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Abstract— The automotive industry is facing a change from
combustion engine-powered to electrified vehicles. Besides the
traction battery, the electric engine is one of the most important
components of the electrified powertrain. In order to increase the
energy efficiency of the electric motor, wound copper wires are re-
placed by enameled rectangular copper wires, known as hairpins.
In order to produce a conductive connection between hairpins,
it is necessary to weld them together. Currently, the automated
laser welding of copper is a poorly understood process. Such new
production processes are still unknown in comparison to classic
engine production and there is only little expert knowledge avail-
able. The integration of Industry 4.0 techniques and advanced
data analytics provides the opportunity to understand the process
of copper welding more thoroughly. A common understanding
of advanced data analytics differentiates between predictive and
prescriptive analytics. One of the most promising developments in
advanced analytics is Machine Learning (ML). There is a wide
range of different types of algorithms, theories and methods.
An example of these are Convolutional Neural Networks (CNN).
They have been designed for learning multidimensional data,
such as images or even videos. This paper presents such a CNN
to detect welding defects of hairpins. Depending on the classified
defect, a rework concept is given (prescriptive analytics). The
input parameters are the visual information are derived from
of a 3D camera. Using the welding process as an example, the
paper illustrates a newly developed method based on the CRoss
Industry Standard Process for Data Mining (CRISP-DM) for the
development of the CNN. In this context, the paper deals in detail
with data preprocessing, modeling and evaluation. The newly
developed methodology and architecture of the CNN achieves an
accuracy of over 99 percent to predict the defect class.

Index Terms—machine learning, convolutional neural net-
works, electric motors, hairpin, predictive analytics, prescriptive
analytics

I. INTRODUCTION

The electrification of the drive train for electric vehicles
requires special requirements compared to standard industrial
electric motors in order to be used as an alternative to the
combustion engine. These requirements include increasing
power density and efficiency combined with a reduction in
costs and production time. Therefore, it is necessary to develop

new and innovative technologies for the production and to
increase the efficiency of electric motors. The so-called hairpin
technology is a novel technology to increase the efficiency of
an electric motor by replacing the traditional copper windings
in the stator of the electric motor with thick copper bars.
The main process steps in manufacturing the stator are the
deformation of the hairpins, followed by the insertion of the
hairpins into the stator’s stack of sheets. Afterwards, the free
ends of the hairpins are twisted and finally connected via laser
welding [1], [2]; however, the problem with this process is that
copper has strong reflective properties and can therefore hardly
absorb any radiation [3]. For this reason, a higher laser power
must be set than for welding steel or aluminum. As a result,
the welding of the hairpins can lead to insufficient welding,
welding spatter and welding craters. Due to the ever-increasing
automation of production facilities, it is essential to detect and
eliminate such quality deviations at an early stage. Computer
Vision (CV) in combination with ML is an important enabler
for this. This allows for the detection of welding defects at an
early stage (predictive quality) and for the conception of an
inline reworking concept (prescriptive automation) [4].

From this point forward, the paper is structured as follows:
Section II provides an overview of the state of the art and
the need for action. Section III first introduces the detection
of the different failure classes of the welding process and
their classification by a CNN. Depending on the fault case,
a recommendation for action by a rework concept is derived.
This chapter is based on the CRISP-DM method. Finally,
Section IV concludes the paper and gives an outlook for future
work.
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II. STATE OF THE ART

A. Industry 4.0 approaches in the field of electric motor
production

As described above, new technologies are required to elec-
trify the powertrain successfully. However, this has a far-
reaching impact on production technology. In order to face
these challenges, a stronger networking of the value chain
is essential [5]. Industry 4.0 describes this trend of network-
ing and communication of production facilities in order to
optimize the production process [6]. It is determined by a
multitude of technologies such as Smart Sensors, Big Data
and ML [7].

ML is a kind of artificial intelligence that enables machines
or computers to learn a specific task from data. Its aim is to
learn this task with the help of data and not through the special
programming of rules by experts. The data used for this is
called training data. During the so-called training phase, it is
used to learn desired rules and regulations. So-called Neuronal
Networks (NN) are widespread in this context [8].

