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Abstract— Pedestrian motion prediction is a core issue in
assisted and automated driving and challenging to solve. In
this work, controlled Markov chains are used for predicting
pedestrian crossing behavior in urban environments with and
without crosswalks. Intentions, such as crossing a road, are
estimated by incorporating the probability of colliding with
other traffic participants. On a public dataset, we calibrate
the model parameters using genetic algorithms which we
formulate as a multi-objective optimization problem. Rather
than only minimizing the position deviation of the prediction,
we also consider the classification performance for pedestrians’
crossing intention. The conducted evaluation shows benefits
of our approach: it achieves comparable intention recognition
performance compared to a support vector machine, while
additionally achieving accurate spatiotemporal predictions.

I. INTRODUCTION

A. Motivation

Intelligent vehicles need to detect, assess, and react to
dangerous situations [1]. Motion prediction of vulnerable
road users, such as pedestrians in particular, is not only
of utmost importance for safety in assisted and automated
driving, but also a key for natural and smooth maneuvers of
intelligent vehicles [2].

This work focuses on pedestrians intending to cross in
front of an approaching vehicle, cf. Fig. 1. For the prediction
we use the controlled Markov chains (MC) presented in
[3]. Compared to pure machine learning approaches, our
approach not only works in arbitrary situations, but also
enables expert knowledge to be considered and the effort of
system inspection to be reduced. However, calibrating MC is
not easy, since many parameters cannot be observed directly.
By using algorithms with an automatic fitting procedure for
the calibration, we believe that the objective functions play
an important role which will be investigated in this work.

B. Related Work

a) Intention recognition: Pedestrian intention recogni-
tion in urban environments can be formulated as a classifica-
tion problem, such as whether to cross in front of a vehicle,
and inferred from meaningful features [4]–[8].
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Fig. 1. A typical scene where a pedestrian intends to cross in front of an
approaching vehicle (the image was recorded using a camera mounted on
a testing vehicle of the EU-funded project interACT).

b) Motion prediction: Predicting the path of pedestrians
can be combined with their intention recognition, where the
estimated intention serves as an input for the path prediction
[9], [10]. A deep-learning-based system using visual features
can be found in [11].

c) Social force model: Besides, pedestrians’ motion can
be described as if they would be subject to “social forces”
[12]. A social force model outputs spatiotemporal results
and hence implicitly integrates path prediction and intention
recognition. With respect to interaction with others, the
avoidance mechanisms of human beings as a core of social
force models are usually modeled in repulsive potential
forms [12]–[16]. Social force models can be integrated into
other frameworks. For instance, a long short-term memory
network in [17] incorporates collision risks based on repul-
sive potentials for mixed traffic trajectory prediction in a
shared space. The work in [18] presents a planning-based
approach that accounts for local social interactions.

d) Incorporating map information: There are different
ways to interpret the influence of map information on the
behavior of pedestrians. A set-based prediction for pedes-
trians is used in [19] which incorporates constraints based
on traffic rules. Markov decision processes are used in [20],
[21], where the local motion patterns are the so-called policy
to a goal. Out of the above approaches, the ones relying on
planning-based techniques, require a prelocation of goals.
This problem of goal forecasting and motion planning is
jointly solved in [22] via one single artificial neural network.
In addition, [3] presents a heuristic method to infer potential
goals to a pedestrian based on a semantic map automatically.

e) Clustering-based prediction: Clustering techniques
can be applied to derive motion patterns. The work in
[23] presents a probabilistic hierarchical trajectory matching
approach to perform trajectory predictions. An augmented
semi-nonnegative sparse coding algorithm is proposed in [24]



with an extension in [25] by incorporating semantic features,
such as geometric information of an intersection, to learn the
transition between motion patterns of pedestrian trajectories.

f) Calibration of prediction models: For calibrating
social force models, the relative distance error is used as
objective function in [26], while [16] considers both the
relative distance- and angle error and performs a bi-objective
optimization. Maximum likelihood estimation is combined
with a regularization term in [7], [17]. For training a clas-
sifier, metrics regarding the receiver operating characteristic
curve can be found in [4]–[6].

C. Contribution

The above literature review revealed that a large share
of previous work either used pure machine learning ap-
proaches or model-based approaches. Pure machine learning
approaches require large datasets and often only work well
for scenarios similar to those used for training. Model-based
approaches, however, often do not sufficiently calibrate their
models with real-world data. This work aims to close this
gap by calibrating model-based approaches using genetic
algorithms (GAs).

