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Abstract

Semileptonic and rare B-meson decays are powerful probes to test electroweak interactions,
which are successfully described by the Standard Model (SM) of particle physics, at very high
energy scales. In fact, recent measurements of several observables in both b→ c`ν and b→ s``
transitions have shown tensions with the SM predictions. These tensions are collectively
called the B anomalies. In order to determine whether the B anomalies are genuine signs of
physics beyond the SM, accurate theoretical predictions of the corresponding hadronic matrix
elements (HMEs) are essential. The major theoretical uncertainties in the B → D(∗)`ν and
Bs → D

(∗)
s `ν semileptonic decays come from the local HMEs, which are parametrized by the

meson form factors. We calculate these form factors in the framework of QCD Light-Cone
Sum Rules (LCSRs) with B-meson distribution amplitudes. To further improve the precision
of our predictions and to extrapolate the form factors to the whole physically allowed region,
we combine our LCSRs results with with lattice QCD results and impose dispersive bounds.
In rare B decays, besides the local HMEs, also non-local HMEs presently limit the theoretical
precision in most of the observables constituting the B anomalies. We calculate these HMEs
for B → K(∗)`` decays using LCSRs as well. To obtain additional constraints for the non-
local B → K(∗)`` HMEs, we extend the dispersive bounds method to make it suitable for
this type of objects. Finally, we discuss selected phenomenological implications of our results,
giving SM predictions for the Lepton-Flavour Universality ratios RD(∗) and other important
observables in B decays.

Zusammenfassung

Semileptonische und seltene B-Mesonen-Zerfälle liefern eine ausgezeichnete Möglichkeit, um
die elektroschwachen Wechselwirkungen, welche erfolgreich vom Standardmodell (SM) der
Elementarteilchenphysik beschrieben werden, bei sehr hohen Energieskalen zu untersuchen.
Tatsächlich haben jüngste Messungen mehrerer Observablen von b → c`ν- sowie b → s``-
Übergängen Abweichungen von SM-Vorhersagen aufgezeigt. Diese Abweichungen werden
kollektiv als B-Anomalien bezeichnet. Um festzustellen, ob die B-Anomalien ein tatsäch-
licher Nachweis von Physik jenseits des SM sind, sind genaue theoretische Vorhersagen der
entsprechenden hadronischen Matrixelemente (HME) unerlässlich. Die größten theoretischen
Unsicherheiten in den semileptonischen Zerfällen B → D(∗)`ν und Bs → D

(∗)
s `ν kommen von

den lokalen HME, die durch die Meson-Formfaktoren parametrisiert werden. Wir berechnen
diese Formfaktoren im Rahmen der QCD Lichtkegelsummenregeln (LCSR) mit B-Meson-
Verteilungsamplituden. Um die Genauigkeit unserer Vorhersagen weiter zu verbessern und
die Formfaktoren auf den gesamten physikalischen Bereich zu extrapolieren, kombinieren wir
unsere LCSR-Ergebnisse mit den Gitter-QCD-Ergebnissen und legen dispersive Schranken
fest. In seltenen B-Zerfällen, abgesehen von den lokalen HME, beschränken gegenwärtig auch
nicht-lokale HME die theoretische Genauigkeit in einem Großteil der Observablen, die die B-
Anomalien ausmachen. Wir berechnen diese HME für B → K(∗)``-Zerfällen ebenfalls unter
Verwendung von LCSRs. Um zusätzliche Bedingungen für die nicht-lokalen B → K(∗)`` HME
zu erhalten, erweitern wir die Methode der dispersiven Schranken, um sie für diese Art von
Objekten geeignet zu machen. Abschließend erörtern wir ausgewählte phänomenologische
Implikationen unserer Ergebnisse und treffen dabei SM-Vorhersagen für die Lepton-Flavour-
Universalitätsverhältnisse RD(∗) und andere wichtige Observablen in B-Zerfällen.
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Introduction

The Standard Model (SM) of particle physics successfully describes three of the four known
fundamental interactions (electromagnetic, weak, and strong) through a spontaneously broken
gauge theory. So far, direct searches for new particles in high-energy collider experiments have
so not found any evidence for physics beyond the SM (BSM). An alternative to the direct
searches is to look for BSM effects indirectly, through quantum fluctuations at low energies.
In this way, potential effects of BSM physics can be probed at energy scales beyond the reach
of earth-bound collider experiments [4].

Flavour physics, which is the branch of particle physics that investigates the transitions
and the spectrum of the different quark and lepton flavours, provides complementary means
to test the SM up to very high energy scales in indirect searches. Recent results in flavour
physics obtained by the B-factory experiments (Belle and BaBar) and by LHC experiments
(LHCb, CMS and ATLAS) have shown discrepancies with respect to the SM predictions in
several observables in B → D(∗)τν and B → K(∗)`` decays. This set of tensions is commonly
called the B anomalies [5–7].

In view of the present and any forthcoming experimental results, it is crucial to increase
the accuracy of theoretical predictions for mainly two reasons. First, to understand whether
the B anomalies are a mere statistical fluctuation, an underestimation of systematic uncer-
tainties or signs of BSM physics. Second, even if the B anomalies will not be confirmed as
signs of BSM effects, higher precision in theoretical predictions will be beneficial to further
constrain new physics and to determine the SM parameters.

Hadronic matrix elements (HMEs) are necessary inputs for theoretical predictions of all
the observables in hadron decays (and in particular in B-meson decays). Being genuinely non-
perturbative objects, HMEs are hard to determine and hence represent the major uncertainties
in these predictions. This is due to the fact that the quarks inside hadrons interact at energies
of the order of the hadronic binding energy, for which QCD perturbation theory does not hold.

There are two QCD based methods to compute HMEs: lattice gauge simulations (LQCD)
and QCD sum rules. While LQCD will, in the long run, dominate the predictions due to
reducible systematic and statistical uncertainties, QCD sum rules can presently elucidate
such matrix elements for which there are no or only limited LQCD results available.

It is also possible to combine the results of these two methods, for instance in meson-
to-meson transitions. In this case, the local HMEs can be expressed in terms of functions
of the momentum transfer q2, the so-called form factors. While LQCD is more effective for
large q2 values, even though recent studies provide excellent results also at q2 = 0 [8], QCD
sum rules can only be applied for low q2 values. This is due to the operator product ex-
pansion that is performed to calculate a QCD sum rule (see chapter 3). It is then beneficial
to combine LQCD and QCD sum rules predictions to extract the form factors values in the
entire physically allowed region. Applications of this method are discussed in subsection 4.3.2.
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In this work we use the QCD light-cone sum rules (LCSRs) to compute form factors and
other HMEs relevant for semileptonic B decays. The starting point to compute a sum rule is a
correlation function, which is calculated in two different ways. The first consists in performing
an operator product expansion of the correlator, in order to factorise short- and long-distance
contributions. The second corresponds to expressing the same correlator in the form of a
hadronic dispersion relation. The two results are then matched using semi-local quark-hadron
duality giving a relation between the HMEs and other hadronic quantities, which is called the
sum rule. A thorough review of the method is provided in chapter 3.

Employing the LCSRs with B-meson distribution amplitudes, we updated the calculation
of the B → π, ρ,K(∗), D(∗) form factors including corrections of sub-leading twists [1]. These
corrections have a significant impact that amounts to a ∼ 20− 30% shift of the final results.
The corresponding phenomenological implications are discussed in the chapter 4 as well. We
also calculated the Bs → D

(∗)
s form factors using LCSRs at twist four accuracy [2]. The

importance of these results lies in the fact that they represent the first theoretical calcula-
tion of the Bs → D∗s form factors, except for one lattice data point at maximum momentum
transfer (see [9] for the most recent calculation). We used these form factors to predict the
lepton flavour universality ratio R(D∗s) and to critically revisit the dispersive bounds [10]
in Bq → D

(∗)
q processes (with q = u, d, s) beyond the SU(3) flavour symmetry limit. This

project acquired even more importance from a phenomenological point of view due to the
recent [11, 12] and forthcoming experimental results for Bs → D

(∗)
s decays from the LHCb

collaboration.

In rare B decays (e.g. B → K(∗)`` and Bs → φ``) there are also important contributions
that come from non-local HMEs, besides the leading contributions proportional to local HMEs,
which are parametrized in terms of form factors. While the calculation of non-local HMEs
using LQCD is at a conceptual stage, LCSRs allow to estimate their important impact on the
theoretical predictions.

We focus on the evaluation of non-local HMEs that contribute to the so-called charm-loop
effects in B → K(∗)`` decays. These non-local HMEs are an indispensable hadronic inputs for
the understanding of these decays and especially the P ′5 anomaly [13]. In fact, they constitute
the single-largest systematic uncertainty in B → K(∗)`` transitions. We have recalculated the
soft-gluon contribution to the charm-loop effect, which was originally discussed in ref. [14].
While we reproduce the analytical results given in the original paper (for B → K) and pro-
vided by the authors (for B → K∗), we find that crucial contributions are missing. These
contributions cancel partially the terms discussed in the literature and reduce the final nu-
merical result by one order of magnitude. This project also includes further improvements on
the non-local HMEs, which are work in progress. Hence, this thesis only contains a subset of
the work that is going to be published elsewhere [3].

This thesis is organised as follows. In chapter 1 we review the Standard Model and
introduce flavour physics, focusing on B-meson decays. The various effective field theories
used in this work are presented in chapter 2, while the methods to calculate and/or constrain
hadronic matrix elements are discussed in chapter 3. We finally discuss our analytical and
numerical results and their phenomenological applications in chapter 4, before we summarise
them in the conclusion.
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Chapter 1

Flavour Physics and B-meson Decays —
a Short Review

In this first chapter we briefly review the Standard Model of particle physics and classify
all the states that occur in our studies for the reader’s convenience. Next, we give a short
introduction to flavour physics, with focus on B-meson decays. We also present the current
status of the theoretical predictions and the experimental measurements in flavour physics
with special emphasis on the B anomalies.

1.1 The Standard Model Lagrangian

The Standard Model (SM) of particle physics is the theory that successfully describes three
of the four fundamental interactions known in Nature: the electromagnetic, the weak and the
strong interactions. Even though it is evident that the SM cannot be the ultimate theory of
Nature1, there has not been any experimental measurement in particle physics that contradicts
the SM predictions so far.

In the following, we introduce the main features of the SM and the notation that is used
throughout this work, without any intent to give a complete and self-contained introduction
of the subject. For a more detailed introduction to the SM, we refer the interested reader to
standard textbooks (e.g. [16, 17]).

The SM is a gauge theory with symmetry group

GSM = SU(3)C × SU(2)L × U(1)Y , (1.1)

which is spontaneously broken by the Higgs potential to

SU(3)C × U(1)Q . (1.2)

Here, SU(3)C is the colour symmetry group of strong interactions, SU(2)L is the weak isospin
group, and U(1)Y and U(1)Q are the groups of the weak hypercharge and the electric charge
transformations, respectively. The weak hypercharge is related to the electric charge Q and
the third component of the weak isospin T3 through the formula

Y = 2(Q− T3).

1For instance, the SM is not able accommodate gravity, dark matter, dark energy etc. [15].
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field QiL uiR diR EiL eiR γ g W±, Z0 H

repr. (3,2) 1
3

(3,1) 4
3

(3,1)− 2
3

(1,2)−1 (1,1)−2 (1,1)0 (8,1)0 (1,3)0 (1,2)1

Table 1.1: Representation of the SM fields under the gauge group GSM . The
notation used is (C,L)Y , where C is the representation under the SU(3)C group,
L is the representation under the SU(2)L group, and Y is the weak hypercharge.

An important feature of the SM is that it distinguishes left- and right-chiral fields2 by their
charges under GSM .

In the SM there are six types (or flavours) of quarks: up (u), down (d), strange (s), charm
(c), bottom (or beauty) (b) and top (or truth) (t); and six types of leptons: electron (e), muon
(µ), tauon (τ), and three neutrinos species (νe, νµ, ντ ). Even though the term flavour is also
used to refer to different types of leptons, in this work it is only used for quarks. Quarks and
leptons are organised in three generations (or families), where the left-chiral fields

QiL ≡
(
uiL
diL

)
≡
((

uL
dL

) (
cL
sL

) (
tL
bL

))
,

EiL ≡
(
νiL
eiL

)
≡
((

νe,L
eL

) (
νµ,L
µL

) (
ντ,L
τL

))
are SU(2)L doublets and the right-chiral fields

uiL ≡
(
uR cR tR

)
, diL ≡

(
dR sR bR

)
, eiR ≡

(
eR µR τR

)
are SU(2)L singlets. Right-chiral neutrinos are commonly not included in the SM, since they
are noy charged under the group GSM . Quarks also carry a colour charge, since they are
SU(3)C triplets, while leptons SU(3)C are singlets. In addition to these twelve fermions,
there are four vector bosons that mediate the interactions, namely the photon (γ), the gluon
(g), the W± and the Z0. The last piece of the SM is the Higgs scalar field (H), which is an
SU(2) doublet and, contrary to all the other fields, has a non-zero vacuum expectation value
(VEV)

〈H〉 =
1√
2

(
0
v

)
. (1.3)

The representations of these fields under the SM group GSM are listed in table 1.1. Besides
their representation under the gauge groups and their spin, elementary particles are also
characterised by their mass. The particles mass are free parameters in the SM, i.e. they
cannot be predicted and hence they have to be measured. As one can see from figure 1.1, the
fermion and boson masses differ from each other by several orders of magnitude. Although
there is no a priori explanation for this fact in the SM, it is possible to exploit these different
energy scales introduced by the particles masses to obtain simpler effective field theories, which
we review in chapter 2.

Given the above field content, the gauge group GSM , and assuming renormalizability, the
SM Lagrangian is the most general Lagrangian, in the sense that it contains all the possible

2The definition of left- and right-chiral fields is given in appendix A.
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Figure 1.1: Elementary particles of the SM with their respective mass, charge
and spin. Image from ref. [18].

terms that fulfil these conditions3. Schematically, it reads

LSM = Lkin + Lint + LY k + LHiggs. (1.4)

The kinetic and interaction terms of the fermions and gauge bosons read

Lkin + Lint = i
∑
ψ

ψ̄ /Dψ − 1

4
BµνB

µν − 1

2
Tr{WµνWµν} − 1

2
Tr{GµνGµν} , (1.5)

with the field strength tensors

Bµν = ∂µBν − ∂νBµ ,
Wµν = ∂µWν − ∂νWµ + ig2 [Wµ,Wν ] ,

Gµν = ∂µGν − ∂νGµ + igs [Gµ,Gν ] .

We abbreviate

Wµ(ν) = W a
µ(ν)

σa
2
, Gµ(ν) = Gaµ(ν)

λa
2
.

Here σa are the Pauli matrices and λa are the Gell-Mann matrices, each of which are traceless
generators of their respective gauge group. The sum in eq. (1.5) runs over all the fermion
fields and Wµν , Gµν , and Bµν are the field strength tensors of SU(3)C , SU(2)L, and U(1)Y ,
respectively. The covariant derivative that act on the left-chiral quark fields reads

DµQL = (∂µ − iY g1Bµ − ig2Wµ − igsGµ)QL , (1.6)

3Dropping the renormalizability one obtains a more general Lagrangian, called the Standard Model Effective
Field Theory (SMEFT) Lagrangian [19, 20], which is useful to investigate potential NP effects in a model
independent way.
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where g1, g2, and gs are the coupling constants of SU(3)C , SU(2)L, and U(1)Y , respectively.
The electroweak couplings g1 and g2 are related to the electron charge e by

e =
g1g2√
g2

1 + g2
2

.

It also useful to define the parameters

αe ≡
e2

4π
, αs ≡

g2
s

4π
, (1.7)

where αe ' 1/137 is the fine-structure constant. The covariant derivatives of the other fermion
fields have an analogous form to eq. (1.6).

The Yukawa interaction terms are

LY k = −YeĒLHeR − YdQ̄LHdR − YuQ̄Liσ2H
†uR + h.c. , (1.8)

while the Higgs potential and kinetic term is

LHiggs = (DµH)† (DµH)− m2
H

2v2

(
H†H − v2

)2
. (1.9)

The Lagrangian given above is expressed in the flavour basis, where the gauge bosons do not
mix quarks of different generations. For numerous applications, it is more convenient to work
in the basis where the Yukawa couplings, and hence the fermion mass matrices, are diagonal,
which is called the mass basis. To diagonalize the Yukawa couplings, one has to perform a
bi-unitary rotation of the quark fields of the form

uL = UuuL , dL = UddL .

The only effect of this flavour rotation is on the W± couplings, which become

W+
µ ūLγ

µdL +W−µ d̄Lγ
µuL −→W+

µ ū
i
Lγ

µ
(
VCKM

)ij
djL +W−µ d̄

i
Lγ

µ
(
V †CKM

)ij
ujL , (1.10)

where

U †uUd ≡ VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (1.11)

is the Cabibbo-Kobayashi-Maskawa (CKM) matrix, a complex unitary matrix with a priori
nine real degrees of freedom. Performing a U(1)6 transformation on the fields, one can show
that there are only three independent angles and one complex phase out of the original nine
degrees of freedom of a generic complex unitary matrix. This complex phase implies that CP
is not a symmetry of the SM Lagrangian, and hence CP is not a conserved quantum number.
As we will discuss in detail in section 1.3, the current (1.10) is the only one in the SM that
does not conserve the flavour quantum numbers.

To have an idea of the relative size of the elements of the CKM matrix, it is convenient to
express it using the Wolfenstein parameterization

VCKM =

 1− λ2

2 λ Aλ3(K∗ − iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O
(
λ4
)
, (1.12)
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where, experimentally, the values of the Wolfenstein parameters are found to be

λ ' 0.23, A ' 0.8, ρ ' 0.1, η ' 0.3. (1.13)

Notice that the CKM matrix is almost diagonal, thus transitions between different generations
are suppressed in the SM. The unitarity of the CKM matrix implies that its matrix elements
are related through the identities∑

i

VijV
∗
ik = δjk ,

∑
l

VklV
∗
ml = δkm , (1.14)

for any j, k and any k,m. Among the equations (1.14), the relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.15)

is particularly famous because it contains Vub, Vcb and Vtb, which are interesting CKM matrix
elements from a phenomenological point of view. Notice also that all the terms in eq. (1.15)
are of the same order O

(
λ3
)
. It is helpful to use a graphical representation of eq. (1.15),

called the unitarity triangle, which is illustrated in figure 1.2. The unitarity triangle is usually
represented on the complex plane (ρ̄, η̄), where

ρ̄ = ρ

(
1− λ2

2

)
, η̄ = η

(
1− λ2

2

)
. (1.16)

Normalising eq. (1.15) by VcdV ∗cb, one obtains

VudV
∗
ub

VcdV
∗
cb

+ 1 +
VtdV

∗
tb

VcdV
∗
cb

= 0 , (1.17)

with

VudV
∗
ub

VcdV
∗
cb

= −(ρ̄+ iη̄) +O
(
λ4
)
,

VtdV
∗
tb

VcdV
∗
cb

= (ρ̄+ iη̄)− 1 +O
(
λ4
)
. (1.18)

Thus, the sides of the unitarity triangle are given by∣∣∣∣VudV ∗ubVcdV
∗
cb

∣∣∣∣ =
√
ρ̄2 + η̄2 ,

∣∣∣∣VtdV ∗tbVcdV
∗
cb

∣∣∣∣ =
√

(1− ρ̄)2 + η̄2 , (1.19)

while the angles read

α ≡
[
− VtdV

∗
tb

VudV
∗
ub

]
, β ≡

[
−VcdV

∗
cb

VtdV
∗
tb

]
, γ ≡

[
−VudV

∗
ub

VcdV
∗
cb

]
. (1.20)

If the CKM matrix were real, the triangle would be degenerate. It follows that its area is
related to the magnitude CP violation in the SM. This area can be expressed in terms of the
Jarlskog invariant J as

Area =
J

2
, (1.21)
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Figure 1.2: The unitarity triangle represented together with various experimen-
tal constraints. The small red hashed region around the top vertex of the triangle
corresponds to 68% confidence level of the global combination of the experimen-
tal measurements done by the CKMfitter group [21].

where J is given by

J =

3∑
m,n=1

εikmεjln Im
[
VijVklV

∗
ilV
∗
kj

]
. (1.22)

There would not be no CP violation if and only if J = 0. In the SM J 6= 0, as one can see
from figure 1.2.

After this brief introduction of the SM, we can now list all its nineteen free parameters,
which are:

• three lepton masses (neutrinos are massless in the SM),

• six quark masses,

• three coupling constants g1, g2 and gs,

• three angles and one phase of the CKM matrix,

• the Higgs boson mass and its VEV,

• the QCD vacuum angle (see e.g. ref. [17]).

All these parameters have to be determined experimentally since the SM is not able to predict
them, which means that they could in principle assume any real (in some case strictly positive)
value. There are attempts to solve this conceptual problem by embedding the SM in a more
general theory that can relate the values of its free parameters. The interested reader may
consult e.g. refs. [22–24]. However, our analysis is mostly focus on the SM and some of the
ways to probe its predictions. As a first step, we introduce some nomenclature of the QCD
bound states that will be useful in the following chapters.
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1.2 QCD Bound States

Free quarks are not observed in Nature. Rather they are confined into hadrons. This phe-
nom is known as colour confinement and it is due to the fact that QCD is asymptotically
free [25, 26]. Thus, to study quark transitions, in practice one has to study hadron transi-
tions, since only hadrons are accessible by experiments. However, processes involving hadrons
are extremely more complicated to study theoretically than processes involving highly ener-
getic quarks. This is because the quarks inside the hadrons interact at energies of the order
of the hadronic binding energy, for which QCD perturbation theory is not applicable. We will
discuss in detail in chapter 3 two methods to perform non-perturbative calculations, namely
lattice QCD and QCD sum rules. In this section, we introduce the names of the hadrons used
throughout this work.

There are two kinds of hadrons: baryons, which are bound states of three quarks, and
mesons, which are bound states of two quarks (neglecting exotic hadrons such as tetraquarks
and pentaquarks). Since we mostly focus on mesons decays, there is no need here to introduce
the nomenclature of baryons, for which the reader can consult the Particle Data Group (PDG)
review [27]. Furthermore, the list of mesons given below is far from being complete and we
restrict ourselves to the states that appear in our analysis.

In order to classify mesons, it is useful to introduce the strangeness (S), the charm (C),
the bottomness (or beauty) (B) and the topness (or truth) (T) quantum numbers defined as

S = − (ns − ns̄) ,
C = +nc − nc̄ ,
B = − (nb − nb̄) ,
T = +nb − nb̄ ,

where nq ans nq̄ are the number of q quarks and q̄ antiquarks in a meson, respectively. Mesons
with T 6= 0 are not observed in nature, since top quarks do not hadronise due to their very
short lifetime.

Flavourless mesons are those with S = C = B = 0:

our notation antiparticle PDG name valence quark content mass GeV JP

π+ π− π± ud̄ 0.140 0−

π0 — π0 uū−dd̄√
2

0.135 0−

η — η uū+dd̄−2ss̄√
2

0.548 0−

η′ — η′(958) uū+dd̄+ss̄√
2

0.958 0−

ρ+ ρ− ρ(770)± ud̄ 0.775 1−

ρ0 — ρ(770)0 uū−dd̄√
2

0.775 1−

ω — ω(782) uū+dd̄√
2

0.783 1−

φ — φ(1020) ss̄ 1.019 1−

J/ψ — J/ψ(1S) cc̄ 3.097 1−

Υ(4S) — Υ(4S) bb̄ 10.579 1−

9



where J is the spin and P is the parity of the meson considered.
Mesons with S = ±1 and C = B = 0 are called kaons:

K+ K− K± us̄ 0.494 0−

K0 K̄0 K0 ds̄ 0.498 0−

K∗+ K∗− K∗(892)± us̄ 0.892 1−

K∗0 K̄∗0 K∗(892)0 ds̄ 0.896 1−

Mesons with C = ±1, S = 0,±1 and B = 0 are called D mesons:

D+ D− D± cd̄ 1.870 0−

D0 D̄0 D0 cū 1.865 0−

D+
s D−s D±s cs̄ 1.968 0−

D∗+ D∗− D∗(2010)± cd̄ 2.010 1−

D∗0 D̄∗0 D∗(2007)0 cū 2.007 1−

D∗+s D∗−s D∗±s cs̄ 2.112 1−

Mesons with B = ±1, S = 0,±1 and C = 0,±1 are called B mesons:

B+ B− B± ub̄ 5.279 0−

B0 B̄0 B0 db̄ 5.280 0−

Bs B̄s B0
s sb̄ 5.366 0−

B+
c B−c B±c cb̄ 6.275 0−

B∗+ B∗− B∗± ub̄ 5.325 1−

B∗0 B̄∗0 B∗0 db̄ 5.325 1−

B∗s B̄∗s B∗s sb̄ 5.413 1−

B∗+c B∗−c B∗±c cb̄ 6.329 1−

The superscript “*” is added to flavoured mesons with spin-parity quantum numbers that follow
the natural series JP = 0+, 1−, 2+, . . . . This is useful in practice to distinguish pseudoscalar
and vector mesons. Throughout this work, when the flavour of the spectator quark is not
relevant, the simplified notation B (B∗) is used to indicate all the pseudoscalar (vector) B
mesons, excluding the Bc mesons (i.e. all the mesons with B = C = ±1). An analogous
notation is used for the kaons and the D mesons.

1.3 Flavour Physics

Flavour physics is the branch of particle physics that investigates the different quark and
lepton flavours, their transitions, and their spectrum. An interesting aspect of flavour physics
is that it provides the means to test the SM up to very high energy scales through the so-
called indirect searches. In this way, potential effects of beyond the SM (BSM) physics can
be probed at energy scales beyond the reach of earth-bound collider experiments [4]. In fact,
direct searches for new particles in high-energy colliders have not found any evidence for
physics BSM so far, and the only hints at present stem from flavour physics.

The main ingredients of flavour physics are the flavour changing currents, the CKMmatrix,
and the couplings strength. There are two kinds of flavour changing currents: the ones

10



(a) (b)

Figure 1.3: Examples of a box diagram (a) and a penguin diagram (b) for the
FCNC process b→ s``.

mediated by charged currents (flavour changing charged currents (FCCCs)) and the ones
mediated by neutral currents (flavour changing neutral currents (FCNCs)). As discussed in
section 1.1, the only particle that couples to quarks with different flavours is the W boson,
which is a charged particle. This means that FCCCs can already occur at tree level, while
FCNCs can only occur at loop level in the SM.

In figure 1.3 there are two examples of diagrams that mediate FCNC processes, which are
commonly called box and penguin diagrams. FCNC transitions are extremely suppressed in
the SM for the following reasons:

1. They are (g2/4π)2 suppressed, since they arise at one-loop level.

2. In all processes where there are transitions between quarks of different generations, the
amplitude is proportional to non-diagonal elements of the CKM matrix, which are much
smaller than one (see eq. (1.12)).

3. FCNC transitions between two up type quarks (i.e. ui = u, c, t) are further suppressed
by the GIM mechanism [28]. For example, the amplitude of the diagram shown in
figure 1.3(a) is of the form

M∝
∑

i,j=d,s,b

V ∗icViuV
∗
jcVjuF (xi, xj) , (1.23)

where F (xi, xj) is a function that can be computed perturbatively (see e.g. ref. [29])
and expressed in temrs of xi = m2

qi/m
2
W . In the limit xd = xs = xb the amplitude (1.23)

vanishes due to the unitarity of the CKMmatrix. Since in nature we have xd, xs, xb � 1,
the amplitude (1.23) is not identically zero but GIM suppressed. For down type quark
FCNC transitions the situation is quite different, because the top quark mass is bigger
than the W boson mass and xu = xs = xt is no longer a good approximation. Hence,
the amplitudes in this case are dominated by the top quark contribution and there is
only an incomplete GIM suppression.

4. In some cases, FCNC processes can also be chirality suppressed, since FCNCs couple
only to left-chiral fermions in the SM.

As an example, let us consider two different semi-leptonic B-meson decays to illustrate the
suppression of FCNCs compared to FCCCs. The B0 → D∗−τ+ντ decay, which is a b → c
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transition, has a relatively large branching fraction [27]

Br
(
B0 → D∗−τ+ντ

)
= (1.57± 0.10)% , (1.24)

while the B0 → K∗0µ+µ− decay, which is a b→ s transition, is a rare process

Br
(
B0 → K∗0µ+µ−

)
= (9.4± 0.5)× 10−7 . (1.25)

The fact that FCNC decays are strongly suppressed and do not occur at tree level in the SM
makes them interesting and suitable to test the SM itself. Indeed, some BSM theories allow
FCNCs at tree level, which would generate enhanced contributions with respect to the SM
ones and hence easier to detect. Examples of such BSM mediators are the leptoquarks (see
ref. [30] for a review), hypothetical particles that couple quarks to leptons and vice versa, and
the Z ′ boson, a heavier version of the Z boson with non-zero couplings to quarks of different
generations. Although one may naively think that the B0 → K∗0µ+µ− decay is much harder
to detect than the B0 → D∗−τ+ντ , since the former is much rarer than the latter, the relative
uncertainties of their branching fractions (1.24)-(1.25) are similar. This is one of the reasons
why the B0 → K∗0µ+µ− decay is a good candidate to study the FCNCs.

The results given in eqs. (1.24)-(1.25), as well as most of the results relevant for flavour
physics and in particular for the B-meson physics, are averages done by the PDG collaboration.
These averages rely mostly on the measurements carried out by the LHCb, Belle and BaBar
collaborations using the data collected by the homonym detectors4 that are located at the
CERN (Geneva, Switzerland), KEK (Tsukuba, Japan) and SLAC (Menlo Park, California)
laboratories, respectively. The main purpose of these experiments is (or was, since BaBar
ceased its activity in April 2008) to study CP violation and the flavoured hadrons, especially
those that contain b quarks. These three detectors have different designs, since they are located
at different colliders. The LHC is a proton-proton synchrotron with collision energy of the
order of ∼ 10TeV, built primarily to “hunt” the Higgs boson, whose discovery was announced
4 July 2012 [31], and the particles predicted by supersymmetric theories, which have not been
detected yet. SuperKEKB, a major upgrade of KEKB, and PEP-II, which hosted the BaBar
experiment, are two electron-positron colliders with center-of-mass energy close to the Υ(4S)
resonance. The Υ(4S) decays mostly in a B − B̄ pair, indeed

Br
(
Υ(4S)→ BB̄

)
> 96% .

