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V

Abstract

Spectral super elements are semi-analytical elements for the numerical modeling of beam-
like structures. The beams can have an arbitrary cross section, which has to be constant
along the longitudinal axis. The displacement ansatz consists of wave functions, which are
described by a product of a discretized cross-sectional displacement shape with an analytical
propagation function. The solution accuracy and the number of degrees of freedom are
therefore not depending on the length of the beam element.

This dissertation describes the mathematical formulation of spectral super elements in detail.
Advice on the implementation in MATLAB is given. Numerical examples show the potential
of the method by comparing spectral super element models with conventional finite element
models consisting of three-dimensional solid elements.

Furthermore, an analysis procedure based on the discrete Fourier transformation for spectral
super element models under moving forces is presented and validated with benchmarks from
literature.
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1 Introduction

1.1 Motivation

Beams are critical structural components in mechanical and civil engineering. Scientists
and engineers have investigated their mechanical behavior for centuries. However, the on-
going progress in numerical methods and computational power enables new advancements.
Many existing beam theories contain limiting assumptions for the kinematics of the beam
continuum, e.g. the planarity of cross sections. The spectral super element method is not
restricted by any kinematic assumption. Therefore, it can be used in general for beams
with arbitrary complex cross section at any frequency (also ultra-sonic). Warping of the
cross section (torsional or shear) is considered automatically without precalculations such as
warping resistances or unit warping deflection shapes.

The word "spectral" indicates that the stiffness matrix of such an element is frequency-
dependent as in other spectral element methods. Thus, a new computation of the stiffness
matrix is necessary for each frequency step.

The word "super" indicates that the method uses the results of a more fundamental method
in order to form an ansatz for the displacement of the beam’s domain. This fundamental
method is called waveguide finite element method (waveguide FEM). The beam is therefore
considered as a waveguide in this method.

Beams are structural components with a primary extent in the longitudinal direction. In
this thesis, this direction is also referred to as x-direction. The geometrical extent in the
other two spatial coordinates (y, z) – the cross section – can be arbitrary, but has to be
constant along the x-direction. Fig. 1.1 defines the coordinate system used in this thesis on
an exemplary section of a beam.

Spectral super elements (SSE) are calculated in two main steps:
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x

z

y

Figure 1.1: Coordinate system used in this thesis

1. Wave propagation functions of an infinite waveguide with the cross section of the con-
sidered beam are determined with the waveguide FEM. The cross section has to be
discretized therefore with two-dimensional finite elements. This discretization intro-
duces the only approximation in the SSE formulation. A finer FE mesh has to be used
for higher frequencies if a certain accuracy has to be met. The obtained wave functions
are of the form ψ · e iκxx, where ψ is the wave displacement shape of the cross-sectional
FE mesh and κx is the corresponding angular wavenumber.

2. A displacement ansatz for the finite beam element is formulated with the help of the
obtained wave functions. The number of degrees of freedom (DOFs) of this ansatz
is independent from the element length. The unknowns (DOFs) of this ansatz are
then determined by means of an equilibrium description, either based on Hamilton’s
principle or based on the principle of virtual work. Therefore, either the occurring
energies or the occurring virtual works have to be integrated over the three-dimensional
volume of the beam element.

The solution accuracy of spectral super elements is independent from the element length.
It solely depends on the cross-sectional discretization. Element boundaries have to be in-
troduced only at locations of discontinuities such as points of load application, bearings, or
changes of material and/or cross section.

Spectral super elements maintain a beam-like modeling procedure although the integration
is carried out over a three-dimensional domain. They are geometrically defined only by their
cross section and by the coordinates of their ends. This represents a substantial simplification
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in contrast to modeling with conventional three-dimensional (solid) finite elements, where
the whole 3D domain of the structure has to be discretised.

The examples discussed in this thesis indicate that spectral super element models produce
better results than models with conventional three-dimensional (solid) finite elements if
comparable mesh sizes are used. At the same time, the spectral super element models use
far fewer degrees of freedom than the conventional FE models.

Spectral super elements can be applied to problems at almost any frequency. At compara-
tively low frequencies, they can be used for the determination of the structural response of
girders on harmonic or transient (also moving) loads. In the mid-frequency range, they can
be used for the determination of structure-born sound transmission. At high frequencies (up
to the ultrasonic range), applications within the framework of non-destructive testing are
conceivable.

Spectral super elements are a deterministic method. They do not cover statistical variations
of geometrical or material properties, which can lead to deviations in the deterministic
results, particularly at high frequencies. However, high-frequency methods like the Statistical
Energy Analysis require knowledge about propagation characteristics such as wavenumbers,
group velocity, or modal density. The results of spectral super element models can be used
for the determination of these characteristics.

The spectral super elements dealt with in this dissertation are based on the following as-
sumptions and limitations:

• Linear elastic problems

• Prismatic elements with constant cross sections

• Beam-like structures: The length of the element is bigger than its cross sectional
extend.

1.2 Outline

Section 1.3 includes an overview of relevant literature. Competing methods are mentioned
and classified. Chapter 2 explains the first major step of the SSE formulation: The waveguide
FEM. This chapter includes the mathematical formulation of the waveguide FEM, comments
on the implementation in Matlab and numerical examples with validation. The second
major step – the formulation of the SSE itself – is presented in chapter 3. This chapter
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has the same structure as chapter 2: Mathematical formulation, implementation, numerical
examples. Chapter 4 deals with the analysis of SSEs under moving forces based on the
Discrete Fourier Transformation (DFT). For this purpose, the moving force is Fourier-
transformed to a comb of stationary forces. Different solution methods of the SSE model
are investigated for this comb of forces. Remedies for numerical issues occurring during
DFT processing are introduced and a general solution procedure is described. Furthermore,
this chapter includes numerical examples. Chapter 5 documents a modification of the SSE
formulation, which can lead to faster computations. Finally, chapter 6 summarizes the main
findings and gives recommendations for further research.

The appendix contains some fundamentals necessary for Fourier transformations, the the-
ory of the modeling of damping with a complex stiffness and detailed comments on the
implementation in Matlab of the mathematical formulations in this dissertation.

1.3 State of the Art

The calculation of spectral super elements is carried out in two major steps, as already
mentioned in section 1.1. The state of the art in these two steps (1. wave functions of
an infinite beam, 2. SSE formulation) as well as competing methods are described in this
section.

1.3.1 Determination of the wave propagation characteristics of an

infinite beam

Two major different methods for the calculation of quantities which describe the wave prop-
agation characteristics (e.g. dispersion curves, cross-sectional wave shapes together with
corresponding wavenumbers) of an infinite beam with arbitrary cross section exist in litera-
ture.

The first method (which is used also in this thesis) is based on a cross-sectional discretization
with the help of a 2D FE mesh together with a wave approach in longitudinal direction. This
wave approach can be applied either with the help of explicitly defined exponential wave
functions (e.g. [Gavrić 1995]) or in form of a Fourier transformation (FT) for the length
direction (from a spatial coordinate to a wavenumber coordinate) of the waveguide’s 3D
continuum formulation. The FT can either be applied directly on the differential operator
matrix used for the strain formulation in the virtual work integral (e.g. [Hackenberg 2016])
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or on the ordinary differential equation (ODE) obtained with Hamilton’s Principle after
introducing the cross sectional discretization (e.g. [Finnveden 2004]).

For the second method a short section of the waveguide is modeled with conventional 3D solid
finite elements. The thickness of this section is discretized often with only one element. A
periodicity condition together with an exponential wave propagation approach is introduced
in order to gain an infinite extension of this short section.

Both methods lead to an eigenvalue problem, if no external load is applied. This eigenvalue
problem can be solved for wavenumbers as eigenvalues and cross-sectional wave shapes as
eigenvectors.

Unfortunately no unique names exist in literature in order to distinguish these two methods.
Table 1.1 gives an overview of names used in exemplarily selected literature.

The first method (FT based) is often called 2.5D FEM by authors dealing with wave propa-
gation in soil. They use the method e.g. to model a tunnel which is coupled to a boundary
element method (BEM) or another FT based method for modeling the soil (e.g. [Hackenberg
2016], [Müller et al 2008] and [Sheng et al 2006]). Those authors who are interested in the
beam itself (e.g. wave propagation in rails) call the method wavenumber FEM, waveguide
FEM or semi-analytical FEM (SAFE) (see Tab. 1.1 for literature).

The acronym WFE is most popular for the second method (based on the periodic structure
theory). It is referred either to wave and finite element method or simply to wave finite
element method. The fact that the often cited authors [Mace et al 2005] and [Duhamel et al
2006] as well as publications from the University of Stuttgart (e.g. [Gaul et al 2010], [Schaal
and Hanss 2014]) have used this acronym also for waveguide FEM, while working on the
periodic structure theory, can lead to confusions.

A very comprehensive publication dealing with wave based methods in general is the final
report of the European FP7 Marie Curie Initial Training Network "MID-Frequency" - CAE
Methodologies for Mid-Frequency Analysis in Vibration and Acoustics [Desmet et al 2012].
Twelve European Universities and research institutions have contributed to this network.
It contains a chapter named "Waveguide Finite Element Method" dealing with the method
based on the FT and a chapter named "Wave Finite Element Method" based on the periodic
structure theory. The consent of these twelve institutions should not be ignored, therefore
almost the same name convention is used in this thesis. The word "and" will be inserted in
brackets into the name for the second method: Wave (and) finite element method.
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Method based on a wave approach or Fourier
transformation in length direction

Method based on the periodic structure theory

Ü no special name: finite element method
[Aalami 1973]

[Gavrić 1994], [Gavrić 1995]

Ü spectral finite element approach
[Mace et al 2005], [Duhamel et al 2006] and

[Renno and Mace 2010] when citing e.g.
[Finnveden 2004]

Ü 2.5D FEM
[Sheng et al 2006]
[Müller et al 2008]
[Hackenberg 2016]
[Zhang et al 2019]

Ü semi-analytical FEM (SAFE)
[Orrenius and Finnveden 1996]

[Hayashi et al 2003]
[Bartoli et al 2006]
[Zhou et al 2011]
[Droz et al 2014]

[Li et al 2015]

Ü wavenumber FEM
[Sheng et al 2006]

[Ryue 2008], [Ryue et al 2009], [Ryue et al
2018]

Ü waveguide approach
[Birgersson 2003]

Ü waveguide FEM
[Finnveden 2004]

[Finnveden and Fraggstedt 2008]
[Nilsson 2004], [Nilsson et al 2009]

[Birgersson et al 2005]
[Ryue et al 2011]

[Desmet et al 2012]

Ü generalized theory of wave propagation
[Mead 1973]

Ü method using the periodic structure theory
[Thompson 1993]

Ü periodic finite element formulation
[Degrande et al 2006]

Ü waveguide FEM
[Mace et al 2005]

[Duhamel et al 2006]
[Schaal et al 2012], [Schaal and Hanss 2014]

[Gaul et al 2010]

Ü wave and finite element method (WFE)
[Waki et al 2009b]

[Renno and Mace 2010]
[Renno and Mace 2014]

[Kingan et al 2016], [Kingan et al 2019]

Ü wave finite element method (WFE)
[Waki et al 2009a]
[Zhou et al 2011]

[Desmet et al 2012]
[Droz et al 2014]
[Serra et al 2015]
[Gras et al 2018]

[Mencik 2018]
[Mallouli et al 2019]

Table 1.1: Names used in literature for methods dealing with the wave propagation in infinite waveguides
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The acronym WFE is not useful in order to distinguish the methods. In order to find reliable
names the scientific community could think about naming these two methods after Aalami
[Aalami 1973] resp. Mead [Mead 1973] because these publications are probably the oldest
publications which are cited in almost all following works.

A comparison of the waveguide FEM and the wave (and) finite element method has been
carried out by [Zhou et al 2011]. They conclude that the wave (and) finite element method
approaches the results of the waveguide FEM if the same cross-sectional discretization is used
and if the element aspect ratio in the wave (and) finite element method is set so that the
number of nodes per axial wavelength is higher than the number of nodes per cross-sectional
wavelength. This leads to an advantage of the waveguide FEM: No discretization in length
direction is carried out, therefore this cannot lead to errors. The advantages of the wave
(and) finite element method are, that it can be used for arbitrary periodic structures (also
with varying cross sections in the elements), the mathematical formulation is more simple
and conventional FE packages can be used for modeling the short section of the waveguide.

The following overview of literature for these two methods shall provide insight into the
possibilities of the methods. The coordinate system defined in Fig. 1.1 (x: longitudinal
coordinate; y, z: cross-sectional coordinates) will be used for all publications, although other
definitions have been used originally.

Such a compilation can never be comprehensive, due to the wide range of applications and
high research activity. The focus lays on 1D waveguides with arbitrary cross section, which
represent therefore a 3D mechanical problem. For historical reasons, some publications about
plate structures are listed. The computational effort for plate structures is in general lower,
therefore the used methods have been developed often first for plates (i.e. thin-walled cross
sections), before they have been transferred to arbitrary cross sections.

1.3.1.1 Waveguide FEM

The waveguide FEM is the method used in this thesis for the determination of wave functions
occurring in an infinite beam with arbitrary cross section. All publications described in this
section use iso-parametric finite elements for the discretization of the cross section. This
means that the same shape functions are used for the approximation of the geometry and of
the displacements (e.g. [Bathe 2014])

The idea of using infinitely propagating wave functions as ansatz for the longitudinal di-
rection of the waveguide with arbitrary cross section comes from [Aalami 1973]. He used
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trigonometric functions of the form sin
(
πx
λ

)
and cos

(
πx
λ

)
for the longitudinal propagation.

After subdividing the cross section into triangular finite elements (Fig. 1.2(b)) and prescrib-
ing a wave length λ he obtained through Hamilton’s principle a linear generalized eigenvalue
problem for frequencies Ω. He calculated with the help of this approach dispersion curves
for isotropic square bars.
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(a) Two-noded element with 4 de-
grees of freedom per node i
(ui,vi,wi and ϕi)
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(b) Three-noded element with 3 de-
grees of freedom per node i
(ui,vi and wi)
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x

(c) Four-noded element with 3 de-
grees of freedom per node i
(ui,vi and wi)

Figure 1.2: Finite elements used in literature for the discretization of the cross section

Gavrić published a similar method for thin-walled waveguides [Gavrić 1994] and later for
waveguides with arbitrary cross section [Gavrić 1995]. He used a virtual work formulation for
finding equilibrium. For the thin-walled waveguides he used two-noded elements with four
degrees of freedom (DOFs) per node (Fig. 1.2(a)) and for the arbitrary cross-section tree-
noded and four-noded elements (Figs. 1.2(b) and 1.2(c)). For the wave propagation he used
a direct ansatz of the form e−ikxx which he shifted additionally by a phase of i = e iπ

2 for the
deflections ui in order to consider the phase shift of π2 between the out-of-plane and in-plane
deflections in a bending wave. Therefore, he obtained (after prescribing a frequency Ω) a
quadratic eigenvalue problem with pure real sub-matrices for the wavenumber kx. In [Gavrić
1995] he calculated dispersion curves for a free rail UIC861-3 with real valued wavenumbers
(representing propagating waves, far field) which match well with measured results from
literature.

The method by [Gavrić 1994] for plates has been used by [Orrenius and Finnveden 1996]
in order to model rib-stiffed plates occurring typically in ship constructions. They also
improved the computational effort for solving the quadratic eigenvalue problem. [Onipede
and Dong 1996] have developed a similar method as Gavrić for pretwisted beams.

At the same time [Gry 1996] proposed a more general method based on the finite strip
method with – at the beginning – not further specified cross-sectional deformation modes
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un(y,z). For the wave propagation in x-direction he used an ansatz of the form e kxx, which
means that real and imaginary part of the wavenumbers kx as well as the propagation
direction of the waves are swapped in comparison to Gavrić. However, in total the same
wavenumbers should be obtained, because the obtained wavenumbers are symmetric to both
axes (real an imaginary) in the complex plain for undamped systems. After discretizing the
cross section with triangular finite elements (Fig. 1.2(b)) [Gry 1996] obtains an quadratic
eigenvalue problem of the same form as Gavrić. [Gry 1996] also investigated the propagation
in free rails. Additionally he tried to develop a finite spectral element for a section of the rail
based on the obtained wave propagation functions in order to consider sleepers. Thereby,
he faced numerical problems due to the high rate of growth (resp. decay) of near field
waves represented (in his approach) by an high real part of the wave number kx. Fatefully,
[Finnveden 1994] published a remedy for that without emphasizing the issue already short
before. Finnveden’s method ended in simply shifting the wave propagation functions in
longitudinal direction, so that they do not exceed the value "1" in the domain of the finite
spectral element.

[Finnveden 2004] developed methods to evaluate the modal density and group velocity for
thin-walled beams based on plate waveguide elements (Fig. 1.2(a)). [Hayashi et al 2003]
evaluated the dispersion curves of rails (for phase and group velocity) with the help of four
noded elements (Fig. 1.2(c)). They focused on the application in ultrasonic non-destructive
evaluation.

[Nilsson 2004] developed waveguide finite elements for thin-walled curved structures with
anisotropic material law and for fluids, as well as for the coupling of both. He modeled a
car tyre with the help of these elements. Even though no dimension of a car tyre is infinite,
it still can be considered for wave propagation reasons as infinite, because no reflections
occur in circumferential direction. [Finnveden and Fraggstedt 2008] continued the work
on the waveguide FEM for curved structures. They present also element formulations for
isoparametic solids and deep shells. These element formulations are based on Hamilton’s
principle which leads to an ODE for the cross-sectional displacements v in dependency of
the circumferential angle φ. This ODE is transformed to an algebraic equation with the help
of an ansatz of the form v(φ) = vne inφ, where n is the circumferential waveorder.

[Ryue et al 2008] investigated the wave propagation in rails like [Gavrić 1995] and [Gry 1996],
but they extended the frequency range up to 80kHz, which leads to a much higher number
of propagating waves. They compared the obtained dispersion curves with results obtained
from a 3D FE analysis and from measurements.
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[Bartoli et al 2006] and [Ryue et al 2009] worked on the material damping in the waveguide
FEM. The material damping is introduced by scaling the material properties with a complex
factor of the form (1 + iη), where η is the loss factor. η can be defined easily frequency-
dependent, because the problem is formulated in the frequency domain and superposition is
valid in linear theory.

The bedding of infinite rails by sleepers has been investigated recently by [Li et al 2015] and
[Zhang et al 2019]. The authors of the first publication modeled the sleepers as a continuous
layer of elastic springs. The authors of the second publication used a receptance coupling
method in order to couple elastic sleepers.

In [Kreutz 2013] and [Greim et al 2016] the waveguide FEM has been used to obtain unit
deflections shapes of the cross section for an augmented beam theory. The eigenvectors
obtained in the waveguide FEM have been used to form a reduction base (similar to model
order reduction techniques) for a 3D volume element model of the beam. The eigenvalue
problem is derived there analogously to publications dealing with the wave propagation in
soil (e.g. Müller et al [2008], Hackenberg [2016]). The principle of virtual work is employed
for the equilibrium formulation. Instead of defining the cross-sectional displacements as
functions of the longitudinal x-coordinate and obtaining an ODE which is solved with an
exponential approach, [Kreutz 2013] applied a Fourier transformation to the wavenumber
domain (x kx) on the differential operator matrix which links the strains and the dis-
placements. After discretizing the cross-section he obtained directly the quadratic eigenvalue
problem.

The sound radiation of rails has been investigated with the waveguide FEM by [Nilsson et al
2009] and [Ryue et al 2018]. Both coupled therefore the waveguide FEM with boundary
elements. [Ryue et al 2018] consider additionally the surface impedance of the ground.

1.3.1.2 Wave (and) Finite Element Method

The wave (and) finite element Method is not used in this thesis. Spectral super elements are
a new class of finite elements. Therefore, the main advantage of the wave (and) finite element
method (namely the use of powerful, well proven conventional FE packages) is pointless. For
the sake of completeness, some publications are summarized here as well because the field of
applications overlaps almost complete with the waveguide FEM. Research activity seems to
be recently higher in the wave (and) finite element method, probably because of the general
advantages (see section 1.3.1).
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The wave (and) finite element method has been established by [Mead 1973]. Later Thompson
used this method in the scope of his comprehensive work on wheel-rail noise generation in
order to determine dispersion curves of rails [Thompson 1993]. He modeled a section of the
rail with beam and shell elements.

[Mace et al 2005] have reformulated the theory slightly and improved the numerical stability
of the occurring eigenvalue problem. They aimed for parameters necessary for statistical
high frequency methods, like energy, energy density, power and group velocity.

The idea of the wave (and) finite element method shall be explained in the following sum-
marized with the help of equations from [Mace et al 2005]. An infinite periodic structure is
subdivided as illustrated in Fig. 1.3 into periodic elements (also called cells). The dynamic
stiffness matrix of that cell (or element) is obtained by any conventional FE package. Load
application inside the cell is not allowed. Therefore, it is possible to condense the internal
DOFs out. This condensation is abundant if the waveguide has a constant cross section and
the cell is modeled only with one slice of finite elements. The dynamic equilibrium can then
be written in the form:
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RL
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RR
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 =
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R


 (1.1)

Where K is the dynamic stiffness matrix. This equation can be reformulated to transfer
matrix notation:
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The continuity of displacements and equilibrium of forces at an element (cell) boundary
(Fig. 1.3) can be expressed as:
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= qp
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, fp+1
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= −fp

R
(1.4)
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Element p Element p+ 1

l l

Displacements: qpL qpR qp+1
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Forces: fpL fpR fp+1
L fp+1

R

Figure 1.3: Elements of an infinite periodic structure with displacement and force vectors at element
boundaries

Therefore, Eq. (1.2) can be rewritten as:
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 (1.5)

If free wave propagation is considered, the following equation holds for two consecutive
element (cell) boundaries (Bloch’s theorem, [Mace et al 2005]):
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Where the scalar λ describes the phase change (an possible decay) along the length l between
the two boundaries. [Mead 1973] used instead of λ the expression eµ which enables a direct
link to the ansatz e kxx known from the waveguide FEM (e.g. [Gry 1996]). The wavenumber
is obtained as kx = µ

l
.

Inserting Eq. (1.6) into Eq. (1.5) leads to an eigenvalue problem:
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This equation is valid for all elements (cells) of the waveguide. The superscript p is therefore
omitted in the following. Solving the first row of Eq. (1.7) for f

L
and inserting into the

second row leads to an quadratic eigenvalue problem comparable to the waveguide FEM:
(The equations of the waveguide FEM are derived and described in detail in chapter 2.)
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The eigenvector q
L,i

corresponding to an eigenvalue λi describes the cross-sectional deflection
shape belonging to the propagation constant λi.

Although the derivation of the wave (and) finite element method seems to be straight for-
ward, several numerical issues can arise according to [Waki et al 2009b]. This publication
focuses on 1D waveguides. One error is common with the waveguide FEM: A finer cross-
sectional discretization is necessary for higher frequencies. Other errors are induced by the
periodicity condition: If the length l of the periodic cell is longer than the wavelength at
high frequencies aliasing occurs. Secondly, periodic structures exhibit a pass- and stop-band
structure, where the bounds of the pass- and stop-bands are related to the natural frequen-
cies of the periodic element. The natural frequencies of the periodic element depend on
its length. Moreover, round-off errors can occur for low frequencies due to the numerical
subtraction in the calculation of the dynamical stiffness matrix K = Kstatic − ω2M of a
cell. Last, the quadratic eigenvalue problem for λ can be ill-conditioned. [Waki et al 2009b]
provide remedies for these issues.

[Duhamel et al 2006] have introduced a reduced basis for models, where the vector q
L
contains

a lot of DOFs, and have derived the dynamic stiffness matrix of a finite waveguide based on
the wave (and) finite element procedure described above. This method is comparable to the
spectral super element method handed in this thesis. However, the solution performance of
[Duhamel et al 2006] still depends on the element (or cell) length l.

[Droz et al 2014] propose a reduced wave (and) finite element formulation comparable to
[Duhamel et al 2006]. The reduction base is built by a limited number of propagating wave
shapes (eigenvectors) which are identified after a separate eigenvalue analysis for the deter-
mination of their cut-on frequencies. [Droz et al 2014] apply the method to a multi-layered
composite beam.

The wave (and) finite element method has been applied in literature to similar problems like
the waveguide FEM. E.g. [Waki et al 2009a] formulated it for cyclic structures and applied
the method on a car tyre. The cyclic formulation has been used later by [Mencik 2018] in
order to simulate a structure like a turbine wheel with blades.

[Degrande et al 2006] have coupled the wave (and) finite element method with boundary
elements in order to obtain a model for the simulation of soil vibrations induced by a railway
tunnel.

The simulation of sound transmission and radiation through and from 1D waveguides with
the help of the wave (and) finite element method is covered e.g. by [Kingan et al 2016] and
[Kingan et al 2019].
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The application of the wave (and) finite element method on poroelastic media according
to Biot-Allard’s theory has been investigated by [Serra et al 2015]. They conclude that the
method can be used, even though the dissipation rate is very high.

[Renno and Mace 2010] worked on the forced response of a 1D waveguide modeled with the
wave (and) finite element method due to an arbitrary force distribution along the longitu-
dinal axis. The force is Fourier transformed to convected harmonic pressures for which the
response is calculated. The response on the total load is obtained by an inverse Fourier
Transformation.

The field of structural health monitoring with the help of the wave (and) finite element
method is e.g. covered by [Gaul et al 2010], [Schaal et al 2012], [Schaal and Hanss 2014],
[Gras et al 2018] and [Mallouli et al 2019]. [Gaul et al 2010] worked on the crack detection in
load carrying cables. Therefore, they used the wave (and) finite element method to obtain
wavenumbers and cross-sectional displacement shapes at ultrasonic frequencies. [Gras et al
2018] have coupled wave (and) finite elements with conventional finite elements in order to
study the effect of local heterogenity (e.g. cracks) in rails. [Mallouli et al 2019] extended the
wave (and) finite element method to time domain via inverse discrete Fourier transformation
in order to simulate damage detection with a transverse low velocity impact.

The effect of the uncertainty in the system parameters of cylindrical waveguides on their
wave dispersion curves has been investigated by [Schaal et al 2012]. They have introduced
the material properties, the radius and the length l of the periodic cell as triangular fuzzy
numbers and obtain the dispersion curves as envelopes of curves with a color gradient in-
dicating the membership level. This method has been used by [Schaal and Hanss 2014] in
order to study the effect of uncertain parameters on a crack detection algorithm based on a
Hilbert transformation of the measured signal.

1.3.2 Spectral Super Element Method

The spectral super element method (SSEM) based on the waveguide FEM has been published
first by [Peplow and Finnveden 2004] for solving the acoustical wave equation (d’Alembert
Equation) in 2D. They applied it to wave ducts with different boundary conditions (sound-
hard, sound-soft) and stepped cross sections. Each 1-D cross section of parts of the wave
duct with constant properties (boundary conditions, cross-sectional width, sound velocity)
is discretized with finite elements and wave functions are obtained for it with the help of
the waveguide FEM. These wave functions are than used as ansatz to formulate a spectral
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super element (SSE) for each part with constant properties. The FE meshes are defined
with coinciding nodes at the ends of the SSEs, so that simple coupling is possible.

