
Technische Universität München
Lehrstuhl für Wissenschaftliches Rechnen

Parallel Algorithms for the Solution of
Banded Symmetric Generalized Eigenvalue

Problems

Michael Rippl

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des Akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende(r): Prof. Dr. rer. nat. Helmut Seidl

Prüfer der Dissertation: 1. Prof. Dr. rer. nat. Thomas Huckle

2. Prof. Dr. rer. nat. Bruno Lang

Die Dissertation wurde am 06.08.2020 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 30.11.2020 angenommen.

Acknowledgements

At this point it is a good idea to pause and recapitulate the last few years in which I was
working on the topics of this thesis. First, I want to thank Thomas Huckle for his open door,
his patience and his support. This helped me a lot and let me grow. In the same way, I
want to thank Bruno Lang for his ideas and his support, especially with the twisted Crawford
approach, but also for sharing some tricks in numerical linear algebra with me. Thanks also
to Pavel Kůs for the evaluation of the first approach and for encouraging me at the second
attempt. Great thanks also to Valeriy Manin for providing his bandreduction code to me.

Developing and writing such a thesis is work. But work is not only work when sharing the
pain, the success, the problems and their solutions. Hence, I want to thank Benjamin Rüth
for sharing the office, the pain and success of the past years with me. Of course, thanks also
to the rest of the SCCS chair for the joyful time. Special thanks to my sister Christine for
patiently proofreading this thesis and, finally, I want to thank my family and my friends for
their support in this partly stressful times.

iii

Abstract

The solution of eigenvalue problems is one of the most important problem types in numeri-
cal linear algebra. Many eigenvalue problems are generalized eigenvalue problems which are
transformed to standard eigenvalue problems and solved as such. If the matrices of the gen-
eralized eigenvalue problem have banded structure, this procedure leads to a huge overhead
when using modern two-step solver for computing the resulting standard eigenvalue problem.
The reason is the loss of banded structure in the standard eigenvalue problem matrix.
A similar loss of the banded structure appears when solving banded generalized singular value
decompositions by the transformation to standard singular value decompositions.

This thesis describes serial and parallel algorithms for the transformation of the general-
ized eigenvalue problem to a standard eigenvalue problem and for the transformation of the
generalized singular value decomposition to a standard singular value decomposition while
maintaining the band. Maintaining the band allows to further exploit the banded structure,
e.g. by directly running the second step of a two-step solver, or, if the band is too wide,
utilizing a bandreduction step and then employing the second step of a two-step solver to
obtain eigenvalues and eigenvectors or singular values and singular vectors. The developed
algorithms are based on the Crawford algorithm.
The parallel algorithms are analyzed on a theoretical basis and in performance measurements.
They have demonstrated high scalability for medium to large size matrices with thin bands. In
a comparison with the ELPA two-step solver the eigenvalue implementation has demonstrated
its capabilities by reducing the time to solution significantly. The singular value implementa-
tion achieves similar runtimes as the eigenvalue implementation.

v

Contents

1 Introduction 1
1.1 High Performance Computing . 1
1.2 Generalized eigenvalue problems . 2
1.3 Generalized singular value problems . 5
1.4 Scope and structure of this work . 7

2 Basic Algorithms 9
2.1 Orthogonal transformations . 9

2.1.1 Householder transformations . 10
2.2 Non-blocked operations . 11

2.2.1 Application of a Householder transformation 11
2.2.2 Orthogonal transformations using Householder transformations (QR,

QL, RQ, LQ) . 12
2.3 Blocked operations . 14

2.3.1 Blocked application of Householder vectors 14
2.3.2 Blocked orthogonal transformations using blocked Householder trans-

formations (QR, QL, RQ, LQ) . 17
2.4 Factorization . 17

3 Algorithms 21
3.1 Twisted Crawford algorithm . 21

3.1.1 Twisted factorization . 24
3.1.2 Eigenvectors . 31
3.1.3 Overall algorithm . 33

3.2 Crawford SVD algorithm . 35
3.2.1 Twisted factorization . 38
3.2.2 Singular vectors . 45
3.2.3 Overall algorithm . 48

4 Parallel Algorithms 51
4.1 Parallelization strategies in Numerical Linear Algebra 51

4.1.1 Distribution of data and computation 51
4.1.2 Shared memory computation . 52
4.1.3 Pipelining . 52
4.1.4 Splitting in independent subtasks . 53

4.2 Twisted Crawford algorithm . 54
4.2.1 Pipelining approach . 54
4.2.2 Parallel execution of the upper and a lower matrix half 59
4.2.3 Block and inter-block parallelization . 59
4.2.4 Process and data structures . 62

vii

Contents

4.2.5 Parallel algorithms on the level of pairs of block rows and block columns 64
4.3 Backtransformation of eigenvectors . 72

4.3.1 Pipelining approach . 74
4.3.2 Backtransformation matrix approach . 82
4.3.3 Summary . 87

4.4 Crawford SVD algorithm . 89
4.4.1 Pipelining approach . 89
4.4.2 Parallel execution of the upper and a lower matrix half 93
4.4.3 Block and inter-block parallelization . 97
4.4.4 Process and data structures . 100
4.4.5 Parallel algorithms on the level of pairs of block rows and block columns 102

4.5 Backtransformation of singular vectors . 109
4.5.1 Pipelining approach . 110
4.5.2 Backtransformation matrix approach . 118

5 Numerical Analysis 119
5.1 Twisted Crawford algorithm . 119

5.1.1 Modeling of the speedup of the block and inter-block parallelization . . 119
5.1.2 Modeling of the speedup of the pipelining approach 123
5.1.3 Modeling of the speedup by splitting the matrix in upper and lower half 126

5.2 Twisted SVD algorithm . 126
5.2.1 Modeling of the speedup of the block and inter-block parallelization . . 126
5.2.2 Modeling of the efficiency of the pipelining approach 130
5.2.3 Modeling of the speedup by having twisted matrices 132

6 Performance Analysis 133
6.1 Computational resources . 133
6.2 Twisted Crawford algorithm . 133

6.2.1 Block and inter-block parallelization . 134
6.2.2 Pipelining approach . 136
6.2.3 Parallel execution of the upper and a lower matrix half 143
6.2.4 Scaling of the overall implementation . 146
6.2.5 Comparison to ELPA . 149

6.3 Crawford SVD algorithm . 153
6.3.1 Block and inter-block parallelization . 153
6.3.2 Pipelining approach . 158
6.3.3 Parallel execution of the upper and a lower matrix half 162
6.3.4 Scaling of the overall implementation . 162
6.3.5 Comparison to twisted Crawford algorithm 164

7 Conclusion 167

Bibliography 169

viii

1 Introduction

The development of numerical linear algebra code is the basis for most if not all computational
programs. It takes place at the intersection of the fields high performance computing (HPC),
linear algebra and numerical mathematics. Linear algebra is the basis of this kind of codes:
It defines the problem statement but also the way to solution. Numerical mathematics has to
be considered to achieve reasonable accuracy and to derive theoretical estimates for proper-
ties of algorithms. HPC concerns the efficient implementation of the algorithms on modern
many-core systems or supercomputers. Efficient numerical linear algebra code is based on all
three pillars and is usually developed in a multidisciplinary way.

1.1 High Performance Computing

Supercomputers have helped to advance the frontiers of science and engineering over the past
60 years. The increasing computing power over the years allowed to run more and more
complex and detailed simulations of physical phenomena. An estimate for the advances in
computing power has been described in 1965 by the famous Moore’s law [47]. It predicts an
exponential growth of the computing power over time. Figure 1.1 provides the development of
performance of the fastest supercomputers over the past 25 years. Despite a small deviation
over the past years, it shows that Moore’s law has still its validity.

For some time, performance gains have been generated by increasing the clock frequency of
processors. This, however, led to a disproportionate high growth in the energy consumption
and the development stopped roundabout 15 years ago. Since then the complexity of pro-
cessors rises more and more to increase the computing power. Vectorization was introduced,
multiple fused multiply add units became available per core and the number of cores per node
increased to name a few aspects. This requires more advanced programming techniques as in
the times where increasing clock speed was the driving force of performance gains and single
core performance increased without additional programming effort.
On a coarser level, also the complexity of supercomputers rises more and more. Accelerator
cards like GPGPU can be used additionally to the classical CPUs to increase the available
computing power. This trend to more complex and more heterogeneous architectures seems
to continue over the next years. However, pure CPU supercomputers like SuperMUC-NG [43]
are still state of the art and have currently (numbers of November 2019) a share of 50% of the
fastest supercomputers.

To exploit the available hardware a thorough understanding of the processors and the overall
system is necessary. As a consequence, codes for HPC systems also increase in their complex-
ity. Algorithms tailored to certain problem classes can exploit special properties of these
classes. This allows to omit unnecessary computations and will usually result in a shorter

1

1 Introduction

Figure 1.1: Performance development of the top 500 supercomputers over the past 25 years
[62]: Sum of the 500 fastest supercomputer (Sum), world’s fastest supercomputer
(#1) and number 500 in the world (#500).

time to solution. The algorithms presented in this work fit into this framework. Their imple-
mentations will focus on distributed memory systems with MPI [60] as communication layer.
Many tuning parameters in the algorithms allows to adapt them to the underlying hardware.

1.2 Generalized eigenvalue problems

Generalized eigenvalue problems (GEP) are defined as

AX = BXΛ (1.1)

for given matrices A and B. X is the matrix of eigenvectors and Λ is a diagonal matrix
containing the eigenvalues of the GEP on the diagonal. The order of the eigenvalues in Λ is
the same as the order of eigenvectors in X.

Generalized eigenvalue problems appear in many fields in science and engineering. In me-
chanics, eigenfrequencies of mass-spring systems can be determined via computation of the
eigenspectrum of the regarding system of mass and stiffness matrix. Another application in
this field is for example the computation of the buckling load of a rod. These and many other
problems are described by second order differential equations of the formMÿ(t)+Ky(t) = b(t).
The solution for this class of problems can be found via solving a generalized eigenvalue prob-
lem.
Another important source of generalized eigenvalue problems is computational chemistry.
Schrödinger’s equation ĤΦi = EiΦi is the basis for describing and understanding the physics
in the scale of atoms and molecules. Density functional theory [36] provides a methodology
to compute these interactions by discretization and simplification steps and results in the it-

2

1.2 Generalized eigenvalue problems

Tridiagonalization

Solve for EV
and EVec

Backtransformation

EVec

Figure 1.2: Steps of the ELPA one-step solver to compute eigenvalues (EV) and eigenvectors
(EVec).

erative solution of a generalized eigenvalue problem Ĥci = εiSci. The matrices Ĥ and S are
usually banded matrices in this setup.
Sparse generalized eigenvalue problems can be found in the fields of data analysis, model order
reduction and machine learning [61].

GEPs are a generalization of standard eigenvalue problems (SEP)

CY = Y Λ. (1.2)

The solution strategy for GEPs depends on the size and the properties of the matrices A
and B. In many of the named examples A and B are symmetric matrices and, additionally,
B is positive definite. For large sparse matrices, iterative approaches like Jacobi Davidson
variants [59], variants of the Arnoldi method [42] or LOBPCG [35] will be the methods of
choice. For dense matrices the approach consists of transforming the generalized eigenvalue
problem to a standard eigenvalue problem and employing algorithms for the SEP on it [56].

To tackle medium to large size standard eigenvalue problems in parallel, the use of a one-step
solver (see Figure 1.2) was for quite a long time the state of the art. The symmetric matrix
C is transformed to a tridiagonal matrix using orthogonal transformations. The eigenvalues
of the resulting tridiagonal matrix are computed using an iterative approach like Bisection
and inverse iteration [66], QR algorithm [27], Divide and conquer [22] or MRRR [24] and the
requested number of eigenvectors is transformed back to obtain the eigenvectors of the matrix
C. Before the ELPA library [46, 5, 6] was developed, the standard library for eigenvalue
computation of dense symmetric matrices was the MKL implementation of ScaLAPACK [15]
with it’s one-step solver. This solver had several weaknesses which had been overcome in the
ELPA one-step solver that outperformed the MKL version [46].

A new development of the ELPA project was the two-step solver [5]. The original idea was
published in [11]. Instead of immediately transforming the matrix C to a tridiagonal matrix,
it uses an intermediate step (see Figure 1.3). First, C is transformed to a banded matrix and
the banded matrix is then transformed in a second step to a tridiagonal matrix. This approach
allows to overcome the bottlenecks of the one-step solver. There, many operations are memory
bound. In the two-step solver the first step uses mainly BLAS3 operations and is hence
compute bound. The second step will still remain memory bound, but by choosing a small

3

1 Introduction

Bandreduction Tridiagonalization

Solve for EV
and EVec

Backtransformation

EVec

Backtransformation

EVec

Figure 1.3: Steps of the ELPA two-step solver to compute eigenvalues and eigenvectors.

intermediate bandwidth it is relatively cheap compared to the first step. The performance
gain, however, has to be paid at a different place. Instead of one step of backtransformation of
the eigenvectors, the two-step solver needs two steps of backtransformation. Especially, when
requesting a big fraction of the eigenspectrum, the backtransformation becomes expensive.
But when only a small part of the eigenspectrum is needed (as in many applications), then
the two-step solver will easily outperform the one-step solver on modern CPUs.
A slightly different approach is followed by EigenExa [34]. There, the matrix is transformed
to a pentadiagonal matrix and a Divide and conquer algorithm is run on the pentadiagonal
matrix to obtain the eigenvalues.

The transformation of a generalized eigenvalue problem to a standard eigenvalue problem
is done by computing the Cholesky factorization of B

B = F TF. (1.3)

The inverse of the Cholesky factor is multiplied form left to A to obtain

C = F−TAF−1. (1.4)

The original eigenvectors can be computed by X = F−1Y .

Considering banded matrices as they appear for example in computational chemistry, this
procedure has a drawback. Starting point are two banded matrices A and B. The factoriza-
tion of B is still a banded matrix, but for applying the factorization to A, the inverse F−1 and
its transpose are needed. The inversion step, however, generally destroys the banded structure
and hence the matrix F−1 and also C end up to be full matrices. To recap, starting point
were the two banded matrices A and B, which have been transformed to a full matrix C and
this full matrix is then again transformed to a banded matrix.

To overcome these issues, Crawford [21] proposed an algorithm to maintain the band while
applying the Cholesky factorization. This allows to omit the expensive band reduction step
and, depending on the bandwidth of the matrices A and B, immediately start with the tridi-
agonalization (see Figure 1.4). In the case of wider bands in A and B, an additional band
reduction step has to be performed.
Successive bandreduction algorithms are described in [13, 14]. A communication avoiding
approach is described in [9] and has been implemented for shared memory environments. The

4

1.3 Generalized singular value problems

DummyBanded A,B = F TF , F−1 dense

C = F−TAF−1

Twisted Crawford Alg.

Bandreduction Tridiagonalization

Solve for EV
and EVec

Backtransformation

EVec

Backtransformation

EVec

Back-
transforma-
tion EVec

Backtransformation
EVec

Figure 1.4: Solving a generalized eigenvalue problem with the ELPA two-step solver and the
new “twisted Crawford” approach to circumvent losing the banded structure.

idea of these approaches is the generalization of the two-step solver for computing eigenvalues
and eigenvectors to a multi-step solver. Two-step implementations are usually optimized for
thin intermediate bandwidths and hence not suitable for wider bands. Multi-step approaches,
however, can be used to bridge the gap from the wide band to the narrow band.

Lang [40] proposed some improvements for Crawford’s method that allow to reduce the
computational effort. In this work, the ideas of Crawford and Lang will be presented and a
parallel implementation for HPC systems will be described. This is followed by an analysis of
the implementation and performance measurements on current supercomputers.

1.3 Generalized singular value problems

Additionally to the decomposition in eigenvector and eigenvalue matrix, matrices can be de-
composed by the singular value decomposition (SVD). The SVD of a matrix C is given by

C = UΣV T , (1.5)

where U is the matrix of left singular vectors, V is the matrix of right singular vectors and Σ
is the diagonal matrix containing the singular vectors of C.

5

1 Introduction

The singular value decomposition is a generalization of the eigenvalue decomposition and
is hence closely connected. Having the singular value decomposition of C = UΣV T , an
eigenvalue problem can be obtained by

CTC = (UΣV T)T (UΣV T) = (V ΣUT)(UΣV T) = V Σ2V T .

Due to the orthogonality of the singular vectors, U drops out and V remains as the eigenvec-
tors of CTC. If U as eigenvector matrix shall remain, then CCT has to be computed.

Singular value decompositions are widely used in science and engineering. They appear
at computing the pseudoinverse of a matrix [50] to solve ill-conditioned linear systems or to
perform principal component analysis. In image processing applications can be found at noise
reduction [57] and digital watermarks [20].

Analogous to the eigenvalue problem, also for the SVD generalizations exist. The generalized
singular value decomposition (GSVD) [27, 64, 49] is such a generalization and is defined as

G = U · GΣ ·XT

F = V · FΣ ·XT . (1.6)

The link to the SVD can be established for F being square and invertible by

W = G · F−1

SVD(W) = SVD(G · F−1) = UΣV T . (1.7)

The singular values of the generalized singular value problem are given by

σk = Wσk =
Gσk
Fσk

. (1.8)

Here, Gσk is the k-th singular value of G, Fσk it the k-th singular value of F and Wσk is the
k-th singular vector of W , respectively.

Applications of generalized singular value problems can be found in various fields. In the
following a few examples for use cases are given.
One main application is the solution of generalized eigenvalue problems. Equations of the
form GTGx = λF TFx, as they appear in signal processing, can be solved directly by using
algorithms for generalized eigenvalue problems. To omit unnecessary roundoff errors, this
problem can also be tackled by GSVD [7]. Another source for such ill-conditioned GEPs are
finite element problems [54, 53]. They lead to a generalized eigenvalue problem with sym-
metric positive definite (spd) A and B. The problem arises from the spectral norm of A that
grows rapidly with the matrix dimension. Since A and B are spd, they can be factorized by
Cholesky decomposition and the problem can be solved as GSVD. For ill-conditioned matrices
this approach provides higher accuracy [23].
In statistics, Tikhonov-Phillips regularization can be used for the regularization of ill-posed
problems. GSVD is a way to solve these problems [7].

6

1.4 Scope and structure of this work

Iterative methods like Lanczos or subspace iteration based methods are usually used to
compute the SVD of large sparse matrices [10]. For dense matrices, analogous to the standard
eigenvalue problem, direct methods are used to obtain the singular values and vectors. Again,
one-step or two-step solver are the methods of choice. The one-step procedure is similar to the
solution of the eigenvalue problem. Instead of a tridiagonal matrix, the matrix is transformed
to a bidiagonal matrix. The bidiagonal problem is solved iteratively and the singular vectors
undergo a backtransformation procedure. The two-step approach was proposed in [29], recent
parallel implementations are presented in [44, 25]. For the two-step approach, a banded trian-
gular matrix is computed as substep. As in the SEP, the advantage of the two-step approach
is given by the extensive use of BLAS3 operations and the resulting higher computational
performance.

For the solution of generalized SVD problems, LAPACK [3] uses the approach described in
[8]. It first reduces the matrices to upper triangular form and then applies an iterative proce-
dure to obtain the singular values. The latter is based on the idea of computing the SVD of
W = G · F−1 without explicitly computing W . For the GSVD, no parallel implementation is
available in the MKL.
Under the constraint of initially having symmetric banded matrices, the ideas of Crawford and
Lang can be ported to the generalized SVD problem [55]. Starting point is having banded tri-
angular matrices G and F which are transformed to the banded matrix W while maintaining
the banded structure. From there, the second step of a two-step solver can be used to obtain
the singular values of the GSVD and by backtransformation steps, the left and right singular
vectors of the original GSVD can be found. If necessary, a bandreduction step can be used to
further reduce the bandwidth before using the two-step solver.

In this work, a serial algorithm and a parallel algorithm for HPC systems will be devel-
oped that transform the banded GSVD to a banded SVD while maintaining the band. The
described algorithms work on the lower triangle of the band but can easily be ported to the
upper triangle, if needed. The implementation of the parallel algorithm is analyzed on a the-
oretical basis and the findings are verified against runs on supercomputers.

1.4 Scope and structure of this work

This thesis consists of two essentially independent story lines: The algorithms for the gener-
alized eigenvalue problem and the algorithms for the generalized singular value problem. The
steps and the argumentation are widely aligned and therefore, most of the chapters consist
of a section on the GEP and a section on the GSVD. This allows to read both parts mainly
independently of each other and to outline the specifics in both variants. Cross references are
used to depict similarities and differences of the two.
Chapter 2 summarizes some basic linear algebra properties used in this thesis and presents
basic algorithms that will be used later on in a more elaborate and parallel way. Chapter 3
recapitulates the ideas of Crawford and Lang for the generalized eigenvalue problem and trans-
fers these ideas to the generalized singular value problem. Parallel versions for HPC systems
are presented in Chapter 4 for the GEP as well as the GSVD algorithms. In Chapter 5 a
theoretical analysis of both algorithms is given and performance estimates are derived for

7

1 Introduction

the single parallelization layer. These theoretical assumptions are evaluated by runs on HPC
systems in Chapter 6. Chapter 7 summarizes the findings of this work and gives an outlook
on open topics.

8

2 Basic Algorithms

In the following a few linear algebra concepts are recapitulated that will be used throughout
the thesis. This is followed by a presentation of basic algorithms of which parallel versions
will be used in the later text. Many of these algorithms have been presented in [39] and [4].

2.1 Orthogonal transformations

Definition 2.1.1 (Orthogonal matrix) A quadratic matrix Q ∈ Rn,n is called orthogonal
if the product with its transposed, QT , results in the identity matrix:

Q ·QT = QT ·Q = I

Therefore, also Q−1 = QT holds.

Definition 2.1.2 (Similarity transformation) Two matrices A,B ∈ Rn,n are called simi-
lar if an invertible matrix Q ∈ Rn,n exists such that

B = QT ·A ·Q.

Theorem 2.1.1 (Invariance of eigenvalues under orthogonal similarity transformations)
Let B = QT ·A ·Q with A,B ∈ Rn,n and Q ∈ Rn,n be an orthogonal matrix.
Then

(B − λI)x = 0

is the eigenvalue equation for the matrix B.
Replacing B by QT ·A ·Q in the equation leads to

(QT ·A ·Q− λI)x = 0.

Multiplying from the left with Q leads to

(QQT ·A ·Q− λQ)x = (A ·Q− λQ)x = 0.

Introducing QTQ = I allows to further simplify the equation:

(A ·Q− λQ)QTQx = (A ·QQT − λQQT)Qx = (A− λI)Qx = (A− λI)y = 0

Therefore, matrix A and B have the same eigenvalues λ, but different eigenvectors. B has
the eigenvectors x and matrix A has the eigenvectors y = Qx.

9

2 Basic Algorithms

2.1.1 Householder transformations

A Householder transformation [32] is a linear transformation that uses a hyperplane through
the origin as reflection plane. It dates back to 1958 and was introduced by Householder.

Definition 2.1.3 (Householder transformation) Using τ = 2
vT v

, the Householder trans-
formation matrix H for a Householder vector v is described by

H = I − τvvT .

Due to the symmetry of the outer product vvT it is clear that H is symmetric. The orthogo-
nality of Householder matrices can easily be shown by computing HHT .

Besides Givens rotations [26], Householder transformations are a commonly used way to
zero selected entries of a given vector x. The selection of the Householder vector v on basis
of x determines the result of the transformation

x̂ = Hx. (2.1)

It turns out that for a vector x with m entries all entries but entry j are zeroed when setting
up the Householder vector as follows:

x̂(i) =0 ∀i : v(i) = x(i)

x̂(j) =− sign(xj) ‖x‖ : v(j) = x(j) + sign(xj) ‖x‖

The choice for using sign(xj) ‖x‖ is motivated by the danger of a loss of significance.

To ignore entries in the vector x at the transformation, for example if the first k entries
should not be modified, then setting these entries in the Householder vector to zero prevents
the update of them:

x̂(k) = x(k) ∀k : v(k) = 0

A householder vector can be scaled arbitrarily without changing the zero pattern it produces.
Common choices listed in the literature [39] are

• v(j) = x(j) + sign(xj) ‖x‖

• v(j) = 1

• ‖v‖ = 1.

As already mentioned, the first version offers good numerical properties since all but one
entry can be taken from x. Version two allows to omit storing the 1 and therefore save storage.
In the case of using the Householder transformattion during a QR decomposition (or similar
transformation), the entries of the Householder vector can be filled in the zeroed entries of
the matrix. Version three allows to simplify τ to a fixed value of 2 and therefore also saves
storage. In this work, v(j) = 1 is used.

10

2.2 Non-blocked operations

Algorithm 1 Householder vector generation, the first entry of the given vector remains.
function [v, τ, x]← genHHvecUpper(x)

m← size(x)
β ← sign(x(1))

√
x(1 : m)Tx(1 : m)

τ ← x(1)+β
β

v ← (1, x(2:m)
x(1)+β)T

x← (−β, 0(2 : m))T

end function

Algorithm 2 Householder vector generation, the last entry of the given vector remains.
function [v, τ, x]← genHHvecUpper(x)

m← size(x)
β ← sign(x(m))

√
x(1 : m)Tx(1 : m)

τ ← x(m)+β
β

v ← (x(1:m−1)
x(m)+β , 1)T

x← (0(1 : m− 1), −β))T

end function

Algorithms 1 and 2 compute the elementary reflector τ and the Householder vector v for
a given vector x. In Algorithm 1 the generated Householder vector v will, when applied to
x, zero all but the first entry of x whereas Algorithm 2 zeros all but the last entry of x. The
former will be used for the orthogonal transformations QR and RQ, the latter for the trans-
formations QL and LQ.
The computation of one Householder vector costs 3m+O(1) Flops in both cases.

2.2 Non-blocked operations

2.2.1 Application of a Householder transformation

Householder transformations can be applied from left or right to a m × n matrix A. This
requires the multiplication of the Householder transformation matrix H from left A← H ·A
or right A← A ·HT . In the former case, H is a m×m matrix, in the latter a n× n matrix.
Also the Householder vector has to have size m in the left-sided case or n in the right-sided.
Alternatively, Householder vectors can be applied to a matrix without explicitly setting up
the transformation matrix. Algorithms 3 and 4 present the left and right-sided application
of a Householder transformation which only needs a temporary array of size n (left-sided
application) or m (right-sided application). The left application as well as the right-sided
application of a Householder vector cost 4mn Flops.

11

2 Basic Algorithms

Algorithm 3 Application of Householder vector from left.
function A← applyHHleft(A, v, τ)

zT ← τvTA
A← A− vzT

end function

Algorithm 4 Application of Householder vector from right.
function A← applyHHright(A, v, τ)

z ← τAv
A← A− zvT

end function

2.2.2 Orthogonal transformations using Householder transformations (QR,
QL, RQ, LQ)

Using Householder transformations and their left-sided application, the orthogonal transfor-
mations QR, QL can be formulated. Algorithms 5 and 6 give the respective unblocked algo-
rithms. The Householder vectors are stored in the matrix Y and the reflectors are stored in
the vector τ , both in the order of their creation. The update of the trailing matrix performed
by applyHHLeft only touches the remaining matrix and does not update the already created
zeros.

Algorithm 5 QR factorization.
function [A, Y, τ]← QR(A)

Y ← 0
[m,n]← size(A)
for j ← 1, 2, . . . , n do

[Y (j : m, j), τ(j), A(j : m, j)]← genHHvecUpper(A(j : m, j))
A(j : m, j + 1 : n)← applyHHleft(A(j : m, j + 1 : n), Y (j : m, j), τ(j))

end for
end function

Similarly to the left-sided transformations their right-sided pendants can be formulated.
Algorithms 7 and 8 list the respective algorithms using applyHHright for the application of
the transformation from right.
It has to be mentioned that LQ and RQ transformations can be mapped to the left-sided
transformations QR and QL. The LQ transformation of a matrix A can be computed using
a QR factorization by [Q̂, R̂] = QR(AT) with finally obtaining L = R̂T and Q = Q̂T . In the
same way the RQ transformation can be performed by [Q̂, L̂] = QL(AT). In this case, R = L̂T

and Q = Q̂T .

The left and the right-sided transformations differ regarding their progress direction. left-
sided transformations process stepwise the columns of the matrix whereas the right-sided
transformations process the matrix row by row. Depending on the underlying memory layout
(column major, row major) the left or the right-sided transformations are beneficial due to

12

2.2 Non-blocked operations

Algorithm 6 QL factorization.
function [A, Y, τ]← QL(A)

Y ← 0
[m,n]← size(A)
for j1 ← n, n− 1, . . . , 1 do

y1 ← n− j1 + 1
[Y (1 : j1, y1), τ(y1), A(1 : j1, j1)]← genHHvecLower(A(1 : j1, j1))
A(1 : j1, 1 : j1 − 1)← applyHHleft(A(1 : j1, 1 : j1 − 1), Y (1 : j1, y1), τ(y1))

end for
end function

Algorithm 7 RQ factorization.
function [A, Y, τ]← RQ(A)

Y ← 0
[m,n]← size(A)
for j1 ← m,m− 1, . . . , 1 do

y1 ← m− j1 + 1
[Y (1 : j1, y1), τ(y1), A(j1, 1 : j1)]← genHHvecLower(A(j1, 1 : j1))
A(1 : j1 − 1, 1 : j1)← applyHHright(A(1 : j1 − 1, 1 : j1), Y (1 : j1, y1), τ(y1))

end for
end function

Algorithm 8 LQ factorization.
function [A, Y, τ]← LQ(A)

Y ← 0
[m,n]← size(A)
for j ← 1, 2, . . . ,m do

[Y (j : n, j), τ(j), A(j, j : n)]← genHHvecUpper(A(j, j : n))
A(j + 1 : m, j : n)← applyHHright(A(j + 1 : m, j : n), Y (j : n, j), τ(j))

end for
end function

13

2 Basic Algorithms

the contiguous memory access.

The computational costs of the QR and QL transformations (in the direct way) are in the
order of 2mn2 − 2

3n
3 + O(mn) Flops when computing the decomposition of a m × n matrix

with m ≥ n. In the same way, the computational cost of a LQ and RQ transformation can be
computed and it results in 2nm2 − 2

3m
3 +O(mn) Flops for a m× n matrix.

2.3 Blocked operations

All the aforementioned algorithms employ vector-vector or matrix-vector operations. On mod-
ern processors however, level 1 BLAS operations (vector-vector operations) and level 2 BLAS
operations (matrix-vector operations) are memory bound. Level 3 BLAS operations (matrix-
matrix operations) however, are compute bound. Memory bound operations saturate the
available memory bandwidth and no further speedup on the node level is possible. Compute
bound operations saturate the compute resources and by adding more computational resources
the computation time can further be reduced. For memory bound operations however, no fur-
ther speedup can be gained easily.
Blocking of operations is a way to replace inefficient BLAS 1 and BLAS 2 operations by BLAS
3 operations. Several of the non-blocked operations are applied together to a matrix. This
often leads to having locally where the computation happens still BLAS 1 and BLAS 2 oper-
ations, but during the application to a comparably large trailing matrix, BLAS 3 operations
are used. This strategy increases the number of Flops but improves performance in general.

2.3.1 Blocked application of Householder vectors

The blocked application of Householder vectors performs not the application of one transfor-
mation after another but applies several Householder vectors at the same time. Two variants
are commonly used: The WY representation [12] and the compact WY (CWY) representation
[58] of the Householder transformations.

Both store the Householder vectors in a matrix which is denoted as Y :

Y = [v1, v2, . . . vn] (2.2)

The Householder vectors vi have to be filled up by zeros at the bottom or top to match the
number of rows in Y . This comprises to not modifying the respective row or column by a
Householder vector.

vi = [0, . . . , 0, 1, ∗, . . . , ∗]T or vi = [∗, . . . , ∗, 1, 0, . . . , 0]T (2.3)

WY and CWY representation differ slightly in the computations but are very similar. In
the following, only the used compact WY representation is described. The compact WY rep-
resentation has been chosen since the requirements to store the matrices are smaller.

14

2.3 Blocked operations

When applying b Householder transformations Hi = τiviv
T
i in a blocked way, then the

regarding transformation matrix Q can be written as

Q =
b∏
i

Hi. (2.4)

The obtained Q is represented in CWY by

Q = I − Y TY T , (2.5)

where Y is the matrix containing the Householder vectors and T is an upper triangular matrix
of size b× b.

The iterative construction of the matrix T is described in Algorithm 9. Generating T causes
computational costs of mb2 + 2

3b
3 +O(mb). During every iteration two matrix-vector products

have to be computed.

Algorithm 9 Computation of T.
function T ← genT(Y, τ)

T ← 0
T (1, 1)← τ(1)
for j ← 2, . . . , b do

T (1 : j − 1, j)← τ(j)T (1 : j − 1, 1 : j − 1)Y (:, 1 : j − 1)TY (:, j)
T (j, j)← τ(j)

end for
end function

When having all Householder vectors already available, this procedure can be further opti-
mized towards using more matrix-matrix products [51]. This procedure is described in Algo-
rithm 10. Instead of computing the matrix-vector product of parts of the matrix Y with the
next Householder vector, the inner product of Y with itself is computed. This product includes
the necessary information and additionally, the symmetry of the product can be exploited.
By this, only one matrix-vector product remains in the algorithm and the computational cost
stay the same.

Applying the b Householder vectors to a m × n matrix A from the left as it occurs in QR
and QL transformations can be done by only using memory efficient matrix multiplications as
described in Algorithm 11. In the same way the application from right can be formulated for
a n ×m matrix A (Algorithm 12). The left and right-sided application cause computational
cost of 4mnb+mb2 Flops for the regarding matrices.

Table 2.1 shows a comparison of the Flop count of blocked and non-blocked variants of
applying a series of Householder vectors. It can be seen that the non-blocked variant causes
the least Flops. The two blocked variants have more or less the same number of Flops when
considering the one-time application of the transformation from left or right. When applying

15

2 Basic Algorithms

Algorithm 10 Blocked computation of T.
function T ← blockedGenT(Y, τ)

T ← 0
S ← Y TY
T (1, 1)← τ(1)
for j ← 2, . . . , b do

T (1 : j − 1, j)← τ(j)T (1 : j − 1, 1 : j − 1)S(1 : j − 1, j)
T (j, j)← τ(j)

end for
end function

Algorithm 11 Blocked application of Householder vectors from left.
function A← applyCWYleft(A, Y, T)

X ← Y T
ZT ← XTA
A← AY ZT

end function

Algorithm 12 Blocked application of Householder vectors from right.
function A← applyCWYright(A, Y, T)

X ← Y T
Z ← AX
A← A− ZY T

end function

Generation of W or T left/right application

WY 2mb2 +O(mb) 4mnb

CWY mb2 + 2
3b

3 +O(mb) 4mnb+mb2

Non-blocked – 4mnb

Table 2.1: Comparison of the Flops necessary to apply b Householder transformations to a
m× n matrix in their blocked and non-blocked variants.

16

2.4 Factorization

the transformation at a later time (e.g. as in the backtransformation step of an eigensolver),
then the WY variant becomes more favorable.

However, inspecting only the Flop count is misleading since memory consumption (WY
vs. CWY) considerations have as well to be taken into account as the fact that the blocked
variants will mostly outperform the non-blocked version due to the better memory transfer
patterns.

2.3.2 Blocked orthogonal transformations using blocked Householder
transformations (QR, QL, RQ, LQ)

Blocked versions of QR, QL, RQ and LQ can be formulated using the compact WY formula-
tion. A detailed description will be provided for the QR method, but can be transferred to
the other three methods.

The matrix to run the QR on is subdivided in column tiles of size b. The algorithm steps
tile-wise through the matrix starting from the left. On the columns of the current tile, a non-
blocked QR decomposition is computed. The obtained Householder vectors and τ can be used
to compute the matrix T . Having T and Y available, the Householder transformation can be
applied in a blocked way to the rest of the columns using applyCWYleft. After this, the step
is finished and the next tile can be processed where the next tile-local QR is computed. In
this second unblocked QR, the first b rows can be ignored. The algorithm proceeds until all
tiles have been processed. Algorithm 13 gives the respective pseudo code for the blocked QR.
The computational cost of the blocked transformations sum up to 2mn2− 5

3n
3 +mnb−n2b−

1
6nb

2 +O(mn) Flops.

Algorithm 13 Blocked QR factorization.
function A← blockedQR(A, b)

Y ← 0
[m,n]← size(A)
for j1 ← 1, b+ 1, 2b+ 1, . . . , n do

i1 ← j1; j2 ← j1 + b− 1
y1 ← j1; y2 ← j2
[A(i1 : m, j1 : j2), Y (i1 : m, y1 : y2), τ(y1 : y2)]← QR(A(i1 : m, j1 : j2))
T ← blockedGenT(Y (i1 : m, y1 : y2), τ(y1 : y2))
A(i1 : m, j2 + 1 : n)← applyCWYleft(A(i1 : m, j2 + 1 : n), Y (i1 : m, y1 : y2), T)

end for
end function

2.4 Factorization

Dense generalized eigenvalue problems Ax = λBx are usually solved by factorizing the sym-
metric positive matrix B with a Cholesky factorization and applying the factorization to A.

17

2 Basic Algorithms

The factorization can be described by

B = LLT , (2.6)

where L is a lower triangular matrix.
Having a banded matrix B, the computations can be reduced and result in a basic algorithm
as given in Algorithm 14.

Algorithm 14 Cholesky algorithm.
function L← chol(L, bB)

n← size(L)
for i← 1, 2, . . . , n do

L(i, i)←
√
L(i, i)

k ← min(i+ bB, n)
L(i+ 1 : k, i)← L(i+ 1 : k, i)/L(i, i)
L(i+ 1 : k, i+ 1 : k)← L(i+ 1 : k, i+ 1 : k)− L(i+ 1 : k, i)L(i+ 1 : k, i)T

L(i, i+ 1 : k)← 0
end for

end function

A slightly different variant of the Cholesky factorization is defined by

B = LTL. (2.7)

This reverse Cholesky variant is computed from the end of the matrix as shown in Algo-
rithm 15.

Algorithm 15 Reverse Cholesky algorithm.
function L← reverseChol(L, bB)

n← size(L)
for i← n, n− 1, . . . , 1 do

L(i, i)←
√
L(i, i)

k ← max(i− bB, 1)
L(i, k : i− 1)← L(i, k : i− 1)/L(i, i)
L(k : i− 1, k : i− 1)← L(k : i− 1, k : i− 1)− L(i, k : i− 1)TL(i, k : i− 1)
L(k : i− 1, i)← 0

end for
end function

If the upper triangular matrix U is requested as Cholesky factor and not the lower triangular
matrix L, then Algorithm 16 can be used to obtain the factorization

B = UTU. (2.8)

18

2.4 Factorization

Algorithm 16 Reverse Cholesky algorithm for upper triangular Cholesky factor.
function U ← reverseCholUpper(U, bB)

n← size(U)
for i← 1, 2, . . . , n do

U(i, i)←
√
U(i, i)

k ← min(i+ bB, n)
U(i+ 1 : k, i)← U(i+ 1 : k, i)/U(i, i)
U(i+ 1 : k, i+ 1 : k)← U(i+ 1 : k, i+ 1 : k)− U(i+ 1 : k, i)TU(i+ 1 : k, i)
U(i, i+ 1 : k)← 0

end for
end function

Any of the Cholesky variants causes computational cost of nb2B −
2
3b

3
B + O(nbB) Flops for

a n× n matrix B with bandwidth bB.

A twisted factorization [65] is a modified version of the Cholesky factorization. The matrix
is separated in an upper and a lower matrix half at a so called twist index p. In the lower
matrix half, the matrix is lower triangular, in the upper matrix half it is upper triangular. The
entries in the lower part are identical to the reverse Cholesky factorization (Algorithm 15). In
the upper matrix half, Algorithm 16 can be used to compute the values. A blocked algorithm
for the twisted factorization of a banded matrix is given in Algorithm 17.

19

2 Basic Algorithms

Algorithm 17 Twisted factorization.
function S ← twistedFact(S, n, bB, nb, p)

P ← p/nb
for i← N,N − 1, . . . , P + 1 do

i1 ← (i− 1) · nb + 1; i2 ← min(i1 + nb − 1, n); nb0 ← i2 − i1 + 1
S(i1 : i2, i1 : i2)← reverseChol(S(i1 : i2, i1 : i2), bB)
if (i1 > 1) then

i0 ← max(i1 − bB, 1)
S(i1 : i2, i0 : i1 − 1)← S(i1 : i2, i1 : i2)

−TS(i1 : i2, i0 : i1 − 1)
S(i0 : i1 − 1, i0 : i1 − 1)← S(i0 : i1 − 1, i0 : i1 − 1)

−S(i1 : i2, i0 : i1 − 1)TS(i1 : i2, i0 : i1 − 1)
S(i0 : i1 − 1, i1 : i2)← 0

end if
end for
for i← 1, 2, . . . , P do

i1 ← (i− 1) · nb + 1; i2 ← min(i1 + nb − 1, p); nb0 ← i2 − i1 + 1
S(i1 : i2, i1 : i2)← reverseCholUpper(S(i1 : i2, i1 : i2), bB)
if (i2 < p) then

i0 ← max(i2 + bB, p)
S(i1 : i2, i2 + 1 : i0)← S(i1 : i2, i1 : i2)

−TS(i1 : i2, i2 + 1 : i0)
S(i2 + 1 : i0, i2 + 1 : i0)← S(i2 + 1 : i0, i2 + 1 : i0)

−S(i1 : i2, i2 + 1 : i0)
TS(i1 : i2, i2 + 1 : i0)

S(i2 + 1 : i0, i1 : i2)← 0
end if

end for
end function

20

3 Algorithms

3.1 Twisted Crawford algorithm

This section focuses on the transformation of generalized eigenvalue problems with symmetric
band matrices A and B, B being additionally positive definite, to standard eigenvalue prob-
lems. The bandwidth of matrix A is denoted as bA, the bandwidth of matrix B is denoted as
bB.
The standard way of solving AX = BXΛ for the eigenvectors X and the eigenvalues Λ is
to factorize B = F TF with a Cholesky factorization and transfer it to a standard eigenvalue
problem:

AX = BXΛ = F TFXΛ

⇔ F−TAF−1FX = FXΛ

⇔ F−TAF−1Y = Y Λ

⇔ CY = Y Λ (3.1)

The standard eigenvalue problem can then be solved with the procedures described in [4].
A drawback of this approach is that the banded structure of A and B cannot be exploited.
Like B, the matrix F is still banded. However, the inverse of it is applied to A, and F−1 and
F−T are in general full matrices. Therefore C will be a full matrix, too.

To maintain the band, Crawford [21] proposed an algorithm to apply F stepwise to A while
removing the occurring fill-in outside the band immediately after every step. Lang [40] re-
fined this procedure by reducing the restrictions for the bandwidth to bA ≥ bB, offering more
freedom for parameter tuning and by introducing features for saving computational work. In
the following, Crawford’s original algorithm will be described and the extensions of Lang will
be introduced.

As mentioned before, the factorization F is applied not as a whole but stepwise to A. For
this, F itself is factorized as a product of N = d nnb

e partial matrices Fk:

F = F1 · F2 · · ·FN (3.2)

Each of this Fk is an identity matrix besides the rows (k − 1)nb + 1 : knb (see Figure 3.1).
Within these rows it has the same content as the matrix F . The inverse of F can also be
expressed as a product of factors:

F−1 = F−1
N · F−1

N−1 · · ·F
−1
1 (3.3)

21

3 Algorithms

A B F

1

1

1

1

F6

1

1

1

1

F−1
6

Figure 3.1: Matrices A (first picture) and B = F TF (second picture) with different bandwidth,
the block structure of the Cholesky factorization F (third picture), one of its partial
factors following Equation (3.2), F6 (forth picture) and the inverse of it, F−1

6 (fifth
picture).

Rewriting F−TAF−1Y = Y Λ of Equation (3.1) using Equation (3.3) leads to

F−T
1 · F−T

2 · · ·F−T
N ·A · F−1

N · F−1
N−1 · · ·F

−1
1 Y = Y Λ. (3.4)

The inverse of a Fk can be found by inverting the diagonal block and by applying the in-
verted diagonal block to the block left of the diagonal. All other parts of the matrix stay
unchanged. This means, that the block structure of F−1

k is the same as for Fk as shown in
Figure 3.1, picture four and five.

In a more formal way, with Fk,k describing the non-identity diagonal block in Fk and Fk,k−1

describing the block left of it, the following expressions can be obtained for the inverse blocks:

Dk = F−1
k,k (3.5)

Ek = −Dk · Fk,k−1 (3.6)

Dk will be used as abbreviation for the diagonal block of the inverse F−1
k , Ek as abbreviation

for the block left of the diagonal block.

In the following, the application of F−T
k from left and F−1

k from right to a symmetric banded
matrix M is analyzed. This will be referred to as “inversion step” k. M takes over the role of
the matrix A that has already undergone an arbitrary number of inversion steps which have
been succeeded by restoring the band of the matrix as described in the following.
The right-sided application multiplies the columns (k − 1)nb + 1 : knb of M with Ek and
adds the result to the columns (k − 1)nb − bB + 1 : (k − 1)nb of M . Afterwards, the columns
(k − 1)nb + 1 : knb of M are updated by themselves multiplied with Dk. This generates
triangular fill-in outside the band (the so called “bulge”) if nb + bB − 1 > bA. Otherwise the
updated columns and rows are fully located inside the band. The generated fill-in is located
in the rows (k − 1)nb + bA − bB + 2 : knb + bA and the columns (k − 1)nb − bB + 1 : knb − 1,
hence in M ’s lower triangle.
The left-sided application multiplies the rows (k− 1)nb + 1 : knb with ETk and adds the result
to the rows (k−1)nb−bB+1 : (k−1)nb. The rows (k−1)nb+1 : knb ofM are then multiplied
by DT

k . The triangular fill-in (if nb + bB − 1 > bA) generated by the left-sided application is
located in the rows (k−1)nb−bB+1 : knb−1 and the columns (k−1)nb+bA−bB+2 : knb+bA,
hence in the upper triangle of M .