This explains why SuperKEKB and PEP-II are known as B-factories.
Since B-meson decays are the main topic of this work, we will introduce in the next section

the basic theoretical tools to analyse them and explain the reasons why they are so relevant
in particle physics phenomenology.

1.4 B-meson Decays

The decays of the B meson are among the most studied processes in flavour physics. There
are several reasons why B mesons are interesting particles to study. As we have seen, the
b quark is the heaviest fermion that forms bound states. Being lighter than the top quark,
it must decay in quarks of another generation and its decay is necessarily CKM suppressed.

4Belle was operative between 1998 and 2010. Belle II started taking data in early 2018.
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Thus, B mesons have a relatively large lifetime, 1.6 · 10−6 s, making them easier to detect and
identify experimentally.

B-meson decays are usually divided into two categories: inclusive decays and exclusive
decays. In inclusive decays one considers all the possible final states of a B meson and hence
the decay width Γ can be schematically as

Γ (B inclusive) =
∑
X

Γ (B → X) , (1.26)

where the sum is over all the allowed final states X. One can also consider semi-inclusive B
decays, restricting the sum in eq. (1.26) to the processes that include the specified products,
for instance

Γ (B semi-inclusive) =
∑
Xc

Γ (B → Xc`ν) , (1.27)

where Xc is a state with C = ±1. Conversely, in exclusive decays, one analyses one process
at the time, as in eqs. (1.24)-(1.25). We mostly focus on exclusive decays throughout this work.

Exclusive decays are further divided into three categories: leptonic, semi-leptonic, and
hadronic decays, depending on the nature of the final states. For simplicity, we restrict
ourselves to decays into a lepton pair, two mesons or a lepton pair and a meson, neglecting
all the other decays with a higher number of particles in the final state.

Let us start with purely leptonic decays, which are the best-understood decays from a
theoretical perspective. They can be decomposed as

〈L| J`, Jq |B〉 = 〈L| j` |0〉 〈0| Jq |B〉 . (1.28)

Here L represents either an `ν pair for a FCCC process or an `+`− pair for a FCNC process,
with ` = e, µ, τ , while J` and Jq are a lepton and a quark current, respectively. We say that
the l.h.s. of eq. (1.28) factorises into a leptonic matrix element, which is easily calculable, and
a hadronic matrix element (HME), which is a genuine non-perturbative object as explained
in section 1.2. The local meson-to-vacuum matrix elements can be expressed in terms of the
decay constants fM , defined as

〈0| Jµq |M(k)〉 = ikµfM (1.29)

for a pseudoscalar meson. The calculation of HMEs is extremely challenging and in many
cases the result has large uncertainties, since non-perturbative techniques such as lattice QCD
and QCD sum rules are required. We review non-perturbative calculations in chapter 3.

Semi-leptonic decays that contain at least one neutrino and a meson M in the final state
also factorise (see e.g ref. [32])

for FCCCs: 〈`νM | J`, Jq |B〉 = 〈`ν| j` |0〉 〈M | Jq |B〉 (1.30)

and for FCNCs: 〈`νM | J`, Jq |B〉 = 〈`ν| j` |0〉 〈M | Jq |B〉 . (1.31)

The HMEs in this case are even more complicated to calculate than the ones in eq. (1.28),
because they cannot be expressed in terms of constants but in terms of functions of the
momentum transfer squared q2:

〈M(k)| Jaq |B(q + k)〉 =
∑
i

Sai (q, k)Fi(q
2) , (1.32)
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where the sum runs over all the possible Lorentz structures Sai (q, k). The functions Fi(q2) are
called hadronic form factors, which are classified in detail in appendix B.

Semi-leptonic decays with an `+`− pair in the final state, besides a factorisable part like
in eqs. (1.30)-(1.31), contain a non-factorisable part:

〈``M | J`, Jq |B〉 = 〈``| j` |0〉 〈M | Jq |B〉+ non-fact. contr.. (1.33)

All the contributions that are not contained in the form factors are understood to be “non-
factorisable” [33], which are addressed in chapter 4.

Hadronic decays are certainly the most troublesome B-meson two-body decays. The “naive
factorisation” ansatz

〈M1M2|Oq |B〉 = 〈M1| j1
q |0〉 〈M2| J2

q |B〉 , (1.34)

where Oq is a local four-quark operator, is not a well justified approximation, since it neglects
gluon exchanges between the M1 and the {B,M2} mesons [34–36]. Hence, one needs to treat
these decays with more sophisticated methods, such as QCD factorisation [34, 35].

For completeness, we mention the radiative B decays, i.e. decays with at least one photon
in the final state. The simplest B-meson radiative decays are B → γγ, B → V γ and B →
(γ)`ν, where V is a vector meson. The B → γ`ν decay is particularly interesting because it
is suitable to investigate the internal properties of the B meson [37, 38], whose understanding
is fundamental for the non-perturbative calculations performed in this work.

Notice that in the factorisation formulae above we neglected QED corrections, which would
be another source of non-factorizable contributions. However, these non-factorizable effects
are neglected in this work, since they are small compared to the uncertainties of our results.

As we have seen, different B decays factorise (or do not factorise) in different ways. Fac-
torisation is a fundamental concept in B physics because it allows to split a complicated
problem into several simpler problems.

1.5 Optimised Observables and the B Anomalies

All the theoretical predictions of B decays observables are affected by hadronic uncertainties,
which increase with the number of hadrons present in the final state. In order to reduce these
uncertainties, it is convenient to define observables such that hadronic effects partially cancel.
An important example of this kind of observables are the lepton flavour universality (LFU)
ratios. Let us recall that a model is said to be lepton flavour universal if its couplings remain
unchanged swapping one lepton flavour with another. In the SM, the LFU is broken only
by the Yukawa couplings, while the couplings between the leptons and the gauge bosons are
lepton flavour independent.

A way to test this property of the SM is to compare the experimental measurements against
the theoretical prediction of the following ratios of branching fractions

for FCCCs: R`1`2Xc
≡ Br (B → Xc`1ν)

Br (B → Xc`2ν)
=

∫ q2
max

m2
`1

dq2 dΓ(B→Xc`1ν)
dq2∫ q2

max

m2
`2

dq2 dΓ(B→Xc`2ν)
dq2

(1.35)
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Figure 1.4: The various experimental measurements of RD and RD∗ . The aver-
age of the experimental measurements (red area) and of the SM predictions are
done by HFLAV [59].

and for FCNCs: R`1`2Xs
≡ Br (B → Xs`1`1)

Br (B → Xs`2`2)
=

∫ q2
b

q2
a
dq2 dΓ(B→Xs`1`1)

dq2∫ q2
b

q2
a
dq2 dΓ(B→Xs`2`2)

dq2

. (1.36)

Here, `1,2 are two different leptons and Xc, Xs are hadrons with C = ±1 and S = ±1,
respectively. While R`1`2Xc

is integrated over the whole phase space of the momentum transfer
squared q2, with

q2
max = (mB −mXc)

2 ,

the LFU ratio R`1`2Xs
is usually integrated over smaller regions of the phase space to exclude

the narrow cc̄ resonances that arise for 7 GeV2 . q2 . 15 GeV2.
Interestingly, the experimental measurements of the LFU ratios Rτ`

D(∗) [39–45], with ` =
e, µ, and Rµe

K(∗) [46–50], are in tension with the SM predictions (see e.g. refs. [2, 51–53] for
Rτ`
D(∗) and [5, 54–58] for Rµe

K(∗)). In the literature, Rτ`
D(∗) and Rµe

K(∗) are commonly known as
RD(∗) and RK(∗) , which is also the notation that we use in this work.

The experimental results of RD and RD∗ from the Belle, BaBar and LHCb collabora-
tions are shown in figure 1.4. The HFLAV group averages these results and the theoretical
predictions, which yields [59]

Rexp
D = 0.340± 0.027± 0.013 , Rexp

D∗ = 0.295± 0.011± 0.008 ,

RSM
D = 0.299± 0.003 , RSM

D∗ = 0.258± 0.005 .
(1.37)

Here the first uncertainty of the experimental averages is statistical and the second is system-
atic. The experimental averages of RD and RD∗ exceed the SM predictions by 1.4 and 2.5
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standard deviations σ, respectively. The combination of these averages results in a tension of
∼ 3σ with the SM. As we will see in subsection 4.3.2, this tension increases with the theoretical
predictions presented in this work. It is worth emphasising that these discrepancies have been
observed by three different experiments that use different approaches and instrumentation.
This makes the RD(∗) puzzle even more significant and interesting as a potential sign of BSM
physics.

There is also the possibility to consider different LFU ratios that involve b→ c transitions
to check a potential consistency with the discrepancies in RD(∗) . In this regard, the LHCb
collaboration measured the RτµJ/ψ ratio, which is again 2σ above the SM prediction [60]. This
measurement cannot be performed in B-factories because they do not produce any Bc meson.
Measurements of further LFU ratios of transitions mediated by FCCCs are in progress [6] and
needed for a better understanding of the current situation.

The experimental measurements and the SM predictions of RK(∗) are shown in figure 1.5.
In this case, the latest and most precise measurements of these LFU ratios were performed by
the LHCb collaboration [49, 50], which found

RLHCb
K = 0.846+0.060

−0.054
+0.016
−0.014 for 1.1 GeV2 < q2 < 6.0 GeV2 ,

RLHCb
K∗ = 0.66+0.11

−0.07 ± 0.03 for 0.045 GeV2 < q2 < 1.1 GeV2 ,

RLHCb
K∗ = 0.69+0.11

−0.07 ± 0.05 for 1.1 GeV2 < q2 < 6.0 GeV2 .

(1.38)

As before, the first uncertainty is statistical and the second systematic. The Belle and BaBar
results can be found in refs. [47, 48]. The SM prediction is very precise due to a large
cancellation of the hadronic uncertainties. For instance, in ref. [54] the authors found

RSM
K = 1.00± 0.01 for 1.1 GeV2 < q2 < 6.0 GeV2 ,

RSM
K∗ = 0.906± 0.028 for 0.045 GeV2 < q2 < 1.1 GeV2 ,

RSM
K∗ = 1.00± 0.01 for 1.1 GeV2 < q2 < 6.0 GeV2 ,

(1.39)

where the leading uncertainties are due to hard-to-quantify QED corrections. The results
given in eqs. (1.38) are ∼ 2.5σ, 2.1σ, 2.4σ below the SM predictions, respectively.

So far, we have only discussed ratios of branching fractions in B decays. However, in
these decays there are further observables that are worth studying. For instance, the angular
distribution of the four-body decay B → K∗(→ Kπ)`` is rich of useful information to test the
SM and constrain new physics (NP) contributions. In particular, the angular distribution of
B̄0 → K̄∗0`+`− 5 can be written as (following the notation of refs. [13, 61])

d4Γ
(
B̄0 → K̄∗0`+`−

)
dq2d cos θ`d cos θK∗dφ

=
9

32π

∑
i

Ii(q
2)fi(θ`, θK∗ , φ) (1.40)

and similarly, for the CP conjugated decay B0 → K∗0`+`− we have

d4Γ̄
(
B0 → K∗0`+`−

)
dq2d cos θ`d cos θK∗dφ

=
9

32π

∑
i

Īi(q
2)fi(θ`, θK∗ , φ) (1.41)

5Here, we distinguish the B̄0 → K̄∗0`+`− decay from the B0 → K∗0`+`− decay, since we also discuss the
CP observables of these processes.
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Figure 1.5: Various experimental results and SM predictions of RK (on the left)
and RK∗ (on the right). The Belle and BaBar measurements of RK∗ are not
shown.

with i = 1s, 1c, 2s, 2c, 3, 4, 5, 6s, 6c, 7, 8, 9. The fi’s are simple functions of the angles
θ`, θK∗ , φ (see ref. [61] for their definition) and the angular coefficients Ii are functions of the
momentum transfer squared q2. The explicit functional form of the Ii’s is given in ref. [62].
Here, we just need to know that they depend on the form factors and the masses of the
particles involved plus other constants.

Starting from eqs. (1.40)-(1.41) one can also define the CP averages Si and the CP asym-
metries Ai of the angular coefficients as

Si ≡
(
Ii + Īi

)/d
(
Γ + Γ̄

)
dq2

(1.42)

and

Ai ≡
(
Ii + Īi

)/d
(
Γ− Γ̄

)
dq2

. (1.43)

In the limit of massless leptons, which is a good approximation for ` = e, µ, the twelve Si’s
and the twelve Ai’s are not all independent, given that the relations S1s = 3S2s, S1c = −S2c,
A1s = 3A2s, A1c = −A2c hold. Moreover, in the SM we have S6c = A6c = 0. From now on,
we focus on the case ` = µ, since most of the experimental measurements were performed on
this channel.

Using the definitions (1.42)-(1.43) and the conventions of ref. [13], we introduce the fol-
lowing optimised observables

P1 ≡
2S3

1− FL
,

P2 ≡
2

3

AFB

(1− FL)
,

P3 ≡ −
S9

1− FL
,

P ′4,5,8 ≡
S4,5,8√

FL(1− FL)
,
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Figure 1.6: The 2015 LHCb measurement compared to the SM fit and a NP fit
performed in ref. [68].

P ′6 ≡
S7√

FL(1− FL)
.

In the SM and for mµ = 0, the longitudinal polarisation FL and the forward-backward CP
asymmetry AFB are given by

FL = S1c , AFB =
3

4
S6s . (1.44)

As for the LFU ratios, the Pi’s observables are useful because the hadronic uncertainties par-
tially cancel, so one can obtain cleaner theoretical predictions.

The LHCb collaboration performed two angular analyses of the B0 → K∗0`+`− decay in
2013 [61] and in 2015 [13], measuring the angular observables defined in this section. Both
the first [63] and the second analysis reported a tension with the SM bigger than 3σ in the P ′5
observable. Also, the Belle [64] and ATLAS [65] results for P ′5 are above the SM prediction
(see e.g. refs. [63, 66]), while the CMS measurement [67], due to its large uncertainties, is
compatible both with the SM prediction and the other experimental results.

In figure 1.6, taken from ref. [68], the LHCb 2015 results for P ′5 are shown with the SM
fit and a NP fit. One can easily see that the NP fit is in better agreement with the LHCb
measurement. It is worth mentioning that in the case of P ′5 the SM prediction is not as solid
as for the LFU ratios. In fact, the relative uncertainties in P ′5 are significant due to a greater
dependence on the form factors and on the non-factorizable corrections (see eq. (1.33)), some
of which are rather poorly known.

The discrepancies listed in the above are commonly called the B anomalies. The term
“anomalies” can be misleading, since in quantum field theory one usually calls anomalous
those symmetries of the classical Lagrangian broken by quantum effects. However, in this
case it merely indicates a set of tensions between the SM predictions and the experimental
measurements.
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The fact that the B anomalies occur in both b → c`ν̄ and b → s`` transitions and in
different observables makes them very intriguing, since they could be a genuine sign of NP.
There is already an intense research endeavour in formulating NP models that can explain
these anomalies (see e.g. refs. [69–73]). Here, we limit ourselves to mentioning some of the
general features of the NP that could arise from the B anomalies, without discussing the
models in detail.

Values of RK(∗) and RD(∗) different from the SM ones clearly indicate a NP contribution
that is not lepton flavour universal. Moreover, given that these type of discrepancies have only
been observed in B decays, and especially in B → D(∗)τν, one could argue that NP mainly
couples to the third generation of quarks and leptons.

Starting with these assumptions, one can construct an effective NP Lagrangian (see chap-
ter 2) with four-fermion operators and couplings that obeys the given requirements. To further
constrain this effective Lagrangian, one could also add other assumptions, imposing for ex-
ample zero couplings to right-chiral fermions etc. . Finally, to check whether the Lagrangian
proposed is able to explain the anomalies, one has to perform a fit using the experimental
measurements as constraints and leaving the coupling as free parameters. If a good fit has
been obtained, the next nontrivial step is to investigate what kind of new physics model can
generate such an effective Lagrangian. For example, the W ′ and Z ′ bosons, which couple
either to two quarks or two leptons in analogy to the SM particles W and Z, offer a viable ex-
tension of the SM as well as leptoquarks, which have non-vanishing couplings between quarks
and leptons. These particles are expected to have masses of the order of few TeV.

The most difficult part in this procedure is to introduce new particles that are consistent
with all the theoretical and experimental constraints. One of the strongest and most problem-
atic of these constraints is the experimental measurement of the B− B̄ mixing. Nevertheless,
as shown for instance in refs. [69–73], it is possible to give a combined explanation to both
the b → c`ν̄ and the b → s`` anomalies. This makes the B anomalies even more interesting,
since they seem to give rise to a very coherent picture.

It is also worth mentioning the so-called Vcb puzzle, which is the discrepancy between
the determination of the CKM element Vcb using semi-inclusive and exclusive semileptonic
B-decays (see ref. [74] for a recent update). Contrary to the B anomalies case, it is more
difficult to explain this tension through NP contributions, and the discrepancy is probably
due to underestimated theoretical and/or experimental uncertainties [75].

One should not forget that to claim a new discovery in particle physics, it is required a
5σ statistical significance in a single measurement. So far, the significance of P ′5 has reached
the value of 3.7σ in single measurement, while for the averages (not the single measurements!)
of RK(∗) and RD(∗) it is ∼ 3σ or below. Thus, we cannot ignore the possibility that the B
anomalies might be a mere statistical fluctuation or an underestimation of the systematic
uncertainties.

In view of these present and any forthcoming experimental results, it is essential to increase
the accuracy in theoretical predictions for mainly two reasons. First, to understand whether
the B anomalies are due to an underestimation of the uncertainties or are signs of BSM physics.
Second, even if B anomalies will not be confirmed, higher precision in theoretical predictions
will be beneficial to further constrain new physics and to determine the SM parameters. In
fact, the goal of this work is to improve the theoretical predictions of the hadronic matrix
elements relevant for B-meson decays.
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Chapter 2

Effective Field Theories
for Semileptonic B-meson Decays

In chapter 1 we introduced the SM Lagrangian, which describes the electromagnetic, the weak
and the strong interactions. However, in many practical applications it is not necessary to
use the full SM Lagrangian and it is much more convenient to consider theories that perform
specific approximations to simplify the problem considered. These theories are called effective
field theories (EFTs), which are the main argument of this chapter.

A common feature of all the EFTs is the presence of distinct energy scales that are sepa-
rated in the effective Lagrangian. This separation is carried out through an operator product
expansion (OPE):

OA(x;µ)OB(y;µ) =
∑
i

Ci(x− y;µ)Oi(x;µ) for x→ y . (2.1)

Here OA and OB are two operators of the “full theory”, i.e. some field theory from which
the EFT is constructed, and µ is some arbitrary scale, whose meaning is discussed below.
Equation (2.1), which was originally proposed by K. Wilson [76], implies that one can express
the product of two operators at different space-time points as a linear combination of the local
effective operators Oi. In general, the series in eq. (2.1) involves an infinite number of terms,
but only a finite number of operators Oi contribute to a certain order of (x−y), meaning that
it is possible to truncate the series neglecting higher orders in (x− y).

Using an OPE, it is possible to write an effective Lagrangian

Leff (x) =
∑
i

Ci(µ)Oi(x;µ) , (2.2)

where some of the degrees of freedom of the SM Lagrangian are “integrated out”, in the sense
that they are removed from the effective theory. In other words, one can perform certain
approximations to focus on the degrees of freedom that are relevant for the process under
consideration. In the next sections, we discuss some examples of the procedures to integrate
out a field.

The advantage of using an OPE is that it allows to disentangle the short-distance con-
tributions of the full theory, encoded in the Wilson coefficients Ci, and the long-distance
contributions, encoded in matrix elements of the operators 〈f |Oi |i〉. The scale µ is the sepa-
rator of these two contributions, and it can be chosen with a certain freedom.
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Since the Wilson coefficients are independent of the initial state |i〉 and the final state |f〉
considered, they can be interpreted as the couplings of the effective theory. To compute them,
one has to use a procedure called matching, which consists in imposing that the amplitudes
calculated in the effective theory must be equal to the ones calculated in the full theory.

Furthermore, given that physical observables are µ independent, the dependence on µ of
the Ci’s and the 〈f |Oi |i〉’s must cancel in the r.h.s. of eq. (2.2). Unfortunately, this does not
always happen in practice due to the fact that in many cases the matrix elements 〈f |Oi |i〉 are
poorly known. Indeed, as discussed in chapter 1, when long-distance QCD effects are present,
perturbation theory cannot be applied to compute matrix elements.

In the next sections, we present the effective field theories for the b → s`` and b → c`ν
transitions and the heavy quark effective theory.

2.1 A Simple Example of an Effective Lagrangian

To introduce the idea of effective field theories and show how to integrate out certain degrees
of freedom of the full theory, we present an example taken from ref. [29].

Let us consider the b → sc̄c process at tree level, illustrated in figure 2.1. Its amplitude
reads1

M = −iGF√
2
VcbV

∗
cs

m2
W

m2
W − q2

(ūcγ
µPLub) (ūsγµPLvc) , (2.3)

where the subscripts of the Dirac spinors u, v indicate the quark flavors, while the Fermi
constant is given by

4GF√
2
≡ g2

2

8m2
W

.

At low energy, i.e. for k2 � m2
W , the amplitude of eq. (2.3) can be written as

M = −i4GF√
2
VcbV

∗
cs

[
(ūcγ

µPLub) (ūsγµPLvc) +O
(
q2

m2
W

)]
, (2.4)

since for
√
q2 = 3 GeV one gets q2/m2

W ∼ 10−3. Notice that the W -boson propagator does
not appear explicitly in eq. (2.4), thus we say that the W boson has been integrated out2. In
this case, as illustrated in figure 2.1, the b→ sc̄c transition is well described by the four-quark
operator

Oc2 = (s̄γµPLc) (c̄γµPLb) , (2.5)

where the subscript “2” in Oc2 is due to historical reasons.
The effective interaction Lagrangian at tree level is then given by

Leff =
4GF√

2
VcbV

∗
cs

[
C2O

c
2 +O

(
q2

m2
W

)]
, (2.6)

1The notations and conventions used in this work are summarised in appendix A.
2This terminology comes from the path integral formalism (see e.g. refs. [17, 29]).

22



Figure 2.1: The b → sc̄c transition at tree level in the SM (on the left) and
in the corresponding effective theory with the W boson integrated out (on the
right).

where C2 = 1 + O (αs) is obtained from the requirement that Leff reproduces the result of
eq. (2.3) up to O

(
q2/m2

W

)
corrections, that is, performing the matching of eq. (2.6) onto

eq. (2.4). In eq. (2.6) we have only kept the first term of an OPE, which contains a tower of
higher dimensional local operators. In B physics, it is sufficient to consider operators with
mass dimension equal to six as Oc2, since q2 6 m2

B, implying that O
(
q2/m2

W

)
corrections can

be safely neglected.
We will show in the next section that if one goes beyond the tree-level approximation other

dimension-six operators appear. Clearly, including all the dimension-six operators plus the
infinite tower of higher dimensional operators, one would restore the full theory.

The example considered in this section is completely analogous to the Fermi theory, where
beta decays at low energy are described in terms of four-fermion operators. When E. Fermi
first proposed this theory the W and Z bosons were not known yet, which have been then
included in the Glashow-Weinberg-Salam theory of weak interactions.

This shows an intriguing aspect of effective field theories. While in our example we ob-
tained the effective theory starting from the SM, it is also possible to formulate an effective
theory without knowing the respective full theory. Eventually, an effective theory has also the
potential to give us some hint about the nature of the full theory itself.

Notice that in general EFTs are non-renormalizable, but they are still predictive and
extremely useful in the energy regime where they are valid.

2.2 Effective Lagrangian for b→ s`` Transitions

In the previous section, we have derived the effective Lagrangian (2.6) for b → sc̄c tree-level
transitions in the SM, which contains only one four-quark operator. Including QCD and higher
order electroweak corrections, one obtains additional dimension-six operators. In this section,
we present the EFT for b→ s`+`− transitions, which is commonly called weak effective theory
(WET), and discuss all the relevant operators that contribute to it. The same EFT can also
be applied to b→ sγ and b→ sν̄ν transitions.

The interaction Lagrangian of this EFT reads

Lb→s``eff = LQED + LQCD + Lb→s``D=6 , (2.7)
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Some of the topologies of the diagrams contributing to b → s`+`−,
b→ sγ and b→ sν̄ν transitions in the SM. See text for details.

where LQED and LQCD contain the QED and the QCD interaction terms, excluding the vertices
that contain top quarks, since all the degrees of freedom heavier than the bottom quark have
been integrated out. The Lb→s``D=6 part of the effective Lagrangian Lagrangian includes all the
dimension six operators contributing to the transitions listed above up to O

(
G2
F

)
corrections:

Lb→s``D=6 = −4GF√
2

(
λu (C1O

u
1 + C2O

u
2 ) + λc (C1O

c
1 + C2O

c
2) + (λu + λc)

∑
i

CiOi

)
, (2.8)

with λi = VibV
∗
is. Using the unitarity relation

λu + λc + λt = 0 ,

it is possible to rewrite eq. (2.8) as

Lb→s``D=6 =
4GF√

2
λt

(
C1O

c
1 + C2O

c
2 +

∑
i

CiOi

)

+
4GF√

2
λu

(
C1 (Oc1 −Ou1 ) + C2 (Oc2 −Ou2 )

)
.

(2.9)

The second line of this last equation is CKM suppressed with respect to the first one (see
eq. (1.12)), so it can be neglected in most of the applications.

The dimension-six operators Oi with non-vanishing Wilson coefficients Ci in the SM are
listed below.

• There are two current-current operators, which are distinguished by a different colour
structure:

Oq1 =
(
s̄jγµPLq

i
) (
q̄iγµPLb

j
)
, Oq2 = (s̄γµPLq) (q̄γµPLb) , (2.10)
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where the colour indices i and j are shown explicitly in the Oq1 operator, with q = u, c,
while the Oq2 operator has colour diagonal quark bilinears. These operators, which are
the leading contributions in b→ sc̄c transitions, enter in semileptonic decays only when
combined with electromagnetic currents. We study in detail these effects in chapter 4,
because of their importance in the phenomenology of B → K(∗)`` decays. In figure 2.2(a)
is shown the topology of the diagrams in the full theory from which the O2 operator
originates.

• The QCD penguin operators (figure 2.2(b)) are

O3 = (s̄γµPLb)
∑
p

(p̄γµPL p) , O4 =
(
s̄jγµPLq

i
)∑

p

(
p̄iγµPL p

j
)
,

O5 = (s̄γµPLb)
∑
p

(p̄γµPR p) , O6 =
(
s̄jγµPLq

i
)∑

p

(
p̄iγµPR p

j
)
,

(2.11)

where the sum run over all the quarks except the top quark. These operators give
subleading αe contributions in b → s`+`−, b → sγ, b → sν̄ν transitions and their
corresponding Wilson coefficients are relatively small compared to the others. Indeed,
the QCD penguin operators are often neglected in leptonic, semileptonic and radiative
B-decays.

• The electromagnetic and chromomagnetic dipole operators (figures 2.2(c,d)) are

O7 =
e

16π2
mb (s̄σµνPR q)Fµν , O8 =

gs
16π2

mb (s̄σµνTaPR q)G
a
µν , (2.12)

where Ta = λa/2 and the λa’s are the Gell-Mann matrices. The Ta’s matrices satisfy
the equation

T aijT
a
kl = −1

6
δijδlk +

1

2
δikδlj , (2.13)

since the eight Gell-Mann matrices plus the identity matrix form a complete set of 3× 3
matrices. The cross in figures 2.2(c,d) indicates a chirality-flip of the b quark field, caused
by its mass term in the SM Lagrangian. The analogous contributions with a chirality-flip
of the s quark field are suppressed due to the smallness of the strange quark mass.

• The semileptonic operators (figures 2.2(e,f)) are

O9 =
e2

16π2
(s̄γµPLq)

∑
`

(
¯̀γµ`

)
, O10 =

e2

16π2
(s̄γµPLq)

∑
`

(
¯̀γµγ5`

)
,

Oν =
e2

8π2
(s̄γµPLq)

∑
`

(ν̄`γµPLν`) .

(2.14)

The electroweak penguin operators with four quarks are usually neglected because they
are αe suppressed in b→ s`+`−, b→ sγ and b→ sν̄ν transitions.

The operator basis presented in the above coincides with the one given in ref. [77]. Obviously,
this basis is not unique and another common convention is the one of ref. [78], where, for
example, the first two operators are

Õq1 = (s̄γµT aPLq) (q̄γµTaPLb) , Õq2 = (s̄γµPLq) (q̄γµPLb) . (2.15)
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Using eq. (2.13), it is easy to relate the operators in eq. (2.10) to the ones in eq. (2.15) and
the relative Wilson coefficients:

Oq1 = 2Õq1 +
1

2
Õq2 , Oq2 = Õq2 ,

Cq1 =
1

2
C̃q1 , Cq2 = −1

6
C̃q1 + C̃q2 .

(2.16)

The operators for b→ d`+`−, b→ dγ and b→ dν̄ν transitions can be obtained by simply
replacing the strange quark with a down quark in eqs. (2.10)-(2.14), while the Wilson coeffi-
cients are exactly the same for b→ s and b→ d transitions.

If one includes NP effects also other operators become important, for example the same
operators that contribute in the SM but with opposite chirality. NP effects can also affect the
Wilson coefficients of the operators in eqs. (2.10)-(2.14).

2.3 Effective Lagrangian for b→ c`ν Transitions

The weak interaction effective Lagrangian for b → c`ν transitions is much simpler than the
one for b→ s`+`− transitions, since the coupling term between b and c quarks appears in the
SM, and it reads

Lb→c`νD=6 = −4GF√
2
Vcb
(
c̄γµPLb

)(
¯̀γµPLν`

)
. (2.17)

Also in this case, NP effects introduce operators that in the SM have vanishing Wilson coef-
ficients. Disregarding right-chiral neutrinos, the Lagrangian for b → c`ν transitions that can
accommodate NP contributions reads3 [80]

Lb→c`νD=6 = −4GF√
2
Vcb

(
O``VL +

∑
i

C``
′

i O``
′

i + h.c.

