutron wave length.

In Fig. 3.7.a. the calculated elastic line widths are depicted as a function of the incident
neutron wave length λi for different chopper frequencies. The resolution functions for
TOFTOF exhibit a Gaussian line shape.

Figure 3.7: (a) Calculated elastic line widths for different chopper frequency; (b) accessible
dynamic range with respect to the incident neutron wavelength. Graphs by courtesy
of TUM-MLZ.

With changes of the incident neutron wavelength also the accessible dynamic range varies,
as shown in Fig. 3.7.b.. However, this representation does not consider any effects due to
frame overlaps.

Due to the position far away from the reactor core and the effective shielding of the
respective parts, which results in a dark count rate of under 1 count/min, TOFTOF
exhibits a typical signal-to-background ratio of up to ×105.

The data reduction and evaluation is done using the program FRIDA (“Fast reliable
interactive data analysis”), which is designed for the analysis of spectral data, in particular
from quasielastic neutron scattering [215, 216]. Amongst other things, FRIDA corrects the
background and the detector’s efficiencies. Furthermore, isotropic scattering deviations
in terms of the Debye-Waller-factor are corrected.



3.2 Scattering experiments 43

FRIDA contains highly specialized routines handle (e.g. reorganizing, binning, sorting,
and cloning data or mathematical operations), fit (e.g. by user-defined functions) and to
visualize (e.g. PostScript graphics) tabular data from various formats.

The background was subtracted using the method of Paalman and Pings [217].

IS (2θ, ω) = 1
AS,S+C

IS+C (2θ, ω)− Arel
AS,S+C

IC (2θ, ω) (3.9)

Here IS+C (2θ, ω) is the measured intensity. It reflects the angular and energy dependent
scattering of the sample and the sample environment. IS (2θ, ω) is the intensity of the
sample only and IC (2θ, ω) of the background. AS,S+C corrects neutrons, which get ab-
sorbed in the sample environment or the sample after being scattered on the sample. Arel
corrects the scattering and absorption of neutron scattered on the sample environment.
It can be split up in the quotient Arel = AC,S+C/AC,C , where AC,S+C refers to neutrons
absorbed in the sample or the sample environment, which got scattered on the sample en-
vironment, and AC,C , which corrects the overall absorption of the sample environment.

Figure 3.8: Measured time-of-flight spectra of a Zr50Cu50 at 1208 K (green) when compared to
the empty ESL furnace (grey). The quasielastic broadening of the elastic line of the
liquid sample is depicted, which shows a two orders of magnitude larger intensity
then the background.

When processing metallic melts in levitation Arel = 1 is a good approximation due to the
excellent signal-to-noise ratio of EML and ESL. As depicted in Fig. 3.8, the scattering
contribution of the sample is two orders of magnitude larger in the quasielastic region
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than that of the the empty furnace. In this case, the correction can be simplified to

IS (2θ, ω) = 1
AS,SC

[
ISC (2θ, ω)− IC (2θ, ω)

]
. (3.10)

However, an accurate measurement of the empty cell is absolutely essential for levitation
experiments. This applies especially in case of the strong absorbing Mercury sample,
which got measured using a crucible in reflection geometry. The appropriate background
correction is discussed in the first results section of this work.
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3.2.2 Neutron diffraction

The diffraction experiments to investigate the atomic structure of melts were carried out
at the high intensity 2-axis diffractometer D20 at the Institute-Laue Langevin (ILL) in
Grenoble, France. Incident neutrons with a flux of up to 108 s−1cm−2 can be detected after
scattering up to a maximum angle of 2θ = 154◦ [218], which is equivalent to a scattering
vector of 10-12 Å−1 (at λ = 0.94 Å) according to the definition of the scattering vector ~Q
for elastic scattering.

| ~Q| = 4π
λ

sin (θ) (3.11)

To ensure an ideal resolution (compromise between flux, Q range and resolution) the
wavelength λ should be of the size of inter atomic distances. Therefore, the white beam
originating from the reactor is monochromatized to λ = 0.94 Å. The width of the neutron
beam can be adjusted using slits made of Cd. In addition a B4C-cover is installed inside
the levitator directly in front of the sample in order to minimize irradiation of parts
located behind the sample position. Behind the sample a Cd-beam stop is located to
suppress the background and to reduce the scattering at the Al-window. This results in
an overall Q-range of 0.7 Å−1 to 12 Å−1.

Figure 3.9: Schematic view of the high intensity 2-axis diffractometer D20 at the Institute-Laue
Langevin (ILL) in Grenoble, France [218]
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Figure 3.10: Electromagnetic levitator (EML) installed at the instrument D20. Photo by cour-
tesy of DLR-MP.

The background correction follows a similar routine as for the QENS-measurements. To
correct the absorption of the sample the intensity of empty can Iempty needs to be measured
as well as the one of a strong absorber (here a Cd sample) ICd. Both intensity are summed
up to the background intensity IC according to Beer-Lambert law [219].

IC = ICd
(
1− e−µd

)
+ Iemptye

−µd (3.12)

Here µ is the absorption coefficient, which is estimated according to the empty and the
Cd measurement, and d the sample thickness. After correcting the self-adsorption [217],
the Placzek correction [220] was used to correct the detector count rate of the measured
neutrons [221]. All geometrical artifacts emerging from the apparatus or the angular
detector efficiency are corrected with a vanadium measurement. To consider multiple
scattering effects the correction method of Blech and Averbach was used [222].



3.2 Scattering experiments 47

3.2.3 X-ray diffraction

Diffraction experiments using x-rays generated by sychrotron radiation were carried out
at the materials science beamline ID11 at the European Synchrotron Radiation Facil-
ity (ESRF) in Grenoble, France [223]. The underlying scattering law is similar to that
described in the previous chapter. In contrast to neutrons, due to different scattering
interactions (neutrons scatter on the atom core; x-rays at the atom shell), x-rays exhibit
both a Z dependent and angular dependent form factor.

Figure 3.11: Electrostatic levitator (ESL) installed at the materials science beamline ID11 at
the European Synchrotron Radiation Facility (ESRF) in Grenoble, France

To detect the scattered x-rays a FRELON camera [224] was placed behind the electrostatic
levitator. The distance variable was adjusted to record a quarter of the Debye-Scherrer
rings at a maximum scattering vector of Q = 13 Å−1. The monochromized x-ray intensity
was 100 keV and the detector frame rate was set to 0.5 s. Due to the high intensity
of ESRF’s sychrotron radiation rather low exposure times are possible to obtain total
S(Q), which enables investigations on all appearing structures and phases upon cooling,
nucleation and solidification (phase selection). As a comparison: Common isothermal
holds at neutron diffraction instruments are on the order of hours to ensure suitable
detected statistics.

A CeO2 powder sample was measured to calibrate the recorded signal. CeO2 has a
quite complex crystal structure exhibiting many known Bragg reflexes, which can be
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used to calibrate the detector distance to the scattering angle and the wavelength. The
recorded Debye-Scherrer ring sections got integrated to I(Q) using the azimuthal inte-
gration Python library pyFAI [225] at a wavelength of 0.12437 Å−1, which equals to an
intensity of 100 keV.

Compared to neutrons the incoherent contributions are insignificant. Whereas neutrons
are highly sensitive to different isotopes, the scattering from the respective electron shells
of one and the same element in case of x-rays is identical. Only diffusive effects like Comp-
ton scattering are present, which must be corrected [226]. Background measurement is
also necessary to correct the background as well. The data correction and visualiza-
tion software PDFGetX2 [227] was used to refine the collected diffraction patterns with
the implemented routines of sample self-absorption [217], multiple scattering [222], x-ray
polarization [228] and Compton scattering.
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3.3 Density measurements

In electrostatic levitation (ESL) the density ρ of metallic melts can be determined container-
lessly. Therefore, the shadow of the sample is projected by a cold light source to a camera.
Assuming the sample to be rotational symmetric, the temperature T dependent volume
V of the sample with the mass m can be calculated from the shadow size. The density is
then given by

ρ(T ) = m

V (T ) . (3.13)

The edge detection algorithm employed to determine the shadow size was extensively
explained by Brillo et al. [162]. For measuring the size of the sample shadow, a camera
with a frame rate of 500 fps was used. The recording started triggered with the switch-off
of the heating laser. In the following free cooling phase the temperature is measured using
a pyrometer and the sample shadow is recorded.

Figure 3.12: Sketch of the density measurement setup in electrostatic levitation (ESL)

During the analysis the volume is then determined by the pixel size averaged over 50
recorded images to minimize any effect of sample vibration. Afterwards the volume is
synchronized with the sample temperature measured with a pyrometer. To convert the
volume from pixel size px3 to cm3 a calibration measurement on steel spheres with known
diameter (d = 2 mm, 2.381 mm and 2.5 mm) is required under the same ESL configuration
than the one of the sample. The cm3 to px3 ratio of the calibration measurement can
then be adopted to the sample measurement. The given equation for the volume allows
then a calculation of the density according to equation 3.13 together with the measured
sample mass m.

The stable levitation conditions in ESL lead to nearly rotation symmetric shapes, mini-
mizing the experimental error. The mass loss during the measurement is normally below
∆m/m < 0.1%. The calibration measurement inaccuracy and the camera resolution result
in an overall measurement error of about ∆ρ/ρ ≈ 1.5%.
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3.4 Viscosity measurements

The temperature dependent measurement of viscosity in liquids has a great tradition
in literature [229, 230]. Many different methods have been developed throughout the
decades, which are mostly carried out in contact with a crucible. The most common is
rheology, where the liquid is sheared between two independently rotating crucibles and
the resulting torque is detected [231]. Using different crucible shapes (e.g. cylinder, cone,
plate etc.) different viscosity ranges can be accessed.

Since highly reactive melts are investigated in this work and the respective temperatures
are rather high the contact-free oscillating droplet method is used in order to avoid any
reactions of the melt with the crucible [82, 85, 232, 233].

Using a frequency generator that modulates the levitation voltage surface oscillation are
induced on a levitating sample in the ESL. Here at first the sample’s resonance fre-
quency and a reasonable amplitude needs to be defined. After switching off the frequency
generator the time dependent damping of the oscillation of the droplet is recorded by
a high-speed camera. Using the image processing software TeVi the samples radius in
x- and y-direction is analyzed and the damping can be determined [234]. According to
reference [173] the time dependent sample radius rx,y is given by

rx,y(t) = r0 x,y + Ax,y sin (ωx,yt+ Φx,y) exp
(
− t

τx,y

)
(3.14)

Here r0 x,y is the mean sample radius, Ax,y the amplitude of the oscillation in x- and
y-direction with frequency ωx,y and Φx,y is the phase shift. τx,y marks the relaxation time
of the damping.

To determine the surface tension σ and the viscosity η the values of τx and τy and respec-
tively σx and σy need to be averaged.

The surface tension σ is given by the mean oscillation frequency ωn at mode n and the
density ρ [235]:

ω2
n = n(n− 1)(n+ 2) σ

ρr3
0
. (3.15)

The mean relaxation time τ at mode n is correlated to the viscosity η:

1
τn

= (n− 1)(2n+ 1) η

ρr2
0
. (3.16)
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The applied frequency generator excites the sample in the ESL in the vertical direction
(via the levitation voltage) equivalent to the mode n = 2, which gives:

ω2
2 = 8σ

ρr3
0

(3.17)

and
1
τ2

= 5η
ρr2

0
(3.18)

These equations are valid if the the experimental setup fulfills the following conditions
[236]: 1. only lamillar flow within the sample, 2. an force-free levitation, 3. a spherical
sample shape. As shown in reference [237] all of this is valid for the small samples and
the viscosity range accessed in electrostatic levitation.

