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Abstract 

Air quality issues and traffic-related emissions draw increasing attention from public authorities 

and governments. In the context of communication technologies and digitalization, Intelligent 

Transport Systems (ITS) are emerging, which can not only improve traffic efficiency and safety 

but can also reduce emissions at the same time. In order to choose ITS under consideration 

of changes in emissions, careful emission impact assessments need to be conducted. For 

such assessments, a wide range of emission models have been developed and integrated with 

different levels of traffic models. The macroscopic emission models can estimate the emissions 

either at the country, regional, or street level. Although these models require less detailed data 

and have a lower computation cost, they cannot identify emission hot spots on which traffic 

management and control could focus. In contrast, microscopic emission models can estimate 

emissions more accurately in higher temporal and spatial resolution while demanding a larger 

amount of data and more intensive computation. To help assess the impact of ITS on emission, 

a more user-friendly and feasible emission model needs to be developed, taking into account 

the required resolution, the validity of the assessment, as well as resulting costs. To this end, 

this thesis aims to develop a time- and data-efficient mesoscopic emission model that can 

distinguish local emission changes resulting from different ITS measures. Following this 

objective, the main research questions are how to divide streets and intersections into small 

segments and how to estimate the emission changes in each small segment.  

To investigate all possible cases of the speed variation, various causes of the speed change 

are considered by designing typical scenarios, including the infrastructure layout, the traffic 

control, and the traffic condition. Since the emission factor for the passenger car and truck 

differs significantly, the truck percentage is included in the study. In order to develop the model, 

the research identifies the important types and parameters of traffic flow variations and the 

corresponding causes and quantifies their effects on local emissions. By integrating the 

emission model with a mesoscopic traffic model, it is possible to assess the changes in the 

emission distribution in an urban road network. By linking this combined mesoscopic traffic and 

emission model with ITS control measures, it is possible to assess the different emission 

impacts of ITS measures and allow for a comparison of their effects on emissions, which is 

important to facilitate decision making in traffic management under environmental objectives. 

Additionally, the emission model can be integrated with dispersion models to generate air 

quality maps – this is not elaborated in detail but shows an operational application option of 

the new mesoscopic approach.  

As field-measurements are by far too difficult to conduct and therefore fall outside the scope 

of this study, the use of simulation as virtual reality was chosen instead. VISSIM, a microscopic 

traffic simulation, and PHEM, a detailed physical emission model, are used as a linked 

framework; both simulators represent current state-of-the-art models for high-resolution 

investigations in traffic flow and emission determination. By analysis of literature and some 

preliminary studies, meaningful variables of traffic and infrastructure are defined for the model 



development, including lane type, traffic volume, turning ratio, truck percentage, cycle time, 

green ratio, and speed limit. Using the experimental design method, various scenarios with 

these variables are designed. The spatial data mining methods are reviewed, and the Local 

G* method is chosen for the segment division. Based on the distribution and variance of the 

segment boundaries for each lane type, the rules to divide the road into smaller segments are 

defined. The traffic volume, percentage of the trucks, capacity, speed limit, conflicting traffic 

volume, and its truck percentage, average speed, and cycle time are used as the predictors. 

The regression modeling method is chosen to select variables and estimate parameters for 

the emission function. Linear, interaction, and stepwise models are applied. The emission 

regression function is optimized to minimize the prediction error and ensure the sign of the 

effect of each prediction reasonable. The results show that there are four major segments 

along the road: the midblock, the segment close to the stop line, the segment on which vehicles 

cross the intersection, and the segment where vehicles leave the intersection to drive towards 

the midblock. Each segment can be further categorized according to the lane type, including 

separate lanes or mix-used lanes, as well as driving directions. 

The test environment consists of a small road network with four intersections with different 

layouts and link lengths. Among the intersections, the approach that consists of the types of 

lanes for modeling development is chosen to compare different emission models. The size of 

the high-emission area is compared with the one from the Local G* method. The tested results 

show that the rules can identify the high-emission area before the stop line on the lane of 

straight-through and right-turning traffic as well as the straight-through lane. It slightly 

overestimates the size of the high-emission area on the left-turning lane, while it 

underestimates the size of the area after crossing the intersection.  

The emission estimation by the developed model is compared with the one from HBEFA as 

well as from the high-resolution models VISSIM and PHEM. The result of the integration of the 

VISSIM and PHEM is the baseline. Generally, the developed model performs better than 

HBEFA on the hot spots, lanes, and approaches. The predictivity of the developed model is 

suggested to be improved by considering the length of crossing lanes and the turning radius. 

The accuracy of traffic volume is important to ensure the good performance of the emission 

model on the segment emissions, especially when there are multi-lanes. The developed 

emission model and HBEFA perform similarly on the absolute differences in the estimation of 

the stream emissions from PHEM. To estimate the impact of the rerouting on the emission 

factor of NOx, the developed model performs better than HBEFA at the segment-, lane-, 

approach-level. The result of the stream emissions from the HBEFA is only slightly different 

from the developed emission model.  

The developed model can identify the segments with significantly high or low emissions. It can 

estimate the changes in the emissions as a result of the ITS in urban traffic management and 

control to help choose ITS. It is also introduced how to estimate the near-road air quality by 

integrating between the developed emission model and a dispersion model. The model 

concept and research methodology can be applied to other types of intersections, such as 



 

three-ways junctions, ramps, non-signalized intersections, and roundabouts. It is suggested 

that a dynamic prediction model can be developed to better estimate the size of the segment 

after crossing an intersection. In the future study, the impact of the length of the crossing lane, 

the turning radius, pedestrians, cyclists, public transportation, road slope, and road width 

should also be investigated by using a more detailed traffic flow model and emission model. 

Future research can also investigate if the developed model concept can estimate the ADAS 

and autonomous driving. 

 

 

 

 

 

 

 

 

 

 





 

Zusammenfassung 

Luftqualitätsfragen und verkehrsbedingte Emissionen ziehen die zunehmende 

Aufmerksamkeit von Behörden und Regierungen auf sich. Im Zusammenhang mit den 

Kommunikationstechnologien und der Digitalisierung entstehen intelligente Verkehrssysteme 

(ITS), die nicht nur die Effizienz und Sicherheit des Verkehrs verbessern, sondern auch 

Emissionen reduzieren können. Um die Entscheidungsfindung über den Einsatz von ITS unter 

Berücksichtigung der Emissionsänderung zu erleichtern, ist die Durchführung einer 

sorgfältigen Emissionsverträglichkeitsprüfung erforderlich. Für solche Bewertungen wurde 

eine Vielzahl von Emissionsmodellen entwickelt und mit verschiedenen Ebenen von 

Verkehrsmodellen integriert. Makroskopische Emissionsmodelle können die Emissionen 

entweder auf Länder-, Regional- oder Straßenebene schätzen. Doch während dieser Modelle 

weniger detaillierte Daten benötigen und geringere Berechnungskosten haben, eignen sie sich 

nicht zur Identifikation von Emissions-Hotspots, auf welche sich das Verkehrsmanagement 

und die Verkehrsregelung konzentrieren könnten. Im Gegensatz können mikroskopische 

Emissionsmodelle Emissionen in höherer zeitlicher und räumlicher Auflösung genauer 

abschätzen, erfordern jedoch auch viel größere Datenmengen und intensivere Berechnungen. 

In Anbetracht der erforderlichen Auflösung, Aussagekraft der Bewertung und der Kosten, wie 

sie in dieser Doktorarbeit angestrebt werden, muss ein benutzerfreundlicheres und 

praktikableres Emissionsmodell entwickelt werden, um die Auswirkungen von ITS auf die 

Emissionen zu bewerten. Ziel dieser Forschung ist es, ein mesoskopisches Emissionsmodell 

zu entwickeln, das die lokalen Emissionsänderungen aufgrund verschiedener ITS-

Maßnahmen unterscheiden kann, jedoch mit geringem Daten- und Zeitaufwand. Zur 

Erreichung dieses Ziels gilt es insbesondere die Forschungsfrage zu beantworten, wie Straßen 

und Kreuzungen in kleine Segmente geteilt und wie Emissionsänderungen in jedem kleinen 

Segment abgeschätzt werden können.  

Um alle möglichen Fälle von Geschwindigkeitsänderungen zu untersuchen, werden 

verschiedene Ursachen für eine Geschwindigkeitsänderung anhand typischer Szenarien wie 

Infrastrukturlayout, Verkehrssteuerung und Verkehrssituation in Betracht gezogen. Da sich der 

Emissionsfaktor für Pkw und Lkw stark unterscheidet, wurde der Lkw-Anteil in die Studie 

miteinbezogen. Zur Entwicklung des Modells identifiziert die Doktorarbeit die wichtigsten Arten 

und Parameter sowie die entsprechenden Ursachen von Verkehrsflussschwankungen und 

quantifiziert deren Auswirkung auf die lokalen Emissionen. Durch die Integration des 

Emissionsmodells mit einem mesoskopischen Verkehrsmodell ist es möglich, die 

Veränderungen der Emissionsverteilung in einem städtischen Straßennetz zu beurteilen. 

Durch die Verknüpfung dieses kombinierten mesoskopischen Verkehrs- und 

Emissionsmodells mit ITS-Steuerungsmaßnahmen können verschiedene 

Emissionsauswirkungen von ITS bewertet und ein relativer Vergleich ihrer Auswirkungen 

gezogen werden. Dies ermöglicht eine erleichterte Entscheidungsfindung im Rahmen des 

Netzverkehrsmanagements unter Umweltgesichtspunkten. Darüber hinaus kann das 

Emissionsmodell mit Ausbreitungsmodellen integriert werden, um Luftqualitätskarten zu 



erstellen - dies wird nicht im Detail erläutert, sondern zeigt operative 

Anwendungsmöglichkeiten des neuen mesoskopischen Ansatzes.  

Da das Durchführen von Feldmessungen viel zu aufwendig wäre und über die Möglichkeiten 

dieser Doktorarbeit hinausgehen würde, wurde beschlossen, die Simulation als Virtual Reality 

durchzuführen. VISSIM, eine mikroskopische Verkehrssimulation, und PHEM, ein detailliertes 

physikalisches Emissionsmodell, werden als vernetztes Framework eingesetzt; beide 

Simulatoren stellen aktuelle State-of-the-Art-Modelle für hochauflösende Untersuchungen in 

der Verkehrsfluss- und Emissionsbestimmung dar. Durch die Analyse von Literatur und 

einigen Vorstudien werden für die Modellentwicklung aussagekräftige Verkehrs- und 

Infrastrukturvariablen definiert, darunter Fahrspurtyp, Verkehrsaufkommen, Wendeverhältnis, 

Lkw-Anteil, Zykluszeit, Grünanteil und Tempolimit. Mit Hilfe einer experimentellen 

Entwurfsmethode werden verschiedene Szenarien mit diesen Variablen entworfen. Die 

räumlichen Data-Mining-Methoden werden überprüft und für die Segmentaufteilung wird die 

lokale G*-Methode gewählt. Basierend auf der Verteilung und Varianz der Segmentgrenzen 

für jeden Spurtyp werden die Regeln für die Aufteilung der Straße in kleinere Segmente 

definiert. Als Prädiktoren werden das Verkehrsaufkommen, der Prozentsatz des Lkw-Anteils, 

die Kapazität, das Tempolimit, das entgegengesetzte Verkehrsaufkommen und sein 

Prozentsatz des Lkw-Anteils, die Durchschnittsgeschwindigkeit und die Zykluszeit verwendet. 

Das lineare, interaktive und schrittweise Modell wird getestet. Die 

Emissionsregressionsfunktion ist optimiert, um den Vorhersagefehler zu minimieren und 

sicherzustellen, dass das Vorzeichen der Wirkung jedes Prädiktors sinnvoll ist. Die Ergebnisse 

zeigen, dass es vier Segmente entlang der Straße gibt: das obere Segment, das Segment 

nahe der Stopplinie, das Segment für die Überquerung und das Segment von nach der 

Kreuzung bis zu dem oberen Segment. Jeder Segmenttyp könnte zusätzlich nach Spurenart, 

wie beispielsweise nach getrennten oder gemischten Fahrspuren sowie Fahrtrichtung 

kategorisiert werden.  

Die Testumgebung besteht aus einem kleinen Straßennetz mit vier Kreuzungen mit 

unterschiedlichen Layouts und Verbindungslängen. Das Testfeld besteht aus einer Kreuzung 

mit den gleichen Arten von Fahrspuren wie in der Modellentwicklung. Die Größe des 

Hochemissionsbereichs wird mit der Größe des lokalen G*-Verfahrens verglichen. Die 

getesteten Ergebnisse zeigen, dass die angewandten Regeln den emissionsreichen Bereich 

vor der Stopplinie auf der Fahrspur des geradeausfahrenden und rechts abbiegenden 

Verkehrs sowie auf der Fahrspur des geradeausfahrenden Verkehrs identifizieren können. Sie 

überschätzen leicht die Größe des emissionsreichen Bereichs auf der links abbiegenden 

Fahrspur, während die Größe des Emissionsbereichs nach Überqueren der Kreuzung 

unterschätzt wird.  

Die Emissionsschätzung des entwickelten Modells wird mit der der HBEFA sowie mit den 

hochauflösenden Modellen VISSIM und PHEM verglichen. Das Ergebnis der Integration von 

VISSIM und PHEM ist die Grundlinie. Im Allgemeinen schneidet das entwickelte Modell 

bezüglich Hotspots, Fahrspurebene und Anflugebene besser ab als die HBEFA. Die 



 

Vorhersagekraft des entwickelten Modells kann durch Berücksichtigung der Länge der 

kreuzenden Fahrspuren und des Wenderadius verbessert werden. Die Genauigkeit des 

Verkehrsaufkommens ist wichtig, um eine gute Leistung des Emissionsmodells in Bezug auf 

die Segmentemissionen zu gewährleisten, insbesondere bei mehrspurigen Strecken. Das 

entwickelte Emissionsmodell und HBEFA schneiden bei den absoluten Unterschieden in der 

Schätzung der Stromemissionen aus dem PHEM ähnlich ab. Um die Auswirkungen der 

Umleitung auf den Emissionsfaktor von NOx abzuschätzen, schneidet das entwickelte Modell 

auf der Segment-, Fahrspur- und Anfahrebene besser ab als HBEFA. Das Ergebnis des 

Stromes aus dem HBEFA unterscheidet sich nur geringfügig von dem entwickelten 

Emissionsmodell.  

Es wird geschlussfolgert, dass das entwickelte Modell Segmente mit signifikant hohen oder 

niedrigen Emissionen identifizieren kann. Zudem ermöglicht es eine Abschätzung der 

Emissionsveränderungen die infolge des ITS im städtischen Verkehrsmanagement und in der 

Verkehrssteuerung auftreten, und kann somit bei der Auswahl des richtigen ITS helfen. Des 

Weiteren wird dargelegt, wie die Luftqualität in Straßennähe durch Integration des entwickelten 

Emissionsmodells mit einem Ausbreitungsmodell abgeschätzt werden kann. Das 

Modellkonzept und die Forschungsmethodik können auf andere Kreuzungstypen angewandt 

werden, wie z.B. Drei-Wege-Kreuzung, Rampen, nicht signalisierten Kreuzungen und 

Kreisverkehren. Es ist vorschlagt, dass ein dynamisches Vorhersagemodell entwickelt werden 

kann, um die Größe des Segments nach dem Überqueren eines Schnittpunkts besser 

abzuschätzen. In einer zukünftigen Studie sollten auch die Auswirkungen der 

Kreuzungsspurlänge, des Wenderadius, der Einfluss von Fußgängern, Radfahrern und des 

öffentlichen Verkehrs sowie der Straßenneigung und der Straßenbreite ebenfalls mit Hilfe des 

detaillierten Verkehrsfluss- und Emissionsmodells untersucht werden. In der weiteren 

Forschung kann zudem untersucht werden, ob das entwickelte Modellkonzept das ADAS und 

das autonome Fahren abschätzen kann. 
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Introduction 1 

1. Introduction  

1.1 Background  

Huge populations often suffer from bad air quality. It is estimated that 90% of people are 

exposed to severely polluted air (World Health Organization, 2018). In cities, road traffic 

emissions are the main sources of air pollutions, including nitrogen oxides (NOx), particulate 

matter (PM), carbon monoxide (CO), and hydrocarbons (HCs) (Transportation Research 

Board, 2002; Zhang & Batterman, 2013). These pollutants could have adverse effects on 

human health, including “mortality, nonallergic respiratory morbidity, allergic illness and 

symptoms, cardiovascular morbidity, cancer, pregnancy, birth outcomes, and male 

fertility”(Heinrich et al., 2005, p.125). Thus, road traffic emission and air quality have attracted 

lots of attention from the public and the government. Nowadays, decision-makers have to 

consider not only traffic congestion and safety but also emission issues. In order to support the 

deployment of traffic measures under consideration of emissions, it is necessary to conduct 

an emission impact assessment. 

Intelligent transport systems (ITS) as emerging technologies mainly aim to solve traffic 

congestions and improve safety. They also play a potential role in emission reduction, for 

example, by smoothing traffic flow or facilitating route choice. Since the cause and effect of 

ITS on congestion, safety, and emissions are different, the impact of ITS on these issues 

should also be conducted separately. ITS may follow conflicting objectives, and the solutions 

they provide may result in trade-offs, such as route assignment to minimize both travel time 

and emissions (Macedo et al., 2020). In order to prioritize the consideration of emissions in the 

deployment of ITS, it is necessary to conduct an emission impact assessment of ITS. The 

applications of the information, communication, and sensor technologies in the ITS provide the 

possibility for more dynamic decision-making in traffic management. On the one hand, the 

dynamics of ITS require that the emission impact assessment is based on real-time estimations. 

On the other hand, it also supports the realization of the real-time estimation of emissions.  

On the one hand, the distribution of emissions shows spatial and temporal heterogeneity on 

the urban road network. On the other hand, local air quality is a more meaningful estimator of 

the hazard exposure level. Thus, further knowledge is required on how the spatial distribution 

of emissions changes, especially with regard to the location of high-emission zones, area size, 

and emission level, rather than merely measuring total emissions on roads or a network. 

Otherwise, it would be impossible to identify where exactly higher emissions occur, as emission 

levels would be averaged over the entire area, which may consist of both short high-emission 

distances and long low-emission distances. However, most of the existing emission impact 

assessments focus only on the total changes in emissions over a road or a city.  
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In terms of assessment scale, local traffic and emissions cannot only be influenced by local 

traffic measures, but also by network or surrounding measures. Therefore, the assessment of 

ITS should be conducted on a larger scale. A large scale of assessment may, however, lead 

to a more data-consuming and cost-intensive assessment. 

Nowadays, the common emission impact assessment is conducted via the integration of one 

traffic simulation model and one emission model. The traffic simulation model serves to 

generate traffic data, while the emission model consists of emission factors. Traffic data from 

the traffic simulation model would be used as an input in the emission model to estimate 

emissions. There are three major types of emission estimation methods based on the 

aggregation level of the traffic data: the average speed-based emission estimation, traffic 

situation-based, and instantaneous (engine or driving dynamics-based) emission estimation. 

The average speed-based and traffic situation-based emission estimation approaches can 

provide regional and urban emission inventory or emissions estimation for long roads. 

However, they cannot account for the detailed spatial and temporal distribution of emissions, 

because they do not sufficiently consider the effect of driving dynamics on emissions. The 

instantaneous emission models, in turn, can provide more accurate short-segment emissions 

but are limited in scalability due to the consumption of large amounts of data and computation 

time. Furthermore, a more detailed complex model cannot always offer higher accuracy 

because the uncertainty arising from the larger amount of data may become a bigger issue.  

1.2 Research motivation 

On the one hand, the emission impact assessment should focus on the more detailed emission 

distribution while considering a bigger urban network. On the other hand, the emission 

estimation framework can reflect the level of the emission change due to ITS and help pre-

select some types of ITS before detailed design and more accurate emission estimation are 

carried out. Conducting two stages of emission impact estimation can improve the efficiency 

of the decision-making, reduce the cost, and ensure the validity of the assessment. Moreover, 

the more detailed emission distribution can be used as an input in the dispersion model to 

estimate the changes in air quality near roads. As the existing emission models cannot 

simultaneously fulfill the needs of both validity and efficiency, a new emission model needs to 

be developed. 

1.3 Research objectives and questions  

The study aims to develop a feasible emission model for assessing the impact of ITS on 

emissions. It should be able to distinguish between road segments with high and those with 

low emissions. The model should further be sensitive to ITS to help compare different ITS 

measures. It would also be user-friendly and ensure that the emission estimation is closest to 

the best achievable results. Two main research questions should be answered to develop such 
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a model. One is what is the effective resolution to identify the hot emissions and represent the 

spatial emission variation. Another is how to derive the emission changes on each road 

segment due to ITS without knowing each vehicle’s speed profile.  

1.4 Research structure  

Fig. 1.1 shows the structure of the study. In chapter 2, the characteristics and spatial 

distribution of the road traffic emissions are described, the methodology of the emission impact 

assessment of ITS, and the existing road traffic emission models are systematically reviewed 

based on literature analysis. The experience and knowledge of emission impact assessment 

derived from this analysis will inform the development of a new emission model concept. In 

chapter 3, the model concept and development methodology are described, including road 

divisions, emission estimations, and the design of scenarios. Additionally, the results of the 

road division and emission function of each segment type are shown and discussed. The rules 

of the segment division and emission functions are tested on an intersection in a small network 

environment. The detailed test scenarios and test results are described in chapter 4. Chapter 

5 introduces the integration between the developed emission model and a dispersion model 

to estimate air quality near roads. In chapter 6, the conclusions and outlooks are addressed, 

including transferability, limitations, contributions, and future work. 
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Fig. 1.1 Research structure 
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2. State of the art: road traffic emission estimation 

In this chapter, the context and existing studies about road traffic emissions are summarized. 

It includes the cause and effect between the ITS for urban traffic management and road traffic 

emissions and the methods of the emission impact assessment. It explains why the spatial 

distribution of emissions should be estimated, how to appropriately divide the road in order to 

distinguish between high and low-emission areas, whether the simulation models are used for 

the modeling development, how the ITS for urban traffic management influences the emissions, 

and what the potentials and limitations of the existing estimation methods are. In each sub-

chapter, the relevant literature and studies are summarized, and conclusions will be addressed 

in the end.  

2.1 Road traffic emissions  

This subchapter will answer the questions of what road traffic emissions are, what factors 

influence these emissions, how emissions are spatially distributed, why spatial distribution 

should be studied, and, finally, whether there exists any proper way to disaggregate emissions 

spatially.  

2.1.1 Types of road traffic emissions 

The main road traffic emissions are NOx, PM, CO, HCs, and sulfur oxides (SOx) (Hülsmann, 

2014). Road traffic can produce tailpipe emissions and non-tailpipe emissions. Non-tailpipe 

emissions are the emissions due to the wear and tear of the road surface, brakes, and tires. 