)
. (2.18)

Here, the operators O``′i are

O``
′

VL
=
(
c̄γµPLb

)(
¯̀γµPLν`′

)
, O``

′
VR

=
(
c̄γµPRb

)(
¯̀γµPLν`′

)
,

O``
′

SL
=
(
c̄PLb

)(
¯̀PLν`′

)
, O``

′
SR

=
(
c̄PRb

)(
¯̀PRν`′

)
,

O``
′

T =
(
c̄ σµνPLb

)(
¯̀σµνPLν`

)
.

(2.19)

Even though we mostly focus on the SM physics, we also consider the hadronic matrix elements
of the tensor operators OT , since they arise in several NP scenarios.

Similar considerations hold for b→ u`ν transitions and in particular eq. (2.17) becomes

Lb→u`νD=6 = −4GF√
2
Vub
(
ūγµPLb

)(
¯̀γµPLν`

)
. (2.20)

3For the most general form of this Lagrangian see ref. [79].
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2.4 Heavy Quark Effective Theory

The coupling constants of the electroweak and strong interactions are not truly constants, since
they are functions of the energy scale, and hence they are called running coupling constants.
While the αe coupling becomes large for large distances, the opposite is true at the αs coupling,
which becomes large at short distances. More precisely, the Landau pole of QCD is located4 at
ΛQCD ∼ 0.2 GeV, thus QCD perturbation theory can only be applied for energies |µ| � ΛQCD.

Considering the numerical value of ΛQCD, one can split the six quark flavours into two
categories: the heavy quarks, namely the charm, the bottom and the top quarks, which have
masses much larger than ΛQCD, and the light quarks, namely the up, the down and the strange
quarks, which have masses smaller than ΛQCD. Notice that it is not very accurate to assume
mc � ΛQCD, since one could get

ΛQCD

mc
∼ 0.3 ,

depending on the value chosen for the QCD scale and the renormalisation scheme. Thus,
ΛQCD/mc is not an optimal expansion parameter and one should to take into account the
large power corrections.

A useful tool to study the physics of B and D mesons5 is the heavy-quarks effective theory
(HQET), which exploits the fact that at leading order in ΛQCD/mQ, with mQ = mc,mb,
the properties of the mesons are independent of the quark masses and spins. In fact, in the
limit mQ → ∞, there is an SU(4) heavy quark spin-flavor symmetry that leaves observables
unchanged by swapping one heavy quark for another or flipping its spin up to higher order
corrections.

In this picture, B and D mesons are analogous to a hydrogen atom, with binding due to
strong interactions instead of the electromagnetic ones. The heavy quark is surrounded by a
light quark “cloud” of gluons, virtual quarks and the light valence quarks, ironically named
brown muck by N. Isgur [82]. The typical energy scale of the interactions between the brown
muck and the heavy quark is ΛQCD and hence they cannot be treated is perturbative QCD.

It is then convenient to decompose the momentum of such mesons as

pµQ = mQv
µ + kµ , (2.21)

where vµ is the meson velocity and kµ is its residual momentum. Since v2 = 1 and mM =
mQ + Λ̄, where mM is the meson mass and Λ̄ ∼ ΛQCD, it follows that kµ ∼ Λ̄. In other
words, the heavy quark, which carries most of the meson momentum, is almost on-shell and
the brown muck cannot affect its velocity and/or its spin in a major way. Interactions between
the light and heavy degrees of freedom can only change the residual momentum by quantities
of the order of ΛQCD.

In HQET the velocity of the meson vµ is a conserved quantity, which allows to eliminate
the explicit dependence on the momentum pµQ. Integrating out the degrees of freedom of the
heavy quark field Q that are responsible for the creation and annihilation of heavy antiquarks,
it is possible to expand the full QCD Lagrangian in powers of 1/mQ:

4The exact value ΛQCD depends on the number of active quark flavours (see e.g. ref. [81]).
5Clearly, the considerations of this section do not apply to Bc mesons.
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LHQET
eff = −1

2
Tr{GµνGµν}+

∑
q=u,d,s

q̄
(
i /D −mq

)
q + ih̄v(v ·D)hv

− 1

2mQ

∞∑
n=0

h̄v /D⊥

(
− iv ·D

2mQ

)n
/D⊥hv , (2.22)

which, cutting the series after the first term, becomes

LHQET
eff = −1

2
Tr{GµνGµν}+

∑
q=u,d,s

q̄
(
i /D −mq

)
q + ih̄v(v ·D)hv

− h̄v
D2
⊥

2mQ
hv −

gs
4mQ

h̄v (σµνGµν)hv +O
(

1

m2
Q

)
. (2.23)

Here Dµ is the covariant derivative introduced in chapter 1 and

Dµ
⊥ = Dµ − vµ(v ·D) .

The effective fields hv and Hv are different projections of the heavy quark field Q, which are
defined as

hv(x) = eimQv·x
1 + /v

2
Q(x) ,

Hv(x) = eimQv·x
1− /v

2
Q(x) .

(2.24)

These effective fields automatically satisfy the equations of motion

/vhv = hv ,

/vHv = −Hv ,
(2.25)

and hence the field Q can be written as

Q(x) = e−imQv·x (hv(x) +Hv(x)) . (2.26)

From eqs. (2.24)-(2.26), it follows that the effective field Hv would be identically zero if the
heavy quark was on-shell. Since the heavy quark is “almost” on shell, Hv and hv have small and
large components, respectively. This is the reason why the effective field Hv can be integrated
out and it does not appear explicitly in the effective Lagrangian (2.22).

It is also important to mention that the field hv annihilates a heavy quark but it does not
create the corresponding antiquark, while the opposite is true for Hv. This implies that heavy
quark-antiquark pairs cannot be created or annihilated in the limit mQ →∞, and that these
effects only appear at subleading orders in the 1/mQ expansion of the effective Lagrangian.

In this section, we have given a brief introduction to the main features of HQET. For
more details and formal proofs of the results presented above, we refer the reader to, e.g.,
refs. [83, 84].
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Chapter 3

Hadronic Matrix Elements
from Dispersion Relations

Hadronic matrix elements (HMEs) cannot be calculated in QCD perturbation theory due
to the soft-gluon exchanges between the hadrons constituents, and hence non-perturbative
techniques are required to perform such calculations. Currently, the only QCD based methods
to compute HMEs are lattice simulations and QCD sum rules.

The central idea of lattice QCD (LQCD) is to use the path integral formulation of quan-
tum field theory, where correlators are replaced by integrals over all possible classical field
configurations, and to compute numerically these integrals in the approximation of a finite
discretized Euclidean space-time.

In the last few years, several improvements of supercomputers and of algorithms allowed
numerous computations of HMEs employing LQCD. One of the remarkable aspects of LQCD
is that it is systematically improvable, i.e. its uncertainties can be arbitrarily reduced over
time. However, the numerical procedures presently adopted are still highly demanding in
terms of time and resources, so that certain computations may require several years. In ad-
dition, LQCD is not usually able to provide results over the whole kinematical spectrum, as
in the case of B → K(∗) and B → D(∗) form factors [85–90], and the evaluation of non-local
HMEs is still at a conceptual stage.

On the other hand, QCD sum rules (QCDSRs) provide an alternative method to calculate
HMEs. As we will show in this and in the following chapter, QCDSRs are suitable to compute
both local (e.g. the form factors of pseudoscalar and vector mesons) and non-local HMEs (e.g.
the soft-gluon contribution to the charm loop in B → K∗``).

One advantage of this technique is the fact that sum rules are relations between different
hadronic parameters which can be calculated analytically, so that lengthy numerical evaluation
are not required. Another advantage is that the functional form of a certain sum rule does not
depend on the quark flavours of the transition considered. This means that if, for instance,
one calculates the sum rule for B → ρ form factors, it is straightforward to obtain the sum
rule for B → K∗ form factors, since both are B-to-vector meson decays. The only thing that
one has to change are the input parameters. Thus, it is relatively easy and fast to obtain
theoretical predictions of different HMEs using QCDSRs compared to LQCD.

The main drawback of QCDSRs is the large uncertainties of their predictions, which cannot
be reduced below a certain limit. Indeed, all the sum rules depend on an unphysical parameter,
called the Borel parameter (see subsection 3.1.2), which produce a non-trivially reducible
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systematic uncertainty. Furthermore, QCDSRs rely on the additional assumption of quark-
hadron duality and on universal non-perturbative inputs, such as vacuum condensates or
distribution amplitudes.

Interestingly, QCDSRs can only be used in the calculation of form factors when the mo-
mentum transfer1 q2 is low enough, while LQCD are usually more effective at high q2. Hence,
one can combine QCDSRs and LQCD results to extract the hadronic form factors in the whole
q2 range.

In addition to these methods, for certain HMEs one can obtain an upper bound on their
values. This can be done by using a dispersion relation combined with a unitarity relation.
The bounds obtained in this way are called dispersive bounds and their derivation is similar
to the one of a sum rule, with the advantage that the (semi-global) quark-hadron duality
approximation is not needed. The dispersive bounds are very strong constraints on the HMEs
and they are extremely useful when one tries to parametrize the HMEs themselves.

Before reviewing the QCDSRs and the dispersive bounds, we introduce the fundamental
tools needed to employ these techniques in the next section.

3.1 Foundations

In order to calculate a dispersive bound, one has to construct a dispersion relation where the
integral imaginary part of the correlator considered is related to the value of correlator itself
in a specific point of the phase space. This point has to be chosen such that the correlator can
be expanded in a local OPE, whose Wilson coefficients can be computed in perturbative QCD.
The calculation of a sum rule requires in addition the quark-hadron duality approximation.
To reduce the error introduced by this approximation, one usually performs Borel transform.
All these theoretical means are discussed in the following subsections.

3.1.1 The Dispersion Relation

In this subsection we study the analytic structure of the following vacuum-to-vacuum corre-
lator:

Πµν(q) = i

∫
d4x eiq·x 〈0|T{Jµ(x), Jν,†(0)} |0〉 , (3.1)

which can always be decomposed in terms of scalar functions as

Πµν(q) = (qµqν − q2gµν)Π1−(q2) + qµqνΠ0+(q2) . (3.2)

Here Jµ ≡ q̄1γ
µq2 is a quark current and the subscript on the functions ΠJP (q2) indicate the

spin J and the parity P of the states that can be created or annihilated by Jµ. For an axial
vector current JµA ≡ q̄1γ

µγ5q2 eq. (3.2) becomes

Πµν(q) = (qµqν − q2gµν)Π1+(q2) + qµqνΠ0−(q2) . (3.3)

The results of this subsection also apply to more general correlators, in particular to those
with a hadron in the initial state instead of the vacuum. The main difference in such a case

1See section 1.4 for the definition of the momentum transfer.
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Figure 3.1: The Feynman diagram that corresponds to the correlator Πµν(q)
defined in eq. (3.1).

would be the decomposition in independent Lorentz structures (3.2), which would be more
complicated due to the additional external momentum carried by the hadron.

We can also ignore the distinction between the functions Π0±(q2) and Π1±(q2), since the
only thing that matters here is the analytic structure of these functions, which is analogous in
this four cases. Hence, we simply write Π(q2) to indicate one of the four ΠJP (q2) functions.

The two-point correlator Πµν(q) can be thought of as one of the contributions to the self-
energy of a gauge boson, whose diagram is shown in figure 3.1. For a virtual gauge boson, the
domain of the function Π(q2) is the whole real axis. However, in order to study the properties
Π(q2), it is useful to enlarge the domain to the whole complex plane, even though imaginary
values of q2 have no straightforward physical meaning. Thus, Π(q2) will be considered as a
complex function C→ C in what follows.

In the left half of the complex q2 plane, i.e. for Re(q2) < 0, the function Π(q2) is analytic:
it has no poles or singularities of any other kind. Moreover, it can be shown that (see e.g.
ref. [91]) for

−q2 � Λ2
QCD (3.4)

the dominant contribution to Π(q2) comes from the quarks that propagate at short distances.
If at least one of the quarks in the loop of figure 3.1 is heavy (i.e. has mass m2

Q � Λ2
QCD),

the condition (3.4) becomes

m2
Q − q2 � Λ2

QCD , (3.5)

which is even easier to satisfy. If the conditions (3.4) or (3.5) are fulfilled, Π(q2) can be
expanded in a local OPE, as we will show in subsection 3.2.1.

On the other hand, on the positive real axis the function Π(q2) presents poles generated
by bound states and a branch cut which starts at the continuum threshold of the lowest
continuum state. As an example, let us consider the current

Jµ = b̄ γµ(γ5)c .

In this case, there several isolated poles at q2 = m2
cb̄

(see figure 3.2), where mcb̄ is the mass of
a cb̄ bound state. The cb̄ bound states with JP = 0+ appear only in the function Π0+ and so
on. The lightest cb̄ bound state with JP = 0− (JP = 1−) is the Bc (B∗c ) meson introduced in
section 1.2. A more complete list of the known cb̄ bound states can be found in refs. [92].
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Figure 3.2: Analytic structure of the function Π(q2). The crosses indicate the
cb̄ bound states, the filled circle represent the branch point at q2 = (mB +
mD)2 while the empty circles are the cb̄ resonances, which are on the second
(unphysical) Riemann sheet technically speaking. The red shaded area illustrate
the branch cut.

The point q2 = (mB + mD)2 is a branch point, which corresponds to the lightest two-
particle state. Branch points are singular points of a complex function, which are radically
different from poles and essential singularities. Indeed, while poles and essential singularities
are classified as singularities because the function is discontinuous and/or non-differentiable
in that point, branch points are associated to the fact that the function is multivalued in its
neighbourhood.

To overcome the inconvenience of having a multivalued function, it is possible to use a
trick. This trick consists in replacing the q2 plane with a more complicated manifold, called
Riemann surface, and then to define a branch cut, i.e. a curve (usually between two branch
points) that divide the Riemann surface in different copies of the q2 plane, called Riemann
sheets.

In this way, instead of having a single multivalued function, we have several single-valued
functions called branches. Crossing the branch cut one can move from one Riemann sheet to
another2. The number of Riemann sheets depends on the function considered, for example
z1/n, with z ∈ C and n ∈ N, has n Riemann sheets while log(z) has infinitely many Riemann
sheets.

The branch cut of Π(q2) is a line segment between the first branch point3 q2 = (mB+mD)2

and q2 = +∞, which is illustrated in figure 3.2. Even if in this case there are infinite Riemann
sheets, for most applications is sufficient to consider only two Riemann sheets: the physical
one, where the bound states are located, and the unphysical one, where the resonances are
located (see ref. [27], section “Resonances”).

Knowing the analytic structure of Π(q2), it is easy to derive the dispersion relation. The
2A more detailed discussion of these topics of complex analysis can be found in refs. [93, 94].
3The branch point at q2 = (mBc +mπ)2 can be neglected, because it is isospin suppressed.
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Figure 3.3: The closed curve where the integral in eq. (3.6) is performed.

starting point is to represent Π(q2) through the Cauchy’s integral formula

Π(q2) =
1

2πi

∮
γ
ds

Π(s)

s− q2
, (3.6)

where q2 is a point inside the closed curve γ shown in figure 3.3. To simplify the integral in
eq. (3.6), we can take the limit R→∞ and r → 0. Assuming that

1

2πi

∮
ΓR

ds
Π(s)

s− q2
→ 0 for R→∞ (3.7)

and

1

2πi

∮
γr

ds
Π(s)

s− q2
→ 0 for r → 0 , (3.8)

eq. (3.6) becomes

Π(q2) =
1

2πi

∫ ∞
xr

ds
Π(s+ iε)−Π(s− iε)

s− q2
, (3.9)

where ε is an arbitrary small positive number.
While it is easy to see that the condition (3.8) is trivially fulfilled, since one can always

choose the point xr to be on the real axis below the first singularity (as shown in figure 3.3),
it may happen that the integral of eq. (3.7) does not vanish. In that case, one has to perform
a certain number of subtractions, i.e. take derivatives with respect to q2, until the condition
(3.7) is satisfied.

Using the Schwarz reflection principle, we can rewrite the numerator of the integrand in
eq. (3.9) as

Π(s+ iε)−Π(s− iε) = 2i Im Π(s) , (3.10)
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thus

Π(q2) =
1

π

∫ ∞
xr

ds
Im Π(s)

s− q2
. (3.11)

It can be shown that the imaginary part of loop amplitudes come from intermediate par-
ticles going on-shell (see e.g. refs. [16, 17]). Using this observation, we can finally write down
the dispersion relation:

Π(q2) =
1

π

∫ ∞
sth

ds
Im Π(s)

s− q2
, (3.12)

where sth is the mass squared of the lightest cb̄ bound state with the same spin and parity
quantum numbers of Π(q2). The procedure presented here can be easily extended different to
quark currents Jµ.

Equation (3.12) is fundamental for the calculation of a sum rule. It implies that if one
knows the imaginary part of Π(q2), then Π(q2) is fixed in the whole q2 plane. Vice versa, if one
knows Π(q2) in one single regular point of the complex plane, it is possible extract information
about the imaginary part of Π(q2).

Equation (3.12) is also crucial to extract the dispersive bounds, which are non-trivial
constraints on HMEs (see section 3.3).

3.1.2 The Borel Transform

A mathematical transform is an operator that maps a function space into a different function
space. Mathematical transforms are commonly used to solve certain problems by mapping
them into a different function space, where the solution is known. However, we will use the
Borel transform for a different purpose, which is to reduce the error in a sum rule due to the
quark hadron duality approximation.

Let us introduce the operator [95]

L̂M2 = lim
−q2→∞
n→∞

(−q2)n+1

n!

(
d
dq2

)n
, (3.13)

where the limit is taken keeping the so-called Borel parameter M2 ' −q2/n fixed. We can
then define the function

Π(M2) = L̂M2Π(q2) , (3.14)

which is the Borel transform of q2(−d/dq2)Π(q2). Nevertheless, in the context of QCDSRs,
Π(M2) is often simply referred to as the Borel transform of Π(q2). We will also adopt this
slight abuse of terminology.

Even though we indicate the two functions Π(q2) and Π(M2) with the same symbol, they
have a completely different functional form. We will see in the next section that the functional
form of Π(M2) is much more convenient to further suppress the contribution coming from the
continuum states and the higher orders in the OPE.
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Using eq. (3.13) we can compute the Borel transform of several prototypical functions that
will appear later on:

L̂M2(q2)k = 0 ,

L̂M2

1

(s− q2)k
=

1

(k − 1)!

e−
s
M2

(M2)k−1
,

L̂M2(−q2)k log

(−q2

µ

)
= k!(−M2)k+1 ,

(3.15)

for k > 0. For instance, the dispersion relation (3.22) after the Borel transform becomes

Π(M2) =
1

π

∫ ∞
sth

ds e
s
M2 Im Π(s) . (3.16)

3.1.3 Quark-Hadron Duality

As the name suggests, quark-hadron duality relies on the idea that amplitudes computed
in perturbative QCD (in a specific energy regime and under certain assumptions) can be
approximated by amplitudes computed treating hadrons as fundamental particles, and vice
versa.

Quark-hadron duality was originally proposed almost fifty years ago [96], and since then
it was widely investigated and exploited in many calculations. In fact, this approach rep-
resents an awfully broad topic in QCD and there is extended literature about it. Here, we
just sketch some of the main features, while more details can be found in the classic review [97].

In our calculations, we use quark-hadron duality to relate the imaginary part of the OPE
calculation4 to the true imaginary part of a certain correlator Π(q2):∫ ∞

s0

ds
Im ΠOPE(s)

s− q2
'
∫ ∞
s2p

ds
Im Πhad(s)

s− q2
, (3.17)

where Im Πhad coincides with the spectral density function τH , which is experimentally ob-
servable. In general, the continuum threshold s2p and the effective threshold s0 are different
as we will see in the next sections. Equation (3.17), which is known as semi-global (or global)
quark-hadron duality, is extremely useful due to the fact that, while Im Πhad is essentially
unknown, Im ΠOPE is in princible calculable. Thus, eq. (3.17) can be used to get rid of the
tail of Im Πhad, which always appears in the calculation of a sum rule.

One can also attempt to relate Im Πhad and Im ΠOPE point-by-point:

Im ΠOPE(q2) ' Im Πhad(q2) , (3.18)

for sufficiently large values of q2. This equation is usually called local quark-hadron duality.
It is crucial to understand the accuracy of the quark-hadron duality relations (3.17)-(3.18)

to have precise and reliable theoretical calculations. Obviously, the relations (3.17)-(3.18)
are just approximate identities because we are not able to compute ΠOPE(q2) with infinite

4We will discuss in the next section how to compute the imaginary part of the OPE.
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precision. In fact, if we could compute ΠOPE(q2) exactly in the whole q2 complex plane, there
would be no need for duality and we would simply have [97]

ΠOPE(q2) ≡ Πhad(q2) . (3.19)

However, in practice one computes ΠOPE(q2) approximately truncating both the OPE and αs
expansions at some finite order. Even if one was able to calculate all the terms in both series,
it would not be helpful since these series are factorially divergent [97].

Besides these expected sources of uncertainties, there are additional ones known as quark-
hadron duality violations. Duality violations are mostly due to the fact that even for large
positive q2 values, Im ΠOPE(q2) is not able to reproduce exactly the resonant structure of
Im Πhad (see e.g. ref. [98]). Although in most of the applications these effects are supposed to
be small, one needs to take them in account and to carefully study them.

3.2 QCD Sum Rules in a Nutshell

QCD sum rules are a way to determine HMEs starting from a correlator, which has to be
constructed on a case by case basis. This correlator has to be expanded in an OPE, which
separates the short-distance contributions, calculable in QCD perturbation theory, from the
long-distance contributions, which are expressed in terms of vacuum condensates or distribu-
tion amplitudes.

The next step is to express the imaginary part of the correlator in terms of the intermediate
bound states plus a continuum of multiparticle states. Both of these contributions must have
quantum numbers compatible with the currents appearing in the correlator.

Finally, the dispersion relation allows to match the OPE calculation onto the imaginary
part of the correlator. The semi-global quark hadron duality approximation is then used to
get rid of the poorly known continuum contribution. The Borel transform is an additional tool
adopted to suppress the tail of the OPE calculation and the continuum contribution, reducing
in this way the impact of eventual quark-hadron duality violations. The identity obtained
after all these steps is the sum rule, which is a relation between one or more HMEs, vacuum
condensates (or distribution amplitudes), and the masses of the states involved.

There are mainly two kinds of QCD sum rules: the SVZ sum rules and the light-cone
sum rules. The SVZ sum rules were originally proposed by Shifman, Vainshtein, Zakharov
in the late 1960s [95] (see refs. [91, 99] for a review). A decade later, this method was
reworked [100, 101] using a light-cone OPE instead of a local OPE, from which the name
light-cone sum rules (LCSRs) derives.

In our analysis we only employ the LCSRs. Nevertheless, it is also useful to review the
SVZ sum rules to develop an understanding of the method.

3.2.1 SVZ Sum Rules

To show how to compute an SVZ sum rule, we present an example taken from the review [91]
where the ρ-meson decay constant is extracted.

We define the vacuum-to-vacuum correlator

Πµν
(ρ)(q) = i

∫
d4xeiq·x 〈0|T{Jµ(ρ)(x), Jν,†(ρ)(0)} |0〉 = (qµqν − q2gµν)Π(ρ)(q

2) , (3.20)
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where

Jµ(ρ) =
1

2
(ūγµu− d̄γµd) . (3.21)

Notice that in eq. (3.20) no term proportional to qµqν appears, since Jµ(ρ) is a conserved current.
The correlator (3.20) can be computed in a certain region of the phase space using an OPE,
while its imaginary is obtained using a unitarity relation. These two different calculations are
then matched by using a dispersion relation and the quark-hadron duality approximation to
obtain the sum rule.

Let us start with the OPE calculation. For large negative q2, i.e. for −q2 � ΛQCD, the
integral of eq. (3.20) is dominated by short distances x ' 1/

√
−q2, and hence we can perform

an OPE of the correlator Π(ρ)(q
2):

Π(ρ)(q
2) =

∑
i

Ci(q
2;µ)〈Oi(µ)〉 . (3.22)

Here the index i indicates the dimension of the operator Oi and

〈Oi(µ)〉 ≡ 〈0|Oi(µ) |0〉 .

If the condition −q2 � ΛQCD is fulfilled, we can truncate the series above after the first few
terms. As we have seen in the previous chapter, the main reason to use an OPE is to separate
the short-distance contribution of the Wilson coefficients Ci and the long-distance one of the
operators Oi.

The matrix elements 〈Oi(µ)〉 are the QCD vacuum condensates, i.e. the vacuum expec-
tation values of the normal ordered local product of QCD fields (quarks and gluon fields).
The first matrix element in the sum of eq. (3.22) is trivial, since the only operator with mass
dimension equal to zero is the identity:

〈O0〉 = 〈1〉 = 1 .

The next non-vanishing matrix element is the one with the dimension-three operator

O3 = q̄q ,

where, in our case, q = u, d. Moreover, assuming the isospin symmetry, one has 〈q̄q〉 = 〈ūu〉 =
〈d̄d〉. The condensates with dimension four and five are generated by the following operators

O4 =
αs
π
GaµνG

µν
a ,

O5 = −gsq̄ σµνGµν q .

At dimension six, there two different classes of operators:

O6,1 = g3
sfabcG

a
µνG

νσ,bGσ
µ,c ,

O6,2 = αs(q̄ Γαq)(q̄ Γαq) ,

where fabc are the structure constants of SU(3), while the Γα are combinations of Dirac and
Gell-Mann matrices.
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The dimension-five condensate can be expressed as

−gs〈q̄ σµνGµν q〉 ' m0〈q̄q〉 ,

where the parameter m0 can be determined using a sum rule [102]. It is also possible to
approximate the condensate 〈O6,2〉 as (see e.g. refs. [91, 103])

αs〈(q̄ Γαq)(q̄ Γαq)〉 = καs〈q̄q〉 ,

where κ is a known constant that depends on the traces of the Γα matrices.
Vacuum condensates, being genuine non-perturbative quantities, must be computed using

lattice QCD or other non-perturbative methods (see e.g. refs. [95, 99, 104, 105]. while see
ref. [103] for a review). Condensates with dimension higher than six are usually neglected
in most of the applications. On the other hand, the Wilson coefficients can be computed in
perturbative QCD. In particular C0 is given by the Feynman diagram of figure 3.1 and its αs
corrections.

After performing a Borel transformation, the OPE result that includes O (αs) corrections
and operators up to dimension six reads

ΠOPE
(ρ) (M2) = M2

[
1

4π2

(
1 +

αs
π

)
+
mu +md

M4
〈q̄q〉

+
1

12M4

〈αs
π
GaµνG

µν
a

〉
− 112π

81

αs
M6
〈q̄q〉2

]
.

(3.23)

Having the OPE result, we proceed with calculation of the imaginary part of Π(ρ)(q
2). To this

end, we exploit the unitarity relation

(qµqν − q2gµν) Im Πhad
(ρ) (q2) =

1

2

∑∫
H

dτH (2π)4δ(4)(pH − q) 〈0|Jµ(ρ)(0)|H〉 〈H|J†,ν(ρ) (0)|0〉 , (3.24)

where H(pH) denotes the ρ meson and all the other states with the same quantum numbers,
while τH is the spectral density function. From eq. (3.24) one immediately obtains

1

π
Im Πhad

(ρ) (q2) = f2
ρ δ(q

2 −m2
ρ) + τH(q2)θ(q2 − 4m2

π) , (3.25)

where fρ is the ρ-meson decay constant defined as

〈0|Jµ(ρ)|ρ(k, η)〉 =
i√
2
ηνmρfρ (3.26)

and ην is the polarisation vector.
Notice that, in contrast to the example in subsection 3.1.1 with a heavy quark current,

here the first bound state is not below the continuum threshold. The same occurs for all the
light quark currents. In order to overcome this potential problem, we have considered the ρ
meson in the narrow width, to clearly distinguish it from the continuum of multi-particle states
background. In principle, one could also go beyond the narrow width approximation and model
the ρ-meson resonance with a different distribution (e.g. a Breit-Wigner distribution) [106].
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Now, we can recast eq. (3.25) in a dispersive form

1

π

∫ ∞
4m2

π

ds
Im Πhad

(ρ) (s)

s− q2
=

f2
ρ

m2
ρ − q2

+

∫ ∞
4m2

π

ds
τH(q2)

s− q2
, (3.27)

and Borel transform it

1

π

∫ ∞
4m2

π

ds e−
s
M2 Im Πhad

(ρ) (s) = e−
m2
ρ

M2 f2
ρ +

∫ ∞
4m2

π

ds e−
s
M2 τH(q2) . (3.28)

Matching this result onto the OPE result (3.23) through the dispersion relation (3.16), one
obtains

e−
m2
ρ

M2 f2
ρ +

∫ ∞
4m2

π

ds e−
s
M2 τH(q2) =

M2

[
1

4π2

(
1 +

αs
π

)
+
mu +md

M4
〈q̄q〉+

1

12M4

〈αs
π
GaµνG

µν
a

〉
− 112π

81

αs
M6
〈q̄q〉2

]
, (3.29)

with αs ≡ αs(M). To use the semi-global quark-hadron duality approximation (3.17), it is
convenient to rewrite the r.h.s. of eq. (3.29) in a dispersive form using the identity

M2 =

∫ ∞
0

ds e−
s
M2 .

The sum rule, which allows to extract the ρ-meson decay constant, reads

f2
ρ =

∫ ∞
sρ0

ds e
m2
ρ−s
M2

[
1

4π2

(
1 +

αs
π

)
+

mu +md

M4
〈q̄q〉+

1

12M4

〈αs
π
GaµνG

µν
a

〉
− 112π

81

αs
M6
〈q̄q〉2

]
. (3.30)

A few comments are in order concerning this equation and the SVZ sum rules in general:

• A sum rule is a relation between hadronic matrix elements and other parameters (masses,
coupling constants, threshold parameters,...). Using a sum rule one can extract a
hadronic matrix element by fixing the value of all the other parameters. In this ex-
ample we have chosen to extract fρ, but the same sum rule could be used to compute
one of the vacuum condensates if fρ would have been taken from other sources.