As Mayr et al. already described, there are currently only
a few ML approaches in the production of electric powertrain
[7]. Examples are the use of ML algorithms in thermo and
ultrasonic crimping for predictive maintenance, quality man-
agement and an ML approach that predicts the cogging torque
by analyzing magnet properties, as well as process parameters
of a stator [9], [10].

In the field of laser welding in general, there are already
many applications in the quality monitoring of laser welding.
However, to detect quality deviations with ML algorithms,
there are only a few applications common in this area.
Furthermore there is only one application of ML methods to
detect quality deviations in the welding of hairpins. Thereby
the quality of the welding is determined by process parameters
as well as with a CCD camera [11].Further approaches of
ML algorithms in the production of electric engines are
summarized by Mayr et al. [7].

B. Convolutional Neural Network

CNNs, which are an extension of classic NNs, are specif-
ically designed for detecting and classifying features of mul-
tidimensional data, such as audio tracks (1D), images (2D),
and videos (3D). The typical layer of a CNN consists of three
stages. A convolutional stage, a detector stage and a pooling
stage The following sections explain the individual stages in
more detail [12].

1) Convolution Stage: The convolution stage is the most
important component of a CNN. This layer consists of a set
of filters, also called convolution kernels. They generate output
features through convolution of the input. A filter is a matrix
of discrete values that represent the weights of the filters. They
are learned during CNN training to extract features [12].

2) Detector Stage: After the convolution stage, the detec-
tion stage follows. In this stage, the result of the convolution
layer is activated by a nonlinear function, the activation
function. This process is very important because it allows a

CNN to learn nonlinear connections. The activation function
used in this paper is the rectified linear units (ReLU) function
[13].

3) Pooling Stage: After the activation is completed, a
pooling stage usually follows. In this stage, blocks from the
input image of a certain size are combined and summarized
into a single value. With Max-Pooling, each block is reduced
to the maximum value of this block [13].

4) Regularization techniques: Due to the large number of
parameters learned during the training process of an NN, it is
possible that the model may over-adapt to the available training
data. This can lead to the network learning too highly detailed
characteristics of the training data. This causes the network to
incorrectly classify data that was not in the training set. This
over-adjustment of the parameters during the training process
is called overfitting. Drop-Out Layer and Batch Normalization
(BN) Layer are two examples of regularization techniques.
They can greatly reduce the risk of overfitting [13].

C. Need for Action and Objectives of this Research

As already described in Section II-A, the use of ML algo-
rithms in the manufacture of electric engines in particular is
still a little retrograde. Furthermore there is only one applica-
tion of ML methods to detect quality deviations in the welding
of hairpins [11]. As mentioned in Section II-A the authors
analyzed the potential of ML for quality monitoring in the
laser welding of hairpin windings by using simple 2D images
with a low-cost camera. The accuracy for detecting different
error classes based on images are in a range from 61 to 91%
depending on the error class [11]. However, for industrial
applications, this is too low. Therefore, this paper deals with
the development of a suitable experimental setup with a 3D
scanner, the preprocessing of the data and the appropriate CNN
architecture to increase the accuracy. In addition, other defect
classes such as weld craters, weld spatters and insufficient
welding are considered. Furthermore, a recommendation for
action in form of a rework concept is derived depending on
the detected defect class.

III. ADVANCED DATA ANALYTICS

A. Experimental Setup

For this application a special experimental setup was de-
signed to generate high-quality and realistic data. Instead of
complete hairpins, only thick, already stripped copper wire
pieces with a length of 100mm are used. This is possible
because only the resulting welding cap is important and no
complete hairpins are required. The wire pieces are inserted
into a test carrier, whereby two pairs of pins can be welded
together.