Tailpipe emissions are emitted from combustion engines. They may result from incomplete 

combustion, high temperatures, fuel impurities, or evaporation. Since tailpipe emissions are 

the primary source of road traffic emissions, they form the focus of the study. Tailpipe 

emissions can be categorized into hot stabilized emissions, warm-start emissions, and cold-

start emissions(Environmental Protection Agency, 1993). Hot stabilized emissions are emitted 

when both engine and catalytic converters are around operating temperatures; warm-start 

emissions are emitted when only the engine is hot; cold-start emissions are defined when both 

engine and catalytic converters are cool (Environmental Protection Agency, 1993).  

The main difference between cold-start emissions and hot stabilized emissions is caused by 

the different fuel/air ratios and the emission control equipment (Ding, 2000). Several studies 

show that the percentage of cold-start emissions depends mainly on the ambient temperature, 

the average trip length, driving dynamics (the speed and acceleration rate), and the operating 

temperature of the emission control system (Joumard & Andre, 1990; Matthaios et al., 2019). 

By using a real-world collection of driving profiles, emission measurement equipment, and a 

detailed emission model, it was found that warm- and hot-start emissions are significantly 
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influenced by the driving dynamics, road gradient, fuel type, as well as vehicle and engine 

characteristics (Avetisyan, Miller-Hooks, Melanta, & Qi, 2014).  

2.1.2 Influencing factors on emissions 

Urban road traffic constitutes a complex and dynamic system. Agents in the system can be 

categorized into infrastructure, traffic modes (non-motorized and motorized), and users. The 

natural environment (e.g., weather) also plays a role in the system. The interaction of agents 

in the system results in spatial-temporal distributions of emission levels. Some researchers 

grouped influencing factors into traffic, road, and vehicle characteristics, and identified the 

parameters in each group (Pandian et al., 2009). The effect of these factors on emissions 

depends on the type of air pollutant. For example, emissions of HC and CO are larger, when 

significant acceleration occurs at high speeds, while emissions of NOx do not show such an 

effect(Ding, 2000). Local emissions are the total emissions of several vehicles within a defined 

area and time interval. Local emissions are generally predicted by the multiplication of an 

emission factor with corresponding traffic activity data. Smit (2006, p.98) described that 

“emission factors quantify the amount of pollutant[s] emitted” by being “usually expressed as 

mass per unit distance (ex) at the link or network level and as mass expressed per unit time 

(et) at the vehicle level”. The factors that influence emissions depend on the level of analysis. 

In the study by Smit (2006), the influencing factors were summarized separately at the vehicle-, 

link-, and network-levels. In this study, the influencing factors are categorized for an individual 

vehicle, traffic over a short street segment, traffic over an entire lane, traffic across an 

intersection, and traffic within a whole network. After reviewing existing studies, the factors 

found to influence emissions at different levels are summarized below. 

Emissions of a vehicle at a certain point in time are influenced by the following list of factors: 

• fuel characteristics (gasoline, diesel, electric vehicle) (Delavarrafiee & Frey, 2018) 

• vehicle age, size, weight, and load (Pandian, Gokhale, & Ghoshal, 2009) 

• engine load and capacity (Pandian, Gokhale, & Ghoshal, 2009) and deterioration of the 

engine (Organ et al., 2020) 

• emission control technology (Mera et al., 2019) and the deterioration of its components 

(Mera et al., 2019) 

• engine speed and torque (Lozhkina & Lozhkin, 2016) 

• use of auxiliary equipment (Zachiotis & Giakoumis, 2019) 

• road gradient (Prakash & Bodisco, 2019) 

• ambient temperature and humidity (Hall et al., 2020) 

• air density of the location (Smit, 2006; Sturm et al., 1996) 

Emissions of a certain vehicle type driving across an intersection are influenced by the 

following list of factors: 

• on-road geometric and operational characteristics: speed limit, vehicle’s position in a 

queue, road gradient, traffic volumes on downstream lanes and upstream lanes, 
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distance from the closest downstream signalized intersection, and the ratio of heavy-

duty vehicles (Hallmark et al., 2002).  

• type of the intersection (signalized intersection and roundabout) (Gastaldi et al., 2017). 

• driving style: an aggressive, conservative, professional, or experienced driver (Lu et al., 

2017); eco-driving (J. Sun et al., 2013). 

• road type or facility type( freeway segments, ramps, local streets, collectors) 

(Christopher Frey et al., 2006) 

Emissions on a lane: the total emissions of a group of vehicles could be theoretically obtained 

by summarizing the emissions of all relevant vehicles. However, this is not very practical, as it 

would demand large amounts of data and due to the limitations of data collection techniques. 

Therefore, the average emission factor is used instead as an approximation of the individual 

vehicle’s emission factor. The vehicles are classified into several groups based on emission-

influencing factors like vehicle types, fuel types, and emission standards (Smit, 2006). Apart 

from the road gradient, the average emission factor is further influenced by the following factors: 

• the composition of vehicle classes (Smit, 2006) 

• the traffic flow pattern (Schreckenberg et al., 2015) 

Emissions near an intersection area are the total emissions from the vehicles that drive on all 

the approaches of the intersection. Apart from the composition of vehicle classes and the road 

gradient, some studies have investigated the influencing factors at the macroscopic level: 

• macroscopic traffic flow factors: delay time, number of stops, queue length, and 

average speed (Guo & Zhang, 2014); Level of service (Papson et al., 2012) 

• type of the intersection (signalized intersection and roundabout) (Salamati et al., 2015) 

• pedestrians and cyclists: a few studies have been carried out on modeling the impact 

of the interaction between cyclists, pedestrians, and vehicles on emissions (Paulo 

Fernandes & Coelho, 2017; Li & Sun, 2014). They focused on the cyclist volume, 

pedestrian volume, traffic density, and yielding rate.  

• platoon ratios and early or late arrival (Lv & Zhang, 2012) 

Emissions in a network are defined as the total emissions of all vehicles driving on the roads 

consisting of several intersections. Apart from the composition of vehicle classes and the road 

gradient, the average emission factor could be influenced by the following factors: 

• space between intersections (Fernandes, Coelho, & Rouphail, 2017) 

• levels of interruptions and congestions on the roads (Choudhary & Gokhale, 2019) 

There may be some other factors that influence emissions at a specific level that need to be 

addressed. However, they have not been well studied, since there exists either no valid 

methodology to measure or model these factors, or there exists a resource constraint. Such 

factors include the detailed interaction behavior among traffic modes like cars, trucks, buses, 

bicycles, and pedestrians. 
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Based on the relationship of these factors across various levels, the multi-level cause and 

effect relationship between traffic and tailpipe emissions is summarized in Fig. 2.1. In the traffic 

system, factors that may influence driving and engine behavior include the traffic management 

and control, type of road and intersection, infrastructure layout and geometry, traffic volume, 

vehicle composition, and driver type. The engine behavior influences the emission factor 

directly. Additionally, the vehicle characteristics and weather influence the emission factor as 

well. In the end, local emissions are the result of the multiplication of the emission factor with 

the traffic activity data (traffic volume and travel time or distance). 

 

Fig. 2.1 Framework for the integration of all factors that influence tailpipe emissions 

2.1.3 Emission distribution on the urban road network  

The identification and evaluation of high-emission areas are the most critical, as they may 

negatively affect air quality and human health. The distribution of emissions shows spatial and 

temporal heterogeneity on the urban road network (Freedman, 1984; Sun, Zhang, & Shen, 

2018). The level of the emissions varies not only at street-level but also between individual 

road segments. The level of the fine particulate matter( PM2.5) varied largely every ten meters 

(Targino et al., 2016). Various studies on onboard measurements and simulations show that 

emission hot spots in urban locations mainly occur near intersections and especially during 

stop-and-go situations (Unal, Frey, Rouphail, & Colyar, 2001; Unal, Frey, & Rouphail, 2004). 

High NOx emissions are located near intersections and increase in the vicinity of bus stops 

(Tate & Connors, 2012). High NOx emissions near intersections are the result of a high traffic 

density and interruptions of the traffic flow. NOx emissions near a bus stop increase because 

buses as heavy diesel vehicles need to accelerate additionally to depart from a bus stop (Tate 

& Connors, 2012). Targino et al. (2016) conducted a study to measure the concentrations of 

black carbon and PM2.5 through mobile sampling carried by cyclists on several urban roads. 

They found that concentrations of black carbon and PM2.5 showed skewed distributions and 
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that the pollutants were concentrated near signalized intersections as well as bus stops 

(Targino et al., 2016). Due to complex wind flow and dynamic speed changes, the average 

concentration of particle numbers measured at a signalized intersection can be up to one order 

higher than the average value at roadsides and street canyons (Goel & Kumar, 2014). The 

measured PM concentration on the street decreases exponentially the further away from the 

center of the intersection (the measure points are 10, 20, 30, 45, and 60 meters away from the 

center, respectively) (Goel & Kumar, 2016). Furthermore, it has been found that pedestrians 

who cross an intersection are exposed to a high level of air pollutants (Borge et al., 2016). 

Based on these studies, we can conclude that vehicles emit high levels of pollutants in the 

vicinity of intersections. It can be the result of a high traffic density, an interruption of traffic flow 

through traffic control measures, conflicting traffic flows, and turning traffic. Besides, the 

topology of the intersection, built-up area, and environmental factors like wind speed and wind 

directions further contribute to the concentration of pollutants at the intersection. The ITS can 

influence the traffic near intersections by impacting the traffic density, fleet composition, and 

driving conditions through measures like traffic signal control, routing, demand access 

management, speed limit, etc. The resulting changes in traffic can influence emission levels 

and exposures to pollutants near intersections. Since intersections are areas with high traffic 

emissions and exposure levels and because the ITS can influence traffic near intersections, 

areas around intersections should be seen as key areas for assessing the impact of ITS on 

emissions and exposures.  

The ambient concentration depends strongly on local emissions and meteorology. Due to the 

variation of local emissions and meteorology, the ambient concentration varies strongly with 

the locations and time. A detailed estimation of emissions and dispersions is required to 

capture the variation of the air quality. It has been shown that when estimated emissions are 

used as inputs of the dispersion model to predict the near-road air quality, different spatial 

resolutions of emissions can lead to different predicted ambient concentrations (Ritner et al., 

2013). Thus, to evaluate the impact of ITS on emissions and air quality, a proper spatial 

resolution for the emission estimation is required. 

Most of the existing emission impact assessments focus on changes in area-wide emissions 

or street emissions. However, they cannot distinguish emission levels between smaller road 

segments. Some studies have investigated emissions near intersections at a detailed spatial 

level. Some have divided the street near the signalized intersection based on fixed distances 

(Lee et al., 1983). Tate and Conors ( 2014) studied the spatial variation in emissions based on 

fixed segment sizes (each a length of 10 meters). While the results of the study indicate that 

the spatial resolution of each 10-meter segment can reflect the locations of high and low 

emissions, they also show that similar levels of emissions exist on several connected road 

segments (Tate and Conors, 2014). That suggests that these connected segments could be 

aggregated into a single larger segment to reduce data and time expenditure for the emission 

and air quality assessment. In another study, a roundabout corridor was divided into segments 

and sub-segments (Fernandes, Salamati, Rouphail, & Coelho, 2015). In this study, the street 

was divided into four segments based on the vehicle’s speed pattern: 1. the circulation lane; 
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2. the section after crossing the roundabout, where vehicles accelerate to the cruising status; 

3. the section where vehicles are driving at cruising speed; 4. the section where vehicles 

decelerate to drive towards the downstream roundabout (Fernandes, Salamati, Rouphail, & 

Coelho, 2015). The location of high emissions depends on whether or not the space between 

the roundabouts is equal. This method requires information on the vehicle’s speed profile to 

calculate the boundaries between smaller segments. In order to identify the hot spots and help 

estimate the near-road air quality when there exists no information on speed, the question 

remains how streets with intersections should be divided appropriately. 

2.1.4 Summary 

Road traffic is the dominant anthropogenic source of NOx, CO, and HCs in urban areas. 

Vehicle tailpipe emissions are the primary source of road traffic emissions. Emission-

influencing factors can be distinguished at different levels of analysis, and the factors between 

these levels are correlated. The distribution of emissions shows spatial and temporal 

heterogeneity on the urban road network. Signalized intersections constitute high-emission 

areas. There exists a gap in the literature on how to properly measure the aggregation of 

emissions to distinguish between high and low-emission areas near signalized intersections.  

2.2 Assessment of the urban ITS-traffic management  

This subchapter answers the questions of which types of ITS are applied in the urban traffic 

management, through which factors these ITS influence emissions, the assessment 

methodology, and the traffic flow model used to conduct a real-time assessment of the impact 

of the ITS on the spatial distribution of emissions. 

2.2.1 ITS in urban traffic management 

The urban road traffic environment typically features a road network made up of intersections, 

streets and cross-walks, parking places, and traffic management and control (Perallos et al., 

2015, p.251). Travelers move through the urban road network to reach their destinations via 

different transport modes, including cars, trams, buses, motorcycles, bicycles, walking, and 

trucks (for goods transport). Sometimes a traveler needs to use multi-modal transport to move 

from door to door. Since a road network has certain road lengths, as well as a limited number 

of lanes and fixed lane widths, the capacity of the road network for travelers at any given point 

in time is constrained. The interaction of travelers and transport modes can result in traffic 

accidents, long waiting times, or slow-moving traffic. In addition, vehicles emit air pollutants. 

Traffic management has to find a balance between “the travelers’ needs and network capacity” 

(Jimenez, 2017, p.9). Urban traffic management has to apply measures to balance the travel 

demand and network capacity to improve traffic efficiency, increase traffic safety as well as 

reduce emissions. Urban traffic management measures typically include signal control, ramp 

metering, speed limit, lane management, routing, and pricing. These measures have different 

scopes and focuses. In major German cities, urban arterials are mostly controlled by signals 
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(Wolfermann et al., 2019, p.45). In small German cities, roundabouts are commonly installed 

(Wolfermann et al., 2019, p.46). The main types of roundabouts include mini-roundabouts, 

one-lane roundabouts, two-lane compact roundabouts, and two-lane larger roundabouts 

(Brilon, 2005). Signalized roundabouts are rare (Tang et al., 2019, p.210). 

In order to design appropriate measures, data needs to be collected on traffic flow, vehicle 

types, and speed. The collected data will then be processed to estimate and predict traffic 

conditions. Subsequently, specific measures will be designed and implemented. This process 

requires data collection equipment, data transmissions, algorithms, modeling, and 

communication interfaces. Travel demand varies over time due to changes in land use or 

traveler activities. Changes in the road network may occur due to lane or zone closures, 

construction work, or accidents. These changes may be long-term and in place for several 

years, or consist of only short-time adjustments that take only a few hours to resolve. The 

variations of travel demand and adjustments of a road network require dynamic traffic 

management to respond quickly to the changes in the traffic environment.  

ITS has emerged around the 1980s, in parallel with the development of information and 

communication technologies (Andersen & Sutcliffe, 2000). Ni (2016) defines ITS as the 

application of “information, communication and sensor technologies to vehicles and 

transportation infrastructures to provide real-time information for road users and transportation 

system operators to make better decisions” (p.3). Roadside cameras, loop detectors, mobile 

GPS, and other wireless technologies that enable the communication between vehicles as well 

as between vehicles and infrastructures can help to quickly obtain, process, and transmit more 

information to realize real-time effective traffic management. Real-time traffic management can 

respond to situations including travel demand, traffic congestion, vehicle type, weather, 

incidents, and issues with the road network. Some examples of real-time traffic management 

are adaptive signal control, bus priority, dynamic route guidance, speed limits, etc. On the road, 

the ITS can cover all the transport modes for passenger and freight transport, inter-city, and 

urban transport. The ITS for urban traffic management can be applied to different scopes: 

sections, corridors, and networks.  

The ITS can be categorized according to service functions: navigation and travel information 

(such as variable message signs, dynamic on-trip routing, and smart parking), traffic 

management and control (such as green wave, adaptive signal control, dynamic speed limits, 

ramp metering, lane management, prioritization, and route clearance), demand and access 

management (such as congestion charge, road-pricing, restricted traffic zones, and tolling 

system), advanced driver assistance and automotive driving (such as adaptive cruise control, 

safety, and emergency system), and logistics and fleet management (Consortium, 2013). The 

first three types of ITS belong to urban traffic management. Since urban traffic management is 

the target of the study, the first three types of ITS are taken into consideration for this research. 

Adaptive signal control helps to optimize signal settings responding to current and forecasted 

traffic situations, thereby helping to optimize the traffic flow. Wireless communication tools like 

dedicated Short Range Communications (DSRC) can provide real-time information on “vehicle 

https://www.sciencedirect.com/topics/engineering/system-operator
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class, position, speed, and acceleration on each approach” and other factors, such as “Wi-Fi, 

3G/4G, and Bluetooth enabled Smartphones” and can also detect approaching pedestrians 

and cyclists (Office of the Assistant Secretary for Research and Technology (OST-R), 

n.d.).The early detection of vehicles through wireless communications helps to “forecast the 

queue length and arrival patterns” and enables the optimization of “signal control even before 

vehicles arrive at the stop line” (Priemer & Friedrich, 2009). The detection of vehicles, 

pedestrians, and cyclists can support the optimization of multi-modal signal control (Office of 

the Assistant Secretary for Research and Technology (OST-R), n.d.). Adaptive signal control 

can be applied to one intersection, several intersections on an arterial road, or network-wide 

intersections. Many algorithms have been developed for the design of adaptive signal control, 

with changing parameters of cycle length, phase split, phase sequence, and offset to improve 

traffic performance. A summary and review of methods of adaptive signal control using 

wireless technologies can be found in the study by Jing et al. (2017). Adaptive signal control 

can help reduce delay time, number of stops, accidents, and emissions. The performance of 

adaptive signal control depends on several factors: reductions of delay and emissions are 

dependent on traffic volume (Feng et al., 2018); the increase of average travel speed varies 

with time of day and travel direction (Slavin et al., 2013); the reduction of average delay time 

and improvement of travel time reliability on the corridor deployed with adaptive signal control 

is correlated with signal density (Hu et al., 2016). Signal coordination or “Green Wave” is a 

design where signal settings on several intersections along a route or a network are 

coordinated to allow a group of vehicles to drive through these intersections without meeting 

red lights. It is often applied on main roads or in high traffic demand situations. The category 

and description of signal coordination can be found in the book (D. Ni, 2020, p.293-295). The 

main optimization objectives are reduction of delay, number of stops, and queue length. While 

the calming green wave aims at improving safety by avoiding excessive acceleration of 

travelers to catch the next green light (De Coensel et al., 2012; Ellenberg & Bedeaux, 1999), 

the reduction of acceleration can also reduce emissions. The offset, defined as the time 

difference between the beginning of green light at one intersection and the beginning of green 

light at an adjacent successive intersection, is set by considering the distance between 

intersections and driving speed. When vehicles meet a red traffic light, the vehicles will stop 

and form a queue. When the traffic light turns green, the group of vehicles will cross the 

intersection and move towards the downstream intersection. The group of vehicles is called a 

platoon. While driving downstream, the platoon disperses due to different driving speeds and 

delays. The longer the distance, the higher the probability of the platoon dispersion. Apart from 

different desired speeds, other factors that influence the scale and speed of platoon 

dispersions include traffic volume, percentage of heavy-duty vehicles, and the number of lanes 

(Bie et al., 2013). The platoon’s dispersion needs to be considered to optimize signal 

coordination. The traffic density, the distance between intersections, and the arrival pattern of 

vehicles can influence the performance of signal coordination. The improvement in traffic 

efficiency is impeded when travel demand or traffic density is high (D. Huang & Huang, 2003; 

Ye et al., 2015). Signal coordination performs well when the distance between intersections is 

short (Jiang & Wu, 2005). Additionally, congestion, side-street traffic, percentage of heavy duty 



State of the art: road traffic emission estimation 13 

vehicles, pedestrians, and public transport prioritization can result in poor performance of a 

green wave (Bert De Coensel & Botteldooren, 2011). 

Ramp metering serves to control the number of vehicles within a time slot on a ramp entering 

a freeway (metering rate) by using a signal control built on the ramp. There are two types of 

ramp metering: a local ramp metering applied on an isolated freeway section with only one 

ramp to control the local traffic conditions and systemwide ramp metering applied on several 

ramps to control network traffic conditions (Kachroo & Ozbay, 2003, p.3). Ramp metering as 

part of ITS can adjust the traffic flow entering the freeway to the actual traffic conditions by 

using real-time traffic information.  

The variable speed limit serves to change the speed limit on roads. The adjusted speed limit 

is shown on variable speed limit signs. The detectors installed measure traffic conditions 

surrounding the sign. A control algorithm is then needed to design the speed limit to control 

the traffic flow. This solution has been mainly applied to urban motorways when an incident 

occurs, traffic flow is close to capacity, and when there are high levels of exhaust emissions 

(Grumert et al., 2018).  

In the case of dynamic lane management, lanes are allocated to specific vehicle types (busses, 

trucks, alternative fuel vehicles, autonomous vehicles) at a certain time to optimize lane use. 

The lane allocation strategy depends on the prediction of traffic conditions and traffic demand. 

Examples include high occupancy vehicle lane management, which gives priority of lane use 

to vehicles with passenger numbers above a certain threshold such as carpooling and busses; 

dynamic lane assignment at signalized intersections which assigns lane use based on turning 

traffic demand; and lanes dedicated to vehicles on alternative fuels. The connected vehicle 

environment provides the information required to design lane management and help transmit 

the measures.  

Dynamic traffic routing serves to direct vehicles to choose their travel routes based on 

forecasted traffic conditions. ITS applications for routing, such as dynamic route guidance, can 

help to collect real-time information on traffic situations and compute the best routes with 

reasonable computation costs (Yusof et al., 2015). Routing can help optimize logistics and 

reduce the cost of passenger transport. Although the main objective of dynamic traffic routing 

is to avoid traffic congestions, increasing awareness of the need for environmental protection 

has led to the development of eco-routing, which takes into account the reduction of traffic 

emissions during route selection.  

Dynamic pricing helps to adjust prices that users need to pay for the mobility service. It can 

influence the choices of users in a way that balances the capacity of the traffic system with 

transport demand. The main applications of dynamic pricing in ITS are congestion charging, 

parking pricing, charging/discharging pricing for electric vehicles, and fare pricing (Saharan et 

al., 2020).  

All these ITS applications can influence road traffic emissions. Their respective effect depends 

on the context and design of each specific ITS. Some studies specified the factors and 

parameters through which an ITS can influence emissions, dividing them into four groups: 
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parameters defining traffic demand (e.g., trip origination, destination, transport mode, route); 

parameters defining driving behaviors and vehicle’s performance (e.g., driving speed, lane use, 

time or distance headway, tire pressure); indirect factors (e.g., travel cost, capacity of the 

infrastructure); long-term effects (e.g., inducing demand) (Mahmod et al., 2015).  

Based on the existing literature, the commonly used ITS in urban traffic management, as well 

as the influencing parameters and factors on the emissions are summarized in Tab. 2.1. 

Routing, speed limit, signal control, and lane management are the major ITS at the signalized 

intersection. They influence emissions not only through the average speed but also through 

speed variation and the distribution of driving modes. Because the average speed itself cannot 

sufficiently represent the ITS’s effect on emissions, the speed variation should be considered 

as well.  