22

3.1 Twisted Crawford algorithm

nbbB

bB + nb

·Dk·Ek

+

DT
k ·

ET
k · +

bB + nb

bB + nb
QR

QT · −→

·Q−
→

bA

bA

QR
QT · −→

·Q−
→

Figure 3.2: (left)The application of inversion step k updates the entries within the rectangles
(see main text for details). Marked in red is the bulge of newly created non-
zeros outside the band. (middle) First chasing step using QR decomposition and
its symmetric application. The newly created bulge has again a size of bB + nb.
(right) Second chasing step for pushing the bulge by bA columns to the right and
bottom.

Applying now the next inversion step F−1
k−1 would lead to a growth of the fill-in outside the

band by nb rows and columns. Consequently, when applying more and more inversion steps,
this procedure will lead to a full matrix M . Hence, the fill-in has to be removed immediately
after it is generated.

To do so, a two-sided orthogonal transformation is applied to M . Due to symmetry, the
orthogonal factor Q can be computed by a QR decomposition of the lower triangular bulge or
by a LQ decomposition of the upper triangular bulge. To zero the fill-in, the QR has to be run
on the rows (k−1)nb+bA−bB +1 : knb+bA and the columns (k−1)nb−bB +1 : knb, the LQ
on the rows (k−1)nb− bB +1 : knb and the columns (k−1)nb+ bA− bB +1 : knb+ bA. In this
work the QR decomposition is used since it fits better to the memory layout of Fortran. The
two sided transformation removes the two bulges generated by the application of the inversion
step but introduces two new bulges. The new bulges appear bA rows and columns further
down the matrix. Again, a QR decomposition of the lower triangular bulge is computed (QR
on the rows (k−1)nb+2bA−bB +1 : knb+2bA and columns (k−1)nb+bA−bB+1 : knb+bA)
and the obtained Q is applied two-sided to the matrix. By that the fill-in is shifted (“chased”)
another bA rows and columns towards the end of the matrix. This procedure is repeated until
the fill-in drops out of the matrix and the band is fully restored. Then the next inversion step
can be applied. Figure 3.2 illustrates the first steps of the procedure and shows the sizes of
the different parts.

This procedure can be formalized to

M̂ = Q
(νk)T
k · · ·Q(2)T

k ·Q(1)T
k · F−T

k ·M · F−1
k ·Q(1)

k ·Q
(2)
k · · · ·Q

(νk)
k . (3.7)

M is a symmetric banded matrix to which inversion step F−1
k is applied to. The Q(i)

k are the

23

3 Algorithms

orthogonal factors that are applied symmetrically to evict the fill-in from the matrix. The
index k corresponds to the number of the inversion step, i corresponds to the order of the
orthogonal transformations. i = 1 is the first orthogonal transformation taking place after
applying F−1

k , i = 2 is the next transformation and i = νk is the last orthogonal transformation
that evicts the fill-in from the end of the matrix. To point out the difference toM , the resulting
matrix is called M̂ .
The amount of necessary transformations can be explicitly computed by

νk = bn− (k − 1)nb + bB − 1

bA
c. (3.8)

νk can be obtained when considering the top most row of the fill-in generated by inversion
step k in the lower triangle, (k − 1)nb + bA − bB + 2. Since the fill-in moves every stage
by bA rows to the bottom, the top most row of the bulge after i bulge chasing stages is
(k − 1)nb + (i+ 1)bA − bB + 2. The formula for νk can be obtained when taking into account
that the bulge drops out of the matrix if the top most row of it is greater than the size of the
matrix n.

The Q(i)
k obtained by QR are orthogonal matrices and hence Q(i)T

k = Q
(i)−1
k . Consequently,

with Z being a symmetric matrix, Ẑ = Q
(i)T
k · Z ·Q(i)

k = Q
(i)−1
k · Z ·Q(i)

k is a similarity trans-
formation and therefore the resulting matrix Ẑ has the same eigenvalues as Z.
Applying this to Equation (3.7) allows to conclude that M̂ has the same eigenvalues as
F−T
k ·M · F−1

k .

Using
F̃−1
k = F−1

k ·Q(1)
k ·Q

(2)
k · · ·Q

(νk)
k , (3.9)

the sequence of applying the inversion steps while removing the occurring fill-in can be written
as

C̃ = F̃−T
1 · F̃−T

2 · · · F̃−T
N ·A · F̃−1

N · F̃−1
N−1 · · · F̃

−1
1

= F̃−T ·A · F̃−1. (3.10)

The resulting standard eigenproblem

C̃Ỹ = Ỹ Λ (3.11)

is similar to the eigenproblem CY = Y Λ derived in Equation (3.1) from the generalized
eigenproblem, the eigenvectors of the resulting problem are given by

Ỹ = F̃X. (3.12)

3.1.1 Twisted factorization

So far, a Cholesky factorization has been used to factorize matrix B. When applying it step-
wise, the fill-in is removed by two-sided QR transformations towards the lower end of the
matrix. This means, that when the fill-in is generated at the very top of the matrix, a long
chain of QR steps has to be used to chase the bulge out of the matrix. To shorten the number

24

3.1 Twisted Crawford algorithm

S

1

1

1

1

S3

1

1

1

1

S6

1

1

1

1

S−1
3

1

1

1

1

S−1
6

Figure 3.3: Block structure of a twisted factorization S (first picture), one of its partial factors
in the upper matrix half S3 (second picture) and one of the partial factors in the
lower matrix half S6 (third picture). The inverse of the factors S−1

3 and S−1
6 are

shown in pictures four and five.

of chasing steps, Lang proposed to use a so called twisted factorization [65] (also known as
split factorization, e.g. in LAPACK).
Figure 3.3 gives an illustration of a twisted Factorization S. Already shown here is the block
structure when the twist index p is chosen as a multiple of nb.

Similar to Equation (3.2), the matrix can be factorized. Using P as abbreviation for the
block having the twist position p at its end,

S = SP · SP−1 · · ·S1 · SP+1 · SP+2 · · ·SN (3.13)

gives the factorization of S in partial factors Sk. The factors have the same structure as when
using a Cholesky factorization. Only in the upper matrix half the block structure is mirrored:
the diagonal block is an upper triangular sub-matrix and the off-diagonal block is located
right of the diagonal block. The numerical ordering is changed for a twisted factorization to
an order where first the upper matrix half factors appear in reverse order and then the lower
matrix half factors appear in normal ordering.

The inverse of S is given by

S−1 = S−1
N · S

−1
N−1 · · ·S

−1
P+1 · S

−1
1 · S

−1
2 · · ·S

−1
P . (3.14)

Before, the application of an inversion step to the matrix was described for the lower matrix
half case. Similarly, it can be formulated for the upper matrix half. Analogously to before,
Ek = −Dk · Sk,k+1 denotes the inverse of the off-diagonal block in Sk, Dk = S−1

k,k the inverse
of the diagonal block.

Applying S−1
k with k ≤ P from right to a banded symmetric matrix M starts with mul-

tiplying the columns (k − 1)nb + 1 : knb of M by Ek and adding the result to the columns
knb + 1 : knb + bB. Afterwards, M ’s columns (k − 1)nb + 1 : knb are multiplied by Dk.
This introduces fill-in outside the band in the columns (k − 1)nb + 2 : knb + bB in the rows
(k − 1)nb − bA + 1 : knb − bA + bB − 1.
The application of S−T

k from left to M works similarly by multiplying the rows (k− 1)nb + 1 :
knb with ETk and adding the outcome to the rows knb + 1 : knb + bB, followed by a multipli-
cation of the rows (k− 1)nb + 1 : knb with DT

k . The generated fill-in is located in the columns

25

3 Algorithms

nb bB

bB + nb

·Dk ·Ek

+

DT
k ·

ET
k · +

bB + nb

bB + nb

QL
QT · −→

·Q−
→

QL
QT · −→

·Q−
→

bA

bA

Figure 3.4: Applying an inversion step in the upper matrix half: (left)The application of the
inversion step k updates the entries within the rectangles (see main text for details).
Marked in red is the bulge of newly created non-zeros outside the band. (middle)
First chasing step using QL decomposition and its symmetric application. The
newly created bulge has again a size of bB + nb. (right) Second chasing step for
pushing the bulge by bA columns to the left and top.

(k − 1)nb − bA + 1 : knb − bA + bB − 1 of the rows (k − 1)nb + 2 : knb + bB.
This fill-in can be chased towards the top left end of the matrix using QL or RQ decompo-
sition, depending on whether working in the upper or the lower triangle of the symmetric
matrix. Exemplarily, a QL is performed on the columns (k − 1)nb + 1 : knb + bB of the rows
(k − 1)nb − bA + 1 : knb − bA + bB. The obtained orthogonal Q is applied from left and right
to the matrix and by that, the bulge is shifted by bA rows and columns towards the top end.
In Figure 3.4 the application of S−1

k and two of the following bulge chasing steps using QL
decomposition are illustrated.

Not considered in the above description of applying the inversion steps is the special struc-
ture of S−1

k in the upper matrix half: There, the band ends at column p. Hence, the updated
columns when applying an inversion step never exceed p. This leads to the key point of the
twisted factorization, the decoupling of the upper and the lower matrix half. Applying lower
matrix half inversion steps does not cause fill-in in the upper matrix half and vice versa.
Hence, fill-in generated by the lower matrix half can be chased towards the lower matrix end
and fill-in generated by the upper matrix half can be chased towards the upper matrix end.

The number of bulge chasing steps in the upper matrix half can be computed analogously
to the steps in the lower matrix half. Here, the lowest row of the bulge in the upper triangle
can be used to obtain

νk = bknb + bB − 1

bA
c. (3.15)

With
S̃−1
k = S−1

k ·Q
(1)
k ·Q

(2)
k · · ·Q

(νk)
k , (3.16)

the sequence of applying the factors and removing the occurring fill-in can be rewritten as

26

3.1 Twisted Crawford algorithm

C̃ = S̃−T
P · · · S̃−T

1 · S̃−T
P+1 · · · S̃

−T
N ·A · S̃−1

N · · · S̃
−1
P+1 · S̃

−1
1 · · · S̃

−1
P

= S̃−T ·A · S̃−1 (3.17)

and the resulting standard eigenproblem C̃Ỹ = Ỹ Λ is again similar to the eigenproblem
CY = Y Λ.

Following Equation (3.17), for the computation of C̃, first Algorithm 18 and then Algo-
rithm 19 have to be run. For simplicity, the possible shrinking of the last bulge before the
fill-in drops out of the matrix is not described in the algorithms.

Algorithm 18 Crawford algorithm (serial) for the lower matrix half. B is factorized as B =
STS (with Cholesky or with twisted factorization). When not using a twisted factorization
for B, then P = 0.
for k ← N,N − 1, . . . , P + 1 do

. “inversion step” k (two-sided application of S−1
k)

i1 ← (k − 1)nb + 1; i2 ← i1 + nb − 1
j1 ← i1 − bB; j2 ← i1 − 1
Dk ← S(i1 : i2, i1 : i2)

−1

if (j1 ≤ j2) then
Ek ← −Dk · S(i1 : i2, j1 : j2)
A(i1−bA : i2+bA, j1 : j2)← A(i1−bA : i2+bA, j1 : j2)+A(i1−bA : i2+bA, i1 : i2)·Ek

end if
A(i1 − bA : i2 + bA, i1 : i2)← A(i1 − bA : i2 + bA, i1 : i2) ·Dk

if (j1 ≤ j2) then
A(j1 : j2, i1−bA : i2+bA)← A(j1 : j2, i1−bA : i2+bA)+ETk ·A(i1 : i2, i1−bA : i2+bA)

end if
A(i1 : i2, i1 − bA : i2 + bA)← DT

k ·A(i1 : i2, i1 − bA : i2 + bA)

. “bulge chasing”
i← 1
ib1 ← i1 + bA − bB; ib2 ← i2 + bA
jb1 ← j1; jb2 ← i2
while jb1 < n− bA do

[Q
(i)
k , R

(i)
k]← QR decomposition of A(ib1 : ib2, j

b
1 : jb2)

A(ib1 : ib2, j
b
1 : jb2 + bA)← Q

(i)T
k ·A(ib1 : ib2, j

b
1 : jb2 + bA)

A(jb1 : jb2 + bA, i
b
1 : ib2)← A(jb1 : jb2 + bA, i

b
1 : ib2) ·Q

(i)
k

ib1 ← ib1 + bA; ib2 ← ib2 + bA
jb1 ← jb1 + bA; jb2 ← j2 + bA
i← i+ 1

end while
end for

Analyzing the bulge chasing steps necessary for maintaining the band, Equations (3.8)

27

3 Algorithms

Algorithm 19 Crawford algorithm (serial) for the upper matrix half. B is factorized as B =
STS (with Cholesky or with twisted factorization). When not using a twisted factorization
for B, then S has its band fully in the upper triangle and P = N .
for k ← 1, 2, . . . , P do

. “inversion step” k (two-sided application of S−1
k)

i1 ← (k − 1)nb + 1; i2 ← min(i1 + nb − 1, p)
j1 ← i2 + 1; j2 ← min(i2 + bB, p)
Dk ← S(i1 : i2, i1 : i2)

−1

if (j1 ≤ j2) then
Ek ← −Dk · S(i1 : i2, j1 : j2)
A(i1−bA : i2+bA, j1 : j2)← A(i1−bA : i2+bA, j1 : j2)+A(i1−bA : i2+bA, i1 : i2)·Ek

end if
A(i1 − bA : i2 + bA, i1 : i2)← A(i1 − bA : i2 + bA, i1 : i2) ·Dk

if (j1 ≤ j2) then
A(j1 : j2, i1−bA : i2+bA)← A(j1 : j2, i1−bA : i2+bA)+ETk ·A(i1 : i2, i1−bA : i2+bA)

end if
A(i1 : i2, i1 − bA : i2 + bA)← DT

k ·A(i1 : i2, i1 − bA : i2 + bA)

. “bulge chasing”
i← 1
ib1 ← i1 − bA; ib2 ← i2 − bA + bB
jb1 ← i1; jb2 ← j2
while jb2 > bA do

[Q
(i)
k , L

(i)
k]← QL decomposition of A(ib1 : ib2, j

b
1 : jb2)

A(ib1 : ib2, j
b
1 : jb2 + bA)← Q

(i)T
k ·A(ib1 : ib2, j

b
1 : jb2 + bA)

A(jb1 : jb2 + bA, i
b
1 : ib2)← A(jb1 : jb2 + bA, i

b
1 : ib2) ·Q

(i)
k

ib1 ← ib1 − bA; ib2 ← ib2 − bA
jb1 ← jb1 − bA; jb2 ← j2 − bA
i← i+ 1

end while
end for

28

3.1 Twisted Crawford algorithm

Factorization variant for B Chasing steps

Cholesky factorization 0.50N2 + 0.5N

Twisted factorization 0.25N2 + 0.5N

Table 3.1: Number of chasing steps necessary over all inversion steps. The following simplifi-
cations are used for this computation: nb = bA = bB, n = Nnb and P = N

2 .

and (3.15) can be analyzed. To facilitate the comparison, the following simplifications are
applied: nb = bA = bB, n = Nnb and p = N

2 . Table 3.1 gives the number of chasing steps
over the complete algorithm. It can be seen that using a twisted factorization saves roughly
1/2 of the chasing steps.

Matrix flipping

The savings due to the use of a twisted factorization include one drawback: Extra code has to
be written for the upper matrix half. This more or less doubles the number of lines of code.
A possibility to overcome this issue is to flip the matrix in the upper matrix half.
“Flipping” a matrix means

M f(1 : l, 1 : l) = M(l : −1 : 1, l : −1 : 1).

The application of the inversion steps as well as the bulge chasing consists of multiplying
one matrix by another. Hence, the influence of the flipping to matrix multiplication has to be
inspected.
For a matrix M = X · Y the entries are given by

M = X · Y =


x1,1 · · · x1,l
...

. . .
...

xl,1 · · · xl,l



y1,1 · · · y1,l
...

. . .
...

yl,1 · · · yl,l

 =


∑
k

x1,kyk,1 · · ·
∑
k

x1,kyk,l

...
. . .

...∑
k

xl,kyk,1 · · ·
∑
k

xl,kyk,l

 .

Considering now the flipped matrix

M f =


∑
k

xl,kyk,l · · ·
∑
k

xl,kyk,1

...
. . .

...∑
k

x1,kyk,l · · ·
∑
k

x1,kyk,1

 =


xl,l · · · xl,1
...

. . .
...

x1,l · · · x1,1



yl,l · · · yl,1
...

. . .
...

y1,l · · · y1,1

 = X f · Y f,

then it can be seen that flipping a product of matrices does not affect the order of the product.
Only the matrix factors have to be flipped itself.
Consequently, applying an inversion step Sk, k ≤ P , to a symmetric matrix M is equivalent
to applying the flipped inversion step Sf

k to the flipped matrix M f and flipping the result back
afterwards. Figure 3.5 illustrates the impact of flipping to the application of the inversion

29

3 Algorithms

·Dk ·Ek

+

flipping

·Dk·Ek

+

DT
k ·

ET
k · +

flipping

DT
k ·

ET
k · +

Figure 3.5: Impact of flipping to the left and right-sided application of an inversion step: The
bulges change their appearance in the upper or lower triangle and Dk and Ek
change their order. The resulting updated areas and the newly created bulges are
the same as in the lower matrix half’s application of an inversion step.

step. It can be seen that after flipping the pattern is the same as when applying an inversion
step in the lower matrix half.
The equivalence holds for the generation and application of Q in the same way. Hence, by
flipping the upper matrix half, the lower matrix half algorithm can be used (including small
modifications) for the upper matrix half.

Algorithm 20 Flipping of a twisted banded matrix S with twist position p and bandwidth
bB.
function M ← flipBandedMatrix(S, p, bB)

n← size(S)
for i← 1, p do

for j ← i,min(i+ bB, p) do
M(n− i+ 1, n− j + 1)← S(i, j)

end for
end for
for i← p+ 1, n do

for j ← i,max(1, i− bB) do
M(n− i+ 1, n− j + 1)← S(i, j)

end for
end for

end function

For dense matrices the flipping can become rather expensive, but for thin banded matrices
the additional effort is acceptable. Algorithm 20 gives a simple algorithm exploiting the
twisted and the banded structure while flipping. It also can be applied for A when using
p = 0.
Necessary is not only a flipping of the matrix A but also of the matrixB, hence its factorization.
For the computation of the twisted factorization the idea of flipping can also be used. The
computations in the upper matrix half are just flipped versions of the lower matrix half. Small
modifications have also to be considered here.

30

3.1 Twisted Crawford algorithm

3.1.2 Eigenvectors

In the following, the formulas for the backtransformation of the eigenvectors are derived. The
argumentation is rolled out for using a Cholesky factorization for B and additionally, for using
a twisted factorization. After the theoretical considerations, a serial algorithm is presented
for the backtransformation.

Equation (3.12) describes the translation of the eigenvectors under applying the Crawford
algorithm:

Ỹ = F̃X

Hence, the original eigenvectors are given by

X = F̃−1Ỹ (3.18)

or
X = S̃−1Ỹ (3.19)

when using a twisted factorization.

In Equation (3.10) the abbreviation

F̃−1 = F̃−1
N · F̃−1

N−1 · · · F̃
−1
1

has been introduced. Further unwrapping gives

F̃−1 = F−1
N ·Q(1)

N · · ·Q
(νN)
N · F−1

N−1 ·Q
(1)
N−1 · · ·Q

(νN−1)
N−1 · · ·F−1

1 ·Q(1)
1 · · ·Q

(ν1)
1 . (3.20)

Analogously when using a twisted factorization:

S̃−1 = S−1
N ·Q

(1)
N · · ·Q

(νN)
N · · ·S−1

P+1 ·Q
(1)
P+1 · · ·Q

(νP+1)
P+1

· S−1
1 ·Q

(1)
1 · · ·Q

(ν1)
1 · · ·S−1

P ·Q
(1)
P · · ·Q

(νP)
P (3.21)

In the following, the single factors are inspected for the twisted case. The untwisted case
is already covered by the lower matrix half of the twisted case. The goal is to prove the
interchangeability of the inversion steps and the orthogonal matrices.

When applying S̃−1 stepwise from left to a matrix, then S−1
k , k > P , updates the rows

(k−1)nb−bB+1 : knb. The Q
(i)
k+1 however update the rows knb+ibA−bB+1 : (k+1)nb+ibA.

Hence, under the constraint bB ≤ bA, both can be exchanged.
Inspecting an arbitrary inversion step S−1

k−l, k − l > P and l ≥ 1, then it updates the rows
(k−l−1)nb−bB+1 : (k−l)nb. This updated rows are again further up in the matrix compared
to Q(i)

k+1. Therefore, the inversion steps of the lower matrix half can be interchanged with all
orthogonal factors of the lower matrix half and the order in Equation (3.20) can be changed
to

F̃−1 = F−1
N · F−1

N−1 · · ·F
−1
1 ·Q(1)

N · · ·Q
(νN)
N ·Q(1)

N−1 · · ·Q
(νN−1)
N−1 · · ·Q(1)

1 · · ·Q
(ν1)
1 . (3.22)

31

3 Algorithms

Equation (3.21) can be reformulated to

S̃−1 = S−1
N · · ·S

−1
P+1 ·Q

(1)
N · · ·Q

(νN)
N · · ·Q(1)

P+1 · · ·Q
(νP+1)
P+1

· S−1
1 ·Q

(1)
1 · · ·Q

(ν1)
1 · · ·S−1

P ·Q
(1)
P · · ·Q

(νP)
P

in the same way.

The same can be conducted for the upper matrix half when using a twisted factorization.
Inspecting an arbitrary inversion step S−1

k+l, k ≤ k + l ≤ P , it can be seen that it updates the
rows (k + l − 1)nb + 1 : (k + l)nb + bB. The upper matrix half’s Q(i)

k , however, update the
rows (k − 1)nb − ibA + 1 : knb − ibA + bB. Assuming again bA ≥ bB, the first row updated by
applying S−1

k+l is further down the matrix than the last row updated by Q(i)
k . Hence, both can

be exchanged.
Finally, to interchange the upper matrix half’s inversion steps S−1

k−l, k > P , k − l ≤ P , with
the lower matrix half’s Q(i)

k , the updated rows of both have to be analyzed. The Q(i)
k of

the lower matrix half updating the left most columns and the top most rows, Q(1)
P+1, updates

the rows Pnb + bA − bB + 1 : (P + 1)nb + bA. The last inversion step P updates the rows
(P − 1)nb + 1 : Pnb. The latter is due to the form of the twisted factorization, where block
row P does not contain an off-diagonal block. Comparing the last row updated by the upper
matrix half’s inversion steps Pnb and the first row updated by Q of the lower matrix half,
it can be seen that there will not be an overlap in the operations. Hence, also the inversion
steps of the upper matrix half can be interchanged with the Q from the lower matrix half.

Therefore, Equation (3.21) can be reformulated to

S̃−1 = S−1
N · · ·S

−1
P+1 · S

−1
1 · · · ·S

−1
P

·Q(1)
N · · ·Q

(νN)
N · · ·Q(1)

P+1 · · ·Q
(νP+1)
P+1 ·Q(1)

1 · · ·Q
(ν1)
1 · · · ·Q(1)

P · · ·Q
(νP)
P . (3.23)

With the abbreviation Q̃ for the product of all Q(i)
k

Q̃ = Q
(1)
N · · ·Q

(νN)
N ·Q(1)

N−1 · · ·Q
(νN−1)
N−1 · · ·

·Q(1)
1 · · ·Q

(ν1)
1 if not using twisted factorization (3.24)

Q̃ = Q
(1)
N · · ·Q

(νN)
N · · ·Q(1)

P+1 · · ·Q
(νP+1)
P+1

·Q(1)
1 · · ·Q

(ν1)
1 · · · ·Q(1)

P · · ·Q
(νP)
P if using twisted factorization (3.25)

Equation (3.18) can be reformulated to

X = F−1 · Q̃ · Ỹ (3.26)

and Equation (3.19), when using a twisted factorization for B, to

X = S−1 · Q̃ · Ỹ . (3.27)

This gives freedom in the order of computing the eigenvectors: applying all inversion steps
and orthogonal transformations in the order they have been applied to the matrix A as de-

32

3.1 Twisted Crawford algorithm

scribed by Equations (3.18) and (3.19) or first applying all orthogonal factors and afterwards
applying the inversion steps as in Equations (3.26) and (3.27).
Algorithm 21 presents the latter version. It is, however, restricted to cases with bA ≥ bB. The
former variant would consist of adding the application of S−1

k to the two loops applying the
Q

(i)
k .

Another variant is setting up an identity matrix and applying the inversion steps and the
Q

(i)
k to it when applying them to A. This has the advantage that the Q(i)

k don’t have to be
stored. Instead the large backtransformation matrix has to be stored until it is multiplied to
the eigenvectors Ỹ .

Algorithm 21 Backtransformation of the eigenvectors of the generalized eigenvalue problem
AX = BXΛ. B is factorized as B = STS (with Cholesky or with twisted factorization).
When not using a twisted factorization for B, then S has its band fully in the upper triangle
(P = N), or S has its band fully in the lower triangle (P = 0).
for k ← P, P − 1, . . . , 1 do

for i← νk, νk − 1, . . . , 1 do
ib1 ← (k − 1)nb − ibA + 1; ib2 ← knb − ibA + bB

X(ib1 : ib2, :)← Q
(i)
k ·X(ib1 : ib2, :)

end for
end for
for k ← P + 1, P + 2, . . . , N do

for i← νk, νk − 1, . . . , 1 do
ib1 ← (k − 1)nb + ibA − bB + 1; ib2 ← knb + ibA

X(ib1 : ib2, :)← Q
(i)
k ·X(ib1 : ib2, :)

end for
end for

for k ← P, P − 1, . . . , 1 do
i1 ← (k − 1)nb + 1; i2 ← knb
j1 ← knb + 1; j2 ← knb + bB
X(j1 : j2, :)← X(j1 : j2, :) + Ek ·X(i1 : i2, :)
X(i1 : i2, :)← Dk ·X(i1 : i2, :)

end for
for k ← P + 1, P + 2, . . . , N do

i1 ← (k − 1)nb + 1; i2 ← knb
j1 ← (k − 1)nb − bB + 1; j2 ← (k − 1)nb
X(j1 : j2, :)← X(j1 : j2, :) + Ek ·X(i1 : i2, :)
X(i1 : i2, :)← Dk ·X(i1 : i2, :)

end for

3.1.3 Overall algorithm

Algorithm 22 provides the overall procedure of computing eigenvalues and eigenvectors. First,
a factorization has to be obtained. Alternatively to the twisted factorization in Algorithm 22,

33

3 Algorithms

a Cholesky factorization can be used. When using a Cholesky factorization, then the call to the
twisted Crawford upper matrix half algorithm becomes obsolete. From the resulting matrix
C̃ the eigenvalues and eigenvectors have to be obtained by an external algorithm. Two-step
solver like ELPA or multi-step solver for banded matrices are the algorithm of choice for this
task because they can start with the banded matrix and further reduce the band to tridiagonal
form. The obtained tridiagonal matrix is solved for the eigenvalues and eigenvectors and a first
backtransformation step is computed. This eigenvectors undergo a second backtransformation
step originated by the twisted Crawford algorithm. If no eigenvectors are required, then these
steps can be omitted.

Algorithm 22 Overall algorithm when computing eigenvalues and eigenvectors.
S ← Twisted factorization (B)

[A, Ql]← Crawford algorithm lower matrix half (A, S) . Algorithm 18
[A, Qu]← Crawford algorithm upper matrix half (A, S) . Algorithm 19

[X, Λ]← Eigenvalue solver for banded matrix A . e.g. ELPA 2nd stage of two-step solver
X ← Backtransformation (X, Ql, Qu) . Algorithm 21

34

3.2 Crawford SVD algorithm

3.2 Crawford SVD algorithm

The ideas of Crawford and Lang can also be used for the transfer of generalized singular value
problems to standard singular value problems.

In the introduction, the defintion of the generalized singular value problem

G = U · GΣ ·XT

F = V · FΣ ·XT

is given in Equation (1.6) and the transfer to the standard singular value problem

W = G · F−1

SVD(W) = SVD(G · F−1) = UΣV T

is presented in Equation (1.7). The singular values of the GSVD, as identified in Equa-
tion (1.8), are computable by the quotient σk =

Gσk
F σk

.

The matrices G and F are in the following restricted to be square and banded lower tri-
angular matrices. G ∈ Rn×n has a bandwidth of bA and F ∈ Rn×n has a bandwidth of bB.
Such matrices appear when using Cholesky factorization or twisted factorization to factorize
symmetric positive definite banded matrices A = GTG and B = F TF . Consequently, all other
matrices so far, W , U , V , X, Σ, GΣ, FΣ, A and B are also square matrices of size n× n.

As before for the generalized eigenvalue problem, F is banded and lower triangular, but
F−1 will in general be a full matrix. Consequently, W will be a full matrix and the original
existing banded structure of G and F cannot be exploited, e.g. when using two-step solvers
[29] as they are provided in PLASMA [16] or MAGMA [63].
To maintain the band when transforming a generalized singular value problem to a standard
singular value problem, the ideas of Lang [40] and Crawford [21] can be followed and an algo-
rithm derived [55]. The serial version of this algorithm is described in the remaining part of
the chapter.

Again, the application of F is not done at once but stepwise by factorizing

F = F1 · F2 · · ·FN

as in Equation (3.2). All of the N = d nnb
e factors Fk have the shape of an identity matrix

besides the rows (k − 1)nb + 1 : knb, where it has the same content as F .
The inverse of F is already defined in Equation (3.3) and is repeated here for completeness:

F−1 = F−1
N · F−1

N−1 · · ·F
−1
1

To obtain the singular values of the generalized SVD, the SVD of G ·F−1 can be computed.

35

3 Algorithms

The inverse of F can be replaced by the stepwise application of its factors F−1
k :

W = G · F−1

= G · F−1
N · F−1

N−1 · · ·F
−1
1 (3.28)

The F−1
k have the blockwise non-identity matrix shape of Fk as shown in Figure 3.1. Applying

a F−1
k to G will again be denoted as “inversion step”.

As stated before in Equation (3.6), the following abbreviations are used to describe the non
identity part of F−1

k :

Dk = F−1
k,k

Ek = −Dk · Fk,k−1

Dk is the diagonal block of the inverse and Ek is the block next to the diagonal block of the
inverse.

The goal is now, as in the transformation of the generalized eigenvalue problem to the
standard eigenvalue problem, to apply one F−1

k and immediately start to remove the occur-
ring fill-in by orthogonal transformations. When the fill-in has been evicted from the matrix,
then the next inversion step F−1

k−1 can be applied. Without removing the fill-in, the non-zeros
outside the band would grow further and further by every step until the matrix is filled up
completely.

A detailed description of the series of applying F−1
k from right to a lower triangular banded

matrix M and the subsequent orthogonal transformations will be given in the following lines.
M takes over the role of G after the application of an arbitrary number of inversion steps
which have been followed by a restoration of the band as described in the following.
Applying F−1

k to the banded matrix M means updating the columns (k− 1)nb − bB + 1 : knb
in the matrix. More specifically, the columns (k − 1)nb + 1 : knb of M are multiplied by Ek
and the result is added to the columns (k − 1)nb − bB + 1 : (k − 1)nb of M . Afterwards, the
columns (k − 1)nb + 1 : knb of M are multiplied with Dk. Both operations are limited to the
rows (k − 1)nb + 1 : knb + bA. The generated bulge is located in M ’s lower triangle in the
columns (k−1)nb−bB +2 : knb and the rows (k−1)nb+bA−bB +1 : knb+bA−1. Figure 3.6
gives an illustration of the updated entries in M and the occurring fill-in.

Contrary to the eigenvalue problem, only one bulge in the lower triangle of the matrix ap-
pears. To chase it towards the lower end of the matrix, a QR decomposition has to be used. A
LQ decomposition, which was also an option at the eigenvalue problem for chasing the bulge
to the lower end, cannot be used here since it operates on the upper matrix half’s bulge.
The QR decomposition is run on the columns (k−1)nb−bB+1 : knb in the rows (k−1)nb+bA−
bB+1 : knb+bA ofM . The obtainedQT is applied from left to these rows. By this, new fill-in is
generated in the upper triangle of the matrix in the columns (k−1)nb+bA−bB+1 : knb+bA−1
of the QR rows. The bulge moved by bA + 1 columns to the right and by one row to the top.
A LQ decomposition can be used now to chase the newly generated bulge towards the lower
end. The LQ is run on the columns (k − 1)nb + bA − bB + 1 : knb + bA of the rows

36

3.2 Crawford SVD algorithm

nbbB

bB + nb
bA + nb

·Dk·Ek

+ bB + nb

bB + nb
QR

QT · −→

bB + nb

bB + nb

LQ

· QT

bB + nb

bB + nb
QR

QT · −→

Figure 3.6: Lower matrix half: (First picture) The application of the inversion step k updates
the entries within the rectangles (see main text for details). Marked in red is the
bulge of newly created non-zeros outside the band. (Second picture) First chasing
step for pushing the bulge by bA columns to the right using QR decomposition.
(Third picture) First LQ step for pushing the bulge by bA rows to the bottom.
(Forth picture) Second QR step for pushing the bulge by bA columns to the right.
Updates of matrix entries only happen within the rectangles.

(k − 1)nb + bA − bB + 1 : knb + bA. The obtained QT is now applied from right to the
matrix M and updates the LQ columns, removes the old bulge and introduces a new bulge in
the rows (k− 1)nb + 2bA − bB + 2 : knb + 2bA. The upper triangle is clean again and the new
bulge is located in the lower triangle, bA + 1 rows further down, but one column to the left
compared to the old one. After one QR and one LQ, the bulge moved by bA rows and by bA
columns towards the lower end of the matrix.
The procedure of computing and applying QR and LQ can be repeated until the fill-in is
evicted from the matrix. Then the band is fully restored and the next inversion step F−1

k−1 can
be applied to M . Figure 3.6 illustrates this bulge chasing chain in its pictures 2 to 4.

The orthogonal matrices obtained by QR and LQ will again be denoted by Q
(i)
k . The

subscript k indicates the inversion step it follows after. The superscript (i) denotes the order
of the orthogonal transformations starting with Q(1)

k for the first QR following the application
of F−1

k , then Q(2)
k for the first LQ transformation until Q(νk)

k for the last LQ transformation
that evicts the fill-in from the matrix.
νk can be computed when taking into account the upper most row where the fill-in appears,
(k − 1)nb + bA − bB + 2. Every QR/LQ sequence moves the bulge by bA rows to the bottom,
where it finally drops out when the upper most bulge row of the newly generated bulge is
beyond n. Hence,

νk = 2bn− (k − 1)nb + bB − 1

bA
c. (3.29)

In the following, the series of Q(i)
k applied from left (generated by QR decompositions) will

be abbreviated as
oQ

(·)T
k = Q

(νk−1)T
k · · ·Q(3)T

k ·Q(1)T
k , (3.30)

37

3 Algorithms

the Q(i)
k applied from right (generated by LQ decompositions) are abridged as

eQ
(·)T
k = Q

(2)T
k ·Q(4)T

k · · ·Q(νk)T
k . (3.31)

The given description can be summarized in a formal way: Applying an inversion step F−1
k

to the banded lower triangular matrix M creates fill-in outside the band. This fill-in can be
removed by a series of orthogonal transformations:

M̂ = oQ
(·)T
k ·M · F−1

k · eQ(·)T
k (3.32)

M̂ is again a banded lower triangular matrix without fill-in and the next inversion step F−1
k−1

can be applied.

The overall transformation of applying F−1 to G while restoring the band consists of con-
tinuously repeating Equation (3.32) and by that applying all factors of F−1 while restoring
the band immediately.
It results in the matrix W̃ given by

W̃ = oQ
(·)T
1 · · · oQ(·)T

N−1 ·
oQ

(·)T
N ·G · F−1

N · eQ(·)T
N · F−1

N−1 ·
eQ

(·)T
N−1 · · ·F

−1
1 · eQ(·)T

1 . (3.33)

An algorithm for this procedure is given in Algorithm 23. As for the eigenvalue algorithms,
the corrections to the bulge indices when a bulge reaches the end of a matrix have not been
considered to simplify the code.

3.2.1 Twisted factorization

Similar to the eigenvalue procedure, one problem of using this algorithm is that fill-in gener-
ated close to the top end of the matrix is chased towards the lower end of the matrix. Again,
the use of a twisted factorization provides the opportunity to overcome this issue. An illus-
tration of a twisted factorization and its factors is given in Figure 3.3.

When assuming that G and F are factorizations of matrices A = GT ·G and B = F T · F ,
then four variants are possible:

• Factorizing A and B with a Cholesky factorization
→ G and F are banded lower triangular matrices

• Using a twisted factorization for A and factorize B with a Cholesky factorization
→ G is a twisted matrix, F is a banded lower triangular matrix

• Factorizing A with a Cholesky factorization and using a twisted factorization for B
→ G is a banded lower triangular matrix , F is a twisted matrix

• Using a twisted factorization for A and B
→ G and F are a twisted matrices

38

3.2 Crawford SVD algorithm

Algorithm 23 Crawford SVD algorithm (serial) for the lower matrix half. S is a twisted
matrix with twist position p = Pnb, G is a banded lower triangular matrix. When not using
a twisted matrix but a banded lower triangular matrix S, then p = P = 0.
for k ← N,N − 1, . . . , P + 1 do

. “inversion step” k(right-sided application of S−1
k)

i1 ← (k − 1)nb + 1; i2 ← i1 + nb − 1
j1 ← i1 − bB; j2 ← i1 − 1
Dk ← S(i1 : i2, i1 : i2)

−1

if (j1 ≤ j2) then
Ek ← −Dk · S(i1 : i2, j1 : j2)
G(i1 : i2 + bA, j1 : j2)← G(i1 : i2 + bA, j1 : j2) +G(i1 : i2 + bA, i1 : i2) · Ek

end if
G(i1 : i2 + bA, i1 : i2)← G(i1 : i2 + bA, i1 : i2) ·Dk

. “bulge chasing”
i← 1
ib1 ← i1 + bA − bB; ib2 ← i2 + bA
jb1 ← j1; jb2 ← i2
while jb1 < n− bA do

[Q
(i)
k , R

(i)
k]← QR decomposition of G(ib1 : ib2, j

b
1 : jb2)

G(ib1 : ib2, j
b
1 : jb2 + bA)← Q

(i)T
k ·G(ib1 : ib2, j

b
1 : jb2 + bA)

jb1 ← jb1 + bA; jb2 ← min(j2 + bA, n)

[L
(i+1)
k , Q

(i+1)
k]← LQ decomposition of G(ib1 : ib2, j

b
1 : jb2)

G(ib1 : ib2 + bA, j
b
1 : jb2)← G(ib1 : ib2 + bA, j

b
1 : jb2) ·Q

(i+1)T
k

ib1 ← ib1 + bA; ib2 ← min(ib2 + bA, n)
i← i+ 2

end while
end for

39

3 Algorithms

In the following, the four cases will be discussed and advantages and disadvantages will be
presented.

G and F are banded lower triangular matrices

The first variant, having G and F as banded lower triangular matrices, is discussed above and
the procedure is given in Algorithm 23. It has the drawback of chasing bulges from the top
end of the matrix towards the lower end.

G is a twisted matrix, F is a banded lower triangular matrix

This variant does not decouple the upper and lower matrix half. Removing fill-in in the upper
matrix half and chasing the bulge towards the top end is not possible without introducing
additional fill-in in the lower matrix half. This approach is hence not practical.

G is a banded lower triangular matrix, F is a twisted matrix

To clarify the different structure of twisted matrices, S will be used in the following instead
of F . This is analogous to the eigenvalue algorithms where this naming has been introduced.

Equation (3.13) gives the factorization of the twisted matrix S

S = SP · SP−1 · · ·S1 · SP+1 · SP+2 · · ·SN

and Equation (3.14) the inverse of it:

S−1 = S−1
N · S

−1
N−1 · · ·S

−1
P+1 · S

−1
1 · S

−1
2 · · ·S

−1
P

The application of the S−1
k , k > P , (lower matrix half) is described above. It does not

cause fill-in in the upper matrix half. In the following, the application of S−1
k , k ≤ P , to G is

described.

Analogously to the eigenvalue algorithm, Ek = −Dk · Sk,k+1 denotes the inverse of the
off-diagonal block in Sk and Dk = S−1

k,k denotes the inverse of the diagonal block.
Applying S−1

k multiplies the columns (k−1)nb+1 : knb of G with Ek and adds the result to the
columns knb + 1 : knb + bB. Afterwards, the columns (k− 1)nb + 1 : knb are updated by their
multiplication with Dk. These operations update the rows (k − 1)nb + 1 : knb + bA. A bulge
is introduced in the rows (k− 1)nb + 1 : knb + bB − 1 in the columns (k− 1)nb + 2 : knb + bB.
The bulge chasing is started with a QL decomposition of the rows (k − 1)nb + 1 : knb + bB
and columns (k − 1)nb + 1 : knb + bB and a left-sided application of the obtained QT . This
removes the bulge from the upper triangle of the matrix but introduces a new bulge in the
lower triangle. The bulge moved by bA + 1 columns to the left and one row to the bottom.
The QL is followed by a RQ decomposition in the rows (k − 1)nb + 1 : knb + bB and columns
(k − 1)nb − bA + 1 : knb − bA + bB and a right-sided application of the determined QT .
This, again, removes the bulge and introduces a new bulge in the upper triangle in the rows

40

3.2 Crawford SVD algorithm

(k − 1)nb − bA + 1 : knb − bA + bB − 1 and columns (k − 1)nb − bA + 2 : knb − bA + bB. The
bulge has now moved by bA + 1 rows towards the top but one column to the right. Hence,
the bulge moves every QL/RQ sequence by bA rows and columns towards the top end of the
matrix. This procedure is repeated until the bulge drops out of the matrix.
Figure 3.7 illustrates the procedure of applying the inversion step and removing the fill-in.

Due to the non-symmetric matrix G the bulge chasing pattern changes slightly. As for the
lower matrix half, first, after applying S−1

k , a left-sided transformation (here QL) is applied. It
is followed by a right-sided transformation (RQ). In the lower matrix half, the last transforma-
tion that evicts the fill-in from the matrix was a right-sided transformation with QT generated
by a LQ decomposition. In the upper matrix half, clearing the bulge from the matrix has to
be done by a left-sided transformation, which is obtained by a QL decomposition.
This also leads to a slightly modified νk. For the computation, the most right column of the
bulge has to be considered: knb + bB. Like in the lower matrix half algorithm, the bulge
moves by bA columns every QL/RQ sequence. Hence, after stage i the bulge has its right
most columns at knb − b i2 + bBcbA. The bulge drops out the matrix if the right most column
is less or equal to 1. Therefore,

νk = 1 + 2bknb + bB − 1

bA
c. (3.34)

Since νk is now appearing at the left-sided transformations, the abbreviations oQ
(·)T
k and

eQ
(·)T
k have to be extended for the upper matrix half:

oQ
(·)T
k = Q

(νk)T
k · · ·Q(3)T

k ·Q(1)T
k for k ≤ P

eQ
(·)T
k = Q

(2)T
k ·Q(4)T

k · · ·Q(νk−1)T
k for k ≤ P

(3.35)
oQ

(·)T
k = Q

(νk−1)T
k · · ·Q(3)T

k ·Q(1)T
k for k > P

eQ
(·)T
k = Q

(2)T
k ·Q(4)T

k · · ·Q(νk)T
k for k > P

Equation (3.33) changes when having a twisted matrix S instead of a banded lower triangular
matrix F to

W̃ = oQ
(·)T
P · oQ(·)T

P−1 · · ·
oQ

(·)T
1 · oQ(·)T

P+1 ·
oQ

(·)T
P+2 · · ·

oQ
(·)T
N

·G · S−1
N ·

eQ
(·)T
N · S−1

N−1 ·
eQ

(·)T
N−1 · · ·S

−1
P+1 ·

eQ
(·)T
P+1

· S−1
1 ·

eQ
(·)T
1 · S−1

2 ·
eQ

(·)T
2 · · ·S−1

P ·
eQ

(·)T
P . (3.36)

Algorithm 24 gives a detailed description of the procedure for the upper matrix half. The
bulge index computation is, as before, simplified.

The overall procedure consists of first running Algorithm 23 applying the lower matrix half
of S and afterwards running Algorithm 24 applying the upper matrix half of S.
Using a twisted factorization for B allows to decouple the upper from the lower matrix half
and reduces the bulge chasing distances significantly (see Table 3.2 for details).

41

3 Algorithms

Algorithm 24 Crawford SVD algorithm (serial) for the upper matrix half. S is a twisted
matrix with twist position p = Pnb, G is a banded lower triangular matrix. When not using
a twisted matrix but a banded upper triangular matrix S, then p = n and P = N .
for k ← 1, 2, . . . , P do

. “inversion step” k (right-sided application of S−1
k)

i1 ← (k − 1)nb + 1; i2 ← min(i1 + nb − 1, p)
j1 ← i2 + 1; j2 ← min(i2 + bB, p)
Dk ← S(i1 : i2, i1 : i2)

−1

if (j1 ≤ j2) then
Ek ← −Dk · S(i1 : i2, j1 : j2)
G(i1 : i2 + bA, j1 : j2)← G(i1 : i2 + bA, j1 : j2) +G(i1 : i2 + bA, i1 : i2) · Ek

end if
G(i1 : i2 + bA, i1 : i2)← G(i1 : i2 + bA, i1 : i2) ·Dk

. “bulge chasing”
i← 1
ib1 ← i1; ib2 ← i2 + bB
jb1 ← i1; jb2 ← j2
while jb2 > 1 do

[Q
(i)
k , L

(i)
k]← QL decomposition of G(ib1 : ib2, j

b
1 : jb2)

G(ib1 : ib2, j
b
1 − bA : jb2)← Q

(i)T
k ·G(ib1 : ib2, j

b
1 − bA : jb2)

jb1 ← jb1 − bA; jb2 ← jb2 − bA

[R
(i+1)
k , Q

(i+1)
k]← RQ decomposition of G(ib1 : ib2, j

b
1 : jb2)

G(ib1 − bA : ib2, j
b
1 : jb2)← G(ib1 − bA : ib2, j

b
1 : jb2) ·Q

(i+1)T
k

ib1 ← ib1 − bA; ib2 ← ib2 − bA
i← i+ 2

end while
end for

42

3.2 Crawford SVD algorithm

nb bB

bB + nb
bA + nb

·Dk ·Ek

+

bB + nb

bB + nb
QL

QT · −→

bB + nb

bB + nb

RQ

· QT

bB + nb

bB + nb
QL

QT · −→

Figure 3.7: Upper matrix half when having a banded lower triangular matrix G and a twisted
matrix S: (First picture) Application of inversion step k updates the entries within
the rectangles (see main text for details). Marked in red is the bulge of newly
created non-zeros outside the band.(Second picture) First chasing step for pushing
the bulge by bA + 1 columns to the left (and one row to the bottom) using QL
decomposition. (Third picture) First RQ step for pushing the bulge by bA + 1
rows to the top (and one column to the right). (Forth picture) Second QL step for
pushing the bulge again by bA+1 columns to the left (and one row to the bottom).
Updates of matrix entries only happen within the rectangles.