The SSEM has been transferred to structural mechanics by [Birgersson et al 2005]. They
applied it also to a 2D problem, the plate vibration. The procedure follows directly that of
the acoustical problem. SSEs are developed for parts where the cross section of the plate
structure is constant. The ansatz consists of wave functions gained by the waveguide FEM
of the respective cross section. The SSEs are coupled also with conventional finite plate
elements in order to model cross stiffeners. In [Birgersson and Finnveden 2005] the authors
develop a method to predict the response of plate SSEs on turbulence excitation.

To the authors best knowledge, [Ryue et al 2011] is the only publication dealing with the
SSEM for 3D structures, i.e. for beams with arbitrary cross section. They have developed
semi-infinite SSEs for rails and coupled them in the middle with conventional 3D FEs in
order to model a crack in a rail.

This thesis follows mainly the procedures in [Birgersson et al 2005] and [Ryue et al 2011] in
order to develop SSEs for finite beams with arbitrary cross section.

It is important to note that Doyle uses the name "spectral super element" in his book [Doyle
1997] for something quite different. A spectral super element according to Doyle is used for
modeling (geometrical complicated) joints between waveguides modeled with conventional
spectral beam elements. The joint is modeled therefore with conventional 2D or 3D FEs.
The dynamic stiffness matrix of Doyle’s SSE is obtained from the dynamic stiffness matrix
of the FE model by a procedure very similar to the static condensation of the internal DOFs.
Although Doyle’s SSEs are not related to the SSEs in this thesis, they could be easily coupled
together if the cross-sectional mesh at the transition from joint to beam is the same.

1.3.3 Competing Methods

In general, the proposed method in this dissertation is capable to predict the response of
beam-like structures with arbitrary cross section from low to very high frequencies. If the
frequency band of interest is limited to lower frequencies, augmented beam theories, which
have their origin in static calculations, can be computational more efficient. An overview of
such beam theories can be found in the introduction of [Kreutz 2013]. Most of these beam
theories have been developed for thin-walled cross-sections. Important names in this field
are Vlasov and Schardt (Generalized Beam Theory). Summarized, these theories add to
Euler-Bernoulli’s or Timoshenko’s differential equations additional terms and/or additional
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PDEs in order to cover cross sectional distortions. The few methods which cover arbitrary
cross-sections (including the one proposed in [Kreutz 2013] and [Greim et al 2016]) are often
based on unit-deflection shapes of the cross section which are obtained by solving a PDE of
a substitute structure on a FE mesh of the cross section. This links them to the method
of this thesis: The cross-sectional wave shapes obtained with the waveguide FEM can be
understood as a unit-deflection shape. On the other hand side, the additional use of the
information about the wave propagation in longitudinal direction in form of wavenumbers
distinguishes the SEEM clearly from the aforementioned methods.

The use of wave propagation information (e.g. in form of wavenumbers) is the key idea of
general spectral elements described e.g. in the textbooks [Doyle 1997] and [Lee 2009] or in
the paper [Finnveden 1994]. The use of this information allows the development of elements
which deliver accurate results (within the limits of the underlying beam theory) for elements
of arbitrary length. Therefore, these spectral elements are highly computational efficient –
also due to the fact, that the underlying beam theories describe the displacement field in
the domain of the beam element with only very few variables, like e.g. three variables for 2D
problems in case of application of the Euler-Bernoulli or Timoshenko beam theory. (These
variables are the lateral and longitudinal displacement for both mentioned beam theories
and the axial rotation for the Euler-Bernoulli beam and the cross sectional rotation for the
Timoshenko beam.) However, these spectral methods are also limited to frequencies and
cross-sectional geometries where the assumption holds, that the displacement field can be
described with these few variables (e.g. that the cross section remains plain).

The fact, that the cross-section of the beam will suffer complicated deformations for arbitrary
boundary conditions or at high frequencies suggests to consider it no longer as a beam but as
an arbitrary solid, which is modeled with conventional solid 3D finite elements as described
e.g. in the textbooks [Zienkiewicz 1984], [Petyt 1990] or [Hughes 2000]. The necessary fine
discretization leads in this case to an enormous number of DOFs. Due to the banded structure
of classical FE matrices, current computers can handle already millions of DOFs. Together
with model order reduction (MOR) techniques huge FE models can be solved in reasonable
time. An overview of current MOR techniques for second order dynamical problems is
given by [Rodriguez et al 2016]. From a computational point of view the classical FEM
together with MOR can probably exceed the performance of the SSEM for some problems
(e.g. comparably short waveguides). On the other hand side it gives no direct information
about wave propagation characteristics.
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2 Waveguide FEM

The waveguide FEM delivers wave functions occurring in an infinite waveguide with the
considered cross section from a quadratic eigenvalue problem. This means that no external
loading is considered. The eigenvalues are the wavenumbers κx for the longitudinal propa-
gation. The eigenvectors ψ are the related cross sectional displacement shapes. These wave
functions are used to formulate the ansatz functions for the spectral super elements. The
mathematical formulation of the waveguide FEM is explained in this chapter. Therefore,
the employment of Hamilton’s principle and of the principle of virtual work are compared.
The obtained results are equivalent. Moreover, some hints about the implementation in
MATLAB and numerical examples are given.

The cross section of an infinite waveguide is discretized in y,z-direction with four-noded
elements as depicted in Fig. 2.1. The nodal displacements in the three spatial directions of
the element depicted in Fig. 2.2 (ui(x), vi(x),wi(x)) are considered to be analytical functions
of the longitudinal x-coordinate.

2.1 Mathematical Formulation Based on Hamilton’s

Principle

The mathematical formulation with Hamilton’s Principle in this dissertation follows the
formulation in [Birgersson et al 2005]. Four-noded (12 DOF) 2D elements (Fig. 2.2) are used
for the cross sectional discretization instead of two-noded (8 DOF) 1D elements (Fig. 1.2(a))
in [Birgersson et al 2005]. Moreover, a different definition of the Fourier transformation is
used (refer for details to A.1).

According to e.g. [Morse and Feshbach 1953] or [Müller 2018] Hamilton’s principle states that
for conservative systems the time integral over the difference of strain and kinetic energy of
the system has to be minimized in order to obtain dynamic equilibrium. The time integral
can be stretched from −∞ to ∞ if a harmonic oscillation of the form e iωt is assumed.
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Figure 2.1: Exemplary cross-sectional mesh of four-noded elements
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2.1.1 Strain Energy

The time integral of the strain energy in the element depicted in Fig. 2.2 in general is:

Πi = 1
2

∞∫

−∞

∫

(V )

εT · σ dV dt (2.1)

V is the Volume of the element (which is infinite due to the infinite extension in x-direction).
ε and σ are the strain and stress tensors in vector notation. The superscript T denotes
transpose matrix or vector. After inserting the material law

σ = D · ε (2.2)

with the material matrix D of a linear elastic isotropic material with Young’s modulus E
and Poisson’s ratio ν

D = E

(1− ν)(1− 2ν)




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2




(2.3)

one obtains

Πi = 1
2

∞∫

−∞

∫

(x)

∫

(y)

∫

(z)

εT D ε dz dy dx dt. (2.4)

Eq. (2.4) can be Fourier transformed to the angular frequency domain (t ω) with the
help of Parseval’s theorem (see Eq. (A.1.14) in the appendix):

Πi = 1
2 ·

1
2π

∞∫

−∞

∫

(x)

∫

(y)

∫

(z)

ε∗T D ε dz dy dx dω. (2.5)

The superscript ∗ denotes the complex conjugate. Together with the superscript T it can
be summarized to the superscript H which denotes the Hermitian transpose (also called
conjugate transpose or adjoint).

The strain tensor ε is obtained from the kinematics by the formal product of the differential
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operator matrix G with the displacement field u(x,y,z) defined in Fig. 2.2:

ε = G · u(x,y,z) with: u(x,y,z) =




u(x,y,z)
v(x,y,z)
w(x,y,z)


 (2.6)

G =
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(2.7)

The integral over the physical cross-sectional coordinates y and z in Eq. (2.5) is transformed
to an integral over the element’s natural coordinates ξ and η:

Πi = 1
2 ·

1
2π

∞∫

−∞

∫

(x)

1∫

−1

1∫

−1

εH D ε det J dξ dη dx dω (2.8)

Where det J is the determinant of the Jacobian matrix:

J =


∂y
∂ξ

∂z
∂ξ

∂y
∂η

∂z
∂η


 (2.9)

The surface differential dA = dz dy = det J dξ dη is proven e.g. in [Müller 2017].

The transformation to natural coordinates allows the use of the same (bi-linear) shape func-
tions for the description of the displacement field inside the element independent of its
physical geometry:

N1(ξ,η) = 1
4(1− ξ)(1− η)

N2(ξ,η) = 1
4(1 + ξ)(1− η)

N3(ξ,η) = 1
4(1 + ξ)(1 + η)

N4(ξ,η) = 1
4(1− ξ)(1 + η)

(2.10)

The displacement field u(ξ,η,x) is described with the help of the shape functions in depen-
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dency of the nodal deflections:

u(ξ,η,x) = N(ξ,η) · v(x) (2.11)

with: N =




N1 0 0 N2 0 0 N3 0 0 N4 0 0
0 N1 0 0 N2 0 0 N3 0 0 N4 0
0 0 N1 0 0 N2 0 0 N3 0 0 N4


 (2.12)

v =
[
u1 v1 w1 u2 v2 w2 u3 v3 w3 u4 v4 w4

]T
(2.13)

When applying the differential operator matrix G on the displacement field u in order to
obtain the strain ε the partial derivatives w.r.t. to x have to be applied on the nodal dis-
placement functions ui (because they depend on x) while the partial derivatives w.r.t. y and
z have to be applied to the shape functions Ni (because these depend on the cross sectional
coordinates.):

ε = GN v

=




∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂y

∂
∂x

0
∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y







N1u1 +N2u2 +N3u3 +N4u4

N1v1 +N2v2 +N3v3 +N4v4

N1w1 +N2w2 +N3w3 +N4w4




=




N1
∂u1
∂x

+N2
∂u2
∂x

+N3
∂u3
∂x

+N4
∂u4
∂x

∂N1
∂y
v1 + ∂N2

∂y
v2 + ∂N3

∂y
v3 + ∂N4

∂y
v4

∂N1
∂z
w1 + ∂N2

∂z
w2 + ∂N3

∂z
w3 + ∂N4

∂z
w4

∂N1
∂y
u1 +N1

∂v1
∂x

+ ∂N2
∂y
u2 +N2

∂v2
∂x

+ ∂N3
∂y
u3 +N3

∂v3
∂x

+ ∂N4
∂y
u4 +N4

∂v4
∂x

∂N1
∂z
u1 +N1

∂w1
∂x

+ ∂N2
∂z
u2 +N2

∂w2
∂x

+ ∂N3
∂z
u3 +N3

∂w3
∂x

+ ∂N4
∂z
u4 +N4

∂w4
∂x

∂N1
∂z
v1 + ∂N1

∂y
w1 + ∂N2

∂z
v2 + ∂N2

∂y
w2 + ∂N3

∂z
v3 + ∂N3

∂y
w3 + ∂N4

∂z
v4 + ∂N4

∂y
w4




(2.14)

The calculation of the strain ε can therefore be separated into two terms:

ε = ε0v(x) + ε1
∂v(x)
∂x

(2.15)

with:
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ε0 =




0 0 0 0 0 0 0 0 0 0 0 0
0 ∂N1

∂y
0 0 ∂N2

∂y
0 0 ∂N3

∂y
0 0 ∂N4

∂y
0

0 0 ∂N1
∂z

0 0 ∂N2
∂z

0 0 ∂N3
∂z

0 0 ∂N4
∂z

∂N1
∂y

0 0 ∂N2
∂y

0 0 ∂N3
∂y

0 0 ∂N4
∂y

0 0
∂N1
∂z

0 0 ∂N2
∂z

0 0 ∂N3
∂z

0 0 ∂N4
∂z

0 0
0 ∂N1

∂z
∂N1
∂y

0 ∂N2
∂z

∂N2
∂y

0 ∂N3
∂z

∂N3
∂y

0 ∂N4
∂z

∂N4
∂y




(2.16)

ε1 =




N1 0 0 N2 0 0 N3 0 0 N4 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 N1 0 0 N2 0 0 N3 0 0 N4 0
0 0 N1 0 0 N2 0 0 N3 0 0 N4

0 0 0 0 0 0 0 0 0 0 0 0




(2.17)

The matrices ε0 and ε1 have together the same purpose as the B-matrix in classical FEM
theory (e.g. [Zienkiewicz 1984], [Hartmann and Katz 2002]).

The 2D chain rule has to be applied in order to calculate the derivatives of the shape functions
Ni(ξ,η) w.r.t. the physical coordinates y and z:



∂Ni
∂y
∂Ni
∂z


 =



∂ξ
∂y

∂η
∂y

∂ξ
∂z

∂η
∂z




︸ ︷︷ ︸
J−1



∂Ni
∂ξ
∂Ni
∂η


 (2.18)

Where J−1 is the the inverse of the Jocobian matrix J . For the calculation of the Jacobian
matrix the same shape functions Ni as used for the displacement ansatz have to be employed
in iso-parametic elements:

y(ξ,η) = N y

z(ξ,η) = N z
(2.19)

Where:
N =

[
N1(ξ,η) N2(ξ,η) N3(ξ,η) N4(ξ,η)

]
(2.20)

y =
[
y1 y2 y3 y4

]T

z =
[
z1 z2 z3 z4

]T (2.21)

yi and zi are the nodal coordinates of the element depicted in Fig. 2.2.
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Therefore:

J =


∂y
∂ξ

∂z
∂ξ

∂y
∂η

∂z
∂η


 =



∂N
∂ξ
y ∂N

∂ξ
z

∂N
∂η
y ∂N

∂η
z


 (2.22)

Inserting the obtained formulation for the strain ε of Eq. (2.15) into the strain energy in
Eq. (2.8) leads to:

Πi = 1
4π

∫

(x)

1∫

−1

1∫

−1

(
ε0v(x) + ε1

∂v(x)
∂x

)H
D

(
ε0v(x) + ε1

∂v(x)
∂x

)
det J dξ dη dx

= 1
4π

∫

(x)

1∫

−1

1∫

−1

1∑

m=0

1∑

n=0

(
ε
m

∂mv(x)
∂xm

)H
D

(
ε
n

∂nv(x)
∂xn

)
det J dξ dη dx

= 1
4π

∫

(x)

1∑

m=0

1∑

n=0

(
∂mv(x)
∂xm

)H 1∫

−1

1∫

−1

εH
m
D ε

n
det J dξ dη

(
∂nv(x)
∂xn

)
dx

= 1
4π

∫

(x)

1∑

m=0

1∑

n=0

(
∂mv(x)
∂xm

)H
ε
mn

(
∂nv(x)
∂xn

)
dx

(2.23)

with: ε
mn

=
1∫

−1

1∫

−1

εH
m
D ε

n
det J dξ dη (2.24)

The integral over the frequency ω is skipped, because we consider harmonic loads with one
frequency per step in linear systems (details in section 3.2.2). For transient loads (e.g. moving
loads in chapter 4) this integral is evaluated in the scope of the Fourier back transformation.
The area integral for the four matrices ε

mn
is evaluated numerically with Gauß-Legendre

integration in section 2.1.3.

2.1.2 Kinetic Energy

The time integral of the kinetic energy in the element depicted in Fig. 2.2 in general is:

K = 1
2

∞∫

−∞

∫

(V )

u̇T (x,y,z,t) ρ u̇(x,y,z,t) dV dt (2.25)

ρ is the density of the material and u̇ is the velocity field (i.e. the first derivative w.r.t. time
of the displacement field defined in Eq. (2.6)).
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For the Fourier transformation (t ω) Parseval’s theorem has to be applied again:

K = 1
4π

∞∫

−∞

∫

(x)

∫

(y)

∫

(z)

ω2 ρ uH(x,y,z,ω)u(x,y,z,ω) dz dy dx dω (2.26)

Parseval’s theorem for the product of the time derivatives of two functions is derived in
appendix A.2, where it is shown that the kinetic energy has a positive sign also in the
transformed domain, although the differentiation rule of the Fourier transformation leads
at first glance to another assumption: iω · iω = −ω2.

The integral over the cross-sectional area is again transformed to natural coordinates ξ and
η and the same discretization as for the strain energy is used:

u(ξ,η,x) = N(ξ,η) · v(x) (2.27)

The integral over the frequency is skipped again, therefore:

K = 1
4π

∫

(x)

ω2 vH(x)
1∫

−1

1∫

−1

ρNHN det J dξ dη v(x) dx

= 1
4π

∫

(x)

ω2 vH(x)m00 v(x) dx
(2.28)

with: m00 =
1∫

−1

1∫

−1

ρNHN det J dξ dη (2.29)

The mass matrix m00 has the following structure:

N(ξ,η)T ·N(ξ,η) =




N1 0 0
0 N1 0
0 0 N1

N2 0 0
0 N2 0
0 0 N2
... ... ...




·




N1 0 0 N2 0 0 . . .

0 N1 0 0 N2 0 . . .

0 0 N1 0 0 N2 . . .


 =
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=




N2
1 0 0 N1N2 0 0 . . .

0 N2
1 0 0 N1N2 0 . . .

0 0 N2
1 0 0 N1N2 . . .

N1N2 0 0 N2
2 0 0 . . .

0 N1N2 0 0 N2
2 0 . . .

0 0 N1N2 0 0 N2
2 . . .

... ... ... ... ... ... . . .




(2.30)

2.1.3 Gauß-Legendre Integration

The integrals for matrices ε
mn

and m00 are evaluated numerically with Gauß-Legendre inte-
gration. The Gauß-Legendre integration is the Gaussian quadrature in natural coordinates
in the interval [−1, 1] and described e.g. in [Abramovitz and Stegun 1972] p.887:

1∫

−1

f(x) dx ≈
n∑

i=1
wif(xi) (2.31)

wi are the weights, xi are the coordinates and n the number of the Gauß points. xi is the
ith root of the nth Legendre polynomial Pn(x).

wi = 2
(1− xi)2[P ′n(xi)]2

(2.32)

The coordinates xi and weights wi are tabulated up to n = 96 in e.g. [Abramovitz and
Stegun 1972]. Moreover, the Legendre Polynomials are implemented in MATLAB’s function
legendreP. Their roots and derivatives are found easily with MATLAB’s symbolic math
toolbox. Gaussian integration with n Gauß points is exact for polynomials of order 2n −
1 [Hartmann and Katz 2002]. For two-dimensional functions like the shape functions of
Eq. (2.10) this rule holds for each dimension separately. The maximum polynomial order
in the integrand for ε

mn
and m00 occurs, when two non-differentiated shape functions are

multiplied e.g.:

[N1(ξ,η)]2 = 1
16(1− 2ξ − 2η + 4ξη + ξ2 + η2 − 2ξη2 − 2ξ2η + ξ2η2) (2.33)

Therefore, the maximum polynomial order per dimension is 2 and n = 2 Gauß points per
dimension (4 in total) are sufficient for exact integration. The integrals in Eqs. (2.24) and
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(2.29) are converted to sums with four addends without loss of accuracy:

ε
mn

=
4∑

i=1
εH
m

(ξi,ηi)D ε
n
(ξi,ηi) det J(ξi,ηi)wi (2.34)

m00 = ρ
4∑

i=1
NH(ξi,ηi)N(ξi,ηi) det J(ξi,ηi)wi (2.35)

2.1.4 Minimum of the Lagrangian

The Langrangian follows from Eq. (2.23) and Eq. (2.28):

L =Πi −K

= 1
4π

∫

(x)

vH(x) ε00 v(x) +
(
∂v(x)
∂x

)H
ε10 v(x) + vH(x) ε01

∂v(x)
∂x

+

+
(
∂v(x)
∂x

)H
ε11

∂v(x)
∂x

− ω2 vH(x)m00 v(x) dx

(2.36)

This has to be minimized with the help of variational calculus according to e.g. [Morse and
Feshbach 1953] p.277 in order to find the unknown vector of displacement functions v(x)
and its adjoint vH(x). Therefore, the factor 1

4π is neglected in the following, because it does
not influence the location of the minimum. Arbitrary variations of the unknown functions
consisting of a scalar εi and a vector function η

i
are introduced:

vHvar(x) = vH(x) + δvH δvH = ε1η1(x) (2.37)
vvar(x) = v(x) + δv δv = ε2η2(x) (2.38)

The integrand of the Lagrangian is called Lagrangian density L. After introducing the
variation it can be seen as a function of the following variables:

L = L(vH + ε1η1, v + ε2η2, v
′H + ε1η

′
1, v
′ + ε2η

′
2) (2.39)

Where ′ denotes derivative w.r.t. x. A Taylor series expansion of L at ε1 = ε2 = 0 truncated
after the linear terms looks like:

L = L+ ∂L

∂vH
ε1η1 + ∂L

∂v
ε2η2 + ∂L

∂v′H
ε1η
′
1 + ∂L

∂v′
ε2η
′
2 (2.40)
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Inserting the Taylor series expansion into the Lagrangian leads to the variation of the La-
grangian, which has to be zero at the minimum:

δL =
∫

(x)

ε1

(
∂L

∂vH
η1 + ∂L

∂v′H
η′1

)
+ ε2

(
∂L

∂v
η2 + ∂L

∂v′
η′2

)
dx != 0 (2.41)

Integration by parts (where the boundary terms vanish, because ηi is designed, so that it is
zero at the boundaries) leads to:

δL =
∫

(x)

ε1

(
∂L

∂vH
−
(
∂L

∂v′H

)′)

︸ ︷︷ ︸
!=0

η1 + ε2

(
∂L

∂v
−
(
∂L

∂v′

)′)

︸ ︷︷ ︸
!=0

η2 dx != 0 (2.42)

εi and ηi are arbitrary. Therefore, the terms in brackets (the so called Eulerian DEs) have
to be zero. The first Eulerian DE applied to the Langrangian density L in Eq. (2.36) leads
to:

ε00v − ε10v
′ + ε01v

′ − ε11v
′′ − ω2m00v = 0 (2.43)

This is a system of 2nd order homogenous ODEs for the unknown displacement functions
v(x):

k2v
′′ + k1v

′ + (k0 − ω
2m)v = 0

with: k2 = −ε11; k1 = ε01 − ε10; k0 = ε00; m = m00

(2.44)

The second Eulerian DE in (2.42) leads to an system of ODEs for the adjoint unknowns
vH(x). This will not lead to additional information and is skipped in the following.

Eq. (2.44) determines the displacement functions of a single waveguide finite element as
depicted in Fig. 2.2. The element stiffness matrices k

i
and mass matrix m can be assembled

according to standard FEM procedures (see section A.4.3.1) to global matrices (K
i
and M)

for the complete cross-sectional mesh of the waveguide in Fig. 2.1. The vector v(x) becomes
therefore the vector V (x) of all nodal displacement functions of the cross-sectional mesh:

K2V
′′ +K1V

′ + (K0 − ω
2M)V = 0 (2.45)

A Fourier transformation to the wavenumber domain (x κx) converts the system of
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ODEs into a system of algebraic equations:

(−κ2
xK2 + iκxK1 +K0 − ω

2M)Ṽ (κx) = 0 (2.46)

The tilde ˜ denotes a quantity in the wavenumber domain.

Eq. (2.46) is either a linear generalized eigenvalue problem for ω2 if a wavenumber κx is
prescribed or a quadratic eigenvalue problem for κx if a frequency ω is prescribed. The latter
approach is used in this thesis, because wave functions for a particular excitation frequency
are needed for the ansatz for the spectral super element. The solution of this quadratic
eigenvalue problem is explained in section A.4.3.2. It leads to eigenvalues κx,i(ω) where
i = 1, 2, ... , 2N and N is the number of DOFs in the cross-sectional mesh. To each eigenvalue
κx,i a corresponding eigenvector of the form Ṽ i(κx,i) = ai ·ψi(κx,i) is found. Eigenvectors are
the non-trivial solution of a homogeneous linear system of equations. Therefore, they can
be arbitrary scaled and the factor a remains undetermined. The eigenvector ψ

i
represents

the cross-sectional displacement belonging to a wave which propagates and/or decays with
the wavenumber κx in x-direction.

The ansatz for the spatial displacement field inside a spectral super element is obtained by
a inverse Fourier transformation (κx x). The discretization in the cross section leads to
an sampling in the wavenumber domain. The Fourier integral converts to a sum:

V (x) = 1
2π

∞∫

−∞

a(κx) · ψ(κx) · e iκxx dκx

= 1
2π

∞∫

−∞

2N∑

i=1
ai · ψi(κx,i) · e

iκxx · δ(κx,i − κx) dκx

= 1
2π

2N∑

i=1
ai · ψi(κx,i) · e

iκx,ix

(2.47)

The mathematical formulation of the spectral super element with the help of this ansatz is
described in chapter 3.
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2.2 Mathematical Formulation Based on the Principle of

Virtual Work

The quadratic eigenvalue problem in Eq. (2.46) is derived in this section with the help of the
principle of virtual work in order to proof the formulation. Moreover, the principle of virtual
work is used in some literature about the waveguide FEM (or 2.5D FEM), e.g. [Kreutz 2013]
or [Hackenberg 2016].

The principle of virtual work states that the sum of the virtual work of the internal forces
δWi and the inertia forces δWT has to vanish at the state of equilibrium (for systems without
external forces):

δW = δWi + δWT = 0 (2.48)

We consider again the waveguide element depicted in Fig. 2.2 with its nodal displacement
vector v(x) defined in Eq. (2.13).

2.2.1 Virtual Work of the Internal Forces

The work of the real stress σ performed on virtual strain δε under consideration of the linear
elastic isotropic material law in Eqs. (2.2) and (2.3) is:

δWi = −
∫

(V )

δεTσ dV = −
∫

(V )

δεTD ε dV (2.49)

Kinematics and shape functions are the same as in Eqs. (2.10) - (2.14). Therefore, the strain
is:

ε = ε0v(x) + ε1
∂v(x)
∂x

(2.50)

With the matrices ε0 and ε1 defined in Eqs. (2.16) and (2.17). Inserting this strain ansatz
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for the virtual as well as for the real strain into Eq. (2.49) leads to:

δWi = −
∫

(x)

1∫

−1

1∫

−1

(
ε0δv(x) + ε1

∂δv(x)
∂x

)T
D

(
ε0v(x) + ε1

∂v(x)
∂x

)
det J dξ dη dx

= −
∫

(x)

1∑

m=0

1∑

n=0

(
∂mδv(x)
∂xm

)T 1∫

−1

1∫

−1

εT
m
D ε

n
det J dξ dη ∂

nv(x)
∂xn

dx =

= −
∫

(x)

1∑

m=0

1∑

n=0

(
∂mδv(x)
∂xm

)T
ε
mn

∂nv(x)
∂xn

dx

(2.51)

Where ε
mn

are the same matrices as in Eq. (2.24).