 

ITS Parameters influenced by ITS Factors that influence ITS 

performance 

dynamic on-trip 

routing 

average speed and steadiness 

of the speed (Y. Huang et al., 

2018) 

road type, road gradient, traffic 

condition, vehicle type, and 

penetration rate of eco-routing (Y. 

Huang et al., 2018) 

Adaptive signal 

control 

acceleration and average 

vehicle speed (De Coensel & 

Botteldooren, 2011; Pandian et 

al., 2009; Y. Wang et al., 2018) 

 

coordinated signal 

control 

 larger platoon ratio 1  and later 

platoon arrival (the last few platoon 

vehicles arriving during a red light 

phase) can reduce more emissions 

(Lv & Zhang, 2012); Traffic volume, 

and green split (De Coensel & 

Botteldooren, 2011) 

dynamic speed limit speed variation and the 

fluctuations in headways 

driver compliance level (Cohen et 

al., 2014); 

 

 

1 Highway Capacity Manual (Transportation Research Board (TRB), 2010) defined the platoon 

ratio as the ratio of vehicles arriving during green time to the green time ratio. 
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during traffic congestions (H. 

Yang et al., 2018); 

average speed acceleration 

and decelerations (Grumert et 

al., 2015)  

 

lane management 

(high occupancy 

vehicles, lanes 

dedicated to 

vehicles on 

alternative fuels)  

traffic volume and percentage 

of cleaner vehicles (Fontes et 

al., 2014) 

road type, traffic volume, fleet 

composition, and average vehicle 

occupancy rate (Fontes et al., 

2014); traffic condition and lane 

configuration (Boriboonsomsin & 

Barth, 2008) 

ramp metering smooth vehicle maneuver (Du 

et al., 2018) 

level of congestion (Pasquale et al., 

2014) 

congestion charging vehicle kilometers traveled and 

average speed (Beevers & 

Carslaw, 2005) 

levels of public transit service and 

size of the charging zone (Wu et al., 

2017) 

Tab. 2.1 Impact of ITS-measures for urban traffic management on emissions based on the existing – 
literature 

2.2.2 Performance assessment methodology 

The design and deployment of a specific ITS measure need to assess the performance of the 

ITS measure. The assessment method can consist of models or field trials. Models include a 

driving simulator and a traffic flow simulation model. Field trials can consist of driving in the 

real-world or on a closed testbed. The choice of the performance assessment method needs 

to take into consideration “cost, safety, repeatability, scale, and technological requirements” 

(d’Orey & Ferreira, 2014). Since models have advantages with regard to these indicators, they 

are the main methods to assess the ITS.  

To model the ITS in the road transportation network, several models need to be integrated. 

The basic models include the function of the ITS to be tested and the traffic model that 

represents the behaviors of vehicles on a road transport network. Since ITS such as an 

advanced diver-assistance system, involves the driver’s features, a driver model may be 

needed to evaluate the type of ITS. The traffic model includes the demand model to represent 

the traveler’s trip generations, destinations, departure time, and transport means, the supply 

model to analyze the road capacity, the assignment model to choose the routes, and the traffic 

flow model to represent the interactions of the vehicles. Based on the level of granularity of the 

traffic flow, the traffic flow models can be commonly classified into macroscopic, mesoscopic, 

microscopic, and submicroscopic models (Fig. 2.2). 
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The macroscopic traffic model represents road traffic as an aggregated flow of vehicles driving 

through the links and intersections. Its representation is based on the relationship between the 

average speed of traffic, traffic density, and traffic flow (Elefteriadou, 2014, p.138). The 

macroscopic traffic model can describe the dynamics of the traffic flow, such as the formation 

and dissipation of queues, while it is incapable of distinguishing individual vehicles. Since it 

can save time and cost, it is suitable for the modeling of traffic flow in a large geographical 

area, such as in an urban road network. 

The mesoscopic traffic model specifies an individual vehicle’s behavior while activities and 

interactions are based on the macroscopic relationship. While a well-calibrated mesoscopic 

traffic model can estimate with sufficient accuracy the average speed of each vehicle, it does 

not reproduce the approximate speed changes (Kuwahara et al., n.d.). The platoon dispersion 

model serves to estimate a vehicle’s arrival profile based on the dispersion effect and 

discharge flow from an upstream intersection. The most widely used dispersion model is 

Robertson’s dispersion model (Robertson, 1969). The platoon dispersion model can be 

integrated into mesoscopic traffic models like TRAFFMED to represent platoon dispersion 

(Cantarella et al., 2019; Pace et al., 2017). 

The microscopic traffic model describes the interaction between vehicles to represent driving 

behaviors. The characteristics of the driver and vehicle can be defined in the model, such as 

the aggressiveness of the driver and vehicle type. The typical microscopic traffic models 

include the car flowing model, the lane-changing model, and the route choice model. In the 

paper of Maerivoet and De Moor (2005), the main microscopic traffic flow models are 

summarized. There are mainly four types of car-following models: safe-distance models, such 

as that of Gipps (1981) and Krauß (1998); stimulus-response models such as that of Reuschel 

(1950), Pipes, and Forbes; psycho-spacing models such as that developed by Wiedemann 

(1974) and Fritzsche (1994); and cellular automata models such as the Nagel-schreckenberg 

model (Nagel & Schreckenberg, 1992). The lane-changing model considers two types of lane 

change behaviors: necessary lane changes, for example, due to route choice and traffic 

regulation; and free lane change, such as due to overtaking to reach the desired driving speed. 

Typical lane-changing models are those developed by Sparmann (1978), Gipps (1986), 

Krajzewicz (2010), and Ehmanns (2014). Since the typical time resolution of the car-following 

model is in the orders of 0.1-0.01 second, the car-following model can reproduce the smooth 

changes of the driving speed (Kuwahara et al., n.d.). As a consequence, this type of model 

can help obtain emissions in seconds. Since the cost of data and computation increases with 

the size of the road network, the microscopic traffic flow model is suitable to simulate an area 

with several links and intersections (Grote et al., 2016).  

The submicroscopic model simulates the behavior of the vehicles and drivers by considering 

more detailed physical characteristics such as detailed gearbox operations (Maerivoet & De 

Moor, 2005). It can model the impact of the road condition (slope and wetness), air drag, wind 

resistance, car weight, and tire wear on the vehicle behavior more realistically than other types 

of traffic flow models mentioned above (Maerivoet & De Moor, 2005). However, this type of 
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model also requires a deeper understanding of the details, more input data, and longer 

simulation time than other traffic flow models.  

 

Fig. 2.2 Illustration of different levels of traffic flow models. a) and b) adapted from Ni (2011); c) a – 
representative Wiedemann car-following model, adapted from Wiedemann(1974) and PTV 
– Planning Transport Verkehr AG (2011); d) adapted from Neunzig et al. (1998). 

When choosing the traffic flow model to assess emissions, several aspects need to be 

considered. Firstly, the traffic factors that influence emissions should be obtained through a 

traffic flow model. Since the traffic flow model can produce the vehicle trajectories at different 

granularities, it can generate different levels of influencing factors. The macroscopic traffic flow 

model would be one option allowing for the use of aggregated traffic flow variables to assess 

emissions. However, the macroscopic traffic model is unsuitable when driving speed is 

measured second by second to assess emissions. In this case, different levels of traffic factors 

have to be integrated into the model, necessitating the application of a specific traffic flow 

model. Secondly, the traffic flow model can take into account the resolution of the emission 

estimation. By using different levels of traffic models, emissions can be estimated at different 

spatial-temporal levels. For example, when using the microscopic simulation model, which 

produces speed trajectories every 0.1-0.01 second, emissions per second can be estimated 

based on the dynamics of the vehicle. This data can be further aggregated into bigger spatial 
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and temporal resolutions. Thirdly, the choice of the traffic flow model needs to consider 

resource constraints in terms of money, time, and data. On the one hand, the application of 

the ITS in traffic management should be assessed in large-scale scenarios rather than at a 

small number of intersections since the application areas interact with their surroundings. On 

the other hand, the ITS allows for real-time information communication, which enables real-

time traffic management. Consequently, the speed of data collections, calibrations, and 

simulations for the flow model has to be fast enough to enable the real-time assessment of the 

ITS for traffic management.  

2.2.3 Summary 

Common ITS in traffic management can influence emissions not only through average speed 

but also by speed variations.  

To choose or design ITS measures to account for emissions, the impact of ITS on emissions 

needs to be estimated. The evaluation has to be based on the traffic flow model and emission 

model. According to the level of granularity of traffic flow, the traffic flow model can be classified 

as a macroscopic, mesoscopic, microscopic, and submicroscopic traffic flow model. The 

macroscopic traffic model cannot represent the individual vehicle speed dynamics but can 

save time and data when modeling the aggregate traffic flow variables of a big urban network. 

The mesoscopic traffic models can represent the traffic flow characteristics over short 

distances but are incapable of simulating fine-grained vehicle trajectories. The microscopic 

traffic simulation model can provide the fine-grained vehicle trajectories for estimating the 

individual vehicle emissions at the second level but at high data and time expenditure, making 

it inappropriate for the real-time simulation of a large urban network. The submicroscopic traffic 

model can simulate road conditions, traffic environment, and detailed vehicle operating 

characteristics but is time and data-consuming. To assess the real-time spatial distribution of 

emissions, the submicroscopic and microscopic traffic simulation models encounter problems 

related to data costs, duration, and quality of the data for calibration and validation; and the 

macroscopic traffic model lacks accuracy in traffic flow characteristics over short distances and 

thus lacks accuracy in the estimation of emissions. In contrast, the mesoscopic traffic model 

comes at lower data and time costs than both the microscopic and submicroscopic simulation 

models. Moreover, the mesoscopic traffic model can better simulate traffic flow dynamics than 

the macroscopic traffic flow model. Thus, it has the biggest potential for the assessment of the 

real-time spatial distribution of emissions.  

2.3 Emission modeling 

This chapter will investigate the existing emission models to answer which ones are most 

suitable for assessing the spatial distribution of emissions and the real-time emission impact 

of the ITS. 
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2.3.1 Requirements of the emission impact assessment by ITS 

Emissions can be assessed by conducting field experiments, real-world measurements, 

laboratory studies, or emission models. Data acquired from fields, laboratories, and other real-

world measurements are limited in terms of time and location. Emission models are required 

when the detailed spatial and temporal distribution of emissions throughout the urban road 

network has to be considered. Emission models can also predict emission levels in situations 

that do not yet exist or occur and thus cannot be measured. The ITS to be assessed in this 

research is designed for decision-making, but not yet for implementation. Therefore, an 

emission model is required for emission estimation.  

Emission models help to estimate emissions in real-world scenarios. Each emission model 

consists of algorithms and requires data inputs and certain computation time to generate 

results. To apply an emission model, the model must meet several requirements. Foremost, 

the model must be able to represent the targeted phenomenon. Secondly, it needs to be 

operationally within a reasonable scope when considering the cost of computation and data 

acquisition. Thirdly, the result of the emission model needs to be valid enough for the targeted 

problem and situations. Within an emission model, the emission factor or emission rate is the 

function of various influencing factors. Each influencing factor and its extent in the model differ 

between emission models. Each emission model involves a certain degree of uncertainty, 

sensitivity, resolution, and cost. Therefore, any specific emission model is suitable only for 

some limited purposes and situations. 

To check whether an existing model can estimate the impact of ITS in real-time on the spatial 

distribution of emissions and can estimate the spatial distributions of emissions, the 

represented emission models are examined from the aspects of sensitivity, validity, 

operationality, and resolution. The sensitivity is tested to check if the model can estimate 

emission changes resulting from a specific type of ITS. The validity is tested to check if the 

model can estimate emissions at a certain resolution level, including at the level of a short 

segment, a street, a road network, or at the regional level. The operationality is tested to check 

if the model can be applied in real-time to a road network with a certain size, ranging from 

several signalized intersections to several corridors to an entire urban road network. 

Resolution can range from yearly regional emissions to hourly street-emissions and from 

emissions resulting from an individual vehicles’ entire trip to second-by-second emissions. 

Moreover, the source and causes of errors are examined to help understand the limitations of 

these models and gain insight on possible improvements. These aspects will be investigated 

by reviewing the literature on model development, application studies, and thoughts of other 

researchers. In the end, this knowledge and experience will be synthesized to develop a new 

emission model concept for this study and inform the model development methodology. 

2.3.2 Existing emission models 

According to how the emission is represented, the emission model could be categorized into 

macroscopic emission models, traffic situation-based emission models, mode decomposition 

emission models, and instantaneous emission models.  



20 State of the art: road traffic emission estimation 

Macroscopic emission models: there are two types of macroscopic emission models. The 

first uses traffic layouts and signal controls instead of traffic flow variables. The second uses 

traffic flow variables, typically average speed. 

For the first type, one study has developed a regression function of the number of lanes, 

presence or absence of a left-turn lane, cycle time, green ratio of the major street, lane volume, 

volume of the left-turn vehicles, percentage of the truck on a major street, and those on the 

minor street (Lee et al., 1983). The developed predictive emission models have more than 60 

terms, including first and second order of the main effect and two-factor interaction effects (Lee 

et al., 1983). Although it shows a good fit for regression, the performance of the predictive 

models is not examined with a new dataset. A regression model with too many terms may 

result in an overfit, which causes the prediction to have large variances. If other or more 

predictors are added into the regression model, the number of the regression terms would 

dramatically increase, which may lead to a higher prediction bias. Thus, it is necessary to 

develop a good predictive emission model that has relatively few terms but can consider the 

effect of more emission sensitive variables.  

For the second type, the average emission factor is a function of average speed. The emission 

function is based on the real-world collection of driving cycles that are sets of vehicle speed 

points versus time. Typical models are EMFAC (Ca, 2015) and COPERT (Gkatzoflias et al., 

2007). This type of emission model has large or systematic differences in the emission 

estimation for some pollutants due to the measurement method, driving situation, test 

environment, and vehicle characteristics (Smit, 2006). This type of emission model has a large 

prediction error of a few tens of percentage points at low speed and short links (Negrenti, 1999). 

A dynamometer test shows that the average speed cannot sufficiently explain the variation of 

NOx emission (Kent & Mudford, 1979). To improve emission estimation, TEE (Traffic Emissions 

and Energy) corrected average speed model was developed, and the kinematic correction 

factor is used to express the effect of speed variability (Negrenti et al., 2007). The kinematic 

correction factor is a product of four independent functions in which the predictors are average 

speed, green time fraction, density, and link length, respectively (Negrenti, 1999). The model 

showed a better estimation of CO concentration than COPERT 3 (Negrenti et al., 2007). Some 

researchers distinguish between emission estimation functions for speed limits, link lengths, 

control types, and percentages of trucks (Klunder et al., 2013). Some researchers used the 

average speed distribution to offer a better explanation for traffic flow dynamics than would be 

possible based on a single average speed value (Aguiléra & Tordeux, 2011). It was found that 

based on average speed distribution, COPERT was able to reduce deviations of emissions 

from the instantaneous emission model, but still underestimated emissions in congested urban 

traffic networks (Lejri et al., 2018). 

By looking into the model structure and studies on model accuracy mentioned above, it can be 

concluded that macroscopic emission models are insensitive to emission changes resulting 

from driving dynamics. Thus, they are unsuitable for assessing the corresponding traffic 

measures that lead to changes in the driving speed. Since these models have higher 
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uncertainty on shorter links, they are unsuitable for the emission estimation of short segments 

either. 

Traffic Situation-based emission model: typical models are HBEFA (S Hausberger et al., 

2009) and ARTEMIS (André et al., 2009). These models capture driving dynamics for emission 

estimation through the classification of traffic situations. Urban traffic situations are classified 

by the road type, speed limit, and traffic condition (Hausberger et al., 2009; André et al., 2009). 

In the ARTEMIS, the traffic condition is defined by the ratio of average speed to free-flow speed 

(André et al., 2009). In the HBEFA, the traffic condition is defined by the level of service 

(Hausberger et al., 2009). The average emission factor of each traffic situation is obtained from 

the representative driving cycles. The driving cycles were collected across various 

combinations of road types, traffic conditions, road gradients, and vehicle types (Hausberger 

et al., 2009; André et al., 2009). The driving cycles were then clustered based on dynamic 

characteristics, such as the average speed, percentage of stops, and relative positive 

acceleration (Knorr et al., 2011).  

Some of the uncertainties related to these emission models result from the inaccurate 

identification of traffic conditions. Since the emission factor during stop-and-go is much bigger 

than in other traffic situations, emission levels are very sensitive to the identification of stop-

and-go situations. The ratio of average speed to free-flow speed itself cannot characterize the 

traffic conditions well enough, as several different driving profiles could exist at low traffic speed 

(Montazeri-Gh & Fotouhi, 2011; Kerner et al., 2014). It will lead to big variations in fuel 

consumption (Schreckenberg et al., 2015). The HBEFA has been integrated with MATsim 

(Hülsmann et al., 2014). The indicator of traffic conditions showed poor emission estimation 

performance. Consequently, each link was further divided into a free driving part and a stop-

and-go part, and then an emission factor was assigned to each part referenced to the driving 

cycles in HBEFA (Hülsmann et al., 2014). Although this improves the estimation, there is still 

a large error at low speed. Some researchers have suggested adding the ratio of density to 

capacity for classifying traffic conditions (Borge et al., 2012). Moreover, the current traffic 

situation-based emission models provide emission factors without differentiating between 

intersection types and without differentiating road parts between intersections. Some studies 

demonstrated different emission distribution patterns between signalized intersections and 

roundabouts as a result of different driving behaviors (Salamati et al., 2015). Additionally, the 

road category and the vehicle-specific driving cycle could be further refined to estimate the 

emissions better. 

As proven by the studies, this type of emission model cannot model link emissions very well, 

especially in stop-and-go traffic situations. Some studies also examined the potential of 

assessing urban air quality by integrating traffic situation-based emission models with air 

quality models (Borge et al., 2012). Since this type of emission model could implicitly represent 

the impact of traffic conditions, it has been applied to assess traffic demand management 

(Hülsmann et al., 2014). However, as this type of emission model does not sufficiently consider 

the influence of speed and acceleration on emissions, it is unsuitable for assessing traffic signal 

systems and other measures relevant to the driving dynamics. 

http://www.sciencedirect.com.eaccess.ub.tum.de/science/article/pii/S0048969704003584
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Mode decomposition emission model: in this type of emission model, the urban driving 

dynamics are divided into several simplified driving modes. The driving modes consist of 

decelerating to stop, idling, accelerating from a stop, cruising, and creeping mode (vehicles 

queuing at a priority junction). The typical emission models are TEE-mode based emission 

(Negrenti, 1996), Uporal (Matzoros & Van Vliet, 1992), and VT-meso (Rakha et al., 2011). 

These models distinguish between the signalized intersection, intersection with priority, and 

roundabout.  

For signalized intersections, these emission models consider two driving situations: driving 

through without a stop and driving with a stop or in a queue. They assume a constant speed 

when a vehicle drives without stopping. The models differ mainly in the emission factor during 

the acceleration mode. TEE-mode based emission ( Negrenti, 1996) and Uporal (Matzoros & 

Van Vliet, 1992) assume a constant emission rate in the acceleration mode and do not consider 

the variability of the emission rate due to the acceleration behavior near the intersection. In the 

VT-meso model, the emissions in the acceleration mode are the polynomial function of the 

cruise speed, and the coefficient depends on the level of acceleration rate (Hesham Rakha et 

al., 2011). Some researchers have proposed another method to estimate emissions on urban 

networks (Gori, La Spada, et al., 2014). The emission factor of vehicles in a queue and 

acceleration is differentiated into two traffic conditions: acceleration from the queue to free 

speed; vehicles cannot reach free-flow speed within one signal cycle (Gori, La Spada, et al., 

2014). In the energy-ITS project, the driving cycle has been divided into “short stop” (less than 

3km/h for 3 seconds) and “short trip” (over 3km/h for 3 seconds) (Kuwahara et al., 2013). 

This type of emission model distinguishes emissions between major driving modes. However, 

transient emission estimation is not accurate enough. In the case of driving without stop, lack 

of considering the small speed variations can result in the underestimation of emissions (Barth 

& Boriboonsomsin, 2012). When frequent accelerations occur, the VT-meso model 

underestimates NOx by a range of 10 to 27 percent on the freeway and arterial roads (Rakha 

et al., 2011). The underestimation could be caused by the oversimplification of driving 

dynamics and a lack of consideration of other types of speed variations, resulting, for example, 

from turning movement, conflicting flow, and mixed traffic. The effect of these speed changes 

is not yet thoroughly studied. The method was tested in an energy ITS project where it 

performed well in the estimation of fuel consumption on a 5-km trip (Kuwahara et al., 2013). 

One study categorized the speed profiles according to the number of stops, and each category 

was assigned one average emission factor (Salamati et al., 2015). This approach can 

represent the variance of emissions resulting from the number of stops. However, the number 

of stops cannot fully explain the impact of traffic management and control on emissions (Rakha, 

Van Aerde, Ahn, & Trani, 2000). 

When applying this type of emission model, the distribution of driving modes, queue lengths, 

and the number of stops need to be obtained. Usually, models of this type are based on the 

theory of queue formation and dissipation and assumptions about the acceleration rate and 

cruising speed. However, very few applications are found. Theoretically, this type of emission 
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model is sensitive to the estimation of operational measures, including demand management 

and signal control. This type of model structure indicates that emissions can be estimated at 

street level and that these models can be operational in an urban network. However, their 

accuracy needs to be improved. 

Instantaneous emission model: the emission rate is a function of instantaneous engine 

states defined by the speed, acceleration, or engine power and engine speed. It is the average 

result of the representative vehicles of each vehicle category. The model development is based 

on extensive measurements of vehicle operations, emissions, and fuel consumption across 

various driving cycles. These emission models can be further divided into the speed-based 

model, the engine-based model, and the simplified engine-based model.  

In the speed-based emission model, the emission rate is dependent on the instantaneous 

speed and acceleration rate. The typical emission models are VT-Micro (Rakha et al., 2004) 

and Versit-micro (Ligterink & Lange, 2009). In the VT-Micro, the log-transformed emission rate 

is a third-order polynomial function of the speed and acceleration rate (Hesham Rakha et al., 

2004). In the Versit-micro, the emission rate has a linear relationship with the speed and 

acceleration rate (Ligterink & Lange, 2009). The emission function differs between deceleration, 

idling, and acceleration. In the engine-based model, the emission rate or factor is dependent 

on the engine power/torque and the engine speed. The typical models are VeTESS (Pelkmans 

et al., 2004), CEME (Barth et al., 2000), and PHEM (Luz & Hausberger, 2011). They contain 

discreet emission maps which show the measured emission factor at the specific engine power 

and engine speed. The engine operation variables will be calculated based on the physical 

engine model. These variables will then be referred to in the emission map and extrapolated. 