In particular, we propose a novel approach to calibrate
a model for predicting pedestrian crossing behavior by
using two objective functions from different viewpoints—
spatiotemporal accuracy and intention classification accu-
racy. The previous work described above considers only
objectives from one of those two viewpoints, which has
limitations as we will show. Instead, we perform a multi-
objective optimization using GAs and select a trade-off
solution from the Pareto frontier. The usefulness of consid-
ering the intention classification performance as the second
objective function during optimization is confirmed by an
evaluation using the Daimler dataset [27].

The remainder of this paper is structured as follows. Sec. II
introduces the framework of MC from our previous work [3]
including extensions and refers to the model parameters to
be calibrated. Sec. III handles the proposed multi-objective
optimization procedure. The evaluation and discussion are
found in Sec. IV. Finally, Sec. V concludes the paper.

II. PRELIMINARIES

A. Controlled Markov chains

Controlled Markov chains are used in this work for motion
prediction using the 2D position x = (x1, x2)

T ∈ R2 and the
action u = (ψ, v)

T consisting of the orientation ψ ∈ R+
0 and

the speed v ∈ R+
0 . The position cells are denoted by Xi ⊂ R2

using Latin subscripts and the action cells by Uα ⊂ R2

using Greek superscripts, cf. Fig. 2. Let αψ and αv be the
separate indices for action intervals. Two separate indices
determine a unique index of an action cell α and vice versa,
e.g., α = nψ · (αv− 1) +αψ for nψ orientation intervals, cf.
Fig. 2b.

The joint probabilities P (x(tk) ∈ Xi, u(tk) ∈ Uα) at
points in time tk are recursively estimated considering con-
straints. To this end, two steps are carried out in each time
step: first, we compute the action transition probabilities
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x2

X1 X2 . . .

...
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U1 U2 . . .

...
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Fig. 2. (a) Position cells and (b) action cells [28].

Γαβi (tk) := P
(
u(tk) ∈ Uα | u(tk) ∈ Uβ , x(tk) ∈ Xi

)
, with

which the action probability distribution is changed instantly
at tk; second, we propagate positions under the effect of
actions according to the position transition probabilities
P (x(tk+1) ∈ Xi | x(tk) ∈ Xj , u(tk) ∈ Uα), where tk+1 −
tk = T ∈ R+ is the time step size. While the position
transition probabilities can be computed offline, the values
Γαβi (tk) are computed during prediction as

Γαβi (tk) = norm
(

Γ̂αβi (tk)
)

:=
Γ̂αβi (tk)∑
α Γ̂αβi (tk)

,

Γ̂αβi (tk) = λαi,dyn(tk)λαi,statΨ
αβ ,

(1)

with intrinsic action transition probabilities Ψαβ as well as
priority values λαi,stat and λαi,dyn(tk) [3].

B. Intrinsic Action Transition

Similarly as in [3], the values Ψαβ are computed with
the parameters θ1, θ2, θ3, and the index α∗v representing an
average walking speed as

Ψαβ ∝ exp
(
− θ1 · diff(αψ, βψ)− θ2 · diff(αv, βv)

− θ3 · diff(αv, α
∗
v)
)
,

(2)

where the operator diff(·, ·) returns the absolute difference
of interval centers either of speed or periodic orientation.

C. Constraints from Static Environments

For the considered scenario in this work, we assume the
goal direction denoted by the index α∗ψ is towards the road
and compute the values λαi,stat with the parameter θ4 as

∀i : λαi,stat ∝ exp
(
− θ4 · diff(αψ, α

∗
ψ)
)
. (3)

D. Constraints from Dynamic Environments

By considering other traffic participants and following the
collision checking process in [3], one can obtain the condi-
tional collision probabilities pCi,α(tk+κ) for κ = 1, 2, . . . ,K
with K ∈ N+ collision checking steps for each joint event
referring to a pedestrian xped(tk) ∈ Xi, uped(tk) ∈ Uα.
In this work, we propose a nonlinear relationship between
dynamic priority values λαi,dyn(tk) and conditional collision
probabilities pCi,α(tk+κ) with K parameters γκ:

λαi,dyn(tk) = min
κ∈{1,...,K}

(
1− pCi,α(tk+κ)

)γκ
. (4)