• Performing a Borel transform is not necessary, but it reduces the error due to the quark-
hadron duality approximation. Indeed, the contribution of the continuum becomes ex-
ponentially suppressed, as one can see from eq. (3.28).

• The effective threshold s0 is in general different from the continuum threshold (in this
case s2p = 4m2

π). To determine s0 one can eithe use another sum rule or a daughter sum
rule, as we will show in subsection 4.1.2.
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parameter value unit reference

〈q̄q〉(2 GeV) −(0.272± 0.010)3 GeV3 [104, 105, 107]〈
αs
π G

a
µνG

µν
a

〉
0.012± 0.012 GeV4 [95, 103, 108–110]

sρ0 1.6 GeV2 [91, 95]

Table 3.1: List of the inputs used to evaluate the sum rule eq. (3.30).

• To improve the accuracy of the sum rule, one can include higher order terms in the
αs expansion and in the OPE. Nevertheless, the uncertainty due to the quark-hadron
duality approximation and the dependence on the Borel parameter M2 cannot be easily
reduced (see the next bullet point). Moreover, to evaluate a sum rule one also needs
universal non-perturbative inputs, which in the case of the SVZ sum rules are the vacuum
condensates, while in the case of the LCSRs are the distribution amplitudes.

• Since the l.h.s. of eq. (3.30) does not depend on the Borel parameter M2, one would
expect that also the r.h.s. of eq. (3.30) would be M2 independent. However, all the sum
rules depend on M2, which reflects the fact that we can only compute ΠOPE approxi-
mately. To overcome this problem one should look for an M2 range where: 1) the Borel
parameter dependence of the sum rule is small, 2) the continuum contribution is suffi-
ciently suppressed, and 3) the higher order contributions in the OPE are small compared
to the leading ones. In other words, if M2 is too big the exponential suppression coming
from the factor e−

s
M2 is no longer effective, while if M2 is too small further 1/(M2)n

terms become important.
For instance, all these three conditions are satisfied in the sum rule (3.30) when [91]

0.7 GeV2 .M2 . 1.2 GeV2 . (3.31)

It is not possible to say a priori whether such a range exists for a given sum rule, and
one has to verify this case by case.

Using the inputs given in table 3.1 we can evaluate the sum rule eq. (3.30) to predict
ρ-meson decay constant

fρ ' 0.21 GeV . (3.32)

As expected, the main contribution to this sum rule comes from the first term in the OPE at
leading order in αs, which is approximately 90 % of the value obtained.

To complete this example, we need to discuss the uncertainties of the result (3.32):

Uncertainties of the inputs The uncertainties of the input parameters are known and can
be easily taken into account. Nevertheless, they can be large due to the non-perturbative
nature of the inputs (condensates, threshold parameters, etc.). In addition, one should also
include the uncertainty due to the scale dependence of the parameters that enter into the sum
rule.
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Borel parameter dependence As already discussed, after performing a Borel transform
every rule shows a fictitious dependence on the Borel parameter M2. After finding an appro-
priate M2 range, one should vary the sum rule in this range and add a related systematic
uncertainty. The result of the sum rule (3.30) is essentially constant in the range (3.31), and
hence in this case the uncertainty due to the M2 dependence is negligible. However, we will
see that certain LCSRs have a significant M2 dependence and the related uncertainty needs
to be taken into account.
To reduce this of type uncertainty, one could include higher orders in αs and in the OPE such
that the dependence on M2 becomes smaller. Even if there is no formal proof of this so far,
it can be expected since the difference between ΠOPE and Πhad should get smaller, and Πhad

does not depend on M2.

Quark hadron duality approximation As for the M2 dependence of the sum rule, there
is no trivial way to reduce the error due to this approximation, which is also hard to estimate.
A check that one should always perform after computing a sum rule is to verify that the tail
of OPE calculation, i.e. ∫ ∞

s0

ds
Im ΠOPE(s)

s− q2
,

is not the dominant contribution to the same integral extended from 0 to ∞, i.e.∫ ∞
0

ds
Im ΠOPE(s)

s− q2
.

In the example discussed in this subsection we find∫∞
sρ0

ds
Im ΠOPE

(ρ)
(s)

s−q2∫∞
0 ds

Im ΠOPE
(ρ)

(s)

s−q2

' 0.4 ,

which is large but usually still accepted in literature.

Higher order corrections The uncertainty due to the neglected higher order contributions
both in the OPE and in the αs expansion should be taken into account. Clearly, if other
expansions are performed (such as the heavy quark expansion) and truncated at some finite
order, one should include these effect in the total uncertainty as well.

Adding up all these error sources, we obtain for our example

fρ = (0.21± 0.02) GeV .

This value of fρ is in excellent agreement with one extracted from experimental data [27, 66]

fρ = (0.213± 0.005) GeV .

In general, it is unlikely to obtain a sum rule prediction with an uncertainty smaller than
∼ 5 − 10 %, which is relatively big compared to most of the recent lattice QCD results for
form factors and decay constants. Nevertheless, QCD sum rules are still extremely useful,
since their predictions can be combined with the lattice ones (see chapter 4) and they can
provide results for hadronic matrix elements that are currently inaccessible for lattice QCD.
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SVZ sum rules light-cone sum rules

correlator type vacuum-to-vacuum meson-to-vacuum

universal
non-perturbative
inputs

QCD condensates distribution amplitudes

expansion type local OPE light-cone OPE

expansion parameter
dimension

of the condensates
twist

used to compute

decay constants
threshold parameters

condensates
. . .

form factors
non-local effects in B → K(∗)``

threshold parameters
. . .

Table 3.2: Comparison between SVZ sum rules and LCSRs. See text for details.

3.2.2 Light-Cone Sum Rules

The light-cone sum rules (LCSRs) were originally proposed in refs. [100, 101], and they are
very similar to the SVZ sum rule. However, there are few important differences between these
two types of sum rules, which are listed in table 3.2 and are discussed in this subsection.

To illustrate the LCSRs at work we present an example in which we calculate the B → K
form factors. In particular, we use the LCSRs with B-meson light-cone distribution amplitudes
(B-LCDAs), which were proposed for the first time in refs. [111, 112]. The difference between
LCSRs with B-LCDAs and LCSRs with light-meson light-cone distribution amplitudes are
discussed at the end of this subsection. Here and throughout this thesis we call the LCSRs
with B-LCDAs simply LCSRs, unless explicitly specified otherwise.

Let us first define the B → K form factors, i.e. functions of the momentum transfer
squared q2 that parametrize local hadronic matrix elements between B and K mesons5:

〈K(k)| s̄γµb |B(p)〉 =

[
(p+ k)µ − m2

B −m2
K

q2
qµ
]
fB→K+ +

m2
B −m2

K

q2
qµ fB→K0 , (3.33)

〈K(k)| s̄σµν qνb |B(p)〉 =
ifB→KT

mB +mK

[
q2 (p+ k)µ − (m2

B −m2
K) qµ

]
, (3.34)

where pµ = qµ + kµ. While the number of independent form factors is fixed, they can be
defined in different equivalent ways. For instance, another common choice is

〈K(k)| s̄γµb |B(p)〉 = (p+ k)µ fB→K+ + qµ fB→K− , (3.35)

which is less convenient in phenomenological applications (see appendix B). Comparing eq. (3.33)

5We omit the q2 dependence of the form factor throughout this work by simply writing fB→K+ instead of
fB→K+ (q2).
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Figure 3.4: Diagram corresponding to the correlator (3.38). Hard- and soft-gluon
corrections are not shown explicitly.

and eq. (3.35), one can easily find the relation between these two different definitions:

fB→K0 = fB→K+ +
q2

m2
B −m2

K

fB→K− . (3.36)

This equation implies that

fB→K0 (q2 = 0) = fB→K+ (q2 = 0) . (3.37)

More details about the meson form factors can be found in appendix B.
The first step to compute a LCSR is to define an appropriate correlator

Πµν(q, k) ≡ i
∫

d4x eik·x 〈0|T{Jνint(x), Jµweak(0)} |B̄(q + k)〉 , (3.38)

where the corresponding diagram in shown in figure 3.4. The reason why here one needs to
choose a meson-to-vacuum correlator instead of a vacuum-to-vacuum correlator (as in the case
of SVZ sum rules) will soon become clear. The currents to compute the fB→K+ and fB→K−
form factors are

Jµweak = s̄γµb ,

Jνint = d̄γνγ5s .
(3.39)

Changing the quark flavours one can compute the form factors for different decays (e.g. B → π,
B → D, Bs → K, etc.), which are defined analogously to the B → K ones.

In analogy to the SVZ sum rules, we compute the correlator (3.38) both by using an OPE
and employing a unitarity relation to obtain the hadronic representation of the correlator. We
then match these two different results by using a dispersion relation and the quark-hadron
duality to obtain the sum rule.

Calculating the hadronic representation of the correlator (3.38) is relatively easy. The
imaginary part of (3.38) can be extracted inserting a complete set of states with the right
quantum numbers between the two currents:

Πµν(q, k) =
〈0| Jνint(x) |K̄(k)〉 〈K̄(k)| Jµweak(0) |B̄(q + k)〉

m2
K̄
− k2

+
1

π

∫ ∞
sh

ds
τµν(s)

s− k2
, (3.40)

where τ(s) is the spectral density function, which encodes the contributions of the excited and
continuum states, and sh is the mass of the lightest or continuum state. We can now use the
decay constant definition

〈0|Jνint|K̄(k)〉 = ikνfK (3.41)
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and the form factor definition of eq. (3.35) to get the hadronic representation of the correlator
(3.38)

Πµν(q, k) = kνfK
(p+ k)µ fB→K+ + qµ fB→K−

m2
K̄
− k2

+
1

π

∫ ∞
sh

ds
τµν(s)

s− k2
. (3.42)

In contrast to the derivation of the hadronic representation of the correlator, the OPE
calculation can be extremely challenging. First, one has to prove that in a specific region of
the phase space it is possible to perform an OPE of the correlator. While for the SVZ sum
rules we used a local OPE, where the correlator was expanded around x ∼ 0, for LCSRs, as
the name suggests, we use a light-cone OPE (LCOPE), expanding around x2 ∼ 0. Like a
local OPE, a LCOPE allows to factorise the long-distance contributions, expressed through a
series of distribution amplitudes with increasing twist, and the short-distance contributions,
which can be computed in QCD perturbation theory. The definition of twist is given below.
After computing the first few terms of the LCOPE, we match this result onto the hadronic
representation of the correlator.

Before performing the LCOPE, we expand the correlator (3.38) in HQET

Πµν(q, k) ≡ i
∫

d4x eik·x 〈0|T{d̄γνγ5 s(x), s̄γµhv(0)} |B̄(v)〉+O
(

1

mb

)
. (3.43)

As shown in refs. [91, 112], assuming

−k2, −q2
res � ΛQCD ,

the correlator (3.43) can be expanded around x2 = 0 for

q2 < mb

(
mb +

k2

Λ̄

)
, (3.44)

where qµ = mbv
µ + qµres and Λ̄ ∼ ΛQCD (see section 2.4). In this case, the LCOPE is

performed expanding the strange-quark propagator near the light-cone. The first two terms
of this expansion are [113]

〈0 | T{s(x)s̄(y)} | 0〉 = i

∫
d4k

(2π)4
e−ik·(x−y) /k +ms

k2 −m2
s

− i
1∫

0

du gsGλρ(ux+ (1− u)y)

∫
d4k

(2π)4
e−ik·(x−y) (1− u)(/k +ms)σλρ + uσλρ(/k +ms)

2(k2 −m2
s)

2
,

(3.45)

which are commonly called the two-particle and the three-particle contributions, respectively.
Four-particle contributions are not taken into account, because they are expected to be small
and the related distribution amplitudes do not mix with the three-particle distribution ampli-
tudes [114]. The two-particle contributions to the correlator are

Πµν(q, k)

∣∣∣∣
2p
≡
∫

d4x

∫
d4p′ eix·(k−p

′) 〈0| d̄α(x)hβv (0) |B̄(v)〉
[
γνγ5

/p′ +ms

m2
s − p′2

γµ
]
αβ

. (3.46)
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The three-particle ones are

Πµν(q, k)

∣∣∣∣
3p
≡
∫

d4x

∫
d4p′

∫ 1

0
du eix·(k−p

′)

× 〈0| d̄α(x)gsGλρ(ux)hβv (0) |B̄(v)〉
[
γνγ5 S

λρ
3p (u, p′)γµ

]
αβ

, (3.47)

where

Sλρ3p (u, p′) ≡ (1− u)(/p′ +ms)σ
λρ + uσλρ(/p′ +ms)

2(p′2 −m2
s)

2
. (3.48)

The quantities in square brackets in eqs. (3.46)-(3.47) are the hard-scattering kernels, which
represent the short-distance contributions to the correlator.

The non-local B-to-vacuum matrix elements that appear in eqs. (3.46)-(3.47) can be
parametrized in terms of B-meson light-cone distribution amplitudes (B-LCDAs). The B-
LCDAs are ordered by increasing twist, where the twist is defined as the difference between
the dimension and the spin of the operator considered. In other words, going beyond the
leading order in the LCOPE means both including multi-particle contributions and higher
twist B-LCDAs.

In the limit x2 = 0, the two-particle non-local B-to-vacuum matrix element can be
parametrized as

〈0| d̄α(x)hβv (0) |B̄(v)〉 = − ifBmB

4

∫ ∞
0

dω e−iωv·x
{

(1 + /v)

[
φ+(ω) +

1

2
φ̄(ω)γµ∂µ

]
γ5

}βα
,

(3.49)

with
φ̄(ω) ≡

∫ ω

0
dη (φ+(η)− φ−(η)) ,

(3.50)

where the derivative ∂µ ≡ ∂/∂(ωvµ) acts on the hard-scattering kernel. The leading twist
contributions are given by φ+(ω), which has twist two, and φ−(ω), which has twist three. We
will explore the correction that arise releasing the assumption x2 = 0 in the next chapter.
Models for the B-LCDAs of eq. (3.49) can be found in refs. [37, 114]. In this example, we
neglect the three-particle contributions, since they are numerically much smaller than the
two-particle ones as shown in ref. [1] (see subsection 4.1.1).

As in the case of SVZ sum rules, we match the hadronic representation (3.42) onto the
LCOPE result (3.46). We also use the quark hadron-duality approximation and perform
a Borel transform. To extract fB→K+ , we select the part of the correlator proportional to
kµkν , as one could easily guess looking at (3.42), while the Lorentz structure qµkν gives us
fB→K+ + fB→K− . The sum rules for these form factors read [1, 112]

fB→K+ =
mBfB
fK

∫ σ(s0,q2)

0
e
m2
K−s(σ,q

2)

M2

[
1(

m2
Bσ̄

2 +m2
s − q2

)2(2mBσ̄
(
m2
s − q2

)
φ̄

+
(
m2
Bσ̄

2 +m2
s − q2

) (
m2
Bσ̄

2φ− +
(
m2
s − q2

)
φ+

))]
,

(3.51)
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fB→K+ + fB→K− =
mBfB
fK

∫ σ(s0,q2)

0
e
m2
K−s(σ,q

2)

M2

[
− 1

σ̄
(
m2
Bσ̄

2 +m2
s − q2

)2
×mB

((
−m2

Bσ̄
2 +mBmsσ̄ + (2σ − 1)

(
m2
s − q2

)) (
2mBσ̄φ̄

+ φ+

(
m2
Bσ̄

2 +m2
s − q2

) )
+mBσ̄φ−

(
m2
Bσ̄

2 +m2
s − q2

)
(2mBσσ̄ −ms)

)]
,

(3.52)
where the B-LCDAs are functions of ω ≡ σmB and

s(σ, q2) = σm2
B +

m2
s − σq2

σ̄
,

with σ̄ = 1− σ.
We can now evaluate numerically the sum rule (3.51) using the inputs listed in appendix C

and the B-LCDAs models given in ref. [114]. At q2 = 0 and obtain

fB→K+ = fB→K0 = 0.35± 0.08 . (3.53)

We conclude this subsection with a few remarks.

• The uncertainties are estimated in a similar fashion to the SVZ sum rules example of
the previous subsection. However, here one also has to consider the errors due to the
missing higher order corrections in the HQET expansion.

• The biggest uncertainties come from the parameters λB, λ2
H and λ2

E , which appear in the
explicit expressions of the B-LCDAs models. We discuss their values and uncertainties
in appendix C. It is therefore crucial to have a more precise prediction of these quantities
to improve the accuracy of the LCSRs with B-LCDAs.

• The prediction (3.53) differs from the one given in ref. [112], due to the fact that we
neglect the three-particle contributions and we use different numerical inputs. Neverthe-
less, we fully reproduce the analytical results of ref. [112], and we will go beyond them
in chapter 4.

B-meson LCSRs and Light-meson LCSRs The sum rules presented above are com-
monly called B-meson LCSRs, since we started with a B-to-vacuum correlator and then we
used the B-meson light-cone distribution amplitudes. Alternatively, one could also start with
a correlator

Πµν(q, k) ≡ i
∫

d4x eik·x 〈Mlight(q + k)|T{Jµweak(x), Jνint(0)} |0〉 , (3.54)

where Mlight is a light meson, which is a meson that contains only light quarks (e.g. π, ρ,
K(∗), etc.). In this case, to compute the B → K for factors one has to choose

Jµweak = s̄γµb ,

Jνint = b̄γνγ5s .
(3.55)
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The calculation is analogous to the B-meson LCSRs case, except for the fact that to obtain
the hadronic representation, one has to interpolate states with different quantum numbers.
Moreover, the non-perturbative inputs are the non-local Mlight-to-vacuum matrix elements,
which are parametrized in terms of light-meson light-cone distribution amplitudes (see e.g.
refs. [66, 115, 116]).

Historically, the light-meson LCSRs were the first ones to be applied [100, 101], while the
B-meson LCSRs were introduced several years later [111, 112]. In short, the B-meson LCSRs
and light-meson LCSRs differ mostly for the inputs used, since these two methods are based on
the same ideas. Notice that the B → D(∗) and Bs → D

(∗)
s are not accessible with light-meson

LCSRs, since both the intial-state meson and the final-state meson are heavy.

3.3 Dispersive Bounds

Dispersive bounds (or unitarity bounds) are upper bounds on the modulus squared of hadronic
matrix elements. These bounds are derived using a dispersion relation and unitarity, hence
the name. The ispersive bounds method is rather old and was originally applied to kaon
decays [117–120], while in the nineties it was also applied to B-meson decays (see e.g. refs. [10,
121–125]). One of the main results of this thesis is the extension of the dispersive bounds
method to the more general case where the energy of the first branch point, which we call t+,
does not coincide with the threshold of the matrix element considered, which we call tH .

In this section, we review the dispersive bounds in the usual case where t+ = tH , before
studying the case where t+ 6= tH in section 4.2. In order to do this, we will show an example
where we calculate the dispersive bounds for the local B → K matrix elements, i.e. for the
B → K form factors.

We start with defining the correlator

Πµν(q) = i

∫
d4x eiq·x 〈0|T{Jµ(x), Jν,†(0)} |0〉

= (qµqν − q2gµν)Π1−(q2) + qµqνΠ0+(q2) ,

(3.56)

where in this case6

Jµ = s̄ γµb . (3.57)

In analogy with the QCD sum rules, this correlator can be computed using an OPE for
m2
b − q2 � Λ2

QCD, while its imaginary part, which contributes at positive q2, is given by
unitarity relations.

We can then write down the dispersion relation

Π(q2) =
1

π

∫ ∞
0

ds
Im Π(s)

s− q2
(3.58)

and perform n subtractions, i.e. take the n-th order derivative with respect to q2 of this
equation, where n is the lowest order of the derivative that renders the l.h.s. finite. One can

6Notice that 〈K(k)| s̄γµγ5b |B(p)〉 = 0, and hence we do not consider the axial-vector current here.
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show that Π0+ needs only one subtraction, while Π1− needs two subtractions:

χ0+(q2) =
∂

∂q2

(
q2Π0+(q2)

)
=

1

π

∫ ∞
0

ds
s Im Π0+(s)

(s− q2)2
,

χ0+(q2) =
1

2

(
∂

∂q2

)2 (
q2Π1−(q2)

)
=

1

π

∫ ∞
0

ds
s Im Π1−(s)

(s− q2)3
.

(3.59)

The leading order of the OPE at leading order in αs is

χOPE
0+ (0) =

1

8π2
(
m2
b −m2

s

)3
(

12m3
bm

3
s log

(
mb

ms

)

+ (mb −ms)(mb +ms)
(
m2
b − 4mbms +m2

s

) (
m2
b +mbms +m2

s

))
,

(3.60)

χOPE
1− (0) =

1

32π2
(
m2
b −m2

s

)5
(

3m8
b + 4m7

bms − 24m6
bm

2
s + 36m5

bm
3
s − 36m3

bm
5
s

+ 24m2
bm

6
s − 24m3

bm
3
s

(
2m2

b − 3mbms + 2m2
s

)
log

(
mb

ms

)
− 4mbm

7
s − 3m8

s

)
.

(3.61)

This result can be improved by including higher orders in αs and in the OPE (see e.g.
ref. [126]). The hadronic representation, as usual, can be easily obtained using unitarity
relations, that is by inserting a complete set of states between the two currents

Im Πµν(q) = (qµqν − q2gµν) Im Π1−(q2) + qµqν Im Π0+(q2)

=
1

2

∑∫
H

dτH (2π)4δ(4)(pH − q) 〈0|Jµ(0)|H〉 〈H|J†,ν(0)|0〉 , (3.62)

where the sum runs over all the states H(pH) with the allowed quantum numbers, and τH is
the spectral density function.

The lowest energy states that arise in eq. (3.62) are sb̄ bound states and resonances, i.e.
the Bs meson and its exited states. Their contribution to the hadronic representation of the
correlator can be written as

1

π
Im Π1p

JP
(q2) =

∑
i

f2
sb̄(i,JP )δ(q

2 −m2
sb̄(i,JP )) , (3.63)

where the sum runs over all the sb̄(i, JP ) bound states whose masses and decay constants are
known, and hence their contribution can be included in the bounds. In this case there is only
one bound state per spin-parity channel: the Bs for JP = 0− and the B∗s for JP = 1−.

The first two-particle state that appears in eq. (3.62) isH = BK. Using crossing symmetry,
it is possible to express the matrix element 〈0|Jµ(0)|BK〉 in terms of the B → K form factors:

〈0| s̄γµb |B(p)K̄(−k)〉 = 〈K(k)| s̄γµb |B(p)〉 .
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Notice that, even though the physical range of the form factors is from q2 = 0 to q2 =
(mB −mK)2, they can be analytically continued in the whole complex plane, where they are
analytic except for the branch cut on the positive real axis starting at q2 = (mB + mK)2.
Using the definition of the B → K form factors given in eq. (3.33), the imaginary part of ΠBK

JP

reads
1

π
Im ΠBK

0+ (q2) =
(m2

B −m2
K)2λ

1
2

16π2(q2)3
|fB→K0 |2 θ(q2 − (mB +mK)2) ,

1

π
Im ΠBK

1− (q2) =
λ

3
2

48π2(q2)3
|fB→K+ |2 θ(q2 − (mB +mK)2) ,

(3.64)

where λ ≡ λ(m2
B,m

2
K , q

2) is the Källén function, defined as

λ(a, b, c) ≡ a2 + b2 + c2 − 2ab− 2bc− 2ac . (3.65)

The definition of the B → K form factors (3.33) is motivated by the fact that the correlator
can be written as a sum of form factors squared. Thus, we say that the definition (3.33)
“diagonalizes” the hadronic representation of the correlator. This not true in general, since
the alternative definition of the B → K form factor (3.35) does not diagonalize the hadronic
representation of the correlator:

1

π
Im ΠBK

0+ (q2) = θ(q2 − (mB +mK)2)
λ

1
2

16π2(q2)3(
(m2

B −m2
K)4|fB→K+ |2 + (q2)2|fB→K− |2 + 2q2(m2

B −m2
K)2 Re

{
fB→K+ fB→K−

})
.

Plugging the OPE results (3.60)-(3.61) and the hadronic representations (3.64) into the
subtracted dispersion relations (3.59), we finally obtain the dispersive bounds

χOPE
JP (0) >

∑
i

f2
sb̄(i,JP )

(m2
sb̄(i,JP )

)n
+

1

π

∫ ∞
tBK

ds
Im ΠBK

JP
(s)

sn−1
, (3.66)

where tBK ≡ (mB + mK)2 and n is the number of subtractions required. For simplicity,
we have chosen q2 = 0, even though selecting a large negative q2 value would improve
the convergence of the OPE [10]. The dispersive bounds can be made more constrain-
ing including further hadronic states in the hadronic representation of the correlator (e.g.
H = BK, BK∗, B∗K, ΛbΛ), which would give a positive contribution to the r.h.s. of (3.66).
Indeed, the higher the number of states considered, the closer the inequality (3.66) gets to
saturation.

Usually the dispersive bounds (3.66) are used to constrain the form factors, after calculat-
ing χOPE

JP
. The decay constants and the masses of the sb̄ resonances of eq. (3.63) can be taken

from experimental data or lattice QCD calculations.

Dispersive bounds are also particularly useful to constrain the parameters of the so-called
z-expansion. Let us first introduce the map

z =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

, (3.67)
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where t+ is the branch point with the lowest energy and t0 can be arbitrarily chosen in the
open interval (−∞, t+]. In this case we have t+ = tBK = (mB +mK)2, since the branch cut
stating at q2 = (mBs + mπ)2 can be neglected due to its isospin suppression. We study in
detail in section 4.2 the case where t+ does not coincide with the lower bound of the integral
in (3.66). As we will see this has important implications for the formalism that we are going
to present. The choice of t0 determines what q2 point is mapped onto the origin of the z
plane. In practice, t0 is usually chosen in the interval from 0 to t0 = (mB −mK)2, because it
minimises the magnitude of z in the phenomenologically relevant region for the form factors.

After this mapping, eq. (3.66) becomes

χ̃OPE
JP (0) >

1

π

∮
|z|=1

dz
ds(z)
dz

Im ΠBK
JP

(z)

(s(z))n−1
, (3.68)

where

χ̃OPE
JP (0) ≡ χOPE

JP (0)−
∑
i

f2
sb̄(i,JP )

(m2
sb̄(i,JP )

)n
. (3.69)

The integral between tBK and ∞ in the q2 plane is mapped onto the integral over the unit
circle in the z plane. As we have already discussed, the function ΠBK

JP
(q2) has a branch cut

on the real positive axis starting at the branch point q2 = t+. The first Riemann sheet of
ΠBK
JP

(q2) is mapped into the unit disk centred in z = 0, while the second Riemann sheet is
mapped into the exterior of this unit disk.

Expressing the integral of eq. (3.68) in polar coordinates and employing eqs. (3.64), one
obtains

1 >

∫ 2π

0
dα |φ0(s)|2 |fB→K0 (s)|2

∣∣∣∣∣
s≡s(z(α))

,

1 >

∫ 2π

0
dα |φ+(s)|2 |fB→K+ (s)|2

∣∣∣∣∣
s≡s(z(α))

,

(3.70)

where

|φ0(s)|2 =
1

2

1

χ̃OPE
0+ (0)

dz(α)

dα
ds
dz

(m2
B −m2

K)2λ
1
2

16π2s4

∣∣∣∣∣
s≡s(z(α))

,

|φ+(s)|2 =
1

2

1

χ̃OPE
1− (0)

dz(α)

dα
ds
dz

λ
3
2

48π2s5

∣∣∣∣∣
s≡s(z(α))

.

(3.71)

The functions φj are usually called the outer functions. It is important to stress that the
modulus squared |φj |2 has, in general, kinematical singularities (e.g. the outer functions
considered in this example have a pole at s = 0), but the outer functions can (and should) be
defined such that they are not singular inside the unit disk and on the integration contour,
i.e. the unit circle.

Besides these kinematical singularities, one also has to remove the dynamical singularities
of the hadronic matrix elements that appear in the dispersion relation. In fact, the form
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factors have poles due to sb̄ resonances below the branch cut. To remove them, it is sufficient
to multiply each form factor fB→Kj by the so-called Blaschke factors

BJP ≡
∏
i

z − zi,JP
1− zzi,JP

, (3.72)

which have zeros at the positions of such poles and have the modulus squared equal to one.
Here zi,JP = z(s = m2

sb̄(i,JP )
) is the location of the sb̄ poles inside the unit disk. We can now

define the function

f̂B→Kj (z) ≡ φj(z)BJP (z)fB→Kj (z) , (3.73)

which is analytic inside the unit disk. Being analytic, f̂B→Kj (z) can be Taylor expanded
around z = 0:

f̂B→Kj (z) =
∞∑
k=0

aj,kz
k . (3.74)

Even though this series is convergent (at least inside the unit disk), it is not possible to
estimate the error that arises from cutting the series at some finite order. This is where the
dispersive bounds in the form (3.70) come into play. Using the fact that the positive powers
of z form an orthonormal basis on the unit circle, we can plug eq. (3.74) into (3.70) obtaining

∞∑
k=0

|a+,k|2 < 1 ,

∞∑
k=0

|a0,k|2 < 1 .

(3.75)

In the case where more form factors appear in the same spin parity channel, one also has to
sum over the different form factors.

In this section, we have shown how the dispersive bounds allow to put an upper bound
on the size of higher order terms in the Taylor series (3.74), when one cuts it at some finite
order. Considering the first two or three terms of the series is usually sufficient for most of
the applications (see e.g. ref. [126]).