Fourier transformation (x κx) and Parseval’s theorem (appendix A.1.2.1) leads to:

δWi = − 1
2π

∫

(κx)

1∑

m=0

1∑

n=0
(δṽ(κx))H (−iκx)m εmn (iκx)n ṽ(κx) dκx

= − 1
2π

∫

(κx)

(δṽ(κx))H
[
ε00 + iκx(ε01 − ε10) + κ2

x ε11

]
ṽ(κx) dκx

(2.52)

2.2.2 Virtual Work of the Inertia Forces

The virtual work of the inertia forces inside the spatial domain of the waveguide element in
Fig. 2.2 in frequency domain is:

δWT = −
∫

(V )

δu · ρ · ü dV (2.53)

Transforming to cross-sectional natural coordinates and using the displacement ansatz in
Eqs. (2.10) - (2.13) for virtual and real displacement leads to:

δu = N δv(x) (2.54)
ü = −ω2N v(x) (2.55)

δWT =
∫

(x)

δvT (x)
1∫

−1

1∫

−1

NT · ρ ·N det J dξ dη ω2v(x) dx =

=
∫

(x)

δvT (x)m00 ω
2 v(x) dx

(2.56)
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Where the matrix m00 is the same as in Eq. (2.29).

Fourier transformation (x κx) and Parseval’s theorem (appendix A.1.2.1) leads to:

δWT = 1
2π

∫

(κx)

(δṽ(κx))H ω2m00 ṽ(κx) dκx (2.57)

2.2.3 The Quadratic Eigenvalue Problem

The sum of the virtual work of the internal forces Eq. (2.52) and the virtual work of the
inertia forces (2.57) is:

δW = 1
2π

∫

(κx)

(δṽ(κx))H
[
−ε00 − iκx(ε01 − ε10)− κ2

x ε11 + ω2m00

]
ṽ(κx) dκx != 0 (2.58)

The fact, that the integral is zero if the integrand is zero and δṽ(κx) 6= 0 leads to the
quadratic eigenvalue problem for κx:

(−κ2
x (−ε11)
︸ ︷︷ ︸

k
2

+iκx (ε01 − ε10)
︸ ︷︷ ︸

k
1

+ ε00︸︷︷︸
k

0

−ω2m00︸︷︷︸
m

) ṽ(κx) = 0 (2.59)

Assembling from element level to the cross-sectional mesh (e.g. Fig. 2.1) gives the same
quadratic eigenvalue problem as in Eq. (2.46):

(−κ2
xK2 + iκxK1 +K0 − ω

2M)Ṽ (κx) = 0 (2.60)

2.3 Implementation in MATLAB

The described procedure of the Waveguide FEM has been implemented from the scratch
in MATLAB with object oriented programming (OOP). The implementation is decribed in
detail in the appendix A.4. Also the solution procedure for the quadratic eigenvalue problem
is described there.
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Figure 2.3: Cross-sectional meshes considered in this chapter

2.4 Numerical Examples

Two numerical examples are considered in this section in order to illustrate the possibilities
of the waveguide FEM. Calculation results are also compared to results from literature in
order to validate the implementation.

The first example is a rectangular cross section of a C30/37 concrete beam with a height of
0.6m and a width of 0.4m. The used discretization is depicted in Fig. 2.3(a).

The second example is the cross section of a UIC60 rail. The dimensions are taken from [DIN-
EN13674-1:2017-07], but the beveling of the edges is neglected. The used discretization is
depicted in Fig. 2.3(b). A much finer discretization at the edges would be necessary in order
to consider beveling, which would increase the number of DOFs in the mesh considerably.
The rail is assumed to consist of ordinary construction steel.

The used material properties are listed in Tab. 2.1. Material damping is not considered.
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Material Concrete C30/37 Construction steel

Young’s modulus E
[

kN
m2

]
28.3 · 106 210 · 106

Shear modulus G
[

kN
m2

]
E

2(1+ν) 81 · 106

Poisson’s ratio ν [−] 0.0 E
2G − 1

Density ρ
[

t
m3

]
2.5 7.85

Table 2.1: Material properties from [Schneider 2006]

2.4.1 Rectangular Concrete Cross Section

In a first step the quadratic eigenvalue problem for the rectangular concrete cross section
is solved for two prescribed frequencies: 10Hz and 2000Hz. The resulting eigenvalues κx
are plotted in the complex plain in the scatter plots in Fig. 2.4. The number of eigenvalues
of a quadratic eigenvalue problem is twice as large as the dimension of its matrices. The
dimension of the matrices is the same as the number of DOFs in the cross-sectional mesh.
The mesh in Fig. 2.3(a) has 351 DOFs, therefore Fig. 2.4 plots 702 wavenumbers for each of
the frequencies.

The observed double symmetry w.r.t. the real and imaginary axis is well known in literature
and e.g. described in [Ryue et al 2011] or [Kreutz 2013]. Most of the wavenumbers are either
pure imaginary or complex (with real and imaginary part) at the considered frequencies.

The pure imaginary wavenumbers describe so-called near field (evanescent) waves which
decay exponentially without any oscillation. Such a wave is visualized by the blue line
in Fig. 2.6. From the term e iκxx in the Fourier back transformation in Eq. (2.47) it can
be derived that the positive pure imaginary wavenumbers describe a wave which decays in
positive x-direction, while the negative ones describe a wave which decays in the negative
x-direction.

The complex wavenumbers are often dominated by the imaginary part. They describe in
general a mixture of a propagating (far field) wave and a evanescent (near field) wave. Such
a wave is visualized by the orange line in Fig. 2.6. The real part describes the propagation,
the imaginary part describes the decay. Due to the domination of the imaginary part, the
propagation behavior is often almost not noticeable for most of the waves with complex
valued wavenumbers. The propagation direction of the real part can be derived if also
the exponential term of the Fourier back transformation to the time domain (compare



34 2 Waveguide FEM

−10 0 10

−100

0

100

Re (kx)
[

rad
m

]

Im
(k

x
)[ r

a
d

m

]

(a) 10Hz

−10 0 10

−100

0

100

Re (kx)
[

rad
m

]

Im
(k

x
)[ r

a
d

m

]
(b) 2000Hz

Figure 2.4: Wavenumbers of the rectangular concrete cross section in complex plain
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Figure 2.5: Zoom into Fig. 2.4
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Figure 2.6: Exemplary visualization of an evanescent wave, a wave with complex valued wavenumber and
a propagating wave
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Eq. (A.1.10) in the appendix A.1.2.1) is considered:

e iκxx+iΩt = e iΩ(t+x
c ) with: κx = Ω

c
(2.61)

c is the phase velocity of the wave. Therefore, a positive real part of a wavenumber describes
a wave propagating in negative x-direction, and vice versa. The complex wavenumbers occur
in groups of four due to double symmetry. Tab. 2.2 summarizes the propagation and decay
directions of waves described by such a group.

Quadrant Wavenumber Propagation direction Decay direction
1st κx negative x negative x
2nd −κ∗x positive x negative x
3rd −κx positive x positive x
4th κ∗x negative x positive x

Table 2.2: Propagation and decay directions of complex wavenumbers

Waves with wavenumbers of the 2nd and 4th quadrants which propagate in opposite direction
than they are decaying have no physical sense at first glance. But these waves might be
relevant in an ansatz like Eq. (2.47) for a finite beam in order to fulfill arbitrary boundary
conditions.

Pure real wavenumbers describe propagating waves as visualized exemplary by the green line
in Fig. 2.6. Pure real wavenumbers can hardly be noticed in Fig. 2.4. Therefore, Fig. 2.5
provides enlarged sections of it. Four independent real-valued wavenumbers are observed at
10Hz. The corresponding eigenvectors are visualized in Fig. 2.7. These eigenvectors represent
the propagating waves which can be approximated by the wave shapes occurring also in a
beam with Euler-Bernoulli assumptions (cross sections remain plain and perpendicular to
the longitudinal axis).

A fifth pure real wavenumber occurs at 2000Hz. The eigenvectors corresponding to the
real-valued wavenumbers at 2000Hz are depicted in Fig. 2.8. Obviously, the Euler-Bernoulli
assumptions are clearly violated. Fig. 2.8(a) represents a secondary y-bending wave, which
was not propagating at 10Hz. But the waveform existed in similar shape also at 10Hz which
is depicted in Fig. 2.9(a). Fig. 2.9 in general shows some arbitrary selected eigenvectors
corresponding to complex wavenumbers in order to get an impression. The higher the mag-
nitude of the wavenumber, the more corrugated the eigenvectors become. (Please note that
even the magnitude of the wavenumber belonging to Fig. 2.9(f) is still in the lower half of
occurring magnitudes in Fig. 2.4.)
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The wave shape at 10Hz in Figure 2.9(a) which is similar to the new propagating wave shape
at 2000Hz has a pure imaginary wavenumber. If one would track a wave shape over many
evaluated frequency steps one would observe that the corresponding complex wavenumber
moves into the direction of the real axis. As soon as the wavenumber has reached the
real axis, it stays on the real axis and the magnitude gets increased along the real axis for
increasing frequencies. That means that the wavelength of propagating waves decreases with
increasing frequency. This phenomena has been described already by [Finnveden 2004]. It
can also be observed, when Fig. 2.4(a) is compared to Fig. 2.4(b): Wavenumbers are shifted
in the direction of the real axis. [Finnveden 2004] calls the frequency at which a wavenumber
reaches the real axis the "cut-on" frequency of the respective wave shape.

The "cut-on" frequency of a wave shape can be read from the dispersion curves in Fig. 2.10.
The dispersion curves are obtained by plotting the positive real-valued wavenumbers over the
frequency. Therefore, the quadratic eigenvalue problem has to be solved for each frequency
grid point. In Fig. 2.10 the wavenumbers corresponding to the wave shapes in Fig. 2.8 are
marked.

In order to validate the implementation of the waveguide FEM, results of [Kreutz 2013] are
also plotted in Fig. 2.10. [Kreutz 2013] has investigated the same cross section, with the same
discretization, but with a different implementation of the waveguide FEM. In contrast to
Tab. 2.1 he has used a Poisson’s ratio of ν = 0.2. In order to ensure comparability the same
ν has been used in the calculations behind the dispersion curves in Fig. 2.10. The main
difference in the implementation used by [Kreutz 2013] is that he has used lumped mass
matrices, while consistent matrices are used in this thesis. [Kreutz 2013] has validated the
waveguide FEM with the help of the beam theories of Euler-Bernoulli and Timoshenko.

The "cut-on" frequency of the fifth propagating wave can be read from Fig. 2.10 as fcut-on ≈
1.8kHz. The effect of the changed Poisson’s ratio is most significant at this wave shape. The
corresponding wavenumber at 2000Hz is κx = 1.411 in Fig. 2.10 while it is κx = 0.343 in
Fig. 2.8(a).
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(a) compression (b) torsion (c) y-bending

(d) z-bending

Figure 2.7: Eigenvectors belonging to real-valued wavenumbers of the rectangular concrete cross section
at 10Hz
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(a) y-bending 2 (b) compression (c) torsion

(d) y-bending (e) z-bending

Figure 2.8: Eigenvectors belonging to real-valued wavenumbers of the rectangular concrete cross section
at 2000Hz
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(a) (b) (c)

(d) (e) (f)

Figure 2.9: Eigenvectors belonging to complex-valued wavenumbers of the rectangular concrete cross
section at 10Hz
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2.4.2 UIC60 Rail

The eigenvalues κx for the UIC60 rail cross section from Fig. 2.3(b) are plotted for 100Hz and
for 10kHz in Fig. 2.11. Fig. 2.12 provides again an enlarged section. The shift of wavenumbers
to the real axis is again clearly visible. Four independent real valued wavenumbers exist at
100Hz, while nine independent real-valued wavenumbers exist at 10kHz.

The respective eigenvectors are visualized in Figs. 2.13 and 2.14. The four wave types
which would occur approximately also in a model with Euler-Bernoulli assumptions can be
distinguished very well at 100Hz and are named accordingly in Fig. 2.13. This is not the case
anymore at 10kHz: The cross section is not nearly plain anymore in Fig. 2.14 and therefore
no unique compressional or torsional wave exists anymore. Instead, parts of the cross section
start to behave independently. E.g. Fig. 2.14(b) shows a compression wave of the flange,
Fig. 2.14(d) shows a torsional wave of the head and Figs. 2.14(h) and 2.14(i) show bending
waves of the flange.

The wave shape to which e.g. the compression wave has turned can be determined with the
help of the dispersion curves in Fig. 2.16. The lowest curve from the origin represents the
compression wave. It is almost linear up to 5.0kHz. This is the frequency up to which the
compression wave can be identified as such. Between 4.2kHz and 5.2kHz three other waves
"cut on". Therefore, the cross section behaves less rigid. If one follows the dispersion curve
of the original compression wave one can observe, that this wave shape has turned to the
wave shape in Fig. 2.14(e) at 10kHz.

Results of [Ryue et al 2008] are plotted together with the dispersion curves in Fig. 2.16. [Ryue
et al 2008] have determined the dispersion curves for the UIC60 rail with the help of a 3D
solid finite element model in ANSYS. Unfortunately they did not publish the used material
properties. Therefore, it is not clear whether they have used the same as in Tab. 2.1. More-
over, they have used another discretization. They modeled only half of the rail section and
applied either symmetric or anti-metric boundary conditions. According to their drawings,
they have also neglected the beveling, but they did not specify the exact geometry of the
cross section. The results are therefore not completely comparably, but in general a good
accordance is shown.

Fig. 2.15 shows the six eigenvectors with complex wavenumber and lowest magnitude at
10Hz. The five with lowest magnitude among them become at 10kHz propagating waves
with real-valued wavenumber. Since also the wave shape changes up to that frequency it is
not traceable which eigenvector from Fig. 2.15 turns to which eigenvector in Fig. 2.14 from
these two figures. One would have to follow the dispersion curves for that.
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Figure 2.11: Wavenumbers of the UIC60 cross section in complex plain
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(a) compression (b) torsion (c) y-bending

(d) z-bending

Figure 2.13: Eigenvectors belonging to real-valued wavenumbers of the UIC60 rail cross section at 100Hz
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.14: Eigenvectors belonging to the real-valued wavenumbers of the UIC60 rail cross section at
10000Hz
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(a) (b) (c)

(d) (e) (f)

Figure 2.15: Eigenvectors belonging to the lowest magnitude complex-valued wavenumbers of the UIC60
rail cross section at 100Hz
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3 Spectral Super Elements

The spectral super element (SSE) technique in structural dynamics was first introduced by
[Birgersson et al 2005] for thin plates (thin-walled cross sections). [Ryue et al 2011] adapted
it for semi-infinite beams with arbitrary cross section. They used the technique in order to
investigate the influence of cracks on the wave propagation in a UIC60 rail. To the best
knowledge of the author, this thesis is the first work which investigates the applicability of
spectral super elements for finite beams with arbitrary cross sections. The mathematical
formulations and the used notations in this chapter follow [Birgersson et al 2005] and [Ryue
et al 2011].

The main idea of spectral super elements is to use the wave functions with the wavenumbers
κx (eigenvalues) and shapes ψ (eigenvectors) found in the cross-sectional problem of the
waveguide FEM (chapter 2) as an analytical ansatz for the longitudinal direction of a finite
beam element. The end of section 2.1.4 shows that this ansatz can be gained by a Fourier
back transformation (κx x) of the results of the waveguide FEM.

The finite beam element stretches along the longitudinal coordinate (x-direction) from −lx to
+lx. Therefore, it has the length of 2lx. Figure 3.1 depicts such an element with a discretized
rectangular cross section. For the longitudinal direction the analytical ansatz shall be used.
The cross-sectional mesh of the SSE is the same as used in the waveguide FEM.

3.1 Displacement Ansatz for the Spectral Super Element

The displacement ansatz of Eq. (2.47) can be written in matrix notation:

V (x) =
2N∑

i=1
ai · ψi(κx,i) · e

iκx,ix = ΦE(x) a (3.1)

E(x) is a diagonal 2N×2N -matrix containing the exponential wave functions corresponding
to the column-wise wave shapes in the N × 2N -matrix Φ. The factor 1

2π in Eq. (2.47) is
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−lx

lx

0

x

z

y

Figure 3.1: Local coordinate system in a spectral super element

skipped, because it only scales the vector of unknown wave contribution factors a. N is the
number of DOFs in the cross-sectional mesh.

For numerical stability, the wave functions are shifted along the x-axis, so that the maxi-
mum value of them is equal to 1 within the domain of the beam element [Finnveden 1994],
[Birgersson et al 2005]. The direction of the shift depends on the sign of the imaginary part
of the wave number, which describes the exponential growth or decay of the wave function.
The terms on the diagonal of E(x) are therefore:

Emm(x) = e iκx,m·x+iκxp,m·lx

with κxp,m =




κx,m for Im(κx,m) ≥ 0

−κx,m for Im(κx,m) < 0

(3.2)

In the next step, the unknown wave contribution factors a of the ansatz in Eq. (3.1) shall
be transformed to the nodal DOFs of the cross-sectional mesh at the both ends of the SSE
(W 1 and W 2). Therefore, both x-coordinates of the ends are inserted into the ansatz:

V (−lx) = ΦE(−lx) a = W 1 (3.3)
V (+lx) = ΦE(+lx) a = W 2 (3.4)
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The two systems of equations can be summarized to one system:

ΦE(−lx)

ΦE(+lx)




︸ ︷︷ ︸
B

·a =

W1

W2


 (3.5)

⇒ a =

ΦE(−lx)

ΦE(+lx)



−1 
W1

W2


 = AW (3.6)

With: A = B−1 (3.7)

The matrix dimensions in Eq. (3.6) match because the number of wave functions found by
the quadratic eigenvalue problem of the waveguide FEM is twice the number of nodal DOFs
of the cross sectional mesh used. Inserting into Eq. (3.1) gives the displacement ansatz in
dependency of the nodal deflection vector W :

V (x) = ΦE(x)AW (3.8)

3.2 Derivation with Hamilton’s Principle

3.2.1 Lagrangian of Strain and Kinetic Energy

The displacement ansatz in Eq. (3.8) is plugged into the Lagrangian in Eq. (2.36) in order
to find a system of equations for the determination of the unknown nodal displacements W .
The integral over the longitudinal x-direction is limited to the domain of the SSE:

L = 1
4π

+lx∫

−lx

1∑

m=0

1∑

n=0
WHAT

(
∂mE(x)
∂xm

)T
ΦT ε

mn
Φ ∂nE(x)

∂xn
AW

−ω2WHATET (x) ΦTm00ΦE(x)AW dx

(3.9)

The displacement ansatz Eq. (3.8) is also used for the adjoint displacement vector V H . It is
important to note that W is in Eq. (3.8) the only quantity depending on time. Therefore,
this is the only quantity in the ansatz which has to be complex transposed according to
Parseval’s theorem. The other matrices in Eq. (3.8) are simply transposed.

In contrast to chapter 2 the matrices ε
mn

and m00 are here cross-sectional matrices (N×N),
which have been assembled according to section A.4.3.1 from the element matrices.
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The derivative w.r.t x of E(x) is:

∂mE(x)
∂xm

=
(
ik
x

)m
E(x) (3.10)

Where k
x
is a diagonal matrix of the wave numbers κx,i.

Drawing out constant quantities of the integral leads to:

L = 1
4πW

HAT




+lx∫

−lx

1∑

m=0

1∑

n=0
ET (x)

(
ik
x

)m,T
ΦT ε

mn
Φ
(
ik
x

)n
E(x)

− ω2ET (x) ΦTm00ΦE(x) dx


 AW

(3.11)

For the product of two diagonal matrices d1 and d2 with an arbitrary matrix v of appropriate
size the following holds:

d1 v d2 = v ⊗ (diag(d1) · diag(d2)T ) (3.12)

Where ⊗ symbolizes the Hadamard product (element-wise multiplication) and the operator
diag() produces a column vector of the main diagonal of its input argument.

Therefore, the Lagrangian can be reformulated to:

L = 1
4πW

HAT
( 1∑

m=0

1∑

n=0

(
ik
x

)m,T
ΦT ε

mn
Φ
(
ik
x

)n − ω2 ΦTm00Φ
)
⊗

⊗
+lx∫

−lx

diag
(
E(x)

)
· diag

(
E(x)

)T
dxAW =

(3.13)

= 1
4πW

H KW (3.14)

With the dynamic stiffness matrix K:

K = AT
(
Θ⊗ E

I

)
A (3.15)

And:

Θ =
1∑

m=0

1∑

n=0

(
ik
x

)m,T
ΦT ε

mn
Φ
(
ik
x

)n − ω2 ΦTm00Φ (3.16)
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The components of the integration matrix E
I
can be evaluated exactly analytically:

E
I

=
+lx∫

−lx

diag
(
E(x)

)
· diag

(
E(x)

)T
dx (3.17)

With:

EI,ij =
+lx∫

−lx

e iκx,ix+iκxp,ilx · e iκx,jx+iκxp,j lx dx

=
+lx∫

−lx

e i(κx,i+κx,j)x+iκxp,ilx+iκxp,j lx dx

= 1
i(κx,i + κx,j)

[
e iκx,ix+iκxp,ilx · e iκx,jx+iκxp,j lx

]lx
−lx

= 1
i(κx,i + κx,j)

(
e iκx,ilx+iκxp,ilx · e iκx,j lx+iκxp,j lx − e−iκx,ilx+iκxp,ilx · e−iκx,j lx+iκxp,j lx

)

(3.18)

3.2.2 Lagrangian of the External Force

We assume a harmonic external force field with the excitation frequency Ω:

p(x,y,z,t) = p(x,y,z) · e iΩt with: p =




px

py

pz


 (3.19)

A Fourier transformation to frequency domain leads to:

p(x,y,z,ω) = 2π p(x,y,z) · δ(ω − Ω) (3.20)

The factor 2π can be neglected, if also the factor 1
2π in a possible back transformation is

neglected.

The Lagrangian of the external force is according to [Birgersson et al 2005] and [Finnveden
1994] under consideration of Parseval’s theorem:

Lf = 1
4π

∫

ω

lx∫

−lx

∫

(y)

∫

(z)

−p(x,y,z)H ·δ(ω−Ω)·u(x,y,z,ω)−u(x,y,z,ω)H ·δ(ω−Ω)·p(x,y,z) dz dy dx dω

(3.21)
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The integral over ω is abundant due to the Dirac-δ functions. Moreover, we restrict in a
first step the application of external forces to lines of the discretized displacement functions
of the cross-section V (x). The force field reduces to a vector of force functions P (x):

Lf = 1
4π

lx∫

−lx

−P (x)HV (x)− V (x)HP (x) dx (3.22)

In a second step we restrict the application of external loads to the nodes of the cross-sectional
mesh at the ends of the SSE. Therefore, the force field reduces further to a generalized force
vector F which has the same structure than the vector W of the nodal displacements:

Lf = 1
4π

(
−FHW −WHF

)
(3.23)

The complete Lagrangian is now:

Ltot = 1
4π

(
WHKW − FHW −WHF

)
(3.24)

The Eulerian DE reduces to:

∂L

∂WH = 0 (3.25)

And a linear system of algebraic equations for the unknown nodal deflections W is obtained:

KW − F = 0 (3.26)

3.3 Derivation with the Principle of Virtual Work

The virtual work of the external force vector P (x) is added to the virtual work of the internal
and inertia forces in the spatial domain in Eqs. (2.51) and (2.56):

δWtot =
lx∫

−lx

−
1∑

m=0

1∑

n=0

(
∂mδV (x)
∂xm

)T
ε
mn

∂nV (x)
∂xn

+ δV T (x)m00 ω
2 V (x)+

+ δV T (x)P (x) dx

(3.27)
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In contrast to chapter 2, the matrices ε
mn

and m00 are here again cross-sectional matri-
ces (N × N), which have been assembled according to section A.4.3.1 from the element
matrices.

We use the displacement ansatz of Eq. (3.8) for the virtual as well as for the real displace-
ments. Additionally, the external force is limited in the next step to point loads at the nodes
of the cross-sectional meshes at the ends of the SSE:

δWtot =
lx∫

−lx

−
1∑

m=0

1∑

n=0
δW TAT

(
∂mE(x)
∂xm

)T
ΦT ε

mn
Φ ∂nE(x)

∂xn
AW+

+ δW TATET (x)ΦT m00 ω
2 ΦE(x)AW + δW T F dx

(3.28)

δW 6= 0, the derivatives of the E-matrix according to Eq. (3.10), the mathematical refor-
mulation according to Eq. (3.12) and the analytical integration over the length according to
Eq. (3.18) lead to the same linear system of equations for the unknown nodal displacements
W as in Eq. (3.26):

KW − F = 0 (3.29)

With:

K = AT
(
Θ⊗ E

I

)
A (3.30)

Θ and E
I
are defined in Eqs. (3.16) and (3.17).

3.4 Implementation in MATLAB

The program package described in the appendix A.4 has been extended by a fourth class
in order to implement the theory of the spectral super elements. An object of this class
is a system of an arbitrary number of coupled spectral super elements. It is described in
detail in the appendix A.5. The class contains methods for the application of displacement
constrains and loads on the cross sectional nodes at the ends of the elements. These methods
are described in detail in the appendix A.5.2 and A.5.3. The assembling of spectral super
elements to a system of SSEs is described in the appendix A.5.4.
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3.5 Numerical Examples

3.5.1 Rectangular Concrete Beam

A single span concrete beam with a rectangular cross section with the same dimensions as
in the example for the waveguide FEM in section 2.4.1 (height = 0.6m, width = 0.4m) and
a span of 10m is considered. In a first step the system is undamped. Later, a loss factor
η will be considered by defining a complex-valued Young’s modulus. Parts of this example
have been published in [Greim and Müller 2019].

The SSE model is depicted in Fig. 3.2. It consists of just one spectral super element.
Displacement constraints are applied at both ends to the nodes on a line parallel to the
y-axis through the center of gravity in z-direction: A pinned support is modeled at x = 0m
by constraining the displacements in all directions. A slide bearing is modeled at x = 10m
by constraining the displacements just in y- and z-direction. The system is loaded by a
moment My = 1kNm at x = 10m.

Figure 3.2: SSE model of a single span concrete beam (L = 10m) with bearings and loads

The material properties are the same as in the waveguide FEM example and are listed in
Tab. 2.1 on page 33. The cross sectional mesh is depicted in Fig. 3.3. The element edge
length is 0.1m. Therefore, the mesh is more coarse than in the waveguide FEM example.

The same beam is modeled with hexahedral solid finite elements in ANSYS for validation.
An element edge length of 0.1m is chosen in a first step which leads to cube-shaped elements.
The cross-sectional discretization is therefore the same as in the SSE model (Fig. 3.3). The
eight-noded SOLID185 element with linear shape functions is selected in order to ensure
comparability with the cross-sectional discretization in the SSE model. In order to prevent
shear locking the so called "simplified enhanced strain formulation" (KEYOPT(2)=3) is
chosen as element technology. This technology introduces according to the ANSYS help
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Figure 3.3: Discretization of the rectangular cross section used for the SSE model in this section

nine internal (user-inaccessible) DOFs. It is designed for preventing shear locking in bending-
dominated problems. The displacement constraints and loads of the FE model are the same
as in the SSE model.