The TeVi software was used to verify the correct resonance frequency. The oscillation can
be disturbed if the sample is rotating [85]. If this is the case, the amplitude and frequency
needs to be changed. To depict reliable viscosity values the difference in radii ratio should
be less than 2 % ( r0 x

r0 y
< 1.02) (spherical sample), one oscillation mode should be applied

and the amplitude of the oscillation should be five times larger than the random noise
[233].

Figure 3.13: Damped oscillations of a Cu41Ti59 alloy at 1240 K as ivestigated in electrostatic
levitation (ESL). The insert shows an detailed view of the change in sample radius
in the time range between 0 and 0.05 seconds.
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3.5 Sample preparation

The raw materials were cut and weighted in a lab scale with an accuracy of ±0.1 wt.%.
Alloying took place in an arc melting device under inert gas atmosphere. The working
chamber was evacuated to 10−7 mbar and afterwards flooded with ultrahigh purity Ar-gas
(6N, 99.9999 %). The arc is ignited between a Tungsten tip and a water cooled Cu-plate,
on which the sample material is placed.

A Ti piece is melted prior ro melting of the samples in order to avoid contamination
from residual gases (e.g. Oxygen, Nitrogen, Hydrogen etc.). Ti has an excellent gas-
gettering ability (especially for oxidation) to purify the atmosphere [238]. This step is
very important, since Ti is also one component of the investigated alloy systems in this
work.

The weight loss during alloying is below 0.1 mg indicating no significant change in compo-
sition. The processed sample mass depends on the respective experiments and varies for
viscosity and density measurements between 40 mg and 100 mg. For the scattering exper-
iments (depending on the different interaction cross-sections and scattering techniques)
the sample mass is between 150 mg and 700 mg, respectively.
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4.1 Self-diffusion in Mercury investigated with
quasielastic neutron scattering

Diffusion in liquids describes transport of mass via (random) walk powered by the heat
bath. It is a fundamental property with high importance to many aspects in physics and
materials science. Examples are chemical reactions in liquid and solid states, solidification
and crystal growth from melts, or permeation of gas trough membranes [7].

In the case of crystalline solids the diffusion mechanisms are well known, e.g.: via either
interstitial, interstitialcy or vacancy mechanisms [7, 27–32]. In gases and liquids, such
mechanisms are missing due to the disordered nature of the medium. Particularly for
liquids, it is to large extend unclear which physical parameters or properties determine
the motion and the activation energy of the mass transport [239].

Metallic liquids are composed of atoms which exhibit no internal degrees of freedom,
making them relative simple systems for understanding the transport mechanism. Single
component liquid metals can be taken as a closest analogy to a hard sphere model system,
due to the short-range, repulsive nature of the metallic bonding. Thus, a number of models
describing the mass transport in metallic liquids are based on a transport mechanism of
random, uncorrelated binary collisions, similar to a (dense) gas, which end up in semi-
empirical terms with thermodynamic parameters of the melt [33–38].

The experimental determination of diffusion coefficients of metallic melts is rather chal-
lenging, mainly hampered by convective effects [54]. Moreover, if the involved temperature
is high, chemical reactions with container materials can induce additional artefacts [55].
Since decades, a lot of research efforts have been put in measuring and understanding the
diffusion in liquid metals. This includes even several space missions, in order to achieve
well defined, purely diffusive experimental conditions without convective effects [240].
However, the availability of reliable experimental data is still rather rare.

In this respect, liquid Mercury offers particular advantages because it melts already below
ambient temperature (Tm = 234.3 K). Hence, the relevant temperature is rather low and
can be easily achieved. Furthermore, Mercury is also chemically not very reactive. The
large density of 13.5 g/cm3 of Mercury makes it interesting to investigate how the diffusion
in liquids in general depends on atomic mass and packing [241]. In literature several data
sets of self-diffusion exist for liquid Mercury. Hoffman [242], Meyer [243] and Brown et
al. [244] used respectively slightly different capillary-based techniques; Nachtrieb et al.
[245] obtained their data from a shear cell experiment [44]. Part of these experiments
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were performed employing in-situ techniques. Nevertheless, since in these experiments no
stable density layering exist, the results may still be affected by convection resulting to
systematic deviations.

4.1.1 Experimental

Inelastic neutron scattering experiments of liquid Mercury have been carried out previ-
ously, at ambient temperatures [246–248]. However, both studies were focused on in-
coherent inelastic scattering outside the hydrodynamic regime. Diffusion coefficients of
1.57×10−9 m2s−1 and 1.43×10−9 m2s−1 were derived indirectly only. In addition, neither
data close to the melting point of Hg are available, nor was the temperature dependence
of self-diffusion studied.

Incoherent quasielastic neutron scattering (QENS) measures diffusion steps on atomistic
scale and pico- to nanosecond time scale. Thus, it allows reliable and precise in-situ
observations of atomic transport processes on an absolute scale without the influence
of convection [45]. Here, we present QENS measurements on Mercury, carried out at
the multi-disc chopper time-of-flight spectrometer TOFTOF at the Heinz Maier-Leibnitz
Zentrum (MLZ) at Garching [214]. The very low instrumental background combined with
high neutron flux and the appropriate energy (time) resolution make TOFTOF the ideal
instrument for an accurate study of the self-diffusion in liquid Mercury.

An incident neutron wavelength λ of 10 Å at a chopper-speed of 3000 rpm was used, giving
an accessible wave-number range fromQ = 0.1 Å−1 toQ = 1.2 Å−1 at zero energy transfer.
This results in an instrumental energy resolution (fwhm) of 60 µeV [213]. At small Q-
values well below 1.2 Å−1 the coherent contribution and the corresponding Rayleigh line
appear as a flat background, which is associated with the thermal diffusivity in Mercury
some two orders of magnitudes faster than the self-diffusion [50, 249]. Therefore, the
QENS spectra at low Q are dominated by the incoherent scattering cross section of σinc
= 6.6 barn [112].

However, the neutron absorption cross section σabs of Mercury is 2068.3 barn at λ = 10 Å
[112]. Therefore, measurements were carried out in reflection geometry. As illustrated in
Fig. 4.1, the angle between the flat sample cell and the incoming neutron beam was 37◦

to ensure the best compromise between measured sample area (of 8.5 cm2) and detectable
Q-space (of 0.1 to 1.2 Å−1).



56 4 Results

Figure 4.1: Schematic view of the assembly of the sample cell at TOFTOF to measure scattered
neutrons in reflection geometry.

4.1.2 Sample holder

Fig. 4.2 shows an explosion sketch of the flat sample cell, which has been designed to
carry out this experiment. It is made out of Polytetrafluorethylene (Teflon) to prevent
any amalgamation at the relevant temperatures. It was designed to fit into a closed-
cycle cryostat. In addition, it should last the Hg pressure difference within the vacuum
atmosphere surrounding the sample holder. Fig. 4.3 shows the thermal analysis of the
sample cell, showing a nearly isothermal distribution of the temperature. The heating was
conduct by the mounting stick. The sample cell was sealed with a 2 mm thick Niobium lid.
The provided Hg sample surface was 50 mm x 28 mm (according to the inner geometry of
the cryostat). A sample thickness of 4.5 mm was feasible. The scattering contribution of
the sample holder was determined at every measurement temperature. Here the sample
holder was filled with a Cadmium sheet, whose thickness was matched to the absorption
strength of the Hg sample. A temperature sensor was placed on the sample holder to
ensure a correct temperature recording.
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Figure 4.2: Explosion sketch of the constructed sample cell for the mercury measurement made
out of Polytetrafluorethylene (Teflon) (brown). The mount (grey) is made out of
Aluminum.

Figure 4.3: Thermal analysis of the sample cell for the mercury measurement heated by the
sample stick. In the sample position an isothermal temperature distribution is no-
ticeable.
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4.1.3 Data reduction

The QENS spectra presented here were obtained at a temperature range from 240 K
to 350 K. The total detector counts varied less than 1 % during each isothermal hold,
indicating no noticeable changes in the scattering strength. Since the mass remained
unchanged during the measurement it can be deduced that no evaporation occurred. The
collected intensities as a function of angle and flight time were normalized to a vanadium
standard measured at room temperature. The data reduction and the derivation of the
dynamic structure factor S(Q,ω) were done using the FRIDA [216] software package,
including a subtraction of the empty cell contribution, angular correction for self- and
container absorption, converting from the neutron time-of-flight to energy transfer, and
an interpolation to constant momentum transfers Q.

Assuming a random walk motion, S(Q,ω) was fitted with a single Lorentzian function

L(Q,ω) = 1
π

Γ(Q)
Γ(Q)2 + (~ω)2 , (4.1)

convoluted with the instrumental resolution R(Q,ω) as

S(Q,ω) = bg(Q) +R(Q,ω) ~ (A(Q)L(Q,ω)), (4.2)

where Γ(Q) is the half-width at half-maximum (HWHM), bg(Q) is a slightly Q-dependent
background and A(Q) is the quasielastic intensity.

In Fig. 4.4 the dynamic structure factors S(Q,ω) at the two temperatures 240 K and 350
K and at a Q-value of 1 Å−1 are shown. For all investigated temperatures the quasielastic
spectra are found to be distinctly broader than the instrumental resolution and they show
a broadening for higher Q-values. The obtained Γ(Q) of the Lorentzian line is depicted
as a function of Q2 in the insert of Fig. 4.4. It can be seen that in the low Q range, Γ(Q)
is proportional to Q2, and its slope gives direct access to the self-diffusion coefficient via
D = Γ(Q)/~Q2 [119].
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Figure 4.4: Dynamic structure factor S(Q,ω) of Hg at two temperatures 240 K (blue) and 350
K (red) and a Q-value of 1 Å−1. The spectra are fitted with a Lorentzian function
convoluted with the instrumental resolution function (black dashed line). In the
insert the resulting HWHMs as a function of Q2 are shown for both temperatures.
Due to the reflection scattering geometry the elastic contribution is dominated by
the Nb-lid of the sample cell and is excluded from the evaluation.
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4.1.4 Results of QENS

The measured Mercury self-diffusion coefficients are shown in Fig. 4.5 as a function of
temperature. The data obtained using QENS are compared to those available in the lit-
erature. Considering systematic and statistical errors the uncertainty of the self-diffusion
coefficients is of about 4 % to 6 %. The temperature dependence of the self-diffusion
coefficients can be described by an Arrhenius relation

D = D0 exp(− EA
kBT

), (4.3)

where EA is the activation energy and kB the Boltzmann constant. The fitted Arrhenius
relation as depicted in Fig. 4.5 gives an activation energy EA of 41.8 ± 1.4meV and a
pre-exponential factor D0 of 9.2± 0.5× 10−9 m2s−1.

Comparing the self-diffusion data obtained in this work with the previous measurements,
the self-diffusion coefficient determined by QENS agrees at best with the one reported
by Hoffman et al., using a long capillary technique [242]. Other data sets, reported by
Meyer et al. and by Brown and Tuck, both measured with a capillary technique, show a
distinguishable offset of some 15 % [243, 244]. Diffusion data investigated with a shear
cell by Nachtrieb and Petit show the largest deviation [245], i.e. about 25 % smaller.