The dispersive bounds (3.75) are commonly known as weak dispersive bounds, to distinguish
them from the strong dispersive bounds proposed in ref. [10], where also HQET is exploited
to connect the various spin parity channels (see ref. [52]). In this work, we employ both the
weak dispersive bounds in the general case where t+ 6= tH and the strong dispersive bounds
to constrain the B(s) → D

(∗)
(s) form factors.
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Chapter 4

New Results for Hadronic Matrix Elements
and Phenomenological Implications

In this last chapter we present our results, both the ones that are already published [1, 2]
and those that are not public yet [3]. We begin with our new analytical results for the
LCSRs to calculate the meson form factors and the soft-gluon contribution to the charm-loop
in B → K(∗)``. Next, we evaluate numerically our LCSRs, to obtain predictions for the
corresponding matrix elements. We then formulate dispersive bounds for the case where non-
negligible subthreshold branch cuts appear. Finally, we extrapolate the form factors in the
whole physically allowed region and study the phenomenological implications of our results,
focusing on the predictions of observables in B(s) → D

(∗)
(s) decays.

4.1 Light-Cone Sum Rules beyond Leading Twist

The light-cone sum rules (LCSRs) allow to calculate both local and non-local hadronic matrix
elements for small values of the momentum transfer q2. On the other hand, lattice QCD
can precisely predict local hadronic matrix elements, especially for large q2 values, while the
computation of non-local hadronic matrix elements is still under study.

In one of our publications [1] and in an ongoing project [3], we revisit the LCSRs to
calculate the form factors (local hadronic matrix elements) in B-meson decays and the soft-
gluon contribution to the charm loop (non-local hadronic matrix elements) in B → K(∗)``
decays. These LCSRs were originally presented in refs. [14, 112, 127], however, the new
results on the B-meson distribution amplitudes (B-LCDAs) of ref. [114] triggered our interest
in recalculating them. The main improvement carried out in ref. [114] regards the three-
particle B-LCDAs, since their complete set as well as their models up to twist four are given
for the first time. The two-particle B-LCDAs, which were previously known up to twist three,
are extended up to twist four as well.

As will show subsection 4.1.3 and in subsection 4.1.4, these improvements have an im-
portant impact on the numerical results, reducing of ∼ 20 − 30% the form factors central
values and making the soft-gluon contribution to the non-local hadronic matrix one order of
magnitude smaller.
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process Jνint Jµweak form factor

B̄0 → π+ d̄γνγ5u
ūγµhv fB→π+ , fB→π+/−
ūσµ{q}hv fB→πT

B̄0 → K̄0 d̄γνγ5s
s̄γµhv fB→K+ , fB→K+/−
s̄σµ{q}hv fB→KT

B̄0 → D+ d̄γνγ5c
c̄γµhv fB→D+ , fB→D+/−
c̄σµ{q}hv fB→DT

B̄0
s → K+ s̄γνγ5u

ūγµhv fB→K+ , fB→K+/−
ūσµ{q}hv fB→KT

B̄0
s → D+

s s̄γνγ5c
c̄γµhv fB→Ds+ , fB→Ds+/−
c̄σµ{q}hv fB→DsT

B̄0 → ρ+ d̄γνu

ūγµhv V B→ρ

ūγµγ5hv AB→ρ0 , AB→ρ1 , AB→ρ2

ūσµ{q}hv TB→ρ1

ūσµ{q}γ5hv TB→ρ2 , TB→ρ3

B̄0 → K̄∗0 d̄γνs

s̄γµhv V B→K∗

s̄γµγ5hv AB→K
∗

0 , AB→K
∗

1 , AB→K
∗

2

s̄σµ{q}hv TB→K
∗

1

s̄σµ{q}γ5hv TB→K
∗

2 , TB→K
∗

3

B̄0 → D∗+ d̄γνc

c̄γµhv V B→D∗

c̄γµγ5hv AB→D
∗

0 , AB→D
∗

1 , AB→D
∗

2

c̄σµ{q}hv TB→D
∗

1

c̄σµ{q}γ5hv TB→D
∗

2 , TB→D
∗

3

B̄0
s → K+ s̄γνu

ūγµhv V B→K∗

ūγµγ5hv AB→K
∗

0 , AB→K
∗

1 , AB→K
∗

2

ūσµ{q}hv TB→K
∗

1

ūσµ{q}γ5hv TB→K
∗

2 , TB→K
∗

3

B̄0
s → φ s̄γνs

s̄γµhv V B→φ

s̄γµγ5hv AB→φ0 , AB→φ1 , AB→φ2

s̄σµ{q}hv TB→φ1

s̄σµ{q}γ5hv TB→φ2 , TB→φ3

B̄0
s → D∗+s s̄γνc

c̄γµhv V B→D∗s

c̄γµγ5hv A
B→D∗s
0 , A

B→D∗s
1 , A

B→D∗s
2

c̄σµ{q}hv T
B→D∗s
1

c̄σµ{q}γ5hv T
B→D∗s
2 , T

B→D∗s
3

Table 4.1: List of the processes for which we determine the form factors. The
currents Jνint and J

µ
weak are listed as well. We abbreviate σµ{q} ≡ σµνqν .
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4.1.1 Analytical Results for the Form Factor LCSRs

In subsection 3.2.2 we computed the B → K form factors using a LCSR. In that introduc-
tory example we considered only the two-particle contributions up to twist three, while we
neglected the three-particle contributions. Here, we both include the twist four two-particle
contributions and the full set of three-particle B-LCDAs for the transitions listed in table 4.1.

As usual, the first step to compute a sum rule is to define a correlator so that we can
extract the desired matrix elements. In this case, we define

Πµν(q, k) ≡ i
∫

d4x eik·x 〈0|T{Jνint(x), Jµweak(0)} |B̄q2(q + k)〉 , (4.1)

where Jνint ≡ q̄2Γν2q1 and Jµweak ≡ q̄1Γµ1hv. The explicit form of these quark currents for the
considered transitions is given in table 4.1. By inserting a complete set of hadronic states in
the correlator (4.1) we obtain the hadronic dispersion relation

Πµν(q, k) =
〈0| Jνint(x) |M(k)〉 〈M(k)| Jµweak(0) |B̄q2(q + k)〉

m2
M − k2

+
1

π

∫ ∞
sh

ds
τµν(s)

s− k2
. (4.2)

Here, τµν(s) is the spectral density function, which encodes the information about the contin-
uum as well as the exited states, and sh is the continuum states threshold. The local hadronic
matrix elements in eq. (4.2) can be expressed in terms of decay constants and form factors
using the following definitions:

〈0| q̄2γ
νγ5q1 |P (k)〉 = ikνfP , (4.3)

〈0| q̄2γ
νq1 |V (k, η)〉 = iηνmV fV , (4.4)

〈P (k)| q̄1γ
µb |B(p)〉 =

[
(p+ k)µ − m2

B −m2
P

q2
qµ
]
fB→P+

+
m2
B −m2

P

q2
qµ fB→P0 , (4.5)

〈P (k)| q̄1σ
µν qνb |B(p)〉 =

ifB→PT

mB +mP

[
q2 (p+ k)µ − (m2

B −m2
P ) qµ

]
, (4.6)

〈V (k, η)| q̄1γ
µb |B(p)〉 = εµνρση∗νpρkσ

2V B→V

mB +mV
, (4.7)

〈V (k, η)| q̄1γ
µγ5b |B(p)〉 = iη∗ν

[
gµν(mB +mV )AB→V1 − (p+ k)µqν

mB +mV
AB→V2

− qµqν 2mV

q2

(
AB→V3 −AB→V0

) ]
, (4.8)

〈V (k, η)| q̄1iσ
µν qνb |B(p)〉 = 2εµνρση∗νpρkσT

B→V
1 , (4.9)

〈V (k, η)| q̄1iσ
µν qνγ5b |B(p)〉 = iη∗ν

[ (
gµν(m2

B −m2
V )− (p+ k)µqν

)
TB→V2

+ qν
(
qµ − q2

m2
B −m2

V

(p+ k)µ
)
TB→V3

]
. (4.10)
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(a) (b)

Figure 4.1: The two- and the three-particle contributions to the correlator.

Here P denotes a pseudoscalar meson and V denotes a vector meson with polarisation vector
ην . The momentum transfer is defined as qµ ≡ pµ− kµ. In eq. (4.9), the form factor AB→V3 is
redundant, since it can be expressed in terms of AB→V1 and AB→V2 as1

AB→V3 =
mB +mV

2mV
AB→V1 − mB −mV

2mV
AB→V2 . (4.11)

Having obtained the hadronic dispersion relation, we now need to perform a light-cone
OPE (LCOPE) of the correlator (4.1). As in subsection 3.2.2, we first expand the correlator
in HQET and then for light-cone distances x2 ∼ 0. In momentum space, the light-cone
expansion can be applied for [91, 112]

q2 < mb

(
mb +

k2

Λ̄

)
, (4.12)

with −k2, −q2
res � ΛQCD and qµ = mbv

µ + qµres . Retaining terms up to next-to-leading order
in the LCOPE, we obtain

Πµν(q, k) =

∫
d4x

∫
d4p′ ei(k−p

′)·x
[
Γν2

/p′ +m1

m2
1 − p′2

Γµ1

]
αβ

〈0| q̄α2 (x)hβv (0) |B̄q2(v)〉

+

∫
d4x

∫
d4p′

∫ 1

0
du ei(k−p

′)·x
[

Γν2
(1− u)(/p′ +m1)σλρ + uσλρ(/p′ +m1)

2(p′2 −m2
1)2

Γµ1

]
αβ

× 〈0| q̄α2 (x)gsGλρ(ux)hβv (0) |B̄q2(v)〉 , (4.13)

which are the two- and the three-particle contributions to the correlator, respectively. These
two contributions are illustrated schematically in figure 4.1. In eq. (4.13), α and β are spinor
indices, and m1 is the mass of the virtual quark q1. We do not include αs corrections to
the hard-scattering kernel, which have only been considered in the framework of SCET LC-
SRs [128–131] so far. The calculation of the αs corrections in our framework is left for a future
work.

The non-local B-to-vacuum matrix elements of eq. (4.13) can be expressed in terms of
B-LCDAs. In eq. (3.49), we parametrized the two-particle B-to-vacuum matrix element in

1See appendix B for a more detailed discussion of the form factors and the derivation of eq. (4.11).

56



the limit x2 = 0. If x2 is non-zero but still small (i.e. |x2| � 1/ΛQCD), off-light-contributions
arise in the form

φ(v · x)→ φ(v · x) + x2g(v · x) +O
(
x4
)

(4.14)

in position space. Including O
(
x2
)
, eq. (3.49) becomes [114]

〈0| q̄α2 (x)hβv (0) |B̄(v)〉 =

− ifBmB

4

∫ ∞
0

dω e−iωv·x
{

(1 + /v)

[
φ+(ω)− g+(ω)∂σ∂

σ

+

(
φ̄(ω)

2
− ḡ(ω)

2
∂σ∂

σ

)
γµ∂µ

]
γ5

}βα
(4.15)

in momentum space. Here, we have abbreviated

φ̄(ω) ≡
∫ ω

0
dη (φ+(η)− φ−(η)) ,

ḡ(ω) ≡
∫ ω

0
dη (g+(η)− g−(η)) .

(4.16)

The derivative ∂µ ≡ ∂/∂lµ, with lµ = ωvµ, is understood to act on the hard-scattering kernel.
Since φ+(ω) and φ−(ω) are twist two and three, respectively (see subsection 3.2.2), eq. (4.14)
implies that g+(ω) and g−(ω) are twist four and five.

Although models for B-LCDAs are known up to twist four and g−(ω) is a genuine twist
five contribution, we include it in our results using the Wandzura-Wilcek approximation. This
approximation consists in neglecting the three-particle contributions in the equation of motion
of g−(ω), which is given in ref. [114], and it allows to express g−(ω) in terms of φ+(ω) and
φ−(ω). It is important to include the contribution of g−(ω) because is expected to be of the
same order of magnitude of g+(ω). In fact, the twist suppression occurs every two units of
twist, as one can infer from eq. (4.14), where higher twists are suppressed by additional powers
of ΛQCD/mb. Moreover, these contributions of g+(ω) and g−(ω) partially cancel each other,
as one can see from eq. (4.16). This reduces the impact of the off-light-cone corrections. We
will explicitly observe this cancellation in the next subsection, where we present the numerical
results for the individual contributions of the two-particle B-LCDAs in table 4.2.

The complete decomposition of the three-particle non-local B-to-vacuum matrix element
in independent Lorentz structures reads [114]

〈0|q̄α2 (x)gsGµν(ux)hβv (0) |B̄q2(v)〉 =

=
fBmB

4

∫ ∞
0

dω1

∫ ∞
0

dω2 e
−i(ω1+uω2) v·x

{
(1 + /v)

[
(vµγν − vνγµ)[ψA − ψV ]− iσµνψV

+ (∂µvν − ∂νvµ)XA − (∂µγν − ∂νγµ)[W + Y A] + iεµναβ∂
αvβγ5X̃A

− iεµναβ∂αγβγ5Ỹ A − u(∂µvν − ∂νvµ)/∂W + u(∂µγν − ∂νγµ)/∂Z

]
γ5

}βα
(ω1, ω2) . (4.17)
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Here, a gauge link is implied between the fields, and the derivatives are abbreviated as ∂µ ≡
∂/∂lµ, with lµ = (ω1 + uω2)vµ. Throughout, these derivatives are understood to act only on
the hard-scattering kernel. In addition, we used the following shorthand notation

ψ3p(ω1, ω2) ≡
∫ ω1

0
dη1 ψ3p(η1, ω2) ,

ψ3p(ω1, ω2) ≡
∫ ω1

0
dη1

∫ ω2

0
dη2 ψ3p(η1, η2) ,

(4.18)

where ψ3p represents any of the three-particle B-LCDAs.
The B-LCDAs of eq. (4.17) do not have definite twist. However, in ref. [114] a basis of

three-particle B-LCDAs with definite twist was introduced, and they relate to the ones of
eq. (4.17) as

φ3(ω1, ω2) = [ψA − ψV ](ω1, ω2) ,

φ4(ω1, ω2) = [ψA + ψV ](ω1, ω2) ,

ψ4(ω1, ω2) = [ψA +XA](ω1, ω2) ,

χ4(ω1, ω2) = [ψV − X̃A](ω1, ω2) ,

φ̃5(ω1, ω2) = [ψA + ψV + 2YA − 2ỸA + 2W ](ω1, ω2) ,

ψ5(ω1, ω2) = [−ψA +XA − 2YA](ω1, ω2) ,

χ5(ω1, ω2) = [−ψV − X̃A + 2ỸA](ω1, ω2) ,

φ6(ω1, ω2) = [ψA − ψV + 2YA + 2ỸA + 2W − 4Z](ω1, ω2) ,

(4.19)

where the subscripts 3, 4, 5, 6 indicate the twist of the respective B-LCDA. Note that we
adopt the same nomenclature for the LCDAs as in ref. [114], except for renaming ψ̃4,5 → χ4,5.
Inverting the relations (4.19), we obtain

ψA =
1

2
[φ3 + φ4](ω1, ω2) ,

ψV =
1

2
[−φ3 + φ4](ω1, ω2) ,

XA =
1

2
[−φ3 − φ4 + 2ψ4](ω1, ω2) ,

YA =
1

2
[−φ3 − φ4 + ψ4 − ψ5](ω1, ω2) ,

X̃A =
1

2
[−φ3 + φ4 − 2χ4](ω1, ω2) ,

ỸA =
1

2
[−φ3 + φ4 − χ4 + χ5](ω1, ω2) ,

W =
1

2
[φ4 − ψ4 − χ4 + φ̃5 + ψ5 + χ5](ω1, ω2) ,

Z =
1

4
[−φ3 + φ4 − 2χ4 + φ̃5 + 2χ5 − φ6](ω1, ω2) .

(4.20)
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These equalities can be plugged in eq. (4.17), allowing us to compute the three-particle con-
tributions in a sum rule for each level of twist.

In order to evaluate a LCSR numerically, one needs to model the B-LCDAs. The modelling
of the B-LCDAs is a broad topic, which has been extensively discussed in the literature (see
e.g. refs. [114, 132–134]). Here, we just want to point out that this model dependence is
negligible compared to the parametric uncertainties that presently enter into a LCSR [135].
For our numerical evaluations we use the “Model I: Exponential” for B-LCDAs up to twist
four given in ref. [114].

Notice also that the three-particle B-LCDA with the lowest twist is φ3, which has twist
three. Hence, we do not need to take into account the off-light-cone three-particle contri-
butions, since they only start at twist five. We emphasise that there are eight independent
three-particle B-LCDAs, as pointed out in ref. [114], while in refs. [14, 112, 127] a basis with
only four B-LCDAs is used. This is particularly important in the calculation of soft-gluon
contribution to the charm loop (see the next subsection), where the leading contribution in the
LCOPE comes from the three-particle B-LCDAs, while the two-particle contribution is absent.

We can now match the hadronic representation of the correlator (4.2) onto the LCOPE
result (4.13) using a dispersion relation:

〈0| Jνint(x) |M(k)〉 〈M(k)| Jµweak(0) |B̄q2(q + k)〉
m2
M − k2

+
1

π

∫ ∞
sh

ds
τµν(s)

s− k2

=

∫
d4x

∫
d4p′ ei(k−p

′)·x
[
Γν2

/p′ +m1

m2
1 − p′2

Γµ1

]
αβ

〈0| q̄α2 (x)hβv (0) |B̄q2(v)〉

+

∫
d4x

∫
d4p′

∫ 1

0
du ei(k−p

′)·x
[

Γν2
(1− u)(/p′ +m1)σλρ + uσλρ(/p′ +m1)

2(p′2 −m2
1)2

Γµ1

]
αβ

× 〈0| q̄α2 (x)gsGλρ(ux)hβv (0) |B̄q2(v)〉 . (4.21)

The hadronic matrix elements in this equation are defined by eqs. (4.3)-(4.10) and eqs. (4.15)-
(4.17).

To isolate the contribution of a single form factor in the dispersion relation (4.21), one has
to select a suitable Lorentz structure. For convenience, we define the following combinations
of form factors

fB→P+/− ≡ fB→P+ + fB→P− , (4.22)

AB→V30 ≡ AB→V3 −AB→V0 , (4.23)

TB→V23A ≡ TB→V2 +
q2

m2
B −m2

V

TB→V3 , (4.24)

TB→V23B ≡ 1

2
TB→V2 +

1

2

(
q2

m2
B −m2

V

− 1

)
TB→V3 , (4.25)

with

fB→P0 = fB→P+ +
q2

m2
B −m2

P

fB→P− . (4.26)
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Our analytical results are presented in the basis

fB→P+ , fB→P+/− , fB→PT , (4.27)

for B → P form factors and

V B→V , AB→V1 , AB→V2 , AB→V30 , TB→V1 , TB→V23A , TB→V23B , (4.28)

for B → V form factors.
The form factors fB→P+ and fB→P+/− are extracted by selecting the Lorentz structures kµkν

and qµkν in the dispersion relation (4.21), respectively. To extract fB→PT , one can use both
kµkν and qµkν . We choose qµkν for an easier comparison with the analytical results of
ref. [112]. We also verified that the difference between the numerical results obtained us-
ing kµkν and qµkν is negligible.
It is straightforward to isolate the contribution of V B→V , AB→V1 , and AB→V2 by selecting the
Lorentz structures εµν{k}{q}, gµν , and kµqν , respectively. The extraction of AB→V30 requires a
simple trick, since there is no Lorentz structure that allows to obtain only AB→V30 . It consists
in performing the change of variables kµ → (rµ− qµ)/2 and then simply taking the terms pro-
portional to qµqν . The contribution of TB→V1 , TB→V23A , and TB→V23B is given by the structures
εµν{k}{q}, kµqν , and qµqν , respectively.

In order to get rid of the contributions of the exited and continuum states in eq. (4.21), we
exploit the semi-global quark-hadron duality approximation (see subsection 3.1.3). We also
perform a Borel transform to further suppress the contribution of these states (see chapter 3).
The resulting sum rule can be written as

F =
fBmB

K(F )

4∑
n=1

{
(−1)n

∫ σ0

0
dσ e

m2
P,V −s(σ,q

2)

M2
1

(n− 1)!(M2)n−1
I(F )
n (σ, q2)

−
[

(−1)n−1

(n− 1)!
e
m2
P,V −s(σ,q

2)

M2

n−1∑
j=1

1

(M2)n−j−1

1

s′

(
d
dσ

1

s′

)j−1

I(F )
n (σ, q2)

]
σ=σ0

}
, (4.29)

where F is one of the form factors listed in eqs. (4.27)-(4.28). In eq. (4.29), we abbreviate

σ̄ ≡ 1− σ , s(σ, q2) ≡ σm2
B +

m2
1 − σq2

σ̄
,

s′(σ, q2) ≡ ds(σ, q2)

dσ
, σ0 ≡ σ(s0, q

2) ,

where σ(s, q2) is the inverse function of s(σ, q2). We also use the following notation for the
differential operator(

d
dσ

1

s′

)n
I(F )
n (σ, q2) ≡

(
d
dσ

1

s′

(
d
dσ

1

s′
. . . I(F )

n (σ, q2)

))
.

The coefficient functions I(F )
n can be written in the following form

I(F, 2p)
n (σ, q2) =

1

σ̄n

∑
ψ2p

C
(F,ψ2p)
n (σ, q2)ψ2p(σmB), ψ2p = φ+, φ̄, g+, ḡ, (4.30)
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I(F, 3p)
n (σ, q2) =

1

σ̄n

σmB∫
0

dω1

∞∫
σmB−ω1

dω2

ω2

∑
ψ3p

C
(F,ψ3p)
n (σ, u, q2)ψ3p(ω1, ω2)

∣∣∣∣∣
u=(σmB−ω1)/ω2

,

ψ3p = φ3, φ4, ψ4, χ4, (4.31)

with σ = ω/mB in eq. (4.30) and σ = (ω1 + uω2)/mB in eq. (4.31). The coefficients C(F,ψ) as
well as the normalisation factors K(F ) of eq. (4.29) are listed in appendix D.

Oue results are full agreement with the two-particle contributions considered in ref. [112].
We also find agreement with the three-particle contributions of ref. [112], even though these
results are incomplete since only four out of eight three-particles B-LCDAs were considered.
We then provide for the first time the analytical results for the two-particle contributions up
to twist four and of the three-particle contributions using the full set of B-LCDAs correctly
expanded in units of twists. The numerical impact of our analytical results is assessed in
subsection 4.1.3, while in the next subsection we discuss the effective threshold determination.

4.1.2 Effective Threshold Determination

The effective threshold s0 is a non-perturbative input parameter that enters in every sum
rule. Considering the case of our form factor LCSR, the effective threshold can be computed
in two different ways. The first consists in using an SVZ sum rule, which is calculated from
the vacuum-to-vacuum correlator of the interpolating current and its Hermitian conjugate:

Πµν(q) = i

∫
d4x eiq·x 〈0|T{Jµint(x), Jν,†int (0)} |0〉 .

All the parameters of the resulting sum rule are taken as external inputs except for s0, which
can then be extracted.

The second way uses a “daughter” LCSR [136], which is a sum rule derived from the LCSR
for the form factors (4.29). This method consists in multiplying eq. (4.29) by e−m

2
P,V /M

2

,
obtaining schematically

F e−
m2
P,V

M2 =

∫ σ0

0
dσ e−

s(σ,q2)

M2 J (F )(σ, q2,M2)− e−
s(σ0,q

2)

M2 G(F )(σ0, q
2,M2) , (4.32)

and then taking the derivative of this equation with respect to −1/M2. The ratio of this
derivative to eq. (4.32) yields

m2
P,V =

d
d(−1/M2)

(∫ σ0

0 dσ e−
s(σ,q2)

M2 J (F )(σ, q2,M2)− e−
s(σ0,q

2)

M2 G(F )(σ0, q
2,M2)

)
∫ σ0

0 dσ e−
s(σ,q2)

M2 J (F )(σ, q2,M2)− e−
s(σ0,q

2)

M2 G(F )(σ0, q2,M2)

. (4.33)

All the quantities in this equation are known except for s0, which can now be extracted.
We prefer to use the method of the daughter sum rule to compute the effective thresholds

of our LCSRs, since eq. (4.33) is a strong constraint that every LCSR should fulfil. Also,
the effective threshold calculated with an SVZ sum rule might be slightly different from the
effective threshold of the corresponding LCSR, and these differences require further investi-
gation. For the B → π, B → ρ, and B → K transition we do not employ the daughter sum
rule method and we use the same effective thresholds of ref. [112], which are computed with
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an SVZ sum rule. This choice is motivated by the fact that the daughter sum rule (4.33) is
not able to reproduce the masses of the π, ρ and K mesons for reasonable values of s0. This
might be due to large corrections that are not included in our calculation (αs corrections,
higher twist, 1/mb corrections, etc.), which can substantially change the ratio in eq. (4.33).
One could also argue that the π and K mesons are pseudo-Goldstone bosons, whose masses
are generated dynamically through the breaking of the chiral symmetry. A deeper study of
this issue is left for a future work.

The values of the effective thresholds used in our numerical analysis are listed in ap-
pendix C.

4.1.3 Numerical Results for the Form Factor LCSRs

All the inputs used in our analysis are listed in appendix C. Before we present our numerical
results, we briefly discuss the Borel parameter M2. As we have seen in the previous chapter,
one has to look for a range of values where the Borel parameter is neither too large, so that
the continuum and exited states are sufficiently suppressed, nor too small, so that higher
order terms in the LCOPE are not enhanced. In addition, one has to check if the sum rule
is sufficiently stable within such a Borel window, i.e. if it is constant with respect to M2 or
it only mildly depends on it. If such a Borel window exists, the parameter M2 has to be
varied within it. We then assign the following systematic uncertainties to take into account
this fictitious dependence on M2 of the form factors:

B →π : 15% , B →ρ : 12% ,

B →K : 8% , B →K∗ : 5% ,

B →D(∗) : 3% , Bs →D(∗)
s : 9% .

(4.34)

The values of the Borel parameter used in this work can be found in appendix C as well.

In order to propagate the parametric uncertainties to the final result, we carry our nu-
merical analysis in the Bayesian framework. We then add in quadrature these uncertain-
ties with the systematic uncertainties of eq. (4.34). All our analytical results are part of
the EOS software [137]. We predict the form factors at five different q2 points, namely
for q2 = {−15,−10,−5, 0,+5}GeV2. For the final states D and D∗, we discard the point
q2 = +5 GeV2, since we observed that the LCSRs in these cases becomes unstable for pos-
itive values of q2. This could be expected from the condition (4.12), which becomes more
constraining for heavier final states. The form factor values at negative q2, even though they
have no physical meaning, are useful additional inputs when fitting to a parametrization, as
we will show in subsection 4.3.2. In fact, form factors are analytic functions of q2, and they
are well defined the whole complex q2 plane, except for the singularities on the real positive
axis (see chapter 3).

We show the individual contributions of the various B-LCDAs at q2 = 0 to our form factor
results in table 4.2. As expected, the two-particle leading and next-to-leading twist (i.e. φ+

and φ−) contributions are dominant, while the magnitude of the g+ and gWW
− contributions

is ∼ [20, 30]% of the leading ones. Notice also that the sum of the g+ and gWW
− contributions

always decreases the form factors central values. We conclude that the twist expansion seems
to converge, although this convergence is slower than for the LCSRs with light-meson light-
cone distribution amplitudes (see e.g. ref. [138]).
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2 pt.

form factor φ± g+ gWW
− 3-pt. [10−2]

fB→π+ 0.28 +0.00 −0.06 −0.00

fB→πT 0.25 +0.01 −0.07 −0.29

fB→K+ 0.35 +0.00 −0.08 −0.01

fB→KT 0.33 +0.02 −0.09 −0.37

fB→D+ 0.84 +0.02 −0.21 −0.03

fB→DT 0.65 +0.33 −0.41 −0.52

AB→ρ1 0.28 −0.08 +0.01 −0.19

AB→ρ12 0.31 +0.01 −0.07 −0.10

V B→ρ 0.37 −0.11 −0.00 −0.34

TB→ρ1 0.32 −0.09 +0.01 −0.25

TB→ρ23 0.69 +0.07 −0.18 −0.96

AB→K
∗

1 0.33 −0.08 +0.01 −0.21

AB→K
∗

12 0.26 +0.01 −0.05 −0.06

V B→K∗ 0.44 −0.12 −0.00 −0.38

TB→K
∗

1 0.37 −0.10 +0.01 −0.28

TB→K
∗

23 0.68 +0.04 −0.14 −0.84

AB→D
∗

1 0.73 −0.17 +0.04 −0.10

AB→D
∗

12 0.21 +0.01 −0.03 −0.01

V B→D∗ 1.02 −0.29 −0.04 −0.38

TB→D
∗

1 0.83 −0.21 +0.01 −0.19

TB→D
∗

23 0.88 +0.08 −0.15 −0.37

Table 4.2: Contributions of φ±, g+, gWW
− , and the three-particle B-LCDAs at

q2 = 0 to our LCSR results for the form factors.

As shown in table 4.2, the three-particle contributions are extremely small, especially when
compared to the results found in refs. [112, 127]. This is due to three reasons:

• The independent three-particle B-LCDAs are eight [114], while in refs. [112, 127] only
four of them were considered. Moreover, we find that the contribution of the four B-
LCDAs of refs. [112, 127] partially cancel with the four new ones introduced in ref. [114].
This cancellation is independent of choice of the B-LCDA model. Hence, it is crucial to
consider the full set of three-particle B-LCDAs.

• In order to consistently truncate the twist expansion, one has to express the three-
particle B-LCDAs of eq. (4.17) in terms of B-LCDAs with definite twist, using the
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relations (4.20). This step was not carried out in refs. [112, 127].

• The values of the parameters λ2
B,H and λ2

B,E used in [112, 127] are substantially larger
than the predictions of ref. [139], which we use. These parameters enter the normalisation
of the B-LCDAs. More details are given in appendix C.

In total, all these differences make our three-particle contributions two orders of magnitude
smaller than in refs. [112, 127]. We observe the same effect in the LCSR for the soft-gluon
contribution to the charm loop, which we discuss in the next subsection.