A qualitative comparison of the overall displacements of the SSE and the ANSYS model is
given in Figs. 3.4 and 3.5 for an excitation frequency of 100Hz and 700Hz. The SSE model
covers the local deformations at the end of the load application very well, although it has
no discretization in x-direction.

(a) SSE model (b) ANSYS model with ESIZE=0.1

Figure 3.4: Deformation shapes of the single span concrete beam at 100Hz

For a quantitative comparison of the SSE and the ANSYS model a harmonic analysis is
performed in the band of 1-800Hz with an increment of 0.25Hz. The mean value of the
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(a) SSE model (b) ANSYS model with ESIZE=0.1

Figure 3.5: Deformation shapes of the single span concrete beam at 700Hz

amplitude of the displacements in z-direction (w-displacement) of all nodes in a section at
x = 2.6m is evaluated. The results are plotted in Fig. 3.6 for the band of 1-150Hz and in
Fig. 3.7 for the band of 150-800Hz.

The results of a spectral element based on the Euler-Bernoulli assumptions are plotted
additionally in Fig. 3.6. The F-functions for the bar end forces and moments of Koloušek
[Kolousek 1973] have been used for the implementation of this element.

The first eigenfrequency matches very well for all three models in Fig. 3.6. The second
eigenfrequency shows already, that the Euler-Bernoulli assumptions lead to a model that is
too stiff. The SSE and the ANSYS model match well up to a frequency of 150Hz. The peak
values are not comparable because the models are all undamped.

Instead of the Euler-Bernoulli model, the results of a second ANSYS model with a refined
mesh are plotted together with the basic models in Fig. 3.7. The element size is set to 0.05m
in the refined model. Therefore, one cube-shaped element in the coarse FE mesh is replaced
by eight cubes in the fine mesh.

For higher frequencies the coarse ANSYS model is stiffer than the SSE model which is slightly
stiffer than the refined ANSYS model. A SSE model with a refined cross-sectional mesh
would behave again a little softer than the refined ANSYS model. Therefore, a convergence
behavior is observed and the SSE model produces for the same discretization always better
results than the FE model.
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Figure 3.6: Harmonic analysis of the 10m single span concrete beam loaded with a section momentMy =
1kNm at x = 10m. Mean value of the w-deflection of all cross-sectional nodes at x = 2.6m.
Frequency range: 1-150Hz
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Figure 3.7: Harmonic analysis of the 10m single span concrete beam loaded with a section momentMy =
1kNm at x = 10m. Mean value of the w-deflection of all cross-sectional nodes at x = 2.6m.
Frequency range: 150-800Hz
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Consideration of Damping The peak values in a harmonic analysis are limited only if
damping is considered in the model. Therefore, damping has to be introduced in order to
compare the amplitudes at the resonant frequencies of the SSE and the ANSYS model.

Material damping can be considered by defining a complex Young’s modulus:

Ec = E(1 + i sgn(Ω)η) (3.31)

η is the so called loss factor. The meaning of this loss factor and the necessity of the
sgn()-function is described in detail in appendix A.3. The loss factor leads to a frequency
independent damping.

The harmonic analysis of the single-span concrete beam with a loss factor of η = 0.05 is
shown in Fig. 3.8. Load application and evaluation points remain unchanged. The SSE
model and the ANSYS model with the same cross-sectional discretization are compared. A
very good accordance is observed.
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Figure 3.8: Harmonic analysis of the damped (η = 0.05) 10m single span concrete beam loaded with
a section moment My = 1kNm at x = 10m. Mean value of the w-deflection of all cross-
sectional nodes at x = 2.6m. Frequency range: 1-250Hz
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3.5.2 UIC60 Rail

A 2m long section of a UIC60 rail with the cross section specified in section 2.4 is considered.
The assumed material properties are those of construction steel according to Tab. 2.1 on
page 33. The rail is clamped at x = 0m and loaded at x = 2m with a vertical force (in
z-direction) of F = 1kN which is evenly distributed over all cross-sectional nodes.

The rail section is modeled again with one spectral super element and – for comparison –
with finite elements in ANSYS. The SSE model is depicted in Fig. 3.9. The cross-sectional
mesh is the same as in Fig. 2.3(b) on page 32. This mesh consists of 190 nodes and 138
quadrilataral elements. The cross section has therefore 570 DOFs and the SSE model has
1,140 DOFs.

Evaluation node in Fig.3.12

Figure 3.9: SSE model of a UIC60 rail section (L = 2m) with bearings and loads

The ANSYS model consists mainly of hexahedral solid finite elements with linear shape
functions. The mesh for the volume of the rail section was generated with a prescribed
element size of 0.007m and the type setting ’hexdominat’. Due to the complicated boundary,
ANSYS’ meshing algorithm cannot produce a mapped mesh like for the concrete beam
anymore. The resulting mesh has no periodicity in length direction. Also the cross-sectional
surface mesh at the ends is not the same mesh as in the SSE model. Just the number of nodes
is comparable. The cross-section at x = 2m is depicted in Fig. 3.10. This mesh consists of
233 nodes and has therefore 699 DOFs. The whole ANSYS model consist of 73,138 nodes
and 63,663 SOLID185 elements. It has therefore 219,414 DOFs in total. This is almost 200
times the number of DOFs of the SSE model.

A qualitative comparison of the two models is shown in Fig. 3.11. The deflection shape for
both models is plotted at 2,000Hz. The cross-sectional deflection at the loaded end matches
very well.
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Figure 3.10: Cross section at x = 2m of the ANSYS model for the UIC60 rail

(a) SSE model (b) ANSYS model

Figure 3.11: Deformation shapes of the cantilever UIC60 rail at 2000Hz

For a quantitative comparison a harmonic analysis is performed in a frequency band of 1-
4,000Hz. The amplitude of the deflection in z-direction (w-displacement) of the evaluation
node specified in Fig. 3.9 is plotted in Fig. 3.12 for both models. The main eigenfrequencies
match in general very well. The SSE model behaves slightly stiffer than the ANSYS model,
but the cross-sectional discretization in the FE model is also approx. 20% finer than in the
SSE model.

The additional small resonances in the ANSYS model are torsional mode shapes which are
excited slightly due to the non-symmetric mesh. The mesh of the SSE model (Fig. 2.3(b)
on page 32) is symmetric about the z-axis. Therefore, the load which is evenly distributed
over all cross-sectional nodes causes no torsional moment and no torsional mode shapes are
excited. The deflection shape at 2,468Hz is picked as an example in Fig. 3.13 in order to
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Figure 3.12: Harmonic analysis of the 2m cantilever UIC60 rail section loaded with a single force Fz =
1kN at x = 2m. Amplitude of the w-deflection of the evaluation node specified in Fig. 3.9.
Frequency range: 2-4000Hz

visualize these differences.

Anti-resonances are sensitive to the pattern of load application. Therefore, the slightly
different load application in these two models is also the reason why the anti-resonances do
not match in Fig. 3.12.

(a) SSE model (b) ANSYS model

Figure 3.13: Deformation shapes of the cantilever UIC60 rail at 2,468Hz
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3.5.3 System of coupled SSE elements

This section shows the full capabilities of the class SSEsystem of the Matlab program
described in the appendix A.5. The considered system is a two-span concrete beam with the
same cross section and material properties as the beam considered in the example of section
3.5.1. The SSE model of the undeformed system is depicted in Fig. 3.14. The span widths
are L1 = 4m and L2 = 10m. The support at x = 0m constrains all displacement directions
of the nodes. The supports at x = 4m and x = 14m constrain only the displacements in y-
and z-direction. The load is a single force Fz = 1kN at x = 10m evenly distributed over all
cross-sectional nodes. Material damping is considered with a loss factor of η = 0.01.

The SSE model consists of three spectral super elements.

Figure 3.14: Undeformed SSE model of the two-span concrete beam with supports at x = [0,4,14]m and
vertical load application at x = 10m

The system is also modeled in ANSYS with cubic SOLID185 elements of an element size of
0.1m, which results in the same cross-sectional discretization as in the SSE model.

The deflection shapes of the two models at 180Hz are depicted in Fig. 3.15. The supports
are drawn at the undeformed position in Fig. 3.15(a) in order to visualize the horizontal
displacement of the slide bearings.

A harmonic analysis has been performed in the band of 1-250Hz. The mean value of the
amplitudes of the displacement components in z-direction of the load application nodes is
plotted in Fig. 3.16. The amplitudes of the two models match very well. As shown in the
example with the single-span beam (section 3.5.1), the ANSYS model is slightly stiffer than
the SSE model.
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(a) SSE model

(b) ANSYS model

Figure 3.15: Deformation shapes of the multi-span concrete beam at 180Hz
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Figure 3.16: Harmonic analysis of the 14m two-span concrete beam loaded with a single force Fz = 1kN
at x = 10m. Mean value of the amplitudes of the w-deflections at the excitation nodes. Loss
factor η = 0.01. Frequency range: 1-250Hz
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3.5.4 Evaluation of wave contribution factors

The vector a in the displacement ansatz for the spectral super element in Eq. (3.1) is the
vector of the wave contribution factors. Its components ai are the factors with which the
wave function defined by the wavenumber κx,i and the wave shape ψ

i
constitutes to the total

solution for the SSE element.

The wave contribution factors are obtained according to Eq. (3.6) after the linear system of
equations for the SSE (Eq. (3.26)) has been solved:

a = AW (3.32)

A graphical user interface (GUI) has been implemented in order to analyze the main con-
tributing waves in a SSE solution. The GUI shall enable a deeper understanding of the
spectral super elements. The wave contribution in the solution for the UIC60 rail example
of section 3.5.2 at 2,000Hz is analyzed with this GUI in Figs. 3.17 and 3.18 on the following
two pages. The corresponding deflection shape is depicted in Fig. 3.11 on page 60.

In the lower left corner of the GUI, the user can select a wave function whose contribution is to
be displayed. The occurring wave functions can either be sorted according to the magnitude
of the eigenvalue (wavenumber κx) or according to the magnitude of the contribution factor
a. The last sorting is feasible in order to find the highest contributions. The cross-sectional
mesh of the UIC60 example has 570 DOFs. Therefore, the quadratic eigenvalue problem in
Eq. (2.46) leads to 1,140 wave functions, which can be selected.

In the lower right corner of the GUI all contribution factors in vector a are plotted in a
scatter plot in the complex plain. The contribution factor of the currently selected wave is
highlighted in red. One can observe, that the magnitude of most of the contribution factors
is close to zero.

The display in the lower middle shows the current contribution factor and its percentage
of the sum of all contribution factors. For the depicted example exist 16 wave functions
with a contribution higher than 1%, 80 wave functions with a contribution higher than 0.1%
and 373 wave functions with a contribution higher than 0.01%. The remaining 767 wave
functions contribute in sum 0.929% to the solution.

The upper right plot in the GUI visualizes the wave shape (eigenvector) of the selected wave
function. The upper left plot shows the corresponding exponential function eiκxx (which is
shifted in x-direction according to Eq. (3.2)) evaluated along the domain of the SSE.
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4 Moving Forces on Spectral Super

Elements

A solution procedure for the response of a SSE model subjected to a moving force is presented
and validated in this chapter. The moving force is a point force (which can be arbitrarily
distributed over the cross-sectional mesh) with an amplitude constant in time. This point
force moves with a constant velocity v0 along the x-coordinate.

4.1 Moving Harmonic Force on Waveguide FEM Models

A solution procedure for a moving harmonic force on infinite waveguide FEMmodels (chapter
2) is described and applied e.g. in [Müller 1989], [Müller et al 2008] and [Hackenberg 2016].

A harmonic force with constant velocity v0 can be described like:

p(x,t) = p0(x− v0t) · f(t) (4.1)

Where f(t) is a harmonic function and p0(x) describes the spatial distribution of the force.

The Fourier transformed of the load function in Eq. (4.1) is:

p̃(κx,ω) = p̃0(κx) · f̃(ω + v0κx) (4.2)

Therefore, the solution in frequency domain for the moving force is obtained by the calcu-
lation of the solution for a stationary force with the shifted frequency ω = ω + v0κx. The
solution in time domain is obtained after a two fold inverse transformation.

This solution procedure can be applied e.g. on problems of infinite elastically supported
beams like slab tracks or embedded tunnels. The procedure is very efficient for such problems.
However, the work in this dissertation focuses finite systems, with discrete supports. The
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waveguide FEM is used only as an eigenvalue problem. No loads are applied on the infinite
waveguide FEM system. Therefore, no advantage can be taken from the described simple
frequency shift.

4.2 Moving Constant Point Force on SSE models

On a finite SSE model the moving point force has to be considered as a transient force. The
solution in time domain is obtained with a solution procedure which is valid for all frequency
domain methods dealing with transient forces (e.g. [Lee 2009]):

1. Fourier transformation of the load from time to frequency domain F (t) F̃ (ω).

2. Solving the system of equations of the spectral element method in the frequency domain
and obtaining the solution w̃(ω).

3. Inverse Fourier transformation of the solution from frequency to time domain
w̃(ω) w(t).

Fig. 4.1 illustrates this solution procedure.

SSE(ω1)

f(x,t)

| ˜̂f(x,ω)| | ˜̂w(xn,ω)|

ŵ(x,t)

ω

x

DFT IDFT

x

x

transient force in time domain

complex force components in freq. domain complex deformation in freq. domain

deformation in time domain

SSE(ω2)

SSE(ωN)

...

t1 t2 tN. . .
t1

t2
tN

ω1 ω2 ωN. . .

Figure 4.1: Solution procedure for a moving force on spectral element models (from [Mader 2019])

The Fourier transformation is carried out numerically as discrete Fourier transformation
(DFT) and inverse discrete Fourier transformation (IDFT). Most efficient is the implemen-
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tation of the DFT as fast Fourier transformation (FFT) and its inverse (IFFT). These
algorithms are explained in detail e.g. in [Brigham 1987].

Moving force analysis on spectral elements is rarely discussed in literature. [Azizi et al
2012] seem to be the first to apply spectral elements for the dynamic analysis of beams and
bridges subjected to a moving force. They use spectral elements based on Euler-Bernoulli
assumptions. The moving force is transformed with a continuous Fourier transformation
to frequency domain. This leads to a continuous function f̃(x,ω). In order to apply this
function on the spectral elements, they compute equivalent nodal forces, because a spectral
element can be loaded only at its nodes. This leads to an approximation which will be
discussed in sections 4.4.1 and 4.4.2. In order to obtain accurate results, [Azizi et al 2012]
have to discretize therefore one span with several spectral elements.

[Sarvestan et al 2015] have used the solution procedure of [Azizi et al 2012] for the analysis
of a cracked Euler-Bernoulli beam.

[Song et al 2016] propose another analysis method. They use a discrete Fourier transfor-
mation for the load and obtain therefore a series of point loads (comb of forces) along the
x-direction in frequency domain. For each of these point loads a two-element model of spec-
tral elements is built. The procedure is therefore exact within the limits of the underlying
beam theory. They use Timoshenko beam spectral elements published in [Lee 2009].

The analysis method of [Song et al 2016] is transferred in this thesis to spectral super el-
ements. In order to limit the simulation time to a reasonable range, remedies for errors
occurring in the DFT from [Lee 2009] are used additionally.

4.3 Fourier Transformation of a Moving Force

A constant point force moving with constant velocity v0 which enters the SSE model at the
global coordinate x = 0 at time t = 0 can be described as:

p(x,t) = P0δ(x− v0t) (4.3)

P0 is the constant magnitude of the force and δ() is the Dirac-δ-function.

The force needs the time TA = L
v0

to pass the model with length L. Windowing and sampling
in time is necessary for a DFT. The time window is defined as t ∈ [0,T0[. Discretization with
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Figure 4.2: The discretized moving force in time domain for N = 4 (from [Mader 2019])

N time samples leads to an sampling interval of ∆t = T0
N
. The sampled time function of the

load can be written as:

p̂k(x,tk) = P0δ(x− v0tk) (4.4)

where tk = k∆t and k = 0, 1, ... , N − 1. Fig. 4.2 visualizes the sampled moving force in
space and time on a single-span beam for T0 = TA. The constant sampling in time leads
together with the constant velocity v0 also to an constant sampling in space with the sample
interval ∆x = v0∆t and the sampling positions xk = v0k∆t.

The DFT of the sampled moving force is obtained according to [Brigham 1987] as:

˜̂pn(x, n

N∆t) =
N−1∑

k=0
p̂k(x,tk)e−i2π nk

N =
N−1∑

k=0
P0δ(x− v0tk)e−i2π nk

N (4.5)

Where the sampled frequency is fn = n
N∆t with the frequency interval ∆f = 1

N∆t = 1
T0

and
n = 0, 1, ... , N−1. The dynamic stiffness of a SSE derived in chapter 3, Eq. (3.15) is defined
in dependency of the angular frequency ω. Therefore, Eq. (4.5) has to be reformulated with:

ωn = 2πfn = 2π n

N∆t = n
2π
T0

= nω0 (4.6)
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Figure 4.3: The discretized moving force in frequency domain for N = 4 (from [Mader 2019])

Extending the argument of the e -function in Eq. (4.5) with ∆t leads to:

−i2πnk
N

= −i2π n

N∆tk∆t = −iωntk (4.7)

Therefore, the transformed force in dependency of the sampled angular frequency is:

˜̂pn(x,ωn) =
N−1∑

k=0
P0δ(x− v0tk)e−iωntk (4.8)

Eq. (4.8) describes for each discrete frequency ωn = nω0 a comb of forces with point loads at
the positions xk = v0tk. All point loads have the same magnitude (P0) but different phase
ϕ = −ωntk. Fig. 4.3 visualizes this comb of forces in space and frequency on a single-span
beam for T0 = TA.

4.4 Analysis of a SSE Model for the Transformed Stationary

Forces

After the Fourier transformation a comb of stationary forces has to be applied on the SSE
model at each Fourier frequency. Forces have to be applied therefore also on the beam
spans between the bearings. Three general methods for that kind of load application on
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spectral beam elements exist in literature: The one-element method (OEM), the two-element
method (TEM) and the modified one-element method (MOEM). These three methods will
be described shortly in the following and a comparison of the first two and a finite element
model in ANSYS is carried out in a numerical example.

The TEM is the most simple one. The span which is loaded is separated into two spectral
super elements at the x-coordinate of load application. This principle is used e.g. in the
numerical example for a system of coupled SSEs (section 3.5.3). The results are exact (besides
of the general limitations of the cross-sectional discretization in SSEs). The drawback of this
method is, that it leads for the comb of forces in the Fourier domain to a high discretization
in x-direction, which somehow compensates the advantages of spectral element methods in
comparison to finite element methods.

An alternative is the OEM: One span is modeled just with one spectral element. Equivalent
nodal forces are obtained by evaluating the integral over the beam domain in the Lagrangian
of the external force Lf (Eq. (3.21) on page 51). The evaluation of the integral in Lf is shown
in the next subsection. Theoretically, this integral can be evaluated for the whole comb of
forces at once (or the equivalent nodal forces of each force of the comb are summarized) and
therefore just one SSE has to be evaluated with one load case per frequency. The drawback
is, that this method leads to an approximation.

[Kim and Lee 2016] have developed the so called modified one-element method (MOEM) for
spectral Timoshenko beam elements and have used it in [Kim and Lee 2017] for a moving
force analysis on this beam elements. This method adds to the results of the one-element
method correction functions which lead to the results of the two-element method. This
means that exact results are obtained although one span is modeled with just one element.
However, the stiffness matrices of the two elements of the corresponding two-element model
are required. Therefore, the MOEM is more or less just a mathematical reformulation of the
TEM. The advantage in computational efficiency is questionable. (It is not mentioned by
[Kim and Lee 2016].) In order to reduce complexity, the MOEM is not investigated in this
thesis, although it could be transferred to spectral super elements.
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4.4.1 Equivalent Nodal Forces for the One-Element Method

The Lagrangian of the force Lf is for one excitation frequency: (compare Eq. (3.21))

Lf = 1
4π

lx∫

−lx

∫

(y)

∫

(z)

−p(x,y,z)H · u(x,y,z)− u(x,y,z)H · p(x,y,z) dz dy dx (4.9)

For one force of the comb the load field p(x,y,z) can be expressed as:

p(x,y,z) = p(y,z) · δ(x− xk) (4.10)

Where xk is the x-coordinate of the force.

The Dirac-function converts the integral over x in Lf to a product at one discrete value:

Lf = 1
4π

∫

(y)

∫

(z)

−p(y,z)H · u(x = xk,y,z)− u(x = xk,y,z)H · p(y,z) dz dy (4.11)

In the next step the force application is limited to the cross-sectional nodes of the SSE. The
force field can be described therefore with a force vector:

p(y,z) = p = [pu,1 pv,1 pw,1 pu,2 pv,2 pw,2 · · · pu,n pv,n pw,n]T (4.12)

Where n is the number of nodes in the cross-sectional mesh.

Therefore, the displacement field u(x = xk,y,z) can be replaced by the vector of nodal
deflections V (xk) for which the displacement ansatz of Eq. (3.8) on page 49 is used:

u(x = xk,y,z) = V (xk) = ΦE(xk)AW (4.13)

The integration over the cross-sectional area in Lf is transformed to vector multiplications:

Lf = 1
4π

(
−pH · V (xk)− V (xk)H · p

)

= 1
4π

(
−pH · ΦE(xk)AW −

(
ΦE(xk)AW

)H · p
)

= 1
4π

(
−pH · ΦE(xk)AW −WH AT E(xk)T ΦT · p

)
(4.14)
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The variation of the Lagrangian according to Eq. (3.25) leads to:

∂Lf

∂WH = −AT E(xk)T ΦT p (4.15)

Together with the variation of the Lagrangian of the strain and kinetic energy (compare
Eq. (3.24)) the following linear system of equations results:

KW − AT E(xk)T ΦT p
︸ ︷︷ ︸

F̂

= 0 (4.16)

KW = F̂ (4.17)

Where the vector F̂ is the equivalent nodal force vector due to a force vector p applied at the
position x = xk. This vector is visualized for an example in Fig. 4.5(a) in the next section.

4.4.2 OEM vs. TEM vs. FEM

A numerical example shall show the differences of the OEM and TEM. The results of a
3D-solid FE model in ANSYS are considered for validation. [Mader 2019] has started with
the same example, but due to some errors in his plots, the calculations are repeated for this
dissertation independently.

The system is already known from section 3.5.1. It is a 10m long single-span rectangular
concrete beam. The cross section, the material parameters (Tab. 2.1 on page 33) and support
conditions are the same as in section 3.5.1. An idealized structural system of the example is
depicted in Fig. 4.4. The system is considered to be undamped (η = 0).

P (t) = P0 · e iΩt

L = 10 m

xk = 3 m

z
x

y
P0 = 1kN
η = 0

Figure 4.4: Idealized structural system of a simply supported beam subjected to a point force (from [Mader
2019])

The example system is loaded at x = 3m with a vertical point force P0 = 1kN.
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Fig. 4.5 shows the OEM, the TEM and the mesh of the FE model of the example structure.
The point force is distributed evenly over all cross-sectional nodes in these models.

(a) OEM: Point force is repre-
sented by equivalent nodal
forces

(b) TEM: Subdivision of the span
into two SSEs at the point of
force application

(c) ANSYS: FEM mesh of cubes
with edge length 0.1m

Figure 4.5: Models for a 10m single-span beam loaded with a point force P0 = 1kN at x = 3m (from
[Mader 2019])

The vector of equivalent nodal forces is visualized in the figure of the OEM (Fig. 4.5(a)).
One can observe, that the OEM tries to cover the effect of the point force with moments
My about the y-axis at the ends of the single SSE, because the distribution of the equivalent
nodal forces over the cross section looks like the stress distribution of such a moment.

A harmonic analysis for all three models has been carried out in the frequency band from 1
to 530Hz. The mean value of the magnitude of the vertical displacements (in z-direction) at
the point of load application (at xk = 3m) is evaluated. The results are plotted in Fig. 4.6.
The results of the TEM and the FEM coincide in general very well. The FEM model is
slightly too stiff as already known from the example in section 3.5.1.

The load application of the OEM excites in comparison to the TEM and FE model additional
eigenfrequencies. The mode shapes of these additional eigenfrequencies are excited due to
the edge-moment-like load application. These edge moments are a contradiction to the
boundary conditions of the original structural system (Fig. 4.4). Therefore, the curvature of
the deflection line at the bearings is not zero like in the structural system and more bending
modes are excited.
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Figure 4.6: Frequency response of the single-span beam modeled as OEM, TEM and with finite elements.
Mean value of the magnitude of the nodal deflections at the point of load application (x = 3m)

For further comparison the deflection shapes of the three models are plotted along the x-
coordinate in Fig. 4.7 for the frequencies 10, 70, 80, 90 and 530Hz. The plotted amplitude is
the mean value of the vertical displacement (in z-direction) of all cross-sectional nodes. The
OEM has especially at the off-resonant frequencies (70, 90 and 530Hz) difficulties to predict
the correct results.

The OEM will no longer be considered in this thesis due to the observations in this section.
Instead, the TEM will be used in the moving force analysis of this chapter. The model has to
be discretized in length direction at each force position of the comb of forces of the Fourier
transformed moving force. The results of all these two-element models can be superposed,
due to linearity. The higher computational expenditure has to be accepted.
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Figure 4.7: Mean value of the vertical deflection (z-direction) of the cross-sectional nodes of the single-
span beam modeled as OEM, TEM and with finite elements plotted over the longitudinal x-axis
at different frequencies
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4.5 Procedure of DFT Processing

[Lee 2009] describes a general procedure of DFT processing for stationary transient loads
in 14 steps. This procedure contains remedies for all DFT induced errors that can occur.
Not all steps of this procedure are suitable for the problem of moving forces on slightly (or
even undamped) spectral elements. Therefore, this procedure is shorted and summarized in
the following. Only steps which are relevant for the concerned problem of moving forces are
described.

In time domain the dynamic response w(t) of a system initially at rest is obtained by the
convolution of the impulse response h(t) of the system with the transient force f(t) (Duhamel
integral):

w(t) =
t∫

0

h(t− τ)f(τ) dτ (4.18)

A convolution in time domain transforms to a simple multiplication in frequency domain.
For the DFT processing this means that a sample of the response w̃n is obtained by a
multiplication of the respective samples of the transformed force and impulse response:

w̃n = h̃nf̃n (4.19)

This is the reason why it is worth going the detour over the frequency domain. n is the
sample index (n = 0, 1, ... , N − 1). The transformed impulse response is the inverse of the
dynamic stiffness. Therefore, Eq. (4.19) is the solution of the linear system of equations of
the SSE theory in Eq. (3.26):

W̃ n = K(ωn)−1F̃ n (4.20)

The solution in time domain is obtained by applying the IFFT algorithm:

W n = IFFT{W̃ n | n = 1, 2, ... , N − 1} (4.21)

The impulse response function and the force function in Eq. (4.18) fulfill the causality con-
ditions h(t− τ) = 0 for t < τ and f(τ) = 0 for τ < 0. Therefore, the convolution gives the
system response for completely null initial conditions. Due to the equivalence of the DFT
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processing and the convolution integral also the DFT processing gives the response for a
system which is initially at rest.

Two DFT induced errors can occur during the DFT processing of a SSE system under a
moving force. These are described together with remedies in the following.