Although transition emissions play a big role, VeTESS could be used only at a quasi-steady 

state (Boulter et al., 2007). CEME and PHEM cover the transition phase. To reduce the 

difficulties of calibration and complexities of the models, the engine-based model is simplified 

in a way that the emission rate is assumed to be dependent only on engine power. Engine 

power is represented by a function of speed, acceleration, road gradient and vehicle 

parameters. Examples include the emission model used in the SIDRA INTERSECTION 

software (Bowyer et al., 1985), Emit (Cappiello et al., 2002), PHEMlight (Krajzewicz, Behrisch, 

Wagner, Luz, & Krumnow, 2015), the PP model (Smit, 2013) and MOVES (Frey et al., 2002). 

In the PP model, the emission rate is a regression function of the engine power and changes 

in engine power (P) (Smit, 2013). In MOVES, the driving dynamics are grouped into operation 

bins that are defined by the average speed and vehicle engine power, and each operation bin 

has one average emission factor (Frey et al., 2002).  

These emission models are based on different predictors and assumptions and differ in 

whether they include a catalytic effect, gear shift model, or history effect. Generally, they 

consider more emission-relevant variables, such as vehicle parameters and driving transient 

behaviors. Therefore, these emission models could improve the emission estimation. The log-

transformed emission models offer better predictions in the case of low emissions than in the 

case of high emissions (Rakha et al., 2004). CEME tends to overestimate emissions when 

acceleration begins while underestimating emissions when acceleration ends (Barth et al., 
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2000). Zhang and Loannou (2016) used MOVES and CEME to estimate a combination of a 

variable speed limit and a lane change control. They found that both models show similar 

results of emission reductions (Zhang & Loannou, 2016). For the PP model, the normalized 

root mean square error of the fuel consumption rate varies between 2–12%, and 3–21% for 

NOx (Smit, 2013). To ensure good predictions, Smit (2013) suggested aggregating emissions 

on a road segment longer than 100m. MOVES tends to overpredict emissions of driving cycles, 

which emit relatively low emissions (Frey et al., 2002).  

One source of the estimation error could be the lack of consideration of the catalytic equipment 

effect and historical effect. Since the PP model does not consider the effect of catalyst 

efficiency, it cannot reproduce the peak values of NOx for a petrol SUV of 2006 (Smit, 2013). 

Thus, to estimate the emissions from modern vehicles resulting from a short trip, the efficiency 

of catalytic equipment should be considered. The historical effect could also influence 

emissions, especially the effect of the temperature several seconds before, inertia effect, and 

the effect of aging after-treatment (Barth et al., 2000). Distortions have not been taken into 

account in some instantaneous emission models (CEME, MOVES, VeTESS) (Boulter et al., 

2007). The speed model and simplified engine model lack consideration of other engine 

operations such as gear shift behaviors. The engine-based emission model is highly complex 

and requires many variables of vehicle and engine characteristics. However, only some of the 

parameters could be calibrated, although some parameters are not sensitive to emissions. 

Thus, a large degree of uncertainty could result from parameter calibration. 

Secondly, this type of emission model requires the measuring of driving speed. One study has 

found that the emission estimation based on average speed as the input into CEME is less 

than half of that computed by using speed variations when a big vehicle drives with many 

accelerations, while 30-40% lower when it drives with fewer speed changes on highways 

(Turkensteen, 2017). It indicates that the engine emission model needs to include speed 

fluctuation instead of fixed speed, especially under non-free flow traffic conditions. Some 

researchers found that when the PHEM is integrated with a traffic simulation model to estimate 

the emissions on a highway or rural network, there is an onefold difference in emission results 

between microscopic and mesoscopic simulation models (Behrisch & Erdmann, 2015). PHEM 

has also been integrated with a microscopic simulation model and a driver dynamics model 

(So et al., 2018). Some researchers integrated the instantaneous emission model with the 

macroscopic traffic flow model by transforming the macroscopic traffic variables into traffic 

volume, average driving speed, and average accelerating rate (Zegeye et al., 2013). The 

method was applied to the freeway, and the results showed that the average-absolute-relative 

error of total emissions is less than 10% (Zegeye et al., 2013). The performance needs to be 

assessed on other network layouts and road segments. For signalized intersections, some 

researchers derived simplified driving speed profiles from the macroscopic traffic flow model 

by assuming the constant average acceleration rate and the constant free-flow speed 

(Jamshidnejad et al., 2017). Its integration with the instantaneous emission model yielded 

similar results in terms of total emissions on the tested urban road network to those stemming 

from the integration of the microscopic traffic model with the instantaneous emission model 
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(Jamshidnejad et al., 2017). However, it is uncertain to what extent this performance can help 

estimate local emissions on smaller road segments. 

Normally the instantaneous emission model is integrated with the microscopic traffic simulation 

model that forms the microscopic emission estimation framework. To be noted, several studies 

have discussed the applicability of the microscopic traffic simulation model (da Rocha et al., 

2015; Osorio & Nanduri, 2015; da Rocha et al., 2013). It has been addressed that the traffic 

flow model should be calibrated well for the emission assessment, not only considering traffic 

performances, but also the speed-acceleration relationship and the desired speed 

(Hirschmann et al., 2010). The microscopic emission estimation framework cannot adequately 

estimate emissions per second, while it can be used to estimate a group of vehicles driving 

short distances (da Rocha et al., 2015). This type of emission model has been widely used to 

assess various ITS measures, such as vehicle-to-vehicle communications, vehicle-to-

infrastructure communications, and adaptive cruising control (Coensel & Botteldooren, 2011; 

Lüßmann et al., 2014; Stevanovic et al.,2009; Tielert et al., 2010; van Katwijk, 2012; Wang et 

al., 2014). It could produce a detailed spatial and temporal distribution of emissions and can 

be integrated with the dispersion model to predict the air quality (Giannouli et al., 2011). Due 

to the high data and time costs involved in using microscopic traffic simulation models, this 

type of emission model has rarely been used for big urban networks, especially for real-time 

applications.  

2.3.3 Summary 

To assess the impact of ITS measures on emissions, emission models are mostly integrated 

with traffic flow models. The choice of emission models can be made according to the various 

needs of assessments, including ITS types, spatial scales, and spatial resolutions. The 

accuracy of the emission model varies between different road types, congestion levels, spatial 

resolutions, and types of traffic measures. After a literature review on different emission models, 

each type of emission models’ respective sensitivity to ITS, accuracy, resolution, and 

operational scale are summarized in Tab. 2.2. It is addressed how the accuracy of an emission 

model is influenced by its resolution and traffic environment. When a macroscopic average 

speed-based, or traffic situation-based emission model is used for yearly emission inventory, 

the error of network emissions could be reduced due to the average effect and size effect. The 

size of the error reduction is related to the percentage of signalized intersections on a network 

(Gori, La Spada, et al., 2014).  

Generally, the macroscopic emission models are suitable for estimating the total emissions of 

an urban or regional road network. Based on the length and duration of referenced driving 

cycles, the traffic situation-based emission model could be applied to estimate the hourly 

aggregated emissions of several links or a small area, but not for each link. Driving dynamics 

become more important to estimate link emissions. The mode decomposition emission model 

further has the potential to estimate link emissions if its performance is improved further. An 

instantaneous emission model can estimate emissions at smaller segments. It needs to be 

integrated with a microscopic traffic simulation model, which requires very large data and much 
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computation time. Consequently, it is unsuitable for real-time assessment. Integrating an 

instantaneous emission model with a macroscopic or mesoscopic traffic flow model would 

directly result in a big deviation of estimated emissions. By transforming the macroscopic traffic 

variables into average acceleration rate and average speed, the integration can estimate 

emissions close to the result of the microscopic models, but the performance test is limited in 

the estimation of total emissions on a freeway.  

Emission Model  Type of ITS Accuracy by resolution  Operation

ality for an 

urban 

network 

Traffic 

demand 

management  

Traffic 

control 

Driving 

style  

Area Street Short 

segment 

Macroscopic emission 

models (e.g., EMFAC, 

COPERT, TEE-

average speed model) 

- - - + - - +  

Traffic situation-based 

emission models (e.g., 

HBEFA, ARTEMIS) 

o - - + - - + 

Mode decomposition 

emission models (e.g., 

TEE-mode based 

emission, Uporal, VT-

meso)  

o o - + + - + 

Instantaneous models 

(VT-micro, Versit-

micro, VeTESS, 

CEME, PHEM, 

PHEMlight, PP, Emit, 

MOVES) 

o o o + + + - 

Tab. 2.2  Comparison of emission models for the emission impact assessment of ITS. o: could be –
applied in the scenario; -: inaccurate or unsuitable in the scenario; +: relatively accurate and 
– suitable;  

In conclusion, an emission model needs to be developed for the real-time assessment of the 

impact of ITS on the spatial distribution of emissions. To fulfill this goal, the variables in the 

emission model should reflect variations in speed. Since the mesoscopic traffic flow model has 

the potential to assess the traffic flow dynamics of the short distance in real-time, the emission 

model that uses the traffic flow variables from the mesoscopic traffic flow model can reflect the 

changes in the distribution of emissions caused by the studied ITS.  
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2.4 Summary   

Road traffic is the dominant anthropogenic source of NOx, CO, and HCs in urban areas. 

Vehicle tailpipe emissions are the primary source of road traffic emissions. Emission-

influencing factors can be distinguished at different levels of analysis, and factors between 

these levels are correlated. Signalized intersections are common high-emission areas. 

Emission levels show spatial heterogeneity near signalized intersections. To identify high-

emission areas and estimate the air quality, the detailed spatial distribution of emissions should 

be studied at the level of the road segment. There exists a lack of studies that properly 

disaggregate emissions while distinguishing between high and low-emission areas near 

signalized intersections.  

The application of the ITS enables real-time information communication. It makes traffic 

management more dynamic. The ITS in urban traffic management can influence emissions not 

only through average speed but also through speed variations. Consequently, a real-time 

emission impact assessment is required to help choose ITS measures. A traffic flow model 

and emission model are required for an emission assessment. The traffic flow model provides 

the input data of the emission model. According to the level of granularity of traffic flow, the 

traffic flow models can be classified as the macroscopic, mesoscopic, microscopic, and 

submicroscopic traffic flow models. The problem with submicroscopic and microscopic traffic 

flow models is that they create high data costs, are time-consuming, and lack in data-quality 

for calibration and validation. And the macroscopic traffic model lacks accuracy in traffic flow 

characteristics over short distances and thus lacks accuracy in an emission estimation. In 

contrast, the mesoscopic traffic model consumes less data and less time than either the 

microscopic or submicroscopic traffic flow model. Moreover, the mesoscopic traffic model can 

better simulate the traffic flow dynamics than the macroscopic traffic flow model. Thus, it has 

a larger potential for assessing the real-time spatial distribution of emissions.  

The choice of emission models can be made according to various assessment needs, including 

ITS types, spatial scales, and spatial resolutions. The accuracy of emission models varies 

between different road types, congestion levels, spatial resolutions, and types of traffic 

measures. Instantaneous emission models can estimate emissions at smaller segments. They 

need to be integrated with microscopic traffic simulation models, which require very large 

amounts of data and have a much longer computation time. Although the speed of computation 

could be increased by improving computer processing power, microsimulation requires high 

quality as well as a large quantity of data for calibration and validation. Thus, methods of data 

measurement and data processing need to be improved. The mesoscopic traffic flow model 

has the potential for real-time assessment of traffic flow dynamics over short distances. 

Moreover, it is less dependent on data. Therefore, for the purpose of this research, a 

mesoscopic emission model will be developed and will be assessed for its capability in 

assessing the spatial distribution of emissions. 
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3. Model development methodology 

In this chapter, firstly, the model concept is described. It consists of the resolution, the variables, 

and the effects on local emissions. The model concept is based on the cause and effect 

between road traffic and emissions. Subsequently, the chapter explains the basic data, 

methods for road division, the emission functions, and the design of traffic scenarios.  

3.1 Model concept  

It is essential to identify hot spots for the design of traffic measures as well as for the air quality 

assessment. If only average emissions were measured for a long street or corridor, hot spots 

could be overlooked, or the choice of traffic measures could be based on irrational criteria. To 

estimate the impact of the ITS in urban traffic management on the spatial distribution of 

emissions, the basic requirements of the emission model are: 

• It is sensitive to traffic management;  

• Its implementation can be used for real-time assessment; 

• It can distinguish between high and low emission segments; 

• It is accurate enough to compare different traffic measures. 

Assumptions about the resolution and the model variables have to be made to fulfill these 

requirements. The concept of the segment division and emission functions are described 

below. 

3.1.1 Segment division  

Emission shows spatial heterogeneity between road segments due to the heterogeneity of the 

traffic environment. The traffic environment can include traffic management and control, 

infrastructure layout and geometry, traffic volume, fleet composition, and driver behavior. As a 

result of the interactions of these factors, the traffic flow on each segment shows different 

dynamic characteristics and a different distribution of driving modes. The emission factor is 

sensitive to the driving mode of a vehicle. It indicates that when vehicles on a specific short 

segment have similar driving modes, the vehicles will have similar levels of emissions on this 

segment. Thus, one way to divide the road is to aggregate the segments which have similar 

driving modes. Apart from considering the driving mode, the traffic volume and fleet 

composition should be homogenous, meaning that there exists no diverging or emerging traffic.  

Due to the interaction of vehicles near the signalized intersection, the traffic flow is smoother 

in the middle block with less speed fluctuation, while vehicles decelerate into the queue and 

then accelerate to a high speed near the stop line. The vehicles accelerate from low or medium 

speed after crossing the intersection. Emissions are disaggregated into four small segments 

according to different driving dynamics: midblock (where vehicles mainly cruise), inbound 
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(where vehicles mainly accelerate), the crossing of the intersection, and outbound (where 

vehicles accelerate after crossing the intersection) (Fig. 3.1). While crossing the intersection, 

each traffic stream will be treated separately. The size of each segment can be influenced by 

traffic management and control. For example, different levels of signal coordination may 

influence the size of inbound. As an example, the boundary between segments for an isolated 

signalized intersection is further studied in this study.  

 

 

 

Fig. 3.1 Draft layout of road division 

3.1.2 Variables for emission estimation  

For the primary goal of contributing to real-time emission impact assessment, two key aspects 

are of primary concern: the cost of computation time and the accuracy of the difference of 

emissions between the measures. Emissions measured on each segment for one hour (over 

several signal cycles) are the total emissions of vehicles that have driven through or driven on 

the segment. This value is obtained by multiplying the average emission factor with the total 

traveling distance. The function of the average emission factor should reflect the impact of 

driving dynamics while the consideration of variables and computing time should allow for real-

time estimation. 

Based on chapter 2.1.2, traffic variables that can influence emissions are generally classified 

into three levels: engine dynamics, driving dynamics, and traffic flow dynamics. Emissions can 

be estimated using the function of kinematic parameters and driving modes. However, they 

can hardly be obtained from a macroscopic or mesoscopic traffic flow model. For each type of 

vehicle at each point in time, emissions are directly dependent on the engine dynamics of the 

vehicle, as reflected by its driving speed and acceleration. The driving dynamics and the engine 

dynamics are the results of interactions between factors in the traffic system. In one specific 

traffic environment, similar trajectories consist of a similar combination of driving modes. 

Emissions have different sensitivity to these driving modes, and driving modes may change 

with the traffic environment. Hence, emissions could vary as a result of changes in the traffic 

environment. Since acceleration contributes most to emissions, emission estimation should 
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consider all possible acceleration events. Speed change within a traffic environment can be 

caused by traffic control, traffic volume, interaction of different road users, and infrastructure 

layout. However, it is unknown whether all possible speed changes can have a significant 

impact on emissions and thus need to be considered in the emission model. Moreover, since 

local emissions are the result of all vehicles driving through the area, it may be unnecessary 

to obtain each vehicle’s detailed speed files for a local emission estimation. Thus, to estimate 

emissions on a segment, a method is required that can estimate the average emission factor 

on the basis of variables at the level of traffic flow dynamics. 

At the level of traffic dynamics, parameters could be average speed or queue length, which 

are vital indicators for traffic efficiency. Although driving dynamics can be reflected to some 

degree by traffic flow dynamics, queue length, and average speed cannot thoroughly explain 

the variance of emissions. Thus, some other factors are needed to explain the total variance 

of emissions. Variables in the traffic system that can impact driving dynamics could be used to 

explain variance (listed below). Generally, these factors influence the driving mode, 

acceleration or deceleration rate, duration of each mode, engine power, and engine speed. 

• traffic volume: speed variation while going through a green light 

• traffic signal control (cycle time, green split, offset): stopping or queueing before the 

stop line 

• distance between adjacent intersections: directly influences platoon dispersion and the 

signal coordination level, which influences the number of vehicles’ stops  

• speed limit: the distance of acceleration and deceleration  

• conflicting traffic: acceleration, deceleration, and idling due to opposite traffic 

• yielding traffic: acceleration, deceleration, and idling due to pedestrians and cyclists 

• turning traffic: acceleration and deceleration due to turning movements 

• mix traffic: speed of the cars behind the trucks will be slower 

• approach type (with or without the turning lane): speed 

• lane change: acceleration and deceleration due to lane change 

• number of lanes: speed 

• width of a lane: speed 

• the curvature of a turning lane: vehicles will drive slower and accelerate more slowly 

when the curvature is sharper 

• the slope of the road: engine speed and power  

• driving style: acceleration and deceleration rate  

In this study, the traffic volume, traffic signal control, speed limit, conflicting traffic, turning traffic, 

a mix of the cars and trucks, and the presence/absence of a turning lane are analyzed for an 

isolated signalized intersection. The isolated signalized intersection is defined when signal 

control does not take into account adjacent signalized intersections (the offset is an irrelevant 

control variable) (Cascetta, 2001, p.49). When signal coordination between adjacent 

intersections takes effect, the arrival pattern, which includes early or late arrival and the ratio 

of vehicle arrival during the green time, needs to be considered additionally.   
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Due to the power of the simulation, pedestrians, cyclists, lane changing behavior, the curvature, 

slope, lane width, and the driving style cannot yet be well represented by the microscopic 

simulation model. Since the goal is to test if these variables can accurately explain emissions, 

the variables that can best be modeled by microscopic simulations are chosen to be included 

in the scope of this research. The rest of the variables, including pedestrians, cyclists, lane 

changing behavior, curvature, slope, lane width, and the driving style, can be studied further 

once there is a tool that can accurately represent them. 

3.1.3 Effect of the variables 

Variables interact with each other to influence driving behaviors and emissions. Although these 

variables can be used as predictors for an emission estimation, their relationship would be 

highly nonlinear and complex.  

To simplify the emission model, the capacity and average speed can be used as composite 

factors. The capacity is a function of signal control in case of a signalized intersection, gap 

acceptance in case of a non-signalized intersection, turning ratio, conflicting flow, and truck 

percentage. The function depends on the type of approach. The capacity is calculated based 

on the handbook (FGSV, 2015). The average speed is influenced by the capacity, traffic 

volume, and speed limit. For an isolated signalized intersection, as shown in Fig. 3.2, apart 

from using the capacity and average speed for variance explanation, the cycle time, turning 

ratio, conflicting flow, percentage of trucks, traffic volume, and the speed limit are used as 

additional predictors. As shown in Fig. 3.3, for coordinated signalized intersections, the impact 

of the signal coordination level on emissions is reflected in the relationship between the ratio 

of vehicles arriving during green time and emissions. The ratio of vehicles arriving during green 

time can be estimated by the mesoscopic traffic flow model, which includes a platoon 

dispersion model. Early or late arrival is a categorical variable. It is measured by the difference 

between estimated travel time and offset (if the difference is negative, it is early arrival; if 

positive, it is late arrival) (Fambro et al., 1991).  To be addressed, these factors would also be 

used to estimate the change in the size of each typical segment. 

Since the emission factor differs significantly between driving modes (deceleration, 

acceleration, idling, and cruising), the average emission factor is very sensitive to changes in 

the distribution of driving modes. These predictors may influence the average emission factor 

differently. For example, the capacity and volume may influence the number of queued 

vehicles whose emission factors near the stop line are quite different from that of vehicles 

outside a queue. The volume may influence the average speed of vehicles that are driving 

through. The percentage of trucks may influence the emission factor of a similar driving mode. 

The conflicting traffic may influence the length of the queue and speed near the stop line as 

well as during the crossing of the intersection. The speed of vehicles leaving the stop line on 

the turning lane will differ from their speed on a straight-through lane, which influences 

emissions before the stop line. The ratio of vehicles arriving during the green time will influence 

the queue length and then the emissions. The function is assumed to be two-term interactive 
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or quadratic, which includes the interaction between the two variables and the squared terms 

of each variable.  

 

Fig. 3.2 Pathway of the effect on the average emission factor for an isolated intersection 

 

 

   

Fig. 3.3 Pathway of the effect on the average emission factor for coordinated intersections. Yellow – 
indicates the pathway for the isolated signal control intersection. Blue indicates the additional 
– pathway for coordinated signal control arterials or networks. 

Fig. 3.4, Fig. 3.5, Fig. 3.6, and Fig. 3.7 explain how to use the emission model concept to 

assess typical types of ITS for traffic management and control. 
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Fig. 3.4 Illustration of assessing the isolated signal control based on the developed emission –model 
concept  

 

Fig. 3.5 Illustration of assessing the coordinated signal control based on the developed – emission 
model concept 
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Fig. 3.6 Illustration of assessing the routing effect based on the developed emission model –
concept when signals are uncoordinated  

 

Fig. 3.7 Illustration of assessing the routing effect based on the developed emission model – concept 
when signals are coordinated  
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3.2 Basic data  

For developing the model, the data needed can be collected from the real world or through 

modeling. A disadvantage of real-world data is that complete data collection could exceed the 

research budget. Another limitation is that the scenarios taken into consideration may not have 

occurred yet. Additionally, real-world data collection tools may be unable to provide trustworthy 

information since the measurements have errors resulting from the measurement tools and 

disturbance of the environment. The main methods to measure emissions are tunnel studies, 

on-board emission measurements (portable emission measurement system), remote sensing, 

and near-road air quality measurements. The on-board emission measurements are suitable 

to test the emission factor of an individual vehicle; remote sensing suits more to the 

instantaneous emission models. In the study by Celikkaya et al. (2019), it was found that the 

near-road air quality measurements themselves cannot tell what are the causes of high 

concentrations of air pollutions, since the concentration is a result of a complex interaction 

between traffic emissions, built environment, and meteorology. The traffic emissions can be 

estimated by an inverse process, in which an inversed dispersion model is applied to measured 

air pollutant concentration. However, it is unsuitable for developing an emission model due to 

the measurement errors of air quality and inaccuracy of the dispersion model. Therefore, 

instead of real-world measurements, the traffic emissions in each scenario are modeled, and 

the obtained emissions are used to develop the targeted new mesoscopic emission model. 

3.2.1 Emission model 

From chapter 2.3.2, it has been concluded that the most detailed emission model is the 

physics-based emission model. It is based on the engine emission map to estimate emissions. 