Using Keyence’s XR-HT40M 3D camera, it is possible to
digitize the welds in the form of 3D data. The advantage of a
3D camera over a classic 2D camera is that height information
is used for the inspection process, which improves the stability
of the inspection. The disadvantage is the price. In relative
terms, a 3D scanner costs 2.5 times more than a standard
2D camera for industrial applications. The recording range
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of this camera is 16mm. The measurement resolution in X-
and Y- direction is 18.5 µm. The calculation unit of the
camera calculates an RGB image with a special color coding
from this 3D height information, which can be output. Fig. 1
schematically shows the procedure for recording the height
information and the resulting RGB image of a welding spatter
(WS).

camera

Keyence XR-HT40M

projector projector

Controller

Raw data sample

Fig. 1: Experimental setup

B. Business Understanding

Based on the already mentioned unstable laser welding
process, faulty welds can arise at the production line of
the electrical powertrain. These faults would have a negative
impact on the resulting product and therefore it is important to
detect these failures inline before they get further processed.
The implementation of an automated correction of faulty welds
with a suitable rework concept would improve this process
enormously.

A technologist analyzed the welding process in detail and
defined four important categories of welds that can arise during
the welding process in the series production. These classes
are divided into four groups, namely correct welding (CW),
insufficient welding (IW), welding crater (WC) as well as
welding spatter (WS) like shown in Fig. 2. The severity of
the considered faults was also varied. This means that correct
and insufficient welds of different severity, by varying the
laser power, as well as craters and spatters of different sizes
were considered. The technologist also verified that the rework
concepts are independent of the different severity levels for
each class.

Important requirements for the proposed system are high
accuracy for the defect detection and also reliable matching
for the different rework concepts. Furthermore, an almost real-
time capability should be ensured to be able to adapt the
production process inline.

C. Data Generation

The amount, the quality, and the class-balance of available
data is an important factor for data-driven technologies. There-
fore, the procedure of data generation has its goals in gener-
ating the largest possible number of data with good quality
and under realistic conditions. Based on these conditions, a

good
quality

bad
quality

big
crater

big
spatter

sufficient
quality

(a) CW

real bad
quality

(b) IW

small
crater

(c) WC

small
spatter

(d) WS

Fig. 2: Representation of the four classes, which result from
the welding process of hairpins

realistic procedure for generating data with high quality was
developed.

As previously explained, failures were produced with dif-
ferent laser-welding programs verified by a technologist under
realistic conditions. The resulting welded pins were recorded
with a 3D scanner, preprocessed and converted to a grayscale
image. As a result of this data generation procedure, it was
possible to produce around 550 to 600 labelled images of
hairpin welds for each class with different severities.

This data was divided into a training and validation set
with a ratio of 0.8{0.2. To further increase the number of
samples in the training set, a data augmentation technique was
implemented. By combining rotations, shifts as well as the
mirroring of the recorded images, one image could be used to
create 49 other similar images. Based on this, more than 90000
training images were generated for the data-driven learning
process and about 450 images were available for validating
the model. Using the same CNN without data augmentation,
the accuracy of the validation set is 93.91 percent. This
corresponds to a deterioration of approximately 5 percent, as
described in Section III-G. In addition, rotating, shifting, and
mirroring images produces realistic data for the training set. In
serial production, for example, it cannot be guaranteed that the
hairpin image is always centered and without rotation. Data
augmentation (rotating and shifting) ensures that the network
learns these scenarios as well. In addition, the position of
craters and spatters can be synthetically varied by mirroring,
allowing the data set to be created without the need for cost-
intensive production. This also ensures that the network learns
as many cases as possible while training. It is important
that the synthetically generated images with the help of data
augmentation are not included in the test set under any
circumstances. A detailed division of the dataset including data
augmentation is shown in TABLE I for an example run.

D. Data Preprocessing

Preprocessing the available data has a huge impact on
the resulting performance of a classifier and its accuracy.
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TABLE I: DIVISION OF THE DATASET

Class Training set Test set Sum
IW 456 104 560
WS 455 102 557
WC 438 125 563
CW 478 126 604
Sum 1.827 457 2.284

augmented 91350 - -

Therefore, a specific preprocessing pipeline was developed
for getting an optimal input for the CNN classifier and the
considered use case. Mainly, this preprocessing pipeline can
be divided into the five steps shown in the following. The raw
data produced by the 3D scanner is shown in Fig. 1. The color
of this image encodes the height information of the welded
hairpin. The first step of the preprocessing is calculating the
height information of this RGB image produced by the 3D
camera. The resultant height information of this welded hairpin
is shown in Fig.3.
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Fig. 3: First step of preprocessing: Hight transformation