4.5.1 Wraparound Error

[Ginsberg 2001] has proofed (with the help of the discrete orthogonality property of a sum
over complex exponential functions with integer multiple phase angles) that the convolution
in Eq. (4.18) after DFT processing (DFT and IDFT) transforms to:

wr =
r∑

n=0
hnfr−n +

N−1∑

n=r+1
hnfr−n+N (r = 0, 1, 2, ..., N − 1) (4.22)

This equation written explicitly e.g. for the time sample r = 2 looks like:

w2 = [h0f2 + h1f1 + h2f0] + [h3fN−1 + · · ·+ hN/2fN/2 + · · ·+ hN−1f3] (4.23)

Eqs. (4.22) and (4.23) show, that the discrete convolution requires for the computation of a
time sample wr also time samples of the impulse response hn and fn from the future (n > r).
The terms with future time samples are in the second sum of Eq. (4.22) or in the second
bracket of Eq. (4.23). This is in contrast to the continuous convolution Eq. (4.18), where
the response at time tr depends only on processes in the past (t < tk).

This discrepancy in the discrete convolution can be explained with the periodic repetition
of the sampled process in the DFT. Data outside of the sampling time window 0 < t < T0 is
shifted periodically into this time window. The resulting error is called wraparound error.

[Lee 2009] proposes a "fail-safe" remedy for the wraparound error: The number of samples
in time domain has to be doubled by zero-padding. The number of samples is therefore
N ′ = 2N , from which the second half is zero. The effective sampling time increases to
T ′ = 2T0. The second sum of Eq. (4.22) or the second bracket of Eq. (4.23) vanishes due to
these zero pads for samples up to the number N − 1. However, it is important to note, that
samples with numbers from N to N ′ − 1 are still contaminated by the wraparound error.
These samples have to be discarded after the back transformation.

Fig. 4.8 illustrates the process of zero padding for the arbitrarily chosen signal x(t) =
e−2t cos(6πt). If the sampling time T0 is set to t = 1s the DFT assumes a repetition of



4.5 Procedure of DFT Processing 81

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

Time t [s]

x(
t)

Unpadded
Zero-padded

Figure 4.8: Zero padding used to cope with the wraparound error

the signal for the period 1s < t < 2s. In order to avoid the wraparound arrow for t < T0 the
sampling time window is doubled to 2T0 = 2s and padded with zeros.

The maximum frequency in the transformed domain remains unchanged, because the sam-
pling time interval ∆t remains unchanged. Instead, the frequency interval is halved because
the new basic frequency is ω0 = 2π

2T0
. This new basic frequency has to be considered when

the N ′ DFT transformed samples of the moving force according to Eq. (4.8) are calculated.
The maximum summation index in Eq. (4.8) is still N − 1 = N ′

2 − 1 because the sum over
the samples from N to N ′ − 1 is zero:

˜̂pn(x,ωn) =
N′
2 −1∑

k=0
P0δ(x− v0tk)e−iωntk +

N ′−1∑

k=N′
2

0 · e−iωntk (4.24)

4.5.2 Leakage Error

The leakage error occurs due to improper windowing in time domain, through which a
jump in the discretized time function is introduced. This jump causes sidelobes in the DFT
spectrum. Leakage can have two reasons:

1. For periodic time functions leakage occurs when the sampling period T0 is not an
integer multiple of the signal period T .

2. For transient response functions leakage always occurs. In order to cope with it, the
sampling period T0 has to be long enough to ensure that the signal can decay almost
to zero within it.
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The second point causes trouble in the DFT processing of a slightly damped structure
under a moving load. The following example shall illustrate the problem. A force with
the velocity v0 = 50km

h needs 0.72s to pass the 10m long concrete beam of example 3.5.1.
The first eigenfrequency of this beam is approx. fE = 9Hz. The decay of a free vibration
of this beam is described with the exponential function e−δt where δ is the decay constant
δ = DωE = 2πDfE. D is the damping ratio or percentage of critical damping which
we assume to be 0.02 in this example. In order to obtain the time which needs the first
eigenmode to decay to 1

100 of its maximum amplitude we have to solve the decay function
for t:

e−δt = 1
100

−δt = ln(1)− ln(100)

t = ln(100)
DωE

= ln(100)
0.02 · 2π · 9 = 4.07s

(4.25)

This means, that the sample time window should be chosen to T0 = 5.66TA. For a fixed time
sampling interval ∆t this would lead to an enormous increase of the computational effort in
comparison to a sample time of T0 = TA.

[Lee 2009] suggests as a remedy to use artificial damping. The force is attenuated until the
end of the sampling time window with the help of an exponential time window function of
the form e−at. After the DFT processing this artificial damping has to be removed from the
response by multiplying the response with eat. This remedy introduces no approximations
for linear systems. [Lee 2009] suggests to chose the artificial damping constant a such that
the decay function leads to an reduction to 1

100 :

a = ln(100)
T0

(4.26)

The same artificial damping constant is used in this thesis.

The multiplication with the exponential time window function leads in the DFT transfor-
mation of the load according to Eq. (4.24) to a complex frequency shift in the frequency
domain:

˜̂p′n(x,ωn) =
N′
2 −1∑

k=0
P0δ(x− v0tk)e−ate−iωntk
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=
N′
2 −1∑

k=0
P0δ(x− v0tk)e−i (ωn−ia)︸ ︷︷ ︸

ω′n

tk (n = 0, 1, 2, . . . , N ′ − 1) (4.27)

Primed quantities ′ are in this context quantities to which the described remedies for DFT
induced errors are applied.

The shifted frequency is ω′n = ωn − ia. This has a second advantage. The SSE stiffness
matrix is not defined for the static case, i.e. for the frequency ω0 = 0. The respective shifted
frequency is ω′0 = −ia for which the SSE response can be calculated without difficulties.

4.5.3 Implementation in MATLAB

The described procedure has been implemented by Julius Mader in the scope of his master’s
thesis [Mader 2019] in an additional class MovingForce. An object of this class is a system
of SSEs which is loaded by a moving force. Therefore, the class MovingForce is based on
the class SSEsystem described in appendix A.5.1. The class MovingForce is described
in detail in [Mader 2019]. Here, only a general description of the procedure is given.

The input parameters of the constructor for an object of the class MovingForce are first
of all the same as for the class SSEsystem in order to define the structural system. Addi-
tionally, the value P0 and the velocity v0 of the moving force and the number of samples N
(not N ′) have to be defined. N should be an integer power of two (2γ where γ is an integer)
in order to profit from the efficiency of the FFT [Brigham 1987]. The constructor calculates
the following parameters for the DFT from these inputs:

• The sampling time period of interest is defined to be the passing time of the moving
force over the SSE system. It’s calculated with the help of the overall length L of the
system as:

TA = L

v0
(4.28)

• The sampling interval in time ∆t and the sampling interval in space ∆x are:

∆t = TA
N

; ∆x = v0∆t (4.29)
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• The total number of DFT samples N ′ is chosen twice as large as the assigned sample
number N due to the zero padding to cope with the wraparound error:

N ′ = 2N (4.30)

Due to the factor 2 the procedure can still benefit form the efficient FFT and IFFT
algorithms.

• The DFT time period T0 is also twice as large as the time period of interest:

T0 = 2TA (4.31)

The sampling intervals ∆t and ∆x are not affected by the zero padding.

• The basic frequency ω0 in the transformed domain is therefore:

ω0 = 2π
T0

(4.32)

• The artificial damping constant a is calculated w.r.t to the sampling period of interest:

a = ln(100)
TA

(4.33)

The method Solve of the class MovingForce calculates then in a for-loop over the spectral
components ω′n = nω0−ia the spectral force components ˜̂p′n according to Eq. (4.27) and solves
the SSE system for these force components. This solution is obtained for each frequency
step with the help of a nested for loop over all spatially discretized (at xk = k∆x) point
forces. For each nested loop a SSE model with an element border at xk is set up (TEM) and
solved. The results of all nested loops are superposed in order to obtain the total deflection
at one frequency step.

The result for each frequency step is a discretized deflection shape ˜̂vn of the SSE system. All
these deflection shapes are stored in a 3D array Vfreq. The first dimension corresponds
to the cross-sectional DOFs, the second dimension corresponds to the discretization in x-
direction and the third dimension corresponds to the frequency step. The discretization in
x-direction is carried out in steps of ∆x in order to enable a correct superposition in the
nested for-loop over the point forces.
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In total N ′ frequency samples are necessary (n = 0, 1, ..., N ′ − 1). But due to the symmetry
and repetition characteristics of the DFT (e.g. [Brigham 1987] or [Lee 2009]) only N ′

2 + 1
samples have to be calculated. The displacement results in time domain have to be real-
valued in order to describe a physical length. Therefore, the frequency components for
negative frequencies have to be complex conjugated to those for the respective positive
frequencies. The IFFT algorithm in MATLAB does not cope with negative frequencies.
Instead, the results for negative frequencies have to be shifted according to the repetition
characteristics to positive frequencies. The N ′ frequency samples ˜̂vn are obtained according
to the following procedure:

1. Calculation of ˜̂vn for n = 0, 1, ..., N ′2 with a for-loop

2. Mirroring about N ′

2 : ˜̂vn = ˜̂v∗N ′−n for n = N ′

2 + 1, N ′2 + 2, ..., N ′ − 1

Parallelization of the for-loop in step one over the frequency steps is possible in MATLAB
with the parfor-loop.

Afterwards, the discretized time deflection is obtained with the help of MATLAB’s IFFT
algorithm applied to the third dimension of Vfreq. The result is stored in a 3D array
Vtime, where the third dimension corresponds to the time samples. The artificial damping
has to be removed from the time samples with:

v̂k = v̂′k · eatk (4.34)

In the last step all time samples for k > N ′

2 are discarded, because they are contaminated
by the wraparound error.

4.6 Numerical Examples and Validation

The application of the described moving force analysis with spectral super elements shall
be demonstrated in this section with two examples. The first example shall validate the
theory. It treats a single span rectangular beam for which results are available from different
independent literature. The second example shows the possibilities of the method. It deals
with a section of a realistic hallow boxed concrete railway bridge.
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4.6.1 Validation with a Single-Span Rectangular Beam

The structural model for the first example is taken from [Song et al 2016] in order to compare
the results of the SSE model with those of their spectral Timoshenko beam model.

Fig. 4.9(a) shows an idealized structural model of the example. The span is L = 4.352m.
[Song et al 2016] use a cross sectional area of A = 1.31 · 10−3m2 and an area moment of
inertia of Iy = 5.71 · 10−7m4. These two quantities have to be converted to the width b

and height h of a rectangular cross section in order to obtain a cross-sectional geometry,
which can be discretized with 2D elements for the SSE. With A = b · h and Iy = h3b

12 one
obtains b = 0.0181m and h = 0.0723m. The discretization of this rectangular cross section
is depicted in Fig. 4.9(b).

L = 4.352m

v0

P0 = 1kN

z

x

(a) Structural system

0
0.0
090

0.0
018

1

y[m]

0

0.0090

0.0181

0.0271

0.0362

0.0452

0.0542

0.0633

0.0723

z[
m

]

(b) Cross-sectional discretization

Figure 4.9: Structural model of a single-span rectangular beam under a moving force

Tab. 4.1 shows the used material properties. The system is considered to be undamped
(η = 0). The listed shear correction factor is not required for the SSE formulation. It is
the factor used by [Song et al 2016] for the reference model. Please note that [Song et al
2016] have published originally a shear modulus of G = 7.7 · 108 kN

m2 . This would impose
a negative Poisson’s ratio of ν = −0.868 and the shear modulus would be larger then the
Young’s modulus. This suggests the suspicion that [Song et al 2016] made a typing error in
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their exponent. Section 4.6.1.3 will show, that the shear modulus defined in Tab. 4.1 leads
to the same results as published by [Song et al 2016].

Young’s modulus shear modulus mass density loss factor shear correction factor
E G ρ η κ

2.02 · 108 kN
m2 7.7 · 107 kN

m2 15.267 t
m3 0.0 0.7

Table 4.1: Material properties of the validation example according to [Song et al 2016]

The system is loaded by a moving force with a constant amplitude of P0 = 1kN and different
constant velocities v0.

4.6.1.1 Critical Velocity

The constant velocity v0 is defined in this example as a factor of the lowest critical velocity
vcr according to [Frýba 1972]. The critical velocity is the velocity that excites a certain
eigenmode to maximum extent. The lowest critical velocity is the velocity that excites the
first eigenmode. At the critical velocity the force shall perform only positive power and shall
insert the maximum amount of energy into the system. Therefore, the force has to move
that fast, so that its passing time is half the period of the first eigenmode. If f1 is the first
eigenfrequency of the system one obtains the lowest critical velocity for a single-span beam
as follows:

vcr = 2f1L (4.35)

[Song et al 2016] indicate the first eigenfrequency of the example system with f1 = 6.30Hz
and obtain therefore vcr = 54.81m

s .

4.6.1.2 Convergence Study

The solution accuracy depends in DFT processing on the number of the used samples N .
This number defines for a given simulation time the resolution in time and the maximum
considered frequency. N is the number of samples that discretizes the passing time TA of the
force (without zero padding) in the implementation used for this example (section 4.5.3).
The total number of samples is N ′ = 2N and the total simulation time is T0 = 2TA.
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The computational effort of the described DFT processing increases somewhere between
linearly and quadratically with the number of samples N . For each of the N frequencies ωn
one cross-sectional waveguide FEM problem but N SSE models for the N load positions xk
have to be evaluated. The ratio of the computational effort required for the evaluation of
the waveguide FEM problem to the computational effort required for solving the SSE model
varies according to the number of DOFs in the cross section and the number of SSEs in
the SSE model. Both computational costs are of same order of magnitude in the examples
described in this thesis. If the costs would be identical, the order of growth in the DFT
processing of the moving force problem would be O(N +N2).

Due to this high order of growth it is important to find an optimum number of samples that
ensures sufficient accuracy. [Mader 2019] has performed a convergence study in which he
investigates the described example at the critical velocity vcr = 54.81m

s for different numbers
of samples N . This study is cited in the following.

Fig. 4.10 plots on the left ordinate the vertical deflection of the example system at mid-span
over the dimensionless time t/TA for different sample numbers N . The plotted deflection
is the mean value of the vertical deflection of all cross-sectional nodes. The dimensionless
time stretches up to t/TA = 2. Therefore, the complete back transformation including the
time with zero padding is plotted. The zeropadding is no approximation in this example. It
just maps the true force: The force leaves the beam after t/TA = 1. Therefore, the beam is
unloaded for the rest of the time. Together with the fact that the force moves at the critical
velocity, the results can be qualitatively validated as follows: The beam moves downwards
for half an eigenperiod as long as the force is on it. The maximum deflection occurs when
the force leaves the beam at t/TA = 1. Afterwards, a free vibration with the maximum
deflection as initial deflection and a zero initial velocity starts. Half a period of this free
vibration is plotted till t/TA = 2.

The right ordinate in Fig. 4.10 shows the deviation of the solutions from the solution with
the highest number of samples (N = 28). During the passing time of the force the highest
deviation occurs at t = 0.6875TA. Fig. 4.11(a) provides an enlargement of the displacement
plot around the time of maximum deviation. Convergence can be observed clearly in this
figure.

Increasing the number of samples helps also to cure the Gibbs phenomenon at the end of
the total simulation time. The Gibbs phenomenon denotes according to e.g. [Lee 2009] the
overshooting in DFT processing that occurs at discontinuities of the signal. Due to the fact,
that the system is undamped also the system response on the artificially damped load has
not decayed to zero at the end of the simulation time. Therefore, a discontinuity occurs at
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Figure 4.10: Convergence study for the single-span example loaded with a moving force with the lowest
critical velocity vcr (similar to [Mader 2019]). Vertical deflection in the middle plotted over the
dimensionless time for different numbers of DFT samples N .
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Figure 4.11: Enlarged sections of Fig. 4.10
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the end which leads to the Gibbs phenomenon. This phenomenon can be cured by increasing
the maximum DFT frequency. Tab. 4.2 lists the maximum frequency in dependency of the
sample number N . Fig. 4.11(b) shows the Gibbs phenomenon in an enlarged section. It is
cured quite well for the highest number of samples, but is still observable.

N TA[ms] ∆t[ms] f0[Hz] fmax[Hz]
25 79.4 2.5 6.30 201.5
26 79.4 2.5 6.30 403.0
27 79.4 2.5 6.30 806.0
28 79.4 2.5 6.30 1612.0

Table 4.2: DFT parameters for different numbers of samples N = N ′

2

The time sample interval is ∆t = TA
N
. The maximum DFT frequency is calculated as follows:

fmax = 1
2∆t = Nv0

2L (4.36)

This shows, that for a given structure Gibbs phenomenon is cured the better the higher the
number of samples and the higher the velocity is. A higher velocity results in a shorter
simulation time.

4.6.1.3 Comparison with Reference Models

The described example model is compared with two reference solutions from literature:

1. [Song et al 2016] have calculated the system with spectral Timoshenko beam elements.

2. [Frýba 1972] has presented a general analytical solution for single-span pinned beams
based on Euler-Bernoulli assumptions.

The analytical solution for a simply supported single-span undamped Euler-Bernoulli beam
under a constant moving force P0 with constant velocity is according to [Frýba 1972]:

w(x,t) = w0

∞∑

j=1
sin

(
jπx

L

) 1
j2(j2 − α2)

(
sin(jωeqt)−

α

j
sin(ωjt)

)
(4.37)

With:

w0 = P0L
3

48EI , Deflection at mid-span under a static force P at x=L/2
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α = v0

vcr
, ratio of the critical velocity

ωeq = 2π v0

2L, equivalent circular frequency of excitation

ωj = j2π2

L2

√
EI

µ
, circular frequency of the j-th resonance

If α is an integer, a summand with j = α occurs in Eq. (4.37). Due to the occurring pole
[Frýba 1972] replaces the solution for α = n (n = 1, 2, ...) with:

w(x,t) = w0
1

2n4 (sin(nωeqt)− nωeqt cos(nωeqt)) sin
(
nπx

L

)

+ w0

∞∑

j=1,j 6=n
sin

(
jπx

L

) 1
j2(j2 − α2)

(
sin(jωeqt)−

α

j
sin(ωjt)

) (4.38)

It is sufficient for numerical computations to evaluate just the first couple of summands for
low values of α (e.g. α ≤ 2) because the contribution of the higher modes to the solution
decreases very fast.

Figs. 4.12 and 4.13 compare the vertical beam deflections (in z-direction) obtained with
the SSE method with results obtained by evaluating the formulas from [Frýba 1972] and
with results from [Song et al 2016]. The data from [Song et al 2016] is obtained from a
scanned PDF document of the paper with the online tool WebPlotDigitizer1. Therefore,
small deviations from the originally calculated results can occur. The plotted value of the
SSE model is the mean value of the vertical deflection of all cross-sectional nodes.

Each subplot in Fig. 4.12 shows the vertical deflection along the beam axis for different
constant velocities v0. The constant velocity v0 is given as a factor of the lowest critical
velocity vcr. Inside a subplot each group of lines represents the solution at different times t.
The time t is given as a factor of the passing time TA. The solutions for all three models
coincide very well at all times and velocities.

Each subplot in Fig. 4.13 shows the vertical deflection at a certain x-coordinate plotted over
the time from t = 0 to t = TA. Inside a subplot each group of lines shows the solutions
for different velocities v0. Again, the solutions for all three models coincide very well at all
locations and velocities. At mid-span (Fig. 4.13(b)) the definition of the critical velocity is
clearly visible: The curves for v0 = vcr look like half a period of the deflection of a single
degree of freedom system subjected to a step load.

1https://automeris.io/WebPlotDigitizer
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Figure 4.12: Time-dependent vertical deflection of the single-span beam subjected to a moving force with
different constant velocities v0. The solution of the SSE model is compared to two reference
solutions from literature.
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Figure 4.13: Vertical deflection at tree different x-coordinates of the single-span beam subjected to a
moving force with different constant velocities v0. The solution of the SSE model is compared
to two reference solutions from literature.
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This example has been chosen in order to validate the implemented DFT solution procedure
for moving forces with the help of reference solutions form literature, even though such a
sophisticated method like the SSE is not necessary for the concerned slender beam.

4.6.2 Hollow Boxed Concrete Railway Bridge

The previous example validates the implemented moving force algorithm. The spectral super
element method itself is validated with the examples of section 3.5. The following example
shall show the limits and possibilities of the spectral super element method with the presented
moving force algorithm. It is presented without quantitative validation. However, qualitative
comments on the expected behavior are given.

4.6.2.1 System Description

A section of a railway bridge currently under construction is considered in this example. The
bridge is called Filstal bridge and is part of the new high speed railway line from Stuttgart
to Ulm in southern Germany. It consists of two independent parallel bridge constructions.
We consider in this example two spans at one end of one of the two bridge constructions.
Fig. 4.14 shows the considered section of the bridge and the cross-section of the bridge
girder.

(a) Computer rendering of the whole construction (adapted from [SSF Inge-
nieure]). The considered section is circled in red.

(b) Hollow boxed cross section [Deutsche
Bahn 2018]

Figure 4.14: Visualization of the Filstal bridge

The idealized structural system of the considered section and the used cross-sectional dis-
cretization is shown in Fig. 4.15. The continuity of the bridge girder at the end of the
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considered bridge section is considerd with a clamped support at the end of the section.
This is a rough approximation (impedance modeling would be more precise), but the focus
of this example are the limits and possibilities of the SSE method and not on the exact
modeling of the bridge. Therefore, this rough approximation is sufficient in the scope of
this discussion. The same holds for the pillar: The Filstal bridge is an integrated bridge
construction. The pillars are clamped into the girder. Due to the slenderness of the pillar it
is assumed in the structural model that the pillar acts like a pinned support.

The magnitude of the applied constant moving force is P0 = 196.2kN. This is in the range
of modern high speed trains (compare e.g. [Siemens AG 2016]). This load is distributed
evenly over the five cross-sectional nodes highlighted in Fig. 4.15(b). Although the track
is mounted according to Fig. 4.14(b) in the center of the cross section, an unsymmetrical
loading is assumed in this example in order to show the possibilities of the SSE method.

z
x

L2 = 60mL1 = 50m

v0

P0 = 196.2kN

(a) Idealized structural system

3.
91

m

5.27m

7.6m

z

y

(b) Discrete cross section of the SSE model.
Nodes of load application are marked with red
arrows.

Figure 4.15: SSE model of the Filstal bridge

The assumed material properties are listed in Tab. 4.3. Damping is considered with a
frequency independent loss factor η.

Young’s modulus E Poisson’s ratio ν Density ρ Loss factor η
34.3 · 106 kN

m2 0.2 2.5 t
m3 0.02

Table 4.3: Material properties of C50/60 concrete according to [Schneider 2006]

4.6.2.2 Discussion of Results

In a first step, the first two eigenfrequencies of the bridge model are estimated in order to
identify critical velocities. The system is loaded for this purpose with a force distribution
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which excites the estimated first two modes shapes well. This requirement fulfills e.g. a
section momentMy at the position x = 0m in the coordinate system depicted in Fig. 4.15(a).
A harmonic analysis is performed with this moment. The eigenfrequencies are estimated by
picking the first two peak values:

• 1st eigenfrequency: 3.340Hz

• 2nd eigenfrequency: 4.805Hz

The deformation shapes of the bridge section at these two frequencies are depicted in
Figs. 4.16 and 4.17.

In general it is not possible to identify a clear critical velocity for these two eigenfrequencies
as defined in section 4.6.1.1, because the two spans of the bridge model have not the same
length and the force moves with constant velocity. But a range of velocities for which the
force inserts the most energy into the system can be defined.

From the deformation shape in Fig. 4.16 one can conclude, that the first eigenfrequency is
excited most if the force is during the first half of an eigenperiod on the first span and during
the second half of an eigenperiod on the second span. For the 50m-span results a critical
velocity of 334.0m

s and for the 60m-span results a critical velocity of 400.8m
s .

The second mode shape (Fig. 4.17) is excited most, if the force is on each span for one com-
plete eigenperiod, because in this case the force is in the region of the middle support during
the upwards movement of the vibration. The critical velocity for the second eigenfrequency
is therefore in the range from 240.0m

s (50m-span) to 288.0m
s (60m-span).

Figure 4.16: Deformation of the bridge model loaded with a section moment My at x = 0m at 3.340Hz.
Approximated first mode shape.
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Figure 4.17: Deformation of the bridge model loaded with a section moment My at x = 0m at 4.805Hz.
Approximated second mode shape.

The velocity of v0 = 288m
s is chosen for the described moving force analysis. This velocity is

unrealistic high for usual high-speed trains. Therefore, also two lower speeds are considered:
200m

s and 110m
s . The analysis is performed for each velocity with two different numbers of

DFT samples: N = 27 and N = 28.

Fig. 4.18 shows the calculated vertical deformation (z-direction) of the most upper right
node in the cross-section depicted in Fig. 4.15(b) in the middle of the second span plotted
over the time for the six analyses. The time scale ends for the two higher velocities at the
transition time TA after which the force has passed the whole system. The transition time
for the lowest velocity is TA = 1s. This time is not displayed completely, because such a long
time can clearly not be simulated with the used number of samples.

One can observe, that the transition time for v0 = 288m
s can be simulated very well with

N = 28 samples. In all other simulations the Gibbs phenomenon leads with increasing time
to more erroneous results. The errors induced by the Gibbs phenomenon are amplified by
the multiplication with the exponential function, which is carried out in order to remove the
artificial damping.

A higher number of samples is not feasible, because the simulation with N = 28 takes about
43 hours on a Intel Xenon E5 2660v3 CPU with parallel for-loops on twelve workers in
MATLAB.

In the time range where the results are not dominated by the Gibbs phenomenon, the highest
deflections occur at the approximate critical velocity of v0 = 288m

s .

The system’s deflection shapes at four time snap shots for the two analyses with v0 = 288m
s

are displayed in Figs. 4.19 and 4.20 scaled by a factor of 4000. One can observe, that Gibbs
phenomenon occurs not only in time, but also in space. The ripples start at the end at which
the force entered the system.



98 4 Moving Forces on Spectral Super Elements

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

·10−3

Time t[s]

D
isp

la
ce

m
en

t
w

[m
]

v0 = 288m
s , N = 27

v0 = 288m
s , N = 28

v0 = 200m
s , N = 27

v0 = 200m
s , N = 28

v0 = 110m
s , N = 27

v0 = 110m
s , N = 28

Figure 4.18: Vertical deformation of the upper right corner node in the cross-section depicted in
Fig. 4.15(b) in the middle of the second span

The SSE model covers local deformations at the current position of the load as well as the
torsional deflections due to the asymmetrical loading. The latter are small in comparison to
the bending deflections due to the high torsional stiffness of hollow boxed cross sections.