G and F are twisted matrices

A drawback of the previous approach, when having a twisted matrix S and a banded lower
triangular G, is that the fill-in in the upper matrix half needs one more orthogonal transfor-
mation. Additionally, the upper and lower matrix half need their own code since the idea of
reusing the code by flipping the upper matrix half cannot be applied here: Flipping the band
of G in the upper matrix half does not give the same band pattern as in the lower matrix half.
Hence, the chasing pattern cannot match.

A possibility to reuse the code of the lower matrix half in the upper matrix half appears if
both matrices G and F are twisted matrices. This leads to having both band patterns and
both bulge chasing patterns the same. It also preserves the decoupling of the upper and lower
matrix half at bulge chasing. Also in this case, S will be used to indicate the twisted structure
of F and hence will be used instead. For G the structure changes too, but since it has the
passive part during the inversion steps, the notation remains as it is.

The application of the Dk and Ek is the same as described in the case of only having S as
twisted matrix. Due to the upper triangular band in this case, the bulge is located in different
rows: rows (k− 1)nb− bA + 1 : knb− bA + bB − 1 of the columns (k− 1)nb + 2 : knb + bB. The
chasing will start with a QL, then a RQ step and will end, contrary to the case of having a
twisted matrix only at S, with a RQ transformation. This is due to the location of the band
and goes along with the transformations in the lower matrix half. Every QL transformation
moves the bulge by bA + 1 columns to the left and one row to the bottom, every RQ by bA + 1
rows to the top and one column to the right. Again, every QL/RQ sequence shifts the bulge
by bA rows to the top left end of the matrix. Figure 3.8 gives an illustration of the procedure.

Since the transformations are similar to the lower matrix half, Equations (3.30) and (3.31)

43

3 Algorithms

nb bB

bB + nb
bA + nb

·Dk ·Ek

+

bB + nb

bB + nb
QL

QT · −→

bB + nb

bB + nb

RQ

· QT

bB + nb

bB + nb
QL

QT · −→

Figure 3.8: Upper matrix half when having two twisted matrices: (First picture) Application
of inversion step k updates the entries within the rectangles (see main text for
details). Marked in red is the bulge of newly created non-zeros outside the band.
The band is now fully located in the triangle and hence the rows where the fill-in
appears are different to the case when using a twisted factorization only for B.
(Second picture) First chasing step for pushing the bulge by bA+ 1 columns to the
left and one row to the bottom using QL decomposition. (Third picture) First RQ
step for pushing the bulge by bA + 1 rows to the top and one column to the right.
(Forth picture) Second QL step for pushing the bulge by bA + 1 columns to the
left and one column to the bottom. Updates of matrix entries only happen within
the rectangles.

with the abbreviations oQ
(·)T
k and eQ

(·)T
k also hold in this case for the upper matrix half.

The number of orthogonal transformations can be computed by considering the lowest row
of the initial bulge, knb − bA + bB − 1. The last row of the first RQ will consequently be
knb − bA + bB. The last RQ row is considered here since it will be the operation that evicts
the fill-in from the matrix. Every QL/RQ sequence the bulge moves by bA rows towards the
top end of the matrix. The drop out condition in this case is that the last RQ row is greater
than 1. This leads to

νk = 2bknb + bB − 1

bA
c. (3.37)

This algorithmic variant for the upper matrix half is a flipped version of the lower matrix
half algorithm. Hence, it can be omitted to write code for it when flipping the underlying
matrices and running the lower matrix half code on it (with small modifications). More details
on flipping matrices are given in Section 3.1.1.

A drawback of this approach is that the resulting matrix W̃ is a twisted matrix itself.
Implementations of algorithms for the computation of the SVD of upper or lower triangular
matrices exist, also for banded matrices (e.g. in two-step solvers). Implementations for twisted
matrices, however, are not known to the author. Twisted matrices are partly used to compute
the SVD of bidiagonal matrices [30], but not banded twisted matrices of wider band. Hence,
when having twisted matrices G and F , computational routines for the further processing
have to be developed.

44

3.2 Crawford SVD algorithm

Matrix setup Chasing steps

S and G lower triangular matrices N2 + 1.0N

S twisted, G lower triangular matrix 0.5N2 + 1.5N

S and G twisted matrices 0.5N2 + 1.0N

Table 3.2: Number of chasing steps necessary over all inversion steps. The following simplifi-
cations are used for this computation: nb = bA = bB, n = Nnb and p = N

2 .

Summary

Equations (3.29), (3.34) and (3.37) give by νk the number of chasing steps necessary after
inversion step S−1

k . This formulas can be used to obtain the total number of bulge chasing
steps for a matrix. To get a comparison, some simplifications are applied. When assuming
nb = bA = bB, n = Nnb and p = N

2 , then the numbers in Table 3.2 give the amount of
necessary bulge chasing steps for the different variants.

In the scenario described in the beginning of Section 3.2.1, where G and F are factorizations
of matrices A = GT ·G and B = F T ·F , it can be chosen which variant is used. For simplicity,
S is here also used for the non-twisted matrix F , hence B = ST · S.
Variant two with a twisted matrix G and a banded lower triangular matrix S has not been
considered since no formula has been developed for it.
Obviously, when having a twisted matrix for S, much less chasing steps are necessary. Hence,
these approaches are preferable over the approach without twisted matrix S. The question
of using a twisted factorization for A should not be decided based on the small advantage
in the number of chasing steps compared to the Cholesky factorized A. Here, the focus lies
on the further processing of the resulting matrix. If a parallel algorithm for computing the
singular values for a twisted matrix is available, then using two twisted factorizations is the
means of choice. This can already be motivated by reducing the required code by roughly 50%.

3.2.2 Singular vectors

The singular vectors of the original problem W = G ·S−1 = UΣV T are U and V . Considering
the orthogonal transformations, the problem transfers to W̃ = Ũ · Σ · Ṽ T . Obviously, the
singular vectors are not the same and for obtaining them, a backtransformation step has to
be applied.

Starting with Equation (3.36)

W̃ = oQ
(·)T
P · · · oQ(·)T

1 · oQ(·)T
P+1 · · ·

oQ
(·)T
N ·G · S−1

N

· eQ(·)T
N · · ·S−1

P+1 ·
eQ

(·)T
P+1 · S

−1
1 ·

eQ
(·)T
1 · · ·S−1

P ·
eQ

(·)T
P ,

the interchangeability of S−1
l and eQ

(·)T
k can be inspected.

This consists of three steps: showing that all S−1
l of the upper matrix half are interchangeable

with eQ
(·)T
k for l > k and showing that all S−1

l of the lower matrix half are interchangeable

45

3 Algorithms

with eQ
(·)T
k for l < k. Finally, the interchangeability of S−1

l of the upper matrix half with
orthogonal factors of the lower matrix half eQ

(·)T
k has to be shown.

In the lower matrix half, S−1
l updates the columns (l−1)nb−bB +1 : lnb. The first element of

eQ
(·)T
k , Q(2)

k , updates the columns (k−1)nb+bA−bB+1 : knb+bA. Since l < k and bA ≥ bB it
is ensured that the right most column updated by S−1

l is left of the leftmost column updated
by any of the eQ

(·)T
k .

In the upper matrix half, the case with two twisted matrices and the case with only a
twisted matrix in S do not differ. In both cases, the application of S−1

l update the columns
(l − 1)nb + 1 : lnb + bB. The first right-sided orthogonal transformation updates the columns
(k − 1)nb − bA + 1 : knb − bA + bB and the following update columns further to the left. The
leftmost columns of the inversion step are right of the rightmost columns of the eQ

(·)T
k for

l > k and bA ≥ bB.
Hence, in both matrix halves, the inversion steps can be interchanged with the orthogonal
transformation.
The most left right-sided transformation of the lower matrix half, Q(2)

P+1, updates the columns
Pnb + bA − bB + 1 : (P + 1)nb + bA. S−1

P , the most right update of the upper matrix half,
updates the columns (P − 1)nb + 1 : Pnb (the right limit is due to the use of a twisted matrix
in S). Also here no intersection is given and lower matrix half’s orthogonal transformations
can be interchanged with the inversion steps of the upper matrix half.

Concluding, the inversion steps can be interchanged with the orthogonal transformations:

W̃ = oQ
(·)T
P · · · oQ(·)T

1 · oQ(·)T
P+1 · · ·

oQ
(·)T
N ·G · S−1

N

· eQ(·)T
N · · ·S−1

P+1 ·
eQ

(·)T
P+1 · S

−1
1 ·

eQ
(·)T
1 · · ·S−1

P ·
eQ

(·)T
P

= oQ
(·)T
P · · · oQ(·)T

1 · oQ(·)T
P+1 · · ·

oQ
(·)T
N

·G · S−1
N · · ·S

−1
P+1 · S

−1
1 · · ·S

−1
P

· eQ(·)T
N · · · eQ(·)T

P+1 ·
eQ

(·)T
1 · · · eQ(·)T

P

= oQ
(·)T
P · · · oQ(·)T

1 · oQ(·)T
P+1 · · ·

oQ
(·)T
N

·G · S−1

· eQ(·)T
N · · · eQ(·)T

P+1 ·
eQ

(·)T
1 · · · eQ(·)T

P

With W = G · S−1 = UΣV T the link to the original problem can be established:

W̃ = oQ
(·)T
P · · · oQ(·)T

1 · oQ(·)T
P+1 · · ·

oQ
(·)T
N

·G · S−1

· eQ(·)T
N · · · eQ(·)T

P+1 ·
eQ

(·)T
1 · · · eQ(·)T

P

= oQ
(·)T
P · · · oQ(·)T

1 · oQ(·)T
P+1 · · ·

oQ
(·)T
N

· U · Σ · V T

· eQ(·)T
N · · · eQ(·)T

P+1 ·
eQ

(·)T
1 · · · eQ(·)T

P

= Ũ · Σ · Ṽ T (3.38)

46

3.2 Crawford SVD algorithm

Thus, the left and right singular vectors U and V of W can be obtained by

U = oQ
(·)
N · · ·

oQ
(·)
P+1 ·

oQ
(·)
1 · · ·

oQ
(·)
P · Ũ (3.39)

V = eQ
(·)T
N · · · eQ(·)T

P+1 ·
eQ

(·)T
1 · · · eQ(·)T

P · Ṽ (3.40)

or

V T = Ṽ T · eQ(·)
P · · ·

eQ
(·)
1 ·

eQ
(·)
P+1 · · ·

eQ
(·)
N . (3.41)

Algorithm 25 gives the algorithm of the backtransformation for the singular vectors of the
generalized singular value problem for the case of S being a twisted matrix, G being a banded
lower triangular matrix as described in Section 3.2.1.

Algorithm 25 Backtransformation of the singular vectors of the generalized singular problem
with a banded lower triangular matrix G and a twisted matrix S with twist position p = Pnb.
U is the matrix of left singular vectors, V is the matrix of right singular vectors.
for k ← P, P − 1, . . . , 1 do

for i← νk, νk−2, . . . , 3, 1 do
ib1 ← (k − 1)nb − i−1

2 bA + 1; ib2 ← knb − i−1
2 bA + bB

U(ib1 : ib2, :)← Q
(i)
k · U(ib1 : ib2, :)

end for
end for
for k ← P + 1, P + 2, . . . , N do

for i← νk−1, νk−3, . . . , 3, 1 do
ib1 ← (k − 1)nb + i+1

2 bA − bB + 1; ib2 ← knb + i+1
2 bA

U(ib1 : ib2, :)← Q
(i)
k · U(ib1 : ib2, :)

end for
end for

for k ← P, P − 1, . . . , 1 do
for i← νk−1, νk−3, . . . , 4, 2 do

ib1 ← (k − 1)nb − i
2bA + 1; ib2 ← knb − i

2bA + bB

V (ib1 : ib2, :)← Q
(i)T
k · V (ib1 : ib2, :)

end for
end for
for k ← P + 1, P + 2, . . . , N do

for i← νk, νk−2, . . . , 4, 2 do
ib1 ← (k − 1)nb + i

2bA − bB + 1; ib2 ← knb + i
2bA

V (ib1 : ib2, :)← Q
(i)T
k · V (ib1 : ib2, :)

end for
end for

When having two twisted matrices, the backtransformation step changes: It has to reflect
the flipping of the matrix for the upper matrix half. This can be achieved by flipping the
singular vectors before applying the upper matrix half’s orthogonal transformations.
The flipping of the singular vectors can be achieved by a simplified flipping procedure as given

47

3 Algorithms

in Algorithm 26. This simplification is possible since the singular vectors are independent of
each other. Clearly, the singular vectors have to be flipped back before applying the lower
matrix half’s Q(i)

k .

Algorithm 26 Flipping of a singular vector matrix X of size n×w: every single vector has to
be turned upside down. Due to the independence of the single vectors, no left/right mirroring
has to be done.
function M ← flipSingularVectors(X)

[n,w]← size(X)
for j ← 1, w do

for i← 1, n do
M(n− i+ 1, j)← X(i, j)

end for
end for

end function

3.2.3 Overall algorithm

Algorithm 28 provides the overall procedure of computing singular vectors and singular values
of a given matrix pair G, S. G is a lower triangular banded matrix, S is a twisted matrix that
is banded too. If these matrices are obtained by factorizations, Algorithm 17 can be used for
their computation (with p = 0 for the non-twisted factorization).
First, the lower matrix half algorithm, then the upper matrix half algorithm have to be run.
This is followed by the computation of the singular values and, if needed, the singular vectors.
For this step, a solver exploiting the banded structure of the resulting matrix should be em-
ployed. Finally, if needed, the step of backtransformation obtains the singular vectors of the
original problem.

For the case of having additionally G as a twisted matrix, Algorithm 29 provides the pro-
cedure to use. Instead of running a special algorithm for the upper matrix half, the matrix
is flipped and the lower matrix half algorithm is used on the upper matrix half data. After
flipping back the resulting matrix, a singular value solver that exploits the banded twisted
structure is employed to compute the singular values and, if needed, the singular vectors. The
latter have to undergo a backtransformation step which also includes a flipping of the singular
vectors.

48

3.2 Crawford SVD algorithm

Algorithm 27 Backtransformation of the singular vectors of the generalized singular problem
with twisted matrices G and S with twist position p = Pnb. U is the matrix of left singular
vectors, V is the matrix of right singular vectors.
U ← Flip matrix (U) . Algorithm 26
V ← Flip matrix (V) . Algorithm 26
for k ← P, P − 1, . . . , 1 do

for i← νk−1, νk−3, . . . , 3, 1 do
. “Work on flipped matrix:”
ib1 ← n− knb + i+1

2 bA − bB + 1; ib2 ← n− (k − 1)nb + i+1
2 bA

U(ib1 : ib2, :)← Q
(i)
k · U(ib1 : ib2, :)

end for
for i← νk, νk−2, . . . , 4, 2 do

. “Work on flipped matrix:”
ib1 ← n− knb + i

2bA − bB + 1; ib2 ← n− (k − 1)nb + i
2bA

V (ib1 : ib2, :)← Q
(i)T
k · V (ib1 : ib2, :)

end for
end for
U ← Flip matrix (U) . Algorithm 26
V ← Flip matrix (V) . Algorithm 26

for k ← P + 1, P + 2, . . . , N do
for i← νk−1, νk−3, . . . , 3, 1 do

ib1 ← (k − 1)nb + i+1
2 bA − bB + 1; ib2 ← knb + i+1

2 bA

U(ib1 : ib2, :)← Q
(i)
k · U(ib1 : ib2, :)

end for
for i← νk, νk−2, . . . , 4, 2 do

ib1 ← (k − 1)nb + i
2bA − bB + 1; ib2 ← knb + i

2bA

V (ib1 : ib2, :)← Q
(i)T
k · V (ib1 : ib2, :)

end for
end for

Algorithm 28 Overall algorithm for computing singular values and singular vectors if G is
lower triangular banded and S is a twisted matrix with twist position p = Pnb.

[G, Ql]← Crawford SVD algorithm lower matrix half (G, S) . Algorithm 23
[G, Qu]← Crawford SVD algorithm upper matrix half (G, S) . Algorithm 24

[U, Λ, V]← Singular value problem solver for banded matrices (G)
[U, V]← Backtransformation (U, V, Ql, Qu) . Algorithm 25

49

3 Algorithms

Algorithm 29 Overall algorithm for computing singular values and singular vectors if G and
S are twisted matrices with twist position p = Pnb.

[G, Ql]← Crawford SVD algorithm lower matrix half (G, S) . Algorithm 23
G← Flip matrix (G) . Algorithm 20
S ← Flip matrix (S) . Algorithm 20
[G, Qu]← Crawford SVD algorithm upper matrix half (G, S) . Algorithm 23
G← Flip matrix (G) . Algorithm 20

[U, Λ, V]← Singular value problem solver for twisted banded matrix (G)
[U, V]← Backtransformation (U, V, Qu, Ql) . Algorithm 27

50

4 Parallel Algorithms

The main focus of this work is the development of parallel algorithms for the generalized
eigenvalue problem and the generalized singular value problem. In the previous chapter, the
algorithmic foundations have been presented. In this chapter the parallel variants of the
presented serial algorithms are explained in detail.

4.1 Parallelization strategies in Numerical Linear Algebra

At the beginning, several well known parallelization strategies in Numerical Linear Algebra
are presented. Many of the existing parallel algorithms in Linear Algebra use one or more
of these strategies. The parallel implementations for the eigenvalue and the singular value
problem employ all of them as their different layers of parallelization.

4.1.1 Distribution of data and computation

Linear algebra algorithms usually work with matrices and vectors. Both can contain huge
amounts of data that undergoes similar or same operations. For example, scaling a vector
will multiply each element by the same factor. A matrix vector product is more complex and
performs the same operation on different data entries, similar for a matrix matrix product.
In the case of huge matrices and vectors it pays off to split the computation and the data
between different processes. Every process performs a computation on its local data and one
or more communication steps might become necessary to obtain the correct result.

One well established way of splitting the data is the data distribution used in ScaLAPACK.
ScaLAPACK [15] is a standard library for distributed numerical computations and can be
seen as extension of the LAPACK [3] library, the de-facto standard for non-distributed linear
algebra computations.
ScaLAPACKuses locally LAPACK functions and employs as abstraction layer for the commu-
nication between processes BLACS. The available processes are arranged in a 2D grid, e.g. for
6 processes, the available options are 6× 1 processes, 3× 2 processes, 2× 3 processes or 1× 6
processes. Most beneficial are usually quadratic setups or setups close to quadratic setups.
The data is distributed blockwise to the processes according to a blocksize nscb. Theoreti-
cally, these blocks can have different sizes in the two dimensions. However, in practice usually
quadratic blocks are used. At the end of the matrix smaller blocksizes can occur since other-
wise the matrix size would be restricted to multiples of nscb.
The processes to assign the data to are repeated in a cyclical way in both dimensions. Hence,
the data is distributed in a 2D blockcyclic way. Figure 4.1 gives an illustration of how a matrix
is cut into blocks and how they are distributed over the processes of the grid.

51

4 Parallel Algorithms

a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7

a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7

a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7

a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7

a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7

a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7
P0 P0P3 P3

P0 P0P3 P3

P1 P1P4 P4

P2 P2P5 P5

Process column
0 01 1

P
ro
ce
ss

ro
w

0

0

1

2

a1,1

a2,1

a7,1

a1,2

a2,2

a7,2

a1,5

a2,5

a7,5

a1,6

a2,6

a7,6

P0

a3,3

a4,3

a3,4

a4,4

a3,7

a4,7

P4

Figure 4.1: ScaLAPACK parallel data layout: The entries of the 7× 7 matrix A are cut into
blocks of size nscb×nscb, nscb = 2 as indicated in red. These blocks are distributed
over the 3× 2 process grid formed from the 6 available processes P0 until P5 in a
2D blockcyclic way. At the end of the matrix some blocks might have a reduced
blocksize. In the right part of the picture the local data of process P0 and process
P4 are shown.

4.1.2 Shared memory computation

Distributing computations and data targets mainly distributed memory systems and large
computations. Due to the size of the data it will not fit into the memory of a single compute
node. Thus, the data has to be distributed over several compute nodes and the computations
are also distributed.
When, however, the data does not exceed the memory of a compute node, then the compu-
tation can be carried out in a shared memory setup. In a shared memory setup, the data is
globally available, but the computation is performed locally by the single compute cores of
the node independently.
Clearly, algorithms, that rely only on this approach are limited in the problem size. Another
possibility is to follow a hybrid approach and break up the global computations into local
subproblems and solve the subproblems by a shared memory approach.

4.1.3 Pipelining

Different from the two previous approaches where the focus lies on distributing data and com-
putations, pipelining tries to organize the computations in an efficient way (which might also
coincide with a tailored data distribution).
A pipeline consists of several workers that are arranged in a linear way. The output of worker
one will become the input of worker two and so on.

Having one worker doing a task consisting of m steps (of equal duration), then he will be
done with the task after m timesteps.

52

4.1 Parallelization strategies in Numerical Linear Algebra

When having m workers for doing the task, every step can be performed by the m workers
sharing the task. This would result (assuming full parallel efficiency) in finishing the task in
one timestep. However, maybe the task cannot be distributed to m workers efficiently.
When additionally more tasks have to be run one after another, then the idea of pipelining
becomes attractive. Every worker is specialized to one single step of the task and does only
perform this step. Worker one starts with step one, hands the result over to worker two that
performs step two on the input from worker one. In the meantime, worker one can start
working on the next task. After m timesteps, the first task is completed since all workers did
their step on this task. The second task has already m − 1 complete steps and so on for the
later tasks. Hence, every following timestep another task is completed.
When starting the pipelining algorithm, a wind-up phase of m timesteps occurs until all
workers are busy. Then the pipeline works fully efficient. Analogous to the wind-up phase, a
wind-down phase begins when worker one has finished the last task. He will stay out of work
from this time on and the parallel efficiency drops again.
Clearly, the throughput of the pipeline is limited by the slowest of its workers.

4.1.4 Splitting in independent subtasks

The idea of this approach is to split a task into smaller, independent subtasks. The subtasks
itself are again divided into smaller sub-subtasks and so on until they can be solved easily by
single workers. The results are stepwise combined and by that the solution of the result of the
overall task can be obtained.
For the divide and conquer approach where each tasks is split in two subtasks this leads to
a binary tree. Splitting the task according to a spacial distribution is another variant of this
approach.

53

4 Parallel Algorithms

4.2 Twisted Crawford algorithm

4.2.1 Pipelining approach

The idea of pipelining was introduced in the previous section. The twisted Crawford algorithm
consists of two operations in the transformation from the generalized to the standard eigen-
value problem as well as in the backtransformation of the eigenvectors: Applying an inversion
step Sk and the following bulge chasing stages. In the following, a single bulge chasing stage
Q

(i)
k in the lower matrix half is going to be analyzed regarding pipelining.

The bulge chased by Q
(i)
k in the lower triangle of the symmetric matrix A is located in

the rows (k − 1)nb + ibA − bB + 2 : knb + ibA and columns (k − 1)nb + (i − 1)bA − bB + 1 :

knb + (i− 1)bA − 1. A QR decomposition of this bulge is computed and the obtained Q(i)
k is

applied symmetrically to the matrix. As already mentioned, the bulge moves by bA rows and
columns towards the end. Thus, the bulge chasing seems to be suitable for a pipelining ap-
proach as it has a well-defined pattern. Every worker would receive a data package of bA× bA
matrix entries.
However, applying the next inversion step k−1 will create fill-in in the rows (k−2)nb+ ibA−
bB + 2 : (k− 1)nb + ibA and columns (k− 2)nb + (i− 1)bA− bB + 1 : (k− 1)nb + (i− 1)bA− 1
in the lower triangle. This means the inversions steps move by nb rows and columns towards
the top.
Consequently, in every inversion step also the bulge chasing chain shifts by nb columns and
rows and hence additional matrix entries have to be transferred between the workers every
inversion step. This will cause performance issues and has therefore to be avoided.
To overcome this issue, the free parameter nb can be fixed to bA. This aligns inversion steps
and bulge chasing stages.

So far, the bulge has a size of nb+ bB. This means, that even if the right end of the bulge is
aligned to multiples of nb, the left is not. Thus, incomplete blocks have to be processed. To get
efficient block operations that work on full blocks, also bB is fixed to bA in the computations.
Clearly, this might cause more computational work than necessary but the processing of full
blocks will lead to more efficient operations which generally compensate the additional work.

To conclude, to achieve an efficient pipelining algorithm, the free choice of nb is given up
and it is bound to the bandwidth of the matrix A. Also bB is potentially increased for this
reason. Starting from here the following is fixed:

nb = bA = bB (4.1)

Figure 4.2 shows the simplified block structure of the matrices A, B and S. This uniform
block structure allows to use a simplified notation. Since all operations are carried out on
the block level it is sufficient to give the coordinates of the involved blocks instead of noting
the exact row and column index. Mk,k denotes the diagonal block in block row k which is
located in the rows and columns (k − 1)nb + 1 : knb. Mk+1,k is the block below Mk,k in the
rows knb + 1 : (k+ 1)nb, Mk,k+1 is the block right of Mk,k in the columns knb + 1 : (k+ 1)nb.
Mk:k+1,k denotes the blocks Mk,k and Mk+1,k.

54

4.2 Twisted Crawford algorithm

A,B S

1

1

1

1

S4

1

1

1

1

S−1
4

Figure 4.2: (first picture) Block structure of the matrices A and B = STS with uniform
bandwidth. (second picture) Block structure of the twisted factorization S. (third
picture) One of its partial factors following Equation (3.13), S4, and the inverse of
it, S−1

4 (forth picture).

In Section 3.1.1 flipping of matrices was introduced. It allows to use the same algorithm
for the upper and lower matrix half and hence reduces the coding effort by about 50%. In
the following, only the lower matrix half algorithm is inspected since the upper matrix half
algorithm can be mapped to it by flipping. Additionally, the matrix A is symmetric and all
modifications to it are applied symmetrically. Hence, also all intermediate matrices and the
resulting C̃ are symmetric too. Thus, it is sufficient to restrict the further notes and the
implementation to the lower triangle of the matrices.

As before, a short description of the simplified procedure of applying inversion steps and
the following bulge chasing is presented. Applying inversion step Sk with k > P (lower ma-
trix half) from right updates the blocks Mk−1:k+1,k−1:k. The left-sided application updates
the blocks Mk−1:k,k−1:k+1. The generated fill-in in the lower triangle is located in the blocks
Mk:k+1,k−1 and Mk+1,k. The QR of Mk:k+1,k−1 is computed and the obtained Q(1)

k is applied
symmetrically (involving block Mk+1,k in the QR can be skipped since it would be filled up
again by the right-sided part of the symmetric application).

The symmetric application of Q(1)
k can be performed in different ways. The left-sided appli-

cation updates the blocks Mk:k+1,k−1:k+1, where Mk,k+1 is already in the upper triangle. The
right-sided application updates the blocks Mk:k+2,k:k+1, where again Mk,k+1 is in the upper
triangle. Four blocks are updated by the left and the right application, Mk:k+1,k:k+1. Two are
only updated from left (Mk:k+1,k−1) and two are only updated from right (Mk+2,k:k+1).
Variant one would be to apply the symmetric update in a combined way as it is used in [4].
This variant works on the blocksMk:k+2,k−1:k+1. A second variant performs first the left-sided
update (where it generates Q(1)

k). Afterwards, in a second step, the right-sided update is per-
formed. Variant three would be to perform first a right-sided updated and then the left-sided
update. This approach is not practical as working in the lower triangle, the Q(1)

k has to be
obtained by a QR and not by a LQ of the upper matrix half bulge.
Hence, variant one and two remain. The advantage of variant two is that only two consecutive
block rows or block columns are involved (see Figure 4.3). The right-sided update with Q(1)

k

can be performed simultaneously to applying Sk−1, since the former updates block columns
k : k+1, the latter k−2 : k−1. Additionally, further right-sided applications can be performed
on pairs of block columns right of k : k + 1. This allows to work on all data simultaneously.

55

4 Parallel Algorithms

k–2 k–1 k k+1

·Dk·Ek

+

DT
k ·

ET
k · +

QR
QT · QT ·

k–2 k–1 k k+1

·Q

·Q

·Q

k–2 k–1 k k+1

k–2

k–1

k

k+1

k+2

k+3

Figure 4.3: (left)The application of inversion step k updates the entries within the blue poly-
gon. Marked in red is the bulge of newly created non-zeros outside the band.
(middle) QR decomposition of the left blocks of the bulge and left-sided appli-
cation of the obtained Q. (right) The right-sided application of Q creates new
fill-in further down the matrix. The remaining part of the old bulge would be
filled again in this step. (middle and right) The updated blocks are marked with a
blue polygon. QT · and ·Q on the border of two blocks indicate that this operation
involves the two blocks. In the left as well as in the right-sided update, one block
needs to interact with a block of the upper triangle of the matrix.

The same can be done regarding the left-sided updates.
The use of the combined application allows to use computational more efficient kernels for ap-
plying Q(1)

k for blocks undergoing a left and right-sided application. The blocks undergoing a
one-sided application will usually be faster than the ones undergoing a symmetric application
and remain idle until the symmetric blocks finish. The drawback here is that this variant uses
3 block rows and columns. Hence, less operations can be performed in parallel compared to
variant two. Therefore, variant two with a splitting of the symmetric application of Q(1)

k in
two separate steps has been chosen.

The splitting of the two-sided orthogonal transformations in a left-sided and a right-sided
update can be generalized. The left-sided application of Q(i)

k updates the block rows k+ i−1 :

k + i. Since Q(i+1)
k+1 updates the block rows k + i+ 1 : k + i+ 2, both work on different pairs

of block rows and can be applied in parallel. More general, the left-sided application of all
Q

(i+j)
k+j , j > −i, update disjunct pairs of block rows k + i + 2j − 1 : k + i + 2j and hence, all

Q
(i+j)
k+j can be applied in parallel.

The same argument can be used for the right-sided application. The right-sided application
of the Q(i+j)

k+j , j > −i, update disjunct pairs of block columns k + i + 2j − 1 : k + i + 2j and
thus, also these right-sided applications can be run in parallel. Additionally to the application
of the Q(i+j)

k+j , Sk−1 can be applied in parallel since it updates block columns Mk−2:k,k−2:k−1

(the most left update of Q(i+j)
k+j can be found for j = −i + 1 and i = 1; it updates the block

columns k : k + 1).
Figure 4.4 illustrates the obtained pipeline. Clearly, the number of parallel bulge chasing steps
is limited by how far the inversion has moved on. The number of independent orthogonal
transformations after applying inversion step Sk can be computed when considering the most
left orthogonal transformation, Q(1)

k , and the most right one, updating block rows and columns

56

4.2 Twisted Crawford algorithm

QR
QT · QT ·

QR
QT · QT ·

Q
(1)
k+1

Q
(2)
k+2

·Q

·Q

·Q ·Q

·Q

·Q

Dk, Ek Q
(1)
k+1 Q

(2)
k+2

·Dk·Ek

+

DT
k ·

ET
k · +

QR
QT · QT ·

QR
QT · QT ·

QR
QT · QT ·

Q
(1)
k

Q
(2)
k+1

Q
(3)
k+2

Figure 4.4: (left) Two QR decompositions are computed in parallel and applied from left.
(middle) The right-sided application of the obtained Q completes the symmetric
application of Q of the left picture. Simultaneously, inversion step Sk is applied.
(right) The fill-in generated in the middle picture is removed by the next QR
decompositions.

N − 2 : N − 1 or N − 1 : N . The last orthogonal transformation that clears the bulge in row
N and column N − 1 is only performed in a very last step at the end of the algorithm and is
hence not considered here. The number of block rows or columns between the most left and
the most right orthogonal transformation determines the number of independent orthogonal
transformations after applying Sk, which can be seen as the length of the pipeline. For the
wind-up phase, the length is given by

lpipe(k) = bN − k + 1

2
c. (4.2)

The length of the pipeline rises every inversion step until applying the last inversion step.
After this wind-up phase the length of the pipeline decreases every step by one in the wind-
down phase until the algorithm terminates and the band is fully restored. The number of
independent operations in the wind-down phase can be described by

lpipe(imin) = bN − P − imin + 1

2
c, (4.3)

where imin denotes the smallest stage number within the row (which is held by Q(imin)
P+1).

Figure 4.5 shows the execution dependencies and clearly outlines the wind-up/wind-down
character of the algorithm. All operations within one row are fully independent and can be exe-
cuted at the same time. The operations within one diagonal belong to the same inversion step.

57

4 Parallel Algorithms

SN

SN−1

SN−2

SN−3

SN−4

...
...

...
...

...
...

...
...

...

LQ
(1)
N−1

RQ
(1)
N−1

LQ
(1)
N−2

RQ
(1)
N−2

LQ
(2)
N−2

RQ
(2)
N−2

LQ
(1)
N−3

RQ
(1)
N−3

LQ
(2)
N−3

RQ
(2)
N−3

LQ
(3)
N−3

RQ
(3)
N−3

LQ
(1)
N−4

RQ
(1)
N−4

LQ
(2)
N−4

RQ
(2)
N−4

LQ
(3)
N−4

RQ
(3)
N−4

LQ
(4)
N−4

RQ
(4)
N−4

bN−k+1
2 c independent left-sided

transformations

bN−k+1
2 c independent right-sided

transformations

Sk+1

Sk

LQ
(1)
k+1

RQ
(1)
k+1

LQ
(2)
k+1

RQ
(2)
k+1

LQ
(3)
k+1

RQ
(3)
k+1

LQ
(4)
k+1

RQ
(4)
k+1

. . .

Q
(N−k−1)
k+1

Q
(N−k−1)
k+1

LQ
(1)
k

RQ
(1)
k

LQ
(2)
k

RQ
(2)
k

LQ
(3)
k

RQ
(3)
k

LQ
(4)
k

RQ
(4)
k

. . .

LQ
(N−k−1)
k

RQ
(N−k−1)
k

LQ
(N−k)
k

RQ
(N−k)
k

...
...

...
...

...
...

...
...

...

...
...

...
...

SP+2

SP+1

LQ
(1)
P+2

RQ
(1)
P+2

LQ
(2)
P+2

RQ
(2)
P+2

LQ
(3)
P+2

RQ
(3)
P+2

. . .
LQ

(N−P−2)
P+2

RQ
(N−P−2)
P+2

LQ
(1)
P+1

RQ
(1)
P+1

LQ
(2)
P+1

RQ
(2)
P+1

LQ
(3)
P+1

RQ
(3)
P+1

. . .
LQ

(N−P−2)
P+1

RQ
(N−P−2)
P+1

LQ
(N−P−1)
P+1

RQ
(N−P−1)
P+1

LQ
(N−P)
P+1

RQ
(N−P)
P+1

Clearing the last block row/column
(only done at the P + 1 step)

N
−
P

st
ep

s
w
in
d-
do

w
n
ph

as
e

N
−
P

st
ep

s
w
in
d-
up

ph
as
e

P
ro
gr
es
s
of

th
e
al
go

ri
th
m

Figure 4.5: Execution dependencies of the different bulge chasing steps and stages: Every
diagonal shows one inversion step and its following stages of bulge chasing. LQ(i)

k

denotes the left-sided application of the orthogonal transformation Q
(i)
k , RQ

(i)
k

the right-sided application. All entries in one row are independent and can be
executed at the same time. Only in the wind-up phase inversion steps are applied.
The following wind-down phase only consists of bulge chasing steps. The last bulge
chasing stage Q(N−k+1)

k is only applied in step k = P + 1.

58

4.2 Twisted Crawford algorithm

4.2.2 Parallel execution of the upper and a lower matrix half

As described before, the upper and lower matrix half are widely decoupled. Especially, bulge
chasing in the upper matrix half never updates the lower matrix half and bulge chasing in the
lower matrix half never updates the upper matrix half. Regarding the inversion steps, this
is not true. The last inversion step of the upper matrix half updates one block in the lower
matrix half and vice versa. Figure 4.6 illustrates the last inversion steps of both matrix halves.
The only block updated in the lower triangle of the upper matrix half by the lower matrix
half is AP,P . Since it is a diagonal block, no fill-in is generated. The only block in the lower
matrix half updated by the upper matrix half is AP+1,P . This block contains the band, but
due to the multiplication with the upper triangular DP no fill-in is introduced. Hence, fill-in
appears only local to the matrix half applying the inversion step.
However, the blocks updated by the other matrix half have to be considered for the compu-
tation. Following the order in Equation (3.17), the lower matrix half has to be processed first
and afterwards the upper matrix half is processed. This also means first running the lower
matrix half algorithm, updating AP,P in the upper matrix half, and then running the upper
matrix half algorithm updating AP+1,P in the lower matrix half.

Due to the widely independent operations in both matrix halves, both can be processed in
parallel. This means that the lower matrix half starts with k = N and runs until k = P + 1
while the upper matrix half starts from k = 1 and runs until k = P − 2. Then the exchange
from the lower matrix half to the upper matrix half for updating AP,P takes place. After that,
both halves can continue their computations. At some point in time DP has to be applied
to the lower matrix half. Because of Equation (3.17), this has to happen after Q(1)

P+1 has
been applied to AP+1,P . From an algorithmic point of view, an application after the lower
matrix half algorithm has fully cleaned the band is favorable since it omits additional extra
case handling within the algorithm.

The possibility for parallel processing allows to use two fully independent groups of pro-
cesses: one running the upper matrix half algorithm, one running the lower matrix half al-
gorithm. The computational costs are roughly the same for both parts. Thus, neglecting
the synchronization cost in the middle of the matrix and assuming the same amount of Flops
per matrix half, a speedup of 2 can be expected by having two independent groups of processes.

Algorithm 30 provides the parallel algorithm for the lower matrix half. When flipping the
upper matrix half it can also be used for the upper matrix half. The exchanging of data,
which has been described above, has been simplified to keep the algorithm clearly arranged.
The terms block column and block row are abbreviated by BR and BC in the algorithm. “Gen-
erating Q(i)

k+i−1 and apply from left to BRs k+ i−1 : k+ i” means to run a QR decomposition
on Ak+i−1:k+i,k+i−2 and to apply the obtained Q(i)

k+i−1 to Ak+i−1:k+i,k+i−2:k+i.

4.2.3 Block and inter-block parallelization

Inter-block parallelization

Generating and applying orthogonal transformations Q(i)
k from left works on pairs of block

rows. Applying inversion steps and applying Q(i)
k from right works on pairs of block columns.

59

4 Parallel Algorithms

Algorithm 30 Twisted Crawford algorithm.
j ← N ; k ← N
windupPhase ← true
while j ≤ N do

if (windupPhase and (process has local data in BC k − 1 : k)) then
apply Dk, Ek to BCs k − 1 : k
if (k = P + 1) then

exchange data with other matrix half
end if

end if
i← 1 + (j − k); i0 ← 1 + (j − k)
for rl ← j + 1, j + 3, ..., N do

if (process has local data in BRs rl − 1 : rl) then
generate Q(i)

k+i−i0 and apply (Q
(i)
k+i−i0)T from left to BRs rl − 1 : rl

end if
i← i+ 1

end for
i← 1 + (j − k); i0 ← 1 + (j − k)
for cr ← j + 1, j + 3, ..., N do

if (process has local data in BCs cr − 1 : cr) then
apply Q(i)

k+i−i0 from right to BCs cr − 1 : cr
end if
i← i+ 1

end for
if (j = P + 1) then

windupPhase ← false
end if
if (windupPhase) then

k ← k − 1; j ← j − 1
else

j ← j + 1
end if

end while
if (process has local data in BR N) then

generate Q(N−P+1)
P+1 and apply (Q

(N−P+1)
P+1)T from left to BR N

end if
if (process has local data in BC N) then

apply Q(N−P+1)
P+1 from right to BC N

end if

60

4.2 Twisted Crawford algorithm

·DP

DT
P ·

·DP+1·EP+1

+

DT
P+1·

ET
P+1·

+ ←− p

Figure 4.6: Application of the last inversion steps in the upper and lower matrix half when
using a twisted factorization with twist block P . (left) The last inversion step of
the upper matrix half updates the blocks indicated in red. (right) Last inversion
step of the lower matrix half and its updated blocks.

In Section 4.2.1 the parallel capabilities of the pipeline have been discussed and the indepen-
dence of pairs of block rows and pairs of block columns have been outlined. In the following,
the work sharing within a pair of block rows and a pair of block columns is described.

The QR decomposition to obtain Q
(i)
k is computed on the blocks Ak+i−1:k+i,k+i−2. The

application of Q(i)
k to the BR pair k + i − 1 : k + i can be seen as a matrix multiplication

from left with a square matrix of size two times two blocks. This means that every block
pair Ak+i−1:k+i,k+i−2, Ak+i−1:k+i,k+i−1 and Ak+i−1:k+i,k+i can be updated independently but
every update involves the two blocks in the pair.
When assuming to have different processes in the different block rows, then a communicator
between the two block rows has to be established. Having the same processes in two neigh-
boring block rows is not practical since the pairs of block rows alternate: block row k + i is
collaborating with block row k+i+1 in the one step, in the other with k+i−1. See Figure 4.4
for an illustration of this behavior. Hence, neighboring block rows should not have the same
processes.
The right-sided update works in the same way. It can be seen as a multiplication with a two
times two blocks wide matrix Q(i)

k from right to a pair of block columns. Here, the different
rows in the updated blocks are independent but the columns within the two neighboring blocks
have to interact. Also here the interactions alters: block column k + i is cooperating with
k+ i−1 in the one right-sided update, in the next with k+ i+ 1. Hence, also two neighboring
block columns should not have the same processes. For every block two local communicators
along the columns have to be established, one to the left neighboring block, one to the right
neighboring block.

Block parallelization

The coarse grained interactions between blocks in the left or right-sided updates have been
described before. This will now be complemented by the inner-block parallelization and the
computation strategies for these 2× 3 and 3× 2 block grids.

If the size of a block nb is large enough, the data and hence the computation can further be

61

4 Parallel Algorithms

subdivided. For this, a 2-D process grid and a 2D blockcyclic data distribution as described in
Section 4.1.1 is used. All operations work on full blocks and can hence be distributed easily.
Detailed algorithms on the block and inter-block level are presented in Section 4.2.5.

Inner-block parallelization

When computing in shared memory environments, a further subdivision of the work on the
process level to threads is possible. This can be achieved by using a multi-threaded LA-
PACK version instead of the standard version. The local calls to BLAS functions are then
executed by more than one thread. A more extensive variant is the explicit use of OpenMP
to distribute the block local work to threads explicitly. The latest MPI versions offer the pos-
sibility for shared memory programming directly within MPI. This work, however, restricts
itself to a pure MPI implementation employing the possibility to plug-in a multi-threaded
LAPACK version.

4.2.4 Process and data structures

Data structures

Due to the symmetry of the matrix it is sufficient to store only the lower triangle of the ma-
trix. As illustrated before, for the application of an inversion step or the left or right-sided
application of an orthogonal transformation, 2× 3 or 3× 2 blocks have to interact.
From Figure 4.4 it can be seen that three blocks in a block column are sufficient for the com-
putation of the lower triangle if the upper triangle block can be surrogated. Block one will
be the diagonal block, block two is the initially half filled block containing the border of the
band and block three is solely for storing the occurring fill-in at this position.
Regarding the surrogate block, the pipeline can be inspected closer. The left-sided application
of Q(i)

k updates the blocksMk+i−1:k+i,k+i−2:k+i, the application of Q(i+1)
k+1 happening in parallel

updates the blocks Mk+i+1:k+i+2,k+i:k+i+2. Obviously, Mk+i+1,k+i−1, which is block three in
block column k + i− 1, is not involved in the operations. Since its fill-in has been cleared in
the left-sided application of Q(i)

k+1 before, it can serve as surrogate for the upper triangular
Mk+i−1,k+i in the left-sided application of Q(i)

k .
Similar for the right-sided update where again the upper triangularMk+i−1,k+i is missing. The
right-sided update of Q(i)

k updates the blocks Mk+i−1:k+i+1,k+i−1:k+i, the right-sided update
with Q

(i+1)
k+1 updates Mk+i+1:k+i+3,k+i+1:k+i+2. In this case the block Mk+i+2:k+i+1,k+i has

been cleared by the previous left-sided update and is not involved in the right-sided update.
Hence, it can act as surrogate for block Mk+i−1,k+i.
Inversion steps Sk can be applied without using a surrogate block since the missing block
Mk−1,k can be replaced by its lower triangular transpose, Mk,k−1. This block can be commu-
nicated to the processes holdingMk−1,k−1 where it is multiplied by Ek and added toMk−1,k−1.
An illustration of the surrogate blocks and the changed communicators is given in Figure 4.7.
Stored are only three blocks of size nb×nb per block column. In total, N block columns have
to be stored. The blocks of the upper matrix half are already stored with flipped data and in
a flipped arrangement. To simplify the computations, the diagonal block is not only stored as
lower triangular block but as full block.