It can capture emissions during the transient process. The two notable models of this type are 

PHEM and CMEM. PHEM is developed based on European situations, while CMEM is based 

on American situations. A detailed description of PHEM can be found in the paper by Zallinger 

et al. (2005). The engine emission map was obtained from transient vehicle tests on roller 

testbeds. The engine map is a discrete dataset in which the emission rate is determined by the 

engine speed and engine power. PHEM uses the vehicle longitudinal dynamics model to 

calculate the effective engine power in 1 Hz resolution. Engine power includes driving 

resistance and transmission loss. It requires data on the vehicle specifications (such as weight 

and load of the vehicle), driving cycle, and road longitudinal gradient. Engine speed is 

calculated based on the gear shift model, tire diameter, final drive, and transmission ratio. The 

emission rate is then interpolated from the engine map. The average engine emission map is 

classified by euro class (from EURO 0 to EURO 6) and vehicle category (passenger, light-duty, 

and heavy-duty vehicle with otto or diesel engine). The vehicle database consists of passenger 

cars, freight vehicles, light-duty vehicles, articulated vehicle city buses, and coaches. Finally, 

the parameters are the relevant EU average values. PHEM has, by far, the largest database 

among detailed vehicle emission models. PHEM has been validated by comparing it to 

measured emissions from the chassis dynamometer test, onboard measurements, and remote 
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sensing data (Borken-Kleefeld, 2012; Hausberger, Rodler, Sturm, & Rexeis, 2003; Rexeis, 

Hausberger, Zallinger, & Kurz, 2007; Soltic & Hausberger, 2004; Zallinger et al., 2005). It can 

model emissions in diverse driving conditions in which speed, acceleration, longitudinal 

gradient, vehicle load, and power train differ. PHEM has been applied in various projects and 

has been used to estimate the impact of different traffic measures, such as vehicle 

communication (Tielert et al., 2010; Krajzewicz, Heinrich, & Milano, 2013) and signal 

optimization (Haberl et al., 2014). Additionally, it can help generate the emission map in meters 

and seconds and be used as an input for the microscopic dispersion model. 

3.2.2 Traffic flow model 

Based on chapter 2.2.2, the microscopic traffic flow model can model the impact of the 

variables considered in this research on driving dynamics in sufficient detail. Therefore, the 

traffic scenario is represented by the microscopic traffic model. 

Numerous microscopic traffic flow simulators have been developed, which incorporate car-

following and lane-changing behavior. They differ in specific car-following models and lane 

change models. The most frequently used simulator includes VISSIM, PARAMICS, AIMSUN, 

and SUMO. The speed profiles generated by the microscopic traffic simulation model can be 

used as an input in the engine-based emission model. It has been criticized that these 

simulation models cannot be used to estimate emissions on a second by second basis since 

they cannot accurately capture second-to-second changes in vehicle dynamics (Song et al., 

2013). They have fewer errors in the estimation of emissions of the entire traffic or vehicle 

platoons at the segment level (da Rocha et al., 2015). The research will focus on traffic 

emissions at the segment level. Thus, the microscopic traffic flow simulator has the potential 

to provide the data basis for the model development.  

VISSIM is a commercial system developed by a company called PTV AG. The car-following 

behavior is based on the psycho-physical driver behavior theory and uses the Wiedemann 

model; and the lane-changing behavior is based on the Sparmann model (M. Fellendorf & 

Vortisch, 2010). It can accurately reproduce the road infrastructure (complex intersections) and 

also takes into account vehicle properties and drivers (Maciejewski, 2010). The VISSIM has 

been widely used for various applications, such as for the analysis of alternative signal control 

strategies and corridor studies on arterials with signalized and non-signalized intersections. It 

has been integrated with the detailed emission model to estimate the emissions and the impact 

of the traffic management and control on emissions (Lv & Zhang, 2012; Kun & Lei, 2007; Zhang 

& Ioannou, 2016; Hirschmann et al., 2010).  

3.2.3 Microscopic emission assessment framework 

The integration of VISSIM and PHEM forms the microscopic emission assessment framework. 

VISSIM provides the inputs that PHEM requires. In PHEM, there exists a mode, called 

ADVANCE. It provides an interface for traffic models like VISSIM. VISSIM generates the speed 
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trajectories of individual vehicles in the network, and the data is saved in a file (*.fzp). According 

to the needs of PHEM, the file should include information about time, x-coordinate, y- 

coordinate, vehicle number, speed, gradient, vehicle category ID, and street ID. The user 

should define the fleet composition as an additional input file. According to the composition of 

the fleet, PHEM should automatically assign every single vehicle with a EURO class and an 

engine type. PHEM will then separately calculate the emissions of each vehicle per second 

and save the data in a file (*.mod). The result consists of speed, acceleration, position, engine 

dynamics, emission rates. Fig. 3.8 shows the integration between VISSIM and PHEM. 

 

Fig. 3.8 Flow chart of microscopic emission assessment in each traffic scenario  
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3.3 Modeling methods 

Firstly, the road division is studied. Secondly, the emission function for each segment is 

explored. As Fig. 3.9 shows, the scenarios are designed using the experimental design method 

and are simulated with VISSIM software. The PHEM model is used to calculate emissions. 

The spatial data mining method is applied to divide the road into segments, and the regression 

method is used to generate the emission function. 

 

Fig. 3.9 Workflow of the modeling methods 

3.3.1 Design of traffic scenarios  

The purpose of the experiment is to change the input variables in a system in a way that can 

help understand the relationship between response and important input variables 

(Montgomery, 2017, p.2). In order to arrive at relevant conclusions, proper experiment planning 

is crucial to guarantee that the correct data type is chosen and that the sample size is sufficient  

(Yale University, n.d.). The statistical design of experiments is “a process of planning the 

experiment, so that the appropriate data is collected and analyzed by statistical methods” to 

help yield “valid and objective conclusions” (Montgomery, 2017, p. 11). According to 

Montgomery (2017), the necessary steps consist of setting the goal and objective of the 

experiment, selecting and defining the response variable, choosing experimental factors, factor 

levels, and level ranges, choosing the design method, conducting the experiment, statistical 

data analysis,  drawing conclusions, and making recommendations.  

For this study, the goal is to develop proper regression functions to estimate emissions. The 

response variable is the emission factor of each segment. The essential experimental factors 

are traffic volume, green ratio, cycle time, truck percentage, speed limit, and lane type. 

Additional factors are the left-turning ratio, right-turning ratio, as well as conflicting traffic’s 

traffic volume and truck percentage. The variability resulting from these factors needs to be 

quantified and extracted to quantify the emission variability resulting from the studied variables. 

The range of each studied variable is defined on the basis of common urban situations. 

Experiments cover all possible combinations of these variables. Various levels of service are 

considered. After considering the two-way interaction and second-order effect, three levels of 

each variable are chosen. An extraneous variable is a variable that is not of interest to the 

current study but may influence the response variables and predictors (Colman, 2015, p.224). 
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In this research, driving behavior constitutes an extraneous variable. Driving behaviors may 

influence the arrival pattern, capacity, average speed, and emission factor. The randomized 

assignment of driving behavior parameters to vehicles in the microsimulation model reduces 

the impact of driving behaviors on the relationship between the targeted predictors and the 

response variable.  

Many design approaches have been developed for fixed factors, including the classical design 

(e.g., full factorial design and fractional factorial design) and the optimal design. The optimal 

design constitutes the best option where constraints generated by the classical design, such 

as limited maximum sample size or an infeasible combination of factors, need to be 

accommodated (Smucker et al., 2018). Since the computation cost of the classical design is 

too high when a model includes more than five variables with more than three levels, the 

optimal design is chosen to generate the design of the experiments. Under the optimal design, 

a subset of design points is generated from a larger candidate set of design points (NIST, 

2013). Design points for the experiments are chosen on the basis of optimality criteria 

(Montgomery, 2017, p.443). The two major types of optimality criteria are, firstly, the 

minimization of the variance of the predicted value and, secondly, the variance of parameter 

estimators. Both optimality criteria can perform differently (Wong, 1994). D-optimality serves 

to minimize the generalized variance of the parameter estimators (Kiefer & Wolfowitz, 1959). 

Since the goal of this research is to estimate the parameters accurately, D-optimality is chosen. 

Equation 1 and Equation 2 are adapted from Atkinson & Donev (1992). According to Atkinson 

& Donev (1992), the major steps of the D-optimal algorithm are to 

(1) define a functional type to describe the relationship between the responsive factor (Y) 

and the predictors (X). 

(2) given the number of experimental runs and the specified function type, generate a 

candidate set of design points  

(3) select the subset of design points from the candidate set, which maximizes the 

determinant of the X’X matrix.  

 𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝜀 Equation 1 

Where 𝑥1 and 𝑥2 are the major effects of the two factors and 𝑥1𝑥2 is the interaction term of the 

two factors. Each factor has two levels represented by 1 and -1. 

A four-run design matrix could be 

 𝑋 = [

1 −1
1 −1

−1 1
1 −1

1 1
1 1

−1 −1
1 1

] Equation 2 

Where the second, third, and fourth columns of X represent the values of 𝑥1, 𝑥2 and 𝑥1𝑥2, 

respectively. The first column represents the constant term. 

Various computer software programs are widely used to support on experimental designs. The 

function “cordexch” in Statistics and the Machine Learning Toolbox™ of Matlab is used to 

generate D-optimal designs. The process of producing optimal design points is iterative. At 

each step, it exchanges a single element in an initial design matrix X with a new neighboring 

file:///C:/Program%20Files/MATLAB/R2018a/help/stats/cordexch.html
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element from the candidate set to increase matrix X'X (MathWorks, 2020). The initial design 

and incremental changes are selected randomly. Besides, there should exist enough data 

points to ensure precision in the parameter estimation (Minitab Statisticians, n.d.). For this 

research, the number of experiment runs is set according to the sample size guidelines for 

regression analysis provided by Minitab Statisticians (n.d.). 

3.3.2 Spatial data analysis   

Road division in a specific traffic situation serves to separate high-emission areas from low-

emission areas. The method can distinguish emission characteristics (average emission level 

and variance) between these segments in various typical typologies of signalized intersections 

and traffic situations. For judging the quality of the division method, road segments featuring 

high emissions should be identified, instead of being concealed in the heterogeneous area; 

the spatial resolution should not be so detailed that the difference of emissions between 

segments becomes insignificant; emissions from each segment should be accurately 

estimated using factors selected for this study. 

The exploration of the spatial emission distribution pattern is an issue of spatial data analysis. 

Exploratory spatial data analysis (ESDA) is “a collection of techniques” to describe spatial 

properties of data; identify unusual cases; detect spatial patterns in data, and formulate 

hypotheses about spatial heterogeneity (Haining, 2014, p. 182). Spatial heterogeneity means 

that the variable displays variation in means, variances, and covariance between locations, 

which can be generated by the underlying process (A. Getis & Ord, 1996; Haining, 2014, p.186). 

Heterogeneity can also originate from the spatial unit size identified for measurement (Haining, 

2014, p.186). Clusters are one type of major spatial patterns. Clustering will result in the low 

similarity between classes and high similarity within a class (Tripathy & Hota, 2012). The 

clustering of areas with a similar emission factor is an issue of cluster detection. There are two 

major types of cluster detection: one type for the detection of area data and one for point data. 

Emission data is one type of area data. In the case of area data, the relevant exploratory 

methods of cluster detection are the Choynowski test, G-statistics, the Besag-Newell test, and 

the Kulldorff scan test. Previous applications illustrate the strength and weaknesses of each 

method in terms of power, accuracy, sensitivity, and computational expense (Grubesic et al., 

2014).  

Spatial autocorrelation constitutes another method of exploratory spatial data analysis. It 

serves to describe the correlation between the values of a variable, which results from the 

spatial proximity of these values, and it is quantified by a deviation from the assumption of 

independent observations (Griffith, 2003). Common techniques are Moran’s I, Geary’s c, and 

Getis’ G. Local statistics were developed for the signal observation: local Moran’s I, local 

Geary’s c and local Getis’ Gi (Gi*) to recognize “hot spots or possible centers of statistically 

significant clustering” (Getis, 2008, p.307). Local Gi*-statistics can be suitable for the 

identification of the location of statistically significant hot spots (i.e., connected areas displaying 

high values) and cold spots (i.e., connected areas displaying low values). The identification of 

high-emission areas is a question of hot spot analysis.  
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No study has yet been conducted that uses this method to recognize the spatial pattern of 

emissions. For this research, it is assumed that there exists a clear boundary between high 

and low-emission areas. Local Gi*-statistics are chosen to prove the assumption and find the 

location of the boundary between segments. The local Gi*-statistics obtains a standardized Z-

score for each observation in the dataset (Arthur Getis & Ord, 1992). Adapted from Sipos (2017, 

p.103), equations 3, 4, and 5 show how to calculate the Z-score. The calculated Z-score tells 

the locations of clusters of high and low values. The p-values indicate statistical significance –

the more statistically significant the absolute Z-score, the more intensive the clustering (ERSI, 

2018).  

When clustering occurs, the neighborhood of the cluster needs to be defined. Commonly used 

neighbors include contiguity-, distance- and graph-based factors. For this study, a fixed 

distance is chosen. The emission factor for a spatial unit is analyzed in the context of 

neighboring emission factors within some specified critical distance. “The distance band that 

exhibits maximum clustering” is defined as the appropriate distance (ERSI, n.d.). Global 

Moran's I is used to measure the degree of a cluster (Moran, 1948). In Equation 6, a positive 

Moran's I indicates the values of the elements are clustered, while a negative one means that 

values are dispersed.  

Global Moran's I and local Gi* are calculated using functions of the “spdep” package in R. 

Global Moran's I is calculated at several distances, and the distance with the highest Global 

Moran's I value is used in local Gi* (see the workflow in Fig. 3.4).  

Equation 3 

Equation 4 

Equation 5 

Equation 6 

 

𝐺𝑖
∗ : the Z-score 

𝑥𝑗 : the value of element j 

𝑤𝑖,𝑗 : the spatial weight between element i and j 

𝑛 : the total number of elements  

𝐼 : the value of Moran's I index 
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http://resources.esri.com/help/9.3/arcgisengine/java/gp_toolref/spatial_statistics_tools/spatial_autocorrelation_morans_i_spatial_statistics_.htm
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Fig. 3.10 Flow chart of the boundary division  

3.3.3 Regression method 

This section aims to mathematically describe the relationship between predictors and the 

emission factor per segment. The elimination of not statistically significant variables was 

attempted to find the right relationship. Many possible models were considered to achieve a 

Goldilocks balance with the number of predictors. The specification of the regression models 

rests on an iterative process (see Fig. 3.11). Firstly, the model needs to be specified by 

choosing the predictors and function type. Initially, typical linear models are tested: a first-order 

linear model, the first order with a two-way interaction model, and stepwise linear regression. 

The variables firstly considered are those to describe the traffic on the studied lane. 

Subsequently, the parameters for each model are estimated. Due to the uncertainties involved 

with the traffic simulation model and the emission model, the obtained emission and traffic data 

has a certain error in each scenario. 

Moreover, noise is generated from the environment. It is assumed that the error is normally 

distributed. An estimator is used to attempt to approximate the unknown parameters. OLS 

(Ordinary least squares) is used in this study. The models are then evaluated and compared. 

If some of the models are accurate enough, these models are chosen for the application. 

Otherwise, models are improved by adding or removing terms, transforming the response 

variable, or by testing higher-order models. Variables on the adjacent lane or conflicting traffic 

are added to test if they can improve the emission estimation. The following factors are 

expected to lead to an accurate estimation of the relationship.  

http://support.minitab.com/en-us/minitab/17/topic-library/modeling-statistics/regression-and-correlation/regression-models/what-are-response-and-predictor-variables/
https://en.wikipedia.org/wiki/Estimator
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Multicollinearity exists when there is a high correlation between predictors. It tends to inflate 

the variance of estimated coefficients and may lead to a wrong effect sign. VIF (Variance 

inflation factors) in Equation 7 and Equation 8 indicate how severe the multicollinearity is in the 

model.  Equation 7 is adapted from the on-line course material (Pardoe et al., 2020). If VIF is 

1, the predictor and the remaining predictors have no correlations; if VIF is bigger than 4, it 

indicates that further investigation is needed; if VIF is bigger than 10, it indicates that correction 

is required (Pardoe et al., 2020). 

        Equation 7 

Equation 8 

 

𝑅𝑘
2 : the coefficient of determination of the linear regression function (the predictor k serves as 

a linear function of the rest predictors). 

𝑦𝑖: ith observed data 

𝑦𝑖̂ : ith predicted value 

𝑦𝑖̅ : the mean of the observed data  

Performance evaluation: after fitting the model, it is checked whether the coefficient signs and 

effect magnitudes align with the theory. The prediction slice plot helps to judge if the coefficient 

signs and effect size are reasonable (Minitab Blog Editor, 2019). The 10-fold cross-validation 

method is chosen to examine the predictive accuracy of the fitted model. Following this method, 

the dataset is partitioned into ten sets. For each set, the model is then trained to use the out-

of-fold observations and is assessed using the in-fold data. Lastly, the average test errors of 

all folds are calculated. The F-test is used to check if the model fits the data better than a model 

without predictors. The adjusted R2 is used to evaluate the explanatory power of the regression 

model. The RMSE (root mean square error) is an indicator to measure the error of a regression 

function. The standardized residual plot is checked. It can help answer if the residuals are 

approximately normally distributed as assumed in this regression method and if a variable, a 

higher-order term, or interaction between terms, is missing. The residuals should be scattered 

roughly symmetrically around 0. When the models have similar adjusted R2, and RMSE and 

the residuals are roughly symmetrically distributed, simpler models would be chosen for 

application.  

 𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 = 1 −

(1−𝑅2)(𝑛−1)

𝑛−𝑝−1
  Equation 9 

 

𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 
2 : the coefficient of determination of the linear regression equation 

𝑛 : the number of the sample size 

𝑝 : the number of predictors. 

𝑉𝐼𝐹𝑖 =
1

1 − 𝑅𝑘
2 

𝑅2  = 1 −
 (𝑦𝑖 − 𝑦𝑖̂)

2𝑖=𝑛
𝑖=1

 (𝑦𝑖 − 𝑦 )2𝑖=𝑛
𝑖=1

 

http://statisticsbyjim.com/glossary/predictor-variables/
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 𝑅𝑀𝑆𝐸 = √
 (𝑦𝑖−𝑦𝑖̂)

2𝑛
𝑖=1

𝑛
  Equation 10 

𝑦𝑖  : ith observed data 

𝑦𝑖̂ : ith predicted value 

𝑛 : the total number of data points. 

When a term is removed: whether a predictor variable should be included in the final regression 

model is based on the consideration of two factors: statistical significance and a hierarchical 

model. Statistical significance is examined by conducting a t-test. Because the lower-order 

term indicates the basic information about the shape of the relationship and the higher-order 

term refines it, the lower-order term would likely remain kept in the regression function if the 

higher-order term is statistically significant and there are also not too many statistically 

significant terms (Minitab Blog Editor, 2016).  

The regression-related algorithms and processes are implemented with Matlab. The 

regression Learner App in Matlab is used to train, validate, and tune the regression models. 

 

Fig. 3.11 Steps of regression modeling 
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3.4 Modeling  

The model development methodology is applied to two types of road approaches of an isolated 

signalized intersection, which are used as examples to examine the feasibility of the model. 

The methodology reveals how the lane should be divided into smaller segments before the 

stop line and after crossing the intersection. For each lane, the spatial division method is 

applied to explore the boundary between high and low upstream emission areas. At the 

intersection, each crossing lane is regarded as one segment. By conducting variance studies 

of the boundaries, the rule for each type of lane is defined. For each segment, its hourly traffic 

volume (q), truck percentage, turning ratio, cycle time (C), capacity (c), speed limit (V), average 

speed ( 𝑣̅ ), opposite traffic volume, and truck percentage of opposite traffic are used as 

predictors for regression modeling. Following the regression modeling steps, the regression 

model is selected for the test. The main and interaction effect of each selected model is 

described and explained. 

3.4.1 Scenarios  

In this section, the scenarios to which the model development methodology is applied are 

described. The description includes the layout of the signalized intersection, the values of the 

variables, and the simulation settings.  

Scenario description  

Two major types of approaches are studied, one is a straight lane with right and left-turning 

lanes, another is one lane with straight-through traffic and turning traffic. These two 

approaches are designed on an isolated signalized intersection. It is a realistic virtual 

intersection. The intersection for the model development is in Fig. 3.12. The east approach 

has one straight lane with left- and right-turning lanes. The left-turning lane is around 60 meters 

long, and the right-turning lane is 48 meters long. The south approach consists of one lane 

with a mix of straight-through traffic and turning traffic. The left-turning traffic from the east 

faces conflicting traffic from the west. The traffic light is Fixed time signal control. The inter-

green time has a duration of 7 seconds. The signal settings for the left-turning, right-turning, 

and straight-through traffic are the same on the east approach. The east approach and south 

approach are the study area for emission modeling. The east and south approaches are 

separately studied since they have opposite signal phases, which means that their signal 

phases are not permitted to run simultaneously by the signal controller. 

The variables and their levels for each lane on the east approach are listed in Tab. 3.1. 

Variables include hourly traffic volume of straight-through traffic (q_s), left-turning hourly traffic 

volume per hour (q_l), right-turning hourly traffic volume (q_r), conflicting hourly traffic 

volume(q_c), truck percentage of straight-through traffic (truck_s), truck percentage of left-

turning traffic (truck_l), truck percentage of right-turning traffic (truck _r), truck percentage of 

conflicting traffic (truck_c), speed limit (V) and green ratio. The C is set to be 60 seconds. The 
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truck percentage of each direction is the ratio of hourly truck volume divided by the hourly 

traffic volume of each direction.  

On the south inflow, the left-turning traffic is set as 0. The right-turning ratio (a_r), q, truck 

percentage of each direction, C, and V are varied (Tab. 3.2).  

The quadratic effect and interaction effect are assumed. Thus each variable should have at 

least three levels. The levels of C, green ratio, and V are set according to common real-world 

values. The range of the truck percentage is based on an urban situation. The middle point is 

set at the second level so that the points are more homogeneously distributed. For the east 

approach, the levels of traffic volume are set while ensuring that the queue length on the 

turning lane is no longer than the length of the turning lane. For the south approach, the levels 

of traffic volume and turning ratio are set to cover the various volume to capacity ratios. By 

applying the D-optimal method to each approach, the scenarios for each approach are 

obtained.  

 

Fig. 3.12 Intersection in VISSIM for model development 
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Green 

ratio  

truck_l  truck_r truck_s truck_c q_l 

[veh/h] 

q_r 

[veh/h] 

q_s 

[veh/h] 

q_c 

[veh/h] 

V 

[km/h] 

[0,3, 

0.4, 

0.5] 

[0, 

0.025, 

0.05] 

[0, 

0.025, 

0.05] 

[0, 

0.025, 

0.05] 

[0, 

0.025, 

0.05] 

[120, 

180, 

240] 

[120, 

180, 

240] 

[120, 

180, 

240] 

[0, 

67, 

134] 

[30, 

40, 

50] 

Tab. 3.1  The variables and levels on the east approach 

 

C 

[s] 

Green 

ratio 

a_r q 

[veh/h] 

truck _r truck _s V 

[km/h] 

[60, 

90, 

120] 

[0,3, 

0.4, 

0.5] 

[0.1, 

0.5, 

0.9] 

[500, 

600, 

700] 

[0, 

0.025, 

0.05] 

[0, 

0.025, 

0.05] 

[30, 

40, 

50] 

Tab. 3.2  Variables and levels on the south approach 

Scenario simulation 

These scenarios are simulated in VISSIM 9.00. The composition of vehicle classes is based 

on statistics from 2010, which are provided in PHEM. The gear-shift model embedded in PHEM 

is used. Driving behaviors are set at the default values in VISSIM, which represents regular 

driving. VISSIM allows the user to select a time step between 0.1 and 1.0 seconds. The time 

resolution should be at least 3hz to obtain realistic trajectories (Hirschmann et al., 2010). 