After that, the height data is scaled by calculating the
median height of the welded pin and defining a specific
range above and below this median value. This results in the
following height information, as illustrated in Fig. 4a. Next, the
x and y dimension of the height data is reduced by applying
average pooling with a kernel size of 15x15 pixels and scaling
the height into a range of 0 and 255. This results in two-
dimensional data of size 30x30 pixels, as shown in Fig. 4b.
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(b) Third step of preprocessing:
Minimizing

Fig. 4: Preprocessing: Step two and three

In the following step, the three-dimensional height data is
interpreted as grayscale image data. The resulting grayscale
image, representing the height information with 30x30 pixels,

is visualized in Fig. 5a. Further normalization is an important
task to achieve better results with smaller effort for training.
Here, a normalization technique based on the subtraction of
the mean of one pixel over the whole dataset and dividing
it by the standard deviation of these pixels is used. Fig. 5b
shows the normalization of a hairpin example with the overall
training set.

(a) Fourth step of
preprocessing: Grayscaling

(b) Fifth step of preprocessing:
Normalization

Fig. 5: Preprocessing: Step four and five

This example visualizes the great benefit of this preprocess-
ing step. The height values of a pixel, which particularly differ
from the mean of the same pixel for the whole training set,
are highlighted. This especially improves the human as well
as the ML capability of classifying the different failures of
the hairpin welding task. Summing this up, this normalization
technique stabilizes the overall training process and also results
in better learning results.

E. Architecture Modeling

The proposed CNN model was basically developed by
studying the structure of the well-known VGG networks
[8]. This structure is based on convolutional blocks built of
multiple convolutional layers, followed by a pooling stage.
The further modeling of our structure is based on common
suggestions evaluated with experiments [14], [15]. The generic
structure of the developed CNN architecture, the input data
and the output of the neural network is illustrated in Fig. 6.
The elements of the network are described in Section II-B.
Therefore, only the structure is described in the following.
The model proposed in this paper is made up of four convo-
lutional blocks. The first convolutional block consists of two
convolutional layers, each with 8 kernels of size 3x3 pixels.
After this, a Max-Pooling with size of 2x2 pixels is used. The
second, third and fourth convolutional block basically have the
same structure as the first one, but with double the number
of kernels after each repetition. The second and third block
are also followed by a 2x2 Max-Pooling. The fourth and last
convolutional block is followed by a Global-Average-Pooling.

Other important methods used in this model are Batch
Normalization before the ReLU-Activation at each layer and
performing a Global-Average-Pooling to flatten the output of
the last convolutional block. At last there is a Drop-Out layer
after the fully connected layer before the final dense layer
for each class. These methods were used to guarantee good
generalization and to prevent overfitting. The detailed structure
of the proposed model, consisting only of about 76, 000
trainable parameters, is shown in Fig. 6. As described in

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on July 27,2022 at 10:38:13 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6: Structure of the designed CNN

Section III-B, one requirement is an almost real-time capability
to detect the class. Therefore, it is important to use a network
with as few parameters as possible while maintaining high
accuracy.

F. Parameter variation of the model

This section performs a sensitivity analysis of the parame-
ters for the CNN architecture. It varies important parameters
of the CNN and examines the resulting accuracy and stability
of the training process. These results are compared in graphs,
whereby the used parameters of the CNN architecture of Fig. 6
are represented in the middle of the graph. This demonstrates
that the proposed architecture has been designed sensibly.

1) Variation of the normalization technique: A factor is the
determination of the normalization of the input variables of the
CNN. The normalization has a strong impact on the stability
of the training process. The resulting loss caused by incorrect
or inaccurate classifications when no normalization is used are
shown in Fig. 7a. Fig. 7b illustrates the loss curve of CNN
training by a normalization dependent on the mean and the
standard deviation. Finally, the resulting loss is also examined
more closely in Fig. 7c, using a normalization between ´1
and `1. As Fig 7b shows, by normalizing the pixels based
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Fig. 7: Resulting curve of the loss of the training data (blue)
and the test data (orange) during the CNN training process for
different normalization techniques.

on the mean and the standard deviation nearly eliminate the
fluctuations. For this reason, this normalization is applied to
the training of the final model in order to guarantee the most
stable training process possible without fluctuations.