62

4.2 Twisted Crawford algorithm

QR
QT · QT ·

·Q

·Q

·Q

Figure 4.7: Sub-communicators that communicate across the block borders. The gray block
illustrates the “missing” block in the upper triangle which is surrogated by a block
that would normally not be involved in the computation (hatched). The thick lines
illustrate the communicators, in blue the standard ones, in red the communicators
that are used to communicate with the surrogate for the block in the upper matrix
half.

Process layout

So far, different parallelization layers have been presented. The coarsest parallelization layer
is the splitting of the matrix in an upper and a lower matrix half. Both parts work besides
an exchange of one block fully independent and need only one synchronization point roughly
in the middle of the runtime of the algorithm. Thus, the available processes are split in two
groups: Processes for the upper matrix half and processes for the lower matrix half. The ratio
of size of these groups should reflect the ratio of the number of block columns per matrix half.

Each of these groups is further subdivided equally into process groups (PG). A process
group carries out the computation on the block level. The processes of a PG are arranged in a
2D process grid and the data is distributed to them in a 2D blockcyclic way. This distribution
has been described in Section 4.1.1.

In the same way as three blocks are grouped together as block column, three process groups
are grouped together as process group column (PGC). The process groups of a PGC are ar-
ranged in a fixed order as the blocks are arranged in a fixed order in a block column. The
process group columns are numbered and have a well determined neighborhood. The block
columns of a matrix half are assigned to the PGC of this matrix half in a cyclic way. Figure 4.8
illustrates the cyclic assignment: Block column 4 is assigned to PGC4 and block column 5 is
again assigned to PGC1. This allows the PGC to have two fixed neighbors and establish local
communicators with them. This local communicators allow to effectively communicate within
the right-sided application of an orthogonal transformation.
For the communication in the left-sided application of an orthogonal transformation, the con-
cept of a process group row (PGR) can be introduced. A process group row groups together
the three blocks of block row. In the left-sided orthogonal transformation, similar to the right-
sided transformation, a PGR has to interact with either its upper or lower neighbor PGR.
Hence, also local communicators are established for pairs of PGRs.

The three main parallelization layers and the accompanying process distribution have been
described. The most fine grained parallelization layer, work sharing via threads, is not further

63

4 Parallel Algorithms

PGC1 PGC2 PGC3 PGC4 PGC1

PG1

PG2

PG3

PG4

PG5

PG6

PG7

PG8

PG9

PG10

PG11

PG12

PG1

PG2

PG3

BC 1 2 3 4 5

· · ·

P0

P1

P2

P3

P0

P1

P2

P3

P24

P25

P26

P27

P24

P25

P26

P27

P24

P25

P26

P27

P24

P25

P26

P27

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P8

P9

P10

P11

P8

P9

P10

P11

P8

P9

P10

P11

P8

P9

P10

P11

P0

P1

P2

P3

P0

P1

P2

P3

P24

P25

P26

P27

P24

P25

P26

P27

P24

P25

P26

P27

P24

P25

P26

P27

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P8

P9

P10

P11

P8

P9

P10

P11

P8

P9

P10

P11

P8

P9

P10

P11

U
pp

er
m
at
ri
x
ha

lf

Lo
w
er

m
at
ri
x
ha

lf

PGC5 PGC6 PGC7 PGC8 PGC5

PG13

PG14

PG15

PG16

PG17

PG18

PG19

PG20

PG21

PG22

PG23

PG24

PG13

PG14

PG15

BC P + 1 P + 2 P + 3 P + 4 P + 5

· · ·

P48

P49

P50

P51

P48

P49

P50

P51

P72

P73

P74

P75

P72

P73

P74

P75

P72

P73

P74

P75

P72

P73

P74

P75

P48

P49

P50

P51

P48

P49

P50

P51

P48

P49

P50

P51

P48

P49

P50

P51

P48

P49

P50

P51

P48

P49

P50

P51

P72

P73

P74

P75

P72

P73

P74

P75

P72

P73

P74

P75

P72

P73

P74

P75

P48

P49

P50

P51

P48

P49

P50

P51

P48

P49

P50

P51

P48

P49

P50

P51

Figure 4.8: Different levels of parallelization in the algorithm and the distribution of the block
columns (BC): Splitting of the matrix in upper and lower matrix half, process
group columns (PGC), process groups (PG) and processes (P). Not shown here is
the possible subdivision in threads.

described since the work sharing is handled by the LAPACK library within its BLAS routines.

4.2.5 Parallel algorithms on the level of pairs of block rows and block columns

Notation
To enable a precise description of the algorithms, a proper notation has to be introduced. For
this work, the notation in [4] is adapted. It will be used in the rest of this work and is not
restricted to a certain process layout.

In Auckenthaler’s data layout the whole matrix is distributed in a 2D blockcyclic way to
a 2D process grid. In this work the situation is different. Here, only the data of a block is
distributed in a 2D blockcyclic way to a 2D process grid. The blocks itself collaborate within
pairs of block columns or pairs of block rows, having disjunct processes in the underlying pro-
cess groups. However, by setting up proper addressing methods, the 2× 3 or 3× 2 blocks in a
pair of block rows or a pair of block columns can be seen as a continuum that is distributed
to a set of processes. Hence, for the description of the algorithms on the level of pairs of block
rows or pairs of block columns, a local index will be used.
In the 2 × 3 blocks setup, row indices 1 : nb refer to the first block row, nb + 1 : 2nb refer to
the second block row. Similar for the block columns where the indices nb + 1 : 2nb refer to the
second block column. M(1 : nb, 2nb + 1 : 3nb) refers to block 3 in the upper block row which
is located in the upper triangle. The fact that this block is surrogated by another block as
described before will be implicitly incorporated to keep the descriptions compact.
The local indexing works the same for the 3 × 2 where the row indices last from 1 : 3nb and
the column indices from 1 : 2nb.

As already used before, M(k, l) points to the entry in row k and column l of matrix M . To

64

4.2 Twisted Crawford algorithm

point out the 2D blockcyclic distribution, the notationM<pr,pc> is used. M<pr,pc>(k, l) points
thus to element (k, l) in a 2D distributed matrix where only the process owning the entry will
act.
To indicate the replication of a matrix in one or more directions of the 2D process grid, “∗” is
used. This means that all processes in the row or column communicator, depending on whether
“∗” appears in the first or second coordinate, share the same data. For example M<pr,∗> is a
matrix which is distributed over the rows of the process grid but replicated within the column
communicator, hence replicated over the process columns.
Less general is the use of “∗i” which indicates that the data is replicated within block i of the
asterisk direction. Hence, M<pr,∗1> restricts the repetition of data to block column one. Still,
the data is distributed over the process rows. Processes in the block columns two and three
do not have copies of the data.
Finally, M<∗,∗> indicates that a matrix is replicated over all processes in the pair of PGC or
PGR.

M<pr,pc> describes the distribution of the matrix over the processes. For local computations
on single processes it is important to know about the row and column indices of the local ma-
trices. These indices are added with squared brackets. M<pr,pc>[i,j] denotes a 2D distributed
matrix where the data of the process at position [i, j] is referenced. Some distributed compu-
tations require a reduction step at their end. This is indicated by adding another subscript
after the squared brackets, describing the local data in the reduction direction (which can be
seen by < pr, ∗ >. M<pr,∗>[i]j describes a matrix that has still to be reduced along the column
communicator. A detailed example is presented in Figure 4.9. To shorten the notation, after
already stating the distribution of a matrix, e.g. < pr, pc >, this part might be omitted in the
rest of an algorithm.

Symmetric application of an inversion step

The parallel application of inversion step Sk is described in Algorithm 31. At first, the right
block column has to be communicated to the left one. There, this communicated BC is
multiplied by Ek and added to the local data. Ak−1,k, which would be used by Ak−1,k−1,
is in the upper triangle of the matrix and hence not existing. This block is replaced by
the lower triangular twin Ak,k−1. Afterwards, the right-sided application of Sk is completed
by multiplying block column k from right by Dk. The missing left-sided update starts by
transferring the updated block Ak,k−1 again to Ak−1,k−1, multiplying the transferred block by
ETk and adding it to the local data. Finally, block row k is multiplied from left with DT

k .
The two methods used for matrix multiplication in the algorithm, PDGEMM and PDTRMM ,
can be used from ScaLAPACK or be replace by some equivalent. They are used here to
indicate that this parallel matrix multiplication is complete and not a local multiplication on
local matrices.

QR decomposition and left-sided application

The parallel Householder vector generation ParallelHHgen is given in Algorithm 32. It extends
the non-parallel Householder vector generation in Algorithm 1. Instead of having a globally

65

4 Parallel Algorithms

U<pr,∗>[i]j = M<pr,pc>[i,j] . X<∗,pc>[j]

nrows× nb nrows× ncols ncols× nb

= .=

U<pr,∗>[i] = U<pr,∗>[i]j

nrows× nb nrows× nb

Allreduce

Figure 4.9: The distributed computation of the product of two matrices U = M ·X illustrates
the notation. The matrices are shown as a collection of quadrats, where each
quadrat represents a process and its local view to the global matrix: The colored
lines and rectangles indicates the local data. The quadrats for every matrix are
arranged in the same way as the underlying processes are arranged in the process
grid. The replication of data can be seen by having data at the same position with
the same color (e.g. as for matrix X over the process rows). M is distributed in
a 2D blockcyclic way, X is distributed in a 1D blockcyclic way over the process
columns. Important for the multiplication is that the rows of X correspond to the
columns ofM . This is indicated by the subscript [j]. To compute the product, first
local matrix multiplications are done on each process and the result is U<pr,∗>[i]j .
This is an intermediate result since a reduction step is necessary to complete the
computation of U<pr,∗>[i]. The < pr, ∗ > in U<pr,∗>[i]j points to the resulting
distribution over the process rows and the repetition over the columns. [i]j points
to the fact that this matrix is distributed over the process rows and the rows are
the same as inM . Additionally, j without brackets indicates that the computation
is still not complete since it is still distributed over the process columns and has
hence to be reduced.

66

4.2 Twisted Crawford algorithm

Algorithm 31 Parallel application of an inversion step.
function A<pr,pc>[i,j] ← ParallelDEapplication(A<pr,pc>[i,j], D<pr,pc>[i,j], E<pr,pc>[i,j])

if (process has local data in left BC) then
if (process has local data in block 2 of the BC) then

b<pr,pc>[i,j] ← A[i,j]

MPI_SEND (b<pr,pc>[i,j]) to block 1 in same BC
else if (process has local data in block 1 of the BC) then

b<pr,pc>[i,j] ← MPI_RECEIVE from block 2 in same BC
A[i,j] ← A[i,j] + PDGEMM (bT[i,j], E[i,j])

end if
if (process has local data in block 2 or 3 of the BC) then

b<pr,pc>[i,j] ← MPI_RECEIVE from block 1 or 2 in right BC
A[i,j] ← A[i,j] + PDGEMM (b[i,j], E[i,j])
b<pr,pc>[i,j] ← A[i,j]

MPI_SEND (b<pr,pc>[i,j]) to block 1 in same BC
else if (process has local data in block 1 of the BC) then

b<pr,pc>[i,j] ← MPI_RECEIVE from block 2 in same BC
A[i,j] ← A[i,j] + PDGEMM (ET[i,j], b[i,j])

end if

else
if (process has local data in block 1 or 2 of the BC) then

b<pr,pc>[i,j] ← A[i,j]

MPI_SEND (b<pr,pc>[i,j]) to block 2 or 3 in left BC
A[i,j] ← PDTRMM (A[i,j], D[i,j])

end if
end if
if (process has local data in left BC in block 2 or in right BC in block 1) then

A[i,j] ← PDTRMM (DT
[i,j], A[i,j])

end if
end function

67

4 Parallel Algorithms

available vector x, this vector is distributed over the process rows. Hence, the squared norm
of x has to be obtained by a reduction operation. Also the first entry has to be distributed to
all processes by the reduce. All computations besides the squared norm of x are repeated on
every process in the process column. The resulting Householder vector v is distributed as the
given vector x, the scalar factor τ is available on all processes in the process column.

Algorithm 32 Parallel Householder vector generation, the first entry of the given vector
remains.
function [x<pr>[i], v<pr>[i], τ<∗>]← ParallelHHgen(x<pr>[i])

d<∗>i ← xT[i] · x[i]
a<∗>i ← 0
if (x(1) is local) then

a<∗>i ← x(1)
end if
[a<∗>, d<∗>]← MPI_ALLREDUCE (a<∗>i, d<∗>i)
β ← sign(x(1)) ·

√
d

τ ← a+β
β

v[i] ← 1
a+βx[i]

x[i] ← 0
if (x(1) is local) then

v(1)← 1
x(1)← −β

end if
end function

To apply Householder vectors and the regarding factors, Algorithm 3 has been defined.
This algorithm is extended to a parallel setup by ParallelApplyHHleft in Algorithm 33. The
given Householder vector, which is distributed over the process rows, and the Householder
factor, that is available on every process, are applied to the 2D distributed matrix A. The
distribution of the matrix and the vectors requires an additional reduction step to complete
the multiplication AT v.

Algorithm 33 Parallel left-sided application of a Householder vector.
function A<pr,pc>[i,j] ← ParallelApplyHHleft(A<pr,pc>[i,j], v<pr,∗>[i], τ<∗,∗>)

z<pc>i[j] ← AT[i,j] · v[i]
z<pc>[j] ← MPI_ALLREDUCE (z<pc>i[j])
A[i,j] ← A[i,j] − τ · v[i] · z[j]

end function

Algorithms 32 and 33 are used in the parallel variant of Algorithm 5, ParallelQR, given in
Algorithm 34. For all columns, if local on a process, the Householder vector is computed and
then distributed to all process columns within the block. Afterwards, the Householder vector
is applied from left and the next column follows.

68

4.2 Twisted Crawford algorithm

Algorithm 34 Parallel QR decomposition.
function [A<pr,pc>[i,j], Y<pr,∗1>[i], τ<∗,∗1>]← ParallelQR(A<pr,pc>[i,j])

Y ← 0
for k ← 1, 2, . . . , n do

if (k is local column) then
[A<pr>[i](k : m, k), Y<pr>[i](k : m, k), τ<∗>(k)]

← ParallelHHgen(A<pr>[i](k : m, k))
end if
[Y<pr,∗1>[i](k : m, k), τ<∗,∗1>(k)]

← MPI_BROADCAST (Y<pr>[i](k : m, k), τ<∗>(k))

A(k : m, k + 1 : n)← ParallelApplyHHleft(A(k : m, k + 1 : n), Y[i](k : m, k), τ(k))
end for

end function

During ParallelQR, the Householder vectors have been collected in the distributed matrix
Y<pr,∗>[i] and the factors in global vector τ<∗,∗>. When using the compact WY formulation
for applying Householder vectors in a blocked way, Algorithm 35 provides the distributed
computation of T<∗,∗>. Again, a matrix multiplication has to be completed by a reduce.

Algorithm 35 Parallel computation of T .
function T<∗,∗> ← ParallelGenT(Y<pr,∗>[i](1 : m, 1 : n), τ<∗,∗>(1 : n))

T ← 0
Z<∗,∗>i ← Y T

[i] · Y[i]
Z<∗,∗> ← MPI_ALLREDUCE (Z<∗,∗>i)
for k ← 1, n do

T (1 : k − 1, k)← −τ(k) · T (1 : k − 1, 1 : k − 1) · Z(1 : k − 1, k)
T (k, k)← τ(k)

end for
end function

For the blocked application of Householder vectors, a parallel version of Algorithm 11 is given
in Algorithm 36. The Householder vector matrix Y<pr,∗>[i] as well as the matrix where the
transformations are applied to, A<pr,pc>[i,j], are distributed. The globally available T<pr,pc>
completes the arguments for ParallelCWYleft. Due to global availability of T , only one re-
duction step is necessary to complete the distributed computation.

By using Algorithms 34 to 36, a blocked version of the parallel QR decomposition and the
left-sided application to the pair of block rows can be formulated. Algorithm 37 provides the
detailed description for that. First, the QR decomposition of a small tile is computed. After
this step, all processes in block column one share parts of the obtained Householder vectors and
factors. These Householder vectors are communicated to the blocks two and three in the block
row via a MPI_SEND / MPI_RECEIVE . This communication takes place in a one-to-one
fashion: Every process of the sending block sends its data to the process in the receiving block
which has the same position in the 2D process grid. The same can be achieved by immediately

69

4 Parallel Algorithms

Algorithm 36 Parallel blocked application of Householder vectors from left.
function A<pr,pc>[i,j] ← ParallelCWYleft(A<pr,pc>[i,j], Y<pr,∗>[i], T<∗,∗>)

Z<pr,∗>[i] ← Y[i] · T
U<∗,pc>i[j] ← ZT[i] ·A[i,j]

U<∗,pc>[j] ← MPI_ALLREDUCE (U<∗,pc>i[j])
A[i,j] ← A[i,j] − Y[i] · U[j]

end function

using a broadcast over the full PBR during ParallelHHgen. Afterwards, all processes compute
redundantly T and finally, by calling ParallelCWYleft, apply the Householder vectors in a
blocked way to the distributed matrix.

Algorithm 37 Parallel blocked QR decomposition.
function [A<pr,pc>[i,j], Y<pr,∗>[i], τ<∗,∗>]← ParallelBlockedQR(A<pr,pc>[i,j])

for j1 ← 1, b+ 1, 2b+ 1, . . . , nb do
i1 ← j1; i2 ← 2nb
j2 ← min(nb, j1 + b− 1)
if (is block column 1) then

[A[i,j](i1 : i2, j1 : j2), Y<pr,∗1>[i](i1 : i2, j1 : j2), τ<∗,∗1>(j1 : j2)]
← ParallelQR(A[i,j](i1 : i2, j1 : j2))

MPI_SEND (Y<pr,∗1>[i](i1 : i2, j1 : j2), τ<∗,∗1>(j1 : j2)) to BCs 2, 3
else

[Y<pr,∗>[i](i1 : i2, j1 : j2), τ<∗,∗>(j1 : j2)]← MPI_RECEIVE from BC 1
end if

T<∗,∗> ← ParallelGenT(Y[i](i1 : i2, j1 : j2), τ(j1 : j2))
A[i,j](i1 : i2, j2 + 1 : 3nb)← ParallelCWYleft(A[i,j](i1 : i2, j2 + 1 : 3nb),

Y[i](i1 : i2, j1 : j2), T)
end for

end function

Right-sided application of Q

In the generation of Q and the left-sided update, Y has been distributed over the rows and
replicated over the columns. The right-sided application of Q is basically the transposed
version of the left-sided, hence, also a transposed version of Y has to be obtained.
Y is distributed over two blocks. When computing block-local transposes, then these local
transposes have just to be ordered in the right way to obtain the overall transpose. This means
that the upper block becomes the left block and the lower block becomes the right block in the
newly obtained transpose. Figure 4.10 illustrates the necessary communication of the parts of
Y . The left block column has only to communicate block two since block three was already
involved as surrogate for the upper triangular block in the left-sided transformation. In the
right BC only one block has the lower part of Y from the left-sided transformation. Thus,

70

4.2 Twisted Crawford algorithm

QR
QT · QT ·

Yu Yu

Yu

Yl Yl Yl

Yu

Yu

Yl

·Q

·Q

·Q

Yu

Yu

Yu

Yl

Yl

Yl

Figure 4.10: Redistribution of Y<pr,∗> after the left-sided update: (left) Initial distribution
of Y with splitting Y = [Y u Y l]T in an upper and an lower part. (middle)
Communication of Y u and Y l within the block columns. (right) Final distribution
of Y u and Y l as needed for the right-sided update. The thick lines illustrate the
communicators along which Y will be used in the right-sided update, in gray is
the upper triangular block that is surrogated by the hatched block.

this block has to communicate it to the two neighboring blocks in the block column.
This communication step can again be done with point to point communication between
the single processes in the regarding process grids in the process groups of the blocks. This
communication step can take place for all right-sided updates at once before the right-sided
update itself is carried out.

Algorithm 35 provided the computation of T in the description of the left-sided orthogonal
transformation. There, Y<pr,∗> was used to obtain T . In the right-sided update, however, the
transposed version of Y , Y ′<∗,pc> is used. Transposed does not mean that the data distribution
and the local data is transposed. Y ′ does only include the transpose of the data distribution,
the local data itself stays untransposed (a column of Y ′ still contains the local parts of one
Householder vector). Algorithm 38 provides the computation of T when using Y ′ . The changes
are marginal as only the distribution direction of Y and hence the necessary reduction direction
changes from rows to columns. If the matrix T is stored after the left-sided update, then this
computation becomes obsolete.

Algorithm 38 Parallel computation of T .

function T<∗,∗> ← ParallelGenT(Y ′<∗,pc>[j](1 : m, 1 : n), τ<∗,∗>(1 : n))
T ← 0
Z<∗,∗>i ← Y

′T
[j] · Y

′

[j]

Z<∗,∗> ← MPI_ALLREDUCE (Z<∗,∗>j)
for k ← 1, n do

T (1 : k − 1, k)← −τ(k) · T (1 : k − 1, 1 : k − 1) · Z(1 : k − 1, k)
T (k, k)← τ(k)

end for
end function

For the right-sided application of Householder vectors, in Algorithm 12 the compact WY
representation was presented. It performs the blockwise application of a set of Householder
vectors at once and employs only BLAS3 computations. Algorithm 39 provides the parallel

71

4 Parallel Algorithms

version of this algorithm which needs an additional reduction step to complete an intermediate
product.

Algorithm 39 Parallel blocked application of Householder vectors from right.

function A<pr,pc>[i,j] ← ParallelCWYright(A<pr,pc>[i,j], Y
′

<∗,pc>[j], T<∗,∗>)
Z<pr,∗>[j] ← Y

′

[j] · T
U<∗,pc>[i]j ← A[i,j] · Z[j]

U<∗,pc>[i] ← MPI_ALLREDUCE (U<∗,pc>[i]j)

A[i,j] ← A[i,j] − U[i] · Y
′

[j]
end function

Algorithm 40 describes the right-sided application of an orthogonal transformation. As
already mentioned before, a transposed version of Y has to be obtained first. The necessary
communication steps to bring the right parts of Y in the right place has been described at
Figure 4.10. When having the correct distribution of Y , the local “transpose” (see above) can
be carried out to obtaine Y ′<∗,pc>. As for the QR decomposition and the left-sided application
of Q, also for the right-sided application a tile-wise application is applied. The tile size b can be
chosen arbitrarily and is not bound to the tile size in the QR step. For every tile Algorithm 38
can be used to compute T and by Algorithm 39 the application of the right-sided update is
carried out.
Figure 4.10 additionally illustrates the blocks in the upper triangle of the matrix and their
surrogates. By having a closer look, it can be seen that the upper triangular block is the
same in the left and the right-sided update. This can be exploited at the right-sided update:
Instead of transposing the lower triangular sibling, the content of the surrogate block after
the left-sided transformation can be used. By that, no transpose is necessary.

So far, the computation of T is carried out only for the left-sided application of Q. For the
right-sided application, the stored T of the left application is used. This means that a unique
tile size is used and the computation of T during the right-sided application can be saved.
Similar to Y , T has to be distributed to the blocks not having been involved in the left-sided
update (see Figure 4.10 for details).

4.3 Backtransformation of eigenvectors

In the following the parallelization of the backtransformation of the eigenvectors is described.
Equations (3.26) and (3.27) provided formulas for this computation. The latter is to use when
employing a twisted factorization and shall be recalled here:

X = S−1 · Q̃ · Ỹ

The respective Q̃ was provided in Equation (3.25) by

Q̃ = Q
(1)
N · · ·Q

(νN)
N · · ·Q(1)

P+1 · · ·Q
(νP+1)
P+1 ·Q(1)

1 · · ·Q
(ν1)
1 · · · ·Q(1)

P · · ·Q
(νP)
P .

72

4.3 Backtransformation of eigenvectors

Algorithm 40 Parallel blocked right-sided application of Q.
functionA<pr,pc>[i,j] ← ParallelBlockedRightSidedApplQ(A<pr,pc>[i,j], Y<pr,∗>[i], T< ∗, ∗ >)

if (is block column 1) then
if (is block row 1) then

MPI_SEND (Y<pr,∗1>[i]) to block row 2
else if (is block row 2) then

Y<pr,∗1>[i] ← MPI_RECEIVE from block row 1
end if

else
if (is block row 2) then

MPI_SEND (Y<pr,∗2>[i]) to block row 1, 3
else

Y<pr,∗2>[i] ← MPI_RECEIVE from block row 2
end if

end if
Y
′

<∗,pc>[j] ← transpose(Y<pr,∗>[i])
for i1 ← 1, b+ 1, 2b+ 1, . . . , nb do

i2 ← min(nb, i1 + b− 1)
j1 ← i1; j2 ← 2nb
A[i,j](i1 : 3nb, j1 : j2)

← ParallelCWYright(A[i,j](i1 : 3nb, j1 : j2), Y
′

[j](j1 : j2, i1 : i2), T)
end for

end function

73

4 Parallel Algorithms

Q·

Q·

Q·

Q·

Q·

Q·

Q
(2)
k

Q
(3)
k+1

Q·

Q·

Q·

Q·

Q·

Q·

Q·

Q·

Q·

Q
(1)
k

Q
(2)
k+1

Q
(3)
k+2

Q·

Q·

Q·

Q·

Q·

Q·

Q
(1)
k+1

Q
(2)
k+2

Dk·

Ek·
+

Figure 4.11: Three consecutive steps in the backtransformation: The applications of different
Q can be done in parallel in the same way theQ have been created (see Figure 4.4).
Finally, the Dk and Ek are applied.

The description will be limited to the case of using a twisted factorization since the non-twisted
case is already covered by the lower matrix half part of the twisted case.

Two possibilities exist: setting up a pipelining algorithm as for the transformation of the
generalized to the standard eigenvalue problem or accumulating a “backtransformation” matrix
S̃−1 = S−1 · Q̃.

4.3.1 Pipelining approach

Using a pipelining approach results in applying the Householder vectors and inversion steps
in the order as given in Equation (3.27) to the matrix of eigenvectors. This means, that this
matrix is updated in place without any additional storage requirements. The order of appli-
cation can also be chosen according to Equation (3.21). Then, inversion steps and orthogonal
transformations are not interchanged and are applied as in the transformation to the standard
eigenvalue problem.

Since a uniform blocksize has been chosen before, applying the orthogonal transformations
and the inversion steps to the eigenvectors is also updating pairs of block rows in the eigen-
vector matrix.
In particular, applying the orthogonal transformation Q(i)

k to the eigenvector matrix updates
the block rows k+ i− 1 and k+ i. As derived before, all Q(i+j)

k+j , j > −i, update disjunct pairs
of block rows k + i+ 2j − 1 : k + i+ 2j and can be applied in parallel.
When applying inversion step Sk to the eigenvectors, then the block rows k − 1 and k are
updated. This can immediately be carried out after the last Q(i)

k touched the block rows.

The Dk, and Ek as well as the parts to build Q(i)
k can be stored in the PGs they have been

used in. This avoids a complete redistribution of this data.
So far, only the block rows have been fixed to the uniform blocksize nb. For the backtransfor-
mation however, a uniform blocksize cannot be used. The reason lies in the arbitrary number
of eigenvectors that have to be transformed. When using the same processor setup as for the
transformation to the SEP, then three blocks in a block row should also be used here. This
can be achieved by splitting the eigenvectors in three groups of roughly same size. Hence, a
block in the backtransformation has a size of nb × wj with j ∈ {1, 2, 3}.

74

4.3 Backtransformation of eigenvectors

Figure 4.11 shows the parallel application of different bulge chasing stages and an inversion
step. One important difference to the application of inversion steps and bulge chasing stages
is that in the backtransformation the application is not transposed. For applying inversion
steps, this leads to a different behavior: Ek is multiplied to block row k − 1 and added to
block row k. Afterwards block row k is multiplied by Dk. When applying Q, the only change
is instead of T , T T has to be applied.

Figure 4.12 shows the execution dependencies and the parallel capabilities of the backtrans-
formation using this approach. Again, a wind-up phase is followed by a wind-down phase.
For the wind-up phase the length of the pipeline can be computed by

lpipe(imin) = bN − P − imin + 1

2
c, (4.4)

for the wind-down phase by

lpipe(k) = bN − k + 2

2
c. (4.5)

Here, imin refers to the minimum i-index in the row: Similar for k in the wind-down formula,
which is obtained by the inversion step carried out.
The pipeline length rises until the last inversion step P +1 is applied and then decreases every
step of the parallel backtransformation algorithm by one.

Parallel execution of the upper and a lower matrix half

When using a twisted factorization for B and computing the upper matrix half by flipping
the matrix and using the lower matrix half algorithm, then this has also to be reflected in the
backtransformation.
This means that the matrix of eigenvectors has to be flipped before the upper matrix half
backtransformation is applied and afterwards the matrix is flipped back. This can be done in
a reduced way since the vectors are independent of each other and hence, only

M f(1 : n, :) = M(n : −1 : 1, :) (4.6)

has to be done.

The interference of the upper and lower matrix half has been discussed in Section 4.2.2. The
orthogonal transformations only update the matrix half where they origin in: Lower matrix
half orthogonal transformations will never update the upper matrix half and vice versa. This
holds also for the backtransformation.
Figure 4.6 provides an illustration of the situation for the inversion steps: The last inversion
step in the upper matrix half updates AP+1,P in the lower matrix half. This update however,
is conducted by the right-sided update. The left-sided update does not update any block in
the lower matrix half. The last inversion step in the lower matrix half updates AP,P in the
upper matrix half. This update happens by the left and the right-sided application of the
inversion step. Hence, this update in the upper matrix half has also to be carried out in the
backtransformation.
The interference of the upper and lower matrix half during backtransformation is illustrated

75

4 Parallel Algorithms

N
−
P
−

1
st
ep

s
w
in
d-
do

w
n
ph

as
e

N
−
P

+
1
st
ep

s
w
in
d-
up

ph
as
e

bN−P−imin+1
2 c independent left-sided

transformations

LQ
(N−P)
P+1

LQ
(N−P−1)
P+1

LQ
(N−P−2)
P+1

LQ
(N−P−3)
P+1

LQ
(N−P−4)
P+1

LQ
(N−P−5)
P+1

LQ
(N−P−6)
P+1

LQ
(N−P−7)
P+1

. . .

LQ
(1)
P+1

SP+1

LQ
(N−P−2)
P+2

LQ
(N−P−3)
P+2

LQ
(N−P−4)
P+2

LQ
(N−P−5)
P+2

LQ
(N−P−6)
P+2

LQ
(N−P−7)
P+2

. . .

LQ
(1)
P+2

SP+2

LQ
(N−P−3)
P+3

LQ
(N−P−4)
P+3

LQ
(N−P−5)
P+3

LQ
(N−P−6)
P+3

LQ
(N−P−7)
P+3

. . .

LQ
(1)
P+3

SP+3

...

...

...

...

...

...

bN−k+2
2 c independent left-sided

transformations

LQ
(N−k)
k

LQ
(N−k−1)
k

LQ
(N−k−2)
k

LQ
(N−k−2)
k

. . .

LQ
(1)
k

Sk

LQ
(N−k−1)
k+1

LQ
(N−k−2)
k+1

LQ
(N−k−3)
k+1

. . .

LQ
(1)
k+1

Sk+1

LQ
(N−k−2)
k+2

LQ
(N−k−3)
k+2

. . .

LQ
(1)
k+2

Sk+2

LQ
(N−k−3)
k+3

. . .
...

...

...

LQ
(2)
N−2

LQ
(1)
N−2

SN−2
LQ

(1)
N−1

SN−1

SN

P
ro
gr
es
s
of

th
e
al
go

ri
th
m

Figure 4.12: Execution dependencies in the backtransformation of the eigenvectors: Every
diagonal shows one inversion step and the regarding stages of bulge chasing. To
line out the left-sided updates, LQ

(i)
k is used for the left-sided application of

the orthogonal transformation Q(i)
k (analogous to Figure 4.5). All entries in one

row are independent and can be executed at the same time. The number of
independent operations can be computed by the given formulas. In the wind-up
phase, imin refers to the minimum i-index in the row, k refers in the wind-down
formula to the inversion step which is applied in this row.

76

4.3 Backtransformation of eigenvectors

DT
P ·

Q
(1)
P+1

DP+1·

EP+1·
+ ←− p

Figure 4.13: Application of the last inversion steps of the upper and lower matrix half to the
eigenvector matrix and their dependencies. The application of the last inversion
step of the lower matrix half, SP+1, in shown in the right picture. It has to
be carried out after the last inversion step in the upper matrix half and after
applying Q(1)

k (left and middle pictures).

in Figure 4.13. The serial order is determined by Equations (3.26) and (3.27). For the parallel
backtransformation, the order of the operations applied to a block row has still to be kept.
Thus, the last inversion step of the upper matrix half, SP , updates block row P . This block
row will be used later by the last inversion step of the lower matrix half, SP+1. Before applying
SP+1 to the matrix, however, first Q(1)

P+1 has to be applied since it also updates block row
P + 1 and the application of Q(i)

k comes first in Equation (3.26). Finally, SP+1 can be applied
using the last block row of the upper matrix half.

Besides this synchronization point, both matrix halves are fully independent and can thus
be applied in parallel to the eigenvectors. This allows also to use the splitting of the processes
in upper matrix half processes and lower matrix half processes.

Algorithm 41 provides the parallel algorithm for the backtransformation of eigenvectors in
the lower matrix half. By flipping the matrix this algorithm can also be used for the upper
matrix half. The exchanging of data has been simplified in the algorithm. It only describes the
view of the lower matrix half where the block row P of the upper matrix half is received before
inversion step SP+1 is applied. The sending of the data in the upper matrix half, however, is
performed after inversion step SP is applied. The simplification was done for the sake of clarity.

Process and data structures

During the backtransformation the processes stay assigned in process groups and split in the
upper and lower matrix half as before. The assignment in process group columns is not used
here but the assignment in process group rows. This, however, does not coincide with a redis-
tribution of blocks.

Figure 4.14 shows on the left the block structure as used during the twisted Crawford algo-
rithm. There, three blocks form a block column. In the same way, three blocks form a block
row. The block rows are as well as the block columns arranged in a staircase way. The blocks
in a BC can be numbered from 1 (diagonal block in the BC) to 3 (sub-sub-diagonal block in
the BC). The block index for blocks in a block row can be computed by iindexBR = 4− iindexBC
when using the index in the block column iindexBC.

77

4 Parallel Algorithms

Algorithm 41 Backtransformation of eigenvectors.
if (process has local data in BR N) then

apply Q(N−P+1)
P+1 from left to BR N

end if
k ← P + 1
j ← N
windupPhase ← true
while j ≤ N do

i← 1 + (j − k); i0 ← 1 + (j − k)
for rl ← j + 1, j + 3, ..., N do

if (process has local data in BRs rl − 1 : rl) then
apply Q(i)

k+i−i0 from left to BRs rl − 1 : rl
end if
i← i+ 1

end for
if (j=k and (process has local data in BC k − 1 : k)) then

if (k = P + 1) then
exchange data with other matrix half

end if
apply Dk, Ek to BC k, use BC k − 1

end if
if (j = P + 1) then

windupPhase = false
end if
if (windupPhase) then

j ← j − 1
else

k ← k + 1; j ← j + 1
end if

end while

78

4.3 Backtransformation of eigenvectors

QR
QT · QT ·

Yu Yu

Yu

Yl Yl Yl

Yu

Yl

Q· Q· Q·
Yu Yu Yu

Yl Yl Yl

Figure 4.14: Redistribution of Y<pr,∗> for the backtransformation: (left) Initial distribution of
Y with splitting Y = [Y u Y l]T in an upper and an lower part as stored during
the left-sided orthogonal transformation. (middle) Communication of Y u and Y l

within the block rows. (right) Final distribution of Y u and Y l as needed for the
backtransformation. The thick lines illustrate the communicators along which Y
will be used in the backtransformation.

For using the block row view during the backtransformation, all blocks with the same block
row index are put in a column. This can be seen as pushing from left to the block rows until
they are aligned on the right.

This setup does not change the processes within blocks and not the data distribution. It
solely creates new connections between the block rows. In the twisted Crawford algorithm,
during the left-sided update, block two in the upper block row was co-working with block one
in the lower block row. In the backtransformation, only blocks of neighboring block rows with
the same block row index will co-work.

Block and inter-block parallelization

For applying the inversion steps and the orthogonal transformations to the matrix of eigen-
vectors, the necessary data has to be in place. For inversion steps this requires that D and E
are available in every block of the regarding block row. For the left-sided application of the
orthogonal transformation, Y and T have to be in place respectively.

Y and τ of Q(i)
k are computed in the blocks Ak+i−1:k+i,k+i−2 and are used by the blocks

Ak+i−1:k+i,k+i−1, Ak+i,k+i and the surrogate block Ak+i+1,k+i−1. The blocks that compute
Y and τ will also store Y and T for the backtransformation. It is possible to store them
additionally in the blocks that use it during the left or right-sided application but this would
again increase the memory footprint drastically.

Hence, Y and T are only stored in the blocks Ak+i−1:k+i,k+i−2. When considering the back-
transformation block layout, then the upper part of Y is available in block two of the block
row, the lower part is available in block one. Figure 4.14 illustrates the original distribution
and the communication of the Y parts. On the right, additionally, the necessary inter-block
communicators are indicated.

A similar situation can be found for applying inversion steps in the backtransformation.

79

4 Parallel Algorithms

·Dk·Ek

+

DT
k ·

ET
k · +

E

E

E

D D

D

E

DD

E E E

DDD
Dk·

Ek·
+

Figure 4.15: Redistribution of D and E for the backtransformation: (left) Initial distribu-
tion when applying the inversion step. (middle) Communication of D and E
within the block rows. (right) Final distribution of D and E as needed for the
backtransformation.

Initially, Dk and Ek are available in every block they have been used in during the inversion
step (Figure 4.15 left picture). Since Ek has to be available in all three blocks of block row
k− 1, it has to be communicated to block one and two. Slightly different is the situation with
Dk which is already available in block two and three of block row k. Here, block three is used
to communicate Dk to block one. Block three is used instead of block two because when it
comes to applying inversion step P , block two does not necessarily hold DP .

Parallel algorithms on the level of pairs of block rows and block columns

Algorithm 41 described the coarse grained view on the algorithms stating left-sided applica-
tions of Q(i)

k and Sk to the matrix of eigenvectors. The necessary communication to distribute
the data has been described before. Now, the single algorithms working on the level of pairs
of block rows are going to be described.

To perform a QR decomposition and the left-sided application of Q, ParallelCWYleft was
used. For the backtransformation, this cannot be used since it applies QT instead of Q. To
apply Q from left instead of QT , the compact WY representation has to be revised. The
application of QT is given by

M̃ = QT ·M = (I − Y · T · Y T)T ·M = (I − Y · T T · Y T) ·M.

Hence, the non-transposed application of Q is given by

M̃ = Q ·M = (I − Y · T · Y T) ·M. (4.7)

The only difference is using T in a transposed way or not. The algorithm for the blocked
application of the Householder vectors from left in a non-transposed way is given by Algo-
rithm 42.

As before in the transformation from the generalized to the standard eigenvalue problem, for
backtransformation, Householder vectors are applied in a blocked way tile-wise. Algorithm 43
provides the algorithm for applying the Householder vectors by tiles of size b. It employs
the ParallelCWYtransposedLeft as described in algorithm Algorithm 42 for the blocked ap-

80

4.3 Backtransformation of eigenvectors

Algorithm 42 Parallel blocked transposed application of Householder vectors from left.
function A<pr,pc>[i,j] ← ParallelCWYtransposedLeft(A<pr,pc>[i,j], Y<pr,∗>[i], T<∗,∗>)

Z<pr,∗>[i] ← Y[i] · T T
U<∗,pc>i[j] ← ZT[i] ·A[i,j]

U<∗,pc>[j] ← MPI_ALLREDUCE (U<∗,pc>i[j])
A[i,j] ← A[i,j] − Y[i] · U[j]

end function

plication. If the T have not been stored during the QR generation, then they have to be
recomputed by Algorithm 35.

Algorithm 43 Parallel blocked non-transposed application of orthogonal transformations.
function X<pr,pc>[i,j] ← ParallelBlockedLeftSidedApplQ(X<pr,pc>[i,j], Y<pr,∗>[i], T< ∗, ∗ >)

for j1 ← 1, b+ 1, 2b+ 1, . . . , nb do
i1 ← j1; i2 ← 2nb
j2 ← min(nb, j1 + b− 1)
X[i,j](i1 : i2, :)← ParallelCWYtransposedLeft(X[i,j](i1 : i2, :), Y[i](i1 : i2, j1 : j2), T)

end for
end function

Algorithm 44 gives the algorithm for applying an inversion step to the eigenvector matrix.
The method ParallelDEbacktrafo is called by processes of the two block rows that have to
apply the inversion step. First, the upper block row is multiplied by E and the result is
communicated to the lower block row. The lower block row is first multiplied by D and to
the result the communicated result of the upper block row is added. The communication is
organized in a way that a process transfers its local data to the process in the other block at
the same place in the process grid.

Algorithm 44 Parallel application of an inversion step during the backtransformation.
function X<pr,pc>[i,j] ← ParallelDEbacktrafo(X<pr,pc>[i,j], D<pr,pc>[i,j], E<pr,pc>[i,j])

if (process has local data in upper BR) then
b<pr,pc>[i,j] ← PDGEMM (E[i,j], X[i,j])
MPI_SEND (b<pr,pc>[i,j]) to lower block row

else
X[i,j] ← PDTRMM (D[i,j], X[i,j])
b<pr,pc>[i,j] ← MPI_RECEIVE from upper block row
X[i,j] ← X[i,j] + b[i,j]

end if
end function

81

4 Parallel Algorithms

4.3.2 Backtransformation matrix approach

Equation (3.19) with
X = S̃−1Ỹ

together with Equation (3.21) using the order of application

S̃−1 = S−1
N ·Q

(1)
N · · ·Q

(νN)
N · · ·S−1

P+1 ·Q
(1)
P+1 · · ·Q

(νP+1)
P+1

· S−1
1 ·Q

(1)
1 · · ·Q

(ν1)
1 · · ·S−1

P ·Q
(1)
P · · ·Q

(νP)
P

or Equation (3.23) for the interchanged order

S̃−1 = S−1
N · · ·S

−1
P+1 · S

−1
1 · · · ·S

−1
P

·Q(1)
N · · ·Q

(νN)
N · · ·Q(1)

P+1 · · ·Q
(νP+1)
P+1 ·Q(1)

1 · · ·Q
(ν1)
1 · · · ·Q(1)

P · · ·Q
(νP)
P

provide the computations to obtain the original eigenvectors. The pipelining approach applies
the orthogonal transformations and the inversion steps directly to the eigenvector matrix.
Another possibility to perform the backtransformation is to accumulate the orthogonal trans-
formations and inversion steps to obtain the backtransformation matrix S̃−1 explicitly. This
matrix is then multiplied with the eigenvectors to obtain the original eigenvectors. The par-
allel implementation of this approach will be presented in the following.

The starting point is to set up an identity matrix before running the twisted Crawford
algorithm and, when applying inversion steps or orthogonal transformations from right to A,
also multiplying the backtransformation matrix from right. The inversion steps can be applied
all at once (following Equation (3.23)) or in the same way they are applied to A (following
Equation (3.21)). Hereinafter, the latter will be used as applying the inversion steps one by
one perfectly follows the application of inversion steps to A. Computing S−1 before starting
the transition from GEP to SEP as well as applying the inversion steps afterwards from left to
the product of the orthogonal transformation would lack in parallelism (since two consecutive
inversion steps overlap by one block row or column).

Parallel execution of the upper and a lower matrix half

When using a twisted factorization, the interference of the upper and lower matrix half has to
be investigated to outline the necessary data exchange between the upper and lower matrix
half.
At first, the application of an inversion step is reviewed. The right-sided application of S−1

k

multiplies block column k by Ek and adds the result to block column k − 1. Afterwards,
block column k is updated by its multiplication by Dk. Hence, block columns k− 1 and k are
updated.
Since starting with an identity matrix, everything but the diagonal is zero. For simplicity,
the backtransformation matrix can be seen as a dense matrix which can be subdivided in a
N ×N grid of blocks of size nb (the last block row and column can be smaller if the matrix
size is not a multiple of nb).
The application of inversion step k introduces additional fill-in in block column k−1, which is
restricted to the block rows k till N . Thus, the fill-in by the inversion steps grows every step

82

4.3 Backtransformation of eigenvectors

but never exceeds the lower matrix half. The most left fill-in can be found in block column P .
The application of the orthogonal transformation Q(i)

k from right updates the block columns
k + i− 1 and k + i. If one of the blocks has been filled before, both will be afterwards. Q(1)

k

updates block columns k and k + 1, which means that the block right of the diagonal will be
filled. Q(2)

k will additionally fill block row k + 2 and so on. Finally, all block columns right of
the diagonal block will be filled starting from block row k.
Finally, a square in the lower right quadrant of the matrix is introduced. It starts from block
column P and block row P + 1.

After the lower matrix half, the upper matrix half has to be applied to the backtransfor-
mation matrix. The situation is the same, just flipped, until inversion step P . It does not
have the E part and hence, only updates block column P . In this BC, however, the lower
matrix half blocks are already filled. Hence, also the blocks in the lower matrix half have to
be updated by DP . Besides this “distant” update, only the upper matrix half is updated and
also here a square in the top left quadrant of the matrix is introduced. Thus, only DP has to
be exchanged from the upper to the lower matrix half.

To be able to use only the lower matrix half algorithm as in the transition from GEP to
SEP, the idea of flipping has also to be available for the backtransformation matrix. The
initial matrix is an identity matrix and can hence easily be flipped. The application of inver-
sion steps and orthogonal transformations can be translated in the same way as it is done for
the applications to A (see Section 3.1.1 for details). Hence, flipping can be used to assemble
the backtransformation matrix and a formulation of the algorithm in the lower matrix half is
sufficient. For the flipping, the simplified version given in Equation (4.6) can be used. Since
starting with an identity matrix, only flipping back is necessary. The identity matrix can
already be set up in the flipped way.