To compute conditional collision probabilities, we extend
the dimensions of vehicles in their moving directions as in
[3]. Two parameters θ5 and θ6 are used to compute the



weights wh(tk+κ) of the position cells Xh in the extended
area of each vehicle:

wh(tk+κ) = θ5 · exp

(
−θ6

dist
(
Xh, xveh(tk+κ)

)
vveh(tk+κ)

)
, (5)

where xveh(tk+κ) and vveh(tk+κ) denote the vehicle’s posi-
tion and speed, respectively; the operator dist(·, ·) returns
the distance between the center of a position cell and
the vehicle’s front along its driveway. For a more detailed
explanation, we refer to [3].

E. Settings of Markov Chains

As a compromise between high resolution and low compu-
tation time, we have chosen the following values: time step
size T = 0.48 s (corresponding to 8 timestamps in the dataset
[27]); GridSize = 0.2 m for position cells; SpeedInterval =
0.3 m s−1 and OrientationInterval = π/8 for action cells;
collision checking steps K = 5. The average walking speed
denoted by the index α∗v is set to 1.5 m s−1.

III. CALIBRATION

We calibrate model parameters using GAs for two major
reasons. First, GAs search the solution space with a popula-
tion of parameter sets; thus, the probability of getting stuck
in a local optimum can be reduced [29]. Second, it is easy
to handle multi-objective optimization problems, because the
use of population of individual parameter sets also helps to
find multiple non-dominated solutions [30].

A. Preprocessing Dataset

The Daimler dataset [27] is used for both calibration and
evaluation. For each original trajectory, a labeled timestamp
tevent denotes the time point when the pedestrian decides
to stop at the curb or step onto the road soon. We shift
the prediction to begin at t0 = tevent − ν T for ν ∈ N+,
so that several trajectories with different initial conditions
are obtained. Moreover, each timestamp of the original
trajectories annotates whether the pedestrian has seen the
approaching vehicle. We treat this annotation as a cue for
situation awareness and perform collision checking process
(cf. Sec. II-D) after observing that the pedestrian has seen
the vehicle. Therefore, we only consider those trajectories
where the pedestrian either has already seen the vehicle until
t0 (denoted as SV–“seen vehicle”) or has not seen it in the
whole recording (NSV–“not seen vehicle”). Out of the 76
SV-trajectories the pedestrians cross in 41 cases and stop in
the other 35, whereas all pedestrians cross in the 32 NSV-
trajectories.

Due to the relative small size of this dataset, we repeat
the experiment for 20 times for separate training and testing.
For each experiment, we randomly chose 72 trajectories as
the training set to calibrate model parameters; the remaining
36 trajectories comprise the testing set to evaluate the model
performance.

B. Objective functions

Let us first introduce two objective functions from differ-
ent viewpoints; later, we motivate the use of both.

1) Spatiotemporal Accuracy: Given the ground truth 2D
positions zη(tk) = (xmeas

1 , xmeas
2 )

T of the η-th trajectory,
the objective function f1 is defined as the weighted mean
absolute error [31]:

f1 :=
1

N

∑
η,tk

f1(η, tk), (6)

f1(η, tk) :=

d∑
i=1

||center(Xi)− zη(tk)||2 · P (xη(tk) ∈ Xi) ,

(7)

where N is the total prediction steps over all trajectories in
the training set; d is the number of position cells; the operator
center(·) returns the volumetric center of a set.

2) Intention Classification Accuracy: To quantify the pre-
dicted pedestrian crossing intention from the spatiotemporal
outputs of MC, we utilize the predicted occupancy at a
specific point in time teval := tevent + offset; as the ground
truth position at tevent in most cases is located on the
sidewalk, we set offset = T to ensure as far as possible
that the predicted occupancy at teval is on the road due to
the underlying predicted crossing intention, or, is still on
the sidewalk due to the underlying predicted non-crossing
intention (cf. Fig. 5 for tevent and teval). Let the labeling of
each SV-trajectory be yη ∈ {0, 1} for stopping and crossing,
respectively. Then the cross-entropy as the second objective
function f2 is computed as [32]

f2 :=− 1

NSV

NSV∑
η=1

yη · ln (p) + (1− yη) · ln (1− p), (8)

p = max (min (pηcross, 1− ε), ε), (9)

pηcross =

d∑
i=1

P (xη(teval) ∈ Xi) · 1Xi⊂road, (10)

with NSV as the number of SV-trajectories in the training set
and the indicator function 1(·) returning 1 if the condition is
true, and 0 otherwise; to avoid the evaluation of ln(0) in (8),
we ensure that the probability pηcross of being on the road at
teval is at least ε = 0.01 and not more than 1− ε = 0.99 in
(9).