Our results including uncertainty for the B → π,K,D and B → ρ,K∗, D∗ form factors at
q2 = 0 are shown in table 4.3, where we also compare our results with other LCSR calculations.
These calculations were done with both B-meson and light-meson LCSRs2. Usually, the light-
meson LCSRs have smaller uncertainties than the B-meson LCSRs, since the light-meson
light-cone distribution amplitudes and the respective inputs are better known than the B-
LCDAs. Nevertheless, the B-meson LCSRs are very useful for mainly two reasons. First, to
have additional independent results to compare and combine with light-meson LCSRs results.
Second, the calculation of heavy-to-heavy form factors, like the B(s) → D

(∗)
(s) form factors, are

clearly not accessible with light-meson LCSRs.
The calculation of the form factors for Bs decays differs only in the inputs used with

respect to the calculation of the form factors for B decays. The most critical input is the first
inverse moment 1/λBs,+ of the B-LCDA φ+(ω). The procedure to estimate it is described in
appendix C.

All our LCSRs results for the B → π, ρ,K(∗), D(∗) and Bs → D
(∗)
s form factors are pub-

lished as part the EOS software [137]. The constraints are accessible under the names

B->pi::FormFactors[f_+,f_0,f_T]@GKvD2018
B->rho::FormFactors[V,A_0,A_1,A_2,T_1,T_2,T_23]@GKvD2018
B->K::FormFactors[f_+,f_0,f_T]@GKvD2018
B->K^*::FormFactors[V,A_0,A_1,A_2,T_1,T_2,T_23]@GKvD2018
B->D^(*)::FormFactors[f_+,f_0,f_T,V,A_0,A_1,A_2,T_1,T_2,T_23]@GKvD2018
B_s->D_s^(*)::FormFactors[f_+,f_0,f_T,V,A_0,A_1,A_2,T_1,T_2,T_23]@BGJvD2019

The numerical results for the Bs → φ form factors will be published in ref. [3].

4.1.4 Soft-gluon Contribution to the Charm Loop with LCSRs

The decay amplitude of the B → K(∗)`` decays can be decomposed as

A(B → K(∗)`+`−) =
GF αe V

∗
tsVtb√

2π

[
(C9 L

µ
V + C10 L

µ
A) Fµ −

LµV
q2

{
2imbC7FTµ +Hµ

}]
,

(4.35)

where LµV (A) ≡ ū`(q1)γµ(γ5)v`(q2). We also defined the local hadronic matrix elements

Fµ = 〈K(∗)(k)|s̄γµPL b|B(q + k)〉 , FTµ = 〈K(∗)(k)|s̄σµνqνPR b|B(q + k)〉 (4.36)

2The differences between theB-meson and light-meson LCSRs are summarised at the end of subsection 3.2.2.
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form factor our result literature reference

fB→π+ 0.21± 0.07

0.258± 0.031 [115]

0.25± 0.05 [112]

0.28± 0.05 [140]

0.31± 0.02 [136]

0.281± 0.038 [130]

0.301± 0.023 [141]

fB→πT 0.19± 0.06

0.253± 0.028 [115]

0.21± 0.04 [112]

0.273± 0.021 [141]

0.26± 0.06 [142]

fB→K+ 0.27± 0.08

0.331± 0.041 [115]

0.31± 0.04 [112]

0.395± 0.033 [141]

0.364± 0.05 [142]

fB→KT 0.25± 0.07

0.358± 0.037 [115]

0.27± 0.04 [112]

0.381± 0.027 [141]

0.363± 0.08 [142]

fB→D+ 0.65± 0.08
0.69± 0.2 [127]

0.673± 0.063 [131]

fB→DT 0.57± 0.05 — —

AB→ρ1 0.22± 0.10
0.24± 0.08 [112]

0.262± 0.026 [66]

AB→ρ2 0.19± 0.11 0.21± 0.09 [112]

V B→ρ 0.27± 0.14
0.32± 0.10 [112]

0.327± 0.031 [66]

TB→ρ1 0.24± 0.12
0.28± 0.09 [112]

0.272± 0.026 [66]

TB→ρ23 0.56± 0.15 0.747± 0.076 [66]

AB→K
∗

1 0.26± 0.08
0.30± 0.08 [112]

0.269± 0.029 [66]

AB→K
∗

2 0.24± 0.09 0.26± 0.08 [112]

V B→K∗ 0.33± 0.11
0.39± 0.11 [112]

0.341± 0.036 [66]

TB→K
∗

1 0.29± 0.10
0.33± 0.10 [112]

0.282± 0.031 [66]

TB→K
∗

23 0.58± 0.13 0.668± 0.083 [66]

AB→D
∗

1 0.60± 0.09 0.73± 0.19 [127]

AB→D
∗

2 0.51± 0.09 0.66± 0.30 [127]

V B→D∗ 0.69± 0.13 0.96± 0.29 [127]

TB→D
∗

1 0.63± 0.10 — —

TB→D
∗

23 0.81± 0.11 — —

Table 4.3: Our results for the form factors at q2 = 0 compared with other
LCSR calculations in the literature. Our results are in good agreement with the
previous calculations, also due to the large uncertainties of these results.
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and the non-local hadronic matrix elements

Hµ(q, k) = i

∫
d4x eiq·x 〈K(∗)(k)|T

{
Jµcc(x), (C1O

c
1 + C2O

c
2) (0)

}
|B(q + k)〉 , (4.37)

with the electromagnetic current Jµcc = c̄γµc. The WET operators Oi and the respective
Wilson coefficients Ci were introduced in section 2.2. In writing eq. (4.35), we have neglected
several contributions that are strongly numerically suppressed in the SM (see e.g. ref. [143]
for more details).

The local matrix elements Fµ and FTµ are parametrized by the B → K(∗) form factors,
which we calculated in subsection 4.1.1. The most important non-local contributions are gen-
erated by the current-current operators Oc1,2 contacted with the electromagnetic current Jµcc,
which are contained in the definition of the non-local matrix elementsHµ. These contributions
are commonly called charm-loop effects.

To calculate Hµ it is possible to use both a local OPE and a light-cone OPE (LCOPE). In
fact, for |q2| ∼ m2

b the integral of eq. (4.37) is dominated by short distances x ∼ 1/m2
b and a

local OPE for Hµ can be performed [143, 144]. On the other hand, for q2 � 4m2
c the integral

of eq. (4.37) is dominated by light-like distances x2 ∼ 1/(4m2
c − q2), which allows to perform

a LCOPE [14].
The leading order term of the local OPE and of the LCOPE are identical and they read

Hfact
µ (q, k) =

3

32π2
(3C1 + C2)

[(
qµqρ − q2gµρ

)
g(9)(q2)Fρ + 2imb g

(7)(q2)FTµ
]
. (4.38)

These contributions, illustrated in figure 4.2(a), are called factorisable in ref. [33], since they
can be written as a B → K(∗) form factor multiplied by the Wilson coefficients g(7) and g(9).
Like all the Wilson coefficients, g(7) and g(9) can be computed carrying out the perturbative
calculation and then performing the matching. At leading order in αs, one finds (see e.g.
refs. [14, 145])

g
(7)
LO(q2) = 0 , (4.39)

g
(9)
LO(q2) = −8

9
ln

(
mc

mb

)
+

8

27
+

4

9
y(q2)

− 4

9

(
2 + y(q2)

)√
y(q2)− 1 arctan

(
1√

y(q2)− 1

)
, (4.40)

with y(q2) = 4m2
c/q

2 > 1. The result (4.40) has been already renormalised, with µ = mb. The
αs corrections of these Wilson coefficients have been calculated independently in refs. [145,
146].

The next-to-leading order in the LCOPE can be written as

Hsoft
µ (q, k) = C2 ε

σταβ

∫
dω2 Iµρστ (q, ω2)

〈K(∗)| s̄(0)γρPL δ
(
ω2 − n+ · iD

)
gsGαβ(0) b(0) |B(q + k)〉+ O (αs) , (4.41)

where the corresponding diagram is shown in figure 4.2(b). The gluon field Gαβ(ux) arise
from the expansion of the charm-quark propagator near the light-cone through eq. (3.45).
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(a) (b)

Figure 4.2: Charm-loop effects in B → K(∗)`` decays. We show the leading
order in the (LC)OPE (a) and one of the two diagrams corresponding to the
next-to-leading order in the (LC)OPE (b). We do not consider αs corrections.

Following ref. [14], we can use the translation operator to rewrite the gluon field as

Gαβ(ux) = e−iux·(iD)Gαβ(0) (4.42)

and then we decompose the covariant derivative in light-cone vectors

Dµ = (n+ ·D)
nµ−
2

+ (n− ·D)
nµ+
2

+Dµ
⊥ , (4.43)

The usual relations for the light-cone vectors

(q + k)µ

mB
≡ vµ =

1

2
(nµ+ + nµ−) , n2

+ = n2
− = 0 , (n+ · n−) = 2

hold. Choosing the light-cone vectors such that

(n− · q) ∼ mb , (n− · q) ∼
q2

mb
, qµ⊥ = (0, 0, 0, 0) , (4.44)

it is possible to approximate

Dµ ' (n+ ·D)
nµ−
2
,

as shown in ref. [14]. Finally, we write the gluon field as

Gαβ(ux) = e−iu
x·n−

2
(n+·D)Gαβ(0) =

∫
dω2 e

−iux·n−
2

ω2 δ
(
ω2 − n+ · iD

)
Gαβ(0) , (4.45)

which is the form we have used in eq. (4.41). This trick of writing the gluon field in the form
of eq. (4.45) is crucial for our sum rule calculation.

The Wilson coefficient Iµρστ was also calculated in ref. [14]. We fully agree with its
calculation and we write it in the form

Ĩµραβ ≡ εσταβIµρστ (q, ω2) =

∫ 1

0
du
∫ 1

0
dt

1

128π2(t(1− t)q̃2 −m2
c)
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(
4t(1− t)

(
q̃µεραβ{q̃} − 2uq̃βεµρα{q̃} + 2uq̃2εµραβ

)
+ q̃2 (1− 2u) εµραβ

)
, (4.46)

which is slightly different from the one presented in ref. [14], but analytically equivalent.

In order to evaluate the contribution of Hsoft
µ , we need to calculate the non-local matrix

element of eq. (4.41). We then define a correlator, which is the starting point of our sum rule
calculation:

Πµν(q, k) = i

∫
d4yeiky 〈0|T

{
Jνint(y), Õµ(q)

}
|B̄(q + k)〉 , (4.47)

where

Õµ(q) =

∫
dω2 Ĩ

µραβ s̄(0)γρPL δ
(
ω2 − n+ · iD

)
gsGαβ(0) b(0) . (4.48)

We also define Jνint = d̄γνγ5s for the B → K transition, while Jνint = d̄γνs for the B → K∗

transition.
We can now obtain the hadronic representation of the correlator inserting a complete set

of states in eq. (4.47)

Πµν(q, k) =
〈0| Jνint(x) |K(∗)(k)〉 〈K(∗)(k)| Õµ(q, ω2)(0) |B(q + k)〉

m2
K(∗) − k2

+
1

π

∫ ∞
sh

ds
τµν(s)

s− k2
. (4.49)

The local K(∗)-to-vacuum matrix elements have already been defined in eqs. (4.3)-(4.4), while
the non-local matrix elements can be parametrized as [14]

〈K(k)|Õµ(q)|B(q + k)〉 = ((k · q)qµ − q2kµ)Ã(q2) , (4.50)

〈K∗(k, η)|Õµ(q)|B(q + k)〉 = εµαβγη
∗αqβkγṼ1(q2)

+ i
(
(m2

B −m2
K∗)η

∗
µ − (η∗ · q)(2k + q)µ

)
Ṽ2(q2)

+ i(η∗ · q)
(
qµ −

q2

m2
B −m2

K∗
(2k + q)µ

)
Ṽ3(q2) . (4.51)

The LCOPE calculation of Πµν becomes straightforward, since we have already computed
Ĩµραβ :

Πµν(q, k) =

∫
dω2

∫
d4y

∫
d4p′ ei(k−p

′)·y Ĩµραβ
[
Γνint

/p′ +ms

m2
s − p′2

γρPL

]
ab

〈0| d̄a(y)δ
(
ω2 − n+ · iD

)
gsGαβ(0)hbv(0) |B(q + k)〉 . (4.52)

Here, the correlator has been expanded in HQET, as in our form factor calculation. The
parametrization of the matrix element∫

dω2 〈0| d̄a(y)δ
(
ω2 − n+ · iD

)
gsGαβ(0)hbv(0) |B(q + k)〉 (4.53)
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result of ref. [14] our results

Ã (−1.3+1.0
−1.1) · 10−4 (+5.5+3.0

−2.8) · 10−7

Ṽ1 (−1.5+1.3
−1.6) · 10−4 (−4.8+2.5

−2.7) · 10−7

Ṽ2 (+7.3+7.4
−6.5) · 10−5 (+3.8+2.0

−1.9) · 10−7

Ṽ3 (+2.4+2.5
−1.9) · 10−4 (+1.1+0.6

−0.6) · 10−6

Table 4.4: Comparison between the results of ref. [14] and our results at q2 =
1 GeV2.

is given in eq. (4.17). The reason why we have written the gluon field in the form of eq. (4.45)
retaining only the n− component is now clear: the fields of the three-particle B-to-vacuum
matrix element must be aligned in the same light-cone direction otherwise eq. (4.17) does not
hold. In other words, the gluon is dominantly emitted in the direction of the strange quark,
which means that one can use eq. (4.17) to parametrize the three-particle B-to-vacuum matrix
element.

Finally, we match the hadronic representation of the correlator (4.49) onto the LCOPE
result (4.52). To obtain the sum rule, we perform a Borel transform after using the semi-global
quark-hadron duality approximation. This sum rule can be written in the same way as the
sum rule for the form factors (4.29), i.e.

F̃ =
fBmB

K(F̃ )

∞∑
n=1

{
(−1)n

∫ σ0

0
dσ e(−s(σ,q2)+m2

K(∗) )/M2 1

(n− 1)!(M2)n−1
I(F̃ )
n

−
[

(−1)n−1

(n− 1)!
e

(−s(σ,q2)+m2

K(∗) )/M2
n−1∑
j=1

1

(M2)n−j−1

1

s′

(
d
dσ

1

s′

)j−1

I(F̃ )
n

]
σ=σ0

}
. (4.54)

The only differences with respect to eq. (4.29) are the constants K(F̃ ) and the coefficient
functions I(F̃ )

n . In this case we have

I(F̃ )
n (σ, q2) =

1

(1− σ)n

∞∫
0

dω2

1∫
0

du
1∫

0

dt
∑
ψ3p

2∑
r=0

(
ω2

mB

)r
C

(F̃ ,ψ3p)
n,r (σ, u, t, q2)ψ3p(ω1, ω2)

∣∣∣∣∣
ω1=σmB

,

ψ3p = φ3, φ4, ψ4, χ4 . (4.55)

The values of the normalization constants K(F̃ ) and of the coefficients C(F̃ ,ψ3p)
n,r will be pub-

lished in [3].

We fully reproduce both the analytical and the numerical results of ref. [14]. However,
our numerical results are ∼ 200 times smaller with similar relative uncertainties, as shown in
table 4.4. The reason for this huge difference in the central values follows the same explanation
as the suppression of the three-particle contributions in the form factors (see subsection 4.1.3).
The inputs used for our numerical results are collected in appendix C.

69



4.2 Dispersive Bounds in the Presence of Subthreshold Branch
Cuts

In section 3.3 we reviewed the dispersive bounds. Here, we generalise this method to allow
for the cases where non-negligible subthreshold branch cuts are present. As an example, let
us consider the non-local matrix element

〈0|Kµ(x, 0)|B(q + k)K(∗)(−k)〉 (4.56)

of the Hermitian operator

Kµ(x, 0) ≡ T
{
Jµcc(x), (C1O

c
1 + C2O

c
2) (0)

}
, (4.57)

which is related to the matrix element of eq. (4.37) through crossing symmetry. This matrix
element has a series of branch cuts starting at q2 = 4m2

D ≡ t+, while the energy threshold
for the production of a BK(∗) pair is obviously q2 = (mB +mK(∗))2 ≡ tH . Hence, we have to
adapt the classical dispersive bounds presented in section 3.3, where one always assumes that
t+ = tH . In some cases, there are subthreshold branch cuts that can be safely neglected if
their magnitude is suppressed, as in the example presented in section 3.3. This is not possible
in this case, where the subthreshold branch cuts give a relevant contribution.

To construct the dispersive bounds, we define the four-point correlator

Πµν(q) = i

∫
d4x d4y d4z e−iq·(x−y) 〈0|T{Kµ(x, 0),Kν,†(y + z, z)} |0〉

= (qµqν − q2gµν)Π(q2)

(4.58)

and write down the corresponding subtracted dispersion relation

χ(q2) =
1

n!

(
∂

∂q2

)n (
q2Π(q2)

)
=

1

π

∫ ∞
0

ds
s Im Π(s)

(s− q2)n
, (4.59)

where n is the minimum number of subtractions to make χ finite. We now insert a complete
set of states in the correlator Π to compute its imaginary part, which reads

Im Π(q2) =

(
1

3q2

)
(qµqν − q2gµν)

1

2

∫
d4x d4y e−iq·(x−y)

×
∑∫
HbHs̄

dρHbHs̄ (2π)4δ(4)(pHbHs̄ − q) (4.60)

× 〈0|Kµ(0, x)|HbHs̄〉 〈HbHs̄|Kν,†(0, y)|0〉+ . . . .

Here, the sum runs over all the states HbHs̄ with bottomness B = −1 and strangeness S = 1,
while the ellipsis stands for the positive contributions3 to the imaginary part coming from the
other branch cuts. Using two-body phase space measure

∫
dρX Y (2π)4δ(4)(pX Y − q) =

1

8π

√
λ(m2

X ,m
2
Y , s)

q2
θ(q2 − (mX +mY )2) , (4.61)

3These contributions must be positive, since the operators appearing in eq. (4.61) are Hermitian.
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and parametrizing the B → K(∗) non-local matrix elements as in appendix B, we obtain

Im Π(q2) =
m4
B

√
λ(m2

B,m
2
K , q

2)
3

16π q2

∣∣HBK,0(q2)
∣∣2 θ(q2 − (mB +mK)2)

+
m6
B

√
λ(m2

B,m
2
K∗ , q

2)

16π

(∣∣HBK∗,⊥(q2)
∣∣2 +

∣∣HBK∗,‖(q2)
∣∣2 +

∣∣HBK∗,0(q2)
∣∣2)

× θ(q2 − (mB +m∗K)2) + further positive terms .

(4.62)

We can now write down the dispersive bounds

χ(q2) >

∫ ∞
(mB+mK)2

ds

m4
B

√
λ(m2

B,m
2
K , s)

3

16π2s(s− q2)n
|HBK,0(s)|2



+

∫ ∞
(mB+mK∗ )2

ds

m6
B

√
λ(m2

B,m
2
K∗ , s)

16π2(s− q2)n

∑
λ=⊥,‖,0

|HBK∗,λ(s)|2
 ,

(4.63)

where χ(q2) can be computed performing an OPE for m2
Q − q2 � Λ2

QCD. Following the same
procedure explained in section 3.3, we map the first Riemann sheet of the complex q2 plane
onto the unit disk of z plane via the map

z =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

. (4.64)

Here t+ = 4m2
D is the position of the first branch point and t0 < t+ can be arbitrarily chosen.

After transforming in polar coordinates, eq. (4.63) becomes

1 >

∫ +αBK

−αBK
dα |φBK(s)|2 |HBK,0(s)|2

∣∣∣∣∣
s≡s(z(α))

+

∫ +αBK∗

−αBK∗
dα |φBK∗(s)|2

∑
λ=⊥,‖,0

|HBK∗,λ(s)|2
∣∣∣∣∣
s≡s(z(α))

,

(4.65)

where the integral limits are

αBK(∗) ≡ | arg z((MB +MK(∗))2)| (4.66)

and the modulus squared of the outer functions is

|φBK(s)|2 =
1

2

1

χ(q2)

dz(α)

dα
ds
dz

m4
B

√
λ(m2

B,m
2
K , s)

3

16π2s(s− q2)n

∣∣∣∣∣
s≡s(z(α))

,

|φBK∗(s)|2 =
1

2

1

χ(q2)

dz(α)

dα
ds
dz

m6
B

√
λ(m2

B,m
2
K∗ , s)

16π2(s− q2)n

∣∣∣∣∣
s≡s(z(α))

,

(4.67)
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assuming that the value of q2 is fixed. To remove the poles inside the unit disk due to both
cc̄ and bs̄ bound states, we multiply the integrand of eq. (4.65) by the appropriate Blaschke
factors B, which have been defined in section 3.3. Finally, the dispersive bounds assume a
very simple form

1 >

∫ +αBK

−αBK
dα
∣∣∣ĤBK,0(s)

∣∣∣2 ∣∣∣∣∣
s≡s(z(α))

+

∫ +αBK∗

−αBK∗
dα

∑
λ=⊥,‖,0

∣∣∣ĤBK∗,λ(s)
∣∣∣2 ∣∣∣∣∣

s≡s(z(α))

,

(4.68)

where we have defined

ĤBK,0(z) ≡ φBK(z)B0(z)HBK,0(z) ,

ĤBK∗,λ(z) ≡ φBK∗(z)Bλ(z)HBK∗,λ(z) for λ = 0,⊥, ‖ .
Since the integral of eq. (4.68) is not over the whole unit circle, but only over an arc of it, the
set

{z0, z1, z2, z3, . . . }
is not an orthonormal basis for this case. The first three orthonormal polynomials on the arc
of the unit circle of eq. (4.68) are

pi,0(z) =
1√
2αi

,

pi,1(z) =

(
z − sin(αi)

αi

)√
αi

2α2
i + cos(2αi)− 1

,

pi,2(z) =

(
z2 +

sin(αi)(sin(2αi)− 2αi)

2α2
i + cos(2αi)− 1

z +
2 sin(αi)(sin(αi)− αi cos(αi))

2α2
i + cos(2αi)− 1

)

×
√

2(2α2
i + cos(2αi)− 1)

−9αi + 8α3
i + 8αi cos(2αi) + αi cos(4αi) + 4 sin(2αi)− 2 sin(4αi)

,

for αi = αBK , αBK∗ . Thus, expanding the functions Ĥi as

Ĥi(z) =

∞∑
k=0

ai,k pi,k , (4.69)

the dispersive bounds can be written as
∞∑
k=0

|aBK,k|2 +
∑

λ=⊥,‖,0

∞∑
k=0

|aλ,k|2 < 1 . (4.70)

The disadvantage of the polynomials pi,k is that on the real axis around z = 0 they grow
exponentially in magnitude for k →∞ [147], while zk goes to zero for k →∞ inside the unit
disk. However, the series (4.69) is still convergent, since

Ĥi(z) =
∞∑
k=0

ai,k pi,k =
∞∑
k=0

bi,k z
k (4.71)
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and the Taylor series is convergent, being Ĥi an analytic function of z inside the unit disk.
The idea is to truncate the series (4.69) and to fit its first few coefficients to experimental

data and/or theoretical predictions. This fit and the calculation of χ will be presented in
ref. [3].

The method presented in this section can be applied to obtain the dispersive bounds for
all the matrix elements that have non-negligible subthreshold branch cuts, even though we
focused only on the example of B → K(∗)`` non-local matrix elements. In fact, we are also
applying this method to obtain dispersive bounds for the Λb → Λc form factors.

4.3 Form Factor Extrapolation and Phenomenological Applica-
tions

Light-cone sum rules (LCSRs) can only be used for low or negative q2 values, in order to
ensure the convergence of the LCOPE. To extrapolate the form factors values in the whole
physically allowed region, we parametrize the form factors themselves and fit the coefficients
of this parametrization to our LCSRs results. It is also possible to add additional information
in these fits, using for instance lattice QCD results and dispersive bounds.

Once we have the form factors, we can predict several interesting observables in B decays.
Here, we focus on the lepton flavour universality ratios RD and RD∗ , while the results for all
the other observables that we predicted in B(s) → D

(∗)
(s) decays are given in ref. [2].

4.3.1 Form Factors Parametrization

To obtain the form factors in the interval 0 < q2 < (mB −mP,V )2, i.e. for all the allowed q2

values in B → P and B → V transitions, we use the parametrization suggested in ref. [66],
which reads

F (q2) =
1

1− q2/m2
R,F

2∑
k=0

α
(F )
k

(
z(q2)− z(0)

)k
. (4.72)

The z map is the same one as defined in the previous section, with t± = (mB ± mP,V )2

and t0 ≡ t+

(
1−

√
1− t−/t+

)
. The mass of the sub-threshold resonances mR,F , which have

the same quantum number of the weak current of the corresponding transition, are listed in
table 4.5.

For each transition we perform two different fits: the first using only our LCSRs results,
the second using both LCSRs and the available lattice QCD data points. In both cases, we
find a p value close to one, which is not surprising given the large uncertainties and the small
number of degrees of freedom. Our results for the B → K∗ and the B → D∗ transitions are
shown in figure 4.3 and figure 4.4, respectively. The plots for the remaining transitions can
be found in ref. [1]. The central values, the uncertainties and the correlation matrix of the
parameters α(F )

k of eq. (4.72) are attached as ancillary files to the arXiv preprint of refs. [1]
and part of the EOS software [137] as constraints named

B->pi::FormFactors[parametric,LCSR]@GKvD2018
B->pi::FormFactors[parametric,LCSRLattice]@GKvD2018
B->rho::FormFactors[parametric,LCSR]@GKvD2018
B->K::FormFactors[parametric,LCSR]@GKvD2018
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resonance masses [GeV]
JP form factors Bu,d(J

P ) Bs(J
P ) Bc(J

P )

0− AB→V0 5.279 5.336 6.275

0+ fB→P0 5.540 5.630 6.420

1− fB→P+ , fB→PT , V B→V , TB→V1 5.325 5.412 6.330

1+ AB→V1 , AB→V12 , TB→V2 , TB→V23 5.724 5.829 6.767

Table 4.5: List of the masses of the lowest-lying resonances in the individual
b→ {u, d}, b→ s and b→ c transitions, and their association to the respective
form factors. The values of these masses, which are necessary inputs for the
form factor parametrization (4.72), are taken from refs. [66, 148].

B->K::FormFactors[parametric,LCSRLattice]@GKvD2018
B->K^*::FormFactors[parametric,LCSR]@GKvD2018
B->K^*::FormFactors[parametric,LCSRLattice]@GKvD2018
B->D^(*)::FormFactors[parametric,LCSR]@GKvD2018
B->D^(*)::FormFactors[parametric,LCSRLattice]@GKvD2018

In order to reduce the form factors uncertainties, it is possible to use the dispersive bounds
to constrain the parameters of a form factor parametrization. In addition, one can also use
heavy quark effective theory (HQET) to relate the various B → D(∗) (and Bs → D

(∗)
s ) form

factors and obtain stronger constraints on such parameters. This method, originally proposed
in ref. [10], has been recently applied in refs. [2, 149] including Λ/m2

c corrections. It consists
in expanding every B(∗) → D(∗) form factor in the heavy-quark limit as

F (q2) = ξ(q2)

(
a+

αs
π
b+

Λ

mb
c

(i)
b

[
Li(q

2)
]

+
Λ

mc
c(i)
c

[
Li(q

2)
]

+

(
Λ

mc

)2

d(i)
[
`i(q

2)
])

.

(4.73)
Here ξ, Li, and `i are the so-called Isgur-Wise (IW) functions (see e.g. ref. [84]). The coeffi-
cients a, b, c(i)

b , c(i)
c , and d(i) in this expansion are linear combinations of Wilson coefficients

from the matching of HQET onto QCD and kinematic functions. In eq. (4.73) we use the
same power counting of ref. [149], where αs/π ∼ Λ/mb ∼ (Λ/mc)

2 ∼ ε2. In fact, while Λ/mb

and (Λ/mc)
2 are next-to-leading power and next-to-next-to-leading power in the heavy-quark

expansion, respectively, they are numerically similar.
There is one independent leading power IW function ξ and three next-to-leading power

IW functions Li [150]. We consider only six next-to-next-to-leading IW functions `i, although
there are more than six, since we are interested only in the (Λ/mc)

2 corrections and not in
the (Λ/mb)

2 corrections [149].
Hence, all the B(∗) → D(∗) form factors can be expressed in terms of ten IW functions.

The same argument applies to the B(∗)
s → D

(∗)
s form factors, which yields in total twenty IW

functions. However, we give our results in the scenario where the `i functions are the same
for the B(∗) → D(∗) and the B(∗)

s → D
(∗)
s decays. This follows from the fact that the SU(3)

flavour breaking effects in these functions is of the order of ε3, which we discard.
The dispersive bounds are then imposed to constrain these fourteen independent IW func-
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our results
exp. likelihood — all exp.

B(B̄0 → D+{e−, µ−}ν̄)/|Vcb|2 13.48± 0.34 13.54± 0.32

B(B̄0 → D∗+{e−, µ−}ν̄)/|Vcb|2 33.87± 1.82 32.69± 0.76

correlation 0.13 0.09

|Vcb| × 103 from B̄ → D{e−, µ−}ν̄ 40.7± 1.1 40.7± 1.1

|Vcb| × 103 from B̄ → D∗{e−, µ−}ν̄ 38.8± 1.4 39.5± 0.9

|Vcb| × 103 combined incl. corr. 40.0± 0.9 40.0± 0.7

B(B̄0
s → D+

s {e−, µ−}ν̄)/|Vcb|2 14.00± 0.40 13.99± 0.40

B(B̄0
s → D∗+s {e−, µ−}ν̄)/|Vcb|2 33.04± 2.88 32.06± 2.54

correlation −0.07 −0.10

Table 4.6: Branching ratios in units of |Vcb|2 and |Vcb| extracted using the HFLAV
averages of the B(B̄0 → D+{e−, µ−}ν̄) and B(B̄0 → D∗+{e−, µ−}ν̄) branching
fractions [59].

tions. Considering simultaneously the B(∗) → D(∗) and the B(∗)
s → D

(∗)
s form factors in the

dispersive bounds has the advantage to increase the saturation of the bounds, which leads to
stronger constraints.

All the details of our fits are given in ref. [2]. Here, we just show the B → D∗ plots. As
one can see in figure 4.5, the use of the dispersive bounds and HQET significantly reduces
the uncertainties, especially for the B → D∗ transition where only one lattice QCD point at
q2
max is available. This approach can be systematically improved including more transitions
in the bounds in order to saturate them. One can also consider higher order αs and HQET
corrections in eq. (4.73).