As before, both matrix halves can be executed in parallel. The update of the lower matrix
half by DP does not even cause a synchronization since this transfer can be overlapped by
computations as the application of DP in the lower matrix half is only restricted to happen
after applying SP+1.
Since following the algorithmic structure of the right-sided update, the parallelism between
pairs of block columns is the same as in the transition from GEP to SEP.

Algorithm 45 provides the extended version of Algorithm 30 that additionally generates
the backtransformation matrix S̃−1 in passing. The right-sided application of the orthogo-
nal transformations and the application of the inversion steps have been supplemented by
the update of the backtransformation matrix S̃−1. The exchange of DP is only mentioned
for the lower matrix half since the sending from the upper matrix half can be done at any time.

Process and data structures

During the transition from GEP to SEP the blocks are arranged in a staircase way and a block
column once computes together with the left neighboring BC, once with the right neighboring
BC. This pattern is followed in the generation of the backtransformation matrix as illustrated
in Figure 4.16. The middle and the right pictures show the application of Q in two consecutive

83

4 Parallel Algorithms

Algorithm 45 Twisted Crawford Algorithm with accumulation of backtransformation matrix.

S̃−1 ← I
j ← N ; k ← N
windupPhase ← true
while j ≤ N do

if (windupPhase and (process has local data in BC k − 1 : k)) then
apply Dk, Ek to BCs k − 1 : k of A
apply Dk, Ek from right to BCs k − 1 : k of S̃−1

if (k = P + 1) then
exchange data of A with other matrix half
if (lower matrix half) then

exchange DP with other matrix half and apply DP to BC P
end if

end if
end if
i← 1 + (j − k); i0 ← 1 + (j − k)
for rl ← j + 1, j + 3, ..., N do

if (process has local data in BRs rl − 1 : rl) then
generate Q(i)

k+i−i0 and apply from left to BRs rl − 1 : rl
end if
i← i+ 1

end for
i← 1 + (j − k); i0 ← 1 + (j − k)
for cr ← j + 1, j + 3, ..., N do

if (process has local data in BCs cr − 1 : cr) then
apply Q(i)

k+i−i0 from right to BCs cr − 1 : cr of A

apply Q(i)
k+i−i0 from right to BCs cr − 1 : cr of S̃−1

end if
i← i+ 1

end for
if (j = P + 1) then

windupPhase ← false
end if
if (windupPhase) then

k ← k − 1; j ← j − 1
else

j ← j + 1
end if

end while
if (process has local data in BR N) then

generate Q(N−P+1)
P+1 and apply from left to BR N

end if
if (process has local data in BC N) then

apply Q(N−P+1)
P+1 from right to BC N of A

apply Q(N−P+1)
P+1 from right to BC N of S̃−1

end if

84

4.3 Backtransformation of eigenvectors

S̃−1

·Q

·Q

·Q

·Q

·Q

·Q

k-2 k-1 k k+1

·Q

·Q

·Q

·Q

k-2 k-1 k k+1

·Q

·Q

·Q

·Q

Figure 4.16: Shape of the backtransformation matrix and two steps of the combined right-
sided update / backtransformation matrix update: (left) Non-zero pattern of the
backtransformation matrix. (middle upper) right-sided application of an orthog-
onal step (middle lower) Regarding update of the backtransformation matrix.
(right upper and lower) The following right-sided transformation and backtrans-
formation matrix update. Given in blue and red are the necessary communicators
between the blocks.

stages of the bulge chasing. The left picture shows the structure of the backtransformation
matrix, which consists of the upper left quadrant and the extended lower right quadrant as
described before.
In Figure 4.16, the block columns are already subdivided into quadratic blocks. When doing
so, the blocks can be distributed cyclically over the process groups of the owning process group
column. Thus, there might be an imbalance of one block between the process groups.
Another possibility is to distribute the rows of the blocks to three more or less equal sized
blocks and distribute this blocks to the three process groups. An advantage of this approach
is the more equal distribution of the rows of the backtransformation matrix (imbalance of one
row between the process groups). However, by giving up the uniform blocksize, computational
routines written for uniform blocks have to be rewritten.

The block columns of the backtransformation matrix are distributed in the same way to the
process group columns as the block columns of matrix A. Since the doubled block column P
does also exist in A (see Figure 4.6), this does not cause problems.

To omit an additional synchronization point between the process groups of a pair of process
group columns, the blocks of the backtransformation matrix have to be distributed carefully
to the process groups. It has to be achieved that the process groups collaborating when up-
dating A are also collaborating when updating S̃−1. An assignment pattern achieving this is
given in Figure 4.17 in the right illustration. It repeats every three block columns and the
collaboration partners of the process groups are the same as in the left and middle illustration.

85

4 Parallel Algorithms

PG1

PG2

PG3

PG6

PG4

PG5 PG7

PG8

PG9

PG12

PG10

PG11 PG13

PG14

PG15

PG18

PG16

PG17

PG3

PG1

PG2 PG4

PG5

PG6

PG9

PG7

PG8 PG10

PG11

PG12

PG15

PG13

PG14 PG16

PG17

PG18

PG1

PG2

PG3

PG6

PG4

PG5

PG8

PG9

PG7

PG10

PG11

PG12

PG15

PG13

PG14

PG17

PG18

PG16

PG1

PG2

PG3

PG6

PG4

PG5

PG8

PG9

PG7

PG10

PG11

PG12

PG15

PG13

PG14

PG17

PG18

PG16

Figure 4.17: Collaboration of the blocks and process groups in the right-sided update dur-
ing two consecutive pipeline steps (left and middle) and block to process group
assignment in the regarding part of the backtransformation matrix to achieve
interaction of the same process groups as in the right-sided updates (right). The
blue and red lines indicate the collaboration (and the regarding communicator).

Reducing computational work by considering the zero patterns

The backtransformation matrix is initially an identity matrix. When applying inversion step
k, then all S̃−1

k:N,k−1:k are updated. All blocks above are not changed and can hence be ne-
glected. Inversion steps introduce fill-in below the diagonal and stepwise fill up to the left.
The application of Householder transformations generates fill-in above the diagonal. When
following the order in Equation (3.21), then after the application of Sk, no fill-in exists in
block rows smaller than k. The fill-in above the diagonal is introduced stepwise and has a
staircase shape during the wind-up phase. This can be exploited when applying the House-
holder transformations. In the wind-down phase the quadrant is filled completely and the full
matrix half has to be updated.
Another possibility to save computational work is the application of E. In the original in-
version step application, the right BC is multiplied by E and added to the left BC. When
assembling the backtransformation matrix, however, the left BC is zero all the time and hence
the addition can be saved.
During the multiplication of S̃−1 with the matrix of eigenvectors, obviously the zero pattern
of S̃−1 can be exploited.

Parallel algorithms on the level of pairs of block rows and block columns

Algorithm 45 provided the extended algorithm that applies inversions steps and right-sided
Householder transformations to A and additionally generates the backtransformation matrix
S̃−1.

To apply the Householder transformations, Algorithm 39 can be used. Since the application
to A is done with the same process group setup, all data is already in place and no additional
data transfer is necessary.
For applying the inversion steps, Algorithm 46 provides a parallel version. Comparing to
Algorithm 31, this version is much shorter since it does not have to handle non-existing

86

4.3 Backtransformation of eigenvectors

blocks in the upper triangle of the matrix or similar. However, compared to the original data
distribution, also block three in the right block column has to hold D.

Algorithm 46 Parallel application of an inversion step to the backtransformation matrix.

function S̃−1
<pr,pc>[i,j] ← ParallelDEapplication(S̃−1

<pr,pc>[i,j], D<pr,pc>[i,j], E<pr,pc>[i,j])
if (process has local data in right BC) then

b<pr,pc>[i,j] ← S̃−1
[i,j]

MPI_SEND (b<pr,pc>[i,j]) to neighbor block in left BC
S̃−1
[i,j] ← PDTRMM (S̃−1

[i,j], D[i,j])
else

b<pr,pc>[i,j] ← MPI_RECEIVE from neighbor block in right BC
S̃−1
[i,j] ← PDGEMM (b[i,j], E[i,j])

end if
end function

The multiplication can be performed in various ways. One possibility is to generate a
ScaLAPACK distributed version of S̃−1 and multiply it with the matrix of eigenvectors. An-
other possibility is to generate two ScaLAPACK distributed matrices representing the upper
left and lower right quadrant of non-zeros in S̃−1 and apply them to the eigenvector matrix.
A third option would be to do the multiplication in the data distribution format of S̃−1. This
variant, however, causes high effort for the transformation between the data distributions since
the eigenvectors have to be transformed twice.

4.3.3 Summary

For the pipelining approach, at least Y and the τ have to be stored. In Table 3.1 the number
of chasing steps was given with 0.25N2 + 0.5N . This means that even when ignoring the
repetition along the columns of a process group, 0.5N2 + N blocks of storage are required
(assuming P = N

2). For including the repetition, this number has to be multiplied by pc.
Instead of the τ , T can also be stored. This allows to save computations but costs additional
storage.
The backtransformation matrix approach requires P 2 + (N −P + 1)(N −P) blocks of storage
to hold the matrix. Simplifying with P = N

2 , 0.5N2 + 0.5N blocks are necessary. Hence,
assembling the backtransformation matrix is slightly less demanding regarding storage. So
far, these considerations have been made on a non-distributed view of data. Including data
distribution and the immanent repetition of some data, the pipelining approach becomes even
less competitive.

To compare the Flops, all necessary steps have to be evaluated. This means for the back-
transformation matrix approach to consider the multiplication of the matrix with the eigen-
vector matrix, the application of the inversion steps and the application of the Householder
transformations. For the pipelining approach, the application of the inversion steps and the
application of the Householder vectors have to be taken into account.

87

4 Parallel Algorithms

For the following Flop computations, n = Nnb, P = N
2 and p = Nnb are fixed. The

tile size when applying Householder vectors is given by b. The backtransformation of w
eigenvectors via the pipelining approach in a serial setting causes computational costs of
(1.5 − 1

4nb
+ b

2nb
)n2w + O(n2) Flops. When utilizing the backtransformation matrix, then

(0.5 + b
6nb
− 1

12nb
)n3 + n2w +O(n2) Flops are necessary for the backtransformation step.

It can be seen that only when transforming almost all eigenvectors, the backtransformation
matrix approach becomes equally expensive (both approximately 1.5n3). However, in the
most cases not all eigenvectors are required and hence the pipeline approach will usually be
favorable.

88

4.4 Crawford SVD algorithm

G,F G, S

1

1

1

1

S4

1

1

1

1

S−1
4

Figure 4.18: (first picture) Block structure of matrices with uniform bandwidth as it appears
in F and can appear in G when not using a twisted factorization for G. (sec-
ond picture) Block structure of the twisted factorization as it appears in S and
can appear in G. (third picture) One of the partial factors of S following Equa-
tion (3.13), S4, and the inverse of it, S−1

4 (forth picture).

4.4 Crawford SVD algorithm

4.4.1 Pipelining approach

In the same way as in Section 4.2.1, the pipelining approach can be motivated for the Crawford
SVD algorithm. Contrary to the eigenvalue algorithm the orthogonal transformations and the
inversion steps are not applied from left and right. Half of the orthogonal transformations are
applied only from left, half only from right. The inversion steps are solely applied from right.
The use of the uniform block nb = bA = bB as justified in Section 4.2.1 for the eigenvalue
algorithm allows also in the SVD variant the use of an efficient pipelining approach. Then, all
operations are performed on the block level and one bulge chasing stage moves the bulge by
nb rows or columns towards the end of the matrix.

In Figure 4.18 the simplified block structure of the matrices G, F and S is presented.
Again, a simplified notation for indices on the block level becomes available. As declared in
Section 4.2.1, Mk,k+1 refers to the block in block row k and block column k + 1, which is
located in the rows (k − 1)nb + 1 : knb and the columns knb + 1 : (k + 1)nb.

Contrary to the eigenvalue algorithm, where flipping allowed to limit all descriptions to the
lower matrix half, this is not possible for the Crawford SVD algorithm. It can only be applied
to the case of having G and S in twisted shape. Hence, only in this case the descriptions
are limited to the lower matrix half. Additionally, the SVD algorithm is not operating on
symmetric matrices. This requires to describe the operations in the lower as well as the upper
triangle of the matrix G.

Similarly to the Crawford eigenvalue algorithm also for the SVD algorithm a brief descrip-
tion using the simplified block structure shall be given. The application of inversion step
Sk with k > P (lower matrix half) updates the blocks Mk:k+1,k−1:k. The blocks Mk:k+1,k

are multiplied by Ek and added to Mk:k+1,k−1. Afterwards, Mk:k+1,k are multiplied by Dk.
This introduces fill-in in the lower triangle in the blocks Mk:k+1,k−1 and Mk+1,k (see Fig-
ure 4.19 left illustration). A QR decomposition of the blocks Mk:k+1,k−1 is computed and
the obtained Q

(1)
k applied from left to the block rows k : k + 1. This removes the fill-in in

89

4 Parallel Algorithms

k–2 k–1 k k+1

·Dk·Ek

+

QR
QT · QT ·

k–2 k–1 k k+1

·QT

·QT

LQ

k–2 k–1 k k+1

k–2

k–1

k

k+1

k+2

Figure 4.19: Application of an inversion step in the lower matrix half: (left)The application of
inversion step k updates the entries within the blue rectangle. Marked in red is the
bulge of newly created non-zeros outside the band. (middle) QR decomposition
of the left bulge blocks of the bulge and left-sided application of the obtained
Q. This generates new fill-in above the diagonal. (right) LQ decomposition of
the newly generated fill-in and right-sided application of the obtained Q. New
fill-in is introduced below the diagonal. (middle and right) The updated blocks
are marked with a blue rectangle. QT on the border of two blocks indicate that
this operation involves the two blocks.

k–1 k k+1 k+2

·Dk ·Ek

+

QL
QT ·QT ·

k–1 k k+1 k+2

·QT

·QT·QT

RQ

k–1 k k+1 k+2

k–1

k

k+1

k+2

k+3

Figure 4.20: Application of an inversion step in the upper matrix half (with untwisted G):
(left)The application of inversion step k updates the entries within the blue rect-
angle. Marked in red is the bulge of newly created non-zeros outside the band.
(middle) QL decomposition of the right bulge blocks and left-sided application
of the obtained Q. This generates new fill-in below the diagonal. (right) RQ
decomposition of the newly generated fill-in and right-sided application of the
obtained Q. New fill-in is introduced above the diagonal. (middle and right) The
updated blocks are marked with a blue rectangle. QT on the border of two blocks
indicate that this operation involves the two blocks.

90

4.4 Crawford SVD algorithm

Mk:k+1,k−1 and introduces new fill-in above the diagonal in the blocks Mk:k+1,k+1 and Mk,k.
The fill-in in Mk+1,k remains since by the following LQ and the regarding right-sided update
it would be filled up again anyway. A LQ decomposition is computed of Mk,k:k+1 and the
obtained Q

(2)
k is applied from right to the block columns k : k + 1, which introduces again

fill-in below the diagonal in the blocks Mk+1:k+2,k and Mk+2,k+1. Thus, the bulge moved by
every QR application by one block to the right and by every LQ application by one block to-
wards the bottom of the matrix. This procedure is applicable in the lower matrix half and for
the case of twisted G when exploiting the flipping idea as well in the flipped upper matrix half.

In general, when mentioning the upper matrix half without additional note, it can be as-
sumed that G is in non-twisted shape.
The application of inversion step Sk in the upper matrix half updates the blocks Mk:k+1,k:k+1.
Similar as in the lower matrix half, block column k is multiplied by E and added to block col-
umn k+ 1. Afterwards, block column k is multiplied by Dk. This application of the inversion
step introduces fill-in above the diagonal in the blocks Mk:k+1,k+1 and Mk,k. The chasing has
now to be performed towards the top left end of the matrix and hence a QL decomposition
of Mk:k+1,k+1 is computed. The obtained Q(1)

k is applied to the block rows k : k + 1, removes
the fill-in in Mk:k+1,k+1 and introduces new fill-in below the diagonal in the blocks Mk:k+1,k−1

and Mk+1,k. Again, one block of fill-in (Mk,k) is not cleared since it would be filled up in the
following RQ step anyway. The RQ step is computed on Mk+1,k−1:k and applied from right to
the block columns k− 1 : k. This introduces new fill-in above the diagonal (blocks Mk−1,k−1:k

and Mk,k) but clears the blocks the RQ was computed on. Thus, this sequence moved the
bulge by one block row and one block column towards the top left end of the matrix. An
illustration is given in Figure 4.20.

Pairs of block rows or pairs of block columns can again be executed independently of each
other. In the lower matrix half, the application of Q(i)

k , i = 1 + 2j, generated by a QR decom-
position, updates the block rows k + i−1

2 : k + i−1
2 + 1. In the upper matrix half, Q(i)

k with
i = 1 + 2j (generated by a QL decomposition) updates the block rows k − i−1

2 : k − i−1
2 + 1.

From this expressions the independence of all Q(1+2j)
k+j , 0 ≤ j ≤ bN−k

2 c, in the lower matrix

half and all Q(1+2j)
k−j , 0 ≤ j ≤ bk−1

2 c in the upper matrix half can be derived. This means

that after applying inversion step Sk, all Q
(1+2j)
k+j generated by QR or, respectively, all Q(1+2j)

k−j
generated by QL, can be executed in parallel.
Analogously, the independence of the right-sided transformation with RQ and LQ can be de-
rived. Q(i)

k , i = 2j, generated by a LQ decomposition updates the block columns k + i
2 − 1 :

k + i
2 . In the upper matrix half, Q(i)

k , i = 2j, generated by a RQ decomposition updates
the block columns k − i

2 : k − i
2 + 1. The independence of all Q(2j)

k+j , 1 ≤ j ≤ bN−k
2 c, in the

lower matrix half and all Q(2j)
k−j , 1 ≤ j ≤ bk−1

2 c in the upper matrix half can be derived from
that. The application of inversion step Sk in the lower matrix half updates the block columns
k − 1 : k and is therefore independent of the application of all Q(2j)

k+j . Similar for the upper
matrix half where inversion step k updates the block columns k : k+ 1 and the independence
of the applications of Q(2j)

k−j is given. This means that together with inversion step Sk, all Q
(2j)
k+j

generated by LQ or, respectively, all Q(2j)
k−j generated by RQ can be executed in parallel.

Figures 4.21 and 4.22 illustrate the independence of the operations and outline the pipeline

91

4 Parallel Algorithms

QR
QT · QT ·

QR
QT · QT ·

Q
(1)
k+1

Q
(3)
k+2

·QT

·QT

LQ

·QT

·QT

LQ

Dk, Ek Q
(2)
k+1 Q

(4)
k+2

·Dk·Ek

+

QR
QT · QT ·

QR
QT · QT ·

QR
QT · QT ·

Q
(1)
k

Q
(3)
k+1

Q
(5)
k+2

Figure 4.21: (left) Two QR decompositions are computed in parallel and applied from left.
(middle) Inversion step Sk is applied and parallel to it two LQ decompositions
are computed. The obtained Q is applied from right. (right) The fill-in generated
in the middle picture is shifted by the next QR decompositions.

character of the procedure.

Figure 4.23 for the lower matrix half and Figure 4.24 for the upper matrix half show the
execution dependencies between inversion steps and the single bulge chasing stages. The
wind-up/wind-down character of the algorithm can be seen clearly. All operations within one
row are fully independent and can be executed at the same time. The operations within one
diagonal belong to the same inversion step.

The length of the pipeline is, as already mentioned, limited by how far the application of
inversion steps has progressed. It can be computed in the lower matrix half with the top most
block row used during the QR phase resulting in

lQRpipe(k) = bN − k + 1

2
c (4.8)

or the left most block column during the LQ phase resulting in

lLQpipe(k) = bN − k
2
c. (4.9)

The difference to the eigenvalue algorithm, where both pipeline length values have been the
same is originated in the reference k: In the eigenvalue algorithm, the left-sided application
of Q(1)

k following the application of inversion step k was the reference point. The right-sided
application of Q(1)

k still refers to the index k, even if it is applied in parallel to the application
of inversion step k − 1. In the SVD algorithm, however, the left and right-sided applications
of orthogonal transformations are split in left-sided QR and right-sided LQ. The former has
the same reference frame while the latter refers now to the parallel inversion step k − 1.
In the upper matrix half is the length of the QL pipeline determined by the bottom most

92

4.4 Crawford SVD algorithm

QL
QT ·QT ·

QL
QT ·QT ·

Q
(3)
k−2

Q
(1)
k−1

·QT

·QT·QT

RQ ·QT

·QT·QT

RQ

Dk, EkQ
(2)
k−1Q

(4)
k−2

·Dk·Ek

+

QL
QT ·QT ·

QL
QT ·QT ·

QL
QT ·QT · Q

(1)
k

Q
(3)
k−1

Q
(5)
k−2

Figure 4.22: (left) Two QL decompositions are computed in parallel and applied from left.
(middle) Inversion step Sk is applied and parallel to it two RQ decompositions
are computed. The obtained Q is applied from right. (right) The fill-in generated
in the middle picture is shifted by the next QL decompositions.

block row in the QL phase resulting in

lQLpipe(k) = bk + 1

2
c (4.10)

and the length of the RQ pipeline is computed by the right most block column in the RQ
phase resulting in

lRQpipe(k) = bk − 1

2
c. (4.11)

During the LQ and RQ phase, additionally the inversion step is applied. The length of the
pipeline raises every inversion step until all inversion steps are applied. After this wind-up
phase, the wind-down phase with a decrease of the pipeline length every step follows. During
the wind-down phase, the length of the pipeline can be computed by

llpipe(imin) = b
N − P − b imin+1

2 c+ 1

2
c (4.12)

in the lower matrix half with imin being the smallest stage index in the inspected row in
Figure 4.21. Analogous for the upper matrix half:

lupipe(imin) = b
P − b imin

2 c+ 1

2
c (4.13)

4.4.2 Parallel execution of the upper and a lower matrix half

For inspecting the interference of the upper and lower matrix half the two cases G being in
twisted or non-twisted shape have to be distinguished. Again, only the last inversion steps of
each matrix half, P and P + 1, have to be inspected.

In both cases, the lower matrix half inversion step SP+1 updates the blocks GP+1:P+2,P :P+1.

93

4 Parallel Algorithms

SN

SN−1

SN−2

SN−3

SN−4

...
...

...
...

...
...

...
...

...

Q
(1)
N−1

Q
(2)
N−1

LQ
(1)
N−2

Q
(2)
N−2

Q
(3)
N−2

Q
(4)
N−2

Q
(1)
N−3

Q
(2)
N−3

Q
(3)
N−3

Q
(4)
N−3

Q
(5)
N−3

Q
(6)
N−3

Q
(1)
N−4

Q
(2)
N−4

Q
(3)
N−4

Q
(4)
N−4

Q
(5)
N−4

Q
(6)
N−4

Q
(7)
N−4

Q
(8)
N−4

bN−k+1
2 c independent QR transformations

bN−k
2 c independent LQ transformations

Sk+1

Sk

Q
(1)
k+1

Q
(2)
k+1

Q
(3)
k+1

Q
(4)
k+1

Q
(5)
k+1

Q
(6)
k+1

Q
(7)
k+1

Q
(8)
k+1

. . .

Q
(2N−2k−3)
k+1

Q
(2N−2k−2)
k+1

Q
(1)
k

Q
(2)
k

Q
(3)
k

Q
(4)
k

Q
(5)
k

Q
(6)
k

Q
(7)
k

Q
(8)
k

. . .

Q
(2N−2k−3)
k

Q
(2N−2k−2)
k

Q
(2N−2k−1)
k

Q
(2N−2k)
k

...
...

...
...

...
...

...
...

...

...
...

...
...

SP+2

SP+1

Q
(1)
P+2

Q
(2)
P+2

Q
(3)
P+2

Q
(4)
P+2

Q
(5)
P+2

Q
(6)
P+2

. . .

Q
(2N−2P−5)
P+2

Q
(2N−2P−4)
P+2

Q
(1)
P+1

Q
(2)
P+1

Q
(3)
P+1

Q
(4)
P+1

Q
(5)
P+1

Q
(6)
P+1

. . .

Q
(2N−2P−5)
P+1

Q
(2N−2P−4)
P+1

Q
(2N−2P−3)
P+1

Q
(2N−2P−2)
P+1

Q
(2N−2P−1)
P+1

Q
(2N−2P)
P+1

Clearing the last block row/column
(only done at the P + 1 step)

N
−
P

st
ep

s
w
in
d-
do

w
n
ph

as
e

N
−
P

st
ep

s
w
in
d-
up

ph
as
e

P
ro
gr
es
s
of

th
e
al
go

ri
th
m

Figure 4.23: Execution dependencies of the different bulge chasing steps and stages: Every
diagonal shows one inversion step and its following stages of bulge chasing. Q(i)

k

with odd i are generated by QR decompositions and are applied from left, Q(i)
k

with even i are generated by LQ decompositions and are applied from right. All
entries in one row are independent and can be executed at the same time.

94

4.4 Crawford SVD algorithm

S1

S2

S3

S4

S5

...
...

...
...

...
...

...
...

...

Q
(1)
2

Q
(2)
2

LQ
(1)
3

Q
(2)
3

Q
(3)
3

Q
(4)
3

Q
(1)
4

Q
(2)
4

Q
(3)
4

Q
(4)
4

Q
(5)
4

Q
(6)
4

Q
(1)
5

Q
(2)
5

Q
(3)
5

Q
(4)
5

Q
(5)
5

Q
(6)
5

Q
(7)
5

Q
(8)
5

bk+1
2 c independent QL transformations

bk−1
2 c independent RQ transformations

Sk−1

Sk

Q
(1)
k−1

Q
(2)
k−1

Q
(3)
k−1

Q
(4)
k−1

Q
(5)
k−1

Q
(6)
k−1

Q
(7)
k−1

Q
(8)
k−1

. . .

Q
(2k−4)
k−1

Q
(2k−3)
k−1

Q
(1)
k

Q
(2)
k

Q
(3)
k

Q
(4)
k

Q
(5)
k

Q
(6)
k

Q
(7)
k

Q
(8)
k

. . .

Q
(2k−4)
k

Q
(2k−3)
k

Q
(2k−2)
k

Q
(2k−1)
k

...
...

...
...

...
...

...
...

...

...
...

...
...

SP−1

SP

Q
(1)
P−1

Q
(2)
P−1

Q
(3)
P−1

Q
(4)
P−1

Q
(5)
P−1

Q
(6)
P−1

. . .

Q
(2P−4)
P−1

Q
(2P−3)
P−1

Q
(1)
P

Q
(2)
P

Q
(3)
P

Q
(4)
P

Q
(5)
P

Q
(6)
P

. . .

Q
(2P−4)
P

Q
(2P−3)
P

Q
(2P−2)
P

Q
(2P−1)
P

Q
(2P)
P

Q
(2P+1)
P

Clearing the last block row/column
(only done at the P step)

P
st
ep

s
w
in
d-
do

w
n
ph

as
e

P
st
ep

s
w
in
d-
up

ph
as
eP

ro
gr
es
s
of

th
e
al
go

ri
th
m

Figure 4.24: Execution dependencies of the different bulge chasing steps and stages: Every
diagonal shows one inversion step and its following stages of bulge chasing. Q(i)

k

with odd i are generated by QL decompositions and are applied from left, Q(i)
k

with even i are generated by RQ decompositions and are applied from right. All
entries in one row are independent and can be executed at the same time.

95

4 Parallel Algorithms

·DP ·DP+1·EP+1

+

←− p

Figure 4.25: Last inversion steps when having S as twisted matrix with twist block P and
G as banded lower triangular matrix. On the left, the blocks updated by the
last inversion step of the upper matrix half, are highlighted in red color. On the
right, the blocks updated by the last inversion step of the lower matrix half, are
highlighted.

·DP ·DP+1·EP+1

+

←− p

Figure 4.26: Last inversion steps when having G and S as twisted matrix with twist block P .
On the left, the blocks updated by the last inversion step of the upper matrix
half, are highlighted in red color. On the right, the blocks updated by the last
inversion step of the lower matrix half, are highlighted.

The updated blocks are fully in the lower matrix half and hence no interference with the upper
matrix half is given.
When applying SP the situation is different for the twisted and the non-twisted G. For G
being non-twisted, inversion step P updates the GP,P :P+1. The upper block is in the upper
matrix half, the lower in the lower matrix half (see Figure 4.25). This update has to be applied
at some point in time after the lower matrix half has performed the QR decomposition Q(1)

P+1

but does not imply a synchronization point. For G being a twisted matrix, three blocks are
updated by SP : GP−1:P,P in the upper matrix half are updated as well as GP+1,P in the
lower matrix half. Like in the case of non-twisted G this update in the lower matrix half can
be performed at any time and does not imply synchronization. Figure 4.26 illustrates the
updated blocks for the case of two twisted matrices.

The bulge chasing is restricted to the respective matrix half and hence does not imply any
interference between the upper and the lower matrix half. Hence, both matrix halves can be
executed fully independent and parallel. This allows to split the processes again in groups for
the upper and groups for the lower matrix half.

96

4.4 Crawford SVD algorithm

Algorithm 47 gives the parallel algorithm for running the algorithm in the lower matrix half.
It can also be used on the flipped upper matrix half when having G as twisted matrix. For
non-twisted G, Algorithm 48 provides the parallel procedure. When using the lower matrix
half algorithm for the flipped upper matrix half, clearly, the application of DP as noted in the
end of Algorithm 47 does not take place. This step is only performed in the lower matrix half.
In both cases the parallelism is hidden in having local data on block columns or block rows.
The single loop runs containing the QR, QL, LQ or RQ can be executed in parallel. Further
details on these algorithms are provided in the following chapters.

4.4.3 Block and inter-block parallelization

Inter-block parallelization

The orthogonal transformations in the Crawford SVD algorithm are an extension of the al-
gorithms used for the twisted Crawford eigenvalue algorithm. There, only QR decomposition
has to be used since by flipping the upper matrix half, QL decomposition need not be imple-
mented. The algorithms in the eigenvalue algorithm are applied symmetrically and not as in
the SVD algorithm from left or right. Hence, the number of necessary transformations grows
from one to four: QR and LQ in the lower matrix half and QL and RQ in the upper matrix
half.
QR and QL work on pairs of block rows, where the updated block grid has a size of 2 × 3.
Similar for the right-sided orthogonal transformations LQ and RQ which work on block grids
of size 3× 2.
A QR decomposition is computed by the left two blocks and applied to all blocks in the 2× 3
block grid from left. A QL decomposition is computed on the right two blocks in the grid and
again applied to all blocks from left. For the generation of the orthogonal matrix as well as
for the application of Q(i)

k , two blocks in the same block column have to interact.
For a LQ decomposition the computation is performed on the top two blocks of the 3×2 block
grid and applied from right to all blocks in the grid. The RQ computes Q(i)

k on the lower two
blocks and applies Q(i)

k to all blocks from right. In this right-sided updates two blocks in the
same block row have to interact.
The interacting pairs of blocks can generally perform their update independent of the other
block pairs in the grid of six blocks. However, the generation of Q(i)

k implies some synchro-
nization between the blocks of the block grid.

Block parallelization

On the block level the interaction during left and right-sided orthogonal transformations has
been described. The work, however, can be further distributed within a block if nb is large
enough. For this, the data can be distributed in a 2D blockcyclic way as described in Sec-
tion 4.1.1. The resulting parallel algorithms on the block and inter-block level are presented
in Section 4.4.5.

97

4 Parallel Algorithms

Algorithm 47 Crawford SVD algorithm lower matrix half.
j ← N ; k ← N
windupPhase ← true
while j ≤ N do

if (windupPhase and (process has local data in BC k − 1 : k)) then
apply Dk, Ek to BCs k − 1 : k

end if
i← 1 + (j − k); i0 ← 1 + (j − k)
for rl ← j, j + 2, ..., N − 1 do

if (process has local data in BRs ru : ru + 1) then
generate Q(i)

k+
i−i0
2

by QR and apply (Q
(i)

k+
i−i0
2

)T from left to BRs ru : ru + 1

end if
i← i+ 2

end for
i← 2 + (j − k); i0 ← 2 + (j − k)
for cr ← j, j + 2, ..., N − 1 do

if (process has local data in BCs cl : cl + 1) then
generate Q(i)

k+
i−i0
2

by LQ and apply (Q
(i)

k+
i−i0
2

)T from right to BCs cl : cl + 1

end if
i← i+ 2

end for
if (j = P + 1) then

windupPhase ← false
end if
if (windupPhase) then

k ← k − 1; j ← j − 1
else

j ← j + 1
end if

end while
if (process has local data in BR N) then

generate Q(2N−2P−1)
P+1 by QR and apply (Q

(2N−2P−1)
P+1)T from left to BR N

end if
if (process has local data in BC N) then

generate Q(2N−2P)
P+1 by LQ and apply (Q

(2N−2P)
P+1)T from right to BCs N

end if
if (process has local data in BC P) then

apply Dk to BCs P
end if

98

4.4 Crawford SVD algorithm

Algorithm 48 Crawford SVD algorithm upper matrix half and non-twisted G.
j ← 1; k ← 1
windupPhase ← true
while j ≥ 1 do

if (windupPhase and (process has local data in BC k : k + 1)) then
apply Dk, Ek to BCs k : k + 1

end if
i← 1 + (k − j); i0 ← 1 + (k − j)
for rl ← j + 1, j − 1, ..., 2 do

if (process has local data in BRs rl − 1 : rl) then
generate Q(i)

k− i−i0
2

by QL and apply (Q
(i)

k− i−i0
2

)T from left to BRs rl − 1 : rl

end if
i← i+ 2

end for
i← 2 + (k − j); i0 ← 2 + (k − j)
for cr ← j, j − 2, ..., 2 do

if (process has local data in BCs cr − 1 : cr) then
generate Q(i)

k− i−i0
2

by RQ and apply (Q
(i)

k− i−i0
2

)T from right to BCs cr − 1 : cr

end if
i← i+ 2

end for
if (j = P) then

windupPhase ← false
end if
if (windupPhase) then

k ← k + 1; j ← j + 1
else

j ← j − 1
end if

end while
if (process has local data in BC 1) then

generate Q(2N−2P)
P+1 by RQ and apply (Q

(2N−2P)
P+1)T from right to BCs 1

end if
if (process has local data in BR 1) then

generate Q(2N−2P+1)
P+1 by QL and apply (Q

(2N−2P+1)
P+1)T from left to BR 1

end if

99

4 Parallel Algorithms

Inner-block parallelization

As for the Crawford eigenvalue algorithm also for the SVD algorithm a shared memory ap-
proach can be used on the block level. This can easily be achieved by using a multi-threaded
LAPACK version instead of the standard version. Most computations are carried out by calls
to LAPACK and hence this provides an easy way to introduce another parallelization layer.

4.4.4 Process and data structures

Data structures

Figures 4.21 and 4.22 have shown that three blocks in a row or three blocks in a column
are sufficient to store the data of the matrix. During the Crawford eigenvalue algorithm one
block was used as surrogate for an upper triangular block. In the SVD algorithm, the upper
matrix half blocks are fully stored since the underlying matrices are not symmetric anymore.
Therefore no surrogate block is necessary anymore.

When closely inspecting Figure 4.21 or Figure 4.22 it can be seen that some blocks appear
and some disappear between the single illustrations. That left and right-sided orthogonal
transformations work on different block setups has already been seen in the eigenvalue algo-
rithm. In the SVD algorithm, however, even between two left or two right-sided transforma-
tions, the block setup is not the same. After four orthogonal transformations (QR-LQ-QR-LQ
or QL-RQ-QL-RQ) the block positions are the same again. These different block layouts are
referred to as “states” one to four in the following.

Within a state, a block that will disappear after the state is zeroed by an orthogonal trans-
formation. The newly appearing block is empty at the beginning of the state and filled by
the application of an orthogonal transformation. The appearing and disappearing at the same
time can be exploited by using the processes and data structures of a disappearing block for
the appearing block. This changes the blocks collaborating with each other and thus, for every
state a collaboration pattern has to be introduced. Figure 4.27 depicts the block shifting and
illustrates an exemplary orthogonal transformation in every state.
It can be seen that state 1 starts in the upper and lower matrix half with a 3× 2 block setup.
In the lower matrix half, the end of the matrix has only shortened 2×2 version of it whereas in
the upper matrix half, the first two block columns of the matrix have a full 3× 2 block setup.
The moving block is different in both matrix halves. In the upper matrix the block in position
3, 1 of the 3× 2 block setup moves to the virtual position 4, 2. In the lower matrix half block
1, 2 moves to the virtual position 2, 3. In state 2 the blocks are again moving down along the
diagonal. Block 1, 3 of the 2 × 3 moves to the virtual position 2, 4 in the upper matrix half
and block 2, 1 moves to position 3, 2. In state 3 and 4 the blocks are moving up along the
diagonal. In state 3 the blocks position of state 1 moves, in state 4 the blocks in the same block
setup position as in state 2. After this four states the initial block setup is restored and the
stages of an exemplary orthogonal transformation have moved by two block rows and columns.

100

4.4 Crawford SVD algorithm

State 1

·QT

·QT·QT

RQ

State 2

QL
QT ·QT ·

State 3

·QT

·QT·QT

RQ

State 4

QL
QT ·QT ·

State 1

·QT

·QT

LQ

State 2

QR QT ·QT ·

State 3

·QT

·QT

LQ

State 4

QR QT ·QT ·

Figure 4.27: Changes in the block structure at states transitions (Upper row: upper matrix
half, lower row: lower matrix half). The hatching marks the blocks that are zero
when leaving the state, the arrow and the blue dotted rectangle show where this
blocks will be used in the next state. An exemplary orthogonal transformation in
the respective state is shown and the fill-in outside the band is indicated in red.

101

4 Parallel Algorithms

Process layout

The algorithm in the upper as well as in the lower matrix half starts with state 1 in the block
setup. This allows to use the process setup as described in Section 4.2.4 and depicted in
Figure 4.8.
Processes are split in a group for the upper and a group for the lower matrix half. They
can operate independently on their regarding matrix half. The processes of a matrix half are
equally subdivided into process groups (PG). Three PG form a process group columns (PGC)
as well as three PG form a process group row (PGR). The grouping in PGC and PGR is more
an organizational construct to organize the collaboration between the process groups. Which
of them is used depends on the state (PGC for state 1 and 3, PGR for state 2 and 4). Block
columns of a matrix half are assigned cyclically to process group columns in state 1. The data
of a single block in a block column is assigned to a process group in the owning PGC. The
ordering of the blocks in a block column is also reflected by the order of the process groups in
a PGC. The processes of a process group are arranged in a 2D grid and the data is distributed
block-cyclically to them as described in Section 4.1.1.

The later states 2 - 4 are derived from state 1 by shifting the moving block and the un-
derlying process group and redefining the PGCs or PGRs. This leads finally to having four
different process setups and also having four different local communicator setups for the 3× 2
and 2× 3 process grid.

This process setup allows to have the same parallelization layers as in the eigenvalue algo-
rithm: splitting in upper and lower matrix half, splitting in pairs of PGC or pairs of PGR,
splitting the data within a block and using threaded BLAS routines.

4.4.5 Parallel algorithms on the level of pairs of block rows and block columns

In the following the parallel algorithms on the level pairs of block columns and pairs of block
rows are described. The coarse grained algorithms for the upper and lower matrix half have
already been described above. The notation used in this section was described in Section 4.2.5.

Application of an inversion step

Applying an inversion step differs slightly in the upper and lower matrix half (when not having
G as twisted matrix). Basically, the upper matrix half algorithm is a flipped version of the
lower matrix half algorithm. Algorithms 49 and 50 provide the parallel implementations of the
application of an inversion step. Due to having only a right-sided application, this procedures
are simplified versions of Algorithm 31. Block column k is multiplied by Ek and added to
block column k−1 (k+ 1 in the upper matrix half). Afterwards, block column k is multiplied
by Dk.

QR and QL decomposition and left-sided application

The QR decomposition and the regarding left-sided application is described in detail in Sec-
tion 4.2.5. In the SVD algorithm the situation is exactly the same.

102

4.4 Crawford SVD algorithm

Algorithm 49 Parallel application of an inversion step (SVD - lower matrix half).

function G<pr,pc>[i,j] ← ParallelDEapplication(G<pr,pc>[i,j], D<pr,pc>[i,j], E<pr,pc>[i,j])
if (process has local data in left BC) then

if (process has local data in block 2 or 3 of the BC) then
b<pr,pc>[i,j] ← MPI_RECEIVE from block 2 or 3 in right BC
G[i,j] ← G[i,j] + PDGEMM (b[i,j], E[i,j])

end if
else

if (process has local data in block 2 or 3 of the BC) then
b<pr,pc>[i,j] ← G[i,j]

MPI_SEND (b<pr,pc>[i,j]) to block 2 or 3 in left BC
G[i,j] ← PDTRMM (G[i,j], D[i,j])

end if
end if

end function

Algorithm 50 Parallel application of an inversion step (SVD - upper matrix half).

function G<pr,pc>[i,j] ← ParallelDEapplication(G<pr,pc>[i,j], D<pr,pc>[i,j], E<pr,pc>[i,j])
if (process has local data in left BC) then

if (process has local data in block 1 or 2 of the BC) then
b<pr,pc>[i,j] ← G[i,j]

MPI_SEND (b<pr,pc>[i,j]) to block 1 or 2 in right BC
G[i,j] ← PDTRMM (G[i,j], D[i,j])

end if
else

if (process has local data in block 1 or 2 of the BC) then
b<pr,pc>[i,j] ← MPI_RECEIVE from block 1 or 2 in left BC
G[i,j] ← G[i,j] + PDGEMM (b[i,j], E[i,j])

end if
end if

end function

103

4 Parallel Algorithms

For the QL decomposition the algorithm works in the same way but has to consider some
differences: Instead of block column one, the decomposition is carried out in block column
three and not the entries below a certain index are cleared but above.
Hence, a modified version of ParallelHHgen as provided in Algorithm 51 becomes necessary.
All entries of the initial vector x until index m − 1 are set to zero by the procedure. The
resulting Householder vector has, contrary to the QR decomposition, the one at the last entry
and not at the first entry.

Algorithm 51 Parallel Householder vector generation, the last entry of the given vector
remains.
function [x<pr>[i], v<pr>[i], τ<∗>]← ParallelHHgen(x<pr>[i])

d<∗>i ← xT[i] · x[i]
a<∗>i ← 0
if (x(m) is local) then

a<∗>i ← x(m)
end if
[a<∗>, d<∗>]← MPI_ALLREDUCE (a<∗>i, d<∗>i)
β ← sign(x(m)) ·

√
d

τ ← a+β
β

v[i] ← 1
a+βx[i]

x[i] ← 0
if (x(m) is local) then

v(m)← 1
x(m)← −β

end if
end function

The left-sided unblocked application of a Householder vector can be performed by Parallel-
ApplyHHleft given in Algorithm 33. Using ParallelApplyHHleft and Algorithm 51 allows to
formulate ParallelQL which computes a parallel unblocked QL decomposition. It steps from
right to left through the given matrix and eliminates column wise entries until the lower
triangular part remains.

For the blocked application of Householder vectors, in the same manner as in the QR de-
composition, a compact WY formulation can be used. Algorithm 35 is employed to compute
the required T . T and the matrix of Householder vectors Y are used to apply the Householder
vectors in a blocked way as described in Algorithm 36.

With Algorithms 35, 36 and 52, a blocked QL algorithm can be derived. This parallel
blocked QL is given in Algorithm 53. Starting from right, a QL decomposition is computed for
a tile and applied to the rest of the matrix by the compact WY formulation. After completion,
the next tile is computed and applied from left until block column 3 is fully decomposed. For
the communication between the block columns the same pattern is used as in the blocked QR
algorithm. Just block column three and block column one change their roles and hence block
column three sends the data.

104

4.4 Crawford SVD algorithm

Algorithm 52 Parallel QL decomposition.
function [A<pr,pc>[i,j], Y<pr,∗1>[i], τ<∗,∗1>]← ParallelQL(A<pr,pc>[i,j])

Y ← 0
for k ← n, n− 1, . . . , 1 do

l← n− k + 1
if (k is local column) then

[A<pr>[i](1 : k, k), Y<pr>[i](1 : k, l), τ<∗>(l)]← ParallelHHgen(A<pr>[i](1 : k, k))
end if
[Y<pr,∗1>[i](1 : k, l), τ<∗,∗1>(l)]← MPI_BROADCAST (Y<pr>[i](1 : k, l), τ<∗>(l))

A(1 : k, 1 : k − 1)← ParallelApplyHHleft(A(1 : k, 1 : k − 1), Y[i](1 : k, l), τ(l))
end for

end function

Algorithm 53 Parallel blocked QL decomposition.
function [A<pr,pc>[i,j], Y<pr,∗>[i], τ<∗,∗>]← ParallelBlockedQL(A<pr,pc>[i,j])

for j2 ← nb, nb − b, . . . , 1 do
i1 ← 1; i2 ← nb + j2
j1 ← max(1, j2 − b+ 1)
l1 ← nb − j2 + 1; l2 ← nb − j1 + 1
if (is block column 3) then

[A[i,j](i1 : i2, j1 : j2), Y<pr,∗1>[i](i1 : i2, l1 : l2), τ<∗,∗1>(l1 : l2)]
← ParallelQL(A[i,j](i1 : i2, j1 : j2))

MPI_SEND (Y<pr,∗1>[i](i1 : i2, l1 : l2), τ<∗,∗1>(l1 : l2)) to BCs 1, 2
else

[Y<pr,∗>[i](i1 : i2, l1 : l2), τ<∗,∗>(l1 : l2)]← MPI_RECEIVE from BC 3
end if

T<∗,∗> ← ParallelGenT(Y[i](i1 : i2, l1 : l2), τ(l1 : l2))
A[i,j](i1 : i2, 1 : j1 − 1)← ParallelCWYleft(A[i,j](i1 : i2, 1 : j1 − 1),

Y[i](i1 : i2, l1 : l2), T)
end for

end function

LQ and RQ decomposition and right-sided application

Every left-sided orthogonal transformation is followed by a right-sided transformation. For
the lower matrix half, this will be a LQ decomposition, for the upper matrix half a RQ
decomposition. The left-sided transformations work on columns of the underlying matrix.
The right-sided transformations, however, process the underlying matrix row-wise. Regarding
the computational efficiency, this is a clear drawback when using a column-mayor data layout.