The overall deviation between measurements done with macroscopic samples and by
QENS is considerably smaller compared to the case of other metallic melts like Ni or
Fe [54, 55]. There the difference in the obtained self-diffusion coefficients can be up to a
few hundred percents. This can be attributed to various factors: the temperature is rather
low, which allows both good temperature homogeneity and stability during the experi-
ment to be achieved; the sample is quite inert and chemical reactions with container walls
at these applied temperatures are negligible. This improved considerably the precision of
the measurements compared to post mortem techniques as solidification might introduce
additional artefacts.
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Figure 4.5: Self-diffusion coefficients of Mercury measured with QENS compared to previous
measurements available in the literature [242–246, 248] as a function of inverse tem-
perature.
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4.1.5 Semi-empirical diffusion theory of binary collisions

The recent semi-empirical model for describing the self-diffusion coefficient of pure liquid
metals based on an uncorrelated binary collision mechanism and Stokes-Einstein relation
[35, 36] was developed by Kaptay [38]. Close to the liquidus temperature, it predicts the
self-diffusion coefficient of the melt to be

Dm(Tm) = const.
V

1
3
m,MT

1
2
m

M
1
2
m

, (4.4)

where Vm,M is the molar volume, Tm is the melting point, andMm is the molar mass. The
packing fraction of the liquid is assumed to be 0.45, and the deviation from a hard-sphere
like liquid can be captured by an effective radius [36, 38]. The activation energy close to
the melting point is predicted to be proportional to the melting temperature

EA = BkBTm, (4.5)

assuming that the vibration energy of the atoms is similar between the crystalline solid
and the liquid close to the melting point, originally proposed by Andrade [250] according
to Lindeman’s law [251]. Here, B is a constant factor and kB the Boltzmann constant.

Fig. 4.6 shows the self-diffusion coefficients of a number of pure metals and water at
their respective melting point according to the scaling law equation 4.4, as a function
V

1
3
m,MT

1
2
mM

− 1
2

m . Only diffusion measured by QENS are used, for Ge [56], Al [51, 53], alkali
metals [52], Cu [54], Ni [57], Fe [55], and water [252]. The resulting constant of equation
4.4 is found to be 1.06 ± 0.11 × 10−9 mkg1/2s−1K−1/2mol−1/6. It is as well depicted in
Fig. 4.6 and describes both the self-diffusion coefficients of the Hg and alkali metals
at their melting point. The original Kapty model proposes a value of 1.04 ± 0.41 ×
10−9 mkg1/2s−1K−1/2mol−1/6 for normal metals, which coincides with the value obtained
here within the uncertainty.

Close to unity this scaling constant shows that the assumed hard-sphere radius using a
packing fraction of 0.45 can indeed describe the dynamics of the melt close to the melting
point. In the case of Mercury, the hard sphere radius is of about 1.37Å. Similar behaviour
can be observed for the melts of the alkali metals, where the derived scaling constant is
very similar, as one can see by the fit in Fig. 4.6.

In contrast, water or Germanium exhibit considerable deviation in diffusivity, which are
up to a factor of 4 from the prediction of equation 4.4. It has been already realised by
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Figure 4.6: Self-diffusion coefficients of pure metals and water at their respective melting points
[51–57, 252] as a function of V

1
3
m,MT

1
2
mM

− 1
2

m . The line is a linear fit to the values
according to equation 4.4.

Figure 4.7: Activation energy of self-diffusion for pure alkali metals, Mercury and water as a
function of the the melting temperature. The line is a linear fit to the values for the
alkali metals according to equation 4.5 with B = 3.11.
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Kaptay that non-metallic melts require a different constant of proportionality [38]. Also,
the self-diffusion coefficient of Al, or that of the transition metals like Fe and Ni cannot
be described by the scaling behaviour of alkali metals.

In Fig. 4.7 the activation energy is depicted as a function of Tm in a temperature range
between 200 K and 500 K. In this temperature range, out of the previously considered
metals only the alkali metals and Mercury exhibit their melting point. The scattering
of the activation energies of elements appears to be larger than the prediction of the
diffusion coefficients at the melting point. In addition, the molecular structure of Water
yields a higher activation energy than in metallic melts. For the activation energy the
Kaptay model proposes a linear temperature dependence according to equation 4.5. For
the alkali metals melts a constant B of 3.11±0.04 is obtained, indicated by the fit in
Fig. 4.7. In the case of Hg this constant would predict the activation energy to be
(62.8±0.8)meV, which is of about 50 % higher than the value obtained in the QENS
measurement (EA(Hg) = 41.8 ± 1.4meV). Apart from the fact that non-metallic melts
exhibit considerable deviations, here it seems that also Hg does not follow exactly the
same diffusive behaviour of the alkali metals.
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4.1.6 Relation between self-diffusion and viscosity

In all of the above mentioned models it is assumed that the Sutherland-Einstein or Stokes-
Einstein relation holds [253, 254], where the viscosity is proportional to the inverse of the
self-diffusion coefficient. It assumes a hydrodynamics radius rH, which represents the size
of the diffusing particle, by

rH = kBT

A ∗Dη
, (4.6)

where kB is the Boltzmann constant, A is a factor marking different boundary conditions.
A = 6π refers to a stick boundary condition, corresponding to the Stokes-Einstein relation,
whereas A = 4π is derived from a slip boundary surface, known as Sutherland-Einstein
relation.

Viscosity of Mercury is well studied, with data sets in good agreement with each other
[255]. Kasama et al. reported the one covering the highest available temperature range
investigated using a capillary technique [256]. The values are depicted in Fig. 4.8, showing
a rather low overall measurement error. Using the viscosity data of Kasama et al., Dη is
calculated and shown in Fig. 4.9. Here, the measured melt viscosity values are multiplied
by the diffusion coefficients obtained in the current study. For the best linear fit according
to equation 4.6 a hydrodynamic radius of 0.81 Å is obtained, assuming the Stokes-Einstein
relation is valid, and of 1.21 Å, if using the Sutherland-Einstein relation, where in both
cases the prediction is accurate within ∼20 %.

Atom radii in the liquid, even for single component metallic melts, are not as well defined
when compared to those in crystalline materials due to the disordered nature of the
structure. As shown above for both describing the self-diffusion close to the liquidus
temperature and for the Sutherland-Einstein relation, the effective hard sphere radius of
Hg is below 1.4Å. For comparison, the ion radius of the oxidation state of Mercury Hg2+ is
equal to 1.16 Å and the covalent radius is 1.44 Å [67]. The interatomic distance of Mercury
can be derived from the radial distribution function, which is a Fourier transform of the
structure factor. In Fig. 4.10 the radial distribution function derived from the liquid
structure factor as seen by x-ray diffraction of Mercury is depicted at temperatures of
173 K, 273 K and 473 K [257]. The observed interatomic distance is of about 3.07 Å
(r ≈ 1.5Å). Thus, the repulsive part of the interatomic potential, which can be effectively
mimicked by a hard-sphere system, plays a dominate role in the melt dynamics in the
case of Mercury and alkali melts.

Among the substances which show a different proportionality, water and Germanium ex-
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Figure 4.8: Temperature dependence of viscosity of Mercury. The measurement error is smaller
than the size of the symbols and of about 0.2 %. Concrete values can be found in
[256].

Figure 4.9: Temperature dependence of the diffusion-viscosity relation in Mercury when com-
pared with the Stokes-(Sutherland-)Einstein relation (solid line). The dashed line
would hold if Dη would be a temperature independent constant.
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hibit a less-densely packed structure with a lower coordination number (e.g.: Germanium
of 6.8 [258]) than Mercury, which has twelve nearest neighbors [257]. It is not surpris-
ing that different atomic packing or short-range order of the melt, also in the case of
transition metals like Ni, will affect the effective hard-sphere radius. Although it is still
possible to estimate the dynamics according to a hard-sphere like model, for these melts
there appears to be no clear general trend how the proportionality or the effective radius
are related to the properties of the melt, like ionic or covalent radii.

At higher packing fraction, like that in glass-forming metallic melts even the assumption of
a transport mechanism of uncorrelated binary collisions may not be valid anymore. Here,
instead of the Stokes-Einstein relation, Dη is observed to be constant [259]. Concerning
the temperature dependence, for e.g.: Ni self-diffusion, a T 2 temperature dependence
expected from a binary collision mechanism is not observed [57]. Here for Hg it can be
seen that the deviation from the prediction of the Sutherland-Einstein increase for the
smallest and highest measured temperatures. Potential deviations below 240K and above
350K may be expected. This is likely one of the origins why the temperature dependence
of the self-diffusion is less well predicted as compared to that in the alkali melts. However,
a Dη = constant, similar to the case of dense (glass-forming) metallic melt is not observed
in the investigated temperature range either.
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Figure 4.10: Radial distribution function of Mercury at temperatures of 173 K, 293 K, and 473
K; obtained from the Fourier transformed liquid structure factor investigated with
x-ray diffraction [257].
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4.1.7 Conclusion

In conclusion, we were able to measure the self-diffusion coefficients in liquid Mercury
with quasielastic neutron scattering. Our results are in line with the predicted values of
the diffusivity at the melting point with a semi-empirical approach for liquid diffusion
based on a hard-sphere like model. Close to the melting point, liquid Mercury exhibits
similar diffusive dynamics like these of the alkali metals, which can be described by an
effective radius close to its covalent radius, indicating a dominant contribution of the
repulsive part of the interatomic potential. However, the temperature dependence is less
well predicted, where also deviations from the Sutherland-Einstein relation are found over
a large temperature range.
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4.2 Short-range order in binary Zr-Ti melts

In the periodic table in the early transition metal group 4 the element Zirconium (with
atomic number 40) is placed directly under the element Titanium (with atomic number
22). Since they share the same orbital configuration, both elements show by nature
similar chemical and structural properties. For example, both - Titanium and Zirconium
- exhibit in the solid a phase transition from an α-hcp to a β-bcc phase with similar
transition temperatures; Ttrans,T i = 1155 K in case of Titanium and Ttrans,Zr = 1136 K for
Zirconium, respectively. In addition, the difference in atomic radii and the overall mixing
enthalpy are rather small. Titanium exhibits atomic radii of rT i = 1.47 Å and Zirconium
respectively rZr = 1.60 Å [67], which yields a ratio of 0.92.

Alloyed they compose in a completely miscible system. In Fig. 4.11 the phase diagram of
the Zr-Ti system is depicted, where the absence of any inter-metallic phases is noticeable.
Only the α to β phase transition and the solid-liquid transition are observed in the shown
temperature range.

In case of pure Titanium and Zirconium the difference in self-diffusivity is of several or-
ders of magnitude between the α-hcp (10−18-10−21 m2s−1) to β-bcc (10−12 m2s−1) phases.
This was reported as the anomalous self-diffusion in β-bcc phases [260–262], which com-
prises additionally the aspect of a curved temperature dependence of the self-diffusivity in
the Arrhenius plotting due to certain strongly temperature dependent phonons (co called
"phonon assisted diffusion"). The respective self-diffusion coefficients are shown in Fig.
4.12. It is clearly apparent how large the impact of a changed short-range (structure)
and phonon spectra on the atomic transport properties in crystalline solids can be, where
the diffusion mechanism is strongly coupled to the structure via either interstitial, inters-
tialcy or vacancy jumps. Quasielastic and inelastic neutron scattering experiments using a
backscattering spectrometer showed, that the reason for the anomalous fast self-diffusion
in β-bcc Ti is due to a simple 1/2 [111] nearest-neighbor vacancy jump [27]. The other
shown self-diffusion coefficients of α-Ti [263], α-Zr [264] and β-Zr [265] were obtained by
tracer diffusion measurements, respectively. In addition, the self-diffusion coefficients of
liquid Titanium are depicted [198], which are QENS-measurements carried out in electro-
magnetic levitation at TOFTOF. It can be seen, that the self-diffusion coefficients in the
liquid are as well orders of magnitudes larger (10−9 m2s−1) than those in the crystalline
solid β-bcc (10−12 m2s−1) phase due to the different diffusion mechanism in liquids. This
topic was comprehensively discussed in the previous section of this work.
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Figure 4.11: The phase diagram of the Zr-Ti system [266]. The left side refers to pure Titanium
and the right side to pure Zirconium.