The conclusion of this example is, that the proposed moving force analysis is applicable on
beams with arbitrary cross sections and arbitrary boundary conditions for short simulation
times. The fact that the computational effort increases approximately quadratically with
the number of DFT samples N limits this number in the example to N = 28. In order to
ensure that the highest DFT frequency is high enough to avoid a domination of the Gibbs
phenomenon, the simulation time should be limited in this example to approximately 0.5s.
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(a) t = 0.25TA

(b) t = 0.5TA

(c) t = 0.75TA

(d) t = TA

Figure 4.19: Deflection shapes of the considered section of the Filstal bridge under a moving load with
v0 = 288 m

s at different times t. Number of DFT samples: N = 28
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(a) t = 0.25TA

(b) t = 0.5TA

(c) t = 0.75TA

(d) t = TA

Figure 4.20: Deflection shapes of the considered section of the Filstal bridge under a moving load with
v0 = 288 m

s at different times t. Number of DFT samples: N = 27
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5 Increasing the Computational

Efficiency

The example in section 4.6.2 of the railway bridge section under a moving force made clear
that the computational efficiency of the SSE theory has to be increased for a practical
application of the moving force analysis.

In this section an enhanced displacement ansatz for an increased computational efficiency
without loose of significant accuracy is presented. The proposed ansatz is advantageous not
for all problems. Its strength is shown in applications where the cross-section is strongly
distorted. This is illustrated with two numerical examples.

This chapter presents therefore not a finished "cooking recipe". Its applicability should be
investigated in future research work.

5.1 Displacement Ansatz for a Higher Computational

Efficiency

In section 3.5.4 it has been shown that the solution of SSE models is dominated by only
few wave functions. In general, the contribution decreases with increasing magnitude of the
wave number kx. The wave numbers with highest magnitude are according to the scatter
plots in the numerical examples for the waveguide FEM (section 2.4) pure imaginary which
means that they represent real exponential functions with a very rapid decay from the ends
of the SSE. Therefore, it should be possible to neglect some wave functions with the highest
magnitude wavenumbers without loosing noticeable accuracy for most of the SSE domain.

On the other hand, we require for the determination of the A-matrix in the displacement
ansatz Eq. (3.8) as many wave functions as DOFs of the SSE. Therefore, the number of wave
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functions in the displacement ansatz may be reduced only if the numbers of DOFs of the SSE
is reduced. This number is twice the number of DOFs of the used cross-sectional mesh.

The idea is now to use a cross-sectional mesh with less DOFs (more coarse) for the formulation
of the SSE than used in the underlying waveguide FEM. It should be noted that the patterns
of boundary conditions (load and displacement) at the ends of the SSE can be applied on both
meshes without loss of accuracy. The mesh used for the waveguide FEM shall be more fine in
order to obtain also at high frequencies accurate wave numbers and cross-sectional deflection
shapes. This approach will reduce the computational cost mainly in two procedures:

1. The eigenvalue solver in the waveguide FEM has to calculate less eigenvalues (wave
numbers) and eigenvectors (cross-sectional deflection shapes).

2. The size of the dynamic stiffness matrix of the SSE is reduced to twice the number of
DOFs of the coarse mesh. Its inversion is therefore faster.

We define for the following considerations:

• m .. Number of DOFs in the coarse mesh

• n .. Number of DOFs in the fine mesh

• k .. Number of considered wave functions (≥ 2m)

The displacement ansatz in (3.1) for the displacement of the SSE can be mapped to the
DOFs of the coarse mesh with the help of a m× n matrix R:

m

V (x) =
m×n
R ·

n×k
Φ ·

k×k
E(x) · ka (5.1)

The determination of the mapping matrix R is explained in the next section.

The wave contribution factors a are related to the DOFs of the SSE defined on the coarse
mesh (W 1 and W 2 at both ends) with the same procedure as in section 3.1:

m

V (−lx) =
m×n
R

n×k
Φ

k×k
E(−lx) · ka =

m

W 1 (5.2)
m

V (lx) =
m×n
R

n×k
Φ

k×k
E(lx) · ka =

m

W 2 (5.3)
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Writing both equations (5.2) and (5.3) in one system of equations leads to an equation for
the wave contribution factors a:

⇒
2m×k

RΦE(−lx)
RΦE(+lx)




︸ ︷︷ ︸
B

red

· ka =

2m
W 1

W 2


 (5.4)

a =

RΦE(−lx)
RΦE(+lx)



−1

·

W 1

W 2


 = AredW (5.5)

The matrix Ared is calculated as the inverse of Bred with the help of the backslash operator
in MATLAB:

A = B\eye(size(B,1))

Eq. (5.4) is under-determined if k > 2m. The backslash operator in MATLAB returns in
this case the least-squares solution for Ared which means that Ared is the pseudo inverse of
Bred [The MathWorks 2019].

We obtain the displacements V fine in the fine mesh as well as V coarse in the coarse mesh in
dependency of the DOFs W in the coarse mesh at the ends of the SSE:

n

V fine(x) = ΦE(x)AredW (5.6)
m

V coarse(x) = RΦE(x)AredW (5.7)

In the next step the mapping matrix R has to be determined.

5.2 Determination of the Mapping Matrix R

The matrix R shall map the displacements in the fine cross-sectional mesh to those in the
coarse one. Therefore, the displacement field defined by the fine mesh has to be evaluated at
the nodal positions of the coarse mesh. Two approaches are suitable for this task in general
[Silva et al 2009]:

1. Interpolation techniques based e.g. on Delauny triangulation [Barber et al 1996] or with
the help of B-Splines [Sandwell 1987]. These methods are implemented in MATLAB’s
function griddata.
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2. Evaluation of the elements shape functions at the nodal locations of the coarse mesh.
This procedure is called inverse mapping [Silva et al 2009].

The task of the inverse mapping is to determine the natural element coordinates (ξ, η) in the
fine mesh from the global, physical coordinates (y,z) of the nodes of the coarse mesh and to
evaluate the element’s shape functions at these natural coordinates. However, this cannot
be carried out by simply inverting the Jacobi-matrix of the element, because this matrix is
not constant in a general quadrilateral element. (It’s only constant in rectangular elements.)
For higher-order shape functions the inverse mapping needs an iterative approach. For the
bi-linear shape functions used for the SSEs in this dissertation [Silva et al 2009] suggests an
analytical approach. In contrast to the interpolation approach the inverse mapping does not
introduce other approximations than those introduced by the FE shape functions. Therefore,
the inverse mapping is used in the following.

The inverse mapping procedure according to [Silva et al 2009] consists of two steps:

1. Determination of the element of the fine mesh in which the considered node of the
coarse mesh is located. This element is called owner element.

2. Determination of the natural coordinates in the owner element and evaluation of the
shape functions.

The first step could be of course skipped and one could simply determine the natural coor-
dinates of all nodes of the coarse mesh in all elements of the fine mesh and use only those
which lay in the range of validity:

ξ ∈ [−1,1]; η ∈ [−1,1] (5.8)

On the other hand, the computational effort for the determination of the natural coordinates
is quite high. Therefore, [Silva et al 2009] suggest to determine the owner element with the
less expensive cross product test.

5.2.1 The Cross Product Test for the Determination of the Owner

Element

The cross product test of [Silva et al 2009] is illustrated in Fig. 5.1. It starts with one node
P1 of one element of the fine mesh. Two scalar cross products (in 2D) are calculated for
vectors starting at this point. The first is the cross product of the vector P1P2 (from P1 to
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a neighboring element node P2) with the vector P1N from P1 to the node of consideration
N . The second cross product is the product of the vector P1N with the vector P1P3 (from
P1 to the second neighboring element node P3). The test is positive if the product of the
two scalar cross products is positive. This means, that the node of consideration is located
within the gray double-cone in Fig. 5.1.

P1

P2

P3

NP1P2

P1N

P1P3

element of fine mesh

node of coarse mesh

Figure 5.1: Vectors used in the cross product test. The test is positive if the considered Node N is in the
gray area.

The node N is located in the element of consideration, if the cross product test is positive
for all vectors connecting the nodes of the element. This element is the owner element of
node N .

5.2.2 Determination of the Natural Coordinates of a Node N in its Owner

Element

As soon as the owner element of a node N is determined the analytical inverse mapping
procedure according to [Silva et al 2009] can be carried out as described in the following.
The task is to solve the following two equations for ξ and η:

y(ξ,η) = N1 · y1 +N2 · y2 +N3 · y3 +N4 · y4 (5.9)
z(ξ,η) = N1 · z1 +N2 · z2 +N3 · z3 +N4 · z4 (5.10)

Where y and z are the global coordinates of the considered node and yi and zi are the global
coordinates of the nodes of its owner element. Inserting the shape functions Ni(ξ,η) defined
in Eq. (2.10) leads to the equations:

y(ξ,η) =1
4(1− ξ)(1− η) · y1 + 1

4(1 + ξ)(1− η) · y2+
1
4(1 + ξ)(1 + η) · y3 + 1

4(1− ξ)(1 + η) · y4 =
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= 1
4(y1 + y2 + y3 + y4)
︸ ︷︷ ︸

a0

+ 1
4(−y1 + y2 + y3 − y4)
︸ ︷︷ ︸

a1

·ξ+

1
4(−y1 − y2 + y3 + y4)
︸ ︷︷ ︸

a2

·η + 1
4(y1 − y2 + y3 − y4)
︸ ︷︷ ︸

a3

·ξη =

=a0 + a1 · ξ + a2 · η + a3 · ξη (5.11)

z(ξ,η) =1
4(1− ξ)(1− η) · z1 + 1

4(1 + ξ)(1− η) · z2+
1
4(1 + ξ)(1 + η) · z3 + 1

4(1− ξ)(1 + η) · z4 =

= 1
4(z1 + z2 + z3 + z4)
︸ ︷︷ ︸

b0

+ 1
4(−z1 + z2 + z3 − z4)
︸ ︷︷ ︸

b1

·ξ+

1
4(−z1 − z2 + z3 + z4)
︸ ︷︷ ︸

b2

·η + 1
4(z1 − z2 + z3 − z4)
︸ ︷︷ ︸

b3

·ξη =

=b0 + b1 · ξ + b2 · η + b3 · ξη (5.12)

Eq. (5.11) is solved for ξ

ξ = y − a0 − a2 · η
a1 + a3 · η

(5.13)

and inserted into Eq. (5.12) (with: y0 = y − a0):

z = b0 + b1 ·
y0 − a2 · η
a1 + a3 · η

+ b2 · η + b3 · η ·
y0 − a2 · η
a1 + a3 · η

(5.14)

After multiplication of Eq. (5.14) with the denominator (a1 + a3 · η) a quadratic equation is
obtained for η (with: z0 = z − b0):

(b0 − z)(a1 + a3η) + b1(y0 − a2η) + b2η(a1 + a3η) + b3η(y0 − a2η) = 0
⇔ −z0a1 − z0a3η + b1y0 − b1a2η + b2a1η + b2a3η

2 + b3y0η − b3a2η
2 = 0

⇔ (b2a3 − b3a2)︸ ︷︷ ︸
A

η2 + (−z0a3 − b1a2 + b2a1 + y0b3)︸ ︷︷ ︸
B

η + (y0b1 − z0a1)︸ ︷︷ ︸
C

= 0
(5.15)

⇔ A · η2 +B · η + C = 0 (5.16)

A = 0 for elements with exact rectangular shape and Eq. (5.16) becomes linear.

The solution for η in the range of validity in Eq. (5.8) is taken and inserted into Eq. (5.13)
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in order to obtain ξ.

5.2.3 Assembling of the Mapping Matrix R

For each node in the coarse mesh its natural coordinates ξ and η in its owner element of the
fine mesh have to be determined and the element shape functions Ni have to be evaluated.
The values of Ni have to be allocated in the matrix R so that

V coarse = RV fine (5.17)

is fulfilled. A displacement vector V contains for each node the displacements u, v and w in
all three spatial directions in the following pattern:

V = [u1, v1, w1, u2, v2, w2...]T (5.18)

Therefore, each value of Ni has to be used three times in R, once for each spatial direction.
The complete procedure of the assembling of R is described with the help of a listing of the
implemented MATLAB code in the appendix A.6.

5.3 Plugging the Modified Displacement Ansatz in the SSE

Formulation

The displacement ansatz in Eqs. (5.6) and (5.7) is completely defined with the help of the
mapping matrix R. The next step is to plug this into the SSE formulation of section 3.2.1.

The Langrangian of the internal potential has been defined in Eq. 3.9 like:

L = 1
4π

lx∫

−lx

1∑

m=0

1∑

n=0

(
∂mV (x)
∂xm

)∗T
ε
mn

∂nV (x)
∂xn

− ω2 V (x)∗Tm00 V (x) dx (5.19)

The matrices ε
mn

and m00 are strain and mass matrices from the waveguide FEM. They
have the dimensions n×n (Number of DOFs in the fine mesh). Therefore, the displacement
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ansatz for V fine of Eq. (5.6) has to be inserted for V (x) in Eq. (5.19):

L = 1
4π

lx∫

−lx

1∑

m=0

1∑

n=0
W ∗TATred

(
∂mE(x)
∂xm

)T
ΦT ε

mn
Φ ∂nE(x)

∂xn
AredW

− ω2W ∗TATredE
T (x)ΦTm00 ΦE(x)AredW dx

(5.20)

W are the DOFs of the spectral super element (at both ends) defined on the coarse mesh.

The employment of ∂nE(x)
/
∂xn =

(
ik
x

)n
E(x) and the mathematical reformulation in

Eq. (3.12) with the Hadamard product leads to the matrices Φ and E
I
:

L = 1
4π

2m
W ∗T

2m×k
ATred




1∑

m=0

1∑

n=0

(
i
k×k
k
x

)m,T k×n
ΦT n×nε

mn

n×k
Φ
(

i
k×k
k
x

)n
− ω2

k×n
ΦT n×n

m00

n×k
Φ



︸ ︷︷ ︸
k×k
Φ

⊗
lx∫

−lx

diag

(
k×k
E(x)

)
· diag

(
k×k
E(x)

)T
dx

︸ ︷︷ ︸
k×k
E
I

k×2m
Ared

2m
W

(5.21)

The sizes of the matrices in Eq. (5.21) are written over the matrix symbols. m and n are the
numbers of DOFs in the coarse resp. fine mesh. k ≥ 2m is the number of considered wave
functions from the waveguide FEM.

The dynamic stiffness matrix with the size 2m× 2m is:

K = ATred

(
Φ⊗ E

I

)
Ared (5.22)

5.4 Numerical Issue

The proposed procedure for increasing the computational efficiency faces a numerical issue,
because the used eigenvectors from the waveguide FEM are not completely linearly inde-
pendent after multiplication with the mapping matrix R. This issue is described in the
following. We recall therefore the number definitions from section 5.1:

• m .. Number of DOFs in the coarse mesh

• n .. Number of DOFs in the fine mesh
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• k .. Number of considered wave functions (≥ 2m)

A SSE with the proposed enhanced displacement ansatz has 2m DOFs (the stiffness matrix
in Eq. (5.22) has the size 2m× 2m). Therefore, it should be sufficient to use k = 2m wave
functions in the displacement ansatz in Eq. (5.1). The eigenvectors in the Φ-matrix have to
be linearly independent in order to form a valid basis. This is the case if the eigenvectors from
the eigenvalue analysis are directly used, as done in the original SSE procedure described in
chapter 3.

The multiplication with the R-matrix leads to some linearly dependent eigenvectors, because
it reduces the vector space to the dimension m. Only m linearly independent vectors can
be described in this vector space. Therefore, n − m eigenvectors have to become linearly
dependent through the multiplication with the R-matrix.

The eigenvalues and eigenvectors are sorted throughout this thesis according to the mag-
nitude of the respective eigenvalue (wavenumber κx). The problem is that not exactly the
firstm eigenvectors remain linearly independent after multiplication with the R-matrix, even
though this is the case for most of them. The B

red
-matrix in Eq. (5.4) is in all examples

slightly rank deficient if only k = 2m wave functions are used. Therefore it cannot be in-
verted. The observed rank is in all examples greater than 95% of the maximum rank, which
shows, that the sorting according to the magnitude of the eigenvalues is a good, but not
perfect criteria for finding the m linearly independent eigenvectors after multiplication with
R.

In order to invert the B
red

-matrix wave functions have to be added until it has full (row) rank.
The B

red
-matrix is not quadratic anymore after adding wave functions. A

red
is therefore the

pseudo-inverse of B
red

, as described in section 5.1. In the following numerical examples it
has been sufficient for all considered frequencies to use 2m + 10 wave functions in order to
form a B

red
-matrix with full (row) rank.

The author knows no better sorting of the wavenumbers and corresponding eigenvectors,
which would guarantee that the the first m eigenvectors are still linearly independent after
the multiplication with the R-matrix.

The usage of a pseudo inverse leads in general to an approximation.
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5.5 Numerical Example 1: Single Span Beam with Load

Moment

The first numerical example consideres a system, for which the application of a SSE with the
proposed modified displacement ansatz is not advantageous, although enough wave functions
are considered so that the numerical issue described in the last section does not occur.
The example compares the solutions of a harmonic analysis of a SSE with the modified
displacement ansatz (with a fine cross-sectional mesh for the waveguide FEM and a more
coarse mesh for the SSE formulation) to the solutions of SSEs with the original displacement
ansatz, once with the fine and once with the coarse mesh. The solutions of the modified
displacement ansatz are very close to those of the original formulation with the coarse mesh.
Therefore, it is obviously not worth to use the more complicated modified displacement
ansatz with a finer mesh for the waveguide FEM in this example.

5.5.1 Considered System

The considered system is the same 10m single-span, simply-supported concrete beam as in
section 3.5.1 (Fig. 3.2 on page 54). Also the load moment My at one end is the same.

The material properties are the same as in other examples dealing with concrete in this
thesis. They are listed in Tab. 2.1 on page 33. No damping is considered.

The used cross-sectional discretizations are depicted in Fig. 5.2. The fine mesh in Fig. 5.2(a)
has an element size of 0.05m and therefore n = 351 DOFs.

Two different coarse meshes are considered: The coarse mesh I in Fig. 5.2(b) has an element
size of 0.1m and therefore mI = 105 DOFs. All nodes of this coarse mesh coincide with
nodes of the fine mesh. The R-Matrix contains therefore only zeros and ones. The coarse
mesh II in Fig. 5.2(c) has a maximum element size of 0.15m and therefore mII = 60 DOFs.
Most of the nodes do not coincide with nodes of the fine mesh. The R-Matrix interpolates
therefore the displacements in the eigenvectors from two or four nodes of the fine mesh.

The load moment is distributed over the nodes of the coarse meshes as nodal forces like
depicted in Fig. 3.2 on page 54. In the fine mesh only the nodes which coincide with nodes
of the respective coarse mesh or which are close to those are loaded.
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(b) Coarse mesh I:
Element size ≤ 0.1m
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(c) Coarse mesh II:
Element size ≤ 0.15m

Figure 5.2: Cross-sectional meshes considered in this example

5.5.2 Results

The results of the harmonic analysis are plotted in Figs. 5.3 and 5.4. The models with
the original SSE formulation show the already known behavior: A finer cross-sectional dis-
cretization leads to a less stiff response.

The performance of the proposed enhanced displacement ansatz is for both coarse meshes
comparably: The main eigenfrequencies are close to those of the original SSE formulation
with the coarse mesh. Additionally some smaller resonances occur between the resonances
of the models with the original SSE formulation.

The number of the considered wave functions for the determination of the Ared-matrix for
the depicted results is kI = 3mI = 315 and kII = 3mII = 180. This number is higher than
necessary for avoiding the numerical issue described in section 5.4, but it has been observed,
that the number k has no noticeable influence on the results as long as it is sufficient high
to enable the inversion of the Bred-matrix.

The computation times (observed on a laptop computer with a Intel(R) Core(TM) i5-6200U
CPU) for one frequency step are listed in Tab. 5.1.
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Figure 5.3: Harmonic analysis of the 10m single span concrete beam loaded with a section momentMy =
1kNm at x = 10m. Mean value of the w-deflection of all cross-sectional nodes at x = 2.6m.
Three different cross-sectional discretizations: Original SSE formulation with the fine mesh
from Fig. 5.2(a) and with the coarse mesh I from Fig. 5.2(b) and the proposed enhanced
displacement ansatz with a combination of both meshes.
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Figure 5.4: Harmonic analysis of the 10m single span concrete beam loaded with a section momentMy =
1kNm at x = 10m. Mean value of the w-deflection of all cross-sectional nodes at x = 2.6m.
Three different cross-sectional discretizations: Original SSE formulation with the fine mesh
from Fig. 5.2(a) and with the coarse mesh II from Fig. 5.2(c) and the proposed enhanced
displacement ansatz with a combination of both meshes.
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SSE formulation Mesh Computation time [s]
original fine 13.2
original coarse I 0.4
enhanced fine + coarse I 5.8
original coarse II 0.2
enhanced fine + coarse II 2.5

Table 5.1: Computation times of the single-span model for one frequency step

Table 5.1 shows that the computational efficiency is increased as expected when the original
formulation with the fine mesh is compared to the enhanced formulations. But the original
formulations with the coarse meshes are for this example about a factor 10 more efficient
than the enhanced formulations, because both modeling types lead to almost the same main
eigenfrequencies in the considered frequency range.

5.6 Numerical Example 2: Cantilever Beam with Stepped

Load Pattern at Free End

The second example considers a model for which the proposed enhanced displacement ansatz
of this chapter is more advantageous. The model is loaded with a load pattern for which the
cross-sectional deformation is more important for the first eigenfrequencies than in the last
example.

5.6.1 Considered System

This example considers a 5m cantilever beam with the same rectangular cross section and
the same material properties as in the previous example. No damping is considered. Three
different SSE models are evaluated and compared like in the previous example. The first two
models are standard SSEs with the fine cross-sectional mesh of Fig. 5.2(a) or the coarse cross-
sectional mesh I of Fig. 5.2(b) from the previous example. The third model uses the modified
displacement ansatz proposed in this chapter using both cross sectional discretizations. The
load consists of nodal forces of 1kN which are applied at the cross section of the free end
of the cantilever in a stepped pattern as depicted in Fig 5.5 for the model with the coarse
mesh. Forces are applied in all models only at nodes which exist in the fine and the coarse
mesh.
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Figure 5.5: SSE model of a concrete cantilever beam (L = 5m) with bearings and loads

5.6.2 Results

The u-deflection of the center node of the cross section at the free end is chosen for the
evaluation of the frequency response. Fig. 5.6 displays the frequency response in a range
form 1400Hz to 3500Hz. This range is chosen, because a step in the modal density is observed
approximately in the middle of this range. The response is calculated in steps of 5Hz. The
neglected damping causes quite narrow peaks. Therefore, it is not very significant to compare
the peak values in this analysis. More interesting are the frequencies of the peaks.

These frequencies coincide well for the model with the fine cross-sectional mesh and the model
with the enhanced displacement ansatz (combination of coarse and fine mesh) throughout
the considered frequency range. The model with the combination of meshes is for the high
frequencies in this rage slightly stiffer. E.g. the resonance frequency at 3365Hz is 0.29%
higher than in the model with the classical SSE theory and the fine mesh.

The model with the classical SSE theory and the coarse cross-sectional mesh is much stiffer
than the other two models.

In the following some figures of displacement shapes shall provide a deeper insight into the
behavior of this example.

The load pattern causes for low, non-resonant frequencies a deformation shape which is
concentrated to the free end of the cantilever. Fig. 5.7 shows exemplary the deformation
shape at 1600Hz plotted for the model with the combined mesh. The response at the center
node of the cross section (Fig. 5.6) is at non-resonant frequencies higher for the model with
the fine mesh than for the other two models. Fig. 5.8 compares the deflection shapes at
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Figure 5.6: Harmonic analysis of the 5m cantilever concrete beam loaded with a stepped force pattern at
the free end. u-deflection of the center node at the free end. Three different cross-sectional
discretizations: Original SSE formulation with the fine mesh from Fig. 5.2(a) and with the
coarse mesh I from Fig. 5.2(b) and the proposed enhanced displacement ansatz with a com-
bination of both meshes.

Figure 5.7: Deflection shape of the concrete cantilever beam at 1600Hz plotted for the model with the
combined mesh. Non resonant response.
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(a) Model with the fine mesh (from Fig. 5.2(a)) (b) Model with the coarse mesh 1 (from Fig. 5.2(b))

Figure 5.8: Deflection shapes of the concrete cantilever beam at 1600Hz

1600Hz of the two models with classical SSE theory. At non-resonant frequencies the models
response comparable to the static case. Therefore, a finer mesh produces a less stiff model.
Together with the fact, that only each second row of nodes is loaded in the model with the
fine mesh, it becomes clear, why the deflection of the center node is bigger for this model.

The deflection shapes at the lowest resonant frequencies are dominated by the longitudinal,
compressional wave. The deflection shapes of the peaks at 1510Hz (Fig. 5.9) and 1830Hz
(Fig. 5.10) are chosen exemplary for the visualization of these kind of mode shapes. The
wave length of the compressional wave fits two times into the system’s length at 1510Hz and
three times at 1830Hz.

Another type of resonance is observed at higher frequencies. The resonance is caused for this
type not by a longitudinal wave, but by a wave which propagates in cross-sectional direction.
This kind of modeshape occurs for the considered stubby model ( l

h
= 8.3) at comparably low

frequencies. The first resonance of this type occurs at 2480Hz and is displayed in Fig. 5.11.
The displacement shape is concentrated to the free end and decays in longitudinal direction
exponentially like for the non-resonant deflection shapes.

The computational effort for the evaluation of the models of this example is approximately
the same as listed in Tab. 5.1 for the models with the fine mesh and the coarse mesh I,
because the models of both examples have the same number of degrees of freedom.

The conclusion of the two numerical examples of this section is, that the consideration of the
proposed enhanced displacement ansatz with a finer cross-sectional mesh for the waveguide
FEM than for the SSE formulation is worth for models, where the cross section is seriously
distorted at the frequencies of interest. In such cases the results are very close to those of
the classical SSE theory with the fine cross-sectional mesh, while the computational cost was
less than halved.



5.6 Numerical Example 2: Cantilever Beam with Stepped Load Pattern at Free End 117

Figure 5.9: Deflection shape of the concrete cantilever beam at 1510Hz. Resonant response with longitu-
dinal compression wave.

Figure 5.10: Deflection shape of the concrete cantilever beam at 1830Hz. Resonant response with longi-
tudinal compression wave.

Figure 5.11: Deflection shape of the concrete cantilever beam at 2480Hz. Resonant response with a
cross-sectional mode at the free end.
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6 Conclusion and Outlook

This dissertation examines a semi-analytical numerical method for the dynamic simulation
of beam-like structures – the so called spectral super element method. The displacement
ansatz for a spectral super element is based on wave functions obtained from a preceding
waveguide FEM analysis, in which an infinite waveguide with the cross section of the spectral
super element is considered. These wave functions are the product of a cross-sectional
displacement vector (wave shape) with an analytical, exponential wave propagation function
for the longitudinal direction. The wave shape is defined on a two-dimensional finite element
mesh of the cross section. The propagation function includes the corresponding wavenumber
in the exponent.

The mathematical formulation of spectral super elements is described in detail. The most
important parts of the implementation in MATLAB are explained in detail in the appendix
and the source code of some functions is listed.