105

4 Parallel Algorithms

During the left-sided transformations, Y has been filled in the following way:

Y = [v1, v2, . . . vn] (4.14)

The vk denote the Householder vectors in the order of their creation. For left-sided orthogonal
transformations the Householder vectors are column vectors.
For the right-sided orthogonal transformations the order or the vectors shall stay the same:

Y
′

= [vT1 , v
T
2 , . . . v

T
n] (4.15)

Since the Householder vectors are row vectors, the transpose of them is used in this notation
to indicate that every Householder vector is stored as column vector. The single Householder
vectors are distributed over the process columns of a process group. Hence, also the collection
of the Householder vectors is distributed in the same way and thus, Y ′ is used to indicate the
different distribution over the processes.

The generation of Householder vectors does not differ from Algorithms 32 and 51 besides
the different distribution of the vector to transform, x, and in the same way the different
distribution of the resulting Householder vector v. For completeness and to avoid confusion,
the versions for the right-sided orthogonal transformations are provided in Algorithms 54
and 55.

Algorithm 54 Parallel Householder vector generation for row vector, the first entry of the
given vector remains.
function [x<pc>[j], v<pc>[j], τ<∗>]← ParallelHHgenRow(x<pc>[j])

d<∗>j ← xT[j] · x[j]
a<∗>j ← 0
if (x(1) is local) then

a<∗>j ← x(1)
end if
[a<∗>, d<∗>]← MPI_ALLREDUCE (a<∗>j , d<∗>j)
β ← sign(x(1)) ·

√
d

τ ← a+β
β

v[j] ← 1
a+βx[j]

x[j] ← 0
if (x(1) is local) then

v(1)← 1
x(1)← −β

end if
end function

During the right-sided orthogonal transformations the Householder vectors have to be ap-
plied from right. Algorithm 56 can be used to apply a single Householder vector that is
distributed over the process columns, to a given matrix.

By using the creation of Householder vectors in Algorithm 54 and the right-sided application

106

4.4 Crawford SVD algorithm

Algorithm 55 Parallel Householder vector generation for row vector, the last entry of the
given vector remains.
function [x<pr>[j], v<pc>[j], τ<∗>]← ParallelHHgen(x<pc>[j])

d<∗>j ← xT[j] · x[j]
a<∗>j ← 0
if (x(m) is local) then

a<∗>j ← x(m)
end if
[a<∗>, d<∗>]← MPI_ALLREDUCE (a<∗>j , d<∗>j)
β ← sign(x(m)) ·

√
d

τ ← a+β
β

v[j] ← 1
a+βx[j]

x[j] ← 0
if (x(m) is local) then

v(m)← 1
x(m)← −β

end if
end function

Algorithm 56 Parallel right-sided application of a Householder vector.
function A<pr,pc>[i,j] ← ParallelApplyHHright(A<pr,pc>[i,j], v<∗,pc>[j], τ<∗,∗>)

z<pr>[i]j ← A[i,j] · vT[j]
z<pr>[i] ← MPI_ALLREDUCE (z<pr>[i]j)
A[i,j] ← A[i,j] − τ · z[i] · v[j]

end function

107

4 Parallel Algorithms

in Algorithm 56, the LQ decomposition of a matrix can be formulated as in Algorithm 57.

Algorithm 57 Parallel LQ decomposition.
function [A<pr,pc>[i,j], Y<∗1,pc>[j], τ<∗1,∗>]← ParallelLQ(A<pr,pc>[i,j])

Y ← 0
for k ← 1, 2, . . . ,m do

if (k is local row) then
[A<pc>[j](k, k : n), Y<pc>[j](k : n, k), τ<∗>(k)]

← ParallelHHgen(A<pc>[j](k, k : n))
end if
[Y<∗1,pc>[j](k : n, k), τ<∗1,∗>(k)]

← MPI_BROADCAST (Y<pc>[j](k : n, k), τ<∗>(k))

A(k + 1 : m, k : n)← ParallelApplyHHright(A(k + 1 : m, k : n), Y[j](k : n, k), τ(k))
end for

end function

The same can be composed for the RQ decomposition. ParallelRQ as given in Algorithm 58
using Algorithms 55 and 56 computes the RQ decomposition of a given matrix in an unblocked
manner.

Algorithm 58 Parallel RQ decomposition.
function [A<pr,pc>[i,j], Y<∗3,pc>[i], τ<∗3,∗>]← ParallelRQ(A<pr,pc>[i,j])

Y ← 0
for k ← m,m− 1, . . . , 1 do

l← m− k + 1
if (k is local row) then

[A<pc>[j](k, 1 : nb + k), Y<pc>[j](1 : nb + k, l), τ<∗>(l)]
← ParallelHHgen(A<pc>[j](k, 1 : nb + k))

end if
[Y<∗1,pc>[j](1 : nb + k, l), τ<∗1,∗>(l)]

← MPI_BROADCAST (Y<pc>[j](1 : nb + k, l), τ<∗>(l))

A(1 : k − 1, 1 : nb + k)← ParallelApplyHHright(A(1 : k − 1, 1 : nb + k),
Y[j](1 : nb + k, l), τ(l))

end for
end function

For applying the Householder vectors in a blocked way, the compact WY formulation is
also used for the right-sided transformations. Algorithm 39 provides the necessary algorithm
which requires T and Y ′ . The former can be computed by Algorithm 38. The latter, Y ′ , is
obtained by Algorithms 57 and 58.

So far, all parts for the blocked computation and application of the LQ and RQ decompo-
sition have been described. ParallelBlockedLQ given in Algorithm 59 and ParallelBlockedRQ

108

4.5 Backtransformation of singular vectors

given in Algorithm 60 provide these implementations. For the LQ decomposition, block row
one performs the decomposition and block rows two and three apply the decomposition. In
the RQ case, block row three computes the RQ and block rows one and two only apply the
Householder transformations.

Algorithm 59 Parallel blocked LQ decomposition.
function [A<pr,pc>[i,j], Y<∗,pc>[j], τ<∗,∗>]← ParallelBlockedLQ(A<pr,pc>[i,j])

for i1 ← 1, b+ 1, 2b+ 1, . . . , nb do
i2 ← max(nb, i1 + b− 1)
j1 ← i1; j2 ← 2nb
if (is block row 1) then

[A[i,j](i1 : i2, j1 : j2), Y<∗1,pc>[j](j1 : j2, i1 : i2), τ<∗1,∗>(i1 : i2)]
← ParallelLQ(A[i,j](i1 : i2, j1 : j2))

MPI_SEND (Y<∗1,pc>[j](j1 : j2, i1 : i2), τ<∗1,∗>(i1 : i2)) to BRs 2, 3
else

[Y<∗,pc>[j](j1 : j2, i1 : i2), τ<∗,∗>(i1 : i2)]← MPI_RECEIVE from BR 1
end if

T<∗,∗> ← ParallelGenT(Y[j](j1 : j2, i1 : i2), τ(i1 : i2))
A[i,j](i2 + 1 : 3nb, j1 : j2)← ParallelCWYleft(A[i,j](i2 + 1 : 3nb, j1 : j2),

Y[j](j1 : j2, i1 : i2), T)
end for

end function

Again, for all blocked orthogonal transformations, the MPI_SEND and MPI_RECEIVE
can be omitted when immediately using a MPI_BROADCAST to distribute every single
Householder vector after creation. With the described version, the Householder vectors are
immediately distributed within the own block and after having completed the decomposition
of a tile, all Householder vectors of this tile are sent together to the other blocks. This in-
creases the message size, reduces the overall message count and has shown to be superior
during testing.

4.5 Backtransformation of singular vectors

Equations (3.39) and (3.41) provide the formulas for computing the singular vectors of the
original singular value problem:

U = oQ
(·)
N · · ·

oQ
(·)
P+1 ·

oQ
(·)
1 · · ·

oQ
(·)
P · Ũ

V T = Ṽ T · eQ(·)
P · · ·

eQ
(·)
1 ·

eQ
(·)
P+1 · · ·

eQ
(·)
N

To perform the backtransformations of the left and the right singular vectors, the same ap-
proaches as in the eigenvector algorithm are available: A pipelining approach and the assembly
of backtransformation matrices. For both approaches, the computation of the transposed right

109

4 Parallel Algorithms

Algorithm 60 Parallel blocked RQ decomposition.
function [A<pr,pc>[i,j], Y<∗,pc>[j], τ<∗,∗>]← ParallelBlockedRQ(A<pr,pc>[i,j])

for i2 ← 3nb, 3nb − b, . . . , 2nb + 1 do
i1 ← max(2nb + 1, i2 − b+ 1)
j1 ← 1; j2 ← i2 − nb
l1 ← 3nb − i2 + 1; l2 ← 3nb − i1 + 1
if (is block row 3) then

[A[i,j](i1 : i2, j1 : j2), Y<∗3,pc>[j](j1 : j2, l1 : l2), τ<∗3,∗>(l1 : l2)]
← ParallelRQ(A[i,j](i1 : i2, j1 : j2))

MPI_SEND (Y<∗3,pc>[j](j1 : j2, l1 : l2), τ<∗3,∗>(l1 : l2)) to BRs 1, 2
else

[Y<∗,pc>[j](j1 : j2, l1 : l2), τ<∗,∗>(l1 : l2)]← MPI_RECEIVE from BR 3
end if

T<∗,∗> ← ParallelGenT(Y[j](j1 : j2, l1 : l2), τ(l1 : l2))
A[i,j](1 : i1 − 1, j1 : j2)← ParallelCWYright(A[i,j](1 : i1 − 1, j1 : j2),

Y[j](j1 : j2, l1 : l2), T)
end for

end function

singular vectors V T instead of V is more favorable since it uses the same block pattern as the
generation and application to G.

4.5.1 Pipelining approach

The pipelining approach follows the application of the orthogonal transformations to G in
reverse order. In the following, the descriptions are limited to the case of having G as non-
twisted matrix and S as twisted matrix. The case of having additionally G in twisted shape is
handled by the lower matrix half part of the algorithms together with a flipping of the upper
matrix half. The case of having non-twisted matrices G and F is also covered by the lower
matrix half algorithm.

Starting point are the singular vectors of W̃ , Ũ and Ṽ T . The orthogonal transformations
given by Equations (3.39) and (3.41) are applied to this singular vector matrices. This appli-
cation updates the singular vectors in place and does not require any additional storage.

Since the orthogonal transformations work on pairs of block columns or pairs of block rows,
the singular vector matrices should also reflect this. This means that the left singular vectors,
to which the orthogonal transformations are applied to from left, should be subdivided in block
rows of size nb. Similar for the right singular vectors, which undergo right-sided orthogonal
transformations and hence are subdivided in block columns of size nb. Three blocks in a block
column or a block row co-work in an orthogonal transformation. This can be kept for the
backtransformation. Then, for the left singular vectors, a process group holds a block of size
nb ×wj with w being the number of singular vectors to transform and wj ≈ w

3 . For the right

110

4.5 Backtransformation of singular vectors

singular vectors, a process group holds a block of size wi×nb with wi ≈ w
3 . Another possibility

is to keep the uniform blocksize nb × nb and distribute the blocks cyclically to the process
groups. The former approach, however, distributes the singular vectors in a more equal way
to the processes.

The independence of the orthogonal transformations and their parallel capabilities is already
shown in Section 4.4.1. Hence, the parallelism in the pairs of block rows and pairs of block
columns is only exemplarily shown in Figure 4.28 for the backtransformation of the right sin-
gular vectors in the lower matrix half. They undergo the before generated LQ transformations.
The upper matrix half of the right singular vectors undergoes a series of RQ transformations
and in the same way the left singular vectors undergo series of QR and QL transformations.

Parallel execution of the upper and a lower matrix half

During the backtransformation of singular vectors, contrary to the eigenvector backtransfor-
mation, no inversion steps have to be applied to the matrices of singular vectors. And since
the orthogonal transformation are limited to their matrix half, no interference between both
matrix halves is given. Hence, both can be executed fully independent.

Algorithm 61 provides the backtransformation of the left singular vectors. The initial left
singular vector matrix Ũ is updated by all left-sided orthogonal transformations computed
during the bulge chasing. In the same way Algorithm 62 gives the implementation for obtain-
ing the right singular vectors V T from the initial right singular vector matrix Ṽ T . In both
cases, the backtransformation algorithms follow the pipeline used during the application of the
inversion steps and the regarding bulge chasing in a reverse order. In both cases, the upper and
the lower matrix half can be executed in parallel as well as all transformations in the for loops.

Process and data structures

Y and T (or τ) have to be stored to be available for the backtransformation. Due to the
moving blocks between the states and the constant mapping of process groups to blocks of
the singular vectors matrices, the situation becomes more complicated. Figure 4.29 illustrates
the situation for the right singular vectors. The blocks of the singular vectors are assigned to
the process groups according to state 1. In state 3, however, the block neighborhood changes
by the moving blocks, but not in the singular vector matrices. Figure 4.29 illustrates the
problem: PG4 holds a right block in state 1 and will hence be assigned to block column 2 in
the singular vector matrix. In state 3, the underlying block has moved and PG4 still holds a
right block. However, in the singular vector matrix, PG4 holds block column 2 and thus a left
block. Therefore, PG4 has the wrong part of Y . Consequently, for state 1 all processes can
hold the correct parts of Y and T , but for state 3 at least the moving blocks have to receive
Y . T is the same in the left and right block column and hence need not be communicated.
For the left singular vectors this situation is the same and thus, also there the moving blocks
have to receive the correct Y parts by communication (see Figure 4.30).

111

4 Parallel Algorithms

N
−
P

st
ep

s
w
in
d-
do

w
n
ph

as
e

N
−
P

st
ep

s
w
in
d-
up

ph
as
e

1 + bN−P− imin
2

2 c independent right-sided
transformations

Q
(2N−2P)
P+1

Q
(2N−2P−2)
P+1

Q
(2N−2P−4)
P+1

Q
(2N−2P−6)
P+1

Q
(2N−2P−8)
P+1

Q
(2N−2P−10)
P+1

Q
(2N−2P−12)
P+1

Q
(2N−2P−14)
P+1

. . .

Q
(2)
P+1

Q
(2N−2P−4)
P+2

Q
(2N−2P−6)
P+2

Q
(2N2P−8)
P+2

Q
(2N−2P−10)
P+2

Q
(2N−2P−12)
P+2

Q
(2N−2P−14)
P+2

. . .

Q
(2)
P+2

Q
(2N−2P−6)
P+3

Q
(2N−2P−8)
P+3

Q
(2N−2P−10)
P+3

Q
(2N−2P−12)
P+3

Q
(2N−2P−14)
P+3

. . .

Q
(2)
P+3

...

...

...

...

...

bN−kmin+1
2 c independent right-sided

transformations

Q
(2N−2k)
k

Q
(2N−2k−2)
k

Q
(2N−2k−4)
k

Q
(2N−2k−6)
k

. . .

Q
(2)
k

Q
(2N−2k−2)
k+1

Q
(2N−2k−4)
k+1

Q
(2N−2k−6)
k+1

. . .

Q
(2)
k+1

Q
(2N−2k−4)
k+2

Q
(2N−2k−6)
k+2

. . .

Q
(2)
k+2

Q
(2N−2k−6)
k+3

. . .
...

...Q
(4)
N−2

Q
(2)
N−2

Q
(2)
N−1

P
ro
gr
es
s
of

th
e
al
go

ri
th
m

Figure 4.28: Execution dependencies in the backtransformation of the right singular vectors
in the lower matrix half: Every diagonal shows the application of LQ transfor-
mations caused by one inversion step. All entries in one row are independent
and can be executed at the same time. The number of independent operations
can be computed by the given formulas. In the wind-up phase, imin refers to the
minimum i-index in the row, kmin refers to the minimum k-index in a row.

112

4.5 Backtransformation of singular vectors

Algorithm 61 Backtransformation of left singular vectors.
windupPhase ← true
if (Upper matrix half) then

if (process has local data in BR 1) then
apply Q(2P)

P from left to BR 1
end if
k ← P ; j ← 1
while j ≥ 1 do

i← 1 + (k − j); i0 ← 1 + (k − j)
for rl ← j + 1, j − 1, . . . , 2 do

if (process has local data in BRs rl − 1 : rl) then
apply Q(i)

k− i−i0
2

from left to BRs rl − 1 : rl

end if
i← i+ 2

end for
if (j = P) then

windupPhase ← false
end if
if (windupPhase) then

j ← j + 1
else

k ← k − 1; j ← j − 1
end if

end while
else

if (process has local data in BR N) then
apply Q(2N−2P−1)

P+1 from left to BR N
end if
k ← P + 1; j ← N
while j ≤ N do

i← 1 + (j − k); i0 ← 1 + (j − k)
for rl ← j, j + 2, . . . , N − 1 do

if (process has local data in BRs ru : ru + 1) then
apply Q(i)

k+
i−i0
2

from left to BRs ru : ru + 1

end if
i← i+ 2

end for
if (j = P + 1) then

windupPhase ← false
end if
if (windupPhase) then

j ← j − 1
else

k ← k + 1; j ← j + 1
end if

end while
end if

113

4 Parallel Algorithms

Algorithm 62 Backtransformation of right singular vectors.
windupPhase ← true
if (Upper matrix half) then

if (process has local data in BC 1) then
apply Q(2P+1)

P from right to BC 1
end if
k ← P ; j ← 1
while j ≥ 1 do

i← 2 + (k − j); i0 ← 2 + (k − j)
for cr ← j, j − 2, . . . , 2 do

if (process has local data in BCs cr − 1 : cr) then
apply Q(i)

k− i−i0
2

from right to BCs cr − 1 : cr

end if
i← i+ 2

end for
if (j = P) then

windupPhase ← false
end if
if (windupPhase) then

j ← j + 1
else

k ← k − 1; j ← j − 1
end if

end while
else

if (process has local data in BC N) then
apply Q(2N−2P)

P+1 from right to BC N
end if
k ← P + 1; j ← N
while j ≤ N do

i← 2 + (j − k); i0 ← 2 + (j − k)
for cr ← j, j + 2, . . . , N − 1 do

if (process has local data in BCs cl : cl + 1) then
apply Q(i)

k+
i−i0
2

from right to BCs cl : cl + 1

end if
i← i+ 2

end for
if (j = P + 1) then

windupPhase ← false
end if
if (windupPhase) then

j ← j − 1
else

k ← k + 1; j ← j + 1
end if

end while
end if

114

4.5 Backtransformation of singular vectors

PG1

PG2

PG3

PG4

PG5

PG6 PG7

PG8

PG9

PG10

PG11

PG12 PG13

PG14

PG15

PG16

PG17

PG18

PG1

PG2 PG5

PG6

PG3

PG4

PG7

PG8 PG11

PG12

PG9

PG10

PG13

PG14 PG17

PG18

PG1

PG2

PG3

PG4

PG5

PG6

PG7

PG8

PG9

PG10

PG11

PG12

PG13

PG14

PG15

PG16

PG17

PG18

Figure 4.29: State 1 and 3 in right-sided orthogonal transformations and the matrix of right
singular vectors. The gray and red lines indicate the collaboration between the
block columns (and the regarding communicator). The block to process group
allocation follows the process groups in state 1.

PG1

PG2

PG3

PG4

PG5

PG6

PG7

PG8

PG9

PG10

PG11

PG12

PG13

PG14

PG15

PG16

PG17

PG18

PG19

PG1

PG2

PG18

PG4

PG5

PG3

PG7

PG8

PG6

PG10

PG11

PG9

PG13

PG14

PG12

PG16

PG17 PG19

PG2

PG8

PG14

PG3

PG9

PG15

PG4

PG10

PG16

PG5

PG11

PG17

PG6

PG12

PG18

PG7

PG13

PG19

Figure 4.30: State 2 and 4 in left-sided orthogonal transformations and the matrix of left sin-
gular vectors. The gray and red lines indicate the collaboration between the block
rows (and the regarding communicator). The block to process group allocation
follows the process groups in state 2.

115

4 Parallel Algorithms

The process setup as used before for applying inversion steps and performing the bulge chas-
ing can be fully reused in the backtransformation. Therefore, the same parallelization levels
are available as before and the backtransformation should show the same parallel behavior.

Block and inter-block parallelization

Parallel algorithms on the level of pairs of block rows and block columns

Algorithms 61 and 62 have given the overall, parallel procedure to apply the backtransforma-
tion to the left and right singular vector matrices. The more fine grained algorithms performing
the single updates on the level of pairs of block columns or pairs of block rows will be presented
in the following.

Comparing to the SVD bulge chasing, a different variant of the CWY application has to
be used for the backtransformation since in bulge chasing all orthogonal transformations are
applied transposed. Algorithm 42 is presented in the context of the eigenvectors backtransfor-
mation and can also be used for the backtransformation of the left singular vectors. For the
backtransformation of the right singular vectors, a modified version of Algorithm 39 as given
in Algorithm 63 is used. The only difference is the transposed use of T which originates in
the non-transposed application of Q(i)

k needed for the backtransformation of the right singular
vectors.

Algorithm 63 Parallel blocked transposed application of Householder vectors from right.

function A<pr,pc>[i,j] ← ParallelCWYtransposedRight(A<pr,pc>[i,j], Y
′

<∗,pc>[j], T<∗,∗>)
Z<pr,∗>[j] ← Y

′

[j] · T
T

U<∗,pc>[i]j ← A[i,j] · Z[j]

U<∗,pc>[i] ← MPI_ALLREDUCE (U<∗,pc>[i]j)

A[i,j] ← A[i,j] − U[i] · Y
′

[j]
end function

Compact CWY formulations are used in the tile-wise application of the Householder vectors.
For the eigenvalue backtransformation, Algorithm 43 gives an implementation which can be
used in the backtransformation of the left singular vectors for the lower matrix half. This can
be extended to be usable for the upper matrix half as well by changing some indices as given
in Algorithm 64. Clearly, this change could have been incorporated in Algorithm 43 but might
cause confusion there. Depending on whether applying a transformation originated by QL or
QR, different rows in the singular vector matrix U and in the Householder vector matrix Y
have to be addressed. If storing only τ instead of T , an additional computation of T has to
be added before the compact WY is used.

Similar for the right singular vectors and the right-sided application of Householder vectors
The application to a pair of block columns is described by Algorithm 65. The columns to
update are adapted depending on if a LQ or RQ decomposition is applied to the matrix of
right singular vectors V T .

116

4.5 Backtransformation of singular vectors

Algorithm 64 Parallel blocked non-transposed left-sided application of orthogonal transfor-
mations to left singular vectors.
function U<pr,pc>[i,j] ← ParallelBlockedLeftSidedApplQ(U<pr,pc>[i,j], Y<pr,∗>[i], T<∗,∗>)

for j1 ← 1, b+ 1, 2b+ 1, . . . , nb do
if (Upper matrix half) then

i1 ← 1; i2 ← 2nb − j1 + 1
else

i1 ← j1; i2 ← 2nb
end if
j2 ← min(nb, j1 + b− 1)
U[i,j](i1 : i2, :)← ParallelCWYtransposedLeft(U[i,j](i1 : i2, :), Y[i](i1 : i2, j1 : j2), T)

end for
end function

Algorithm 65 Parallel blocked non-transposed right-sided application of orthogonal trans-
formations to right singular vectors.

function V T
<pr,pc>[i,j] ← ParallelBlockedRightSidedApplQ(V T

<pr,pc>[i,j], Y
′

<∗,pc>[j], T<∗,∗>)
for j1 ← 1, b+ 1, 2b+ 1, . . . , nb do

if (Upper matrix half) then
i1 ← 1; i2 ← 2nb − j1 + 1

else
i1 ← j1; i2 ← 2nb

end if
j2 ← min(nb, j1 + b− 1)
V T
[i,j](:, i1 : i2)← ParallelCWYtransposedRight(V T

[i,j](:, i1 : i2), Y
′

[j](i1 : i2, j1 : j2), T)

end for
end function

117

4 Parallel Algorithms

The necessary distribution of Y has been sparred out in the algorithmic descriptions of
Algorithms 64 and 65 for simplicity. It has been described during the process and data struc-
tures part, Section 4.5.1.

4.5.2 Backtransformation matrix approach

As in the backtransformation of eigenvectors, accumulating backtransformation matrices is
also a possibility for the backtranformation of singular vectors. The singular vectors can
be obtained by multiplying the backtransformation matrices

o
Q̃ and

e
Q̃T with the singular

vectors of the transformed problem W̃ :

U =
o
Q̃ · Ũ (4.16)

V T = Ṽ T ·
e
Q̃ (4.17)

The backtransformation matrices can be obtained by

o
Q̃ = I · oQ(·)

N · · ·
oQ

(·)
P+1 ·

oQ
(·)
1 · · ·

oQ
(·)
P (4.18)

e
Q̃ = eQ

(·)
P · · ·

eQ
(·)
1 ·

eQ
(·)
P+1 · · ·

eQ
(·)
N · I. (4.19)

This leads to accumulating the orthogonal transformations during the bulge chasing.
However, even for the eigenvectors, this approach is only favorable if all or almost all eigenvec-
tors are computed. Therefore, following this approach is not seen as an practical alternative
to the pipelining approach and hence the backtransformation matrix approach is not further
elaborated. However, all steps are analogous to the procedure of eigenvalue computation.

118

5 Numerical Analysis

In this chapter the parallel implementations are analyzed on a theoretical basis. The findings
can be used to estimate and evaluate the computational results on supercomputers, for the
optimal choice of parameters like P and for the optimal distribution of the available processes.

5.1 Twisted Crawford algorithm

5.1.1 Modeling of the speedup of the block and inter-block parallelization

To estimate the expectable speedups during the generation of one Q(i)
k and the respective left

and right-sided application, the single operations have to be analyzed. The QR decomposition
and the left-sided update work on a 2× 3 block grid with six independent process groups, the
right-sided update on a 3× 2 block grid. Every process group consists of a 2D process grid of
pr × pc processes. The local size of a block on a process can hence be estimated by nb

pr
× nb

pc
.

Model for the estimation of the runtime of parallel algorithms

To model the runtime of the parallel algorithms in Chapter 4, a simple model is used. It
comprises modeling Flops, memory transfer and communication.
For modeling communication the simple latency-bandwidth model is used. The time to send
a message of size m from one process to another consists of the constant latency time and the
message-size-dependent time for the actual sending process:

t = m · tWord + tMsg (5.1)

Latency includes all parts that do not scale with the size of the message, e.g. setting up the
message, handshake between the processes and further more. Clearly, this model includes
many assumptions: It presumes to have constant bandwidth for all messages, it ignores the
topology of the network and it disregards the possible saturation of the network path.
For collective communication, the model gets an additional factor to reflect the number of
involved processes, p, [19]:

t = (m · tWord + tMsg)dlog(p)e (5.2)

Since MPI_ALLREDUCE consists of a reduce and a broadcast operation, MPI_ALLREDUCE
is modeled as t = 2(m · tWord + tMsg)dlog(p)e.

The cache hierarchy and memory transfer is modeled in a very much simplified way by the
external memory model [1]. The hierarchy consists of an infinitely fast, internal memory of
limited size to which the CPU has direct access. Additionally, an external memory of infinite
size exists in which all data is located initially. Data has to be transferred before usage from

119

5 Numerical Analysis

the external to the internal memory. This data transfer is limited by a certain memory band-
width which leads to the time to load a double number from slow to fast memory, tMem.

The time of the CPU to compute one Flop is given by tFlops. All the hardware param-
eters used for modeling, tFlops, tMem, tWord and tMsg, reduce complex hardware features in
an extensive way. Thus, the runtime model delivers a simplified view on the algorithms and
their performance but will provide necessary insights to get a deeper understanding of the
algorithms and derive strategies on how to invest the available computational resources.

The time to generate one Householder vector following Algorithm 32 can be estimated by

trowHH ≈ 3
nb
pr
tFlops + 2

nb
pr
tMem + 4dlog(2pr)etWord + 2dlog(2pr)etMsg. (5.3)

The application of a single Householder vector to a matrix in the QR context takes place
during computing the QR of a tile. The vector is applied to the trailing tile which has m
columns. Hence, the maximal local size of the trailing tile on a process is nb

pr
× m

pc
. The time

to carry out this transformation, which is described in Algorithm 33, can be approximated by

trowHHAppl(m) ≈ 4
nbm

prpc
tFlops + (

nbm

prpc
+
nb
pr

+
m

pc
)tMem

+ 2
m

pc
dlog(2pr)etWord + 2dlog(2pr)etMsg. (5.4)

Both formulas can be used to compute the approximated time for computing a QR decompo-
sition of b columns:

tQR = b · trowHH +
b−1∑
k=1

trowHHAppl(b− k)

≈ (2
nb(b

2 − b)
prpc

+ 3
nbb

pr
)tFlops + (2

nb(b
2 − b)
prpc

+ 2
nbb

pr
)tMem

+ ((
b2 − b
pc

+ 4b)dlog(2pr)e+
nbb

pr
dlog(pc)e)tWord

+ (4bdlog(2pr)e+ bdlog(pc)e)tMsg (5.5)

The time for the generation of T , as described in Algorithm 35, can be estimated by

trowgenT ≈
1

3
b3 +

nbb
2

pr
− 5

4
b2 − 1

12
b)tFlops + (

nbb

pr
+ 2b2)tMem

+ b2dlog(2pr)etWord + 2dlog(2pr)etMsg. (5.6)

For applying b Householder vectors by CWY from left (Algorithm 36) to a matrix of maximal

120

5.1 Twisted Crawford algorithm

local size nb
pr
× m

pc
, the time can be estimated by

tCWYleft ≈ (4
nbmb

prpc
+
nbb

2

pr
− b(0.5nb

pr
+
m

pc
)tFlops

+ (
nbm

prpc
+ 2

nbb

pr
+
mb

pc
+ b2)tMem

+ 2
mb

pc
dlog(2pr)etWord + 2dlog(2pr)etMsg (5.7)

and for applying b Householder vectors by CWY from right (Algorithm 39) to a matrix of
maximal local size m

pr
× nb

pc
, the following estimate can be used:

tCWYright ≈ (4
nbmb

prpc
+
nbb

2

pc
− b(m

pr
+

0.5nb
pc

)tFlops

+ (
nbm

prpc
+ 2

nbb

pc
+
mb

pr
+ b2)tMem

+ 2
mb

pr
dlog(2pc)etWord + 2dlog(2pc)etMsg (5.8)

The algorithm to perform the QR decomposition of the k-th tile of a block and to apply
the obtained Householder vectors by CWY to the trailing block is described in Algorithm 37.
The runtime, neglecting the time for sending the Householder vectors to the right blocks, can
be estimated by

tQRblocks(k) ≈ (
4n2bb+ nbb

2(2− 4k)

prpc
+

2nbb
2

pr
+
b2k

pc
+
b3

3
)tFlops

+ (
n2b + nbb

2 − nbbk + nbb

prpc
+

5nbb

pr
+
nbb− b2k

pc
+ 3b2)tMem

+ ((
2nbb− b2(2k − 1)

pc
+ b2)dlog(2pr)e+

nbb

pr
dlog(pc)e)tWord

+ ((4b+ 4)dlog(2pr)e+ bdlog(pc)e)tMsg. (5.9)

The runtime of the right blocks, which solely apply the Householder vectors, stays constant
over the tiles and is estimated as

triblocks ≈ (
4n2bb

prpc
+
nbb

2

pr
+
b3

3
)tFlops + (

n2b
prpc

+
3nbb

pr
+
nbb

pc
+ 3b2)tMem

+ (
2nbb

pc
+ b2)dlog(2pr)etWord + 4dlog(2pr)etMsg. (5.10)

This estimate is again not considering the time for waiting and receiving Y and τ .

For putting together the pieces for the overall QR step according to Algorithm 37, the
following considerations have to be made:

• Only the left blocks perform the QR, the other four blocks solely apply the Householder

121

5 Numerical Analysis

transformations.

• While for the four right blocks the number of columns to process in CWY left stays
constant, it decreases in the QR blocks.

• The two QR blocks do not have to compute T and do not have to run CWY left after
processing the last tile.

• The four blocks that only apply the transformation have to wait for receiving Y from
the QR blocks.

It turns out that the runtime of the QR blocks is initially higher than the runtime of the right
blocks and, by the decreasing number of columns for CWY left in the QR blocks, the situation
changes at a certain point. After this point, the runtime of the right blocks dominates the
steps and hence determines the runtime of a QR step.

Using Equations (5.9) and (5.10), an estimate for the overall time of the QR step can
be derived. Necessary for that is an estimation when the right blocks start dominating the
runtime. This estimate is denoted by o and gives the percentage of tiles of the block after
which the QR blocks do not dominate the runtime anymore. It turns out that o depends
highly on nb, b, the process grid of a PG and on the numbers tFlops, tMem, tWord and tMsg. On
SuperMuc-NG, o can be found between 0.33 and 0.5 for nb of size 2000 with quadratic process
group setups and b = 175, for nb = 4000 and the same conditions between 0.5 and 0.75.
The resulting formula to estimate the runtime of the QR step using o is given by

tQleft ≈
o
nb
b∑

k=1

tQRblocks(k) + (1− o)nb
b
triblocks +

nbb

pr
tWord +

nb
b
tMsg. (5.11)

For the right-sided updates (Algorithm 40), no QR decomposition has to be computed and
all blocks work simultaneously. T does not need to be computed again since it has been stored
during the left-sided application of the orthogonal transformation. Hence, besides running
ParallelCWYright, Y and T have only to be communicated. For the right-sided update one
block acts as surrogate block. This block does not need to receive Y and T since it acted in the
left-sided update as surrogate block as well. Thus, the runtime for the right-sided application
of an orthogonal transformation can be estimated by

tQright ≈ (
4n3b
prpc

+
n2bb

pc
)tFlops + (

n3b/b

prpc
+
n2b
pr

+
2n2b
pc

+ nbb)tMem

+ (
2n2b
pr
dlog(2pc)e+

nbb

pr
dlog(2pr)e+

n2b + 0.5nbb
2

pc
+ 2nb/bdlog(2pc)e)tWord

+ (2nb/bdlog(2pc)e+
nb
pr

+ pr)tMsg. (5.12)

This formula uses an adapted version of the runtime estimation for transposing Y , which is
given in [4] by dlog(2pr)e(nbb

pr
tWord+ lcm

pc
tMsg). lcm in the formula is the least common multiple

of pr and pc and hence lcm
pc
≤ pr. Thus, the runtime for transposing Y can be estimated by

122

5.1 Twisted Crawford algorithm

dlog(2pr)e(nbb
pr
tWord + prtMsg).

The backtransformation of eigenvectors (Algorithm 43) consists of distributing Y and T to
the regarding blocks and by using a modified version of the compact WY formulation to apply
the Householder vectors from left. The estimated runtime for transforming w eigenvectors is
given by

tbacktrafo ≈ (
4n2bw

prpc
+
n2bb

pr
)tFlops + (

n2bw/b

prpc
+

2n2b
pr

+
nbw

pc
+ nbb)tMem

+ (
2nbw

pc
dlog(2pr)e+

n2b
pr

+ nbb)tWord + (
2nb
b
dlog(2pr)e+

nb
pr

)tMsg. (5.13)

Inspecting Equations (5.11) to (5.13), it can be seen that most of the terms scale in pr, pc or
both directions. Naturally, this leads to the use of a 2D process grid. Some of the terms do not
scale at all or only rarely. Analyzing the derived formulas with the hardware characteristics of
SuperMuc-NG allows to obtain that Flops usually scale very well and memory transfer is in the
most cases comparably cheap and thus does not have a huge impact. Similar for the time to
initiate communication which barely scales but has only small impact. The communication of
data however, scales generally the worst and will hence become the bottleneck in block scaling.

5.1.2 Modeling of the speedup of the pipelining approach

Pairs of block rows during the generation of the QR and the regarding left-sided application
and pairs of block columns during the right-sided application of the QR are independent of
each other and can be executed in parallel. The parallel execution is achieved by distributing
block columns cyclically to process group columns. A pair of block columns is operated by a
pair of PGCs, the next pair of block columns by another pair of PGC and so on. Hence, both
can update their block columns independently.

Having more PGCs available allows therefore to execute more operations simultaneously.
The pipelining approach, however, consists of a wind-up and a wind-down phase. During
these phases, the number of block column pairs to work on grows or reduces by every step
and hence, also the computational work that can be done in parallel rises and falls. Since the
number of PGCs is constant during the algorithm, some of the PGC might stay idle for some
steps until they start working.

Formulas for the length of the pipeline are developed in Section 4.2.1. Equation (4.2) gives
the length of the pipeline in the wind-up phase after applying inversion step k by

lpipe(k) = bN − k + 1

2
c.

The length of the pipeline in the wind-down phase is described in Equation (4.3) by

lpipe(imin) = bN − P − imin + 1

2
c.

123

5 Numerical Analysis

Since the length of the pipeline determines the number of parallel executable left or right-sided
orthogonal transformations, the accumulation of all lengths of the pipeline within the algo-
rithm can be used to count the overall number of left or right-sided applications of orthogonal
transformations:

cQR = 1 +

N∑
k=P+1

lpipe(k) +

N−P−1∑
imin=2

lpipe(imin) (5.14)

Starting the second sum at 2 is a consequence of counting the parallel orthogonal transfor-
mations after inversion step k in lpipe(k). This already includes Q(1)

P+1 in step P + 1. The
additional 1 is a consequence of clearing the last block row and column only for k = P + 1.
The formula computes the number of orthogonal transformations in the lower matrix half. It
can be used for the upper matrix half by flipping the matrix or by adapting the indices: k has
to run from 1 to P and imin from 2 to P − 1.
In the upper matrix half, one QR step and its application can be saved since inversion step P
is reduced and contains only of the application of DP , no fill-in is generated by EP . Hence,
Q

(1)
P can be skipped and the chasing of this inversion step can start with Q(2)

P .

To compute the speedup gained by using more PGCs, all orthogonal transformations that
can be executed in parallel have to be distributed to the available pairs of PGCs nPGCpairs:

tpipe(k, nPGCpairs) = d lpipe(k)

nPGCpairs
e · torth (5.15)

and
tpipe(imin, nPGCpairs) = d lpipe(imin)

nPGCpairs
e · torth (5.16)

compute the time it takes to apply lpipe orthogonal transformations when using nPGCpairs
pairs of PGCs. torth = tQleft + tQright denotes the time to generate and apply an orthogonal
transformation from left and right.

The time for running the full pipeline with nPGCpairs PGC pairs can therefore be computed
by

tQR(nPGCpairs) ≈ (1 +

N∑
k=P+1

d lpipe(k)

nPGCpairs
e+

N−P−1∑
imin=2

d lpipe(imin)

nPGCpairs
e) · torth. (5.17)

An explicit upper matrix half formulation can be given by

tQR(nPGCpairs) ≈ (1 +

P∑
k=1

d lpipe(k)

nPGCpairs
e+

P−1∑
imin=2

d lpipe(imin)

nPGCpairs
e) · torth (5.18)

using

lpipe(k) = bk
2
c (5.19)

and
lpipe(imin) = bP − imin + 1

2
c. (5.20)

The model tQR(nPGCpairs) ignores the time for applying the inversion steps and the reduced

124

5.1 Twisted Crawford algorithm

nPGCpairs 1 2 4 5 10 20 30 40 50

nb/n = 1%

Relative time 100% 51.0% 26.5% 21.6% 11.8% 7.11% 5.55% 4.75% 4.00%

Speedup 1 1.96 3.77 4.62 8.45 14.1 18.0 21.1 25.0

Efficiency 100% 98.0% 94.2% 92.5% 84.4% 70.3% 60.0% 52.7% 50.0%

nb/n = 2%

Relative time 100% 52.0% 28.1% 23.3% 14.0% 9.38% 7.99% 7.99% 7.99%

Speedup 1 1.92 3.56 4.29 7.13 10.7 12.5 12.5 12.5

Efficiency 100% 96.1% 89.1% 85.7% 71.3% 53.3% 41.7% 31.3% 25.0%

nb/n = 5%

Relative time 100% 55.5% 33.5% 28.8% 19.9% 19.9% 19.9% 19.9% 19.9%

Speedup 1 1.80 2.98 3.47 5.03 5.03 5.03 5.03 5.03

Efficiency 100% 90.1% 74.6% 69.5% 50.3% 25.2% 16.8% 12.6% 10.1%

Table 5.1: Theoretical speedup and parallel efficiency implied by the pipelining algorithm for
different bandwidth-to-matrix-size ratios under increasing the number of pairs of
PGCs used for the computation. Synchronization effects imposed by splitting the
matrix in an upper and a lower matrix half are not considered.

computational time for applying the very last orthogonal transformation to clear the last block
column and block row. However, since the computational cost of the inversion steps is rather
small and the impact of the last orthogonal transformation as well as skipping Q(1)

P , the model
can be used to compute a good estimate of the speedup when adding pairs of PGCs to a
matrix half.

Table 5.1 shows such computations for three different bandwidth-to-matrix-size ratios using
only an upper or lower matrix half (P = 0 or P = N). Baseline is the number of timesteps
necessary to perform all the orthogonal transformations with one pair of PGCs. The number
of transformations and the number of timesteps is 4951 for nb/n = 1%. By adding another
pair of PGC, the amount of timesteps decreases to 2526, which is 51% of the timesteps when
using one pair. The loss of 1% is caused by the idle times that occur due to the pipeline.
The parallel efficiency gives a measure on how well the parallel resources are exploited. Due
to the idling PGCs the efficiency decreases when using more and more PGCs. However, the
critical point of 50% efficiency is only reached when using as many PGCs as block columns
are available. For the cases nb/n = 2% and nb/n = 5% even more PGCs are added. These
PGCs will never work and stay idle the whole time. Hence, the efficiency drops further.

The pipelining approach for the backtransformation follows the same principles and pro-
duces the same formulas and numbers as given in Equations (5.17) and (5.18) and Table 5.1.
The approach of the backtransformation matrix was due to the rare cases where it is superior
compared to the pipelining approach not followed and hence no runtime estimates have been

125

5 Numerical Analysis

developed.

5.1.3 Modeling of the speedup by splitting the matrix in upper and lower half

The number of left and right-sided orthogonal transformations for each matrix half can be
computed by Equations (5.17) and (5.18). A more detailed analysis has to take into account
the synchronization between both matrix halves when applying their last inversion steps (see
Section 4.2.2). The solution of this task cannot be easily given by a formula since the problem
depends on many parameters that influence each other. However, a small simulation has been
implemented to compute the number of necessary timesteps to finish the algorithm.
For a given bandwidth-to-matrix-size ratio and a fixed number of available pairs of PGCs, this
simulation was run and some of the results are exemplarily shown in Figure 5.1. For every
distribution of the available pairs of PGCs to the upper or lower matrix halves the number of
computation steps was computed for different positions of the twist block P . It can be seen
that choosing P = N/2 and splitting the available PGCs equally to the matrix halves gives
the best result.

The comparison of the computation steps of P = 0 using all PGCs in the lower matrix half
and P = N/2 with equally distributed PGCs gives the attainable speedup by using twisted
factorization. For the inspected bandwidth-to-matrix-size ratio of 1%, the theoretical speedup
was found to be 1.98 for 10 pairs and 20 pairs of PGCs. For a bandwidth-to-matrix-size ratio
of 2%, the speedup was found to be 1.96 to 1.97, for 5% the speedup was between 1.93 and
1.94. Hence, only by using twisted factorization instead of Cholesky factorization and the
regarding parallel execution of the upper and lower matrix half, the computation time can be
reduced by approximately 50%.

The interference of the upper and lower matrix half in the backtransformation pipeline is
limited. The orthogonal transformations can be applied to the eigenvector matrix without
exchange of the upper and lower matrix half. Only the last inversion step in the lower matrix
half requires exchange: To apply SP+1, SP must have been applied. Since the application
of the inversion steps can be performed after applying all orthogonal transformations, no
synchronization takes place during the orthogonal transformations. Hence, the exchange will
affect only the less costly part of applying inversions steps and the computational time will
reduce also here by a factor of approximately 50%.

5.2 Twisted SVD algorithm

5.2.1 Modeling of the speedup of the block and inter-block parallelization

Please refer to Section 5.1.1 for the description of the parallel model used in this work to
model the runtime.

The QR algorithm and hence the estimates for speedup are the same in the GSVD algorithm
and in the GEP algorithm. For the QL algorithm, only the direction of where to start in a

126

5.2 Twisted SVD algorithm

0 10 20 30 40 50 60 70 80 90 100

300

350

400

500

600

800

P

Q
R

st
ep

s
Minimum of curves

2 PGC pairs upper matrix half
3 PGC pairs upper matrix half
4 PGC pairs upper matrix half
5 PGC pairs upper matrix half
6 PGC pairs upper matrix half
7 PGC pairs upper matrix half
8 PGC pairs upper matrix half
0 PGC pairs upper matrix half
10 PGC pairs upper matrix half

Figure 5.1: Number of resulting parallel steps over twist block P for different distributions of
PGCs to the upper and lower matrix half. In total, 10 pairs of PGCs are available
for computing a matrix with bandwidth-to-matrix-size ratio 1%. The minimum
number of steps is obtained for 5 pairs of PGC in the upper and 5 pairs of PGC
in the lower matrix half together with P in the range 49 to 51.

block changes and hence

tQLblocks ≈ tQRblocks (5.21)

can be assumed.