2) Variation of the amount of Conv-Blocks: Another im-
portant point for the interpretation of the offered CNN is
the depth of the architecture, which in this case is defined
by the number of Conv-Blocks. The number of parameters
in a CNN is mainly influenced by increasing or decreasing
the number of Conv-Blocks. In the following the detailed
curve of loss for training for 3, 4 and 5 Conv-Blocks is
illustrated in Fig. 8. A detailed analysis regarding the training
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Fig. 8: Resulting curve of loss of the training data (blue) and
the test data (orange) during the CNN training process for
different amount of Conv-Blocks.

loss for the classification in the Fig. 8a to 8c shows a
significant difference. The training process of the modified
CNN architecture with 3 Conv-Blocks, as shown in Fig. 8a,
shows only small fluctuations. Training this architecture with
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4 Conv-Blocks eliminates these fluctuations and results in an
almost negligible overfitting. In comparison, training with 5
Conv-Blocks has a much stronger overfitting, which should
be avoided, since irrelevant features that are not relevant for
the class assignment under consideration are learned in this
way. For this reason, the final model was designed with 4
Conv-Blocks.

3) Variation of amount of filters per Conv-Block: Finally,
the CNN architecture is analyzed in more detail regarding its
width. The width of a CNN, like its depth, has an influence
on the number of parameters. For this the number of filters
in the Conv-Blocks is halved and doubled and the results are
compared. The spelling 4 ´ 8 ´ 16 ´ 32 means that the first
Conv-Block has 4 filters for each convolution, the second
Conv-Block has 8 filters and so on. Fig. 9 illustrates the
resulting loss curve for the training process by varying the
number of filters. By a detailed analysis of the training process
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Fig. 9: Resulting curve of loss of the training data (blue) and
the test data (orange) during the CNN training process for
different amount filters.

from the Fig. 9a to 9c a conclusion about the number of filters
can be made. Fig. 9a shows the large distance between the loss
for the classification of the training and validation data. In
contrast, in Fig. 9c a small overfitting can be seen, which can
only be prevented slightly by early stopping. This overfitting
increases by using more filters. Using 8´ 16´ 32´ 64 filters
as shown in Fig. 9b provides the most stable training process.

G. Evaluation
This section first provides a classical validation of the model

as shown in Fig. 6 using a classical 5-fold Cross-Validation.
Additionally to that, the model is also validated by a special
visual method.

1) Classical validation: The proposed model was imple-
mented in keras (version 2.2.4) using the tensorflow backend
(version 1.14.0). For training, a stochastic gradient decent
optimizer with a learning rate of 1e-4, a decay of 1e-6 and
a nesterov momentum of 0.9 was used. For this classification
task, a categorical cross-entropy was implemented as a loss-
function. The resultant training and validation progress for the
model accuracy and loss are shown in Fig. 10a and Fig. 10b.
These graphics show that this balanced and smooth training
process leads to high accuracy for the training and validation
set. Also, these results show that no overfitting occurs.

Furthermore, the method of 5-fold Cross Validation was
implemented to reduce the influence of splitting data in the
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Fig. 10: Resultant training (blue) and validation (orange)
progress for model accuracy and loss using a 5-fold Cross-
Validation

training and test set. This means that there were five trials
of training and validating with different combinations for the
training and validation set in each run. The resulting confusion
matrix for one exemplary run is shown in Fig. 11. In order to

Fig. 11: Confusion matrix of run one

make the results comparable, common rating metrics, such as
accuracy, precision, recall and F1-score, were calculated for
each run of the 5-fold Cross Validation. These metrics were
combined by averaging them for each class in each run. The
overall evaluation based on these metrics was calculated by
taking the average of all five runs. The resultant accuracy,
precision, recall as well as F1-score for each run as well as
the averages are shown in TABLE II. These results prove that
the proposed CNN-architecture is capable of reliably deciding
whether a welding process will result in a failure. A high
recall percentage is an especially important requirement for
reliable production systems. The proposed model achieves a
high average recall of 99.21 percent, which means that on
average only 0.79 percent of the failures are unrecognized or
classified as a different failure.