We see a limitation of using the objective function f1 only,
because computing the position error in (6) does not discrim-
inate between the errors when the ground truth is close to the
curb and those when the ground truth is away from the curb;
yet, the former one can be more critical than the latter one
from the viewpoint of an approaching vehicle. In contrast, the
objective function f2 emphasizes the predicted pedestrian’s
position error close to the curb from the perspective of
the vehicle. Besides, it is difficult to distinguish a crossing
trajectory from a stopping one by using f1 in some cases
where the recordings stop shortly after tevent (cf. Fig. 6). On
the contrary, using f2 enables conveniently evaluating such
short recordings without extrapolating trajectories, since only
the labeling of each trajectory yη is required in (8). However,
the spatiotemporal information is lost when using f2 only.
Therefore, we consider both objectives for the calibration.
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Fig. 3. Candidates of parameter sets in the objective function space in the
20th generation of the GA from an experiment. Smaller values of f1 and
f2 are preferred.

C. Multi-objective Optimization

To consider both objective functions f1 and f2, we
perform a multi-objective optimization, because it may be
difficult to aggregate different objectives (due to e.g., their
complex correlation) into a single synthetic objective a priori,
that is, before alternatives are known [33]. We adopt GAs to
handle the multi-objective optimization problem similarly as
in [16]. The goal of multi-objective optimization is to find
a set of non-dominated solutions, with convergence to the
Pareto frontier while maintaining good diversity of solutions
[34]. The non-dominated solutions are those which cannot
be improved considering all objectives simultaneously. For
instance, cf. Fig. 3, the candidate C is dominated by B,
whereas A and B are not dominated by each other and hence
they lie on the same frontier F1.

We use the MATLAB Global Optimization Toolbox1 with
the settings of the GA given in Table I (all other options
are left at their default values) for calibrating the model
parameters θ := (θ1, θ2, . . . , θ6, γ1, γ2, . . . , γ5).

TABLE I
THE CHOSEN PARAMETER VALUES FOR MULTI-OBJECTIVE GA.

Option Value Option Value

PopulationSize 300 MaxGenerations 100
SelectionFcn 'selectiontournament' TournamentSize 3
CrossoverFcn 'crossoverscattered' CrossoverFraction 0.7
MutationFcn 'mutationadaptfeasible' ParetoFraction 0.4

D. Optimization Results and Candidate Selection

Fig. 4a depicts the evolution of the frontiers F1 with the
highest rank (the solutions on other frontiers are inferior to
those on F1, cf. Fig. 3) in different generations of the GA
from an experiment. The frontier F1 converges after about
30 generations. Fig. 4b shows the frontiers F1 in their 100th
generation of the GA from all 20 experiments.

1MATLAB and Global Optimization Toolbox Release 2018b, The Math-
Works, Inc., Natick, Massachusetts, United States.
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Fig. 4. (a) Evolution of frontiers F1 in the 10th, 20th, . . . , 100th
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selected parameter sets in the objective function space according to different
criteria. (b) Frontiers F1 in their 100th generation of the GA from all 20
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The question of how to choose a final optimized solution
among non-dominated solutions depends on the user prefer-
ence. Therefore, for each experiment we select 3 parameter
sets from the last generation according to the following
criteria, cf. Fig. 4a:
• Let θ(f+1 ) be the best parameter set on F1 w.r.t.

objective function f1.
• Let θ(f+2 ) be the best parameter set on F1 w.r.t.

objective function f2.
• Let θ(f+−1,2 ) be the parameter set on F1 whose f1

value is closest to
f1(θ(f+

1 ))+f1(θ(f+
2 ))

2 , i.e., the middle
between the f1 values of θ(f+1 ) and θ(f+2 ).

We denote the controlled Markov chains with the above
parameter sets by MC-θ(f+1 ), MC-θ(f+2 ), and MC-θ(f+−1,2 ),
respectively. Their performance will be evaluated in the next
section.