4.3.2 Selected Phenomenological Applications

Now that we have extracted the form factors in the whole physically allowed region, we are
able to predict several observables in B decays. Here, we are going to focus on the lepton
flavour universality ratios, due to the tension between their SM predictions and experimental
measurements.

It is instructive to compare results obtained only using LCSRs or LCSRs + lattice QCD
(LQCD) with the ones using LCSRs + LQCD + dispersive bounds (DB) + HQET. For the
lepton flavour universality ratios RD and RD∗ , widely discussed in chapter 1, we obtain

LCSR only [1] RD

∣∣∣∣
SM

= 0.269± 0.100 ,

LCSR only [1] RD∗

∣∣∣∣
SM

= 0.242± 0.048 ,

LCSR + LQCD [1] RD

∣∣∣∣
SM

= 0.296± 0.006 ,
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LCSR + LQCD [1] RD∗

∣∣∣∣
SM

= 0.256± 0.020 ,

LCSR + LQCD + DB + HQET [2] RD

∣∣∣∣
SM

= 0.299± 0.003 ,

LCSR + LQCD + DB + HQET [2] RD∗

∣∣∣∣
SM

= 0.247± 0.005 .

Notice that in ref. [1] and ref. [2] we use the same theoretical constraints, and the use of
dispersive bounds and HQET reduces the uncertainties in RD and RD∗ of two and four times,
respectively. The tension between our theoretical predictions and the HFLAV experimental
averages [59] of RD and RD∗ is 3.8σ. This tension is higher than the one between the HFLAV
theoretical and experimental averages (see chapter 1).

We also predict the RDs and RD∗s ratios

LCSR + LQCD + DB + HQET [2] RDs

∣∣∣∣
SM

= 0.297± 0.003 ,

LCSR + LQCD + DB + HQET [2] RD∗s

∣∣∣∣
SM

= 0.245± 0.008

with similar uncertainties to those of RD and RD∗ . These ratios will be measured in the near
future by the LHCb collaboration.

Another interesting phenomenological application is the extraction of |Vcb|. In table 4.6,
we show our results for the branching fractions B(B̄0 → D(∗)+{e−, µ−}ν̄) and B(B̄0

s →
D∗+s {e−, µ−}ν̄) in units of |Vcb|2. To extract |Vcb|, we use the HFLAV averages of the
B(B̄0 → D+{e−, µ−}ν̄) and B(B̄0 → D∗+{e−, µ−}ν̄) branching fractions [59]. Our results
for |Vcb| are listed in table 4.6 as well. The extraction of |Vcb| using Bs decays has been carried
out for the first time in ref. [11] for the first time.
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Figure 4.3: Plots of our results (grey points) and LQCD results from ref. [87, 88]
(blue points) for the B → K∗ form factors. Central values and 68% probability
envelopes as functions of q2 from fits to our results only (grey) and a combination
of our results and LQCD results (blue) are shown as well. Previous results from
LCSRs using B-LCDAs [112] at q2 = 0 are not used in the fits and shown in red
for illustrative purpose only. Solid lines represent the central values, and shaded
areas illustrate the 68% probability envelope.
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Figure 4.4: Plot of B → D∗ form factors, LQCD results from refs. [89, 90]. For
a description see figure 4.3.
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Figure 4.5: Plots of our LCSRs results (purple points) and our fits results (light-
blue 68% probability envelopes) that combine LCSRs, LQCD, dispersive bounds
and HQET relations for the form factors.
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Conclusion

We calculated the B → π, ρ,K(∗), D(∗) and Bs → D
(∗)
s form factors using the light-cone sum

rules (LCSRs) with B-meson light-cone distribution amplitudes (B-LCDAs). We improved
upon the previous studies of refs. [112, 127] by including for the first time the two-particle next-
to-next-to-leading twist (NNLT) contributions and the full set of three-particle B-LCDAs. Our
numerical results show that the two-particle NNLT contributions are rather important, since
they reduce the central values of the form factors by ∼ [20, 30]%, while our three-particle
contributions are much smaller than in refs. [112, 127] for the reasons discussed below.

In rare B decays there are also important contributions that come from non-local hadronic
matrix elements, besides the leading contributions proportional to local hadronic matrix ele-
ments, which are parametrized in terms of form factors. The soft-gluon contribution to the
charm loop in B → K(∗)`` is one of the most important among these non-local contributions.
As shown in ref. [14], this contribution can be calculated using a LCSR, in which only the
three-particle B-LCDAs contribute. The set of three-particle B-LCDAs used in ref. [14] (and
also in refs. [112, 127]) is incomplete. In fact, only four B-LCDAs were considered, while there
are eight independent three-particle B-LCDAs [114]. Moreover, these eight B-LCDAs need
to be recast in terms of B-LCDAs with definite twist, such that the twist expansion can be
consistently truncated. Taking into account these differences in the treatment of the three-
particle B-LCDAs, we obtain numerical results for the soft-gluon contribution to the charm
loop one order of magnitude smaller than in ref. [14]. This is due to a partial cancellation
between the original four B-LCDAs considered in refs. [14, 112, 127] and the ones introduced
in ref. [114].

In addition, we use the most recent prediction of the parameters λ2
B,H and λ2

B,E [139],
which is substantially different from the values used in [14, 112, 127]. This makes our results
one further order of magnitude smaller. Hence, our numerical results for the three-particle
contributions are two orders of magnitude smaller than the previous estimates, indicating that
the soft-gluon contribution to the charm loop is essentially negligible.

Next, we extended the dispersive bounds to the case where non-negligible subthreshold
branch cuts are present. This implies that in the z plane, instead of integrating over the
whole unit circle, one has to integrate over an arc of it. The orthonormal polynomials on
an arc of a circle are much more complicated than the monomials in z, which constitute an
orthonormal set on the unit circle. One application of these generalised dispersive bounds are
the non-local hadronic matrix elements in B → K(∗)``. We discussed this case in detail in
section 4.2.

Finally, we used the form factors parametrization proposed in ref. [66] to obtain the form
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factors in the whole kinematical range, exploiting both our LCSRs results and the available
lattice QCD results. Imposing the dispersive bounds and employing heavy quark effective
theory, we further constrained the form factors. We then predicted several observables in
semileptonic B decays using the form factor values we obtained. The lepton flavour universal-
ity ratios RD and RD∗ are among the most interesting observables due to the tension between
the theoretical predictions and the experimental measurements. Our predictions increase this
tension to 3.8σ. We also predict RDs and RD∗s in view of the forthcoming measurements of
the LHCb collaboration.

82



Appendices

83





Appendix A

Conventions

For the convenience of the reader, we collect here the notations and conventions used in this
work.

A.1 Units

Throughout this work we use natural units where

~ = c = 1 , and e =
√

4παe . (A.1)

Here ~ is the reduced Planck constant, c the speed of light, and αe ' 1/137 is the fine-structure
constant. Equation (A.1) implies that in this system

[length] = [time] = [mass]−1 = [energy]−1 .

In words, the units of measurement of length, time, mass, and energy are related. In particle
physics the eV (and its powers) is conventionally chosen as the unit of measurement of all
physical quantities. To convert a physical quantity from natural units to SI units, one needs
to multiply this quantity by powers of ~ and c to give the correct SI dimension.

A.2 Signs and Dirac Algebra

The Minkowski metric reads

gµν =


+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 , (A.2)

from which follows that

pµp
µ ≡ p · p = m2 > 0 .

The Dirac matrices (or gamma matrices) γµ are defined by the anticommutation relation

{γµ, γν} = 2gµν14 , (A.3)
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where 14 is the 4× 4 identity matrix, which are implied throughout this work.
Moreover, we define

γ5 = − i

4!
εµναβγ

µγνγαγβ , (A.4)

σµν =
i

2
[γµ, γν ] , (A.5)

where the convention for the Levi-Civita tensor adopted in this work is ε0123 = +1, which
matches the convention of refs. [1, 14, 112] and the Bjorken-Drell textbook [151].
The chiral projection operators are

PL =
1− γ5

2
, PR =

1 + γ5

2
, (A.6)

which define the left- and right-chiral Dirac fields

ψL = PLψ , ψR = PRψ , (A.7)

with ψL + ψR = ψ. It is important to do not confuse helicity with chirality, and hence left-
and right-handed fields with left- and right-chiral fields (see ref. [152] for a review).
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Appendix B

Parametrization of
Meson-to-meson Matrix Elements

B.1 B → P and B → V Form Factors

The meson form factors (FFs) are functions of the momentum transfer q2 that parametrize
local hadron-to-hadron matrix elements. In this thesis, we use the following definition for the
B to pseudoscalar (P ) and B to vector (V ) meson FFs:

〈P (k)| q̄1γ
µb |B(p)〉 =

[
(p+ k)µ − m2

B −m2
P

q2
qµ
]
fB→P+

+
m2
B −m2

P

q2
qµ fB→P0 , (B.1)

〈P (k)| q̄1σ
µν qνb |B(p)〉 =

ifB→PT

mB +mP

[
q2 (p+ k)µ − (m2

B −m2
P ) qµ

]
, (B.2)

〈V (k, η)| q̄1γ
µb |B(p)〉 = εµνρση∗νpρkσ

2V B→V

mB +mV
, (B.3)

〈V (k, η)| q̄1γ
µγ5b |B(p)〉 = iη∗ν

[
gµν(mB +mV )AB→V1 − (p+ k)µqν

mB +mV
AB→V2

− qµqν 2mV

q2

(
AB→V3 −AB→V0

) ]
, (B.4)

〈V (k, η)| q̄1iσ
µν qνb |B(p)〉 = 2εµνρση∗νpρkσT

B→V
1 , (B.5)

〈V (k, η)| q̄1iσ
µν qνγ5b |B(p)〉 = iη∗ν

[ (
gµν(m2

B −m2
V )− (p+ k)µqν

)
TB→V2

+ qν
(
qµ − q2

m2
B −m2

V

(p+ k)µ
)
TB→V3

]
, (B.6)

where q1 denotes a light quark and p = q + k. Here and throughout this thesis we omit the
explicit q2 dependence of the FFs, writing simply F ≡ F (q2). We also define, for convenience,
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the following combinations of FFs

fB→P0 ≡ fB→P+ +
q2

m2
B −m2

P

fB→P− , (B.7)

AB→V12 ≡ (mB +mV )2(m2
B −m2

V − q2)AB→V1 − λ(q2)AB→V2

16mBm2
V (mB +mV )

, (B.8)

TB→V23 ≡ (m2
B −m2

V )(m2
B + 3m2

V − q2)TB→V2 − λ(q2)TB→V3

8mBm2
V (mB −mV )

, (B.9)

TB→V23A ≡ TB→V2 +
q2

m2
B −m2

V

TB→V3 , (B.10)

TB→V23B ≡ 1

2
TB→V2 +

1

2

(
q2

m2
B −m2

V

− 1

)
TB→V3 , (B.11)

and use the notation

fB→P+/− ≡ fB→P+ + fB→P− , (B.12)

AB→V30 ≡ AB→V3 −AB→0 , (B.13)

where λ(q2) ≡ λ(m2
B,m

2
V , q

2) is the Källèn function. Notice that there are only three inde-
pendent B → V FFs for the matrix element of the current q̄1γ

µγ5b and hence there must
be a relation between V B→V , AB→V1 , AB→V2 , and AB→V3 . Defining the B → V FF for a
pseudoscalar current as

〈V (k, η)| q̄1γ5b |B(p)〉 =

(
2mV (η∗ · q)
i(mb +mq1)

)
AB→V0 , (B.14)

such a relation can be found contracting eq. (B.4) with qµ and using the equation of motion
for the quarks:

AB→V3 =
mB +mV

2mV
AB→V1 − mB −mV

2mV
AB→V2 . (B.15)

The relations

fB→P+ (q2 = 0) = fB→P0 (q2 = 0) and AB→V0 (q2 = 0) = AB→V3 (B.16)

at zero momentum transfer must hold to cancel the kinematical singularities of eq. (B.1) and
eq. (B.4). In addition, the algebraic relations between σµν and σµνγ5 give rise to the identity

TB→V1 (q2 = 0) = TB→V2 (q2 = 0) . (B.17)

The FFs definitions given above are clearly not unique. A consistent FFs definition has to
fulfil all the criteria listed here below.

The FFs definitions must be Lorentz covariant, that is, the l.h.s. and r.h.s. transform
under the same representation of the Lorentz group. For example, the l.h.s. of eq. (B.1)
transforms as a vector (JP = 1−), because it is a matrix element of a vector current (JP = 1−)
with a pseudoscalar meson (JP = 0−) in both the initial and the final state. To construct a
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quantity that transforms like a vector on the r.h.s., the only possibility is to use the only two
vectors that appear in the process, i.e. the four momenta qµ and kµ, each one multiplied by a
scalar function. These scalar functions depend on scalar quantities. The only scalar available
is q2, since k2 is fixed and k · q can be written as a function of q2. Thus, a FFs definition in
this case can be written in the form

〈P (k)| q̄1γ
µb |B(p)〉 = a(q2)qµ + b(q2)kµ .

The definition (B.1), even though it looks more complicated, is more convenient for certain
applications. For instance, as shown in section 3.3, taking the modulus squared of eq. (B.1)
the dispersive bounds take a simpler form.

It is now easy to understand why the B → P matrix element of the axial vector current
vanishes identically, namely

〈P (k)| q̄1γ
µγ5b |B(p)〉 = 0 .

This matrix element transforms as an axial vector, but it is not possible to construct a quan-
tity that transforms in the same way using only qµ and kµ. The situation is different for the
B → V matrix element of the axial vector current. Here we have an additional independent
vector, i.e. the polarisation vector of V, and it is possible to construct a quantity that trans-
form as an axial vector as shown in eq. (B.3).

A matrix element has to be parametrized in the most general way, including all
the independent Lorentz structures. The number of independent FFs might be smaller
than the number of independent Lorentz structures. As we have seen in the case of eq. (B.4),
definitions with redundant FFs are also possible. In such a case, there are relations that allow
to get rid of the redundant FFs like eq. (B.15).

A way to find all the independent form factors is to write down all the independent
Lorentz structures, using all the vectors available for the case considered (meson momenta
and polarisation vectors), and to calculate the helicity amplitudes, whose definition is given
below. Let us consider, for example, the matrix element 〈P (k)| q̄1γ

µb |B∗(p, η)〉 and decompose
it into all the available Lorentz structures:

〈P (k)| q̄1γ
µb |B∗(p, η)〉 = ηµĀB→V1 + pµ(η · k)ĀB→V2 + kµ(η · k)ĀB→V2 . (B.18)

We can compute the helicity amplitudes defined as

M(i,j) = (εµi )∗ 〈P (k)| q̄1γµb |B∗(p, ηj)〉 , (B.19)

where ε∗(i) is the polarisation vector of the virtual gauge boson. In the B-meson rest frame,
we choose

η0 = (0, 0, 0, 1) , η+ = (0,+1,−i, 0) , η− = (0,−1,−i, 0) ,

ε0 =
1√
q2

(|~q|, 0, 0,−q0) , ε+ = (0,+1, i, 0) , ε− = (0,−1, i, 0) , εt =
1√
q2
qµ ,

where

q0 = mB − EP , and EP =
m2
B +m2

P − q2

2mB
.
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The subscripts “±” and “0” denote the transverse and longitudinal polarisations, respectively.
Since the meson in the final state is on-shell, we do not need to include its time-like polarisa-
tion “t”. One can show that there are only three non-vanishing linearly independent helicity
amplitudes, and hence three independent FFs as in eq. (B.18). In general, the number m of in-
dependent helicity amplitudes is always smaller than or equal to the number n of independent
Lorentz structures. If it is smaller, there are n−m relations between form the FFs.

Helicity amplitudes are also very useful to diagonalize the FFs definitions, which are more
convenient for the calculation of the dispersive bounds.

FFs definitions must be free of singularities and fulfil eventual constraints. We
have already mentioned that if a FFs definition contains kinematical singularities, those must
be removed by imposing appropriate relations (e.g. see eq. (B.16)). In addition, one should
also check that the definitions are consistent. For instance, the r.h.s. of eqs. (B.5)-(B.6) must
vanish when contracted with qµ, since σµν is an antisymmetric tensor.

B.2 Non-local Matrix Elements in B → K(∗)``

The non-local matrix elements in B → K(∗)`` have been widely discussed in chapter 4. Here,
we show two different parametrizations in terms of invariant amplitudes.

In subsection 4.1.4 we have defined the non-local matrix element

Hµ(q, k) = i

∫
d4x eiq·x 〈K(∗)(k)|Kµ(x, 0)|B(q + k)〉 , (B.20)

with

Kµ(x, 0) ≡ T
{
Jµcc(x), (C1O

c
1 + C2O

c
2) (0)

}
, (B.21)

which in ref. [14] is parametrized as

HµBK(q, k) = ((k · q)qµ − q2kµ)HBK(q2) , (B.22)

HµBK∗(q, k) = εµαβγη
∗αqβkγH1(q2)

+ i
(
(m2

B −m2
K∗)η

∗
µ − (η∗ · q)(2k + q)µ

)
H2(q2)

+ i(η∗ · q)
(
qµ −

q2

m2
B −m2

K∗
(2k + q)µ

)
H3(q2) , (B.23)

where
Hi = (3C1 + C2)Vi + 2C2Ṽi

are the invariant amplitudes. While the functions Vi can be expressed in terms of the tradi-
tional B → K∗ form factors, the functions Ṽi parametrize non-local hadronic matrix elements
and hence they are not related to the B → K∗ form factors. The definition of the functions
Ṽi has been given subsection 4.1.4, where we have also computed them using light-cone sum
rules.

Alternatively, Hµ can also be parametrized as

HµBK(q, k) = m2
B S

µ
0 HBK,0(q2) ,

HµBK∗(q, k) = m2
B η
∗
α

(
Sαµ⊥ HBK∗,⊥(q2)− Sαµ‖ HBK∗,‖(q

2)− Sαµ0 HBK∗,0(q2)
)
,

(B.24)
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where

Sµ(0) = 2kµ − 2(q · k)

q2
qµ , Sαµ(‖) =

imB√
2

[
gαµ − 4(q · k)

λ
qαkµ +

4m2
K∗

λ
qαqµ

]
,

Sαµ(⊥) =

√
2mB√
λ

εαµkq , Sαµ(0) =
4imK∗mB√

q2 λ

[
q2qαkµ − (q · k) qαqµ

]
.

(B.25)

Comparing these two different definitions, we obtain

HBK,0 = − q2

2m2
B

HBK ,

HBK∗,⊥ =

√
λ(q2)√
2m3

B

H1 ,

HBK∗,‖ = −
√

2
m2
B −m2

K∗

m3
B

H2 ,

HBK∗,0 = −
√
q2

2m3
BmK∗

(
(m2

B + 3m2
K∗ − q2)H2 −

λ(q2)

m2
B −m2

K∗
H3

)
.

(B.26)
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Appendix C

LCSRs Input Parameters

In this appendix we list all the inputs used to evaluate numerically the light-cone sum rules
(LCSRs) with B-meson light-cone distribution amplitudes (B-LCDAs) presented in this work.
For the meson masses we use the Particle Data Group [27] averages, while for the quark masses
we take their value in the MS scheme at the scale µ = 2 GeV. The values of decay constants of
final state mesons, the effective thresholds and the Borel parameters are collected in table C.1.
For the B-meson decay constants, we use the most precise lattice QCD predictions taken from
ref. [153], which read

fB = (189.4± 1.4) MeV , fBs = (230.7± 1.3) MeV . (C.1)

The most critical inputs in our analyses are λB(s),+, λ
2
B(s),E

and λ2
B(s),H

, given their sub-
stantial uncertainties. They appear in the explicit models of the B-LCDAs (see e.g. refs.
[37, 112, 114]) and hence any LCSR strongly depends on these parameters. The first inverse
moment 1/λB,+ of the B-LCDA φ+(ω) is defined as

1

λB,+(µ)
≡
∫ ∞

0
dω

φ+(ω, µ)

ω
. (C.2)

This is clearly a non-perturbative quantity and as such it can be computed with the methods
discussed in chapter 3, namely lattice QCD and QCD sum rules. However, unlike the case of
light-meson light-cone distribution amplitudes, where lattice QCD has been and is still of great
help evaluating the moments of such distribution amplitudes, for the B-LCDAs the situation
is different (see e.g. ref. [163]). In fact, the prediction of λB,+ involve the calculation of non-
local matrix elements, which are extremely challenging to treat for lattice QCD. Therefore,
there are no lattice QCD predictions of λB,+ and we use the value

λB,+(µ = 1 GeV) = (0.46± 0.11) GeV , (C.3)

obtained with SVZ sum rules in ref. [164].
An alternative method to obtain λB,+ was proposed in ref. [38] and further developed

in ref. [37]. The idea is to extract λB,+ from the experimental data of the radiative decay
B → γ`ν. Since this decay mode has not been observed so far and there are only bounds on
its branching fraction from the BaBar and Belle collaborations [165–168], it is only possible
to put a lower limit on the size of λB,+. Nevertheless, the Belle II experiment is expected to
increase the precision in B → γ`ν significantly, allowing a better estimate of λB,+ than the
one of eq. (C.3). The same procedure can also be applied using the lattice predictions of the
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process decay constant fP,V [MeV] s0 [GeV2] M2 [GeV2]

B → π 130.2± 1.4 0.7± 0.014× 1.0± 0.5

B → K 155.6± 0.4 1.05± 0.021× 1.0± 0.5

B → D 212.6± 0.5 [5.8, 7.8]† 4.5± 1.5

Bs → Ds 249.9± 0.4 [6.9, 11.0]† 4.5± 1.5

B → ρ 213± 5 1.6± 0.032× 1.0± 0.5

B → K∗ 204± 7 [1.4, 1.7]† 1.0± 0.5

B → D∗ 249± 21 [6.9, 8.0]† 4.5± 1.5

Bs → D∗s 293± 19 [7.9, 11.8]† 4.5± 1.5

Table C.1: List of the processes considered with the respective decay constants,
effective thresholds s0 and Borel parameters M2. We use values of the decay
constants given in refs. [66, 153–161], while we use the same Borel windows as in
refs. [112, 127]. The values of s0 marked with × are taken from refs. [91, 95, 162],
with the uncertainties estimated from the uncertainty of the corresponding decay
constant. Intervals marked with † represent the union of intervals for the indi-
vidual form factors obtained with the procedure described in subsection 4.1.2.

B → γ`ν form factors instead of the experimental data, as suggested in ref. [169].

The three-particle local B-to-vacuum matrix elements are parametrized by the constants
λ2
B(s),E

and λ2
B(s),H

, as two-particle local B-to-vacuum matrix elements are parametrized by
the mesons decay constants. These parameters were introduced in ref. [132] and are defined
by

〈0| q̄2(0)gs(~α · ~E)γ5hv(0) |B̄q2(v)〉 = fBmBλ
2
Bq2 ,E

,

〈0| q̄2(0)gs(~σ · ~H)γ5hv(0) |B̄q2(v)〉 = ifBmBλ
2
Bq2 ,H

(C.4)

in the B-meson rest frame, where αi ≡ γ0γi, Ei ≡ G0i and Hi ≡ −1
2εijkGjk . Equations (C.4)

imply that [114]

〈0| q̄α2 (0)gsGµν(0)hβv (0) |B̄q2(v)〉 = − i

12
fBmBλ

2
Bq2 ,H

Tr {γ5Γ(1 + /v)σµν}

− 1

12
fBmB

(
λ2
Bq2 ,H

− λ2
Bq2 ,E

)
Tr {γ5Γ(1 + /v)(vµγν − vνγµ)} ,

(C.5)
where Γ stands for an arbitrary Dirac structure. The parameters λ2

B,E and λ2
B,H have been

calculated with SVZ sum rules as well, obtaining

λ2
B,E(µ = 1 GeV) = (0.11± 0.06) GeV2 , λ2

B,H(µ = 1 GeV) = (0.18± 0.07) GeV2 (C.6)

in ref. [132] and

λ2
B,E(µ = 1 GeV) = (0.03± 0.02) GeV2 , λ2

B,H(µ = 1 GeV) = (0.06± 0.03) GeV2 (C.7)
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in ref. [139]. The result (C.7) includes further QCD corrections with respect to (C.6), which
improve the stability of the sum rule and reduce the central values. Thus, we use the results
of ref. [139] for our numerical analyses.

Notice that both results give the same ratio

λ2
B,H

λ2
B,E

' 0.5 ,

in contrast to refs. [14, 112, 127], where the numerical results are obtained for λ2
B,H = λ2

B,E .
Furthermore, the central value used in these references is

λ2
B,H = λ2

B,E =
2

3
Λ̄ ,

where Λ̄ ≡ mB −mb, which is much higher than the one in eq. (C.7). This leads to an overes-
timate of the three-particle contributions in the LCSRs to calculate the form factors and the
soft-gluon contribution to the charm loop, which are discussed in chapter 4.

Since we also consider Bs-meson decays and currently there are no calculations for λBs,+ ,
λ2
Bs,E

and λ2
Bs,H

, we need to estimate these parameters. We follow the same procedure that
we used in ref. [2]. As shown in ref. [132], the relation

λBq2 ,+ =
2

3
Λ̄q2 (C.8)

holds at leading order in αs. We therefore use this equation to assess the SU(3) flavor
symmetry breaking in the parameter λBq2 ,+ . We take the difference between eq. (C.8) with
q = s and eq. (C.8) with1 q = u/d, which gives

λBs,+ = λB,+ +
2

3

(
Λ̄s − Λ̄

)
. (C.9)

The advantage of taking the difference is the cancellation of the UV-divergent corrections in
fixed-order perturbation theory [170]. Using Λ̄d = 0.500 GeV, Λ̄s = 0.590 GeV and eq. (C.3),
we estimate

λBs,+(µ = 1 GeV) = (0.52± 0.11) GeV . (C.10)

For the parameters λBs,+ and λ2
Bs,E

, given their large uncertainties and their smaller
impact on the numerical results, we neglect potential SU(3) flavor symmetry breaking effects,
setting λ2

Bs,E
= λ2

B,E and λ2
Bs,H

= λ2
B,H .

1Here and throughout this thesis we work in the isospin limit.
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Appendix D

Results for the Form Factors LCSR

In this appendix we give the coefficients of the sum rule (4.29). The normalisation factors are:

K(fB→P+ ) = K
(fB→P

+/− )
= fP , K(fB→PT ) =

fP (m2
B −m2

P − q2)

mB(mB +mP )
,

K(V B→V ) =
2fVmV

mB(mB +mV )
, K(AB→V1 ) =

2fVmV (mB +mV )

m2
B

,

K(AB→V2 ) =
2fVmV

mB +mV
, K(AB→V30 ) =

4fVm
2
V

q2
,

K(TB→V1 ) = K(TB→V23A ) = K(TB→V23B ) =
2fVmV

mB
.

In the next sections we give the C(F,ψ)
n coefficients of eqs. (4.30) and (4.31). For all the form

factors, the following relations hold among the three-particle contributions:

C(F,ψ4)
n = −C(F,φ3)

n − C(F,φ4)
n , C(F,χ4)

n = C(F,φ3)
n − C(F,φ4)

n .

D.1 B → P

Two-particle Contributions

The coefficients of eq. (4.30), for the two-particle DAs, are listed in the following. For fB→P+

we find the non-vanishing coefficients:

C
(fB→P+ ,φ+)

1 = −σ̄ ,

C
(fB→P+ ,φ̄)

2 = −mBσ̄
2 ,

C
(fB→P+ ,g+)

2 = −4σ̄, C
(fB→P+ ,g+)

3 = 8m2
1σ̄ ,

C
(fB→P+ ,ḡ)

3 = −8mBσ̄
2 , C

(fB→P+ ,ḡ)

4 = 24m2
1mBσ̄

2 .

For fB→P+/− we find:

C
(fB→P

+/− ,φ+)

1 = 2σ − 1 ,
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C
(fB→P

+/− ,φ̄)

2 = 2mBσσ̄ −m1 ,

C
(fB→P

+/− ,g+)

2 = 4(2σ − 1) , C
(fB→P

+/− ,g+)

3 = −8m2
1(2σ − 1) ,

C
(fB→P

+/− ,ḡ)

3 = 16mBσσ̄ , C
(fB→P

+/− ,ḡ)

4 = 24m2
1(m1 − 2mBσσ̄) .

For fB→PT we find:

C
(fB→PT ,φ̄)
1 =

1

mB
, C

(fB→PT ,φ̄)
2 =

−(m2
Bσ̄

2 −m2
1 + 2q2σ − q2)

mB
,

C
(fB→PT ,ḡ)
2 =

8

mB
, C

(fB→PT ,ḡ)
3 =

−8(m2
Bσ̄

2 + 2m2
1 + 2q2σ − q2)

mB
,

C
(fB→PT ,ḡ)
4 =

24m2
1(m2

Bσ̄
2 −m2

1 + 2q2σ − q2)

mB
.

Three-particle Contributions

The coefficients of eq. (4.31), for the three-particle DAs, for fB→P+ follow. For φ3:

C
(fB→P+ ,φ3)

2 = −2m1

mB
− uσ̄ ,

C
(fB→P+ ,φ3)

2 =
u

mB
, C

(fB→P+ ,φ3)

3 = − 2

mB
(u(m2

Bσ̄
2 + q2) + 4mBm1σ̄ + um2

1) ,

C
(fB→P+ ,φ3)

4 = −6m1σ̄(2mBσ̄ +m1(2u− 1)) .

For φ4:

C
(fB→P+ ,φ4)

2 = σ̄(1− u) ,

C
(fB→P+ ,φ4)

2 =
u− 1

mB
,

C
(fB→P+ ,φ4)

3 = 2umBσ̄
2 + 4m1σ̄ + 2

(1− u)(m2
1 + q2)

mB
,

C
(fB→P+ ,φ4)

3 =
2

mB
(mBσ̄(2u− 1) + 2m1) ,

C
(fB→P+ ,φ4)

4 =
6

mB
(m2

Bσ̄
2 − q2)(mBσ̄(2u− 1) + 2m1) .