Numerical examples show that, due to their semi-analytical approach, spectral super ele-
ments provide better results than conventional three-dimensional finite elements when the
discretization size is comparable. The number of degrees of freedom in a SSE model is much
lower than in a comparable three-dimensional FE model due to the lack of a longitudinal
discretization.

Spectral super elements can be used up to very high frequencies, if the resolution of the cross
sectional mesh is sufficiently high. Information about the wave functions that contribute
most to the solution (wave contribution factors) can be easily obtained from the calculation
results. A graphical user interface is presented for this purpose.

Spectral super elements are formulated in the frequency domain and can therefore be used
directly for harmonic analyses. Transient processes can be simulated with the help of the
discrete Fourier transformation. In this thesis, the transient process of a moving force
on spectral super elements is investigated. A validation of the implemented procedure with
benchmarks from literature is presented. The fact that the discrete Fourier transformation of
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the moving force leads to a comb of forces in longitudinal direction in the frequency domain,
implies that the most important advantage of the spectral super element method cannot be
exploited, because the model has to be discretized in the longitudinal direction at each force
position of the comb of forces. Therefore, the computational effort increases approximately
quadratically with the number of samples, and therefore also with the considered simulation
time.

It has been observed that only a small number of wave functions contributes most to the
solution of a SSE model. A method which reduces the used wave functions in the SSE
formulation is proposed therefore in the last chapter of this dissertation in order to lower
the computational cost. The number of degrees of freedom in the spectral super element
formulation is reduced at the same time, in order to maintain the solvability of the linear
equation system. The performance of this method is ambivalent. Its application is not
advantageous for any problem. The method showed its strength in a numerical example in
which the cross section was highly distorted at the considered frequencies. Based on the
proposed method and observed results a further increase of the computational efficiency of
SSEs can be investigated in future research work.

In addition, the following extensions could be implemented for example in future studies, in
order to take advantage of the full potential of spectral super elements:

• Wave reflection and transmission at cross-sectional and/or material changes can be
investigated, if a system of spectral super elements with different cross sections and/or
material properties is considered.

• Composite wave guides can be investigated if the cross-sectional mesh in the preceding
waveguide FEM consists of elements with different material properties.

• Complex joints between spectral super elements can be modeled with conventional
three-dimensional solid finite elements. For an effective computation, the internal
degrees of freedom of the joint can be eliminated with static condensation, maintaining
only the degrees of freedom at the transition from the finite element region to the
spectral super elements.
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A Appendix

A.1 Definitions of the Fourier Transformation

The Fourier transformation is a very powerful mathematical tool for many (engineering)
disciplines. However, it can be defined in different ways and no standard is set in literature.
This can lead to confusions, if literature of different authors on the same topic is compared,
especially when authors do not write down the used definition. The main difference in the
definition is the transformed coordinate. It can either be defined as a frequency f in [Hz]
(resp. wavenumber k in [ 1

m
]) or as angular frequency ω in [ rad

s
] (resp. angular wavenumber

κ in [ rad
m

]). In the angular case different factors in front of the integrals are valid and used.

A.1.1 Transformation to Frequency f

According to e.g. [Brigham 1987] the transformation t f and its inverse f t is
defined as:

h̃(f) =
∞∫

−∞

h(t)e−i2πft dt (A.1.1)

h(t) =
∞∫

−∞

h̃(f)e i2πft df (A.1.2)

For the transformation of the Dirac-δ-function holds therefore the following:

δ(t) 1 (A.1.3)
δ̃(f) 1 (A.1.4)
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Parseval’s theorem states that the time integral of the product of two functions in time
domain is in general equivalent to the frequency integral of the product of the transformed
functions if one of the transformed functions gets complex conjugated [Brigham 1987]:

∞∫

−∞

w(t) · q(t) dt =
∞∫

−∞

∞∫

−∞

w̃(f)e i2πft df ·
∞∫

−∞

q̃(g)e i2πgt dg dt

=
∞∫

−∞

∞∫

−∞

w̃(f) · q̃(g)
∞∫

−∞

1 · e−i2π(−f−g)t dt
︸ ︷︷ ︸

(A.1.4): δ̃(−f−g)

df dg

=
∞∫

−∞

w̃(f)
∞∫

−∞

q̃(g) · δ̃(−f − g) dg
︸ ︷︷ ︸

q̃(−f)

df

=
∞∫

−∞

w̃(f) · q̃∗(f) df

(A.1.5)

In (A.1.5) the symmetry of the real part and the anti symmetry of the imaginary part of the
transformed function is used: q̃(−f) = q̃∗(f)

A.1.2 Transformation to Angular Frequency ω

The angular frequency ω is linked to the frequency f by ω = 2πf . According to [Brigham
1987] the transformation t ω and its inverse is defined as:

h̃(ω) = a1

∞∫

−∞

h(t)e−iωt dt (A.1.6)

h(t) = a2

∞∫

−∞

h̃(ω)e iωt dω (A.1.7)

Where: a1 · a2 = 1
2π

A.1.2.1 Transformation Rule Used in this Dissertation

In this thesis the definition as in [Bronstein et al 2005] or as in lecture notes and other
publications of the Chair of Structural Mechanics at the Technical University of Munich
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(e.g. [Buchschmid 2017], [Hackenberg 2016], [Kreutz 2013]) is used.

The factors are:

a1 = 1; a2 = 1
2π (A.1.8)

Therefore:

h̃(ω) =
∞∫

−∞

h(t)e−iωt dt (A.1.9)

h(t) = 1
2π

∞∫

−∞

h̃(ω)e iωt dω (A.1.10)

In this case the transformation of the Dirac-δ-function results in:

δ(t) 1 (A.1.11)

δ̃(ω) 1
2π (A.1.12)

⇒1 = 1
2π2π 2πδ̃(ω) (A.1.13)

Parseval’s theorem looks in this case like:
∞∫

−∞

w(t) · q(t) dt =
∞∫

−∞

1
2π

∞∫

−∞

w̃(ω)e iωt dω · 1
2π

∞∫

−∞

q̃(α)e iαt dα dt

= 1
4π2

∞∫

−∞

∞∫

−∞

w̃(ω) · q̃(α)
∞∫

−∞

1 · e−i(−ω−α)t dt
︸ ︷︷ ︸
(A.1.13): 2πδ̃(−ω−α)

dω dα

= 1
2π

∞∫

−∞

w̃(ω)
∞∫

−∞

q̃(α) · δ̃(−ω − α) dα
︸ ︷︷ ︸

q̃(−ω)

dω

= 1
2π

∞∫

−∞

w̃(ω) · q̃∗(ω) dω

(A.1.14)

A.1.2.2 Transformation Rule Used in Important Literature for this Dissertation

The most important literature on which this thesis is based (e.g. [Finnveden 1994] and
[Birgersson et al 2005]) swaps the directions of transformation. (The negative sign in the
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exponent of the e -function is placed there in the integral over the angular frequency.)

The factors are:

a1 = 1
2
√
π

; a2 = 1√
π

(A.1.15)

Therefore:

h̃(ω) = 1
2
√
π

∞∫

−∞

h(t)e iωt dt (A.1.16)

h(t) = 1√
π

∞∫

−∞

h̃(ω)e−iωt dω (A.1.17)

In this case the transformation of the Dirac-δ-function results in:

δ(t) 1
2
√
π

(A.1.18)

δ̃(ω) 1√
π

(A.1.19)

⇒1 = 1√
π

√
π

√
πδ̃(ω) (A.1.20)

Parseval’s theorem looks in this case like:
∞∫

−∞

w(t) · q(t) dt =
∞∫

−∞

1√
π

∞∫

−∞

w̃(ω)e−iωt dω · 1√
π

∞∫

−∞

q̃(α)e−iαt dα dt

= 1
π

∞∫

−∞

∞∫

−∞

w̃(ω) · q̃(α)
∞∫

−∞

1 · e−i(ω+α)t dt
︸ ︷︷ ︸

2
√
π

1
2
√
π

∞∫

−∞

1 · e i(−ω−α)t dt
︸ ︷︷ ︸

(A.1.20):
√
πδ̃(−ω−α)

dω dα

= 1
π

∞∫

−∞

w̃(ω)
∞∫

−∞

q̃(α) · 2π · δ̃(−ω − α) dα
︸ ︷︷ ︸

2πq̃(−ω)

dω

= 2 ·
∞∫

−∞

w̃(ω) · q̃∗(ω) dω

(A.1.21)
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A.2 Parseval ’s Theorem for the First Derivative w.r.t Time

Differentiation in time domain leads to an multiplication with iω in frequency domain [Buch-
schmid 2017]:

ẇ(t) iωw̃(ω) (A.2.1)

A simple multiplication of the first derivatives of two functions leads therefore in the fre-
quency domain to a negative sign, because (iω)2 = −ω2.

However, it is proven in the following that the frequency domain side of Parseval’s theorem
for the first derivatives of two functions has a positive sign, because one of the transformed
functions has to be complex conjugated:

∞∫

−∞

ẇ(t) · q̇(t) dt =
∞∫

−∞

1
2π

∞∫

−∞

iωw̃(ω)e iωt dω · 1
2π

∞∫

−∞

iαq̃(α)e iαt dα dt

= 1
4π2

∞∫

−∞

∞∫

−∞

iωw̃(ω) · iαq̃(α)
∞∫

−∞

1 · e−i(−ω−α)t dt
︸ ︷︷ ︸
(A.1.13): 2πδ̃(−ω−α)

dω dα

= 1
2π

∞∫

−∞

iωw̃(ω)
∞∫

−∞

iαq̃(α) · δ̃(−ω − α) dα
︸ ︷︷ ︸

i(−ω)·q̃(−ω)=−iωq̃∗(ω)

dω

= 1
2π

∞∫

−∞

ω2w̃(ω) · q̃∗(ω) dω

(A.2.2)

Therefore, the kinetic energy in Eq.2.26 on page 24 is positive.



A.3 Single Degree of Freedom System with a Complex-Valued Spring 125

A.3 Single Degree of Freedom System with a

Complex-Valued Spring

Two single degree of freedom systems are considered in this section: One with a spring with
the stiffness k and a viscous damper with the damping constant c and one with a complex
valued spring with the stiffness kc, which is defined with the help of the loss factor η and
the sgn(Ω)-function. Both systems are loaded with the same load. The solutions w(t) for
both systems are determined in the following with the help of a Fourier transformation
to frequency domain of the load and the differential equation and with a subsequent back
transformation of the solution to time domain. The solution procedure for the two systems
is compared in two columns. The reason for the sgn()-function and the main mechanical
difference of the two systems are explained.

System with Viscous Damper

k c

m

p(t)

w(t)

Figure A.1: SDOF system with a viscous damper

System with Complex-Valued Spring

kc = k(1 + i sgn(ω)η)

m

p(t)

w(t)

= kr + i sgn(ω)ki
Figure A.2: SDOF system with a complex-valued

spring

Load

p(t) = p0 cos(Ωt) = p0

2
(
e iΩt + e−iΩt

)
(A.3.1)

p̃(ω) = πp0 (δ(ω − Ω) + δ(ω + Ω)) (A.3.2)

Differential Equations

mẅ(t) + cẇ(t) + kw(t) = p(t) (A.3.3)

(
−ω2m+ iωc+ k

)
w̃(ω) = p̃(ω) (A.3.4)

mẅ(t) + kcw(t) = p(t) (A.3.5)

(
−ω2m+ kc

)
w̃(ω) = p̃(ω) (A.3.6)
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Solution

w̃ =πp0 (δ(ω − Ω) + δ(ω + Ω))
−ω2m+ iωc+ k

= πp0δ(ω − Ω)
−Ω2m+ iΩc+ k

+ πp0δ(ω + Ω)
−Ω2m− iΩc+ k

(A.3.7)

w̃ =πp0 (δ(ω − Ω) + δ(ω + Ω))
−ω2m+ kc

=πp0 (δ(ω − Ω) + δ(ω + Ω))
−Ω2m+ kc

= πp0δ(ω − Ω)
−Ω2m+ kr + iki

+ πp0δ(ω + Ω)
−Ω2m+ kr − iki

(A.3.8)

w(t) =
p0
2 e iΩt

−Ω2m+ iΩc+ k
+

p0
2 e−iΩt

−Ω2m− iΩc+ k
(A.3.9)

w(t) =
p0
2 e iΩt

−Ω2m+ kr + iki
+

p0
2 e−iΩt

−Ω2m+ kr − iki
(A.3.10)

For the system with the viscous damper the sign of the damping term iΩt in Eq.(A.3.7)
changes due to the Dirac-δ-function in dependency of the sign of the frequency Ω. This
is not the case for the system with the complex-valued spring. The damping is "hidden"
in line two of Eq.(A.3.8) in the complex spring stiffness kc. The damping term iki in the
third line of Eq.(A.3.8) changes its sign just due to the sgn()-function in the definition of the
complex spring stiffness. The opposite signs of the damping terms for positive and negative
frequencies are necessary in order to ensure a pure real solution for w(t) after the Fourier
back transformation.

The main mechanical difference of a viscous damper and a complex-valued spring becomes
clear in the solution for w(t) in Eqs.(A.3.9) and (A.3.10): The viscous damper causes a
frequency dependent damping term iΩc. The damping term of the complex-valued spring
iki = ikη is frequency independent.

[Müller and Buchschmid 2014] proofed that 2πη is the ratio of dissipated to restorable
mechanical energy per vibrational period:

2πη = Wdiss

Welast
(A.3.11)
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A.4 Numerical Implementation of the Waveguide FEM in

MATLAB

The implementation of the waveguide FEM in MATLAB with object oriented programming
(OOP) [Stein 2015] has been supported by Ahmed Hossam in his master’s thesis [Hossam
2017]. The author can provide the code upon request (axel.greim@tum.de).

The waveguide FEM is implemented with the help of three hierarchic classes in order to
have maximum flexibility for further enhancements or modifications:

1. ComputationalQuad
An object of the class ComputationalQuad stores in its properties quantities of
a waveguide element which depend only on the natural coordinates ξ, η (e.g. shape
functions and their derivatives). These properties are therefore independent of the
physical dimensions of an element.

2. PhysicalQuad
An object of the class PhysicalQuad needs in its constructor information about
the material and the physical node coordinates. It contains an object of the class
ComputationalQuad as constant property. The element matrices are calculated
amongst others with class methods and are stored as properties.

3. IsoQuadCrossSection
An object of the class IsoQuadCrossSection represents the infinite waveguide by
its cross-sectional mesh. Its constructor needs the element topology, material and
excitation frequency as input parameters. Class methods calculate a PysicalQuad
for each element, assemble the system matrices and solve the quadratic eigenvalue
problem. Furthermore, several plotting methods are available.

By default objects are passed in MATLAB by value. This means, that an object is copied
in the workspace if it is passed to a function. Two independent objects exist in workspace
afterwards. Therefore, a function cannot modify the original object directly. The copied
object has to be returned and assigned to the original object instead. This behavior is not
very common in OOP. In other programming languages like e.g. C++ "pass-by-reference"
is the default setting. This means, that just a handle to the object (instead of a copy) is
passed. The function which receives the object can modify it directly. No further assigning
is necessary. A class whose objects are passed by reference is defined in MATLAB by
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defining the class formally as a subclass from MATLAB’s super class handle as shown in
Listing A.1.

Listing A.1: Definition of handle classes in MATLAB

1 classdef ComputationalQuad < handle

2 〈Properties and Methods〉
3 end

In the following the three classes are described shortly. The code of some important class
methods is listed and explained.

A.4.1 The Class ComputationalQuad

The properties and the constructor of the class ComputationalQuad is written in List-
ing A.2. The code of the other class methods which are all called in the constructor is not
displayed for brevity. An object of this class contains the values of the shape functions, their
derivatives in natural coordinates and supportive matrices for the calculation of the Jaco-
bian, of the element mass matrix and for the derivatives of the shape functions in physical
coordinates. (The latter are required later in the class PhysicalQuad to calculate the
strain matrices ε

mn
according to section 2.1.1.) Each property is a cell array where each cell

stores the value of the respective quantity at one Gauß point.

The constructor of the class and all other class methods have no other input arguments than
the object itself. Therefore, an object of the class ComputationalQuad will always have
the same properties. The class can therefore be interpreted just as a database for other
classes. Calculating all the properties with class methods is just a more elegant way than
hard coding them.

Listing A.2: Properties and constructor of the class ComputationalQuad

1 classdef ComputationalQuad < handle

2 properties (SetAccess = private, GetAccess = public)

3 GPs cell % natural coordinates of gauss points incl.

weighting [xi,eta,wxi*weta]

4 N cell % shape functions

5 dNdxi cell % derivatives of shape functions w.r.t. xi

6 dNdeta cell % derivatives of shape functions w.r.t. eta

7 N_Mtx1 cell % N-matrices for the calculation of the jacobian

matrices (jacobian is gained by multiplying this matrix with the

matrix of node coordinates of a physical element)

8 N_Mtx2 cell % N-matrices for the calculation of dN/dy and dN/dz
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9 N_Mtx3 cell % N-matrices for the calculation of the element

mass matrices

10 GP_Nr cell % Numbering of GPs

11 end

12 properties (Constant, Access = public)

13 nGP = 2 % number of gaussian integration points per direction.

14 end

15 methods

16 % constructor

17 function cq = ComputationalQuad

18 cq.GP_Nr = {1:cq.nGP^2};

19 cq.GPs = cq.CalculateGaussPointsAndWeights;

20 cq.N = cq.ShapeFunctions;

21 cq.dNdxi = cq.DerivativesWrtXi;

22 cq.dNdeta = cq.DerivativesWrtEta;

23 cq.N_Mtx1 = cq.CalculateN_Mtx1;

24 cq.N_Mtx2 = cq.CalculateN_Mtx2;

25 cq.N_Mtx3 = cq.CalculateN_Mtx3;

26 end

27 〈Further class methods〉
28 end

29 end

A.4.2 The Class PhysicalQuad

Main purpose of an object of the class PhysicalQuad is to calculate and store the element
matrices ε

mn
and m00. Furthermore, class methods can calculate and store the element’s

surface area, the coordinates of its center of gravity and its area moments of inertia. The
properties and the constructor method are written in Listing A.3. Input parameters for
the constructor are the element number, two row arrays with the physical coordinates of
the nodes and an object of the class Mate. The latter contains as properties the material
constants E, ν and ρ and the D-matrix.

Listing A.3: Properties and constructor of the class PhysicalQuad

1 classdef PhysicalQuad < handle

2 properties (GetAccess = public, SetAccess = private)

3 % input parameter of the constructor method:

4 Elem_Nr int32 % number of the element

5 y double % y-coordinates of the nodes

6 z double % z-coordinates of the nodes
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7 mate Mate % object of class Mate (contains Material properties

E, v, rho and D-Matrix)

8 % calculated with methods of this class:

9 yS double % y-coordinate of the center point

10 zS double % z-coordinate of the center point

11 A double % element area

12 Iy double % moment of Inertia

13 Iz double % moment of Inertia

14 Iyz double % moment of Inertia

15 J cell % jacobian

16 invJ cell % inverse jacobian

17 dNdy cell % derivatives of shape functions w.r.t. y

18 dNdz cell % derivatives of shape functions w.r.t. z

19 m cell % element mass matrix

20 epsilon0 cell % straincomponent epsilon0 in each Gauss point

21 epsilon1 cell % straincomponent epsilon1 in each Gauss point

22 epsilon00 cell % element stiffness matrix epsilon00

23 epsilon01 cell % element stiffness matrix epsilon01

24 epsilon10 cell % element stiffness matrix epsilon10

25 epsilon11 cell % element stiffness matrix epsilon11

26 end

27 properties (GetAccess = private, SetAccess = private, Transient = true)

28 L event.listener % listens to changes of the property detJ

29 end

30 properties (SetObservable)

31 detJ cell % determinant of jacobian

32 end

33 events

34 NegativeDetJ % event which triggers automatically in case det(J)=0

35 end

36 properties (Constant, GetAccess = public)

37 cq = ComputationalQuad

38 ndofs = 12

39 end

40 methods

41 %% constructor

42 function pq = PhysicalQuad(Mat,ElemNr,ey,ez)

43 pq.mate = Mat;

44 pq.L = addlistener(pq,'NegativeDetJ',@pq.AlarmNegativeDetJ);

45 pq.CalculateElement(ElemNr,ey,ez);

46 end

47 %% function called in the constructor to calculate the quad element

48 function CalculateElement(pq,ElemNr,ey,ez)

49 pq.y = ey;
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50 pq.z = ez;

51 pq.Elem_Nr = ElemNr;

52 pq.J = pq.CalculateJacobian;

53 pq.detJ = pq.CalculateJacobianDeterminant;

54 if any(cell2mat(pq.detJ)<=0)

55 notify(pq,'NegativeDetJ');

56 end

57 pq.invJ = pq.CalculateInverseJacobian;

58 pq.A = pq.CalculateElementArea;

59 [pq.yS, pq.zS] = pq.CalculateCenterOfGravity;

60 [pq.Iy, pq.Iz, pq.Iyz] = pq.CalculateMomentsOfInteria;

61 pq.dNdy = pq.CalculateDerivativesWrty;

62 pq.dNdz = pq.CalculateDerivativesWrtz;

63 pq.epsilon0 = pq.CalculateEpsilon0;

64 pq.epsilon1 = pq.CalculateEpsilon1;

65 pq.m = pq.Calculate_m;

66 pq.epsilon00 = pq.CalculateEpsilon00;

67 pq.epsilon01 = pq.CalculateEpsilon01;

68 pq.epsilon10 = pq.CalculateEpsilon10;

69 pq.epsilon11 = pq.CalculateEpsilon11;

70 end

71 〈Further class methods〉
72 end

73 end

An event-listener strategy ensures a reasonable element topology. The listener L, which
is assigned in the constructor, listens to the event NegativeDetJ and calls the function
AlarmNegativeDetJ. The event NegativeDetJ is notified as soon as det J is negative
in any Gauß point. det J is negative if the element’s geometry is not convex. The source code
of the callback function AlarmNegativeDetJ is not displayed in this thesis for brevity.
It mainly produces an error message with the current element number, so that the user can
find the erroneous element in the cross-sectional mesh.

All methods which calculate the properties like the element matrices are not listed for brevity.
They carry out the Gaussian integration according to section 2.1.3 by summing over cell
components.
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A.4.3 The Class IsoQuadCrossSection

An object of the class IsoQuadCrossSection represents the infinite waveguide by its
cross-sectional mesh. The properties and the constructor are written in Listing A.4.

Listing A.4: Properties and constructor of the class IsoQuadCrossSection

1 classdef IsoQuadCrossSection < handle

2 properties (GetAccess = public, SetAccess = ?SSE)

3 filename char

4 f_i double % Finite Element topology

5 v_i double % Coordinates of the FE nodes

6 NodesOnBoundary double % Node numbers of nodes on the

boundary of the cross section

7 nDOFs double % Number of DOFs of the cross

section

8 DOFs double % DOF Numers sorted columnwise to

nodes, first row: x-DOF number; second row: y-DOF number; third

row: z-DOF number

9 v_i_S double % node coordinates w.r.t to center

of gravity

10 A double % area

11 yS double % y-coordinate of center of gravity

12 zS double % z-coordinate of center of gravity

13 height double % maximum extent in z-direction

14 width double % maximum extent in y-direction

15 Epsilon00 double % stiffness matrix Epsilon00

16 Epsilon01 double % stiffness matrix Epsilon01

17 Epsilon10 double % stiffness matrix Epsilon10

18 Epsilon11 double % stiffness matrix Epsilon11

19 M_consistent double % consistent mass matrix

M_consistent

20 M_lumped double % lumped mass matrix M_lumped

21 Theta double % Theta matrix used by SSE elements

22 pq PhysicalQuad % array of physical quadrilaterals

23 kx double % wavenumbers

24 phi_R double % right eigenvectors (column vectors

)

25 V cell % displacement field

26 Omega double % frequency

27 OmegaRange double % Range of Omega for dispersion

Curves

28 kxRange double % Range of Wavenumbers for

dispersion Curves
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29 Mat Mate % Object of class Mate, defines the

material

30 NumKx int16 % Optional: Number of Eigenvalues

and -vectors to be calculated

31 end

32 methods

33 %% constructor

34 function cs = IsoQuadCrossSection(Crosssection,Omega,Mat,NumKx)

35 % check optional Input argument:

36 if ~exist('NumKx','var')

37 NumKx = [];

38 end

39 〈Conditionally execute statements (if-else) to check for saved calculation results〉
40 tic

41 cs.Mat = Mat;

42 cs.filename = Crosssection;

43 cs.Omega = Omega;

44 cs.NumKx = NumKx;

45 cs.v_i = getfield(load(strcat('cross_sections/',cs.filename,'.mat'

)), 'q_Nodes');

46 cs.f_i = getfield(load(strcat('cross_sections/',cs.filename,'.mat'

)), 'q_Elems');

47 cs.nDOFs = 3*size(cs.v_i,1); % 3 DOFs per node

48 cs.DOFs = reshape(1:cs.nDOFs,3,cs.nDOFs/3); %Indices of DOFs

sorted columnwise to nodes

49 cs.SortNodesAccToIsoApproach; % make sure, that element topology

is always counter clockwise

50 cs.CalculateSystemMatrices;

51 cs.AreaAndCenterPoint;

52 cs.NodesOnBoundary = CalculationSettings.DetermineBoundaryNodes(cs

.f_i,cs.v_i);

53 cs.SolveQEP;

54 cs.CalculateTheta

55 fprintf(strcat(['Complete new cross-sectional analysis finished.

Took ',num2str(toc),' seconds \n']));

56 save(strcat('cross_sections_results/CrossSection_Results_',

Crosssection,'_Iso.mat'),'cs');

57 end

58 〈Further class methods〉
59 end

60 end

The constructor needs three input arguments. (The input argument NumKx is optional. It



134 A Appendix

enables to limit the number of eigenvalues in the eigenvalue solver, which is important for
chapter 5.)

The first input argument Crosssection is the name of a *.mat-file which contains the
cross sectional mesh in two variables: q_Nodes contains the y,z-coordinates of the nodes
line by line. q_Elems contains in each line the node numbers of the element with the
line number. In general an arbitrary FE mesh generator can export the data in these two
variables. The universal pre- and post processor GiD1 is used for meshing in the work of
this thesis. A MATLAB import script reads the two variables q_Nodes and q_Elems from
GiD’s export and saves them in a respective *.mat-file.

The second input argument of the constructor Omega is the excitation frequency and the
third argument Mat is a material object like used in the class PhysicalQuad. The con-
structor assigns class properties either directly or by calling other class methods. Two of
them are most important:

1. The element matrices for all elements are calculated and assembled in
CalculateSystemMatrices.

2. The quadratic eigenvalue problem is solved in SolveQEP.

These two methods are described more detailed in the following two subsections. Other class
methods have the purpose to ensure reasonable results or to visualize the results. E.g. the
method SortNodesAccToIsoApproach ensures with the help of Gauss’s area formula
(shoelace formula) that all element nodes are listed counter clockwise. This method is de-
scribed in detail by [Hossam 2017]. The method DetermineBoundaryNodes determines
the nodes on the cross section’s boundary which are important for 3D drawings.