IV. EVALUATION

A. Spatiotemporal Accuracy
We first introduce a baseline model MC-UncAct using

the same Markov chains from Sec. II but without applying
action transition—the transition probabilities Γαβi (tk) in (1)
are set to 1 if α = β, and 0 otherwise, ∀i, α, β; hence,
this model suffers from the same discretization of MC for
a fair comparison. Then we compare the position errors
f1(tk) := 1

Ntk

∑
η f1(η, tk) with Ntk trajectories (SV+NSV)

evaluated at different points in time tk between MC-UncAct
and our approach with different optimized parameter sets.

Their average performance (standard deviation in paren-
theses) in testing sets from 20 experiments is listed in Table
II, where a smaller f1(tk) is preferred. The spatiotemporal
accuracy of MC with the parameter sets θ(f+1 ) and θ(f+−1,2 )
is better than that of others.

B. Intention Classification Accuracy
We evaluate the performance of our approach regarding

recognizing whether pedestrians will cross in front of vehi-
cles. First, we convert the crossing probability pηcross from



TABLE II
AVERAGE PERFORMANCE IN TESTING SETS.

MC-θ(f+1 ) MC-θ(f+−
1,2 ) MC-θ(f+2 ) MC-UncAct

f1(t1) 0.292(0.02) 0.290(0.02) 0.290(0.02) 0.293(0.02)
f1(t2) 0.474(0.04) 0.472(0.04) 0.473(0.03) 0.500(0.03)
f1(t3) 0.631(0.04) 0.623(0.04) 0.623(0.04) 0.694(0.04)
f1(t4) 0.786(0.05) 0.784(0.04) 0.795(0.04) 0.891(0.05)
f1(t5) 0.960(0.07) 0.987(0.06) 1.013(0.06) 1.072(0.07)
f1(t6) 1.207(0.12) 1.254(0.09) 1.290(0.11) 1.294(0.12)

MC in (10) of each trajectory into the four categories of the
confusion matrix [35] depending on the threshold ρ = 0.5:

(true positives) TP =

N ′SV∑
η=1

1pηcross≥ρ · 1yη=1,

(false positives) FP =

N ′SV∑
η=1

1pηcross≥ρ · 1yη=0,

(false negatives) FN =

N ′SV∑
η=1

1pηcross<ρ · 1yη=1,

(true negatives) TN =

N ′SV∑
η=1

1pηcross<ρ · 1yη=0,

where N ′SV is the number of SV-trajectories in the testing
set. Based on that, one obtains the accuracy ACC =

TP+TN
TP+FP+FN+TN , the false positive rate FPR = FP

FP+TN ,
and the true positive rate TPR = TP

TP+FN [35].
For comparison2 we implement a support vector machine

with the radial basis function kernel (SVM-RBF) [36]. The
used features X(t0) for SVM-RBF are similar to those3 in
[4], [5]:

X(t0) =
(
vped1 , vped2 , vveh1 , vveh2 , dpedcurb, d

ped
veh

)T
,

where v1 = v cosψ and v2 = v sinψ; dpedcurb represents the
distance between the pedestrian and the curb; dpedveh denotes
the distance between the pedestrian and the vehicle’s front,
at the prediction beginning t0. For both training and testing,
those features are normalized with unified mean values and
standard deviations. In the training set from each experiment,
we use three-fold cross-validation and grid search [37] to
obtain optimized parameters for SVM-RBF by maximizing
the accuracy ACC.

Table III compares the average performance (standard
deviation in parentheses) in testing sets from 20 experiments
between SVM-RBF and MC with different parameter sets

2For a more generalized use case, we mixed the trajectories from all sub-
scenarios in the Daimler dataset [27] for both training (cf. Sec. III-A) and
testing, including the anomalous sub-scenario where pedestrians have seen
the vehicles and cross in a critical situation. Since the proposed model in
[27] performs trajectory predictions based on specific scenarios containing
“normal" behaviors and fails to handle the above mentioned anomalous
scenario, we chose not to compare it with MC.

3Some specific features w.r.t. zebra crossing are excluded, since no zebra
crossing exists in the Daimler dataset [27].

TABLE III
AVERAGE PERFORMANCE IN TESTING SETS.