Figure 4.12: Comparison of self-diffusion coefficient in different phases of Zirconium and Tita-
nium. All shown data can be found in literature: Liquid Ti [198], α-Ti [263], β-Ti
[27], α-Zr [264], β-Zr [265].
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Zr-Ti alloys are binary boundary systems of ternary Zr-Ti-Ni alloys forming stable quasi-
crystals [187, 267–269]. In addition, the Zr-Ti system is used as a basis for many bulk
metallic glass-forming (BMG) alloys (e.g. Zr-Ti-Cu, Zr-Ti-Al, Zr-Ti-Nb, Zr-Ti-Cu-Ni, Zr-
Ti-Cu-Ni-Be, ...). However, the detailed formation mechanisms of these special structures
remain largely unknown and are often speculative. Here, accurate knowledge of melt
properties such as the diffusivity and the melt structure is essential. For a comprehensive
understanding of those multi-component systems it is first necessary to investigate the
pure compounds and the binary boundary systems. In liquid Zirconium and Titanium
structural investigations using neutron diffraction were carried out [65, 66]. In melts of
both elements an icosahedral short-range order was found.

In the following the short-range order and atomic dynamics in binary Zr-Ti are discussed.
Therefore neutron diffraction and quasielastic neutron scattering experiments were car-
ried out. Melts were processed at the large scale facilities in electromagnetic levitation.
Here, the evaporation (predominantly of Ti) under ultra-high vacuum at the elevated
temperatures makes electrostatic levitation inapplicable for the rather long respective
measurement times. However, complementary X-ray diffraction experiments using syn-
chrotron radiation were possible to be executed in electrostatic levitation, because this
kind of experiments typically run way faster (within seconds) than neutron scattering
experiments (hours time scale).



4.2 Short-range order in binary Zr-Ti melts 73

4.2.1 Neutron diffraction of zero scattering composition

In a neutron diffraction experiment Titanium is one of the five elements owning a negative
coherent scattering length of bcoh(Ti) = −3.438 fm [112]. In contrast, Zirconium has a
coherent scattering length of bcoh(Zr) = 7.16 fm. Hence, in the binary alloy with the com-
position Zr32.4Ti67.6 the mean scattering length is zero. As described in the chapter on
the structural analysis of binary alloys (section 2.2.7), the partial contribution of the par-
tial structure factors SNN and SNC , that describes the topological short-range order and
respectively the correlation of particle density and chemical composition, vanish for this
alloy composition in Bathia-Thornton’s formalism (see equation 2.51). A neutron diffrac-
tion experiment then measures directly the partial structure factor SCC that describes
the chemical short-range order.

Neutron diffraction experiments on Zr32.4Ti67.6 and Zr2Ti melts processed in electro-
magnetic levitation were carried out at the high intensity 2-axis diffractometer D20 at
the Institute-Laue-Langevin (ILL) in Grenoble, France. The data reduction routine is
described in the section 3.2.2.

In Fig. 4.13 the measured total structure factors S(Q) at a temperature of 1420 K are
depicted. Here, the green points are the total structure factor S(Q) of Zr2Ti. The red
points refer to the measured SCC of Zr32.4Ti67.6. In this measurements initially some
Copper Bragg peaks occurred, which emerge from secondary scattered neutron at the
levitation coil and couldn’t be corrected by the underground measurements. However,
since they can be identified and clearly do not result from the sample, the receptive values
have been cut out of the structure factor. Else than this the depicted SCC of Zr32.4Ti67.6

is almost flat. This indicates that essentially no chemical short-range order is observed
in this alloy and the liquid structure is mainly determined by topological ordering. In
contrast, the measured liquid structure factor of Zr2Ti shows a maximum at Q = 2.47
Å−1 and a second and third maxima, respectively.

Fig. 4.14 compares the measured SCC of Zr32.4Ti67.6 as seen by neutron diffraction at
1420 K with the total S(Q) of the same binary composition measured in diffraction using
X-rays from synchrotron radiation. Due to the different scattering contrast characteristics
of the respective elements in an X-ray experiment another total structure factor S(Q) is
observed. However, the liquid structure of Zr32.4Ti67.6 is mainly determined by topological
ordering as seen by the flat SCC . The total S(Q) measured with X-rays shows a maximum
at Q = 2.55 Å−1. To compare this measurement to other Zr-Ti alloys, for instance Zr2Ti,
complementary diffraction experiments with X-rays are required.
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Figure 4.13: The liquid structure factor of melts of the zero scattering Zr32.4Ti67.6 composition
(red) and Zr2Ti composition (green) at a temperature of 1420 K investigated using
neutron diffraction and processed by electromagnetic levitation.

Figure 4.14: Comparison of the liquid structure factor of zero scattering Zr32.4Ti67.6 melt as
seen by neutron diffraction (red) and x-ray diffraction (blue).
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4.2.2 X-ray diffraction using synchrotron radiation

X-ray diffraction experiments on the binary Zr-Ti melts with composition Zr15Ti85,
Zr32.4Ti67.6, Zr50Ti50 and Zr2Ti were carried out at the materials science beamline ID11
at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The melts
were processed by electrostatic levitation.

Fig. 4.15 depicts the collected total structure factors S(Q). For clarity, the curves are
shifted in the vertical direction. The structure factors of the pure elements Titanium [66]
and Zirconium [65] are also shown, which were processed by electromagnetic levitation
and measured by neutron diffraction. All depicted structure factors were measured at a
temperature of 1900 K.

The position of the structure factor maxima shifts with the Ti-concentration from Q

= 2.42 Å−1 for "0 % Ti" in case of the pure Zirconium towards Q = 2.62 Å−1 for 100
% Titanium. Since the shape of the structure factor remain constant the topological
structure does not change significantly. This reflects a variation of the atomic distances
due to the different atomic radii of the elements. For instance, the Goldschmidt radius of
Titanium is rT i = 1.47 Å and respectively of Zirconium rZr = 1.60 Å[67]. When combining
both elements in binary mixtures a different atomic packing is possible. In consequence
this can result (in theory) also in a variable molar volume whereas the structure (e.g. the
coordination number) remains unchanged. Correspondent investigations are discussed in
the next subsection.

The effect of different atomic radii can be suppress when the measured total structure
factor is normalized over the position of the first maximum, what is shown in Fig. 4.16.
Here, all measured Zr-Ti total x-ray structure factors S(Q) essentially look the same
and appear in a similar shape than the structure of the pure liquid elements Zr and
Ti. Small aberration are distinguishable at the intensity of the third and slightly the
second maxima, respectively. This might be due to different applied scattering techniques
(neutrons instead of x-rays). In case of the pure liquid metals SNN is measured. For
the binary alloys only the total S(Q) is available and the other partial structure factors
are (except the zero scattering alloy) not known. However, the particular characteristics
and the position of the shoulder in the second maxima appears to be very similar for all
investigated samples.

For a specific distinction of the melt structure the measured structure factor can be com-
pared with a simulation of different arrangements of nearest neighbors (e.g. icosahedron,
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Figure 4.15: Comparison of the total structure factors of binary Zr-Ti melts with composition
Zr15Ti85 (violet), Zr32.4Ti67.6 (red), Zr50Ti50 (blue) and Zr2Ti (green), investi-
gated using x-ray diffraction and compared to the liquid structure factors of pure
Titanium (orange) [66] and pure Zirconium (black) [65] at T = 1900 K.

Figure 4.16: Comparison of the total x-ray structure factor of melts with different Zr-Ti com-
positions normalized over the structure factor maximum at T = 1900 K.



4.2 Short-range order in binary Zr-Ti melts 77

Figure 4.17: Fit of the liquid structure factor of raw Titanium at T = 1845 K assuming different
short-range structures of icosahedral, dodecahedral or fcc type [66]. The short-
range order of the measured melt is best described by an icosahedral one.

dodecahedron, fcc, etc.) [270]. This is already achieved for the pure elements Titanium
and Zirconium. For both pure elements icosahedral short-range order prevails in the melt.
In Fig. 4.17 the resulting structure factor of such simulated short-range orders are de-
picted and compared to a measurement of the structure factor of pure Titanium. The
measured signal is best described assuming the short-range order to be of icosahedral
type.

Referring back to Fig. 4.16 the structure factor measured for Zr-Ti melts are very similar
to those of the pure elements. This leads to the conclusion, that also in those kind of
melts the topological short-range order is formed by icosahedra. In addition, due to
the similarity of all measured Zr-Ti melt structures the indication of an absent chemical
short-range order in Zr32.4Ti67.6 is assumed for the other binary Zr-Ti melts. Following
the liquid Zr-Ti system only shows topological ordering. However, nothing is known about
the particular SNC .
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4.2.3 Density measurement and calculation of the molar volume

The densities of Titanium and Zirconium - in the solid and in the liquid phase - are
rather different. This is not only due to the difference in atomic radii, but also due to the
respective molar masses, which are M(Ti) = 47.867 g/mol for Titanium and M(Zr) =
91.224 g/mol.

Therefore, at ambient temperatures solid hexagonal α-Titanium has a density of ρhcp,T i
= 4.506 g/cm−3 [271] and α-Zirconium ρhcp,Zr = 6.501 g/cm−3 [272]. However, the values
at other temperatures depend on the thermal volume expansion:

V (T )− V0

V0
= αV ∆T (4.7)

Here V is the volume, ∆T the temperature difference and αV the volume expansion
coefficient.

In the liquid state the disordered structure leads to a looser packing of atoms and there-
fore lower densities. Recently, melt densities of various Zr-Ti compositions measured in
electrostatic levitation were reported [273]. The results are shown in Fig. 4.18.

In all investigated compositions, the observed thermal expansion appears to be very sim-
ilar. The averaged volume expansion coefficient is αV = 4.60 ± 0.15 10−5 K−1 at tem-
perature of T = 1850 K (at this temperature in all investigated alloys measured data
exists).

However, the melt density ρ still reflects the varying molar massM . To reduce the density
to the packing only, the molar volume Vm is determined, which can be calculated following
the equation:

Vm = M

ρ
(4.8)

For T = 1850 K the molar volume of all investigated Zr-Ti melts and the pure elements
is depicted in Fig. 4.19. Vm is plotted as a function of Titanium concentration, where the
dotted line refers to an ideal mixture. The color code accords to the previous plotting of
the structure factors and not to the reference data of the density.

The molar volume shows a linear concentration dependency for Zr-Ti melts, which also
comply with the pure Zirconium and Titanium. Here, the excess volume (Vm − V ideal

m ) is
between 0.26 % and 0.87 % of Vm, what is below the uncertainty of the density measure-
ment of ca. 1 %. The insert of Fig. 4.19 shows the respective overall packing fraction of
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Figure 4.18: Concentration and temperature dependent density of Zr-Ti melts with various
compositions measured in ESL [273]. The error is smaller than the size of the
symbols.

Figure 4.19: Concentration dependency of the molar volume and inserted respective packing
fraction of Zr-Ti alloys as deduced from the density data at T = 1850 K. The color
code is alike the other graphs in this work and unlike Fig. 4.18.



80 4 Results

the investigated concentrations, which also remains in all measured concentrations similar
at a value of 46 % using the Goldschmidt radii of rT i = 1.47 Å and rZr = 1.60 Å [67],
indicating no significant concentration related changes. Following ideal mixing effects are
observed, which cause a different packing other than the differences of the atomic radii.
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4.2.4 Concentration-dependent atomic dynamics as seen by
quasielastic neutron scattering

To investigate the self-dynamics in Zr-Ti melts quasielastic neutron scattering (QENS)
experiments were carried out at the multi disc time-of-flight spectrometer TOFTOF at
MLZ in Garching [213, 214]. An incident neutron wavelength of 7 Å and a chopper-
speed of 6000 rpm were selected. The incoherent scattering cross-section of Titanium
is σinc(Ti) = 2.87 barn at a neutron wave length of λ = 1.798 Å and σinc(Zr) = 0.02
barn in case of Zirconium [112]. The investigated compositions were the same as in the
previously discussed x-ray scattering experiments: Zr15Ti85, Zr32.4Ti67.6, Zr50Ti50 and
Zr2Ti. The melts were processed by electromagnetic levitation. Due to the negligible
scattering cross-section of Zirconium primary the dynamics of Ti-atoms are investigated
in the binary Zr-Ti compositions.