For the right-sided transformations the strided access to the matrix might impact the per-
formance during the computation of the Householder vectors. For the blocked and unblocked
application of Householder vectors, the access to the matrix columns and therefore the cache
lines will be consecutive. Hence, no slowdown is to expect there. Considering the time spent
to compute a Householder vector and the time to apply it in blocked or unblocked fashion,
the generation of the vector is rather cheap. Hence, this slowdown is ignored and the time for
computing a Householder vector can be estimated by

tcol
HH ≈ 3

nb
pc
tFlops + 2

nb
pc
tMem + 4dlog(2pc)etWord + 2dlog(2pc)etMsg. (5.22)

When applying a Householder vector from right in an unblocked way to a matrix with maximal
local size m

pr
× nb

pc
, the time can be estimated by

tcol
HHAppl(m) ≈ 4

nbm

prpc
tFlops + (

nbm

prpc
+
m

pr
+
nb
pc

)tMem

+ 2
m

pr
dlog(2pc)etWord + 2dlog(2pc)etMsg. (5.23)

These two formulas can be used to estimate the computation time of an unblocked LQ or RQ

127

5 Numerical Analysis

decomposition of b columns:

tRQ ≈ tLQ = btcol
HH +

b−1∑
k=1

tcol
HHAppl(b− k)

≈ (2
nb(b

2 − b)
prpc

+ 3
nbb

pc
)tFlops + (2

nb(b
2 − b)
prpc

+ 2
nbb

pc
)tMem

+ ((
b2 − b
pr

+ 4b)dlog(2pc)e+
nbb

pc
dlog(pr)e)tWord

+ (4bdlog(2pc)e+ bdlog(pr)e)tMsg (5.24)

The computation time for T differs in the right-sided update since Y is not distributed over
the process rows but over the process columns. As a result, the time for the generation of T ,
as described in Algorithm 38, can be estimated by

tcol
genT ≈

1

3
b3 +

nbb
2

pc
− 5

4
b2 − 1

12
b)tFlops + (

nbb

pc
+ 2b2)tMem

+ b2dlog(2pc)etWord + 2dlog(2pc)etMsg. (5.25)

The blocked right-sided CWY application has already been described by Equation (5.8).

The time of performing the RQ decomposition of the k-th tile and applying the Householder
vectors by CWY right to the trailing block (and mirror-inverted for the LQ) is estimated by

tRQblocks(k) ≈ tLQblocks(k) ≈ (
4n2bb+ nbb

2(2− 4k)

prpc
+
b2k

pr
+

2nbb
2

pc
+
b3

3
)tFlops

+ (
n2b + nbb

2 − nbbk − nbb
prpc

+
nbb− b2k

pr
+

5nbb

pc
+ 3b2)tMem

+ ((
2nbb+ b2(1− 2k)

pr
+ b2)dlog(2pr)e+

nbb

pc
dlog(pr)e)tWord

+ ((4b+ 4)dlog(2pc)e+ bdlog(pr)e)tMsg. (5.26)

The runtime for the upper blocks applying Q generated by RQ decomposition or for the lower
block rows applying Q generated by LQ decomposition is estimated by

tup
blocks ≈ t

lo
blocks ≈ (

4n2bb

prpc
+
nbb

2

pc
+
b3

3
)tFlops + (

n2b
prpc

+
nbb

pr
+

3nbb

pc
+ 3b2)tMem

+ ((
2nbb

pr
+ b2)dlog(2pc)e+

nbb

pc
)tWord + (2bdlog(2pc)e)tMsg. (5.27)

This estimate does not consider the time for communicating Y to the four blocks.

The derived estimates can be put together to obtain an overall estimate for performing a
whole RQ or LQ step. Analogous to the QR decomposition in the twisted Crawford part,
some considerations have to be made (here exemplarily for the RQ):

• The two bottom blocks perform the RQ, the four blocks above only apply the House-
holder transformations.

128

5.2 Twisted SVD algorithm

• The four top blocks have a constant number of rows in CWY right whereas in RQ blocks
have a decreasing number of rows to process by CWY right.

• In the last tile of the RQ, the RQ blocks do not have to compute T and to perform
CWY right.

• The four blocks that only apply the transformations have to wait for receiving Y and τ
from the RQ blocks.

Initially, the applying blocks have to wait for the RQ blocks before they can start to work.
After some tiles the situation changes. Then the RQ blocks will be faster in computing the
next RQ decomposition of a tile and applying the obtained Householder vectors to the trailing
block as the four top blocks in applying a tile to their whole block. In the first phase, the RQ
block determines the runtime, in the latter, the applying blocks.

An overall estimate for the RQ and the LQ decomposition can be derived by using Equa-
tions (5.26) and (5.27). The missing piece is the turning point when Equation (5.26) does not
dominate the runtime anymore but Equation (5.27). This point is denoted by o. It gives the
percentage of tiles of the block after which the dominance changes. Using this, the overall
runtime of a RQ and a LQ step can be estimated:

tQright ≈
o
nb
b∑

k=1

tRQblocks(k) + (1− o)nb
b
tup
blocks +

nbb

pc
tWord +

nb
b
tMsg (5.28)

The backtransformation of the left-sided singular vectors is identical to the backtransfor-
mation of the eigenvectors. Hence, the time estimate given in Equation (5.13) can be used
to estimate the computation time for applying the backtransformation of one Q(i)

k to the left
singular vectors.
For the backtransformation of the right singular vector matrix a similar formula can be de-
rived. Also here, T and Y have to be communicated and applied to the matrix containing w
singular vectors. The time estimate is given by

tbacktrafo ≈ (
4n2bw

prpc
+
n2bb

pc
)tFlops + (

n2bw/b

prpc
+
nbw

pr
+

2n2b
pc

+ nbb)tMem

+ (
2nbw

pr
dlog(2pc)e+

n2b + 0.5nbb
2 + nbb

pc
)tWord

+ (
2nb
b
dlog(2pc)e+

nb
pc

)tMsg. (5.29)

Like the twisted Crawford algorithms, the twisted SVD algorithms will show the best scal-
ing behavior when using both directions of the 2D process grid in the process groups. At
some point, communication will become the bottleneck and the algorithms will stop scaling.
The derived runtime estimations will usually give good estimates for the scaling behavior but
cannot capture all the details. For example, some of the communication can be hidden by the
use of non-blocking MPI calls. Therefore, the formulas help to estimate and understand the

129

5 Numerical Analysis

scaling behavior but cannot deliver exact numbers for the runtime.

5.2.2 Modeling of the efficiency of the pipelining approach

Since the pipeline concept is the same for the twisted SVD algorithm as for the eigenvalue
algorithm, the efficiency is rather similar. In Section 4.4.1 Equation (4.8) provides the length
of the pipeline when computing and applying QR by

lQR
pipe(k) = bN − k + 1

2
c,

Equation (4.9) by

lLQ
pipe(k) = bN − k

2
c

and Equation (4.12) provides the length of the pipeline in the regarding wind-down phase:

llopipe(imin) = b
N − P − b imin+1

2 c+ 1

2
c

The number of the overall orthogonal transformations can be computed by

cQR = 1 +

N∑
k=P+1

lQR
pipe(k) +

2N−2P−3∑
imin=3

imin=imin+2

llopipe(imin) (5.30)

for the QR and by

cLQ = 1 +

N∑
k=P+1

lLQ
pipe(k) +

2N−2P−2∑
imin=2

imin=imin+2

llopipe(imin) (5.31)

for the LQ transformations.

Similar for the upper matrix when having F in twisted shape and G in banded lower
triangular shape. For this case, Equation (4.10) provides the length of the pipeline during the
wind-up phase for QL by

lQL
pipe(k) = bk + 1

2
c,

Equation (4.11) for RQ by

lRQ
pipe(k) = bk − 1

2
c

and Equation (4.13) gives the regarding formula for the wind-down phase:

lup
pipe(imin) = b

P − b imin
2 c+ 1

2
c

130

5.2 Twisted SVD algorithm

These formulas can be used to compute the overall number of QL and RQ transformations:

cQL = 1 +

N∑
k=P+1

lQL
pipe(k) +

2P−1∑
imin=3

imin=imin+2

lup
pipe(imin) (5.32)

cRQ = 1 +

N∑
k=P+1

lRQ
pipe(k) +

2P−2∑
imin=2

imin=imin+2

lup
pipe(imin) (5.33)

It has to be mentioned that the last orthogonal transformations are of reduced size but are
counted as full size transformations (the one in the formula). Additionally, in the upper matrix
half, one left and one right-sided transformation can be skipped directly after applying SP .
The latter is not skipped in the formula since it is complicated to exclude it and the impact on
the overall result is limited. For the former, it can be argued that due to the block structure
the computational cost per working process group is not that much less than in an ordinary
step. Hence, the necessary computing time is comparable.

Analogous to Equations (5.17) and (5.18), formulas for the computation time relative to
using one pair of PGCs can be derived for the twisted SVD algorithm. Contrary to the
eigenvalue case, where only a QR decomposition is computed and applied from left and right,
during the SVD a QR/LQ pair or a QL/RQ pair of orthogonal transformations is computed
and applied from left or right. Due to the data layout (column mayor) and how the parallel
algorithms are set up, different performance of left and right-sided transformations can occur.
The time for the parallel computation of QR and LQ in the lower matrix half, when using
nPGCpairs pairs of process group columns, can be described by

tlo(nPGCpairs) ≈ tQR + tLQ + tQR
N∑

k=P+1

d
lQR
pipe(k)

nPGCpairs
e+ tLQ

N∑
k=P+1

d
lLQ
pipe(k)

nPGCpairs
e

+ tQR
2N−2P−3∑
imin=3

imin=imin+2

d
llopipe(imin)

nPGCpairs
e+ tLQ

2P−2∑
imin=2

imin=imin+2

d
llopipe(imin)

nPGCpairs
e. (5.34)

tQR and tLQ shall denote the time to perform one QR decomposition and its application from
left or the time to perform one LQ decomposition and its application from right.

For the upper matrix half a similar formula can be given to estimate the computing time
using tQL and tRQ as times for the regarding orthogonal transformations by

tup(nPGCpairs) ≈ tQL + tRQ + tQL
P∑
k=1

d
lQL
pipe(k)

nPGCpairs
e+ tRQ

P∑
k=1

d
lRQ
pipe(k)

nPGCpairs
e

+ tQL
2P−1∑
imin=3

imin=imin+2

d
lup
pipe(imin)

nPGCpairs
e+ tRQ

2P−2∑
imin=2

imin=imin+2

d
lup
pipe(imin)

nPGCpairs
e. (5.35)

131

5 Numerical Analysis

Computing the numbers for Equations (5.34) and (5.35) gives, besides minor differences, the
same numbers as listed in Table 5.1. The same numbers are found for QR, LQ and RQ. Only
for QL differences occur since it has to perform more steps and hence obtains slightly different
numbers. Actually, for QL, speedup and efficiency are slightly better (the speedup differs by
up to 1%, 2% and 5% for the bandwidth-to-matrix-size ratios 1%, 2% and 5%).

5.2.3 Modeling of the speedup by having twisted matrices

The influence of having a twisted matrix or a banded lower triangular matrix in S can also
be modeled for the SVD algorithm. In Section 4.4.2 it was found that the only influence of
the two matrix halves on each other is the application of inversion step SP to one block in the
lower matrix half. Since this update can take place at any time, e.g. when the process group
would be idle anyway, both matrix halves can operate fully independently. Consequently, the
maximum of tup(nPGCpairs) and tlo(nPGCpairs) determines the runtime.

To compute an estimate for the computation time, guesses for tQR, tQL, tLQ, and tRQ are
necessary. It is reasonable to assume tQR ≈ tQL and tLQ ≈ tRQ. Measurements confirmed
this guess. These measurements have also shown that the ratio between left and right-sided
orthogonal transformations can be found between 0.75 and 1.0 for quadratic process grids in
process groups, depending on the number of processes per process group. The use of more
processes accelerates the right-sided transformations more than the left-sided and hence, the
use of more processes drives tQR/tLQ closer to one.

Computations using Equations (5.34) and (5.35) have been carried out for the bandwidth-
to-matrix-size ratios 1%, 2% and 5% with ten and 20 pairs or PGCs. For these computations,
tQR/tLQ was fixed to 0.8, 0.9 and 1.0. The estimated runtime for matrix S in twisted shape
and matrix G in twisted or in non-twisted shape was computed and compared with the case
of non-twisted G and S. All possible setups regarding the choice of P and the distribution of
PGCs have been tested.
It was found that the speedup is at least 2 in the inspected cases. The maximum speedup was
found to be 2.2. In all cases, as expected, the case of two twisted matrices is slightly faster. In-
dependent of the parameters, the choice P = N/2 with equal distribution of the pairs of PGCs
to the matrix halves is the best choice. When using higher numbers of PGCs, other setups
also reach the same theoretical speed, but no setup outperforms the choice P = N/2. The ra-
tio tQR/tLQ in the selected range did not have significant impact on the findings for optimal P .

132

6 Performance Analysis

After deriving theoretical estimates for the runtime in Chapter 5, the implementation is going
to be analyzed in this chapter. The single parallelization layers of the implementation are
tested in an isolated way and the results discussed regarding the theoretical estimates. Subse-
quently, weak and strong scaling are analyzed for the twisted Crawford and the twisted SVD
algorithm. To demonstrate the potential of the implementation, a comparison of the twisted
Crawford algorithm with ELPA is carried out. For the twisted SVD algorithm, a comparison
of the runtime with the twisted Crawford algorithm closes the chapter.

6.1 Computational resources

For the test runs presented in the following, SuperMuc-NG [43] was used. SuperMuc-NG
consists of 311040 cores and is equipped with a 719TB of main memory. As processors, Intel
Skylake Xeon Platinum 8174 are used. Each node has 96GB of memory available for the 48
cores of the node. The nodes themselves are grouped together in islands and the islands are
connected by a fast OmniPath network with 100GBit/s. Each islands consists of 792 compute
nodes.

In the development phase the COBRA supercomputer [48] of the MPCDF was used. It
consists of 3424 compute nodes, each hosting two Intel Xeon Gold 6148 processors with 20
compute cores. This sums up to 136960 compute cores and 529TB of memory. Additionally,
128 Tesla V100-32 and 240 Quadro RTX 5000 GPUs are available at COBRA. The network
topology is similar to the one in SuperMuc-NG.

6.2 Twisted Crawford algorithm

In the following, the single parallelization layers of the twisted Crawford algorithm are ana-
lyzed. The theoretical assumptions made in the previous chapter are evaluated and thus the
scaling behavior of the parallelization layers of the implementation inspected. Afterwards, the
overall scaling of the implementation using all its parallelization layers is tested. Finally, a
comparison with the ELPA two-step solver is carried out.

The described test cases have bandwidth-to-matrix-size ratios 1%, 2% and 5%. The practi-
cal relevance of such thin banded GEP can be seen in [17]. In the context of structural analysis
of aerospace composites, strongly anisotropic elliptic partial differential equations have to be
solved. One step to solution is to solve a generalized eigenproblem of large size. This part
is currently done by using ARPACK [28]. Due to the structure of the matrices, the twisted

133

6 Performance Analysis

Crawford algorithm can also be used to compute such GEPs.

For the scaling tests only the computation time is of interest and therefore, only randomly
generated matrices have been used that fulfill the criteria regarding symmetry, bandwidth and
positive definiteness.

6.2.1 Block and inter-block parallelization

Every block uses a blockcyclic ScaLAPACK-like data distribution inside which distributes the
block of size nb to the available processes in a 2D blockcyclic way. This blockcyclic distribution
uses an own blocksize nscb. The formulas in Chapter 5 do not consider this value since nb/pr
and nb/pc as estimates for the local size of a block are used. Hence, experiments have been
carried out to find an optimal value for this parameter. The QR blocking factor b has minor
influence in the formulas and thus a good choice for b is solely determined experimentally.
For this test, typical blocksizes (nb ∈ {500, 1000, 2000, 4000}) have been used together with
two process group setups (2 × 2 processes per process group and 4 × 4 processes per process
group). For every process group and blocksize different combinations of b and nscb have been
used to run the algorithm on a matrix of size n = 10nb without upper matrix half (P = 0).
The backtransformation of eigenvectors was carried out for all eigenvectors.
Figure 6.1 and Figure 6.2 provide the results of these computations. The differences in per-
formance for various choices of nscb are small for most of the runs. nscb = 50 produces in
many cases the best results or is almost as good as the best result obtained by another choice.
Regarding the QR blocking factor b, some influence of nb can be seen. For small blocks smaller
blocking factors like b = 150 are favorable whereas for larger nb, b = 175 and b = 200 give
the best results. A well balanced choice is the use of b = 175 together with nscb = 50. This
combination will be used in most of the later experiments.

To test the scaling behavior on the block and inter-block level, the time for a left-sided and
a right-sided update and the time for backtransformation have been measured in an isolated
way. The blocksizes 500, 1000, 2000 and 4000 were used in this test. The number of eigenvec-
tors have been varied for every blocksize: The number of eigenvectors to transform back w was
computed by w = k ·nb with k ∈ {4, 8, 12, 16}. For these numbers of eigenvectors, one step of
backtransformation was carried out and the time was measured. The ScaLAPACK blocksize
was fixed to nscb = 50, the QR blocking factor was set to b = 175. The number of PGCs was
chosen such that each process group has to work only on one block. The number of processes
and the setups of the processes within the process grid of a process group have been varied to
obtain the scaling behavior.

Figure 6.3 shows the speedups when using the processes in a 1 × ∗ process grid where all
processes are in one row. Hence, the data of a block is only distributed over the columns. The
right-sided update scales until many processes, the left stops scaling at around four processes.
This is expectable since all processes in a row replicate some of the computations. Hence, the
Flops per process are decreasing mildly while adding processes. The right-sided update does
not have to compute T which saves this replicated computation. This leads to a better scaling
behavior. In general, bigger blocks can exploit a higher number of processes in a row.

134

6.2 Twisted Crawford algorithm

140 160 180 200 220 240 260

0.4

0.45

0.5

0.55

Tilesize b

T
im

e

(a) Bandwidth 500

140 160 180 200 220 240 260

2

2.1

2.2

2.3

2.4

Tilesize b

T
im

e

nscb = 20
nscb = 40
nscb = 50
nscb = 80

Tw. Crawford
Backtrafo.

(b) Bandwidth 1000

140 160 180 200 220 240 260

10

12

14

16

18

Tilesize b

T
im

e

(c) Bandwidth 2000

140 160 180 200 220 240 260

80

100

120

140

Tilesize b

T
im

e

nscb = 20
nscb = 40
nscb = 50
nscb = 80

Tw. Crawford
Backtrafo.

(d) Bandwidth 4000

Figure 6.1: Time to solution for various bandwidth nb: Different values of nscb are plotted over
the QR tilesize. A block itself is distributed on a 2× 2 process grid. The legends
apply to all subfigures.

In Figure 6.4 the speedup for the process setup ∗ × 1 is plotted. This process setup dis-
tributes solely the rows of a block, every process owns every column of the block. The left
and right-sided update show similar scaling behavior for all blocksizes. Now, the computation
of T is distributed and therefore, the left-sided update shows better scaling behavior. Again,
the bigger the blocks, the higher the attainable speedup by using more processes.

Finally, a combination of both setups is tested. To do so, a quadratic setup of the processes
(∗ × ∗) was used which distributed the data of a block in a 2D blockcyclic way. The results
are shown in Figure 6.5. As expected by studying the formulas in the previous chapter, the
quadratic setup allows to achieve high speedups per block. The scaling behavior can be seen
as a combination of the two cases investigated before: The left-sided update will stop scaling
after a certain number of processes whereas the right-sided update continues scaling. Bigger
blocks shift this point further to the right.

The same study has been carried out for the backtransformation. As mentioned before, the
number of eigenvectors was varied to test different setups. Figure 6.6 presents the results for
using all processes in a row. Since the eigenvectors per block are distributed to the number of
processes per block in this setup, the number of Flops to carry out for each process depends
on the number of eigenvectors. Therefore, the curves for different numbers of eigenvectors
show different scaling behavior: The higher the amount of eigenvectors, the better the scaling.
Compared to the left-sided update, the expensive computation of T has not to be carried out.
This is one reason for the backtransformation’s scaling to be superior.

135

6 Performance Analysis

140 160 180 200 220 240 260
0.15

0.2

0.25

0.3

0.35

0.4

Tilesize b

T
im

e

(a) Bandwidth 500

140 160 180 200 220 240 260

0.9

1

1.1

1.2

1.3

Tilesize b

T
im

e

nscb = 20
nscb = 40
nscb = 50
nscb = 80

Tw. Crawford
Backtrafo.

(b) Bandwidth 1000

140 160 180 200 220 240 260
4

4.5

5

5.5

6

Tilesize b

T
im

e

(c) Bandwidth 2000

140 160 180 200 220 240 260

25

30

35

40

45

Tilesize b

T
im

e

nscb = 20
nscb = 40
nscb = 50
nscb = 80

Tw. Crawford
Backtrafo.

(d) Bandwidth 4000

Figure 6.2: Time to solution for various bandwidth nb: Different values of nscb are plotted over
the QR tilesize. A block itself is distributed on a 4× 4 process grid. The legends
apply to all subfigures.

All processes in a column has been evaluated in Figure 6.7. The number of eigenvectors to
transform does not matter in this case since every process has its share of every eigenvector.
The case of a quadratic process grid was tested and the results are given in Figure 6.8. The
quadratic setups show good scaling behavior and have again the impact of the number of
eigenvectors.

Overall, the scaling of the left and right-sided update as well as the backtransformation on
the block level depends highly on the blocksize. Bigger blocks support speedups for higher
number of processes where for smaller blocks the performance stagnates. The formulas in
Chapter 5 facilitate a better understanding of this behavior. For exact computations, however,
they contain to many inaccuracies, e.g. where communication can be hidden by computation.

6.2.2 Pipelining approach

Equations (5.17) and (5.18) give formulas to compute estimates for the runtime and can hence
be used to compute the speedup when increasing the number of PGCs. Such numbers are
presented in Table 5.1 for some exemplary cases and can be used to evaluate the implemen-
tation.
To do so, a numerical experiment was carried out. For bandwidth-to-matrix-size ratios of 1%,
2% and 5% the implementation was run without using twisted factorization. The number of
pairs of PGCs was successively increased and the computation time was measured. nb was

136

6.2 Twisted Crawford algorithm

1 2 4 8

1

2

3

4
Ideal speedup

Processes

Sp
ee
du

p

(a) Bandwidth 500

1 2 4 8 12 16

1

2

3

4

5

6 Ideal speedup

Processes

Sp
ee
du

p

left
right

(b) Bandwidth 1000

1 2 4 8 12 16

1
2
3
4
5
6
7
8
9

Ideal speedup

Processes

Sp
ee
du

p

(c) Bandwidth 2000

1 2 4 8 12 16

1
2

4

6

8

10

12 Ideal speedup

Processes

Sp
ee
du

p

left
right

(d) Bandwidth 4000

Figure 6.3: Speedups of the left (ParallelBlockedQR, Algorithm 37) and right-sided steps (Par-
allelBlockedRightSidedApplQ, Algorithm 40) for various numbers of processes in
a process group. The process grid is arranged as 1 × ∗, where ∗ is the number
of processes and all processes are arranged in a row. The legends apply to all
subfigures.

137

6 Performance Analysis

1 2 4 8

1

2

3 Ideal speedup

Processes

Sp
ee
du

p

(a) Bandwidth 500

1 2 4 8 12 16

1

2

3

4
Ideal speedup

Processes

Sp
ee
du

p

left
right

(b) Bandwidth 1000

1 2 4 8 12 16

1

2

3

4

5

6

7

8 Ideal speedup

Processes

Sp
ee
du

p

(c) Bandwidth 2000

1 2 4 8 12 16

1
2

4

6

8

10

12 Ideal speedup

Processes

Sp
ee
du

p

left
right

(d) Bandwidth 4000

Figure 6.4: Speedups of the left (ParallelBlockedQR, Algorithm 37) and right-sided steps (Par-
allelBlockedRightSidedApplQ, Algorithm 40) for various numbers of processes in
a process group. The process grid is arranged as ∗ × 1, where ∗ is the number
of processes and all processes are arranged in a column. The legends apply to all
subfigures.

138

6.2 Twisted Crawford algorithm

1 4 9 16 25 36

1

2

3

4

5

6

7

8 Ideal speedup

Processes

Sp
ee
du

p

(a) Bandwidth 500

1 4 9 16 25 36

1
2
3
4
5
6
7
8
9

Ideal speedup

Processes

Sp
ee
du

p

left
right

(b) Bandwidth 1000

1 4 9 16 25 36

1

4

6

8

10

12

14

16

Ideal speedup

Processes

Sp
ee
du

p

(c) Bandwidth 2000

1 4 9 16 25 36

1

4
6
8
10
12
14
16
18
20

Ideal speedup

Processes

Sp
ee
du

p

left
right

(d) Bandwidth 4000

Figure 6.5: Speedups of the left (ParallelBlockedQR, Algorithm 37) and right-sided steps (Par-
allelBlockedRightSidedApplQ, Algorithm 40) for various numbers of processes in
a process group. The process grid is arranged as ∗ × ∗ in a quadratic way, where
∗ is the number of processes in every direction of the process grid. The legends
apply to all subfigures.

139

6 Performance Analysis

1 2 4 8

1

2

3

4

5 Ideal speedup

Processes

Sp
ee
du

p

(a) Bandwidth 500

1 2 4 8 12 16

1

2

3

4

5

6

7 Ideal speedup

Processes

Sp
ee
du

p

4 · nb
8 · nb
12 · nb
16 · nb

(b) Bandwidth 1000

1 2 4 8 12 16

1
2
3
4
5
6
7
8
9
10

Ideal speedup

Processes

Sp
ee
du

p

(c) Bandwidth 2000

1 2 4 8 12 16

1
2

4

6

8

10

12 Ideal speedup

Processes

Sp
ee
du

p

4 · nb
8 · nb
12 · nb
16 · nb

(d) Bandwidth 4000

Figure 6.6: Speedups of the backtransformation (ParallelCWYtransposedLeft, Algorithm 42)
for various numbers of processes in a process group. The process grid is arranged
as 1 × ∗, where ∗ is the number of processes and all processes are arranged in a
row. The different lines give the results for different numbers of eigenvectors w.
The legends apply to all subfigures.

140

6.2 Twisted Crawford algorithm

1 2 4 8

1

2

3

4 Ideal speedup

Processes

Sp
ee
du

p

(a) Bandwidth 500

1 2 4 8 12 16

1

2

3

4

5 Ideal speedup

Processes

Sp
ee
du

p

4 · nb
8 · nb
12 · nb
16 · nb

(b) Bandwidth 1000

1 2 4 8 12 16

1

2

3

4

5

6

7

8 Ideal speedup

Processes

Sp
ee
du

p

(c) Bandwidth 2000

1 2 4 8 12 16

1
2

4

6

8

10

12

Ideal speedup

Processes

Sp
ee
du

p

4 · nb
8 · nb
12 · nb
16 · nb

(d) Bandwidth 4000

Figure 6.7: Speedups of the backtransformation (ParallelCWYtransposedLeft, Algorithm 42)
for various numbers of processes in a process group. The process grid is arranged
as ∗ × 1, where ∗ is the number of processes and all processes are arranged in a
column. The different lines give the results for different numbers of eigenvectors
w. The legends apply to all subfigures.

141

6 Performance Analysis

1 4 9 16 25 36

1

2

3

4

5

6

7
Ideal speedup

Processes

Sp
ee
du

p

(a) Bandwidth 500

1 4 9 16 25 36

1
2
3
4
5
6
7
8
9
10 Ideal speedup

Processes

Sp
ee
du

p

4 · nb
8 · nb
12 · nb
16 · nb

(b) Bandwidth 1000

1 4 9 16 25 36

1

4

6

8

10

12

14

16
Ideal speedup

Processes

Sp
ee
du

p

(c) Bandwidth 2000

1 4 9 16 25 36

1

4
6
8
10
12
14
16
18
20

Ideal speedup

Processes

Sp
ee
du

p

4 · nb
8 · nb
12 · nb
16 · nb

(d) Bandwidth 4000

Figure 6.8: Speedups of the backtransformation (ParallelCWYtransposedLeft, Algorithm 42)
for various numbers of processes in a process group. The process grid is arranged
as ∗× ∗, where ∗ is the number of processes in every direction of the process grid.
The different lines give the results for different numbers of eigenvectors w. The
legends apply to all subfigures.

142

6.2 Twisted Crawford algorithm

1 4 8 16 24 32 40 48

1

5

10

15

20

25 Ideal speedup

PGC pairs

Sp
ee
du

p

(a) Bandwidth-to-matrix-size ra-
tio 1%

1 4 8 16 24

1
2

4

6

8

10

12 Ideal speedup

PGC pairs

Sp
ee
du

p

(b) Bandwidth-to-matrix-size ra-
tio 2%

1 2 4 8 10

1

2

3

4

5

6

Ideal speedup

PGC pairs

Sp
ee
du

p

(c) Bandwidth-to-matrix-size
ratio 5%

Figure 6.9: Speedup for different numbers of PGC pairs for various bandwidth-to-matrix-size
ratio. The block size is fixed to 1000, thus the matrix size of the different cases
is 100000 for 1%, 50000 for 2% and 20000 for a bandwidth-to-matrix-size ratio of
5%. The theoretical speedup by Equation (5.17) is plotted as gray dashed line
without marks for comparison.

fixed to 1000 and thus the matrix sizes to 100000, 50000 and 20000. A tilesize of b = 150 was
used together with a ScaLAPACK blocksize of nscb = 50. Every process group consisted of
one process to eliminate the influence of communication within the process groups. To omit
effects of saturated memory bandwidth or communication bandwidth, every process group
was assigned to an own node.
Figure 6.9 shows the speedup results of the different runs to the regarding base run with
one pair of PGCs. The plots show good agreement in the speedup values as well as in the
inclination. Surprisingly, the computational results outperform the theoretical estimations. A
possible reason might be that, when using only a few PGC pairs, the computational load per
process is very high and the clockspeed of the CPU is reduced. This leads to a slower baseline
and that causes high speedups for less CPU intensive PGC pair numbers. However, this has
not been investigated in this work.

So far, only the transformation of the banded GEP to the banded SEP has been inspected.
For the backtransformation the same analysis can be carried out. Only the case of backtrans-
formation for 12.5% of the eigenvectors is analyzed exemplarily. The computational setup was
chosen as described for the transformation of the GEP to the SEP.
The obtained speedups are shown in Figure 6.10. Again, a good agreement between the the-
oretical values and the computational speedups is found.
Hence, Equations (5.17) and (5.18) are as well good estimators for the speedup when adding
pairs of PGCs to the backtransformation step. Since the formulas work for the twisted Craw-
ford part and the backtransformation part, they can serve as general estimator for the speedup
when increasing the number of PGC pairs.

6.2.3 Parallel execution of the upper and a lower matrix half

Theoretical assumptions for speedups and the optimal choices for P are derived in Sec-
tion 5.1.3. These theoretical numbers are now evaluated in numerical experiments.

143

6 Performance Analysis

1 4 8 16 24 32 40 48

1

5

10

15

20

25 Ideal speedup

PGC pairs

Sp
ee
du

p

(a) Bandwidth-to-matrix-size ra-
tio 1%

1 4 8 16 24

1
2

4

6

8

10

12
Ideal speedup

PGC pairs

Sp
ee
du

p

(b) Bandwidth-to-matrix-size ra-
tio 2%

1 2 4 8 10

1

2

3

4

5

Ideal speedup

PGC pairs

Sp
ee
du

p

(c) Bandwidth-to-matrix-size
ratio 5%

Figure 6.10: Speedup for different numbers of PGC pairs for various bandwidth-to-matrix-
size ratio during backtransformation. The block size is fixed to 1000, thus the
matrix size of the different cases is 100000 for 1%, 50000 for 2% and 20000 for a
bandwidth-to-matrix-size ratio of 5%. In all cases, 12.5% of the eigenvectors are
computed. The theoretical speedup by Equation (5.17) is plotted as gray dashed
line without marks for comparison.

Figure 5.1 plots the number of time steps in parallel (relative to the duration of one QR
decomposition and its left and right-sided application) over the choice of P for various PGC
distributions. The curves obtained for each PGC distribution are evaluated at the begin-
ning. To do so, a bandwidth-to-matrix-size ratio of 1% is chosen together with nb = 1000,
ts = 150 and nscb = 50. In total, the number of pairs of PGCs is kept constant at 10. For the
experiments, the PGC distributions 2/8, 4/6, 5/5, 6/4 and 8/2 have been selected and the
computation time was measured for different P .
Figure 6.11 shows the regarding theoretical curves in gray, in color the measurements for the
twisted Crawford algorithm (blue squares) and the backtransformation measurements (red
triangles). The measurements agree well with the curves and hence it can be assumed that
the prediction of the best P value for a given PGC setup is sufficiently precise.

After validating the prediction of the best P value for single PGC distributions, the speedup
of the different PGC distributions against a pure lower matrix half run is plotted. This allows
to evaluate the prediction of the attainable speedup for every PGC distribution as it is shown
in Figure 5.1 by the gray curve. Figure 6.12 plots the measurements against the theoretical
values. The measurements follow the curve but over and undershoot the prediction slightly.
The best speedup values for the twisted Crawford algorithm were achieved for four pairs of
PGCs in the upper and six pairs in the lower matrix half (P = 45) and five pairs of PGCs
in each half (P = 50). For the backtransformation the best speedup was found for five pairs
of PGCs in each matrix half. The attainable speedup was predicted to be 1.98 and was
measured at 1.96 for the twisted Crawford algorithm and 2.03 for the backtransformation.
Thus, the theoretical predictions have shown their capabilities and the supposed best setup
with P = N/2 and equal splitting of the PGCs has shown to be the best choice. Due to the
attained speedup, the use of a twisted factorization is highly recommended.

144

6.2 Twisted Crawford algorithm

20 40 60 80

1

2

3

4

5

P

ti
m
e
re
le
at
iv
e
to
t m

in

(a) 2 PGCs upper, 8 lower ma-
trix half

20 40 60 80

1

2

3

P
ti
m
e
re
le
at
iv
e
to
t m

in

(b) 4 pairs of PGCs upper, 6
lower matrix half

20 40 60 80

1

2

3

P

ti
m
e
re
le
at
iv
e
to
t m

in

(c) 5 pairs of PGCs upper, 5
lower matrix half

20 40 60 80

1

2

3

P

ti
m
e
re
le
at
iv
e
to
t m

in

(d) 6 pairs of PGCs upper, 4
lower matrix half

20 40 60 80

1

2

3

4

5

P

ti
m
e
re
le
at
iv
e
to
t m

in

Theory
Twisted Crawford
Backtransformation

(e) 8 pairs of PGCs upper, 2 lower matrix half

Figure 6.11: Effect of the choice of P on the computation time for 10 pairs of PGCs in various
distributions to the upper and lower matrix half for a bandwidth-to-matrix-size
ratio of 1%. The legend applies to all subfigures.

0 4 8 10 12 16 20

1

1.2

1.4

1.6

1.8

2

PGCs in upper matrix half

Sp
ee
du

p

Theory
Twisted Crawford
Backtransformation

Figure 6.12: Speedup of using a twisted factorization instead of a standard Cholesky factor-
ization for B at a bandwidth-to-matrix-size ratio of 1% for different distributions
of PGCs to the upper and lower matrix half. For every PGC combination, the
best P setup was chosen.

145

6 Performance Analysis

6.2.4 Scaling of the overall implementation

After evaluating the single parallelization layers, the pieces can be put together and the overall
scaling is analyzed.

Strong scaling describes the speedup by increasing the number of processes for a fixed prob-
lem size. It is connected to Amdahl’s law [2], which gives a hint on the serial part of a code
and describes the limits of scaling.
Tests for strong scaling have been carried out for bandwidth-to-matrix-size ratios of 1%, 2%
and 5%. As blocksize nb = 2000 was used for 1% and 2% and nb = 5000 for 5% bandwidth-to-
matrix-size ratio. The former showcase the behavior for a small blocksize and long pipelines,
the latter for large blocks and a short pipeline. The QR blocking factor was fixed to 150, nscb
to 50 and the number of eigenvectors to transform back, was selected to be 12500 for all runs.

Figure 6.13 shows the scaling results for a bandwidth-to-matrix-size ratios of 1%, Figure 6.14
for a bandwidth-to-matrix-size ratio of 2% and Figure 6.15 for a bandwidth-to-matrix-size ra-
tio of 5%.
For a bandwidth-to-matrix-size ratios of 1%, both parts of the algorithm scale very well and
good speedups can be attained. As expected after analyzing the scaling on the block and
inter-block level, an increase of the number of processes per process group can lead to higher
computation time in comparison with the same number of processes but less processes per
process group when running the twisted Crawford part. The effect can especially be seen for
the 8 × 6 process group setup in comparison with the setup 6 × 4. The latter uses a higher
number of PGCs and hence is faster. In the backtransformation, this effect cannot be seen.
The plot of all parts includes the factorization of B and the overhead from transforming ma-
trices from and to ScaLAPACK format. Both scale by the number of processes per process
group and are more or less constant when adding additional PGCs.
The same behavior can be observed for a bandwidth-to-matrix-size ratio of 2%. In this case,
saturation effects using more and more PGCs can be seen. The curves for the single process
group setups flatten for the last measurement and are outperformed by the next larger process
group setup.
A bandwidth-to-matrix-size ratio of 5% draws a little different picture. Due to the bigger nb,
block scaling becomes more efficient and the plot for the twisted Crawford part shows almost
a straight line. The backtransformation step has already shown in the other bandwidth-to-
matrix-size ratios that shifting processes from process groups to PGCs does not improve the
runtime. In this case, the situation becomes more extreme and the opposite is the case.

After inspecting the strong scaling behavior, the selection of the best process setup remains
a challenging task. In general, it is recommendable to first increase the PGC number. By
having a look on Figures 6.9 and 6.10 it can be seen when and how the attainable speedup
decreases and in combination with Figure 6.5 and Figure 6.8, the decision when to increase
the processes per process group can be made.

Finally, the weak scaling of the implementation shall be analyzed. Gustafson [31] pointed
out that problem sizes will generally scale with the available computational resources. Weak
scaling analyzes how implementations behave when keeping the computational load per pro-
cess constant while increasing the problem size. Obviously, to keep the load per process

146

6.2 Twisted Crawford algorithm

800 1600 3200 6400 12800

40

30

25

20

15
Ideal speedup

processes

t
in

s

(a) Twisted Crawford

800 1600 3200 6400 12800

40

30

20

15

10

Ideal speedup

processes

t
in

s

(b) Backtransformation of eigen-
vectors

800 1600 3200 6400 12800

80

60

40

30
Ideal speedup

processes

t
in

s

8× 5
6× 4
4× 3

(c) All parts

Figure 6.13: Scaling of twisted Crawford algorithm and backtransformation employing all par-
allelization levels for a matrix of size 200000, The blocksize is 2000 (bandwidth-
to-matrix-size ratio 1%), the twist position at 100000. For backtransformation,
12500 eigenvectors have been transformed. The right plot shows the overall run-
time, including factorization and matrix redistributions. The different lines show
different setups of process groups. The legend applies to all subfigures.

200 400 800 1600 3200 6400

70

40

20

15

10 Ideal speedup

processes

t
in

s

(a) Twisted Crawford

200 400 800 1600 3200 6400

70

40

20
15

10

5

Ideal speedup

processes

t
in

s

(b) Backtransformation of eigen-
vectors

200 400 800 1600 3200 6400

160

80

40

20

15

Ideal speedup

processes

t
in

s

8× 5
6× 4
4× 3
3× 2

(c) All parts

Figure 6.14: Scaling of twisted Crawford algorithm and backtransformation employing all par-
allelization levels for a matrix of size 100000, The blocksize is 2000 (bandwidth-
to-matrix-size ratio 2%), the twist position at 50000. For backtransformation,
12500 eigenvectors have been transformed. The right plot shows the overall run-
time, including factorization and matrix redistributions. The different lines show
different setups of process groups. The legend applies to all subfigures.

147

6 Performance Analysis

200 400 800 1600 3200

120

80

60

40

20
Ideal speedup

processes

t
in

s

(a) Twisted Crawford

200 400 800 1600 3200

80

60

40

20

10

Ideal speedup

processes

t
in

s
(b) Backtransformation of eigen-

vectors

200 400 800 1600 3200

240

180

120

60

30

Ideal speedup

processes

t
in

s

8× 5
6× 4
4× 3
3× 2

(c) All parts

Figure 6.15: Scaling of twisted Crawford algorithm and backtransformation employing all par-
allelization levels for a matrix of size 100000, The blocksize is 5000 (bandwidth-
to-matrix-size ratio 5%), the twist position at 50000. For backtransformation,
12500 eigenvectors have been transformed. The right plot shows the overall run-
time, including factorization and matrix redistributions. The different lines show
different setups of process groups. The legend applies to all subfigures.

constant, the number of processes has to be increased as the problem size grows.
Increasing the problem size can be interpreted as increasing the blocksize nb while increas-
ing the number of processes per process group. This goes along with keeping the number of
blocks, N , constant, thus the bandwidth-to-matrix-size ratio stays constant while increasing
the matrix size. Another interpretation could be to increase also the number of blocks and
hence decrease the bandwidth-to-matrix-size ratio successively. Which interpretation fits bet-
ter depends on the origin of the eigenvalue problem. Here, the former is chosen and nb is
increased while N stays constant.

For this test, N is kept constant at 20, b = 150 and nscb = 50. The number of eigenvectors
w is increased along with the matrix size, 10% of the eigenvectors are transformed back. The
number of PGCs is kept constant at 8. This allows to only inspect the weak scaling of the
block parallelization. The reason for this approach is that, as the strong scaling has shown,
first, the number of PGCs is increased successively and after saturation starts to come into
play, the number of processes per process group is increased. Hence, the starting point will
usually be to have many PGCs but small process groups. Further increasing the number of
PGCs will then not pay off and the processes are better invested in process groups. The
growing blocksize also supports better scaling in the process groups.

The results of the experiment are shown in Figure 6.16. The overall number of processes is
raised from 24 to 2400. This translates to an increase in the size of the process groups from
1 process to 100 processes. Since the number of PGCs is kept constant, the overall number
of processes raises by this factor. While increasing nb from 1000 to 10000, thus by a factor of
100, the runtime increases by a factor of 19.6 for the twisted Crawford part and by 20.8 for
the backtransformation.

148

6.2 Twisted Crawford algorithm

24 600 1176 1944 2400

0

50

100

processes

t
in

s

Twisted Crawford
Backtransformation

Figure 6.16: Weak scaling of the twisted Crawford algorithm and the backtransformation of
eigenvectors.

6.2.5 Comparison to ELPA

In the following, a comparison study between the twisted Crawford algorithm and the ELPA
two-step solver [37] (release 2018.11.001) is carried out. Matrices of size 10000, 50000 and
100000 are used as test matrices. For ELPA, the bandwidth of A and B does not matter since
it assumes full matrices. In the twisted Crawford algorithm, bandwidth-to-matrix-size ratios
of 1%, 2% and 5% are used. The intermediate bandwidth of ELPA is set to 32. The twisted
Crawford algorithm uses b = 150 and nscb = 50. The percentage of eigenvectors to transform
back was chosen to be 12.5%. Hence, 1250 for matrix size 10000, 6250 for matrix size 50000
and 12500 for matrix size 100000.

Table 6.1 shows the results for matrix size 10000. In this case, the bandwidths of the ma-
trices are 100, 200 and 500. Due to the small bandwidth, no bandreduction step was used
after running the twisted Crawford algorithm. Thus, the tridiagonalization step of ELPA was
run with bandwidths of 100, 200 and 500. Optimal values are usually in the range of 32 to
64 [4]. In ELPA, a novel matrix multiplication algorithm by Manin [45] following Cannon’s
ideas [18] can be used if slightly increasing the number of processes to a setup where in the
process layout pc is a multiple of pr. Using Manin’s Cannon multiplication, ELPA computes
significantly faster.
Computing the eigenspektrum for a bandwidth-to-matrix-size ratio of 1%, the speedup of the
twisted Crawford approach to ELPA is roughly 3, for a bandwidth-to-matrix-size ratio of 2%,
the speedup is about 2. However, for a bandwidth-to-matrix-size ratio of 5%, ELPA is faster
by a factor of more than 2. The reason is, that the tridiagonalization step becomes extremely
slow for a bandwidth of 500. Hence, a bandreduction step might help to reduce the computa-
tion time in this case.

Such a bandreduction algorithm is currently under development by Manin. He follows the
approach in [14]. Other ideas can be found in [9], where avoiding communication is a key fact
of the algorithm and [52], where blocked Givens rotations are employed. Manin’s implemen-
tation is still under development. Hence, the numbers are preliminary and should improve as
the algorithm matures.
The right most column in Table 6.1 shows timings for combining the twisted Crawford algo-
rithm with Manin’s bandreduction algorithm. The band is reduced from 500 to 100 by the

149

6 Performance Analysis

ELPA Twisted Crawford

Cannon no Cannon nb/n = 1% nb/n = 2% nb/n = 5%

Processes 121 120 120 120 120 120

Factorization 0.36 0.39 0.018 0.039 0.13 0.13

Transformation to banded
form

1.83 2.61 0.15 0.20 0.37 0.37

Further bandreduction 0 0 0 0 0 1.13

Compute EV, EVec for
banded matrix

0.47 0.45 0.62 1.12 6.62 0.62

Backtransformation from
banded form

0.26 0.26 0.12 0.14 0.15 0.15

Further backtransformation 0 0 0 0 0 0.28

Matrix redistributions 0 0 0.019 0.028 0.037 0.061

Sum 2.91 3.72 0.93 1.53 7.31 2.74

Speedup to Cannon 1.00 0.78 3.13 1.90 0.40 1.07

Table 6.1: Comparison of timings obtained by ELPA and the twisted Crawford algorithm
for a matrix of size 10000 on 120 processes without further bandreduction. 1250
eigenvectors have been transformed back. For a bandwidth-to-matrix-size ratio of
5%, additionally, the variant using a bandreduction step is listed.

bandreduction and afterwards, the tridiagonalization of ELPA is run. After ELPA delivered
the eigenvalues and eigenvectors, the latter are transformed back by the bandreduction algo-
rithm and finally, transformed back by the twisted Crawford algorithm.
Between the twisted Crawford algorithm and the bandreduction step the matrix is trans-
formed to ScaLAPACK format. This intermediate format can be omitted when immediately
transforming the twisted Crawford format to the bandreduction format. However, since the
bandreduction algorithm is still under development, this implementation has not been con-
ducted yet.
By transforming the banded matrix to a narrower banded matrix, the computation of the
eigenvalues and vectors for the banded matrix is accelerated by a factor of 10. The band-
reduction is rather expensive with 1.13 seconds and and the backtransformation takes 0.28
seconds. The overall runtime sums up to 2.74 and is hence slightly faster than the ELPA runs
with Cannon’s algorithm. The importance of the bandreduction step can be observed when
comparing the numbers with and without bandreduction step. The runtime decreased by a
factor of 2.67.