MC-θ(f+1 ) MC-θ(f+−
1,2 ) MC-θ(f+2 ) SVM-RBF

ACC 0.650(0.08) 0.720(0.07) 0.746(0.07) 0.760(0.07)
FPR 0.529(0.20) 0.365(0.15) 0.263(0.13) 0.290(0.15)
TPR 0.806(0.10) 0.813(0.12) 0.769(0.09) 0.806(0.12)

TABLE IV
AVERAGE PERFORMANCE IN TESTING SETS (SHORT-TERM PREDICTION).

MC-θ(f+1 ) MC-θ(f+−
1,2 ) MC-θ(f+2 ) SVM-RBF

ACC 0.704(0.12) 0.771(0.11) 0.775(0.15) 0.744(0.15)
FPR 0.485(0.28) 0.260(0.24) 0.179(0.21) 0.281(0.28)
TPR 0.856(0.13) 0.824(0.15) 0.779(0.17) 0.764(0.20)

(while ACC and TPR are to be maximized, a smaller FPR
is preferred). While SVM-RBF achieves the highest ACC,
MC-θ(f+2 ) yields the lowest FPR and MC-θ(f+−1,2 ) the
highest TPR. Moreover, cf. Table IV, if considering only
those trajectories where pedestrians are not far away from
the curb at the prediction beginning, i.e., t0 = tevent − T ,
the performance of MC is further improved compared to their
performance evaluated on all SV-trajectories (cf. Table III).
Especially, MC-θ(f+−1,2 ) and MC-θ(f+2 ) perform better than
SVM-RBF regarding (all) ACC, FPR, and TPR.

C. Discussion

We demonstrate the calibration of MC using GAs and two
objective functions. As shown in Table III, calibrating MC in
the direction of minimizing the position error cannot ensure
the best performance with respect to crossing intention
recognition. In contrast, the spatiotemporal accuracy gets
worse by treating MC as a classifier during optimization, cf.
Table II. As a trade-off, we select the parameter set θ(f+−1,2 )
from the Pareto frontier according to the criterion in Sec.
III-D, with which MC can achieve satisfactory results: while
yielding better spatiotemporal accuracy than the baseline
model MC-UncAct, it performs comparably to a SVM-RBF
for pedestrian intention recognition. Moreover, as pedestrians
get closer to the curb, the performance of MC is significantly
improved regarding (all) ACC, FPR, and TPR, whereas
SVM-RBF degenerates slightly (cf. Table IV). The reason
for this can be in particular the influence of intrinsic action
transition for short-term prediction.

Fig. 5 illustrates a dangerous situation (the vehicle would
collide with the pedestrian if it does not react), where our
approach predicts confidently (98.9 %) that the pedestrian
will step onto the road in about 1.5 s. Another prediction
example (using the trade-off solution θ(f+−1,2 ) as in Fig. 5)
can be found in Fig. 6: although there is 12.3 % probability
that the pedestrian will be on the road at t5, this actually
represents the intention that the pedestrian tries to cross
behind the passing vehicle without stopping. This tendency
is caused by the priority values λαi,stat.
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Fig. 5. A crossing trajectory in [27]. (a) The initial positions and velocities
of the pedestrian (red circle) and the vehicle (blue rectangle) at t0. (b)
The green cells illustrate the predicted occupancies using MC-θ(f+−

1,2 ) in
different time steps (the darker the color, the higher the probability); the
red squares represent the ground truth positions at different points in time;
the numbers in each box are the summed probability of green cells on the
road.

V. CONCLUSIONS

In the context of predicting pedestrian crossing behavior
in urban environments, our approach achieves comparable
performance compared to a support vector machine. But,
rather than a binary result, our approach yields more detailed
information about where the pedestrian will be and when, as
well as the corresponding probabilities. As the pedestrian
gets closer to the road, the performance of our approach
is further improved. Thus, our approach is suitable for
both long-term and short-term prediction. To sum up, it is
beneficial to combine all aforementioned advantages in a
single framework for a general use.

For calibrating such a model as ours which outputs
probabilistic spatiotemporal results, we show the useful-
ness of considering two objective functions from different
viewpoints—spatiotemporal accuracy and intention classifi-
cation accuracy—by performing multi-objective optimization
using genetic algorithms.
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Fig. 6. A stopping trajectory in [27] with the same annotations as in
Fig. 5. Although the recording stops after t1 and the ground truth position
therefore only exists at t1 in part (b), we regard our prediction as a true
negative w.r.t. crossing in front of the vehicle based on the labeling of this
recording and the predicted occupancy on the road at t2 (teval) of 0.0%
probability.
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