2) Visual validation: Further analyzing the decision process
of a CNN is an important task. CNNs are mainly black boxes
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TABLE II: ACCURACY, PRECISSION AS WELL AS F1 FOR
EACH RUN

Run Overall
Accuracy

(%)

Average
Precision

(%)

Average
Recall

(%)

Average
F1-score

(%)
1 99, 56 99, 56 99, 56 99, 56
2 99, 12 99, 15 99, 13 99, 14
3 99, 34 99, 34 99, 33 99, 34
4 98, 68 98, 77 98, 68 98, 72
5 99, 34 99, 37 99, 34 99, 36
I all
runs

99, 21 99, 24 99, 21 99, 22

without any insights about the structure or behavior for specific
decisions. Therefore, special techniques are required to gain
insides in order to understand and evaluate the correctness of
the decision. A common procedure for analyzing this, called
a saliency map, visualizes the importance of pixels for a
decision. This is done by setting the color for important pixels
to white and black for unimportant ones. Fig. 12 visualizes
these saliency maps for different severities of the four classes.
The gray images on the left side represent examples of the

Fig. 12: Saliency map of different classes and severities

preprocessed input to the CNN. The right images are the
generated saliency maps for the considered input. These results
show that especially for WSs the splatters and for WCs the
craters are important features. In contrast to this, the shape is
an important feature for CWs and IWs. Based on this result,
it can be claimed that the CNN architecture is capable of
detecting relevant features for all considered severities and
classes.

H. Rework concept

As described above, beside the detection and classification
of the failure, additionally a rework concept which is based
on the output of the CNN (CW, IW, WC, WS) is given.
With the help of a suitable connection between events and
the resulting recommendations for action or the adjustments
of processes, this procedure can be modeled by a decision

tree. This requires special expert knowledge to ensure that
the optimal link between action and reaction is established
in every situation. Fig. 13 shows the concept for the use
case presented in this paper using a decision tree. The blocks
thereby represent recommendations for action for the follow-
ing process. The different blocks are linked by events. These
are represented in the first level of the decision tree by the
respective welding result (CW, IW, WC, WS). In the following
levels, for example, the events are represented by E1. As
described in Section III-C, the four main weld classes are CW,
IW, WC and WS. They are represented on the first level of the
decision tree in Fig. 13. If the result of the welding process
is a welding crater, there are two possible options. In Event
1 (E1), the diameter of the crater has a radius greater than
0.8mm. If this event occurs, it is recommended to remove the
hairpin (A). For the second event (E2), the radius of the crater
is less than 0.8mm. As shown in Fig. 13 the decision tree

Fig. 13: Decision tree for rework concept

is divided into another level. In Event 2.1, the weld crater is
located on the outer part of the hairpin. If this error occurs,
reworking with a reduced laser power is recommended (B1).
If the welding crater is centered (E2.2), the hairpin should
be reworked with an unchanged laser power (B2). If correct
welding takes place, the next process step can be initiated
(C). If a welding spatter is caused on the hairpin, the spatter
must be removed manually by a coworker (D). In the case
of insufficient welding, a distinction must be made between
two events as shown in Fig. 13. If insufficient welding occurs
more than ten times over the last 100 welds (E4), the protective
glass of the laser must either be cleaned or replaced (E). The
hairpin can then be reworked with full laser power (F). If
insufficient welding occurs less than ten times over the last
100 welds (E4), the hairpin can be reworked directly with full
laser power.

IV. CONCLUSION AND OUTLOOK

This paper introduces the detection of the welding defects
of hairpin windings using a convolutional neural network
(predictive analytics). The paper deals with the preprocessing
of the 3D data and the modeling of the network. Due to a
very good preprocessing and modeling of the network, an
average recall of 99.21 percent can be achieved. Depending
on the error that occurred, this paper presents a rework
concept of hairpin welding (prescriptive analytics); however,
a combined IT architecture must be developed, to execute
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the CNN the model in real-time on the shop-floor. As the
authors [4] present in their paper, a combination of edge-
and cloud-computing offers the best solution components for
the needed requirements. For the use case presented in this
paper, it is necessary to analyze, implement, and validate this
architecture.
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