In Fig. 4.20 the dynamic structure factor S(Q,ω) of Zr50Ti50 is depicted for the two
temperatures 1870 K and 2000 K at a momentum transfer of Q = 0.4 Å−1. The data
reduction procedure followed the same routine as described in section 4.1.3. In addition,
the dynamic structure factor S(Q,ω) of Zr15Ti85 is shown for the two temperatures 1870
K (blue) and 2000 K (red) at the momentum transfer of Q = 0.4 Å−1. The higher Q-value
results in higher energy transfers of neutrons within the scattering process and, therefore,
a broadening of the quasielastic line width.

The self-diffusion coefficients of the investigated binary alloys are shown in Fig. 4.21 in a
logarithmic scale versus the inverse temperature. In addition, the self-diffusion coefficients
of pure Titanium are shown [198]. The instrumental error bars are only of the size of
the symbols. Such a high accuracy is the result of combining the benefits of container-
less levitation techniques with the high signal-to-noise ratio for QENS-experiments at
TOFTOF and the high flux of MLZ. Therefore, even minor changes in the Ti-diffusivities
in the respective compositions can be resolved.

Referring back to Fig. 4.12, where the self-diffusion constants of liquid Titanium is com-
pared to the solid counterparts, all measured self-diffusion coefficients would overlie on
the values of liquid Titanium and thus appear in the logarithmic scaling to be similar.
The D-values of all investigated samples are on the order of 10−9 m1s−1 and the overall
differences within the self-diffusion coefficients are less than 20 %. For all compositions D
is well described by an Arrhenius temperature dependence (fitted lines) in the investigated
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Figure 4.20: Dynamic structure factor S(Q,ω) at a Q-value of 0.4 Å−1 of Zr50Ti50 at two
temperatures 1870 K (blue) and 2000 K (red) (top) and of Zr15Ti85 at two tem-
peratures 1820 K (blue) and 2020 K (red) (bottom). The spectra are fitted with
a Lorentzian function convoluted with the instrumental resolution function (black
dashed line). In the inserts the resulting HWHMs as a function of Q2 are shown
for both respective temperatures.
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Figure 4.21: Temperature dependent self-diffusion coefficients of Zr15Ti85 (violet), Zr32.4Ti67.6
(red), Zr50Ti50 (blue) and Zr2Ti (green) composition when compared to the self-
diffusion coefficients of pure Titanium (orange) [198].

temperature range, which can be expressed by

D = D0 exp(− EA
kBT

), (4.9)

where D0 is the diffusion coefficient at infinite temperature, EA is the activation energy
and kB the Boltzmann constant.

In all investigated Zr-Ti melts the Ti-self-diffusivity is lower than in pure Titanium.
Additionally, the atomic motion is concentration dependent and is slowest in Zr50Ti50 at
a same temperature. Following, the Ti-self-diffusivity in liquid Titanium and Zr-Ti melts
at a temperature of T = 1973 K is shown in Fig. 4.22 as a function of the Ti-concentration
in the binary mixture. Since the measured data points spread in temperature, the fitted
Arrhenius relations of all measured compositions are, therefore, extrapolated to a constant
temperature value.

The atomic motions shows a decrease coming from pure Titanium towards the binary
concentrations. However, this dependency can just be proven on the Ti-rich side. The
weak incoherent scattering contribution of Zirconium results in low counting statistics on
the Zr-rich side, where also the Ti-concentrations are too low to determine self-diffusion
coefficients. As an example, the investigated dynamic structure factor of pure Zirconium
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Figure 4.22: Self-diffusion coefficients of Zr15Ti85 (violet), Zr32.4Ti67.6 (red), Zr50Ti50 (blue)
and Zr2Ti (green) and pure Titanium (orange) [198] at T = 1973 K.

Figure 4.23: Dynamic structure factor S(Q,ω) of pure Zirconium processed by electromagnetic
levitation at T = 2123 K, investigated for 1h at TOFTOF. The different colors
refer to different momentum transfers.
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is shown in Fig. 4.23.

Here, the different colors refer to different momentum transfers. The samples temperature
is 2123 K and the melt was processed by electromagnetic levitation. Even though the
measurement time was set to one hour, even the elastic line is barely distinguishable
from the background. Consequently, any evaluation of momentum transfer, quasielastic
broadening and therefore the Zr self-diffusion is impossible.

Considering the cage model a lower diffusivity occurs when the nearest-neighbor arrange-
ment around a given atom results in a denser atomic packing, which thereby hinders
atomic escape out of the cage. A theoretical explanation of the cage model is given by
mode-coupling theory and is discussed in the subsequent subsection.
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4.2.5 Calculated motion by mode-coupling theory using hard spheres

To investigate the relation between the structure and the dynamics in Zr-Ti melts (con-
stant packing fraction and a minimum in diffusivity at Zr50Ti50), mode-coupling theory,
which predicts the dynamics in dense fluids from the static structure factors, is used.
MCT thus provides a direct link between these properties in metallic melts. In liquids, a
self-diffusion process happens when an atom escapes from the cage, which is formed by
the surrounding neighboring atoms. The self-diffusion process is therefore connected to a
structural relaxation.

At the glass-transition temperature MCT predicts a diffusion coefficient of zero, since the
memory kernel neglects certain relaxation processes. On the other hand, in the gas state
the diffusion process underlays a complete different mechanism, where the dynamics are
driven by binary collisions. MCT has shown to be a precise tool to explain the melt
dynamics close to the glass-transition in the intermediate region between the glassy and
the gaseous state, where melts are in a moderate viscous region, what is the case for Zr-Ti
melts exhibiting diffusion coefficients on the order of 10−9 m2s−1.

The input parameters of the MCT calculations are the number density n (which can be
extracted from the molar volume Vm = NA

n
), the binary concentration, the respective

atom radii and the partial static structure factor. In order to keep the modeling as
simple as possible, the present structure was assumed to be only topologically ordered
using a hard-sphere model approach. Respective structure factors were calculated by the
Percus–Yevick approximation [274]. However, MCT is also able to predict the dynamics
directly from measured partial structure factors if the full set of partial structure factors
is available [63, 64].

MCT calculations overestimate the reduction of the dynamics at the glass-transition tem-
perature. In addition, the absolute value of the critical temperature from MCT calcula-
tions was found to be different to experimentally obtained temperatures [142], resulting in
a systematic error in absolute scale. Following, all predicted dynamics are always just of
qualitative nature. However, since the temperature is incorporated in the number density
n, the density can be reduced in order to receive diffusion coefficients on the same order
than experimentally obtained values [142].

For all investigated binary alloys the calculations was done at a constant packing fraction.
To simplify the experiment, the density used to derive the diffusion coefficient of the
Zr2Ti composition was reduced empirically until MCT predicted a similar value than the
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Figure 4.24: Comparison of MCT calculations with measured self-diffusion coefficients of
Zr15Ti85 (violet), Zr32.4Ti67.6 (red), Zr50Ti50 (blue) and Zr2Ti (green) compo-
sitions and pure Titanium (orange) [198] at T = 1973 K.

measured diffusion coefficient, revealing a reduction ratio of 0.87. This ratio was then
resumed for the other investigated concentrations.

The results of the MCT calculations on Titanium self-diffusion in Zr-Ti and Titanium
melts are shown in Fig. 4.24 (black points) in comparison to the measured self-diffusion
constants from Fig. 4.22. In this case the predicted values of the Ti-motion in Zr-Ti
binary mixtures by MCT calculations are in perfect agreement with the QENS measure-
ments of the Titanium self-diffusion and displays the concentration dependency as well.
It is obvious, that this just reflects the temperature of 1973 K. However, the obtained
temperature dependencies in Fig. 4.5 are similar for the investigated concentrations, why
related findings can be assumed also for other temperatures.

Using MCT calculations Götze and Voigtmann investigated composition changes on the
dynamics in binary mixture based on a hard sphere approach without any chemical in-
teractions [275]. For atomic radii ratios of 0.8 (in case of Zr-Ti melts the ratio is 0.92)
a constant packing fraction was found. In contrast, at the liquid-glass transition their
calculations showed an increase in relaxation time (what is according to equation 2.46
proportional to the inverse of the self-diffusion coefficient) of three orders of magnitude
towards a minimum close to the 50 at.% composition. In case of the investigated Zr-Ti
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melts this increase is only about 20 %, but shows a qualitative similar compositional
dependence at a constant packing fraction at a similar atomic size ratio. This is due
to the fact, that the measured self-diffusion coefficients are far away from the respective
glass-transition temperatures, since the Zr-Ti system exhibit rather weak glass-forming
abilities [276].

This shows, that the self-dynamics in Zr-Ti melts can be explained by MCT using the
topological considerations of a hard-sphere approach for which no assumptions on chemical
interactions are made. Since the predicted and measured diffusion coefficients match with
the use of the same reduced density ratio of 0.87, the constituent atoms in the liquid Zr-Ti
system exhibit just differences in the atomic radii.
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4.2.6 Conclusion

Binary compositions of the Zr-Ti system show very similar chemical and structural prop-
erties. Due to the negative coherent scattering length of Titanium a zero scatterer with
composition Zr32.4Ti67.6 lead a direct measurement of the chemical structure factor us-
ing neutron diffraction. In this composition essentially no chemical short-range order is
observed. When normalizing x-ray structure factors in Zr-Ti alloys to the position of the
structure factor maximum, the observed total structure factors appear to be similar and
alike those of the pure elements. The local structures contain an icosahedral short-range
order. Density measurements reveal an ideal mixing behavior. An observed concentration
dependent self-diffusivity was analyzed by MCT calculations using a hard-sphere approach
at a constant packing fraction with a moderate size disparity for which no assumptions
on chemical interactions were made, which were found to be in very good agreement with
the measurements.
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4.3 Structure and dynamics in bulk metallic glass
forming liquids with minor additions

Bulk metallic glasses (BMGs) have considerable potential as advanced engineering materi-
als [277] and are receiving much attention throughout the scientific community [278, 279].
Enhancing the glass-forming ability of alloys through the minor addition of specific ele-
ments is a technique currently at the forefront of BMG design [74–78]. Here, the addition
of only 4 at.% Al or Ti to binary Zr50Cu50 increases its critical casting thickness from 2
mm to at least 5 mm [79]. How large this difference is can be seen in Fig. 4.25.

Figure 4.25: Improved glass-forming ability of Zr-Cu alloys with minor Aluminum and Titanium
additions. Shown is the increase in critical casting thickness dc from 2 mm in case
of the binary Zr50Cu50 to 5 mm in case of the ternary (Zr50Cu50)96Al4 [77].

Other binary systems based on e.g. Zr-Ni [280], Ni-Nb [281] and Cu-Ti [282] show similar
effects when alloyed with the suitable minor additions. Despite extensive review on this
subject [77], the reasons for such a dramatic increase in glass-forming ability as a result
of minor additions remain largely unknown and often speculative.