Setting the time step at 0.1 seconds can help obtain a more realistic speed trajectory 

(Fellendorf & Vortisch, 2001). Therefore, the simulation resolution is set at 10-time steps per 

second of the simulation.  

The number of runs: microsimulation takes into account the stochastics of the traffic flow, and 

the results depend on the random number seed of each run. To have a statistically valid value 

for the emission factor, more simulation runs with different random number seeds are required. 

The minimum number of runs can be calculated by Equation 11 (Dowling et al., 2004; FGSV, 

2006; Hoffmann, 2014). 

 𝑛 =
𝑡(𝛼,𝑛−1)2𝑠2

𝐶2   Equation 11 

𝑛: the minimum number of runs 

𝑡(𝛼, 𝑛 − 1)2: the value based on the student-t distribution 

𝑠: standard deviation 

𝐶: the desired confidence interval  
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A confidence interval is the range of values within which the true mean value may fall. The 

initial confidence interval can be calculated by Equation 12 (Hoffmann, 2014, p. 95). 

 

 2 ∗ 1.96 ∗
𝑠

√𝑛
 Equation 12 

A confidence level is a probability that the true mean will fall within the confidence interval. 95% 

is picked as the level of confidence.  

The ten simulation runs are performed to estimate the initial standard deviation of the emission 

factor of NOx on each six-meter segment. It shows that if ten is assumed to be the minimum 

number of simulations required, then the confidence interval reached is smaller than the one 

calculated by equation 12. Therefore, each scenario is simulated ten times.  

3.4.2 Spatial division 

The basic spatial unit is defined as six-meter since it is the average distance between 

passenger cars in a queue. The average emission factor (EF) of all simulation runs per 

scenario is used for the spatial division algorithms. The result of each lane is described below. 

The boxplot of the Z-score at each spatial unit helps to identify the variance and mean of the 

Z-score. The top line of the rectangle indicates the third quartile. The horizontal line in the 

rectangle is the median. The bottom line of the rectangle indicates the first quartile. The 

horizontal line above the rectangle is the maximum value. The line below the rectangle 

indicates the minimum value. The relative vertical spacing between labels reflects the 

proportionality of the values of the variable. 

East approach 

Before applying the spatial division method, changes in fleet composition and traffic volume 

on a lane need to be considered. On the straight-through lane, some vehicles change the lane 

to enter the turning lane. The lane changing leads to changes in traffic volume and fleet 

composition. Thus, the straight-through lane is divided into two parts. One part consists only 

of straight-through traffic, which starts at the stop line to 48 meters away from the stop line. 

The remaining road section features mixed traffic and includes vehicles switching to the turning 

lane.  

On the left turning lane, high emissions occur near the stop line, while cold spots are detected 

on the remaining parts of the lane (Fig. 3.13). There is no apparent relationship between the 

queue length and the size of high-emission areas. For all situations, the area within 12 meters 

from the stop line features a significantly high emission factor. In most cases, high emissions 

are located within 18 meters from the stop line and only in a few cases up to 24 meters from 

the stop line. Therefore, the division point between high and low-emission areas is chosen to 

be 18 meters from the stop line.  
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On the right turning lane, significantly high-emission areas exist within 12 meters from the stop 

line, while high-emission areas in most cases exist up to 18 meters from the stop line (Fig. 

3.14). The boundary between high and low-emission areas on the right turning lane is set at 

18 meters from the stop line. The locations of high emissions on the straight-through lane are 

like the ones on the right-turning lane (Fig. 3.15). Therefore, the boundary between high and 

low-emission areas on the straight-through lane is also at 18 meters from the stop line. 

It is possible to further distinguish between hot and cold spots on the section before the turning 

lane, where turning traffic and straight-going traffic mix. There is a relatively high-emission area 

near the lane changing section compared to the section above (Fig. 3.16). Compared to the 

emission factor near the stop line, the emission factors of these spots are quite low. It is similar 

to the average emission factor of the rest of the queue as well as of the section before the 

queue. Thus, the section before the turning lane is treated as one segment.  

 

Fig. 3.13 Z-score of the left-turning lane  
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Fig. 3.14 Z-score of the right-turning lane  

 

Fig. 3.15 Z-score of the straight-through lane  
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Fig. 3.16 Z-score of the lane with the straight-through and turning traffic  

South approach 

The segment of the south approach investigated has a length of 120 meters. When the queue 

length is shorter than 120 meters, the size of the high-emission area ranges from 36 to 72 

meters (Fig. 3.17). The stepwise regression method is applied to the estimation of the size of 

the hot spot (distance from the stop line) using the a_r, C, c, q, truck percentage, and V. The 

significant variables and the coefficients are listed in Tab. 3.3. The R-squared is 0.8, and the 

adjusted R-squared is 0.77. Since all the VIF values are below 10, the assumption of no serious 

multicollinearity is met. The scatterplot of the standardized residual on standardized predicted 

values does not funnel out or curve. Thus, the assumptions of linearity and homoscedasticity 

are met as well. It is found that the truck percentage is not a statistically significant predictor. 

The a_r, q, and c have positive relations to the size of the hot spot while C and V have negative 

relationships. For the cases where the queue is longer than 120 meters, the investigation 

should be enlarged to cover the entire length of the queue.  
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Fig. 3.17 Z-score of the lane with straight-through and right-turning traffic  

 

Variables  Coefficients P-value 

Intercept  5.371 <0.001 

a_r 1.763 <0.001 

C 0.037 <0.001 

c -0.005 <0.001 

q 0.009 <0.001 

V -0.056 <0.05 

Tab. 3.3 Regression result for hotspot size of a lane with right-turning and straight-through traffic 

After crossing  

The downstream road segment consists of right-turning traffic in the north, straight-through 

traffic in the east, and left-turning traffic in the south. When the V is 30 km/h, the area within 

12 meters after the crossing is a hot spot in all studied cases (Fig. 3.18). When the V is 40 

km/h, the area within 18 meters after the crossing is a significant hot spot in all scenarios (Fig. 

3.19). Less than 25% of cases are hot spots at the segment 30 meters away from the stop line. 
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When the V is 50 km/h, the area within 18 meters after the crossing is a significant hot spot in 

all scenarios as well (Fig. 3.20). However, more than 75% of cases are hot spots at the 

segment 30 meters away from the stop line.  

 

Fig. 3.18 Z-score after crossing the intersection when the speed limit is 30 km/h 

 

Fig. 3.19 Z-score after crossing the intersection when the speed limit is 40 km/h 

 

Fig. 3.20 Z-score after crossing the intersection when the speed limit is 50 km/h 
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Discussion 

 

Fig. 3.21 Boundary between the hot and cold spot  

The spatial division of each lane is shown in Fig. 3.21. The spatial pattern and the size of the 

high-emission area can be explained by the distribution of driving modes. The driving modes 

can be categorized as acceleration, deceleration, idling, and cruising. The emission factor 

during acceleration is the highest, while deceleration has the lowest emission factor. High-

emission areas are located near the stop line, where significant accelerations occur. The area 

with the remaining section of the queue and before entering the queue has relatively low 

emissions since the major driving dynamics in this section consist of a mix of small 

accelerations at low speeds and decelerations, which have low emission factors. 

For the east approach, the size of the high-emission area remains relatively constant in various 

traffic scenarios. The reason for this could be that while vehicles may switch lanes to enter the 

turning lane, these vehicles would decelerate or drive at a relatively slow speed. In this case, 

the average emission factor could be much lower than in the area near the stop line, where 

significant accelerations occur. For segments in which vehicles drive in different directions, the 

average emission factor on each segment does not differ significantly, because vehicles 

standing in queue accelerate only to low speeds on these sections while simultaneously 

interacting with lane switching vehicles. 

For the south approach, the result shows that the truck percentage is not a statistically 

significant predictor to predict the size of the high-emission area. The right-turning ratio, traffic 

volume, and capacity have positive relations to the size of the hot spot, while cycle time and 

speed limit have negative relationships. When there is more right-turning traffic, the speed of 

vehicles leaving the stop line is lower. The slower speed results in a lower emission factor near 

the stop line. The cluster of relatively high-emission areas could, therefore, include smaller 

segments. When there is more traffic, there are more vehicles that queue during the red time 

and at the beginning of the green time. Therefore, areas in which acceleration occurs are more 
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extended, and the high-emission area is enlarged. When capacity is higher due to a higher 

green ratio, the percentage of vehicles that drive through without queueing is bigger. It reduces 

the difference in the average emission factor between segments, which results in enlarging the 

area of relatively high emissions. When the speed limit is higher, the distance of decelerating 

is longer. It leads to an increase in the size of the low-emission area. When the cycle time is 

longer, more vehicles may queue at the beginning of green time. Consequently, the 

percentage of vehicles in the acceleration mode near the stop line is significantly increased, 

which increases the size of the emission factor. Therefore, the cluster of high emission factors 

is relatively close to the stop line. It can be concluded that the size of the relatively high-

emission area is not only dependent on queue length. Instead, its variance can be better 

estimated using the function of the turning ratio, traffic volume, capacity, cycle time, and speed 

limit. 

On the downstream road, the average emission factor is higher after crossing the intersection 

than further downstream. It can be explained by the fact that vehicles may accelerate beyond 

the speed limit. There exists a trend that when the speed limit is higher, the size of the relatively 

high-emission area is larger. It is probably because vehicles need to drive a longer distance to 

reach the speed limit. When the speed limit is low, such as around 30 km/h, the area that is 

further away from the intersection features a hot spot. Since the average emission factor is not 

significantly high, these areas are aggregated with surrounding low-emission areas as one 

cold spot. The boundary between high and low-emission areas on the downstream road is set 

at 30 meters after crossing the intersection. 

3.4.3 Emission function  

Based on the rules described in the previous chapter, four major types of segments are defined: 

the upper section of the lane, the segment near the stop line, the crossing, and the section 

after crossing the intersection. Each type of segment is further distinguished by lane type: 

straight-through lane, right-turning lane, left-turning lane, or mix-traffic lane. For each segment, 

the emission function needs to be examined. The optimized emission functions for the 

segments near the stop lines are described below. The emission functions for the rest of the 

segments can be found in Appendix.  

Near stop line of the left-turning lane (Fig. 3.22) 

• A bigger truck percentage can result in a higher emission factor of NOx, and the effect 

size will be smaller when there exist stronger conflicting flow and bigger capacity. The 

emission factor of a truck is much higher than that of a passenger car during 

acceleration. When more vehicles stand in a queue, emissions differ more strongly 

between different truck percentages. When there exists stronger conflicting flow, the 

speed to which vehicles accelerate is decreased, which leads to a smaller difference 

in emissions between trucks and passenger cars.  
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• Capacity has a negative relation with the emission factor. Its absolute effect size is 

increased in the case of more trucks, bigger traffic volume, and larger conflicting 

volume. 

• Traffic volume has a positive relationship with the emission factor, and the effect size 

is smaller when capacity is higher. 

• Conflicting traffic volume has a negative relation with the emission factor. On the one 

hand, conflicting traffic causes a vehicle queueing before the stop line to accelerate to 

a lower speed. On the other hand, conflicting traffic causes vehicles without stopping 

to decelerate. The absolute effect size of the conflicting traffic volume is increased if 

the capacity and truck percentage are higher. If capacity is high, fewer vehicles will 

queue. They decelerate more strongly when facing the increased conflicting flow. This 

leads to lower emission factors. Moreover, the emission factors of trucks are more 

sensitive to their driving modes. Thus, a bigger truck percentage can lead to a bigger 

drop in the average emission factor when the vehicle fleet faces conflicting traffic.  

• The speed limit has a negative relation with the emission factor. Vehicles decelerate 

more strongly in case of high driving speed, which can result in fewer emissions. The 

absolute size of the effect is larger in the case of a higher percentage of trucks. 

Fig. 3.22 Interaction effect near the stop line of the left-turning lane 
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Near the stop line on the straight-through lane 

In Fig. 3.23, the interaction effects are shown. 

• The truck percentage has a positive relation to the emission factor of NOx. The effect 

size gets bigger when there is less traffic, bigger capacity, or lower average speed. 

• The traffic volume has a positive relation to the emission factor of NOx. The effect size 

gets bigger at a lower truck percentage, lower capacity, and higher average speed. 

• With higher capacity, the emission factor of NOx gets lower. The absolute effect size 

gets smaller with a higher truck percentage, less traffic, and a higher average speed. 

• With a higher average speed, the emission factor of NOx gets lower. The absolute effect 

size gets bigger when there is a higher truck percentage, less traffic, and lower capacity.  

Fig. 3.23 Interaction effect near the stop line on the straight-through lane 
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Near the stop line on the mix-traffic lane 

For the west approach with one lane, the right-turning ratio, traffic volume, truck percentage of 

right-turning traffic and straight-through traffic, capacity, cycle time, speed limit, and average 

speed are used as predictors. The multicollinearity test shows that there exists no obvious 

multicollinearity. The stepwise model is selected. The result is displayed in Fig. 3.24: 

• The right-turning ratio has a negative relationship with the emission factor of NOx. The 

absolute effect size increases with more trucks from either straight-through traffic or 

right-turning traffic and with higher capacity, while it decreases at a higher speed limit. 

• The truck percentage has a positive effect on the emission factor of NOx. The effect 

size of the truck percentage in each direction is bigger when the ratio of the traffic 

volume in the corresponding direction is bigger. 

• Capacity has a negative relation to the emission factor of NOx. The absolute effect size 

of capacity on average emission factor decreases when the truck percentage of the 

right-turning traffic increases. 

• Speed limit has a positive relation to the emission factor of NOx when the right-turning 

ratio is smaller. The relationship turns negative when most traffic is right-turning.  

• Average speed and cycle time have negative effects on the emission factor of NOx. 

Fig. 3.24 Effect near the stop line on the lane with straight-through and right-turning traffic 
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3.5 Summary 

The model development methodology is applied to two types of road approaches, namely one 

approach consisting of the straight-through lane, the right-turning lane, and the left-turning lane; 

another approach consisting of the lane with straight-through and right-turning traffic. 

The spatial pattern and the size of the high-emission areas can be explained by the distribution 

of driving modes. High-emission areas are located near the stop line, where major 

accelerations occur. The area with the remaining part of the queue and before entering the 

queue has relatively low emissions since major driving dynamics in this area consist of a mix 

of small accelerations at lower speeds and decelerations. The size of the high-emission area 

on the separate lane remains relatively constant in various traffic scenarios. For the lane with 

the straight-through and right-turning traffic, the truck percentage is not a statistically significant 

predictor to estimate the size of the high-emission areas. The right-turning ratio, traffic volume, 

and capacity all have positive relations to the size of the hot spot, while cycle time and speed 

limit have a negative relation with the size of the hot spot. It is concluded that the size of the 

relatively high-emission area is not only dependent on queue length. Instead, it is suggested 

that its variance can be better estimated by using the function of the turning ratio, traffic volume, 

capacity, cycle time, and speed limit. On the road segment, after crossing the intersection, the 

average emission factor of NOx (EF_NOx) is higher in the area near the intersection than further 

downstream. The boundary between high and low-emission areas downstream is found at 30 

meters after crossing the intersection. 

The emission function is developed for each type of segment and summarized in Tab. 3.5. 

Lane type explains the differences between emission functions. The predictors interact with 

each other to influence the average emission factor. The effect signs of the factors depend on 

the segment type. The effect signs are explained by changes in driving modes. 

 

Segment Regression function 

hot spot_sr 'EF_NOx~1 +C +𝑣̅ + a_r*truck_s + a_r*truck_r + a_r*V + truck_r*c_sr' 

cold spot_sr 'EF_NOx~1 + truck_s + C + c_sr + a_r*truck_r + a_r*q_total + a_r*𝑣̅ ' 

hot spot_s 'EF_NOx~1 + truck_s*q_s + truck_s*c_s + truck_s*𝑣̅ + q_s*c_s + q_s*𝑣̅ + 

c_s*𝑣̅' 

cold spot_s 'log(EF_NOx)~1 + truck_s + q_s + V + c_s' 

hot spot_l 'EF_NOx~1 + truck_l*q_c + truck_l*V + truck_l*c_l + q_l*c_l + q_c*c_l' 

cold spot_l 'EF_NOx~1 + truck_l*q_l + truck_l*V + truck_l*c_l + q_l*q_c + q_l*c_l + 

q_c*c_l' 
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cold spot_slr 'EF_NOx~1 + truck_l*truck_s + truck_l*q_s + truck_l*q_l + truck_l*q_r + 

truck_l*V + truck_s*truck_r + truck_s*q_s + truck_s*q_l + truck_s*q_r + 

truck_s*V + truck_r*q_s + truck_r*q_l + truck_r*q_r + truck_r*V + q_s*q_l 

+ q_s*q_r + q_l*q_r + q_l*𝑣̅ + q_r*𝑣̅' 

crossing_s_sr 'EF_NOx~1 + a_s + truck_s + c_sr + V + C*q_total' 

crossing_s_s 'EF_NOx~1 + truck_s*V + truck_s*c_s + q_s*V + V*c_s' 

hot spot_after 

crossing 

'EF_NOx~1 + truck_es + truck_sl*c_e + truck_sl*q_sl + truck_sl*q_nr + 

truck_nr*q_es + truck_nr*V + C*𝑣̅ + C*q_sl + q_es*V + q_es*𝑣̅ + V*𝑣̅+ 

V*q_sl + V*q_nr + c_e*𝑣̅ + c_e*q_nr + q_sl*q_nr' 

Tab. 3.5  Emission function of each segment 

 

4. Model test 

The goal of the study is to develop an emission model that is comparable to the microscopic 

emission estimation framework. The model is used to compare traffic measures in terms of 

emission impact. Accordingly, the level of emission change resulting from each traffic measure 

should be accurately estimated. Rerouting is a traffic management strategy to reduce traffic 

congestions. As an example, the effect of rerouting on NOx is tested to assess the performance 

of the developed model. The test scenario refers to the application of the emission model 

concept for assessing the routing effect drafted in Fig. 3.6. Two scenarios are created, namely 

a basic scenario, and a rerouting scenario. In each scenario, the estimated emission factor of 

NOx by the development model is compared with the results of PHEM and HBEFA. The 

absolute changes of the emission factors of NOx after rerouting are compared between these 

models to study the sensitivity of each model to rerouting.  

4.1 Methods to test  

The rules of the spatial division of different lane types and the emission function for each 

segment are tested. The result of the spatial division is compared with the result from the Local 

G* method. The estimated emission factor is compared with the result of PHEM and HBEFA. 

The models are evaluated at various spatial resolutions, namely the segment-level, the lane-

level, the approach-level, and the stream-level. The division of segments is carried out 

according to the spatial division rules in Fig. 3.21. The lane-level refers to each lane before the 

stop line. The approach-level includes all lanes on which vehicles drive in the same direction 

to arrive at the stop line. The stream-level includes all lanes running in one direction, from 

upstream to downstream. 
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HBEFA is developed based on PHEM (Hausberger et al., 2009). HBEFA is a typical traffic 

situation-based emission model. The traffic situation is defined by the combination of road type, 

speed limit, and level of service. The level of service is defined by average speed. In each 

traffic situation, the average emission factor is assigned for each type of vehicle category. It is 

based on fleet composition for the years 1990-2030 in different countries, including Germany, 

Austria, Switzerland, Sweden, Norway, and France. HBEFA 3.3 is the newest version released 

in 2017. It includes an update of NOx emissions of newer diesel passenger cars, especially 

updates of hot emission factors of NOx of diesel passenger cars of the types Euro-4, Euro-5, 

and Euro-6 based on new measurements from laboratories, real-world measurements as well 

as remote sensing data. The detailed description can be found in the reports (Hausberger et 

al., 2009; Keller, Hausberger, Matzer, Wüthrich, & Notter, 2017).  HBEFA is commonly used 

to estimate street-level emissions.  

4.2 Test scenario  

The intersection of interest is intersection 3 (Fig. 4.1). The tested intersection has four arms 

(Fig. 4.2). The east approach consists of three types of lanes: one lane with straight–through 

and right-turning traffic (sr), straight-through lane(s), and a left-turning lane (l). The cycle length 

of the signal is 90 seconds, and the speed limit is set at 30 km/h. The setting for each test lane 

is summarized in Tab. 4.1. The left-turning lane in the east has a length of approximately 60 

meters. The investigated length of each lane before the stop line is the same as the length for 

the model developed in the previous chapter. In the rerouting scenario seen in Tab. 4.2, half 

of the traffic driving from the east approach of intersection 1 to the west approach of 

intersection 4 by crossing intersection 3, is rerouted onto lane 1.  

 

Fig. 4.1 Road network 

Intersection 1 

Intersection 2 

Intersection 3 

Intersection 4 

Lane 1 
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Fig. 4.2 Intersection 3 which is to be evaluated 

 

lane C 

[s] 

green 

ratio 

q 

[km/h] 

turning 

ratio 

truck percentage 

of turning traffic 

truck percentage 

of straight-through 

traffic 

east_sr 90 0.36 419 0.11 0.02 0.05 

east_s 90 0.36 539 0.00 0.00 0.08 

east_l 90 0.53 42 1.00 0.00 0.00 

north_r 90 0.18 53 1.00 0.02 0.00 

Tab. 4.1 Setting of each lane in the basic scenario 

4.3 Test results  

This subchapter describes the results of the predicted boundaries between the high-emission 

and the low-emission areas, and the estimated average emission factors in the basic as well 

as the rerouting scenarios. The predicted boundary is compared with the result from the Local 

G* method. The performance of the developed model for the average emission factor is 

evaluated by comparing it with PHEM and HBEFA. Changes in the average emission factor 

due to rerouting are compared between the developed model and PHEM and HBEFA. 

4.3.1 The boundary between high- and low-emission area  

The results of spatial division are summarized in Tab. 4.3. Before crossing the stop line on the 

lane with straight-through and right-turning traffic, the predicted high-emission area has the 

same size as the area identified by the local Gi* method (see in Fig. 4.3). The predicted high-
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emission areas on the straight-through lane and after crossing the intersection fall within the 

area estimated by the local Gi*. In Fig. 4.4, the Z-score is slightly higher than 0 on the segment 

around 18-24 meters away from the stop line. It can be concluded that the predicted model 

can identify the significant high-emission area on the straight-through lane. The predicted high-

emission area is smaller than that resulting from the Local Gi*. The predicted high-emission 

area on the left-turning lane covers the same area as the local Gi*. As Fig. 4.5 shows, the 

significant high-emission area of the left-turning lane is between 6 and 12 meters away from 

the stop line. The area closest to the stop line shows lower emissions than the remaining area 

of the segment. It could be explained by the slower acceleration due to conflicting traffic flow 

from the opposite direction. 