For ψ4:

C
(fB→P+ ,ψ4)

2 =
1− 2u

mB
, C

(fB→P+ ,ψ4)

3 =
2

mB
(2u− 1)(m2

1 −m2
Bσ̄

2 + q2) .

For χ4:

C
(fB→P+ ,χ4)

2 =
1

mB
,
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C
(fB→P+ ,χ4)

3 = − 2

mB
(m2

Bσ̄
2(2u− 1) + 4mBm1σ̄ +m2

1 + q2) .

The coefficients of eq. (4.31), for the three-particle DAs, for fB→P+/− follow. For φ3:

C
(fB→P

+/− ,φ3)

2 =(3− 2σ̄)u− 4m1

mB
,

C
(fB→P

+/− ,φ3)

2 =2u
(σ̄ − 1)

mBσ̄
,

C
(fB→P

+/− ,φ3)

3 =− 2

mBσ̄
(m2

Bσ̄
2(2σ̄ − 3)u

+(2σ̄ − 1)(4mBm1σ̄ + uq2) + um2
1(2σ̄ + 1)) ,

C
(fB→P

+/− ,φ3)

4 =− 6m1(4mB(σ̄ − 1)σ̄ +m1(2σ̄ + 1)(2u− 1)) .

For φ4:

C
(fB→P

+/− ,φ4)

2 =(1− u)(2σ̄ + 1) ,

C
(fB→P

+/− ,φ4)

2 =
2

mBσ̄
(σ̄ − 1)(u− 1) ,

C
(fB→P

+/− ,φ4)

3 =
2

mBσ̄
(m2

Bσ̄
2(2σ̄u− u− 1) +mBm1σ̄(4σ̄ − 1)

+m2
1(2σ̄ + 1)(1− u) + q2(2σ̄ − 2σ̄u+ u− 1)) ,

C
(fB→P

+/− ,φ4)

3 =
2

mBσ̄
(2mB(σ̄ − 2)σ̄(2u− 1) +m1(4σ̄ − 3)) ,

C
(fB→P

+/− ,φ4)

4 =
6

mBσ̄
(m1(4σ̄ − 1)(m2

Bσ̄
2 − q2) + 2mB(σ̄ − 1)σ̄(2u− 1)(m2

Bσ̄
2 − q2))

+
6

mBσ̄
(mBm

2
1σ̄(2u− 1)−m3

1) .

For ψ4:

C
(fB→P

+/− ,ψ4)

2 =
2

mBσ̄
(σ̄ − 1)(1− 2u) ,

C
(fB→P

+/− ,ψ4)

3 =
2

mBσ̄
((2σ̄ − 1)(2u− 1)(q2 −m2

Bσ̄
2)− 2mBm1σ̄ +m2

1(2σ̄ + 1)(2u− 1)) .

For χ4:

C
(fB→P

+/− ,χ4)

2 =
2

mBσ̄
(σ̄ − 1) ,

C
(fB→P

+/− ,χ4)

3 =− 2

mBσ̄
(m2

Bσ̄
2(4u(σ̄ − 1)− 2σ̄ + 1)

+4mBm1σ̄(2σ̄ − 1) +m2
1(2σ̄ + 1) + q2(2σ̄ − 1)) .
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The coefficients of eq. (4.31), for the three-particle DAs, for fB→PT follow. For φ3:

C
(fB→PT ,φ3)
1 =

2u

m2
Bσ̄

,

C
(fB→PT ,φ3)
2 = − 2u

m2
Bσ̄

(m2
Bσ̄

2 −m2
1 − 2q2σ̄ + q2) ,

C
(fB→PT ,φ3)
2 =

4

m2
Bσ̄

(mBσ̄u+m1) ,

C
(fB→PT ,φ3)
3 = − 4

m2
Bσ̄

(m2
Bσ̄

2 −m2
1 − 2q2σ̄ + q2)(mBσ̄u+m1) ,

C
(fB→PT ,φ3)
3 = 12

m1

mB
,

C
(fB→PT ,φ3)
4 = −12

m1

mB
(m2

Bσ̄
2 −m2

1 − 2q2σ̄ + q2) .

For φ4:

C
(fB→PT ,φ4)
2 = − 2

mB
,

C
(fB→PT ,φ4)
3 =

2

mB
(m2

Bσ̄
2 −m2

1 − 2q2σ̄ + q2) ,

C
(fB→PT ,φ4)
2 = − 4

m2
Bσ̄

(2u− 1) ,

C
(fB→PT ,φ4)
3 =

2

m2
Bσ̄

(2u− 1)(m2
1 −m2

Bσ̄
2 + q2(5− 4σ̄)) ,

C
(fB→PT ,φ4)
4 =

6

m2
Bσ̄

(2u− 1)(m2
1 −m2

Bσ̄
2 + q2)(m2

1 −m2
Bσ̄

2 + q2(2σ̄ − 1)) .

For ψ4:

C
(fB→PT ,ψ4)
2 = − 4m1

m2
Bσ̄

,

C
(fB→PT ,ψ4)
3 =

4m1

m2
Bσ̄

(m2
Bσ̄

2 −m2
1 − 2q2σ̄ + q2) .

For χ4:

C
(fB→PT ,χ4)
2 =

4

m2
Bσ̄

(mBσ̄u+m1) ,

C
(fB→PT ,χ4)
3 = − 4

m2
Bσ̄

(mBσ̄u+m1)(m2
Bσ̄

2 −m2
1 − 2q2σ̄ + q2) .
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D.2 B → V

Two-particle Contributions

The coefficients of eq. (4.30), for the two-particle DAs, are listed in the following. For V B→V

we find:

C
(V B→V ,φ+)
1 = − 1

mB
,

C
(V B→V ,φ̄)
2 = −m1

mB
,

C
(V B→V ,g+)
2 = − 4

mB
, C

(V B→V ,g+)
3 =

8m2
1

mB
,

C
(V B→V ,ḡ)
4 =

24m3
1

mB
.

For AB→V1 we find:

C
(AB→V1 ,φ+)
1 =

q2 − (mBσ̄ +m1)2

m2
Bσ̄

,

C
(AB→V1 ,φ̄)
1 = − m1

m2
Bσ̄

, C
(AB→V1 ,φ̄)
2 =

m1(q2 − (mBσ̄ +m1)2)

m2
Bσ̄

,

C
(AB→V1 ,g+)
1 = − 4

m2
Bσ̄

, C
(AB→V1 ,g+)
2 =

4(q2 −m2
Bσ̄

2 +m2
1)

m2
Bσ̄

,

C
(AB→V1 ,g+)
3 =

8m2
1((mBσ̄ +m1)2 − q2)

m2
Bσ̄

,

C
(AB→V1 ,ḡ)
2 = − 8

mB
, C

(AB→V1 ,ḡ)
3 =

8m2
1(2mBσ̄ + 3m1)

m2
Bσ̄

,

C
(AB→V1 ,ḡ)
4 =

24m3
1((mBσ̄ +m1)2 − q2)

m2
Bσ̄

.

For AB→V2 we find:

C
(AB→V2 ,φ+)
1 = 2σ − 1 ,

C
(AB→V2 ,φ̄)
2 = 2mBσσ̄ −m1 ,

C
(AB→V2 ,g+)
2 = 4(2σ − 1) , C

(AB→V2 ,g+)
3 = −8m2

1(2σ − 1) ,

C
(AB→V2 ,ḡ)
3 = 16mBσσ̄ , C

(AB→V2 ,ḡ)
4 = 24m2

1(m1 − 2mBσσ̄) .

For AB→V30 we find:

C
(AB→V30 ,φ+)
1 = 2σ + 1 ,
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C
(AB→V30 ,φ̄)
2 = m1 − 2mBσ(σ + 1) ,

C
(AB→V30 ,g+)
2 = 4(2σ + 1) , C

(AB→V30 ,g+)
3 = −8m2

1(2σ + 1) ,

C
(AB→V30 ,ḡ)
3 = −16mBσ(σ + 1) , C

(AB→V30 ,ḡ)
4 = 24m2

1(2mBσ(σ + 1)−m1) .

For TB→V1 we find:

C
(TB→V1 ,φ+)
1 = −(mBσ̄ +m1)

mB
,

C
(TB→V1 ,φ̄)
2 = −m1

(mBσ̄ +m1)

mB
,

C
(TB→V1 ,g+)
2 = −4σ̄ , C

(TB→V1 ,g+)
3 = 8m2

1

(mBσ̄ +m1)

mB
,

C
(TB→V1 ,ḡ)
2 = − 4

mB
, C

(TB→V1 ,ḡ)
3 =

8m2
1

mB
,

C
(TB→V1 ,ḡ)
4 = 24m3

1

(mBσ̄ +m1)

mB
.

For TB→V23A we find:

C
(TB→V23A ,φ+)
1 = −(mBσ̄ +m1)

mB
,

C
(TB→V23A ,φ̄)
2 = −(m1(mBσ̄ +m1)− 2q2σ)

mB
,

C
(TB→V23A ,g+)
2 = −4σ̄ , C

(TB→V23A ,g+)
3 = 8m2

1

(mBσ̄ +m1)

mB
,

C
(TB→V23A ,ḡ)
2 = − 4

mB
, C

(TB→V23A ,ḡ)
3 =

8(m2
1 + 2q2σ)

mB
,

C
(TB→V23A ,ḡ)
4 = 24m2

1

(m1(mBσ̄ +m1)− 2q2σ)

mB
.

For TB→V23B we find:

C
(TB→V23B ,φ+)
1 =

(mBσ −m1)

mB
,

C
(TB→V23B ,φ̄)
1 =

σ

mBσ̄
, C

(TB→V23B ,φ̄)
2 =

mBm1σσ̄ −m2
Bσσ̄

2 + (2σ − 1)(m2
1 − q2σ)

mBσ̄
,

C
(TB→V23B ,g+)
2 = 4σ , C

(TB→V23B ,g+)
3 = 8m2

1

(m1 −mBσ)

mB
,

C
(TB→V23B ,ḡ)
2 = 4

(3σ − 1)

mBσ̄
, C

(TB→V23B ,ḡ)
3 = −8

σ(m2
Bσ̄

2 + 3m2
1 + q2(2σ − 1))−m2

1

mBσ̄
,
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C
(TB→V23B ,ḡ)
4 =

24m2
1

mBσ̄
(m2

Bσσ̄
2 −mBm1σσ̄ + (2σ − 1)(q2σ −m2

1)) .

Where TB→V23A and TB→V23B are defined in eqs. (4.24) and (4.25).

Three-particle Contributions

The coefficients of eq. (4.31), for the three-particle DAs, for V B→V follow. For φ3:

C
(V B→V ,φ3)
2 =

u

mB
,

C
(V B→V ,φ3)
2 =

2u

m2
Bσ̄

,

C
(V B→V ,φ3)
3 =

2u

m2
Bσ̄

(m2
Bσ̄

2 +m2
1 − q2) ,

C
(V B→V ,φ3)
4 =

6m2
1

mB
(2u− 1) .

For φ4:

C
(V B→V ,φ4)
2 =

u− 1

mB
,

C
(V B→V ,φ4)
2 = 2

(u− 1)

m2
Bσ̄

,

C
(V B→V ,φ4)
3 =

2

m2
Bσ̄

(u− 1)(m2
1 − q2)− 2m1

mB
+ 2σ̄(u− 1) ,

C
(V B→V ,φ4)
3 = − 6m1

m2
Bσ̄

,

C
(V B→V ,φ4)
4 = − 6m1

m2
Bσ̄

(m2
Bσ̄

2 +mBm1σ̄(1− 2u) +m2
1 − q2) .

For ψ4:

C
(V B→V ,ψ4)
2 =

2− 4u

m2
Bσ̄

,

C
(V B→V ,ψ4)
3 =

2

m2
Bσ̄

((2u− 1)(q2 −m2
Bσ̄

2) + 2mBm1σ̄ +m2
1(1− 2u)) .

For χ4:

C
(V B→V ,χ4)
2 =

2

m2
Bσ̄

,

C
(V B→V ,χ4)
3 =

2

m2
Bσ̄

(m2
1 − q2) + 2σ̄ .
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The coefficients of eq. (4.31), for the three-particle DAs, for AB→V1 follow. For φ3:

C
(AB→V1 ,φ3)
1 =

u

m2
Bσ̄

,

C
(AB→V1 ,φ3)
2 = u

(m2
1 − q2)

m2
Bσ̄

+
2m1

mB
+ uσ̄ ,

C
(AB→V1 ,φ3)
1 =

2u

m3
Bσ̄

2
,

C
(AB→V1 ,φ3)
2 =

1

m3
Bσ̄

2
(4mBm1σ̄ − 2um2

Bσ̄
2 + 4m2

1u− 4q2u) ,

C
(AB→V1 ,φ3)
3 =

2

m3
Bσ̄

2
(m2

Bσ̄
2 +m2

1 − q2)(m2
Bσ̄

2u+ 2mBm1σ̄ +m2
1u− q2u) ,

C
(AB→V1 ,φ3)
3 =

6m1

m2
Bσ̄

(2mBσ̄ +m1(2u− 1)) .

C
(AB→V1 ,φ3)
4 =

6m2
1

m2
Bσ̄

(m2
Bσ̄

2(2u− 1) + 2mBm1σ̄ + (2u− 1)(m2
1 − q2)) .

For φ4:

C
(AB→V1 ,φ4)
1 =

u− 1

m2
Bσ̄

,

C
(AB→V1 ,φ4)
2 =

u− 1

m2
Bσ̄

(m2
Bσ̄

2 +m2
1 − q2) ,

C
(AB→V1 ,φ4)
1 =2

(u− 1)

m3
Bσ̄

2
,

C
(AB→V1 ,φ4)
2 =

1

m3
Bσ̄

2
(2m2

Bσ̄
2u− 2mBm1σ̄ + 4(u− 1)(m2

1 − q2)) ,

C
(AB→V1 ,φ4)
3 =

2

m3
Bσ̄

2
((mBσ̄ +m1)2 − q2)(m2

Bσ̄
2(u− 1)

+mBm1σ̄(1− 2u) + (u− 1)(m2
1 − q2)) ,

C
(AB→V1 ,φ4)
2 =

2

m3
Bσ̄

2
(2mBσ̄(2u− 1)− 3m1) ,

C
(AB→V1 ,φ4)
3 =

12m1

m3
Bσ̄

2
(q2 −m2

1)− 2

m2
Bσ̄

(2u− 1)(m2
1 + 2q2)− 4m1

mB
+ 4σ̄(2u− 1) ,

C
(AB→V1 ,φ4)
4 =− 6m1

m3
Bσ̄

2
(mBm1σ̄(2u− 1)(m2

Bσ̄
2 − q2) + (q2 −m2

Bσ̄
2)2

+m3
1mBσ̄(2u− 1) +m4

1 − 2m2
1q

2) .
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For ψ4:

C
(AB→V1 ,ψ4)
1 = − 2

m3
Bσ̄

2
(2u− 1) ,

C
(AB→V1 ,ψ4)
2 = − 2

m3
Bσ̄

2
(2u− 1)(m2

Bσ̄
2 + 2m2

1 − 2q2) ,

C
(AB→V1 ,ψ4)
3 = − 2

m3
Bσ̄

2
(2u− 1)((q2 −m2

Bσ̄
2)2 − 2m2

1(m2
Bσ̄

2 + q2) +m4
1) .

For χ4:

C
(AB→V1 ,χ4)
1 =

2

m3
Bσ̄

2
,

C
(AB→V1 ,χ4)
2 =

2

m3
Bσ̄

2
(m2

Bσ̄
2(1− 2u) + 2mBm1σ̄ + 2m2

1 − 2q2) ,

C
(AB→V1 ,χ4)
3 =

2

m3
Bσ̄

2
(m4

Bσ̄
4 + 2m3

Bm1σ̄
3 − 2m2

Bσ̄
2(m2

1(1− 2u) + q2)

+2mBm1σ̄(m2
1 − q2) + (m2

1 − q2)2) .

The coefficients of eq. (4.31), for the three-particle DAs, for AB→V2 follow. For φ3:

C
(AB→V2 ,φ3)
2 =

4m1

mB
− (2σ̄ + 1)u ,

C
(AB→V2 ,φ3)
2 =

2u

mBσ̄
(σ̄ − 1) ,

C
(AB→V2 ,φ3)
3 =

1

mBσ̄
(2u(m2

B(3− 2σ̄)σ̄2 − 2q2σ̄ + q2)

+8mBm1σ̄(2σ̄ − 1)− 2m2
1(2σ̄u+ u)) ,

C
(AB→V2 ,φ3)
4 =6m1(4mB(σ̄ − 1)σ̄ +m1(2σ̄ + (6− 4σ̄)u− 3)) .

For φ4:

C
(AB→V2 ,φ4)
2 =(1− u)(2σ̄ − 3) ,

C
(AB→V2 ,φ4)
2 =

2

mBσ̄
(u− 1)(σ̄ − 1) ,

C
(AB→V2 ,φ4)
3 =

2

mBσ̄
(m2

Bσ̄
2(2σ̄u− u− 1) +mBm1(3− 4σ̄)σ̄ +m2

1(2σ̄ + 1)(1− u)

+q2(2σ̄ − 2σ̄u+ u− 1)) ,

C
(AB→V2 ,φ4)
3 =

2

mBσ̄
(2mB(σ̄ − 2)σ̄(2u− 1) +m1(9− 4σ̄)) ,

C
(AB→V2 ,φ4)
4 =

6

mBσ̄
(2mB(σ̄ − 1)σ̄(2u− 1)(m2

Bσ̄
2 − q2)

+3mBm
2
1σ̄(1− 2u) + 3m3

1 +m1(4σ̄ − 3)(q2 −m2
Bσ̄

2)) .

105



For ψ4:

C
(AB→V2 ,ψ4)
2 =

2

mBσ̄
(1− 2u)(σ̄ − 1) ,

C
(AB→V2 ,ψ4)
3 =

1

mBσ̄
(2(2σ̄ − 1)(2u− 1)(q2 −m2

Bσ̄
2)

−4mBm1σ̄ + 2m2
1(2σ̄ + 1)(2u− 1)) .

For χ4:

C
(AB→V2 ,χ4)
2 =

2

mBσ̄
(σ̄ − 1) ,

C
(AB→V2 ,χ4)
3 =− 2

mBσ̄
(m2

Bσ̄
2(−2σ̄ + 4(σ̄ − 1)u+ 1)

+4mBm1(1− 2σ̄)σ̄ +m2
1(2σ̄ + 1) + q2(2σ̄ − 1)) .

The coefficients of eq. (4.31), for the three-particle DAs, for AB→V30 follow. For φ3:

C
(AB→V30 ,φ3)
2 =

4m1

mB
+ (5− 2σ̄)u ,

C
(AB→V30 ,φ3)
2 =

2u

mBσ̄
(σ̄ − 3) ,

C
(AB→V30 ,φ3)
3 =− 2

mBσ̄
(u(m2

Bσ̄(σ̄(2σ̄ − 9) + 8) + q2(2σ̄ − 3))

+4mBm1(3− 2σ̄)σ̄ +m2
1(2σ̄ + 3)u) ,

C
(AB→V30 ,φ3)
4 =6m1(4mB(σ̄ − 2)(σ̄ − 1) +m1(2σ̄ + (2− 4σ̄)u− 1)) .

For φ4:

C
(AB→V30 ,φ4)
2 =2σ̄ − 2σ̄u+ u− 1 ,

C
(AB→V30 ,φ4)
2 =

2

mBσ̄
(u− 1)(σ̄ − 3) ,

C
(AB→V30 ,φ4)
3 =

1

mBσ̄
(2m2

Bσ̄(2σ̄2u− 3σ̄(u+ 1) + 4) + 2mBm1(5− 4σ̄)σ̄

−2m2
1(2σ̄ + 3)(u− 1)− 2q2(2σ̄ − 3)(u− 1)) ,

C
(AB→V30 ,φ4)
3 =

2

mBσ̄
(2mB((σ̄ − 6)σ̄ + 6)(2u− 1) +m1(15− 4σ̄)) ,

C
(AB→V30 ,φ4)
4 =

6

mBσ̄
(2m3

B(σ̄ − 2)(σ̄ − 1)σ̄2(2u− 1) +m2
Bm1(5− 4σ̄)σ̄2

−mB(2u− 1)(m2
1(σ̄ − 4) + 2q2(σ̄ − 2)(σ̄ − 1)) +m1(5m2

1 + q2(4σ̄ − 5))) .
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For ψ4:

C
(AB→V30 ,ψ4)
2 =

2

mBσ̄
(1− 2u)(σ̄ − 3) ,

C
(AB→V30 ,ψ4)
3 =

2

mBσ̄
((2σ̄ − 3)(2u− 1)(q2 −m2

Bσ̄
2) + 2mBm1σ̄ +m2

1(2σ̄ + 3)(2u− 1)) .

For χ4:

C
(AB→V30 ,χ4)
2 =

2

mBσ̄
(σ̄ − 3) ,

C
(AB→V30 ,χ4)
3 =− 2

mBσ̄
(m2

Bσ̄((3− 2σ̄)σ̄ + 4(σ̄ − 2)(σ̄ − 1)u)

+4mBm1(3− 2σ̄)σ̄ +m2
1(2σ̄ + 3) + q2(2σ̄ − 3)) .

The coefficients of eq. (4.31), for the three-particle DAs, for TB→V1 follow. For φ3:

C
(TB→V1 ,φ3)
2 =

m1

mB
+ uσ̄ ,

C
(TB→V1 ,φ3)
2 =

1

m2
Bσ̄

(2m1 −mBσ̄u) ,

C
(TB→V1 ,φ3)
3 =

2

m2
Bσ̄

(m2
Bσ̄

2 +m2
1 − q2)(mBσ̄u+m1) ,

C
(TB→V1 ,φ3)
3 = 6

m1

mB
.

C
(TB→V1 ,φ3)
4 = 6

m2
1

mB
(mBσ̄(2u− 1) +m1) .

For φ4:

C
(TB→V1 ,φ4)
2 = (u− 1)σ̄ ,

C
(TB→V1 ,φ4)
2 =

u

mB
,

C
(TB→V1 ,φ4)
3 =

2

mB
(−(mBσ̄ +m1)(m1u−mBσ̄(u− 1))− q2u+ q2) ,

C
(TB→V1 ,φ4)
2 =

2

m2
Bσ̄

(2u− 1) ,

C
(TB→V1 ,φ4)
3 =

1

m2
Bσ̄

(−2(2u− 1)(q2 −m2
Bσ̄

2)− 2mBm1σ̄ +m2
1(4− 8u)) ,

C
(TB→V1 ,φ4)
4 =

6m1

m2
Bσ̄

(−m3
Bσ̄

3 +mBq
2σ̄ −m1(2u− 1)(m2

1 − q2)) .

For ψ4:

C
(TB→V1 ,ψ4)
2 =

1

m2
Bσ̄

(mBσ̄(1− 2u)− 2m1) ,
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C
(TB→V1 ,ψ4)
3 =

2

m2
Bσ̄

(m3
Bσ̄

3(1− 2u) +m2
Bm1σ̄

2 +mBσ̄(2u− 1)(m2
1 + q2)−m3

1 +m1q
2) .

For χ4:

C
(TB→V1 ,χ4)
2 =

1

m2
Bσ̄

(mBσ̄(1− 2u) + 2m1) ,

C
(TB→V1 ,χ4)
3 = 2

(
m3

1 −m1q
2

m2
Bσ̄

− −2m2
1u+m2

1 + q2

mB
+mBσ̄

2 +m1σ̄

)
.

The coefficients of eq. (4.31), for the three-particle DAs, for TB→V23A follow. For φ3:

C
(TB→V23A ,φ3)
2 =

mBm1 − 4q2u

m2
B

+ σ̄u ,

C
(TB→V23A ,φ3)
2 =

1

m2
Bσ̄

(2m1 −mBσ̄u) ,

C
(TB→V23A ,φ3)
3 =

2

m2
Bσ̄

(m3
Bσ̄

3u+ σ̄(mBu(m2
1 + 3q2) + 4m1q

2)

+mBσ̄
2(mBm1 − 4q2u) +m3

1 −m1q
2) ,

C
(TB→V23A ,φ3)
3 =6

m1

mB
.

C
(TB→V23A ,φ3)
4 =6

m1

mB
(mBm1σ̄(2u− 1) +m2

1 + 4q2(σ̄ − 1)) .

For φ4:

C
(TB→V23A ,φ4)
2 =σ̄(u− 1) ,

C
(TB→V23A ,φ4)
2 =

u

mB
,

C
(TB→V23A ,φ4)
3 =− 2

mB
((mBσ̄ +m1)(m1u−mBσ̄(u− 1)) + q2(−2σ̄ + u+ 1)) ,

C
(TB→V23A ,φ4)
2 =

2

m2
Bσ̄

(2u− 1) ,

C
(TB→V23A ,φ4)
3 =

2

m2
Bσ̄

((2u− 1)(m2
Bσ̄

2 + q2(4σ̄ − 7))−mBm1σ̄ +m2
1(2− 4u)) ,

C
(TB→V23A ,φ4)
4 =− 6

m2
Bσ̄

(m1(m3
Bσ̄

3 −mBq
2σ̄) + 2q2(σ̄ − 1)(2u− 1)(q2 −m2

Bσ̄
2)

+m4
1(2u− 1) +m2

1q
2(2σ̄ + 1)(2u− 1)) .

For ψ4:

C
(TB→V23A ,ψ4)
2 =

1

m2
Bσ̄

(mBσ̄(1− 2u)− 2m1) ,
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C
(TB→V23A ,ψ4)
3 =

2

m2
Bσ̄

(m3
Bσ̄

3(1− 2u) +m2
Bm1σ̄

2

+σ̄(mB(2u− 1)(m2
1 + q2)− 4m1q

2)−m3
1 +m1q

2) .

For χ4:

C
(TB→V23A ,χ4)
2 =

1

m2
Bσ̄

(mBσ̄ − 2mBσ̄u+ 2m1) ,

C
(TB→V23A ,χ4)
3 =

2

m2
Bσ̄

(m3
Bσ̄

3 + σ̄(2mBu(m2
1 + 2q2)−mB(m2

1 + q2) + 4m1q
2)

+mBσ̄
2(mBm1 − 4q2u) +m3

1 −m1q
2) .

The coefficients of eq. (4.31), for the three-particle DAs, for TB→V23B follow. For φ3:

C
(TB→V23B ,φ3)
1 =− 2

u

m2
Bσ̄

,

C
(TB→V23B ,φ3)
2 =

1

m2
Bσ̄

(u(m2
Bσ̄(3σ̄ − 1) + q2(2− 4σ̄)) +mBm1σ̄ − 2m2

1u) ,

C
(TB→V23B ,φ3)
2 =

1

m2
Bσ̄

(mB(2− 5σ̄)u+ 6m1) ,

C
(TB→V23B ,φ3)
3 =

2

m2
Bσ̄

(m1(q2(4σ̄ − 3)−m2
Bσ̄

2) +mB(σ̄ − 1)u(3m2
Bσ̄

2 − 4q2σ̄ + q2)

−mBm
2
1(σ̄ − 1)u+ 3m3

1) ,

C
(TB→V23B ,φ3)
3 =6

m1

mBσ̄
(3σ̄ − 2) .

C
(TB→V23B ,φ3)
4 =6

m1

mBσ̄
((3σ̄ − 2)m2

1 +mB(2u− 1)(σ̄ − 1)σ̄m1

−2(σ̄ − 1)(m2
Bσ̄

2 − 2q2σ̄ + q2)) .

For φ4:

C
(TB→V23B ,φ4)
2 = (σ̄ − 1)(u− 1) ,

C
(TB→V23B ,φ4)
2 =

1

mBσ̄
(2σ̄ + (σ̄ − 2)u) ,

C
(TB→V23B ,φ4)
3 =

2

mBσ̄
((σ̄ − 1)(m2

Bσ̄
2(u− 2) + 2q2σ̄ − q2u)−mBm1(σ̄ − 1)σ̄

−m2
1(σ̄(u− 1) + u)) ,

C
(TB→V23B ,φ4)
2 =

6

m2
Bσ̄

2
(σ̄ − 1)(2u− 1) ,
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C
(TB→V23B ,φ4)
3 =

1

m2
Bσ̄

2
(4(2u− 1)(m2

Bσ̄
3 + q2(2(σ̄ − 3)σ̄ + 3))

− 2mBm1(σ̄ − 3)σ̄ − 6m2
1(σ̄ + 2)(2u− 1)) ,

C
(TB→V23B ,φ4)
4 = − 6

m2
Bσ̄

2
((2u− 1)(2σ̄ + 1)m4

1 −mBσ̄m
3
1 + (2u− 1)(m2

B(1− 2σ̄)σ̄2

+ q2(2σ̄2 + σ̄ − 2))m2
1 +mB(σ̄ − 1)σ̄(m2

Bσ̄
2 − q2)m1

+ (2u− 1)(σ̄ − 1)(m2
Bσ̄

2 − q2)(m2
Bσ̄

2 − 2q2σ̄ + q2)) .

For ψ4:

C
(TB→V23B ,ψ4)
2 =

1

m2
Bσ̄

(mB(σ̄ − 2(σ̄ − 2)u− 2)− 6m1) ,

C
(TB→V23B ,ψ4)
3 =

2

m2
Bσ̄

(m3
Bσ̄

2(σ̄ − 2(σ̄ − 1)u− 1) +m2
Bm1σ̄(3σ̄ − 2)

+mB(2u− 1)(m2
1(σ̄ + 1) + q2(σ̄ − 1))− 3m3

1 +m1q
2(3− 4σ̄)) .

For χ4:

C
(TB→V23B ,χ4)
2 =

1

m2
Bσ̄

(mB(σ̄ + (4− 6σ̄)u− 2) + 6m1) ,

C
(TB→V23B ,χ4)
3 =

2

m2
Bσ̄

(m3
B(σ̄ − 1)σ̄2(2u+ 1)−m2

Bm1σ̄
2 +mB(m2

1(−σ̄ + 2u− 1)

− q2(σ̄ − 1)((4σ̄ − 2)u+ 1)) + 3m3
1 +m1q

2(4σ̄ − 3)) .
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