Many suggest that minor additions promote glass formation through increased atomic
packing and local chemical short-range ordering [75, 283–286]. This may thermodynam-
ically destabilize the formation of competing crystal phases [282, 287], as well as retard
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crystallization kinetics by lowering the mobility in the melt during cooling [288, 289]. Cer-
tain minor additions (e.g. Aluminum) might even help to avoid heterogeneous nucleation
by scavenging harmful oxygen impurities [290]. However, very few studies are actually
carried out in the melt to directly test these assumptions – especially at the atomic level.
Understanding how minor additions impact the glass-forming ability of metallic melts
is a key to predictive BMG design. In this respect, direct investigations of the atomic
structure and dynamics of the melt are absolutely essential for identifying the important
microscopic mechanisms underlying bulk glass formation.
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4.3.1 Structural investigation and packing fraction

To investigate any structural role played by the minor addition high-energy synchrotron
X-ray diffraction experiments were carried out at the ID11 beamline of the ESRF in
Grenoble. Samples were processed using electrostatic levitation. Multiple heating and
cooling cycles, in which the sample was progressively heated towards higher temperatures,
in order to remove melt impurities and achieve deeper undercoolings, were employed. By
means of this, measurements of total structure factors of the melt are possible.

In Fig. 4.26 the total structure factors S(Q) of the binary Zr50Cu50 and the two ternary
(Zr50Cu50)96Al4 and (Zr50Cu50)96Ti4 melts at a temperature of 1175 K are depicted.
For clarity, the curves are shifted in the vertical direction. The data of the ternary
(Zr50Cu50)96(Ti, Al)4 melts reveal no significant changes of the total S(Q) as compared
with that of the binary Zr50Cu50 alloy. The position and shape of the respective maxima
are almost identical. In this respect, only 4 at.% of another component appears to induce
only weak changes. In addition, the total scattering cross-section is also only weakly
affected by minor additions. Therefore, it is also unlikely that a significantly changed
chemical short-range order could be observed even by varying the scattering cross-sections,
for example by using isotopic substitution of Copper.

From the macroscopic density, which was measured in a stationary electrostatic levitation
facility, an average atomic packing density can be determined as described in section 2.4.
The respective results are depicted in Fig. 4.27. Densely packed melts can be a structural
origin for a pronounced glass-forming ability, which can be achieved e.g. by a distribution
in atomic radii [283, 291]. In (Zr50Cu50)96(Ti, Al)4 this is the case, since Zirconium
exhibits an atomic radius of rZr = 1.60 Å and Copper of rCu = 1.28 Å [67], while the
atomic radii in Titanium and Aluminum are very similar and different to the binary
components: rT i = 1.47 Å and rAl = 1.43 Å [67]. However, the packing fraction of the
three alloy melts are roughly equal within the experimental uncertainty of ca. 1 %, even
though the Ti-bearing liquid exhibits a slightly denser packing.

On the other hand, this just reflects that no structural changes on the Zr-Cu-matrix
occurred upon minor addition. Local changes around the Aluminum and Titanium atoms
are not reflected due to the small concentrations. Moreover, the investigations of this
work on the Zr-Ti system showed, that indeed the melt dynamics can be affected even
when the structure factor and the packing fraction remains unchanged. It is therefore also
necessary to examine how the minor addition affects the viscosity and the diffusivity on
the atomic level in order to glean information on its role in enhancing glass formation.
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Figure 4.26: The liquid structure factor of Zr50Cu50 (blue), (Zr50Cu50)96Al4 (red) and
(Zr50Cu50)96Ti4 (green) melts at 1175 K, measured by synchrotron X-ray diffrac-
tion.

Figure 4.27: Temperature dependent packing fraction in Zr50Cu50 (blue), (Zr50Cu50)96Al4
(red) and (Zr50Cu50)96Ti4 (green) alloys as as calculated from the macroscopic
density.
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4.3.2 Viscosity

The melt viscosities of the binary Zr50Cu50 as well as ternary (Zr50Cu50)96Al4 and
(Zr50Cu50)96Ti4 alloys were investigated using a stationary electrostatic levitation fa-
cility. The viscosity was determined at each temperature by measuring the decay of
surface oscillations induced by a sinusoidal electric field. Through the decay time of the
oscillation, the viscosity is calculated using the procedure described in section 3.4.

Figure 4.28: Temperature dependent viscosity in Zr50Cu50 (blue squares), (Zr50Cu50)96Al4
(red diamonds) and (Zr50Cu50)96Ti4 (green dots) alloys as determined by the os-
cillated droplet method in electrostatic levitation.

In Fig. 4.28 an overview of the measured melt viscosities of Zr50Cu50, (Zr50Cu50)96Al4

and (Zr50Cu50)96Ti4 is shown. Here, the blue squares refer to Zr50Cu50, the red diamonds
to (Zr50Cu50)96Al4 and green dots to (Zr50Cu50)96Ti4.

From the shown data, it can be seen that the addition of only 4 at.% Aluminum causes
a significant increase in the viscosity towards lower temperatures compared to that of
binary Zr50Cu50. For example, the viscosity of (Zr50Cu50)96Al4 at 1100 K is about 44 %
higher than the one of Zr50Cu50 at the same temperature. Such an increase in viscosity
is in line with an increased glass-forming ability [171, 259, 292], since slow melt dynamics
facilitate glass-formation. In contrast, the addition of the same amount of Titanium has
no discernible effect on the viscosity when compared to Zr50Cu50.
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However, the viscosity reflects only the melt dynamics on a macroscopic level. To deter-
mine the atomic mobility, it is necessary to investigate the self-diffusion in the ternary
(Zr50Cu50)96(Ti, Al)4 melts.
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4.3.3 Atomic dynamics as studied by quasielastic neutron scattering

Self-diffusion coefficients of Zr50Cu50, (Zr50Cu50)96Al4 and (Zr50Cu50)96Ti4 were mea-
sured using quasielastic neutron scattering on the time-of-flight spectrometer TOFTOF
at the MLZ in Garching using an incident neutron wavelength of 7 Å at a chopper-speed
of 6000 rpm. The melts were processed by electrostatic levitation. Due to the incoherent
scattering cross-sections - σinc(Zr) = 0.02 barn, σinc(Cu) = 0.55 barn, σinc(Al) = 0.0082
barn and σinc(Ti) = 2.87 barn [112] - mainly the self-diffusion of Copper is reflected in the
measurements of Zr50Cu50 and (Zr50Cu50)96Al4. However, in case of (Zr50Cu50)96Ti4 a
concentration weighted average self-diffusion coefficient of Copper and Titanium is deter-
mined. However, the Cu self-diffusion is predominant with a ratio of DCu/DT i = 2.3.

The self-diffusion coefficients of the investigated alloys are depicted in Fig. 5.1 as a func-
tion of the inverse temperature. Here, the solid lines are fits to the Arrhenius relation

D = D0 exp(− EA
kBT

), (4.10)

where EA is the activation energy for self-diffusion, D0 is the diffusion coefficient at infinite
temperature and kB is the Boltzmann constant.

It is apparent from these data that the minor addition of both Aluminum and Titanium
has a noticeable impact on the microscopic dynamics of these melts. In both ternary
melts (Zr50Cu50)96Al4 and (Zr50Cu50)96Ti4 a reduction in the absolute values of the
self-diffusion coefficients at each investigated temperature is observed when compared to
binary Zr50Cu50.

This in line with an increased activation energy in those ternary alloys. EA increases
for Cu-self-diffusion from EA,Zr50Cu50 = 0.51 ± 0.03 eV in Zr50Cu50 to EA,(Zr50Cu50)96Al4

= 0.78 ± 0.05 eV in (Zr50Cu50)96Al4. In case of (Zr50Cu50)96Ti4 the activation energy
of the averaged Cu/Ti-self-diffusion is EA,(Zr50Cu50)96T i4 = 0.65 ± 0.08 eV, which is also
higher than the Cu-self-diffusion coefficient in Zr50Cu50.

Same as the melt viscosity, the dependence of the self-diffusion coefficients on the minor
addition element clearly does not follow the trend as the packing density. But, a correla-
tion between atomic diffusivity and glass-forming ability is observed in (Zr50Cu50)96Al4

and (Zr50Cu50)96Ti4. In the Al-bearing alloy the reduction in D appears to correlate with
the overall increase in melt viscosity also quantitatively. Where ηZr50Cu50/η(Zr50Cu50)96Al4 at
1100 K was found to be 0.56, D(Zr50Cu50)96Al4/DZr50Cu50 is 0.53 at the same temperature.
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Figure 4.29: Self-diffusion coefficients of Zr50Cu50 (blue squares), (Zr50Cu50)96Al4 (red di-
amonds) and (Zr50Cu50)96Ti4 (green dots) melts, investigated with quasielastic
neutron scattering. The lines refer to Arrhenius fits of the measured values.

For the Ti-bearing alloy it seems that the change in the diffusion coefficient compared to
the binary Zr50Cu50 alloy is larger than the change in the melt viscosity upon Titanium
addition. This might be correlated with the fact that in contrast to Aluminum, Titanium
also contributes to the measured self-diffusion coefficient by QENS. This would indicate
that there are certain differences of the dynamics between the components in the Ti-
bearing melt.

Obviously, the effect of minor additions on the enhanced glass-forming ability in these
systems is more complex than what is assumed from simple packing considerations. In-
stead of the packing fraction, contributions from chemical interactions are expected to
play a much more important role in the liquid dynamics via chemical short-range order
or possibly electronic effects [61, 62, 188, 293–297].

Compared to the Zr-Ti system, which itself exhibits rather weak chemical interactions,
the observed changes in the melt dynamics are much more sensitive to composition in
(Zr50Cu50)96(Ti, Al)4 alloys upon minor additions than in Zr-Ti, where the overall de-
crease in diffusivity over the entire phase diagram was less than 20 %.



98 4 Results

4.3.4 Phase selection during solidification

Since the glass-forming ability can also depend on competing crystal phases during so-
lidification [282, 287], it is important to determine these. In-situ crystallization studies
of undercooled (Zr50Cu50)96(Ti, Al)4 minor-addition melts were carried out at the ID11
beamline at the ESRF in Grenoble.

In Fig. 4.30 two representative time-temperature profiles of respectively (Zr50Cu50)96Al4

and (Zr50Cu50)96Ti4 are shown. Here, the shaded band demarcates the solid-liquid coexis-
tence region upon heating. After heating the levitated droplet to the desired temperature,
the laser power is shut off and the temperature is thus lowered via radiative cooling of the
sample. Heating to higher temperatures generally leads to a larger degree of undercooling
before crystallization sets in, which is indicated by recalescence of the sample (an increase
in the temperature due to the release of latent heat).

For both shown compositions (Zr50Cu50)96Al4 and (Zr50Cu50)96Ti4, similar crystalliza-
tion behavior can be noticed in the time-temperature curves. For those samples that only
undercool by approximately 100 K, a double recalescence behavior is observed. Those
that undercool by roughly 250 K undergo only one crystallization event.

Examination of the X-ray diffraction patterns taken during these crystallization events
reveals noticeable differences in the propagation of the resulting crystalline phases. How-
ever, for both (Zr50Cu50)96Al4 and (Zr50Cu50)96Ti4 alloys the final diffraction pattern of
the respective alloy was similar after both solidification paths. In Fig. 4.31 the respective
diffraction patterns of (Zr50Cu50)96Al4 and (Zr50Cu50)96Ti4 are depicted.

The ZrCu B2-bcc phase (high temperature phase at 50 at.% Zr in the phase diagram
in Fig. 4.32 [298]) is the dominant crystallization product of both compositions, similar
to what is observed in binary Zr50Cu50 [299]. The samples exhibiting only moderate
undercoolings solidify in two crystallization events. For instance, the (Zr50Cu50)96Al4

composition first crystallizes in the B2-bcc phase, out of which another phase grows,
as is seen by an additional reflections at around 2.8 Å−1 and 4.8 Å−1, during the 2nd
recalescence. This phase also appears to be present in the deeply undercooled sample.
Further Rietveld analysis defined this additional crystallization product to be the ternary
intermetallic Cu2ZrAl bcc phase.