Table 6.2 gives the results for matrix size 50000 when using 720 processes or 729 processes
running ELPA with Cannon’s algorithm. As already seen for matrix size 10000, the time to
solution in the twisted Crawford algorithm depends on the bandwidth-to-matrix-size ratio.
The smaller the ratio, the faster the computation. Even if the block parallelization gets worse
by having smaller blocks, the number of blocks grows and hence, the speedup by pipelining
compensates.

150

6.2 Twisted Crawford algorithm

ELPA Twisted Crawford

Cannon no Cannon nb/n = 1% nb/n = 2% nb/n = 5%

Processes 729 720 720 720 720

Factorization 6.52 7.14 0.40 0.58 1.52

Transformation to banded
form

39.49 50.77 2.14 3.46 7.67

Further bandreduction 0 0 7.64 8.59 16.49

Compute EV, EVec for
banded matrix

5.55 4.92 5.87 5.87 5.87

Backtransformation from
banded form

6.73 7.16 3.33 2.84 3.95

Further backtransformation 0 0 8.89 8.49 7.41

Matrix redistributions 0 0 0.49 0.29 0.49

Sum 58.30 70.01 28.76 30.11 43.41

Speedup to Cannon 1.00 0.83 2.03 1.94 1.34

Table 6.2: Comparison of timings obtained by ELPA and the twisted Crawford algorithm for
a matrix of size 50000 on 720 processes. 6250 eigenvectors have been transformed
back.

The most expensive part in the ELPA runs is the transformation from the GEP to the banded
SEP. Here, all three twisted Crawford runs outperform ELPA by far. When considering the
bandreduction step this statement still holds. The backtransformation from banded form is
also approximately twice as fast in the twisted Crawford algorithm. However, when consider-
ing the band-to-band backtransformation, things change. This part is very costly and when
considering it, the backtransformation takes twice as long as the ELPA backtransformation.
The transformations between matrix formats do not have a huge impact on the runtime. The
overall runtime of the twisted Crawford algorithm is smaller in all three cases. For the case of
1% bandwidth-to-matrix-size ratio, it is half of the runtime of ELPA with Cannon’s algorithm.
Even if the bandreduction is still under developement and shorter runtimes are expectable for
the final implementation, this test-series has shown that the twisted Crawford algorithm to-
gether with a bandreduction algorithm is superior for medium-sized matrices with thin bands.

Similar results can be seen in Table 6.3 for matrix size 100000, which was computed by 1440
processes using the twisted Crawford algorithm or standard ELPA, and by 1444 processes us-
ing ELPA’s Cannon variant. The runtime of the twisted Crawford runs is now fully dominated
by the bandreduction step and the regarding backtransformation. Further improvements on
these substeps will hence accelerate the overall runtime drastically.
The obtained speedups 1.88 for a bandwidth-to-matrix-size ratio of 1%, 1.81 for 2% and 1.17
for 5% show also for larger matrices the advantage of the twisted Crawford approach.

To conclude, for thin banded matrices of size 10000, 50000 and 100000, the twisted Craw-
ford algorithm outperforms classical two-step solvers like the one in ELPA. The bottleneck

151

6 Performance Analysis

ELPA Twisted Crawford

Cannon no Cannon nb/n = 1% nb/n = 2% nb/n = 5%

Processes 1444 1440 1440 1440 1440

Factorization 23.26 27.31 1.11 2.11 5.08

Transformation to banded
form

132.47 173.82 7.06 13.44 30.78

Further bandreduction 0 0 29.74 33.55 72.68

Compute EV, EVec for
banded matrix

18.11 17.73 17.64 17.64 17.64

Backtransformation from
banded form

19.18 22.86 11.78 12.81 13.80

Further backtransformation 0 0 34.14 25.62 23.88

Matrix redistributions 0 0 1.21 1.40 1.22

Sum 193.04 241.72 102.68 106.56 165.09

Speedup to Cannon 1.00 0.80 1.88 1.81 1.17

Table 6.3: Comparison of timings obtained by ELPA and the twisted Crawford algorithm for a
matrix of size 100000 on 1440 processes. 12500 eigenvectors have been transformed
back.

is the bandreduction algorithm and the regarding backtransformation. Both are still under
development and further improvements will boost the advantage of the twisted Crawford al-
gorithm.
For all cases of the twisted Crawford, the factorization step is faster as the one in ELPA.
This is mainly because of exploiting the banded structure (of different bandwidth; hence, the
differences within the twisted Crawford numbers). Another reason is, that the factorization
algorithm is split in two matrix halves that are processed in parallel.

The biggest matrix addressed by ELPA (which has been reported) so far had a matrix size
of 1 million [41]. Similar numbers can be found for EigenExa [33]. For both solvers, sizes like
this are challenging and require lots of resources. The ELPA run was carried out using 200000
cores of the supercomputer Theta [38] at Argonne National Laboratory and took around 10000
seconds to compute the eigenvalues of the SEP.
Table 6.4 gives results using the twisted Crawford algorithm together with Manin’s bandreduc-
tion, ELPA’s tridiagonalization procedure and ELPA’s eigenvalue computation for tridiagonal
matrices. The overall runtime for 15360 cores with 3282.51 seconds and 2777.42 seconds for
24000 cores is by far smaller than what is reported for ELPA, even when using by far less
resources. Clearly, comparing the Skylake nodes of SuperMUC-NG to the Knight’s Landing
chips in Theta does not allow a fair comparison. However, the underlying computing power
by the 200000 cores of Theta is by far bigger than 15360 or 24000 cores of SuperMUC-NG.

This comparison allows to conclude, that the twisted Crawford algorithm allows to ad-
dress GEPs of large matrices with much less resources. Additionally to saving computational

152

6.3 Crawford SVD algorithm

Processes 15360 24000

Process setup 8× 8, 80 PGC 10× 10, 80 PGC

Factorization 117.42 85.80

Transformation to banded form 616.31 456.38

Further bandreduction 1756.83 1623.75

Tridiagonalization and solve 791.95 611.49

Sum 3282.51 2777.42

Table 6.4: Computing the eigenvalues of a GEP with matrix size 1 million and bandwidth
10000.

resources and thus energy, the time to solution reduces drastically. Due to the lower require-
ments on hardware resources and the shorter computation time, problem sizes which have
been out of reach for direct solvers can now be tackled using the twisted Crawford algorithm.

6.3 Crawford SVD algorithm

In the previous chapter, theoretical assumptions have been made on the implementation of
the Crawford SVD algorithm. In the following, these assumptions are going to be evaluated
experimentally. First, the single parallelization layers will be analyzed and afterwards the scal-
ing of the overall algorithm is tested for different scenarios. The backtransformation of the
singular vectors has not been implemented and is hence not going to be evaluated. However,
the left singular vectors can be obtained by using a simplified version of the implementation
of the eigenvector backtransformation without applying the inversion steps.

Since only the computation time is of interest for scaling tests, it is sufficient to use random
matrices. Therefore, symmetric positive definite random matrices with the desired bandwidth
have been created and by factorization (Cholesky or twisted) transformed to banded lower
triangular matrices or banded twisted matrices.

6.3.1 Block and inter-block parallelization

The analysis of the scaling behavior of the block and inter-block parallelization targets the
efficiency of the implementations of the QR, QL, RQ and LQ steps. Every block contains a 2D
process grid to which the data is assigned to in a 2D blockcyclic way. A theoretical analysis
of the algorithms regarding runtime has been conducted in Chapter 5. To assign the data to
the process grid in a blockcyclic way, a certain blocksize nscb has to be defined. This value is
determined experimentally since it does not appear in the theoretical formulas. Additionally,
the blocking factors for the left (bl) and right (br) sided transformations are obtained experi-
mentally.

153

6 Performance Analysis

120 140 160 180 200 220 240 260

1.2

1.3

1.4

1.5

1.6

·10−2

Tilesize bl

T
im

e

(a) Bandwidth 500

120 140 160 180 200 220 240 260

3.8

4

4.2

4.4

4.6

4.8

5

·10−2

Tilesize bl

T
im

e

nscb = 20
nscb = 40
nscb = 50
nscb = 80

QR
QL

(b) Bandwidth 1000

120 140 160 180 200 220 240 260

0.19

0.2

0.21

0.22

0.23

Tilesize bl

T
im

e

(c) Bandwidth 2000

120 140 160 180 200 220 240 260

1.1

1.2

1.3

Tilesize bl

T
im

e

nscb = 20
nscb = 40
nscb = 50
nscb = 80

QR
QL

(d) Bandwidth 4000

Figure 6.17: Time to solution for various bandwidth nb: Different values of nscb are plotted
over the QR and QL tilesize. A block itself is distributed on a 2× 2 process grid.
The legends apply to all subfigures.

Two process group setups (2× 2 and 4× 4 processes) have been used to compute the run-
time of QR, QL, RQ and LQ for different numbers of nscb, bl and br. The runtimes have been
measured in an isolated way where only the regarding transformation was carried out. For
the test, blocksizes of nb ∈ {500, 1000, 2000, 4000} have been used.
Figures 6.17 and 6.18 show the results for the left-sided transformations of the two process
group setups mentioned. Smaller blocksizes tend to give better results for smaller tilesizes.
The bigger blocksizes provide the best results for intermediate numbers of bl. Regarding nscb,
small values seem to be beneficial but for nb = 4000, the results are by far worse than with
the other nscb values.
Figures 6.19 and 6.20 provide the view on the right-sided transformations. Besides a few cases,
also for RQ and LQ nscb = 20 is the best choice. However, for nb = 4000 and a 2× 2 process
grid the performance is worse than for the other values of nscb. The behavior regarding the
tilesizes depends again highly on nb. Smaller nb prefer smaller tilesizes br whereas nb = 4000
prefers high values for br.
For the further experimental setups a unique setup shall be selected. Hence, as a compromise,
nscb = 50 together with bl = 175 and br = 100 will be used in the following computational runs.

The analysis of the scaling behavior of the block and inter-block parallelization targets the
efficiency of the implementations of the QR, QL, RQ and LQ steps. A theoretical analysis of
the algorithms regarding runtime has been conducted in Chapter 5. This is here extended by
numerical experiments on the scaling behavior of the algorithms. Isolated runs of the kernels

154

6.3 Crawford SVD algorithm

120 140 160 180 200 220 240 260

0.9

1

1.1

1.2

·10−2

Tilesize bl

T
im

e

(a) Bandwidth 500

120 140 160 180 200 220 240 260

2.2

2.4

2.6

2.8

3

3.2

·10−2

Tilesize bl

T
im

e

nscb = 20
nscb = 40
nscb = 50
nscb = 80

QR
QL

(b) Bandwidth 1000

120 140 160 180 200 220 240 260
7 · 10−2

8 · 10−2

9 · 10−2

0.1

0.11

0.12

Tilesize bl

T
im

e

(c) Bandwidth 2000

120 140 160 180 200 220 240 260

0.4

0.42

0.44

0.46

0.48

0.5

Tilesize bl

T
im

e

nscb = 20
nscb = 40
nscb = 50
nscb = 80

QR
QL

(d) Bandwidth 4000

Figure 6.18: Time to solution for various bandwidth nb: Different values of nscb are plotted
over the QR and QL tilesize. A block itself is distributed on a 4× 4 process grid.
The legends apply to all subfigures.

155

6 Performance Analysis

40 60 80 100 120 140 160

1.1

1.2

1.3

·10−2

Tilesize br

T
im

e

(a) Bandwidth 500

40 60 80 100 120 140 160

4.2

4.4

4.6

4.8

5

·10−2

Tilesize br

T
im

e

nscb = 20
nscb = 40
nscb = 50
nscb = 80

RQ
LQ

(b) Bandwidth 1000

40 60 80 100 120 140 160

0.22

0.24

0.26

0.28

Tilesize br

T
im

e

(c) Bandwidth 2000

40 60 80 100 120 140 160

1.4

1.6

1.8

2

2.2

Tilesize br

T
im

e

nscb = 20
nscb = 40
nscb = 50
nscb = 80

RQ
LQ

(d) Bandwidth 4000

Figure 6.19: Time to solution for various bandwidth nb: Different values of nscb are plotted
over the RQ and LQ tilesize. A block itself is distributed on a 2× 2 process grid.
The legends apply to all subfigures.

156

6.3 Crawford SVD algorithm

40 60 80 100 120 140 160

0.85

0.9

0.95

1

1.05

·10−2

Tilesize br

T
im

e

(a) Bandwidth 500

40 60 80 100 120 140 160

2.2

2.4

2.6

·10−2

Tilesize br

T
im

e

nscb = 20
nscb = 40
nscb = 50
nscb = 80

RQ
LQ

(b) Bandwidth 1000

40 60 80 100 120 140 160

8 · 10−2

8.5 · 10−2

9 · 10−2

9.5 · 10−2

0.1

0.11

Tilesize br

T
im

e

(c) Bandwidth 2000

40 60 80 100 120 140 160

0.5

0.55

0.6

0.65

Tilesize br

T
im

e

nscb = 20
nscb = 40
nscb = 50
nscb = 80

RQ
LQ

(d) Bandwidth 4000

Figure 6.20: Time to solution for various bandwidth nb: Different values of nscb are plotted
over the RQ and LQ tilesize. A block itself is distributed on a 4× 4 process grid.
The legends apply to all subfigures.

157

6 Performance Analysis

for QR, QL, RQ and LQ have been carried out for the blocksizes 500, 1000, 2000 and 4000.
The number of processes per process group and their arrangement in the 2D process grid of
the process group have been varied to study the scaling behavior. Every process group was
assigned to a single node to exclude influence from other sources.

In Figure 6.21 the speedups compared to one process per PG are plotted for the case of
arranging the processes in a grid of 1×∗ processes. Consequently, the columns of the block are
distributed but not the rows. For the left-sided transformations, this leads to stagnation while
the right-sided transformations still scale. The reason is the repetition of the T computation
over the columns during the left-sided transformation. In the right-sided transformations, the
T computation is distributed over the columns and repeated over the rows.

Figure 6.22 shows the opposite picture for process setups of the shape ∗ × 1: While the
left-sided transformations scale well, the runtime of the right-sided transformations barely im-
proves after a few processes. Besides the mentioned T computation, which is not distributed
for right-sided transformations, Equations (5.26) and (5.27) can be used to analyze the scaling.
The right-sided transformations benefit more from increasing pc than from increasing pr.

When inspecting Equations (5.9), (5.10), (5.26) and (5.27), it becomes obvious that quadratic
or almost quadratic process setups will give the best computational results. To evaluate this,
quadratic setups have been used and the result is plotted in Figure 6.23. As expected, the
obtained speedups for the left and the right-sided transformation are similar. For the right-
sided transformations they are slightly higher when having nb ∈ {2000, 4000}, but in absolute
values, left and right-sided transformations end up being almost equally fast when increasing
the number of processes per process group. For the left as well as for the right-sided updates,
scaling stops at a certain number of processes.

6.3.2 Pipelining approach

The development of runtime when adding additional pairs of PGCs is described in Equa-
tions (5.17) and (5.18). The regarding Table 5.1 presents the speedup numbers and parallel
efficiency values for the bandwidth-to-matrix-size ratios of 1%, 2% and 5%. To evaluate the
formula for SVD, a numerical experiment has been carried out. The blocksize nb was fixed
to 1000 and for the three bandwidth-to-matrix-size ratios the runtime was measured when
increasing the number of PGCs. In this experiment, the tilesizes bl = 175, br = 100 and a
ScaLAPACK blocksize of nscb = 50 was used. To ensure that other factors do not influence
the runtime, a process group consisted of one process and every process group was assigned to
a single node. Since in the SVD algorithm the code for the upper matrix half is not the same
as for the lower matrix half (at least when having a twisted matrix F and a banded lower
triangular matrix G), the experiment was run for P = 0 and P = N . This means that in the
first case, only the lower matrix half algorithm is run, in the latter only the upper matrix half
algorithm is run.
The results are given in Figure 6.24. The curves for all bandwidth-to-matrix-size ratios agree
very well with the prediction by Equations (5.17) and (5.18). The inclination is well captured
and also the absolute speedup values are almost exactly hit for P = 0. For P = N , the
speedup values fall a little behind the theoretical prediction but the inclination of the curves

158

6.3 Crawford SVD algorithm

1 2 4 8

1

2

3 Ideal speedup

Processes

Sp
ee
du

p

(a) Bandwidth 500

1 2 4 8 12 16

1

2

3

4

5
Ideal speedup

Processes

Sp
ee
du

p

QR
QL
RQ
LQ

(b) Bandwidth 1000

1 2 4 8 12 16

1

2

3

4

5

6

7

8

9
Ideal speedup

Processes

Sp
ee
du

p

(c) Bandwidth 2000

1 2 4 8 12 16

1
2

4

6

8

10

12 Ideal speedup

Processes

Sp
ee
du

p

QR
QL
RQ
LQ

(d) Bandwidth 4000

Figure 6.21: Speedups of the left (ParallelBlockedQR Algorithm 37 and ParallelBlockedQL
Algorithm 53) and the right-sided updates (ParallelBlockedLQ Algorithm 59 and
ParallelBlockedRQ Algorithm 60) for various numbers of processes in a process
group. The process grid is arranged as 1×∗, where ∗ is the number of processes.
The legends apply to all subfigures.

159

6 Performance Analysis

1 2 4 8

1

2

3 Ideal speedup

Processes

Sp
ee
du

p

(a) Bandwidth 500

1 2 4 8 12 16

1

2

3

4

5

Ideal speedup

Processes

Sp
ee
du

p

QR
QL
RQ
LQ

(b) Bandwidth 1000

1 2 4 8 12 16

1

2

3

4

5

6

7

8
Ideal speedup

Processes

Sp
ee
du

p

(c) Bandwidth 2000

1 2 4 8 12 16

1
2

4

6

8

10

12 Ideal speedup

Processes

Sp
ee
du

p

QR
QL
RQ
LQ

(d) Bandwidth 4000

Figure 6.22: Speedups of the left (ParallelBlockedQR Algorithm 37 and ParallelBlockedQL
Algorithm 53) and the right-sided updates (ParallelBlockedLQ Algorithm 59 and
ParallelBlockedRQ Algorithm 60) for various numbers of processes in a process
group. The process grid is arranged as ∗× 1, where ∗ is the number of processes.
The legends apply to all subfigures.

160

6.3 Crawford SVD algorithm

1 4 9 16 25 36

1

2

3 Ideal speedup

Processes

Sp
ee
du

p

(a) Bandwidth 500

1 4 9 16 25 36

1

2

3

4

5 Ideal speedup

Processes

Sp
ee
du

p

QR
QL
RQ
LQ

(b) Bandwidth 1000

1 4 9 16 25 36

1
2

4

6

8

10 Ideal speedup

Processes

Sp
ee
du

p

(c) Bandwidth 2000

1 4 9 16 25 36

1
2
4
6
8
10
12
14
16
18

Ideal speedup

Processes

Sp
ee
du

p

QR
QL
RQ
LQ

(d) Bandwidth 4000

Figure 6.23: Speedups of the left (ParallelBlockedQR Algorithm 37 and ParallelBlockedQL
Algorithm 53) and the right-sided updates (ParallelBlockedLQ Algorithm 59 and
ParallelBlockedRQ Algorithm 60) for various numbers of processes in a process
group. The process grid is arranged as ∗ × ∗ in a quadratic way, where ∗ is the
number of processes. The legends apply to all subfigures.

161

6 Performance Analysis

1 4 8 16 24 32 40 48

1

5

10

15

20

25 Ideal speedup

PGC pairs

Sp
ee
du

p

(a) Bandwidth-to-matrix-size
ratio 1%

1 4 8 16 24

1
2

4

6

8

10

12 Ideal speedup

PGC pairs

Sp
ee
du

p
(b) Bandwidth-to-matrix-size

ratio 2%

1 2 4 8 10

1

2

3

4

5
Ideal speedup

PGC pairs

Sp
ee
du

p

Theory
P = 0
P = N

(c) Bandwidth-to-matrix-size ratio 5%

Figure 6.24: Speedup using only the upper or the lower matrix half algorithm for different
numbers of PGC pairs for various bandwidth-to-matrix-size ratios. The block
size is fixed to 1000, thus the matrix size of the different cases is 100000 for
1%, 50000 for 2% and 20000 for a bandwidth-to-matrix-size ratio of 5%. The
theoretical speedup by Equation (5.17) is plotted as gray dashed line without
marks for comparison.

agrees well. Hence, Equations (5.17) and (5.18) have shown to be good estimators for the
speedup when increasing the number of PGC pairs.

6.3.3 Parallel execution of the upper and a lower matrix half

In the following, the speedup between twisted and non-twisted computations is inspected.
This becomes of special interest if F is not given in banded lower triangular or twisted shape
but is provided as B = F TF . Then the question which method of factorization leads to the
best results has to be raised and the theoretical predictions and the numerical experiments
allow to answer it.
For this experiment, the setup of the pipelining approach with nb = 1000, bl = 175, br = 100
and nscb = 50 was chosen for bandwidth-to-matrix-size ratios of 1%, 2% and 5%. The number
of PGCs was fixed to 20 for the computations.
The timings of only the lower matrix half algorithm (P = 0) and only the upper matrix half
algorithm (P = N) are compared with the variant of computing the upper and lower matrix
half simultaneously (P = N/2). Table 6.5 lists the results of the computations and gives the
speedup of P = N/2 over the pure upper or pure lower matrix half cases. As expected, the
speedup is found to be slightly above 2. Hence, when F has to be generated by factorization
before running the algorithm, then it should be computed as twisted matrix.
The case of having both matrices, G and F , as twisted matrices has not been implemented.
Also not implemented is the possibility to use the same processes first on the lower matrix
half and afterwards on the upper matrix half.

6.3.4 Scaling of the overall implementation

After evaluating the parallelization layers, the overall scaling is going to be analyzed. First,
the strong scaling of the twisted SVD algorithm is investigated for bandwidth-to-matrix-size

162

6.3 Crawford SVD algorithm

nb/n 1% 2% 5%

P = 0
t 106.74 34.07 7.20

t/t0 2.03 2.02 2.04

P = N
t 114.98 35.39 7.94

t/t0 2.18 2.10 2.25

P = N/2 t0 52.67 16.85 3.53

Table 6.5: Speedup by using a twisted factorization compared to a computation solely with the
lower matrix half algorithm (P = 0) or solely with the upper matrix half algorithm
(P = N). The test was carried out using 10 pairs of PGCs.

ratios of 1%, 2% and 5%. For the test case nb/n = 1%, a bandwidth of nb = 4000 was chosen.
Thus, this matrix has a size of 400000. A matrix of size 200000 was chosen for a bandwidth-
to-matrix-size ratio 2% and 100000 for a bandwidth-to-matrix-size ratio 5%. Hence nb = 2000
and nb = 5000. As tilesizes bl = 175 for QR and QL and br = 150 for RQ and LQ have been
used together with nscb = 50.

Figure 6.25 shows the result for the test cases. For a bandwidth-to-matrix-size ratio of 1%
good scaling in both parallelization layers can be seen. The single process group setups scale
well when increasing the number of PGCs. Also when increasing the number of processes per
process group, a good speedup can be observed. The first points of each line correspond to
runs with the same number of PGCs. The good scaling between the first points of each line
reflects the block scaling and is possible because of the large blocksize.
The middle plot shows the scaling for a bandwidth-to-matrix-size ratio of 2%. Due to the
blocksize of nb = 2000, the efficiency of the block parallelization is limited beyond the process
group setup 4 × 3. Because of the larger bandwidth-to-matrix-size ratio, also the scaling by
increasing the number of PGCs is limited. The first point of each line corresponds to runs
with 10 PGCs, the last point to 40 PGCs. Even if the parallel efficiency is limited, it was still
possible to further decrease the runtime by using more processes per process group.
For a bandwidth-to-matrix-size ratio of 5%, the blocksize is 5000. Hence, scaling on block level
shows very good results. Due to the bandwidth-to-matrix-size ratio, the maximum number of
PGCs is 20. Hence, the algorithm cannot play to its strengths in the PGC scaling.

Additionally to the strong scaling, also the weak scaling of the algorithm is investigated. As
explained in the respective part of the twisted Crawford section, the bandwidth-to-matrix-size
ratio is kept constant while the blocksize size and the number of processes per process group
is increased.
The bandwidth-to-matrix-size ratio was chosen to be 5%, thus N = 20. The number of PGCs
was fixed at 8. The left-sided tilesize bl was kept at 175, the right-sided tilesize br was chosen
to be 150.

Figure 6.26 presents the results of the runs. In the initial run with 24 processes, a single
process of a process group has 1000 × 1000 matrix entries of each block it owns. This share
of the block is kept constant throughout the tests. In the last run with 2400 processes, the

163

6 Performance Analysis

400 800 1600 3200 6400 15360

800

400

200

100

70

Ideal speedup

processes

t
in

s

(a) Matrix size 400000,
bandwidth-to-matrix-size
ratio 1%

200 400 800 1600 3200 6400

50
40

30

20

15

10

Ideal speedup

processes

t
in

s

(b) Matrix size 100000,
bandwidth-to-matrix-size
ratio 2%

200 400 800 1600 3200

120

80

40

20

Ideal speedup

processes

t
in

s

8× 5
6× 4
4× 3
3× 2
8× 8

(c) Matrix size 100000,
bandwidth-to-matrix-size
ratio 5%

Figure 6.25: Scaling of the twisted SVD algorithm employing all parallelization levels for dif-
ferent matrix sizes and bandwidth-to-matrix-size ratios. The different lines show
different setups of process groups. The legend applies to all subfigures.

24 600 1176 1944 2400
0

20

40

60

80

100

processes

t
in

s

Figure 6.26: Weak scaling of the twisted SVD algorithm.

blocksize was at nb = 10000. From the first to the last run, the number of processes grew by
a factor of 100 while the runtime of the algorithm grew by a factor of 17.4.

The costs for transforming matrices from the ScaLAPACK format to the algorithm specific
format are for the twisted SVD algorithm comparable to those which are listed for the twisted
Crawford algorithm in Tables 6.1 to 6.3. Hence, they impact runtime and performance only
marginally and thus, a presentation of the numbers is skipped.

6.3.5 Comparison to twisted Crawford algorithm

A short comparison of the runtime of the twisted Crawford and the twisted SVD algorithm
shall close this section. This is of interest since the latter can be used to compute the former,
especially for ill-conditioned systems. Test cases are a matrix of size 200000 with nb/n = 1%,
and matrices of size 100000 for the cases nb/n = 2% and nb/n = 5%. The SVD algorithm
used bl = 175 and br = 150 together with nscb = 50, the eigenvalue algorithm b = 150 and nscb.

The results are plotted in Figure 6.27. For the cases nb/n = 2% and nb/n = 5%, both

164

6.3 Crawford SVD algorithm

2000 4000 6000 8000 10 12

·104

20

30

40

50

60

processes

t
in

s

(a) Matrix size 200000,
bandwidth-to-matrix-size
ratio 1%

1000 2000 3000 4000 5000

20

40

60

processes

t
in

s
(b) Matrix size 100000,

bandwidth-to-matrix-size
ratio 2%

500 1000 2000 3000

50

100

150

processes

t
in

s

Tw. SVD
Tw. Crawford

(c) Matrix size 100000,
bandwidth-to-matrix-size
ratio 5%

Figure 6.27: Comparison between twisted SVD and twisted Crawford algorithm. The best
process group setup for a given process number has been selecteds. The legend
applies to all subfigures.

curves are almost identical. For a bandwidth-to-matrix-size ratio of 1% the SVD algorithm is
up to 18% slower. A general expectation would be that the SVD is slower in any case since it
has also to compute a RQ or LQ decomposition instead of just applying an existing Q from
right.
These results make the twisted SVD algorithm a strong extension for the twisted Crawford
algorithm, especially for ill-conditioned systems since scaling and runtimes are comparable.

For the twisted Crawford algorithm a bandreduction routine is under development by Manin.
It will fill the gap between the output of the twisted Crawford algorithm and the bandwidth
that are necessary for efficiently running ELPA’s two-step solver. Such a bandreduction is
also needed to bridge the gap of bandwidth in the singular value decomposition. In [52] such
an algorithm is proposed. Another possibility is to extend Manin’s approach to banded lower
or banded upper triangular matrices.

165

7 Conclusion

In this thesis, algorithms for banded generalized eigenvalue problems and banded generalized
singular value problems have been described and developed. The developed serial algorithm
for the generalized singular value problem builds on Lang’s extensions to Crawford’s ideas for
the banded generalized eigenvalue problem. For the eigenvalue as well as for the singular value
problem, parallel algorithms aiming for high-performance architectures have been developed.
An extensive numerical analysis was carried out for these parallel algorithms. The parallel
algorithms have been implemented and the performance of the implementations has been
measured. The obtained results agree well with the theoretical predictions of the numerical
analysis. The parallel algorithms scale well for thin banded matrices of medium to large size
and reduce the time to solution compared to the classical way of solving them as dense prob-
lems. This has been demonstrated by comparing the developed twisted Crawford algorithm to
the ELPA two-step solver. For this comparison, after running the twisted Crawford algorithm,
a bandreduction algorithm was used to further reduce the bandwidth and the second step of
ELPA’s two-step solver. The obtained speedups depend on the bandwidth-to-matrix-size ratio
and have been found between 1.1 and 3.1 for medium size matrices. For large matrices at the
limits of ELPA, the speedup is higher, even when using by far less computational resources.
The limiting factor, especially for larger matrices, is the bandreduction step. Since it is still
under development, higher speedups can be expected for the future.

The developed parallel algorithm for eigenvalue computation allows to tackle larger matri-
ces as it is possible with the state-of-the art eigensolvers, or, for smaller matrix sizes, to solve
them faster or to compute the solution by using less computational resources. Hence, this
algorithm helps researchers in the field of computational science and engineering to get faster
solutions for their problems and to enable them to run more detailed simulations.
The parallel algorithm for the generalized singular value problem allows the same for gener-
alized eigenvalue problems with ill-conditioned positive definite matrices. There it helps to
maintain accuracy in comparison to solving it as eigenvalue problem and is a step towards
reducing the computational time compared to the classical methods for generalized singular
value problems.

The output of the two algorithms are banded matrices of the same bandwidth as the initial
matrices have been. This output can be further processed by the second step of a two-step
eigenvalue or singular value solver. For larger initial bandwidth, however, an additional band-
reduction step is necessary. This has not been developed or implemented in this work. [13, 14]
describe such algorithms for the eigenvalue case and they can be adapted to the non-symmetric
case of the singular value decomposition. Manin is currently implementing a bandreduction
algorithm for the eigenvalue case. Another open point is the implementation of the backtrans-
formation of singular vectors, for which the parallel implementation has been described in this
work.

167

7 Conclusion

The serial version of the twisted Crawford algorithm has been developed by Lang. Con-
tributions of the author are the serial version of the twisted SVD algorithm and the parallel
algorithms of the twisted Crawford as well as the twisted SVD algorithm. Both parallel algo-
rithms have been implemented and optimized by the author. The numerical analysis as well
as the performance analysis are also part of the work of the author.

As the development of supercomputing goes on and will probably soon enter the exascale
era, the development of algorithms must never stop. The developed eigenvalue algorithm is
a small piece in proposing new, problem tailored, algorithms to better exploit the matrix
properties. In this sense the twisted Crawford algorithm will be an add-on for a specific
subclass of matrices and extend the existing algorithmic machinery for them. The same holds
for the twisted SVD algorithm whose application field is even more specialized. However, the
available computational routines are by far less developed and therefore the parallel algorithm
can be a great asset. In both setups, eigenvalue and singular value computation, exploiting
the matrix structure pays off and is a promising way for thin banded matrices.

168

Bibliography

[1] Alok Aggarwal and S Vitter, Jeffrey. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

[2] Gene M Amdahl. Validity of the single processor approach to achieving large scale com-
puting capabilities. In Proceedings of the April 18-20, 1967, spring joint computer con-
ference, pages 483–485, 1967.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, PA, 3rd edition, 1999.

[4] Thomas Auckenthaler. Highly scalable eigensolvers for petaflop applications. PhD thesis,
Technische Universität München, 2013.

[5] Thomas Auckenthaler, Volker Blum, H-J Bungartz, Thomas Huckle, Rainer Johanni,
Lukas Krämer, Bruno Lang, Hermann Lederer, and Paul R Willems. Parallel solution
of partial symmetric eigenvalue problems from electronic structure calculations. Parallel
Computing, 37(12):783–794, 2011.

[6] Thomas Auckenthaler, H-J Bungartz, Thomas Huckle, Lukas Krämer, Bruno Lang, ,
and Paul R Willems. Developing algorithms and software for the parallel solution of the
symmetric eigenvalue problem. Journal of Computational Science, 2(3):272–278, 2011.

[7] Z. Bai. The CSD, GSVD, their Applications and Computations. Preprint Series 958,
University of Minnesota, apr 1992.

[8] Z. Bai and J. W. Demmel. Computing the generalized singular value decomposition.
SIAM J. Sci. Comp., 14:1464–1486, 1993.

[9] Grey Ballard, James Demmel, and Nicholas Knight. Avoiding communication in suc-
cessive band reduction. ACM Transactions on Parallel Computing (TOPC), 1(2):1–37,
2015.

[10] Michael W Berry. Large-scale sparse singular value computations. The International
Journal of Supercomputing Applications, 6(1):13–49, 1992.

[11] Christian Bischof, Bruno Lang, and Xiaobai Sun. Parallel Tridiagonalization through
Two-Step Band Reduction. Proceedings of the Scalable High-Performance Computing
Conference, 10 1997.

[12] Christian Bischof and Charles Van Loan. The WY representation for products of House-
holder matrices. SIAM Journal on Scientific and Statistical Computing, 8(1):s2–s13, 1987.

169

Bibliography

[13] Christian H Bischof, Bruno Lang, and Xiaobai Sun. Algorithm 807: The SBR Toolbox-
software for successive band reduction. ACM Transactions on Mathematical Software
(TOMS), 26(4):602–616, 2000.

[14] Christian H Bischof, Bruno Lang, and Xiaobai Sun. A framework for symmetric band
reduction. ACM Transactions on Mathematical Software (TOMS), 26(4):581–601, 2000.

[15] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLA-
PACK Users’ Guide. SIAM, Philadelphia, PA, 1997.

[16] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Azzam Haidar,
Thomas Herault, Jakub Kurzak, Julien Langou, Pierre Lemarinier, Hatem Ltaief, et al.
Flexible development of dense linear algebra algorithms on massively parallel architec-
tures with DPLASMA. In 2011 IEEE International Symposium on Parallel and Dis-
tributed Processing Workshops and Phd Forum, pages 1432–1441. IEEE, 2011.

[17] Richard Butler, Tim Dodwell, Anne Reinarz, Anhad Sandhu, Robert Scheichl, and Linus
Seelinger. High-performance dune modules for solving large-scale, strongly anisotropic
elliptic problems with applications to aerospace composites. Computer Physics Commu-
nications, 249:106997, 2020.

[18] Lynn Elliot Cannon. A cellular computer to implement the Kalman filter algorithm. PhD
thesis, Montana State University-Bozeman, College of Engineering, 1969.

[19] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert Van De Geijn. Collective
communication: theory, practice, and experience. Concurrency and Computation: Prac-
tice and Experience, 19(13):1749–1783, 2007.

[20] Chin-Chen Chang, Piyu Tsai, and Chia-Chen Lin. SVD-based digital image watermarking
scheme. Pattern Recognition Letters, 26(10):1577–1586, 2005.

[21] C. R. Crawford. Reduction of a Band-Symmetric Generalized Eigenvalue Problem.
Comm. ACM, 16(1):41–44, January 1973.

[22] Jan JM Cuppen. A divide and conquer method for the symmetric tridiagonal eigenprob-
lem. Numerische Mathematik, 36(2):177–195, 1980.

[23] J. W. Demmel, M. Gu, S. Eisenstat, I. Slapničar, K. Veselić, and Z. Drmač. Computing
the singular value decomposition with high relative accuracy. Linear Algebra Appl., 299(1-
3):21–80, 1999.

[24] Inderjit Dhillon. A new O (n2) algorithm for the symmetric tridiagonal eigenvalue/eigen-
vector problem. PhD thesis, University of California at Berkeley, 1997.

[25] M. Gates, S. Tomov, and J. Dongarra. Accelerating the SVD Two Stage Bidiagonal
Reduction and Divide and Conquer Using GPUs. Parallel Computing, 71, nov 2017.

[26] Wallace Givens. Computation of plain unitary rotations transforming a general matrix to
triangular form. Journal of the Society for Industrial and Applied Mathematics, 6(1):26–
50, 1958.

170

Bibliography

[27] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU press,
2012.

[28] Francisco M Gomes and Danny C Sorensen. ARPACK++: A C++ implementation
of ARPACK eigenvalue package. CRPC, Rice University, Houston, TX, Tech. Rep.
TR97729, 1997.

[29] Benedikt Großer and Bruno Lang. Efficient parallel reduction to bidiagonal form. Parallel
Computing, 25(8):969–986, 1999.

[30] Benedikt Großer and Bruno Lang. An O (n2) algorithm for the bidiagonal SVD. Linear
Algebra and its Applications, 358(1-3):45–70, 2003.

[31] John L Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, 31(5):532–
533, 1988.

[32] Alston S Householder. Unitary triangularization of a nonsymmetric matrix. Journal of
the ACM (JACM), 5(4):339–342, 1958.

[33] Toshiyuki Imamura. Development of a Dense Eigenvalue solver for Exa-scale Systems,
August 2018. Talk at MolSSI Workshop / ELSI Conference.

[34] Toshiyuki Imamura, Susumu Yamada, and Masahiko Machida. Development of a high
performance eigensolver on the petascale next generation supercomputer system. Progress
in Nuclear Science and Technology, 2:643–650, 2011.

[35] Andrew V Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal
block preconditioned conjugate gradient method. SIAM journal on scientific computing,
23(2):517–541, 2001.

[36] Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and corre-
lation effects. Physical review, 140(4A):A1133, 1965.

[37] P Kůs, Andreas Marek, Simone S Köcher, H-H Kowalski, Christian Carbogno,
Ch Scheurer, Karsten Reuter, Matthias Scheffler, and Hermann Lederer. Optimizations
of the eigensolvers in the ELPA library. Parallel Computing, 85:167–177, 2019.

[38] Argonne National laboratory. Theta Supercomputer. https://www.alcf.anl.gov/support-
center/theta/theta-machine-overview, July 2020.

[39] Bruno Lang. Effiziente Orthogonaltransformationen bei der Eigen-
Singulärwertberechnung. Fachbereich der Bergischen Universität-Gesamthochschule
Wuppertal, 1997.

[40] Bruno Lang. Efficient reduction of banded hermitian positive definite generalized eigen-
value problems to banded standard eigenvalue problems. SIAM Journal on Scientific
Computing, 41(1):C52–C72, 2019.

[41] Hermann Lederer. Eigenwert-Löser für Petaflop-Anwendungen - Algorithmische Er-
weiterungen und Optimierungen. Talk at 7. HPC-Statustagung, HLRS, Stuttgart, De-
cember 2017.

171

Bibliography

[42] Richard B Lehoucq and Danny C Sorensen. Deflation techniques for an implic-
itly restarted Arnoldi iteration. SIAM Journal on Matrix Analysis and Applications,
17(4):789–821, 1996.

[43] LRZ. SuperMUC-NG. https://doku.lrz.de/display/PUBLIC/SuperMUC-NG, June 2020.

[44] Hatem Ltaief, Piotr Luszczek, and Jack Dongarra. High-performance bidiagonal reduc-
tion using tile algorithms on homogeneous multicore architectures. ACM Trans. Math.
Software, 39(3):Art. 16, 22, 2013.

[45] Valeriy Manin and Bruno Lang. Cannon-type triangular matrix multiplication for the
reduction of generalized HPD eigenproblems to standard form. Parallel Computing,
91:102597, 2020.

[46] Andreas Marek, Volker Blum, Rainer Johanni, Ville Havu, Bruno Lang, Thomas Aucken-
thaler, Alexander Heinecke, Hans-Joachim Bungartz, and Hermann Lederer. The ELPA
library: scalable parallel eigenvalue solutions for electronic structure theory and compu-
tational science. Journal of Physics: Condensed Matter, 26(21):213201, 2014.

[47] Gordon E Moore et al. Cramming more components onto integrated circuits. Electronics,
38, 1965.

[48] MPCDF. COBRA supercomputer. https://www.mpcdf.mpg.de/services/computing/cobra/about-
the-system, June 2020.

[49] Christopher C Paige and Michael A Saunders. Towards a generalized singular value
decomposition. SIAM Journal on Numerical Analysis, 18(3):398–405, 1981.

[50] Roger Penrose. A generalized inverse for matrices. In Mathematical proceedings of the
Cambridge philosophical society, volume 51, pages 406–413. Cambridge University Press,
1955.

[51] Chiara Puglisi. Modification of the Householder method based on the compact WY
representation. SIAM Journal on Scientific and Statistical Computing, 13(3):723–726,
1992.

[52] Sivasankaran Rajamanickam. Efficient algorithms for sparse singular value decomposition.
PhD thesis, University of Florida, 2009.

[53] C.J. Reddy, M.D. Deshpande, C.R. Cockrell, and F.B. Beck. Finite Element Method for
Eigenvalue Problems in Electromagnetics. NASA Technical Paper 3485, 12 1994.

[54] J.N. Reddy. An Introduction to the Finite Element Method. McGraw-Hill, 1993.

[55] Michael Rippl, Daniel Kressner, and Thomas Huckle. A Parallel Algorithm for Banded
Generalized Singular Value Decomposition. Unpublished Manuscript, 2020.

[56] Yousef Saad. Numerical methods for large eigenvalue problems: revised edition. SIAM,
2011.

[57] PK Sadasivan and D Narayana Dutt. SVD based technique for noise reduction in elec-
troencephalographic signals. Signal Processing, 55(2):179–189, 1996.

172

Bibliography

[58] Robert Schreiber and Charles Van Loan. A storage-efficient WY representation for prod-
ucts of Householder transformations. SIAM Journal on Scientific and Statistical Com-
puting, 10(1):53–57, 1989.

[59] Gerard LG Sleijpen and Henk A Van der Vorst. A Jacobi–Davidson iteration method for
linear eigenvalue problems. SIAM review, 42(2):267–293, 2000.

[60] Marc Snir, William Gropp, Steve Otto, Steven Huss-Lederman, Jack Dongarra, and David
Walker. MPI–the Complete Reference: the MPI core, volume 1. MIT press, 1998.

[61] Bharath K Sriperumbudur, David A Torres, and Gert RG Lanckriet. A majorization-
minimization approach to the sparse generalized eigenvalue problem. Machine learning,
85(1-2):3–39, 2011.

[62] Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. Top 500 supercom-
puters, June 2020.

[63] Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra. Dense linear algebra
solvers for multicore with GPU accelerators. In 2010 IEEE International Symposium
on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), pages 1–8.
IEEE, 2010.

[64] Charles F Van Loan. Generalizing the singular value decomposition. SIAM Journal on
numerical Analysis, 13(1):76–83, 1976.

[65] Christof Vömel and Jason Slemons. Twisted factorization of a banded matrix. BIT
Numerical Mathematics, 49(2):433–447, 2009.

[66] JH Wilkinson. The calculation of the eigenvectors of codiagonal matrices. The Computer
Journal, 1(2):90–96, 1958.

173

	Introduction
	High Performance Computing
	Generalized eigenvalue problems
	Generalized singular value problems
	Scope and structure of this work

	Basic Algorithms
	Orthogonal transformations
	Householder transformations

	Non-blocked operations
	Application of a Householder transformation
	Orthogonal transformations using Householder transformations (QR, QL, RQ, LQ)

	Blocked operations
	Blocked application of Householder vectors
	Blocked orthogonal transformations using blocked Householder transformations (QR, QL, RQ, LQ)

	Factorization

	Algorithms
	Twisted Crawford algorithm
	Twisted factorization
	Eigenvectors
	Overall algorithm

	Crawford SVD algorithm
	Twisted factorization
	Singular vectors
	Overall algorithm

	Parallel Algorithms
	Parallelization strategies in Numerical Linear Algebra
	Distribution of data and computation
	Shared memory computation
	Pipelining
	Splitting in independent subtasks

	Twisted Crawford algorithm
	Pipelining approach
	Parallel execution of the upper and a lower matrix half
	Block and inter-block parallelization
	Process and data structures
	Parallel algorithms on the level of pairs of block rows and block columns

	Backtransformation of eigenvectors
	Pipelining approach
	Backtransformation matrix approach
	Summary

	Crawford SVD algorithm
	Pipelining approach
	Parallel execution of the upper and a lower matrix half
	Block and inter-block parallelization
	Process and data structures
	Parallel algorithms on the level of pairs of block rows and block columns

	Backtransformation of singular vectors
	Pipelining approach
	Backtransformation matrix approach

	Numerical Analysis
	Twisted Crawford algorithm
	Modeling of the speedup of the block and inter-block parallelization
	Modeling of the speedup of the pipelining approach
	Modeling of the speedup by splitting the matrix in upper and lower half

	Twisted SVD algorithm
	Modeling of the speedup of the block and inter-block parallelization
	Modeling of the efficiency of the pipelining approach
	Modeling of the speedup by having twisted matrices

	Performance Analysis
	Computational resources
	Twisted Crawford algorithm
	Block and inter-block parallelization
	Pipelining approach
	Parallel execution of the upper and a lower matrix half
	Scaling of the overall implementation
	Comparison to ELPA

	Crawford SVD algorithm
	Block and inter-block parallelization
	Pipelining approach
	Parallel execution of the upper and a lower matrix half
	Scaling of the overall implementation
	Comparison to twisted Crawford algorithm

	Conclusion
	Bibliography