Fig. 4.3 shows that the size of the high-emission area is smaller in the rerouting scenario on 

the lane with straight-through traffic and right turns. Since the straight-through traffic is less, 

there is less traffic that accelerates. Consequently, the size of the high-emission area is smaller. 

Fig. 4.4 shows that there is no change in the size of the high-emission area on the straight-

through lane in the rerouting scenario. However, the Z-score is slightly lower in the high-

emission area, while it is slightly higher in the low-emission area. The lower traffic volume in 

the rerouting scenario makes fewer vehicles in the queue. Thus, the acceleration-related 

emissions are lower. Since there are fewer vehicles that decelerate in the low-emission area, 

the emissions are higher. 

Fig. 4.5 shows that the positive Z-score is slightly higher in the rerouting scenario on the left-

turning lane. Vehicles drive at slower speeds before the stop line. The average emission factor 

of NOx is bigger at a higher speed. Left-turning vehicles drive at a higher speed due to the 

reduction in straight-through traffic, leading to a slightly higher average emission factor.  

Fig. 4.6 shows that the high-emission area after the crossing is smaller due to the rerouting. It 

is because traffic volume is smaller in the rerouting scenario, allowing vehicles to accelerate 

faster to reach the speed limit.  

To summarize, the developed model can accurately estimate the location of the high-emission 

area on the lane with mixed straight-through and right-turning traffic, as well as on the straight-

through lane. It overestimates the size of the high-emission area on the left-turning lane, while 

it underestimates the size of the high-emission area after crossing the intersection. A dynamic 

prediction model is developed to estimate the size of high-emission areas for both lanes.  

 

Lane  Basic scenario Rerouting scenario  

Local Gi* [m] Predicted [m] Local Gi* [m] Predicted [m] 

sr 48 48 42 42 
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s 24 18 24 18 

l 12 18 12 18 

After crossing  54 30 48 30 

Tab. 4.3 Boundaries between hot and cold spots 

 

Fig. 4.3 Results of the local Gi* for the lane with both straight-through and right-turning traffic in the 
– basic scenario (left) and in the rerouting scenario (right) 

 

Fig. 4.4 Results of the local Gi* for the straight-through lane in the basic scenario (left) and the – 
rerouting scenario (right) 
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Fig. 4.5 Results of the local Gi* for the left-turning lane in the basic scenario (left) and the rerouting 
– scenario (right) 

 

 

Fig. 4.6 Results of the local Gi* for the lanes after crossing the intersection in the basic scenario (left) 
– and the rerouting scenario (right) 

4.3.2 The emission factor of NOx 

The PE (percentage error) indicates the difference between the emission factor of NOx 

predicted by the developed model or HBEFA and the one predicted by PHEM. The 

comparisons are made at different spatial resolutions. 

Equation 13 

𝐸𝐹𝑁𝑂𝑥𝑃𝐻𝐸𝑀
 is the average emission factor of NOx estimated by PHEM. 

𝐸𝐹𝑁𝑂𝑥𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
 is the average emission factor of NOx by the developed model in the research or 

by HBEFA. 

 

 

PE =
 𝐸𝐹𝑁𝑂𝑥𝑃𝐻𝐸𝑀

− 𝐸𝐹𝑁𝑂𝑥𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
 

𝐸𝐹𝑁𝑂𝑥𝑃𝐻𝐸𝑀
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Segment-level 

Fig. 4.7, and Fig. 4.8 show the PE at the segment-level. For the hot spot on each lane, the PE 

of the emission factor of NOx predicted by the developed model is below 30%, while the PE of 

HEBFA is above 50%. At the hot spots on the lane with straight-through and right-turning traffic, 

the straight-through lane as well as at the after-crossing lane, the emission factor of NOx is 

overestimated by between 10% and 18% by the developed model, while the emission factor 

of NOx of the hot spot on the left–turning lane is nearly 30% underestimated. The high deviation 

on the left-turning lane may be attributed to the radius of the crossing. Since the left-turning 

lane has a bigger turning radius than the intersection for model development, the speed near 

the stop line is higher. Higher speed can result in a higher emission factor of NOx. HBEFA 

underestimates emission factors of NOx at hot spots on all lanes.  

At the cold spots on the lane with the straight-through and right-turning traffic as well as on the 

straight-through lane, the emission factors of NOx predicted by the developed model are 13-

36% bigger than that predicted by PHEM. The difference could be due to lane switching 

between these lanes. Some vehicles may switch lanes only when approaching the stop line. 

The emissions of these vehicles are then only partly emitted on each of these lanes. The 

emission function in Tab. 3.5 shows that traffic volume has a positive effect on the average 

emission factor. As a result, the average emission factor is overestimated. The prediction of 

HBEFA is 12-16% bigger than that of PHEM on the lane with the straight-through and right-

turning traffic, while it is 17-30% smaller on the straight-through lane.  

For the cold spots on the left-turning lane and the section with both straight-through and left-

turning traffic, the emission factors of NOx predicted by the developed model are 7-33% smaller 

than that predicted by PHEM. The underestimations of the emission factors of NOx on 

segments with straight-through and left-turning traffic can be due to the same reason as the 

overestimation on the adjacent lanes. The underestimations of the emission factors of NOx on 

the left-turning lanes may also be caused by the size of the turning radius. The prediction by 

HBEFA on the left-turn lane is 11-25% smaller than that by PHEM, while it is 24% higher on 

the section with both straight-through and left-turning traffic. These differences can be 

explained by the fact that HBEFA does not consider acceleration occurring at the cold spots 

of the left-turning lane and does not take into account deceleration on the upper section. 

For the straight-crossing traffic from the lane with both straight-through and right-turning traffic 

as well as from the straight-through lane, the developed model leads to highly overestimated 

values. It could be due to the length of the crossing section. Since the length of the crossing is 

bigger than that of the intersection chosen for model development, the average speed at the 

crossing is higher. While crossing, the acceleration rate is relatively low, and the average 

emission factor decreases as the average speed increases. It indicates that average speed or 

crossing length can be added to the emission function. The HBEFA underestimates NOx by 

34% compared to PHEM for traffic from the straight-through lane. The underestimation may 

be linked to the fact that HBEFA does not sufficiently account for the acceleration effect. 
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It can be concluded that the developed model performs better for all the hot spots, the upper 

section featuring both straight-through and left-turning traffic and for the section after crossing, 

while HBEFA performs better for cold spots on the left-turning lane, for the lane with both 

straight-through and right-turn traffic, and the lane with straight-crossing traffic from both 

straight-through and right-turning traffic. 

 

Fig. 4.7  PE of the developed model and HBEFA compared to PHEM in the basic scenario 
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Fig. 4.8  PE of the developed model and HBEFA compared to PHEM in the rerouting scenario 

 

Lane-, approach- and stream-level 

Fig. 4.9, and Fig. 4.10 show the PE of the emission factor of NOx for the aggregated segment. 

Before the stop line of the lane with the straight-through and the left-turning traffic, and the lane 

with both straight-through and right-turning traffic, the emission factors of NOx estimated by 

the developed model are 0.5-19% bigger than that predicted by PHEM, while 6%-34% lower 

than that predicted by HBEFA. Before the stop line of the left-turning lane, the emission factors 

of NOx estimated by the developed model are 21-30% lower than that estimated by PHEM and 

31-41% lower than that by HBEFA. For the east approach, the PE of the developed model is 

less than 3%, while the PE of HBEFA ranges from 16% to 21%. The estimations of the 

developed model are 40% higher than that by PHEM for the straight crossing from the east 

approach, while HBEFA estimates 31-32% lower than by PHEM. For the stream from east to 

west, which includes traffic from the east approach, the straight-crossing lane, and the hot spot 

after crossing, the estimations by the developed model were 13-17% higher than those by 

PHEM while 16-17% lower than results by HBEFA.  

Except for the straight-crossing lane, the emission factor of NOx estimated by the developed 

model is much closer to that estimated by PHEM than that predicted by HBEFA, both at lane-

level and approach-level. The developed model overestimates stream emissions mainly 

because of the error in the estimation for the straight-crossing lane. HBEFA underestimates 
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stream emissions since it underestimates the emissions from hot spots. The developed model 

and HBEFA have a similar absolute value of differences from PHEM in stream emissions.  

 

Fig. 4.9  PE of the developed model and HBEFA compared to PHEM for aggregated segments in – 
the basic scenario 
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Fig. 4.10 PE of the developed model and HBEFA compared to PHEM for aggregated segments in – 
the rerouting scenario 

The routing effects  

After rerouting, the NOx factors are decreased in all studied segments. Fig. 4.11 shows the 

changes in the emission factor of NOx on each segment estimated by PHEM, the developed 

model, and HBEFA. The estimated changes by the developed model on the segments of the 

lane with straight-through and right-turning traffic, as well as on the straight-crossing from the 

straight-through lane, are nearly the same as the ones estimated by PHEM. The developed 

model is less sensitive to rerouting than PHEM on the segments of the straight-through lane, 

the left-turning lane, and after crossing.  For the straight-crossing from the lane with straight-

through and right-turning traffic, and the upper section with straight-through and left-turning 

traffic, the changes estimated by the developed model are higher than those predicted by 

PHEM. At the segment-level, HBEFA is much less sensitive to rerouting than PHEM. The 

developed model performs much better than HBEFA for estimating changes in the emission 

factors of NOx on all the studied segments.  

Fig. 4.12 shows the estimated changes in the emission factors of NOx due to rerouting on 

aggregated segments. On the lane with straight-through and right-turning traffic, the change 

estimated by the developed model is higher than that predicted by PHEM, while on the straight-

through lane with a short left-turning lane, the change estimated by the developed model is 

lower than that estimated by PHEM. For the east approach, the changes estimated by the 

developed model are lower, while they are higher on the straight-crossing lane. In the cases 
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above, HBEFA yields smaller estimated changes than PHEM. The estimation of emission 

changes by HBEFA is more accurate at the stream-level than at the lane- and approach-level. 

At the lane- and approach-level, the developed model can much more accurately estimate 

changes in the emission factors of NOx than either PHEM or HBEFA. At the stream-level, 

HBEFA performs slightly better. HEBFA underestimates the changes by 10% while the 

developed emission model underestimates the changes by 14%. 

 

Fig. 4.11 Prediction of the emission changes due to rerouting for each segment 
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Fig. 4.12 Prediction of the emission changes due to rerouting for aggregated segments 

4.4 Summary  

The results show that the developed model can identify emission hot spots on each type of 

lane. The HBEFA emission model underestimates the emissions of hot spots. It leads to the 

underestimation of emissions at the lane-, approach-, and stream-level. The developed 

emission model performs much better than HBEFA in the estimation of emissions from hot 

spots, lanes before the stop line, and at the approach-level. The performance of the developed 

model closely resembles that of PHEM at the approach-level. The developed model and 

HBEFA have similar absolute differences in stream emissions compared to PHEM. The 

developed emission model yields much better performance on the estimation of the rerouting 

effect than HBEFA at the segment-, lane- and approach-level. HBEFA produces slightly better 

estimates of stream emissions than the developed model. Although the developed emission 

model is sensitive to the rerouting effect, the accuracy of emission estimations at the segment- 

and lane-level needs to be improved. The results indicate that the accuracy of the estimation 
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is suggested to develop a regression function instead of a fixed size. These improvements 

would also help close the gap to PHEM in the estimation of changes in stream emissions. 

5. Application to estimate the immissions 

Air pollutants emitted from vehicles will disperse to other places. A literature review conducted 

by Ahmad et al. (2005) summarized the factors influencing the dispersion in urban street 

canyons and intersections based on existing wind tunnel studies. These factors include 

turbulence caused by moving traffic, building geometry (such as aspect ratio and roof shape), 

street dimension, and approaching wind directions (Ahmad et al., 2005). Humans, especially 

pedestrians and cyclists on or near roads, are exposed to immissions (ambient air pollutions). 

Street canyons are streets lined by buildings on both sides. Air pollutants concentrate mostly 

within street canyons, as proven by measurements conducted in European cities (European 

Environment Agency (EEA), 2015; M. Rzeszutek & Szulecka, 2016; Mateusz Rzeszutek et al., 

2019). Thus, estimating the exposure of humans to pollutants and improving air quality in street 

canyons are essential steps for protecting human health. The emission results from the 

developed mesoscopic traffic emission model need to be integrated into a dispersion model to 

evaluate how the ITS can influence the immissions. 

Many dispersion models have been developed to represent the dispersion process. 

Vardoulakis et al. (2003) listed common dispersion models and suggested using a semi-

empirical model for traffic planning and CFD for identifying specific locations on a street where 

air quality needs to be monitored. The authors also addressed the importance of accuracy of 

inputs like emission factors and the importance of validation of dispersion models (Vardoulakis 

et al., 2003). Lateb et al. (2016) further summarized the advantages and limitations of different 

types of dispersion models. The main types of dispersion models suitable for street canyons 

are semi-empirical models and computational fluid dynamics (CFD) models. 

Semi-empirical models are parameterized models based on Gaussian dispersion. They are 

widely used to model dispersion in urban street canyons because they involve fewer costs of 

data and calculation. Since empirical parameters are typically based on measurements in a 

particular street canyon, new validations need to be carried out for other street canyons, which 

feature different geometry and dispersion conditions (Murena et al., 2009). Commonly used 

semi-empirical models include SIRANE, OSPM, and CALINE4. They operate at the street-

level.  

SIRANE treats each street segment as a rectangular street canyon and an intersection as a 

node (Soulhac et al., 2012; Wang et al., 2016). OSPM cannot model the dispersion at 

intersections, and Caline is mostly applied on highways (Wang et al., 2016). OSPM was used 

to model the average monthly and hourly emissions of black carbon in street canyons, and the 

average emission rates on the streets were calculated based on an emission inventory and 

vehicle activity data (Brasseur et al., 2015). It showed good results in the case of a stable 

boundary layer (Brasseur et al., 2015). It was concluded that the impact of vehicle speed 
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should be considered in high traffic density because the emission factor and the turbulence 

effect are higher at low vehicle speed during rush hours (Brasseur et al., 2015). A study 

comparing SIRANE, OSPM, and CALINE4 showed that SIRANE could better capture the effect 

of street canyon configuration (height of buildings, gradient, and presence/absence of a park) 

than either OSPM or Caline4 ( Wang et al., 2016). The estimated average link emission factor 

or link emissions by MOVES were used as inputs of dispersion models ( Wang et al., 2016). 

The difference between the simulated and measured results shows that these models can 

estimate the average near-road concentrations in different situations, but are inappropriate to 

capture the effects of varied meteorological and traffic conditions ( Wang et al., 2016).  

The CFD models represent the detailed dispersion process in a complex urban built 

environment. They can model the high-resolution dispersion (in meters) within a street canyon. 

However, they are unsuitable for modeling dispersions for an urban network due to the long 

computation time involved (Fu et al., 2020). Thus, the CFD model has been used to set the 

parameters of the semi-empirical models (Grylls et al., 2019). FLUENT is one of the more 

common CFD models. It has been used to estimate roadside ambient air quality near an 

intersection and was integrated with PTV VISSIM and an instantaneous emission model to 

take into account the turbulence caused by vehicle movement. It concluded that the inclusion 

of the turbulence effect could help identify high concentrations of emissions that cyclists and 

pedestrians are exposed to (Woodward et al., 2019). It was found that the measured and CFD 

modeled concentrations of NOx at signalized intersections were higher than the concentrations 

between intersections (Kwak et al., 2018). Other typical CFD models are Reynolds-averaged 

Navier-Stokes (RANS) models and Large-Eddy Simulation (LES) models. One study 

compared the RANS model and the LES model (Tominaga & Stathopoulos, 2011). The results 

of the study show that the LES model produced a better distribution of concentrations within 

street canyons and proved that LES could model the turbulence diffusion within street canyons 

more accurately. The comparison between the CFD LES model (uDALES ) and SIRANE 

shows although the use of average concentration derived from SIRANE can lead to an 

underestimation of exposure levels for pedestrians, a linear correction factor can solve this 

problem (Grylls et al., 2019). 

Since the assessment of ITS is conducted on an urban scale, semi-empirical dispersion 

models are suitable to be integrated with the developed emission model to assess ITS. Lin 

and Ge (2006) used the cell-transmission traffic model to consider the spatial heterogeneity of 

traffic emissions into the dispersion model, and its results showed higher concentrations of CO 

than the results based on link emissions. The study indicates that information on the detailed 

spatial distribution of emissions is required to estimate the concentrations of near-road air 

pollutants. Therefore, the developed emission model is assumed to be better suited for 

capturing the spatial variations of the concentrations of air pollutants along roads and 

intersections and for identifying high exposure levels. The SIRANE model led to satisfactory 

results in European cities. Therefore, it is chosen to explain how the mesoscopic emission 

model is integrated with a dispersion model to estimate the changes in near-road air quality 

resulting from ITS. SIRANE was developed at the Ecole Centrale de Lyon, and a detailed 
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description can be found in the study of Lionel Soulhac et al. (2011). The integration between 

the developed emission model and SIRANE is shown in Fig. 5.1. 

 

Fig. 5.1 Integration between the developed emission model and the dispersion model 

6. Conclusions and outlook 

This chapter begins by summarizing the research objectives, research questions, methodology, 

and findings. Subsequently, the contributions, transferability, and limitations of the model 

concept as well as the model development methodology, are discussed. The chapter ends 

with recommendations for further research.  

Summary  

Road traffic emissions are the dominant sources of air pollutions in the city, including NOx, PM, 

CO, and HCs. As these pollutants can harm human health, road traffic emission and air quality 

have attracted much attention from the public and the government. Emissions are 

heterogeneously distributed on the road network due to the variance in local traffic and 

infrastructure. Intersections and near intersections are hot spots of emission. Urban road traffic 

management can influence the amount and spatial distribution of emissions. It is necessary to 

conduct an emission impact assessment to help design and choose relevant traffic 

management measures for emission reduction. ITS with the help of information and 

communication technology can make traffic management more dynamic. Consequently, a real-

time emission assessment is required to choose the most suitable ITS measures. Furthermore, 
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the detailed spatial distribution of emissions is one of the necessary inputs for a detailed air 

quality map and exposure analysis.  

Existing emission assessment does not distinguish between emission hot spots and cold spots. 

It gives no information if and to what extent emission levels at hot spots fluctuate and what 

factors may contribute to these changes. In this study, the division of a road into several 

segments near a signalized intersection is explored to distinguish between high- and low-

emission areas effectively. It is achieved through the application of the spatial data analysis 

method, which helps with the identification of hot spots. The local G* method is one common 

way to discern cluster structures with high and low features. It is applied in each traffic scenario 

to obtain the boundary between the high and low-emission areas. Through a statistical and 

variance study, rules for the road division are specified. Generally, the road is divided into four 

parts: the upper section of the lane where small speed variation can occur, the segment near 

the stop line where significant accelerations occur, the crossing, and the section after crossing 

the intersection where vehicles accelerate further. Lane types of the section before the stop 

line include a lane with only straight-through traffic, a right-turning lane, a left-turning lane, and 

a lane with traffic in different directions. The types of crossing lanes include a left-turning lane, 

a right-turning lane, and a straight crossing lane. The emission of each road segment is 

estimated separately. 

A mesoscopic emission model is developed to enable real-time emission impact assessment. 

The model assumes that emissions can be estimated with the help of a regression function, 

including traffic variables, which can be obtained through a macroscopic or mesoscopic traffic 

model. Variables included in the function are speed limit, average speed, the cycle time of the 

traffic signal in the case of signal-controlled intersections, capacity, traffic volume, truck 

percentage, turning ratio, conflicting traffic volume, and conflicting traffic’s truck percentage. 

The D-optimal design, one of the experimental design methods, is applied for designing the 

traffic scenarios. The scenarios are simulated by the high-resolution microscopic traffic 

simulation model VISSIM. The emissions in each scenario are estimated by the physical 

emission model PHEM.  

The methodology is applied to a 4-arm signalized intersection. Two approaches are studied: 

one approach that consists of a left-turning lane, a straight-through lane, and a right turning 

lane; another that consists of a lane with both right-turning and straight-through traffic. The 

results of the local G* show that on the approach with three separate lanes, high-emission 

areas on each lane are generally located within 18 meters from the stop line. The size of the 

hot-emission area on the lane with mixing straight-through and right-turning traffic is dynamic. 

A regression function is developed to estimate its size. The boundary between relatively high- 

and low-emission areas downstream is located 30 meters after the crossing of the intersection.  

To develop the emission model, linear, interactive, and stepwise regression models are tested. 

The multicollinearity among the predictors, residual distribution, and sign of the effect of each 

term is checked. The regression model, which is theoretically meaningful and meets the 
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regression assumptions with a good (adjusted) R-squared value, is chosen for the test. The 

results of the model development show that a regression function with sufficiently accurate 

performance has been developed for each road segment.  

The developed emission model is tested on another intersection of a small road network. The 

tested results show that the rules can identify the high-emission area before the stop line on 

the lane of straight-through and right-turning traffic as well as the straight-through lane. It 

overestimates the size of the high-emission area on the left-turning lane, while it 

underestimates the size after crossing the intersection. A dynamic prediction model can be 

developed to refine the estimated results of these lanes.  

The developed model is compared with the traffic situation-based emission model HBEFA and 

PHEM. The percentage difference compared to PHEM acts as a performance indicator to 

evaluate the developed emission model by the research and HBEFA. The comparisons are 

made at different spatial resolutions. The test results show that the developed model generally 

performs better for all hot spots, while HBEFA performs better for cold spots. For the crossing, 

the developed model lacks predictivity, which could be due to no consideration of the length of 

the crossing lane. In most cases, estimations of emission factors of NOx by the developed 

model are far closer to those by PHEM than those by HBEFA at the lane- and approach-level. 

HBEFA and the developed model perform similarly well when estimating stream emissions, 

while HEBFA tends to underestimate, and the developed model tends to overestimate 

emissions. It is tested whether the developed model can estimate the rerouting effect. For the 

estimation of the impact of rerouting on the emission factor of NOx, the developed model 

performs better than HBEFA at the segment-, lane-, approach-level, while the results of 

HBEFA at the stream-level are slightly better than those from the developed model. The 

developed model can be improved by considering lane changes at midblock, the turning radius 

of turning traffic, the length of the crossing lane, and a regression function for the accurate size 

of the segment after crossing. 

The study introduced how to estimate urban near-road air quality by integrating the developed 

emission model and a proper dispersion model. Since the measurements are hardly 

representative enough for assessing the accuracy of the developed emission model, the 

research did not conduct a comparison between measured and modeled air quality. 