Fig. 4.33 shows SEM images the solidified microstructures of (Zr50Cu50)96Al4 after both
solidification paths, respectively. Although from an atomic structural point of view
(diffraction pattern) both solids look identical, the microstructures differ significantly.
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Figure 4.30: Temperature-time profile of the processing of (Zr50Cu50)96Al4 (red) and
(Zr50Cu50)96Ti4 (green) alloys in electrostatic levitation. Different solidification
paths with two solidification events (left) or one solidification event (right) are
observed.

The top image shows the microstructure of a sample after two crystallization events.
Here, EDX-analysis revealed the globular grains to be the during the first crystallization
event grown ZrCu B2-bcc phase. One can clearly see the grain boundaries appearing in
lamellas, which usually stands for an eutectic composition. The dark blackish parts are
identified to be the Cu2ZrAl bcc phase. Contrary to that is the bottom image, which
shows the microstructure of a sample that solidified with one crystallization event. Here,
the microstructure shows a mixture of competing phases. Partially, dentritic growth paths
can be suspected. Only on the bottom right side EDX reveals a grain originated by the
Zr-Cu B2-bcc phase, which however appears in a different shape than from the solidifica-
tion path with two crystallization events. The remaining microstructure is a mixture of
the solidified phases and is not explicitly distinguishable by EDX-analysis. The increase
of the total number of possible crystallization products has an impact on the nucleation
probability in (Zr50Cu50)96Al4.

On the other hand, the (Zr50Cu50)96Ti4 composition, first crystallizes directly into the
B2-bcc phase. During the 2nd recalescence another phase appears, identified with a
reflection at around 2.6 Å−1. This phase also grows out of the the deeply undercooled
sample, alongside the B2-bcc phase. The Rietveld analysis revealed this phase to be
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Figure 4.31: Diffractograms of (Zr50Cu50)96Al4 (top) and (Zr50Cu50)96Ti4 (bottom) alloys
after both solidification paths. The red fits shows the phase selection of the Rietveld
analysis. The respective phases are indicated.
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Figure 4.32: The phase diagram of the Zr-Cu system [298]. The left side refers to Copper and
the right side to Zirconium.

the CuZr2-tretagonal phase on the Zr-richer side of the Zr-Cu phase diagram, depicted
in Fig. 4.32 [298]. Here, Titanium seems to be substituted on Zr-positions within the
lattice. Referring back to the findings of the binary Zr-Ti system in the previous chapter
this can be explained by the chemical and structural similarities in Zirconium-Titanium
compositions.

The maximum degree of undercooling observed in both ternary compositions is almost
50 K lower than what is reported for Zr50Cu50 [299]. This reduced undercoolability of
(Zr50Cu50)96Al4 and (Zr50Cu50)96Ti4 can have multiple origins. One possibility is that
the addition of another element increases the total number of possible crystallization
products and thereby increases the overall nucleation probability. Indeed, the presence
of small amounts of an additional crystalline phase alongside the B2-bcc phase in both
deeply undercooled compositions would seem to support this. Another possibility is that
the strong oxygen affinity of both Aluminum and Titanium introduces oxide impurities
into the melt, which act as heterogeneous nucleation centers and catalyze crystallization
[290]. This latter interpretation would also contradict the viewpoint that such minor
additions enhance the glass-forming ability by acting as “scavengers” that dissolve oxide
impurities on atomic length scales and thereby remove them as heterogenous nucleation
sites [300].

Still remains the question how an improved glass-forming ability can be correlated to the
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Figure 4.33: Pictures of detected backscattered electrons in SEM of Zr-Cu with minor Al ad-
ditions after different solidification paths. The top one refers to solidification with
two crystallization events and the bottom one to solidification after a single crys-
tallization event.
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lower undercoolabilities of the (Zr50Cu50)96(Ti, Al)4 alloys during the moderate cooling
in ESL. One explanation could be the overall nucleation rate, which depends - among
other quantities - also on the mobility of the melt [301]. Due to the found decrease in the
overall diffusivity in the (Zr50Cu50)96(Ti, Al)4 systems dynamical effects are also likely
on higher cooling rates.
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4.3.5 Conclusion

Taken together, the (Zr50Cu50)96(Ti, Al)4 systems suggest a positive correlation between
an overall reduced atomic diffusivity and the reported enhanced glass-forming ability in-
troduced by Aluminum and Titanium minor additions [287]. However, no correlation with
a higher packing fraction is found. The Al-bearing composition shows a strong increase
in viscosity opposite to the Ti-bearing one, where the viscosity appear to be very similar
to the viscosity of Zr50Cu50. Both minor addition alloys show a similar crystallization
behavior, which result in structures with different phases after solidification. Although
there are different crystallization paths, the diffraction pattern of the completely solidified
alloys appear similar. In case of the Al-bearing composition, beside the primary ZrCu
B2-bcc phase the second phase is identified to be the ternary intermetallic Cu2ZrAl-
bcc phase, indicating a pronounced chemical short-range order of the system. For the
Ti-bearing composition the second phase is the Zr-rich CuZr2-tretagonal phase, where
Titanium is substituted on Zr-positions in the lattice. The increase of total number of
possible crystallization products (nucleation probability) can mark a structural origin for
the enhanced glass forming ability of minor Al/Ti additions in the Zr50Cu50 system.
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5.1 Conclusion

Objective of this work was to study how structural properties like the atomic pack-
ing and chemical short-range order influence the atomic dynamics in metallic melts.
Therefore, the highly dense pure element Mercury was investigated. In addition, a sys-
tem with weak chemical short-range order, namely binary Zr-Ti alloys, and the ternary
(Zr50Cu50)96(Ti, Al)4 system with pronounced chemical short-range order was investi-
gated.

Mercury, as the only liquid metallic element at ambient conditions, is an ideal candidate
to investigate the transport mechanism in metallic liquids over a large temperature range.
In this work an investigation of the atomic dynamics was carried out using quasielastic
neutron scattering. The self-diffusivity of Mercury follows an Arrhenius behaviour over
the entire investigated temperature range from 240 K to 350 K. The standard deviation
of only 4 % is significantly more precise when compared to conventional long capillary
measurements, which additionally are often hampered by convection.

Using the semi-empirical approach for liquid diffusion based on uncorrelated binary col-
lisions derived by Kaptay [38] the self-diffusion coefficient at the melting point can be
predicted. In case of Mercury the measured diffusive dynamics were found to be similar
to alkali metal melts considering a hard-sphere model with an atomic packing of 45 % and
an effective atom radius of 1.37 Å, which is close to the covalent radius. This indicates
a dominant contribution of the repulsive part of the interatomic potential to the mass
transport. However, the temperature dependence of the diffusion is less well predicted for
Mercury as compared to that for the alkali melts, were also deviations from the prediction
of the Sutherland-Einstein relation are found over a large temperature range.

Using neutron and x-ray scattering the melt dynamics and structure of binary Zr-Ti
alloys was investigated. To avoid chemical interaction of the highly reactive melts with

105



106 5 Conclusion and Outlook

the container material, Zr-Ti melts were processed in electromagnetic levitation (EML).
Zirconium and Titanium are both elements of the group 4 in the periodic table and show
in the pure state very similar chemical and structural properties, but exhibit different
atomic radii. Due to the negative coherent scattering length of Titanium, the binary
composition Zr32.4Ti67.6 has a scattering length of zero for coherently scattered neutrons,
such that the partial structure factor SCC , that describes the chemical short-range order,
can directly be measured. Neutron diffraction shows that barely any chemical short-range
order is present in this composition.

Observed total structure factors of in the other Zr-Ti alloys, measured with x-rays from
synchrotron radiation, are very similar to those of the pure elements. A normalization
of the Q-range over the position of the structure factor maximum revealed that the local
structures contain an icosahedral short-range order.

The macroscopic measured densities of Zr-Ti melts [273] are proportional to the degree
of mixing and show ideal mixing behavior with negligible excess volume. Moreover, the
volume expansion is similar in all investigated alloys. The atomic packing fraction is found
to be steady at 46 % using Goldschmidt radii in all investigated Zr-Ti concentrations alike
the pure elements.

Measurements of the self-diffusivity using quasielastic neutron scattering (QENS) show
a concentration dependent motion of Ti-atoms in the melt. A calculation of the liquid
dynamics using the mode-coupling theory (MCT), which predicts the dynamics from the
static structure in dense fluids, was made based on an only topologically short-range
ordered hard-sphere like approach without any chemical interactions. The results are in
qualitative agreement with the results of the QENS measurements. This shows that the
topological short-range order dominates the atomic motion in binary Zr-Ti melts. The
concentration dependent changes can be attributed to differences in the atomic radii.

Minor additions of Aluminum and Titanium have shown to improve the glass-forming
ability of Zr50Cu50. Using in-situ synchrotron x-ray diffraction and quasielastic neutron
scattering (QENS), the interplay between melt structure and mass transport quantities
like viscosity and self-diffusion was investigated in (Zr50Cu50)96(Ti, Al)4 alloys, as well as
the solidification behavior.

Combined with electrostatic levitation (ESL), the liquid properties of these chemically
reactive alloys were measured over a large temperature range. At the liquidus temperature
of Zr50Cu50, the self-diffusivity in the investigated (Zr50Cu50)96Al4 and (Zr50Cu50)96Ti4

alloys is almost a factor of two lower than in Zr50Cu50. For the (Zr50Cu50)96Al4 alloy, this
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is in line with the observation that Aluminum addition leads to higher melt viscosities. In
contrast, the average packing fractions of Zr50Cu50 and (Zr50Cu50)96(Ti, Al)4 melts are
very similar at about 55 %. Following the changes in the melt dynamics are very sensitive
to the composition.

The ternary alloys also exhibit different crystallization behavior compared to that of
Zr50Cu50, which vary with the heating temperature and cooling rate. Such, the melts
either solidify by one or two crystallization events. However, the final diffraction pat-
tern is similar after both crystallization paths, for the respective (Zr50Cu50)96Al4 and
(Zr50Cu50)96Ti4 alloys. Both the sluggish dynamics and the complex solidification could
contribute considerably to the improved glass-forming ability upon minor addition.

Finally, the investigations of this work reveal that the atomic packing of metallic melts
cannot explain changes in the atomic motion only. Moreover, contributions from topologi-
cal and chemical short-range order can have a dominant influence on the atomic dynamics
in the metallic melts.

5.2 Outlook

The investigation of the influence of the short-range order on the melt dynamics can
be continued based on the findings yielded in each chapter of this work. Those are
respectively:

1. In order to investigate Kaptays approach of proportionality [38] with elements with low
melting temperature one could consider Gallium (atomic number 31) or Indium (atomic
number 49), which are both elements of the boron group. However, both elements exhibit
higher melting temperatures than Mercury: Tm(Ga) = 302.9 K, Tm(In) = 429.7 K; and
lower densities, which are 5.9 g/cm3 in case of Ga and 7.3 g/cm3 in case of In. Nevertheless,
their orbital configuration make them interesting. The elements of the boron group exhibit
a fully filled s-orbital and one electron in the d-orbital, relating them from the electronic
configuration closer to the alkali metals than Mercury. This would lead to an investigation
weather the deviation in the temperature dependence, as it was found in case of Hg, is
also present in case of Ga and In melts.

Additionally, at least in case of Ga a liquid-liquid transition in the undercooled melt is
found, which is accomplished to a changed density [302–304], where also changes in the
melt dynamics are expected.
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2. In the early transition metal group 4, where Zirconium is directly allocated under
Titanium, there is a third element - namely Hafnium (with atomic number 72) - which
also exhibits very similar chemical properties than Zr and Ti. Such, Hf pass through
the same phase transition in the solid than Ti and Zr. In case of the crystalline β-
phase, the phonon characteristics are similar for Ti, Zr and Hf [305, 306] and also the
diffusion mechanism was found to be similar [307, 308]. Moreover, the Zr-Hf and the Ti-Hf
phase diagrams are also completely miscible systems. Whereas the difference in melting
temperature between Ti and Zr is only 90 K, the melting point of Hf is about 380 K
higher than for Zr. But - and that makes Hf rather interesting - the atomic Goldschmidt
radii in Hf and Zr are the same: rHf = rZr = 1.60 Å [67].

If assuming also an absence of chemical short-range order in Hf-containing metal group 4
binary systems, measured structure factors and also the melt dynamics should then show
no concentration dependency.

That is why Zr can be substituted by Hf, e.g. to investigate the Hf self-diffusion in bi-
nary melts [63], where Zr itself exhibit a rather small incoherent scattering cross-section
of σinc(Zr) = 0.02 barn (what is also the reason why on the Zr-rich side in the Zr-Ti
system diffusion coefficients are missing in this work) [112]. In contrast, Hf has an inco-
herent scattering cross-section of σinc(Hf) = 2.6 barn [112]. This would allow to study
an averaged Ti/Hf-diffusion in binary Hf-Ti-concentrations, since σinc(Ti) = 2.87 barn
[112]. An access to values on the Hf-rich side in the Hf-Ti would be possible. However,
investigations on the binary Zr-Hf system are required to determine whether those ele-
ments indeed can be substituted isomorphic. In addition, there is one great disadvantage:
Hf is a strong absorber for neutrons σabs(Hf) = 104.1 barn [112], what would lower the
collected statistics when using samples in electromagnetic levitation (which requires a
certain sample size, especially at the high relevant temperatures). The high Z-number of
Hf would also require higher energies in case of a x-ray scattering experiment.

Due to the similar coherent scattering lengths of Zr and Hf: bcoh(Zr) = 7.16 fm and
bcoh(Hf) = 7.76 fm [112], a zero scattering binary Hf-Ti alloy with similar concentrations
than the Zr-Ti zero scatterer Zr32.4Ti67.6 exists: Hf30.9Ti69.1. In case of a neutron diffrac-
tion experiment here the chemical short-range order could directly be investigated.

In their paper Jeon et. al also reported densities in the binary Zr-Hf system measured in
ESL [273]. Here also a linear concentration dependency is found, which indicates the same
argument concerning the excess volume and the binary packing for Hf-Ti, than for Zr-Ti
in this work. Therefore, it would be interesting, whether the Zr-Hf binary system and the
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Hf-Ti binary system also show similar (normalized) structure factors. In case of Zr-Hf the
measured structure should then conform to the raw elements. However, the high relevant
temperatures in Hf-containing melts yield some difficulties from an experimental point
of view, since the high vapor pressure of Titanium would provoke an evaporation of the
melt.

3. Ternary systems, which lead to investigate the dynamics of glass-forming melts, are
subject of intensive research. Systems that enhance the glass-forming ability upon minor
addition of a third element - like it is reported for (Zr50Cu50)96(Ti, Al)4 - are Zr-Al-Ni
[280], Ni-Nb-Sn [281], Ni-Nb-Fe [281], Ni-Nb-Cu [281] and Cu-Ti-Si [282]. Those ternary
systems are all potential candidates to investigate the influence of minor additions on the
glass-forming ability of binary melts. However, those systems show - already in the binary
cases - different short-range orders than the investigated Zr-Cu system with minor Al and
Ti additions, making reasonable relations rather challenging.

An example: The minor addition of Silicon to the Cu54Ti46 composition should enhance
the glass-forming ability by decreasing the liquidus temperature and promoting the pre-
cipitation of the Cu4Ti3 phase instead of the γ-Cu-Ti during solidification [282]. However,
it is not clear whether this effect is specific to Si and if it can be generalized to other ele-
ments. Additionally, melts containing semiconductors (like Si and Ge) can show structural
changes (like indicated by a changed coordination number), which have an influence on
the melt dynamics e.g. by increasing the self-diffusion coefficient [197, 309].

As depicted in Fig. 5.1 such effects can also be seen in case of the eutectic binary Cu68Si32,
where due to the weak incoherent scattering cross-section of Si σinc(Si) = 0.004 barn
[112] mostly the Cu-diffusion is investigated. However, an increased Cu-diffusivity is not
found in case of the other eutectic composition of the Cu-Si system Cu81Si19, where
the self-diffusion coefficient is decreased when compared to pure Cu, revealing a complex
composition dependence in the Cu-Si system.
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Figure 5.1: Self-diffusion coefficients measured by quasielastic neutron scattering for binary
Cu68Si32 (blue) and Cu81Si19 (red) and compared to liquid pure Copper (green)[54].
The lines refer to Arrhenius fits of the measured values.
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A Diffusion coefficients

In the following the in this work measured diffusion coefficients are listed, sorted by the
respective section.

A.1 Diffusion coefficients from section 4.1

Temperature Diffusion coefficient in 10−9 m2s−1

350 K 2.29 ±0.09
320 K 2.04 ±0.08
300 K 1.83 ±0.06
280 K 1.60 ±0.10
260 K 1.39 ±0.08
240 K 1.25 ±0.07

Table 1: Self-diffusion coefficients of Mercury measured with quasielastic neutron scattering
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A.2 Diffusion coefficients from section 4.2

Temperature Diffusion coefficient in 10−9 m2s−1

1830 K 3.19 ±0.05
1897 K 3.54 ±0.03
1927 K 3.72 ±0.04
1987 K 3.95 ±0.07

Table 2: Self-diffusion coefficients of Zr2Ti measured with quasielastic neutron scattering

Temperature Diffusion coefficient in 10−9 m2s−1

1781 K 2.87 ±0.06
1870 K 3.38 ±0.04
1929 K 3.63 ±0.06
2004 K 3.95 ±0.05

Table 3: Self-diffusion coefficients of Zr50Ti50 measured with quasielastic neutron scattering

Temperature Diffusion coefficient in 10−9 m2s−1

1790 K 3.17 ±0.05
1863 K 3.56 ±0.05
1907 K 3.79 ±0.04
1974 K 4.04 ±0.07

Table 4: Self-diffusion coefficients of Zr32.4Ti67.4 measured with quasielastic neutron scattering

Temperature Diffusion coefficient in 10−9 m2s−1

1819 K 3.64 ±0.06
1893 K 4.04 ±0.03
1952 K 4.50 ±0.04
2020 K 4.91 ±0.06

Table 5: Self-diffusion coefficients of Zr15Ti85 measured with quasielastic neutron scattering



114 Appendices

A.3 Diffusion coefficients from section 4.3

Temperature Diffusion coefficient in 10−9 m2s−1

1116 K 0.64 ±0.06
1186 K 0.83 ±0.08
1251 K 1.16 ±0.10
1305 K 1.34 ±0.15

Table 6: Self-diffusion coefficients of Zr50Cu50 measured with quasielastic neutron scattering

Temperature Diffusion coefficient in 10−9 m2s−1

1060 K 0.20 ±0.04
1096 K 0.26 ±0.03
1144 K 0.34 ±0.03
1192 K 0.53 ±0.03
1229 K 0.64 ±0.07
1278 K 1.09 ±0.09

Table 7: Self-diffusion coefficients of (Zr50Cu50)96Al4 measured with quasielastic neutron scat-
tering

Temperature Diffusion coefficient in 10−9 m2s−1

1075 K 0.30 ±0.04
1135 K 0.43 ±0.04
1183 K 0.48 ±0.10
1247 K 0.75 ±0.15
1241 K 0.82 ±0.15

Table 8: Self-diffusion coefficients of (Zr50Cu50)96Ti4 measured with quasielastic neutron scat-
tering
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B Viscosity Data

Below are the measured viscosity data as shown in section 4.3.2 listed for the respective
alloys.

Temperature Viscosity in mPa s
1307 K 19.8 ±0.6
1282 K 19.0 ±0.6
1255 K 20.4 ±0.9
1229 K 22.4 ±0.5
1204 K 23.3 ±0.7
1179 K 29.6 ±1.6
1153 K 38.0 ±1.6
1129 K 41.6 ±2.8
1104 K 43.4 ±1.7
1104 K 39.8 ±2.8
1079 K 57.4 ±3.8
1078 K 60.0 ±3.6
1054 K 71.2 ±4.1
1054 K 65.3 ±4.5
1028 K 108.7 ±8.0
1005 K 131.3 ±9.6
985 K 200.5 ±10.8
979 K 242.3 ±20.9

Table 9: Viscosity of Zr50Cu50 measured in electrostatic levitation employing the oscillated
droplet method
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Temperature Viscosity in mPa s
1433 K 11.9 ±0.3
1413 K 12.1 ±0.7
1385 K 10.0 ±0.4
1364 K 14.3 ±0.6
1339 K 16.8 ±1.1
1313 K 14.2 ±0.4
1288 K 21.5 ±0.6
1268 K 20.9 ±0.7
1238 K 27.6 ±1.1
1223 K 33.7 ±1.7
1213 K 34.1 ±2.0
1196 K 30.5 ±0.9
1187 K 35.2 ±1.5
1184 K 34.6 ±0.8
1174 K 34.4 ±1.1
1164 K 39.8 ±1.1
1164 K 44.1 ±2.4
1154 K 43.6 ±1.1
1144 K 47.6 ±1.2
1135 K 52.8 ±1.7
1135 K 54.9 ±2.3
1124 K 62.5 ±1.7
1114 K 65.3 ±2.0
1113 K 71.4 ±4.4
1104 K 68.3 ±2.0
1094 K 77.4 ±2.6
1088 K 91.6 ±6.3
1084 K 91.2 ±3.9
1074 K 102.5 ±4.6
1064 K 116.4 ±9.8
1054 K 128.8 ±5.2
1044 K 153.4 ±10.3
1034 K 198.3 ±8.0
1034 K 204.0 ±23.8
1024 K 210.9 ±15.2
1014 K 268.4 ±17.2
1013 K 258.1 ±29.2
1004 K 388.6 ±25.3
994 K 457.0 ±28.2

Table 10: Viscosity of (Zr50Cu50)96Al4 measured in electrostatic levitation employing the oscil-
lated droplet method
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Temperature Viscosity in mPa s
1316 K 14.2 ±1.3
1316 K 14.8 ±0.4
1291 K 16.8 ±0.5
1291 K 15.4 ±0.3
1267 K 17.7 ±0.3
1266 K 20.2 ±0.6
1241 K 20.7 ±1.4
1239 K 19.6 ±0.7
1216 K 22.0 ±0.6
1216 K 21.0 ±0.6
1199 K 27.2 ±1.1
1193 K 30.2 ±1.0
1191 K 26.1 ±0.8
1166 K 32.1 ±1.0
1165 K 33.1 ±2.2
1141 K 38.3 ±1.4
1140 K 38.9 ±1.8
1126 K 42.0 ±1.7
1116 K 46.2 ±2.0
1097 K 55.1 ±2.5
1095 K 62.3 ±1.8
1091 K 57.3 ±3.0
1085 K 72.6 ±2.4
1076 K 73.8 ±4.6
1075 K 75.9 ±2.7
1065 K 87.8 ±2.8
1065 K 78.6 ±4.6
1056 K 84.6 ±5.2
1055 K 91.7 ±2.6
1045 K 100.2 ±2.9
1041 K 113.8 ±6.9
1035 K 107.3 ±3.7
1026 K 119.0 ±7.0
1025 K 114.5 ±3.5
1015 K 133.8 ±4.4
1015 K 151.7 ±12.8
1005 K 162.3 ±12.4
1005 K 152.2 ±6.0
995 K 172.1 ±6.4
985 K 178.0 ±7.7
975 K 223.5 ±10.0
965 K 268.2 ±10.2
955 K 292.8 ±12.6
945 K 373.5 ±15.6

Table 11: Viscosity of (Zr50Cu50)96Ti4 measured in electrostatic levitation employing the oscil-
lated droplet method
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