Transferability and limitations  

Apart from the signalized four-way intersection, the emission model concept can be applied to 

other types of intersections and control: T/Y-intersection, roundabouts, stop sign-controlled 

intersections, yield sign-controlled intersections, and uncontrolled intersections. Although the 

type of control and number of streams may differ, vehicles will experience similar driving 

dynamics at all types of intersections: driving at a low variation of speed on midblock; either 

decelerating and coming to a full stop before the intersection and then accelerating to leave 

the lane or driving without significant decelerations and accelerations; driving to cross the 

intersection; accelerating after crossing. Thus, the street is divided into four segments: an 
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upper section (midblock), a section near the stop line (inbound), the section crossing the 

intersection, and the section after crossing (outbound). The spatial data analysis used in this 

study can be applied to find out how the boundaries between these segments vary in different 

situations. The emission factor can be a function of the traffic volume, fleet composition, 

capacity, volume, and fleet composition of the conflicting traffic, speed limit, average speed, 

cycle time in the case of a signalized intersection, and distance between intersections. 

For a non-signalized roundabout, the road can equally be divided into four segments: an 

inbound section where vehicles decelerate to enter the circulating lane, the circulating section, 

the outbound section where vehicles exit the circulating lane and drive downstream, and a 

midblock section where vehicles usually drive downstream at a relatively constant speed. The 

emission factor of each segment can be a function of traffic variables, infrastructure layout, 

and infrastructure geometry. Variables can include traffic volume, speed limit, capacity, 

average speed, the diameter of the roundabout, entry deflection angle, number of approaches, 

grade, and spacing between roundabouts. For a signalized roundabout, the cycle time can be 

an additional predictor. The modeling methodology developed by the research can be applied 

to find out the boundaries between these segments in various situations and the regression 

function for each segment to estimate the average emission factor.  

The developed emission model concept can be also applied to ramps. Ramp metering is a 

signalized control on a ramp when vehicles on the ramp enter the main lane. The ramp can be 

divided into three parts: the segment where vehicles arrive on the ramp; the segment where 

vehicles stop before the stop line; and the segment where vehicles leave the stop line and 

accelerate to enter the ramp. At a signalized ramp, the boundary between the first and second 

segments is estimated to be the same as the boundary on a straight lane. The emission 

functions for the first two parts are also found to be the same as those for a straight lane at a 

signalized intersection. Besides, the length of each segment needs to be considered to 

estimate the emission factor of the third segment. It is because a study has found that the 

length of a segment can influence the acceleration rate: a shorter segment will lead to faster 

acceleration (G. Yang & Tian, 2019). The main lane would be divided into three segments: an 

upstream section before connecting with the ramp, the segment where vehicles enter the main 

lane, and a downstream section after the ramp. On the second segment, upstream vehicles 

on the main lane may switch lanes or decelerate due to encountering vehicles entering the 

ramp. The size of the segment is assumed to depend on the average speed on the main lane. 

For the upstream and downstream segments, the emission factors depend on the average 

speed, speed limit, and fleet composition. For the interaction segment, the average emission 

factor is assumed to be a function of the number of lanes, average speed, speed limit, traffic 

volume on the main lane, traffic volume on the ramp, the capacity of the ramp, fleet composition, 

and grade. The spatial cluster method can be applied to identify the exact boundaries between 

segments. For a ramp without metering, the method is similar to that applied to ramp metering. 

The main difference is that the ramp can be divided into two parts. Moreover, for a highway 

interchange, the curvature of the road is an additional predictor of the emission factor.  
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In this study, drivers are assumed to comply with lane markings and traffic controls. In the real 

world, drivers may disobey these regulations and, for example, engage in unsafe lane changes, 

cross lane boundaries, use prohibited lanes (such as HOV lanes), cross red lights, or exceed 

the speed limit. These factors may disturb the traffic flow, resulting in traffic accidents and 

generate additional accelerations and decelerations. No studies have been found to quantify 

the impact of the compliance level of these traffic regulations on road traffic emissions. In the 

case of a high level of disobedience, the significance of its impact on emissions should be 

studied. 

The study investigated unsaturated traffic conditions (i.e., the traffic volume was assumed to 

be lower than the intersection capacity at each signal cycle). When traffic demand exceeds 

capacity (oversaturation), some vehicles may queue for a longer duration than one signal cycle, 

resulting in a longer queue. In the case of severe oversaturation, queue length may exceed 

the length of the lane and extend into the upstream intersection. It would raise the risk of 

gridlock as the queue would block the adjacent lane. Under oversaturated traffic conditions, 

vehicles may experience periods of stop-and-go driving. There will be no road segment on 

which vehicles can drive with cruising speed. As a consequence, the spatial heterogeneity of 

emissions from saturated traffic will differ from the heterogeneity of unsaturated traffic, and 

new ways for road division into smaller road segments would have to be researched. 

Meanwhile, it has to be investigated whether there exists a proper regression function of traffic 

flow variables, intersection layout, lane geometry, and traffic control to estimate emissions for 

each road segment. 

In this study, driving scenarios considered include turning, yielding, stopping, and queueing 

due to signal control, speed changes due to the traffic density and truck percentage, and 

overtaking. Driving behaviors consist of steering, braking, accelerating, and gear shifting. 

These behaviors are influenced by the traffic environment and also a driver’s individual 

characteristics (such as age, gender, education, emotion, and driving experience). The 

behaviors influence engine power and engine speed and, therefore, emissions. Since the goal 

of the research is to assess the ITS for traffic management and control, the driving behaviors 

of different drivers are not described in detail in the models. Instead, the distribution of each 

parameter that describes driver behaviors is used in the microscopic simulation model, and 

the gear shift model is included in PHEM. ADAS, or automatic driving, can change the driving 

behaviors of a specific vehicle with a specific driver. Existing studies have found that the 

deployment of ADAS or autonomous vehicles on roads can reduce road emissions by 

smoothing traffic flow (e.g., Stern et al., 2019). Although the impact of traffic flow characteristics 

on emissions is included in the developed emission model through predictors of average speed 

and capacity, the question remains if the developed emission model can fully capture the 

emission changes due to ADAS and autonomous driving.  

Emissions from trucks and cars are considered in the research. With new energy vehicles 

entering the market, their tailpipe emissions need to be considered for roadside air quality. 

Hybrid electric vehicles, one type of new energy vehicle, can emit tailpipe emissions. Driving 
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strategies for electric motors and combustion engines, charging strategies, driving conditions 

(vehicle load and speed), electric mileage, and ambient temperature can influence the 

emissions of plug-in hybrid electric vehicles (Ehrenberger et al., 2020). To make the developed 

emission model applicable to scenarios with hybrid electric vehicles, the average emission 

factors of hybrid electric vehicles have to be categorized. When a specific type of hybrid electric 

vehicles with a particular drivetrain and efficiency technology is driving under the status of a 

vehicle using an electric motor and combustion engine in certain traffic conditions, its 

emissions can be estimated based on real-world measurement, laboratory testing, or with the 

help of an emission model like PHEM. The average emission factor of this type of hybrid 

vehicles can be developed for the respective traffic condition and the use pattern of the electric 

motor and combustion engine. Subsequently, a database of emission factors can be 

established for hybrid electric vehicles. When applying the developed emission modeling 

concept to scenarios with hybrid electric vehicles, the emission factor can be adjusted by 

adding hybrid electric vehicle emissions. Meanwhile, a methodology needs to be developed to 

estimate and predict the hybrid modes of hybrid electric vehicles.  

When applying this model concept and methodology to other countries, additional variables 

need to be researched to see how they affect the emission factors and spatial distribution of 

emissions. Examples of additional variables are a large volume of pedestrians, shared lane 

use with motorbikes, and a high number of overtaking in China; a high volume of motorcycles 

in India; and differences in the compliance to traffic control and lane markings. Since driver 

behaviors vary in different countries, driving styles need to be localized to develop an emission 

model.  

In order to evaluate the impact of ITS on segment-level emissions, further research is needed 

to improve the developed emission model. The solutions can be an accurate estimation of 

traffic volume on each segment or lane, consideration of the turning radius and the length of 

the crossing lane, and a regression function for the accurate size of the segment after crossing. 

Conclusions and contributions  

The developed mesoscopic emission model is based on the segmentation of road links to 

distinguish high and low emissions. The spatial data mining method (Local G*) is used to 

distinguish high- and low-emission areas near an intersection. The estimation of emissions of 

each segment is related to traffic conditions and traffic composition. These variables can be 

obtained through macroscopic traffic models, mesoscopic traffic models, or measurements by 

roadside or in-vehicle (mobile) equipment. The regression function is developed based on the 

integration of a microscopic traffic simulation model (VISSIM) and a detailed physical emission 

model (PHEM). The measurements of air quality are biased and influenced by many other 

variables like weather, local climate, local buildings, and trees. Real-world data collection 

cannot account for all representative scenarios and cannot fulfill the requirements of a variance 

study. The microscopic method can instead simulate a wide range of scenarios and is under 

control. Moreover, it can well estimate the emissions of a group of vehicles. Thus, the 
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microscopic methodology is suitable to develop the relationship between the average emission 

factor and the predictors. The model concept is developed to compare the emission impacts 

of different ITS measures, including isolated and coordinated signal control, ramp metering, 

variable speed limit, as well as routing and traffic demand management. It considers various 

pathways through which these ITS measures can influence traffic emissions. Although the 

developed emission model cannot produce absolute emissions nor immissions, the developed 

emission model can be used to compare the impacts of different ITS measures for urban traffic 

management and control on the spatial distribution of emissions on the urban road network. 

The developed emission model can be further integrated with a dispersion model to estimate 

the immissions and to assess exposure levels. 

Compared with the microscopic emission assessment framework, the developed model 

concept consumes less time and data. It performs better than the traffic situation-based 

emission model HBEFA for emission estimations and emission impact assessments of the ITS 

at the segment-, lane-, and approach-level. The HBEFA and the developed model reach 

relatively similar estimations on the absolute difference of stream emissions from PHEM. The 

developed emission model can be further improved by adding the impact of intersection 

geometry on emissions. A better estimation of traffic volume on each segment can improve 

the estimation of segment emissions as well. It is also suggested that a dynamic prediction 

model can help refine the estimation of the segment’s size after crossing an intersection and, 

therefore, the emission estimation. 

Outlook 

Future research can investigate the following topics. Firstly, the emission model concept and 

modeling methodology can be applied to other types of intersections (three-way intersections, 

highway with ramps, stop/yield sign-controlled intersections, uncontrolled intersections, and 

roundabouts). Secondly, the emission model can be further extended to cover other vehicle 

types like hybrid vehicles based on the modeling of the use pattern of electric motors and 

combustion engines. Thirdly, further research can study the spatial heterogeneity of emissions 

in oversaturated traffic conditions and check if the model concept is suited to oversaturated 

traffic conditions. Fourthly, it is necessary to investigate whether the developed emission 

model can fully capture the emission changes due to ADAS and autonomous driving. Fifthly, 

when applying this model concept and methodology to other countries, localized driving 

behaviors (driving style, overtaking, compliance to traffic control and regulations), differences 

in traffic composition (e.g., the higher percentage of motorbikes in China or motorcycles in 

India), and mixed lane use need to be considered. Sixthly, the effect of pedestrians, cyclists, 

public transportation, road slope, intersection size, radius of curvature, and road width should 

also be investigated with the help of a more refined traffic flow model.  Lastly, the estimations 

of the segment size and emission factor after crossing an intersection need to be improved.
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Appendix：emission functions for upper parts, crossing lanes 

and after crossing 

Upper part on the straight-through lane 

The truck percentage, speed limit, hourly traffic volume, and capacity are used as predictors. 

The stepwise model is chosen to be the best model since the residuals of the linear model 

distribute as a curve, and the full interaction model includes some interaction terms statistically 

insignificant. The effect of each predictor is seen in Fig. A. 1. 

• The truck percentage has a positive relation to the emission factor of NOx.  

• The emission factor of NOx is positively related to traffic volume.  

• The speed limit has a negative relation to the emission factor of NOx. 

• With higher capacity, the emission factor of NOx gets lower.  

 

Fig. A. 1 Effect on upstream of the straight-through lane 
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Upper part on the left-turning lane 

As shown in Fig. A. 2, 

• The percentage of the truck has a positive relationship with the emission factor of NOx. 

The size gets bigger in case of bigger traffic volume, smaller capacity, and slower 

speed limit. The difference in emission factors between the truck and car is bigger 

during acceleration than during other driving modes. When there is more queue due to 

bigger volume or smaller capacity, the higher truck percentage can cause a higher 

emission factor of NOx. With a higher speed limit, there are more decelerations 

upstream on which the emission factor between trucks and passengers is smaller. 

Consequently, the effect size of the truck percentage gets smaller.  

• Traffic volume has a positive relationship with the emission factor. The size gets smaller 

when there is less truck percentage, or there is a higher capacity that causes the queue 

shorter. 

• Capacity has a negative effect on the emission factor. The absolute effect size gets 

bigger when there are more trucks, traffic volume, and opposite traffic.  

• When the speed limit is higher, the emission factor drops. The absolute effect size gets 

bigger in case of the high truck percentages. 

• Opposite traffic volume has a negative relation with the emission factor of NOx. And the 

absolute effect size gets bigger when more traffic volume or less capacity.  
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The upper part before the turning lane 

After checking each intersection effect of the stepwise model (Fig. A. 3 - Fig. A. 6), the findings 

are below:  

• The truck percentage of each driving direction has a positive relationship with the 

emission factor of NOx. The effect size is smaller when there is more traffic volume 

from the other two directions. The effect size is bigger when more traffic in the same 

direction. With a slower speed limit, the positive effect of truck percentage gets much 

bigger. The effect of truck percentage of straight-through traffic is negatively dependent 

on the truck percentage of right-turning and left-turning. 

• With more right-turning traffic volume, the emission factor of NOx is lower. Its absolute 

effect size gets higher with the bigger truck percentage of left-turning or straight-

through, or smaller truck percentage of right turns. The absolute effect size gets smaller 

with higher traffic volume of the straight-through or left-turning traffic, but with lower 

average speed. 

Fig. A. 2 Interaction effect of upstream on the left-turning lane 
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• With more traffic volume of left turns, the emission factor of NOx is higher. The effect 

size gets bigger with more truck percentage of left turns, while with less truck 

percentage of straight-through or right-turning traffic. The effect size gets higher with 

more traffic volume of straight-through or right-turning traffic, but with lower average 

speed.  

• With more straight-through traffic volume, the emission factor of NOx is higher. The 

effect size gets bigger with more truck percentage of the straight-through or left-turning 

traffic, while with less right-turning trucks. The effect size gets higher with more left-or 

right-turning traffic volume.  

• In the case of a higher speed limit, the emission factor of NOx is higher. Its effect size 

becomes smaller when there are higher truck percentages. 

• In the case of lower average speed, the emission factor of NOx is higher. Its absolute 

effect size becomes bigger when there is more turning traffic. 

 

Fig. A. 3 Interaction effect between the truck percentage of the left turns with others 
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Fig. A. 4 Interaction effect between the truck percentage of straight going and the others 

 

Fig. A. 5 Interaction effect between the truck percentage of the right turns and the others 
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Fig. A. 6 Rest of the interaction effect  

Upper part on the lane with right-turning and straight-through traffic 

For the upper part of the lane, the final stepwise model shows in Fig. A. 7.  

• With a higher right-turning ratio, the emission factor of NOx gets lower. It decreases 

more when fewer truck percentages of right turns, less traffic, or lower average speed. 

• The truck percentage of right-turning traffic has a positive effect on the emission factor 

of NOx, and the effect size gets bigger with a bigger right-turning ratio.  

• The traffic volume has a positive effect on the emission factor of NOx. The effect size 

gets bigger, with a higher right-turning ratio. 

• With lower average speed, the emission factor of NOx gets higher. It increases more 

when a bigger right-turning ratio. 

• The truck percentage of straight-through traffic, cycle time, and total traffic volume have 

positive effects on the emission factor of NOx. Capacity is negatively related to the 

emission factor of NOx. 
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The upper part of the right-turning lane (seen in Fig. A. 8) 

 

Fig. A. 8 Interaction effect on the upper part of the right-turning lane 

Fig. A. 7 Interaction effect of upper part on the lane with right-turning and straight-through traffic 
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The upper part of the right-turning lane 

Since the residuals increase with the response, the log transformation is used. The stepwise 

model is chosen to test, and the effect of each predictor from the model is below (Fig. A. 9): 

• The truck percentage is positively related to the emission factor of NOx, and the effect 

size is larger in case of lower capacity or less traffic volume.  

• Traffic volume has a positive relation with the emission factor of NOx, and the effect 

size is larger when lower truck percentage. 

•  Capacity has a negative relation to the emission factor of NOx. The absolute effect size 

gets bigger when higher truck percentages and a lower speed limit.  

• The emission factor of NOx gets bigger with the lower speed limit, and the absolute 

effect size gets bigger with large truck percentages. 

 

Fig. A. 9 Interaction effect after log transformation near stop line on the right-turning lane 
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Right turning from the right-turning lane 

Using the traffic volume, truck percentage, capacity, speed limit, conflict volume, and truck 

percentage as predictors, it shows no multilinearity. The linear interaction and stepwise linear 

regression have better residual distribution. Since the full interaction regression has many 

statistically insignificant terms, the simpler model by the stepwise method is chosen for further 

check. The capacity and speed are statistically significant. Since they have interaction effects 

with other variables, the major effect terms would be kept. The coefficient signs of these terms 

show the average emission factor has positive relations with the truck percentage and volume, 

while negative relations to the conflict volume, speed, and capacity. The average speed is 

added for the stepwise regression. Its residual shows a trend to higher absolute residuals as 

the value of the response increases. The transformation of the response by logarithm and 

square root might help. To keep simple, the linear regression model is used to test (Fig. A. 10).  

• The truck percentage has a positive relationship with the emission factor of NOx since 

the average emission factor of NOx of trucks is higher than passenger cars. The 

absolute effect size decreases with a higher speed limit.  The vehicles decelerate while 

turning right. When the upstream speed is higher, more decelerations lead to a lower 

emission factor. Thus, the effect of the truck percentage on the emission factor is 

negatively dependent on the speed limit.  

• When there is no truck, the higher speed limit upstream can lead to a higher emission 

factor of NOx. When there are trucks, the emission factor can decrease at a higher 

speed. Since the emission factor of the truck is more sensitive to speed than passenger 

cars, when the truck's ratio is high, the emission actor drops more due to higher speed 

upstream. 

 

Fig. A. 10 Main and interaction effect for right-turning 
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Left turns from the left-turning lane 

• When the truck percentage increases, the emission factor of NOx gets bigger, the effect 

size would be larger with less conflicting volume, higher speed limit, and higher capacity.  

• The emission factor of NOx decreases with higher traffic volume, and the effect size 

gets bigger with lower capacity.  

• More conflicting traffic can lead to a higher emission factor of NOx and when more 

trucks turn left. The size due to conflict volume gets bigger while the bigger capacity 

leads to the effect decreases (the effect of conflict volume on the emission factors is 

majorly explained by more acceleration time and idling time.) 

• A higher speed limit upstream can lead to a higher emission factor of NOx, and the size 

would decrease when there are more trucks.  

• With the bigger capacity of the left-turning approach, the emission factor drops, and 

size is bigger in case of higher truck percentage, more conflicting volume, and less left-

turning traffic.  

Right turning from the lane with the straight-through and right-turning traffic  

Both two models (shown in Fig. A. 11 and Fig. A. 12 separately) show the truck percentage 

and speed limit have a positive relationship with the emission factor of NOx while traffic volume 

negatively to the emission factor of NOx. In the stepwise model, when more right-turning traffic, 

the positive effect size of truck percentage will decrease. When more trucks, the negative effect 

of traffic volume would be bigger. When cycle time is longer, the vehicles can have a lower 

emission factor. And it decreases more with a higher speed limit. The positive effect of the 

speed limit would be bigger when a shorter cycle time.   

 

Fig. A. 11 Effect of linear regression for right turning from the lane with straight-through and right-

turning traffic 



116 Appendix：emission functions for upper parts, crossing lanes and after crossing 

 

 

Fig. A. 12 Effect of step-wise regression for right turning from the lane with straight-through and right-

turning traffic 

Crossing from the lane only with straight-through traffic (seen in Fig. A. 13) 

• When the truck percentage increases, the emission factor of NOx gets bigger. The 

effect size is smaller when there is a higher capacity or higher speed limit.  

• The emission factor of NOx decreases with higher traffic volume. The size of decreasing 

gets bigger in case of a lower speed limit.  

• The emission factor of NOx decreases with bigger capacity since there are fewer 

accelerations from queued vehicles. When there is a bigger truck percentage or higher 

speed limit, the decreasing size of the emission factor of NOx gets bigger. 

• A higher speed limit can lead to a higher emission factor of NOx. The effect size 

decreases when there are more trucks, higher capacity, or less straight-through traffic.  
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Fig. A. 13 Effect for the crossing traffic from the lane with straight-through traffic 

Straight crossing from the lane with straight-through and right-turning traffic  

The effect on the emission factor of NOx is seen in Fig. A. 14. With a longer cycle time, the 

emission factor of NOx becomes bigger. The effect size gets bigger with more traffic volume 

before the stop line. The total traffic volume has a positive effect on the emission factor of NOx, 

and the effect size gets bigger with longer cycle time. The straight-through traffic and capacity 

have negative effects on the emission factor of NOx, while the truck percentage of straight-

through and speed limit as positive effects on the emission factor of NOx. 

 

 

Fig. A. 14 Effect for the crossing from the lane with straight-through and right-turning traffic 
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After crossing the intersection  

Using the traffic volume, truck percentage, capacity of right-turning north, left-turning south, 

and straight-through of the east, average speed, and speed limit as predictors, the stepwise 

model is selected (Fig. A. 15, Fig. A. 16, Fig. A. 17).  

• The truck percentage of left turns has a bigger positive effect when the capacity of the 

straight-through lane is bigger, or the left-turning volume is larger. 

• The truck percentage of right turns has a positive effect. The effect size gets bigger, 

with a higher speed limit and higher straight-through traffic. 

• The left-turning volume is positively related to the emission factor of NOx. The effect 

size increases with a longer cycle time or higher speed limit. 

• The right-turning volume has a positive effect. The effect size decreases with the bigger 

capacity of the straight-through lane, more left turns, and a higher speed limit. 

• The volume of the straight-through traffic has a negative relationship to the emission 

factor of NOx. The effect size gets smaller with more right-turning trucks or a lower 

speed limit. 

• The cycle time has a negative effect. The absolute effect size increases with higher 

average speed or fewer left turns. 

• The capacity of the straight-through lane is negatively related to the emission factor of 

NOx. The absolute effect size increases with more right turns or higher average speed.  

• The average speed has a positive relationship with the emission factor of NOx. The 

effect size increases when a shorter cycle time, less straight-through traffic, higher 

capacity of the straight-through lane, or a higher speed limit. 

• The speed limit has a positive effect. The effect size increases with more right-turning 

trucks or more straight-through traffic. 
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Fig. A. 15 Effects after crossing (a) 

 

  Fig. A. 16 Effect after crossing (b) 
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Fig. A. 17  Effect after crossing (c) 

 

 

 

 

 

 

 

 

  