The class IsoQuadCrossSection contains furthermore a bunch of visualization methods
with which the drawings and plots concerning the cross sections are made in this thesis.
These methods are not described for brevity.

A.4.3.1 Assembling of the Element Matrices

The class method CalculateSystemMatrices calculates an object of the class
PhysicalQuad for each element of the cross-sectional mesh and assembles the element
matrices from these objects to the system matrices. The source code of this method is
written in Listing A.5.

1www.gidhome.com
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Listing A.5: The class method CalculateSystemMatrices of the class IsoQuadCrossSection

1 function CalculateSystemMatrices(cs)

2 idx_G = zeros(PhysicalQuad.ndofs*size(cs.f_i,1),1);

3 idx1_G = zeros(PhysicalQuad.ndofs^2*size(cs.f_i,1),1);

4 idx2_G = idx1_G;

5 val_M = idx2_G;

6 val_Epsilon00 = val_M;

7 val_Epsilon01 = val_Epsilon00;

8 val_Epsilon10 = val_Epsilon01;

9 val_Epsilon11 = val_Epsilon10;

10 f = @(x) full(x{:}(:)); % function which writes all columns of one

element matrix in one column

11 for k = 1:(size(cs.f_i,1)) % loop over all elements

12 cs.pq(k) = PhysicalQuad(cs.Mat,k,cs.v_i(cs.f_i(k,:),1)',cs.v_i(cs.f_i(

k,:),2)');% Calculation of the physical quad of each element

13 s = ((k-1)*PhysicalQuad.ndofs+1) : (k*PhysicalQuad.ndofs); % s =

1:12 for Element 1; s = 13:24 for Element 2; etc...

14 z = ((k-1)*PhysicalQuad.ndofs^2+1) : (k*PhysicalQuad.ndofs^2);% z =

1:144 for Element 1; z= 145:288 for Element 2; etc...

15 idx_G(s,1) = [cs.DOFs(:,cs.f_i(k,1));cs.DOFs(:,cs.f_i(k,2));cs.DOFs(:,

cs.f_i(k,3));cs.DOFs(:,cs.f_i(k,4))];

16 [b,a] = meshgrid(idx_G(s,1)); % a = new row index of resp. matrix

component, b = new coloum index of resp. matrix component

17 idx1_G(z,1) = a(:);

18 idx2_G(z,1) = b(:);

19 val_M(z,1) = f(cs.pq(k).m);

20 val_Epsilon00(z,1) = f(cs.pq(k).epsilon00);

21 val_Epsilon01(z,1) = f(cs.pq(k).epsilon01);

22 val_Epsilon10(z,1) = f(cs.pq(k).epsilon10);

23 val_Epsilon11(z,1) = f(cs.pq(k).epsilon11);

24 end % end loop over all elements

25 cs.M_consistent = sparse(idx1_G,idx2_G,val_M,cs.nDOFs,cs.nDOFs);

26 if CalculationSettings.M_lumped == true

27 cs.Calculate_M_Lumped;

28 end

29 cs.Epsilon00 = sparse(idx1_G,idx2_G,val_Epsilon00,cs.nDOFs,cs.nDOFs);

30 cs.Epsilon01 = sparse(idx1_G,idx2_G,val_Epsilon01,cs.nDOFs,cs.nDOFs);

31 cs.Epsilon10 = sparse(idx1_G,idx2_G,val_Epsilon10,cs.nDOFs,cs.nDOFs);

32 cs.Epsilon11 = sparse(idx1_G,idx2_G,val_Epsilon11,cs.nDOFs,cs.nDOFs);

33 end

The PhysicalQuad-objects are calculated in a for loop (loop index k) over all elements of
the cross sectional mesh. In the same loop the vector idx_G is filled with components which
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list for each element DOF the respective DOF in the global mesh. The class property DOFs
which is assigned in the constructor (line 48 in Listing A.4) is used for this purpose. The
part of idx_G concerning the current element (idx1_G(s,1)) is repeated with the help
of MATLAB’s functions meshgrid twelve times (number of element DOFs) so that each
column of the 12× 12 matrix a is a copy of it. At the same time, it is repeated twelve times
so that each row of the matrix b is a copy of it. The grid matrices a and b assign to each
component of the current element matrix it’s position in the global cross-sectional matrix.
For example the row index of the global matrix component to which the element matrix
component M23 has to be added in the assembling is a(2,3). The respective column index
is b(2,3).

In the next step a and b are reshaped to column vectors and assigned to the global variables
idx1_G and idx2_G at the positions z concerning the current element. Also the element
matrices are reshaped to column vectors and are assigned to to the global vectors val_M
and val_EpsilonMN.

The assembling of the global matrices is carried out after the end of the for loop over all finite
elements with the help of MATLAB’s sparse function. This function sets up a cs.NDOFs×
cs.NDOFs sparse matrix such that e.g. Epsilon00(idx1_G(k),idx2_G(k)) =
val_Epsilon00(k). Any elements of val_Epsilon00 that have duplicate values of
idx1_G and idx2_G are added.

An optional function call in order to lump the mass matrix is implemented in line 27 of
Listing A.5. [Rank et al 1983] show advantages of using lumped mass matrices in transient
analysis with FE procedures. Time step integration is not investigated in this thesis and in
general no influence of a lumped mass approach on the numerical stability of the investigated
examples has been observed. Therefore, all examples presented in this thesis are calculated
with consistent mass matrices in order to avoid additional approximation.

A.4.3.2 The Quadratic Eigenvalue Problem

The quadratic eigenvalue problem for the wavenumber κx in Eq. (2.46) is solved with the
class method SolveQEP. The source code of this method is written in Listing A.6. In the
first step the eigenvalue problem is reformulated to the standard form:

(κ2
xA2 + κxA1 + A0)Ṽ (κx) = 0 (A.4.1)

The Matrices A
i
are assigend in lines 3, 5 and 7 of Listing A.6.
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Listing A.6: The class method SolveQEP of the class IsoQuadCrossSection

1 function SolveQEP(cs)

2 % Matrix multiplied with the squared eigenvalue kx

3 A2 = full(cs.Epsilon11);

4 % Matrix multiplied with the linear eigenvalue kx

5 A1 = 1i*full(cs.Epsilon01-cs.Epsilon10);

6 % Constant part of the Eigenvalue problem

7 A0 = full(cs.Epsilon00)-cs.Omega^2*full(cs.M_consistent);

8
9 % -> first companion form (according to TISSEUR AND MEERBERGEN, 2001)

10 A_Mtx = [zeros(size(A0)),eye(size(A0));-A0,-A1];

11 B_Mtx = [eye(size(A2)),zeros(size(A2));zeros(size(A2)),A2];

12
13 if isempty(cs.NumKx)

14 [Ve,D] = eig(A_Mtx,B_Mtx);

15 D = diag(D);

16 Ve = Ve(1:1:size(Ve,1)/2,:);

17 [~,I] = sort(abs(D));

18 D = D(I);

19 Ve = Ve(:,I);

20 else

21 [Ve,D] = eigs(A_Mtx,B_Mtx,cs.NumKx,'sm');

22 D = diag(D);

23 Ve = Ve(1:cs.nDOFs,:);

24 [D,I] = sort(D,'ComparisonMethod','abs');

25 Ve = Ve(:,I);

26 end

27 % Normalize eigenvectors before returning

28 VeL2 = sqrt(sum(abs((Ve.^2)))); %L2-Norm of Eigenvectors

29 Ve = Ve./VeL2;

30 % assign to class properties

31 cs.kx = D;

32 cs.phi_R = Ve;

33 end

The quadratic eigenvalue problem can be linearized with the help of the first companion
form according to [Tisseur and Meerbergen 2001] p.253:
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 = 0 (A.4.2)

Eq. (A.4.2) is a linear generalized eigenvalue problem of double size of Eq. (A.4.1). It is
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solved either with MATLAB’s solver eig (if all eigenvalues and eigenvectors are required)
or with the iterative solver eigs (if the number of eigenvalues is limited). The limitation
of the eigenvalues is important in chapter 5 which deals with increasing the computational
efficiency. Both eigenvalue solvers return the matrix of eigenvectors Ve and the diagonal
matrix D with the eigenvalues on the main diagonal. The solution can therefore be checked
if the following equation holds:

A_Mtx*Ve = D*B_Mtx*Ve

The lower half of Ve is skipped in line 16 resp. line 23 of Listing A.6, because it contains
according to Eq(A.4.2) just copies of the eigenvectors which are scaled by the respective
eigenvalues.

The main diagonal of matrix D is written into a column vector with diag(D). The eigen-
values and eigenvectors are sorted according to the magnitude of the eigenvalues. The
eigenvectors are normalized w.r.t to their L2-norm. At the end of the method both arrays
are assigned to the class properties kx (eigenvalues) and phi_R (eigenvectors).

MATLAB is provided also with a polynomial eigenvalue solver called polyeig. This solver
delivers for the investigated examples exactly the same result as the eig solver with the
presented linearization. polyeig allows no limitation of the number of eigenvalues. There-
fore, the linearization has to be implemented as presented in order to use the iterative solver
eigs.

A.5 Numerical Implementation of the Spectral Super

Element Method

The program package described in section A.4 has been extended by a fourth class called
SSEsystem in order to implement the theory of the spectral super elements. This imple-
mentation has been partially supported by Sebastian Pfitzmaier and Julius Mader during the
work on their master’s theses [Pfitzmaier 2018] and [Mader 2019]. The author can provide
the code upon request (axel.greim@tum.de).
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A.5.1 The class SSEsystem

An object of the class SSEsystem represents a system of spectral super elements with
same cross section, which are coupled in x-direction along a straight line. Boundary con-
ditions (loads and displacement constraints) can be applied on the cross-sectional meshes
at the element boundaries. The properties and the constructor of this class are written in
Lst. A.7. The user has to set up an object of the class IsoQuadCrossSection according
to section A.4.3 before he/she can set up the SSEsystem object. The object of the class
IsoQuadCrossSection contains in its properties all information about the material, the
cross-sectional mesh, the current frequency and the wavenumbers and -shapes.

If a system shall be analyzed at different excitation frequencies (e.g. during a harmonic
analysis), a new IsoQuadCrossSection (and with that a new SSEsystem) has to be
calculated for each frequency.

The cross-sectional object is handed together with two vectors to the constructor of a
SSEsystem object:

1. xcs contains the x-coordinates of the spectral super element boundaries in a global
coordinate system.

2. xdisc contains the global x-coordinates at which the solution shall be evaluated
numerically (e.g. for plotting purposes). xdisc must contain the coordinates of xcs.

The constructor stores at the beginning the input arguments in properties and assigns some
basic geometrical properties like the number of SSEs in the system, the overall length of the
system and the length lx for each SSE in its local coordinate system according to Fig. 3.1.

Listing A.7: Properties and constructor of the class SSEsystem

1 classdef SSEsystem < handle

2 properties (Access = public)

3 nele double % number of SSEs

4 cs IsoQuadCrossSection % cross section object

5 xdisc double % vector of discrete x-coordinates

between 0 and L at which the solution is to be discretized

6 xcs double % x-coordinates of element

boundaries

7 l double % vector of half lengths lx of

each SSE object (element x-coordinates from -lx to +lx)

8 L double % total length of the SSEsystem

9 A cell % A-matrices of each SSE

10 F double % global force vector
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11 SupCond logical % logical vector with 0 if

respective DOF is fixed and 1 if it is free

12 W double % vector of global nodal

displacements at the element boundaries

13 V double % matrix of displacements along

the system evaluated at x=xdisc

14 end

15 methods

16 %% 1 constructor of class SSEsystem

17 function sys = SSEsystem(CrossSection,xdisc,xcs)

18 sys.cs = CrossSection;

19 sys.xdisc = xdisc(:);

20 sys.xcs = xcs(:);

21 sys.nele = length(sys.xcs)-1;

22 sys.l = (xcs(2:end)-xcs(1:end-1))/2;

23 sys.L = xcs(end);

24 sys.A = cell(sys.nele,1);

25 for i = 1:sys.nele

26 sys.A{i,1} = sys.CalculateA(sys.l(i));

27 end

28 sys.F = zeros(sys.cs.nDOFs*length(sys.xcs),1);

29 sys.W = zeros(sys.cs.nDOFs*length(sys.xcs),1);

30 sys.SupCond = true(sys.cs.nDOFs*length(sys.xcs),1);

31 end % end constructor

32 〈Further class methods〉
33 end

34 end

Furthermore, the constructor calculates for each SSE in the system the matrix A according
to Eqs. (3.5)-(3.7) with the help of the class method CalculateA in Lst. A.8. For this
purpose, the inverse of A is assembled according to Eq. (3.5) and is inverted with the help
of MATLAB’s solver "matrix left divide" (\).

The inverse of A consists of the matrix of wave shapes Φ, which is contained in the cross-
sectional object (cs.phi_R), and the diagonal matrix of wave functions E evaluated at the
ends of the respective SSE. The matrix E is defined in Eq. (3.2). It is calculated at a discrete
local coordinate x with the help of the class method CalculateE in Lst. A.9.

Listing A.8: The class method CalculateA of the class SSEsystem

1 function A = CalculateA(sys,l)

2 % Compute element matrix A depending on the half lenght

3 % of the element lx

4 Ea = sys.CalculateE(l,-l);



A.5 Numerical Implementation of the Spectral Super Element Method 141

5 Ee = sys.CalculateE(l,l);

6 % assemble Ainv and invert it to get A:

7 Ainv = [sys.cs.phi_R*Ea;sys.cs.phi_R*Ee];

8 I_Mtx = eye(size(Ainv,1));

9 A = Ainv\I_Mtx;

10 end

The method CalculateE is also used – after the vector of unknowns W has been found
– for the evaluation of the solution at the discrete x-coordinates in xdisc according to
Eq. (3.8). For this purpose, the class method SSEsystem.Evaluate is used, which stores
the evaluated solution in the class property V. The source code of this method is not printed
in this thesis for brevity.

Listing A.9: The class method CalculateE of the class SSEsystem

1 function E = CalculateE(sys,l,x)

2 % Compute the diagonal matrix E

3 % Input: l half length lx of the element

4 % x location of evaluation between [-lx,lx]

5
6 kappa = sys.cs.kx;

7 % define vector signum containing the signs of the

8 % imaginary part of kappa:

9 signum=zeros(size(kappa));

10 signum(imag(kappa)>=0)=1;

11 signum(imag(kappa)<0)=-1;

12 % compute entries of the diagonal matrix E as a vector

13 Diag = exp(1j*kappa.*(x+signum*l));

14 % store E as a sparse matrix and return it:

15 E = spdiags(Diag,0,length(Diag),length(Diag));

16 end

At the end the constructor of the class SSEsystem initializes the vector of unknowns W ,
the external force vector F and the logical vector SupCond with which the displacement
constraints are defined. The purpose of the vector SupCond is described in detail in the
following section.

A.5.2 Application of Displacement Constraints

The most simple method to constrain the displacement of the DOF Wi in a linear system of
equations such as Eq. (3.26) is to set in the stiffness matrix the diagonal component Kii = 1
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and the remaining components of row i and column i to 0. In the force vector the respective
component has to be set to Fi = 0. Subsequently, the only valid solution is Wi = 0.

A variation of this idea is used in the class SSEsystem: The row i and the column i is
canceled from the whole equation system. Therefore, no solution for the constrained DOFWi

is obtained. This doesn’t mind, because the vector W has been initialized as null vector in the
constructor (Lst. A.7). The operation of canceling rows and columns is performed with the
help of logical indexing in MATLAB just before the system is solved. Due to this procedure,
the application of displacement constraints is independent from the load application. The
logical vector SupCond is used for the logical indexing. It has the dimension of the numbers
of DOFs in the system and is true for non-constrained DOFs and false for the constrained
ones. The rows of the constrained DOFs in the force vector F are canceled then e.g. with
the command F(SupCond).

The property SupCond is initialized with true in the constructor (Line 30 in Lst. A.7). The
class method SupportCondition in Lst. A.10 has been implemented, in order to avoid
that the user has to search manually for the entries which have to be set to false in order
to constrain a certain DOF. The input arguments are the global coordinates of the nodes to
be constrained as well as a character for the displacement direction to be constrained. The
global y- and z-coordinates are the same as in the local element coordinate system, which is
defined in Fig. 3.1 w.r.t. the center of gravity of the cross section. The global x-coordinate
is defined by the property xcs. Instead of defining certain coordinates, the character vector
’all’ may be used in order to constrain either all nodes which are located in the respective
direction or all displacement directions of a node. The method searches the indices of the
constrained DOFs in the global vector of unknowns W and sets the respective entries in
SupCond to false. W has the following structure:

W = [DOFs of cross section at xcs(1),DOFs of cross section at xcs(2), ...]T (A.5.1)

The method uses the property DOFs of the IsoQuadCrossSection object. This 2D array
defines which three DOFs belong to a certain node of the cross-sectional mesh. The node
numbers are the column indices. The first line defines the numbers of DOFs in x-direction,
the second in y-direction and the third in z-direction. The property looks like:

cs.DOFs =




1 4 7 · · ·
2 5 8 · · ·
3 6 9 · · ·


 (A.5.2)
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Listing A.10: The class method SupportCondition of the class SSEsystem

1 function SupportCondition(sys,x,y,z,dir)

2 n = sys.cs.nDOFs; % number of DOFs in crosssection

3 xcsind = find(x==sys.xcs)-1; % location of x within xcs

4
5 y_all = sys.cs.v_i_S(:,1); % y-coords of all nodes in the cross section

6 z_all = sys.cs.v_i_S(:,2); % z-coords of all nodes in the cross section

7
8 % find the numbers of the nodes that are closest to the input coordinates

9 if strcmp(y,'all') && strcmp(z,'all')

10 m = (1:numel(y_all(:,1)))'; % constrain all nodes

11 elseif strcmp(y,'all')

12 m = find(abs(z_all-z) <0.005); % line support in y - direction

13 elseif strcmp(z,'all')

14 m = find(abs(y_all-y) <0.005) ; % line support in z - direction

15 else

16 k = find(abs(z_all-z) <0.005) ; % point support

17 ll = find(abs(y_all-y) <0.005) ;

18 m = intersect(k,ll) ;

19 end

20
21 % set corresponding DOFs in SupCond to 0 (=false)

22 if dir == 'x' % x-direction fixed

23 o = n*xcsind+sys.cs.DOFs(1,m);

24 sys.SupCond(o) = false;

25 elseif dir == 'y' % y-direction fixed

26 o = n*xcsind+sys.cs.DOFs(2,m);

27 sys.SupCond(o) = false;

28 elseif dir == 'z' % z-direction fixed

29 o = n*xcsind+sys.cs.DOFs(3,m);

30 sys.SupCond(o) = false;

31 elseif strcmp(dir,'all') % all directions fixed

32 o = n*xcsind+sys.cs.DOFs(:,m);

33 sys.SupCond(o) = false;

34 end

35 end

A.5.3 Application of Loads

A class method similar to that for the support conditions has been implemented for the load
application: The method AddSectionForce in Lst. A.11. Its purpose is to define a load
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on the cross-sectional area at an element boundary in the SSE system. This load can either
be a lateral or normal force which is equally distributed over the nodes of the cross section
or a bending or torsional moment about the center of gravity of the cross section.

The input arguments are:

• typeanddir: Two-character vector in order to define the type (1st character: F or
M) and direction (2nd character: x, y or z) of the load

• value: Value of the force or moment

• x: x-coordinate of the element boundary at which the load shall be applied

The method makes use of the fact, that the force vector F has the same structure as the
vector of unknowns W defined in Eq. (A.5.1). Furthermore, it uses the property DOFs of
the IsoQuadCrossSection object described in section A.5.2, Eq. (A.5.2).

Listing A.11: The class method AddSectionForce of the class SSEsystem

1 function AddSectionForce(sys,typeanddir,value,x)

2 n = sys.cs.nDOFs;

3 xcsind = find(x==sys.xcs)-1;

4 switch typeanddir(1)

5 case 'F'

6 switch typeanddir(2)

7 case 'x'

8 Fx = value;

9 Fi = Fx/(n/3);

10 sys.F(xcsind*n+sys.cs.DOFs(1,:),1) = sys.F(xcsind*n+sys.cs.DOFs

(1,:),1) + Fi;

11 case 'y'

12 Fy = value;

13 Fi = Fy/(n/3);

14 sys.F(xcsind*n+sys.cs.DOFs(2,:),1) = sys.F(xcsind*n+sys.cs.DOFs

(2,:),1) + Fi;

15 case 'z'

16 Fz = value;

17 Fi = Fz/(n/3);

18 sys.F(xcsind*n+sys.cs.DOFs(3,:),1) = sys.F(xcsind*n+sys.cs.DOFs

(3,:),1) + Fi;

19 end

20 case 'M'

21 switch typeanddir(2)

22 case 'x'

23 disp('Mx valid only if Center of shear = Center of gravity')
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24 disp(' ,i.e. for cross-sections with double or point symmetry.')

25 Mx = value;

26 yi = sys.cs.v_i_S(:,1);

27 zi = sys.cs.v_i_S(:,2);

28 F0 = Mx/sum(yi.^2+zi.^2);

29 Fi = F0*sqrt(yi.^2+zi.^2);

30 ang = atan2(zi,yi);

31 Fiy = Fi.*sin(ang); Fiy(abs(Fiy)<1e-10)=0;

32 Fiz = -Fi.*cos(ang); Fiz(abs(Fiz)<1e-10)=0;

33 sys.F(xcsind*n+sys.cs.DOFs(2,:),1) = sys.F(xcsind*n+sys.cs.DOFs

(2,:),1) + Fiy;

34 sys.F(xcsind*n+sys.cs.DOFs(3,:),1) = sys.F(xcsind*n+sys.cs.DOFs

(3,:),1) + Fiz;

35 case 'y'

36 My = value;

37 zi = sys.cs.v_i_S(:,2);

38 F0 = My/sum(zi.^2);

39 Fi = F0*zi;

40 sys.F(xcsind*n+sys.cs.DOFs(1,:),1) = sys.F(xcsind*n+sys.cs.DOFs

(1,:),1) + Fi;

41 case 'z'

42 Mz = value;

43 yi = sys.cs.v_i_S(:,1);

44 F0 = Mz/sum(yi.^2);

45 Fi = F0*yi;

46 sys.F(xcsind*n+sys.cs.DOFs(1,:),1) = sys.F(xcsind*n+sys.cs.DOFs

(1,:),1) + Fi;

47 end

48 end

49 end

A.5.4 Coupling of Spectral Super Elements and Solving the Linear

System of Equations

The dynamic stiffness matrix of the SSE system is calculated in the class method solve

written in Lst. A.12. Moreover, the linear system of equations in Eq. (3.26) is solved for the
unknowns W with this method.

The element stiffness matrices of each SSE are calculated according to Eq. (3.15) in a loop
over all SSE elements in the system. Three matrices are required for that:
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Figure A.3: The structure of the system of linear equations for a system of SSEs

1. The matrix A has been calculated in the constructor of the class SSEsystem.

2. The matrix Θ according to Eq. (3.16) depends only on cross sectional properties. It
is therefore calculated in the constructor of the class IsoQuadCrossSection (Line
54 in Lst. A.4) with the method CalculateTheta in Lst. A.14.

3. The matrix of integrated wave functions E
I
according to Eq. (3.17) which is calculated

with the class method CalculateEI in Lst. A.13.

The SSE stiffness matrices are assembled directly in the loop over the elements into the
system stiffness matrix so that the linear system of equations of the total SSE system has a
structure like shown in Fig. A.3 for three elements.

Listing A.12: The class method Solve of the class SSEsystem

1 function Solve(sys)

2 n = sys.cs.nDOFs; % number of DOFs

3 % initialize global stiffness matrix D:

4 D = zeros(n*length(sys.xcs));

5 for i = 1:sys.nele % for-loop over all elements

6 EIi = sys.CalculateEI(sys.l(i));

7 % compute element dynamic stiffness matrix Di:

8 Di = sys.A{i}.'*(sys.cs.Theta.*EIi)*sys.A{i};

9 % assemble Di into global D:

10 D(((i-1)*n)+1:((i+1)*n),((i-1)*n)+1:((i+1)*n)) =...

11 D(((i-1)*n)+1:((i+1)*n),((i-1)*n)+1:((i+1)*n)) + Di;
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12 end

13 % solve linear system of equations:

14 sys.W(sys.SupCond) = D(sys.SupCond,sys.SupCond) \ ...

15 sys.F(sys.SupCond);

16 end

The support conditions are applied in lines 14 and 15 of Lst. A.12 by logical indexing as
described in section A.5.2. The linear system of equations is solved with MATLAB’s solver
"matrix left divide" (\).

Listing A.13: The class method CalculateEI of the class SSEsystem

1 function EI = CalculateEI(sys,l)

2 kappa = sys.cs.kx;

3 % define vector signum containing the signs of the

4 % imaginary part of kappa:

5 signum=zeros(size(kappa));

6 signum(imag(kappa)>=0)=1;

7 signum(imag(kappa)<0)=-1;

8 % compute kappa_p

9 kappa_p = kappa.*signum;

10 % matrices i,j contain indices of kappa for subsequent computation of EI:

11 i = meshgrid(1:length(kappa));

12 j = i.';

13 % compute EI:

14 EI = (1./(1i*(kappa(i)+kappa(j)))).*...

15 (exp((1i)*l*(kappa(i)+kappa_p(i)+kappa(j)+kappa_p(j)))-...

16 (exp((1i)*l*(-kappa(i)+kappa_p(i)-kappa(j)+kappa_p(j)))));

17 end

Listing A.14: The class method CalculateTheta of the class IsoQuadCrossSection

1 function CalculateTheta(cs)

2 PHI = cs.phi_R;

3 cs.Theta = zeros(size(PHI,2));

4 e = {cs.Epsilon00,cs.Epsilon01;cs.Epsilon10,cs.Epsilon11};

5 for p = 0:1:1

6 for q = 0:1:1

7 kappa_p = diag((1i*cs.kx).^p);

8 kappa_q = diag((1i*cs.kx).^q);

9 cs.Theta = cs.Theta + kappa_p * PHI.' * e{p+1,q+1} * PHI * kappa_q

;

10 end

11 end

12 cs.Theta = cs.Theta - cs.Omega^2 * PHI.' * cs.M_consistent * PHI;
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13 end

The class SSEsystem contains additional methods for the post processing. The figures in
the next section are plotted with these methods. The source code for the post processing is
not printed in this thesis for brevity.

A.6 Implementation of the Calculation of the Mapping

Matrix R

The mapping matrix R is used in chapter 5 in order to describe the cross sectional displace-
ments defined on a fine mesh in a more coarse mesh like in the following:

V coarse = RV fine (A.6.1)

For each node in the coarse mesh its natural coordinates ξ and η in its owner element of the
fine mesh have to be determined and the element shape functions Ni have to be evaluated.
The values of Ni have to be allocated in the matrix R so that Eq. (A.6.1) is fulfilled.

A displacement vector V contains for each node the displacements u, v and w in all three
spatial directions in the following pattern:

V = [u1, v1, w1, u2, v2, w2...]T (A.6.2)

Therefore, each value of Ni has to be used three times in R, once for each spatial direction.

Listing A.15 displays the MATLAB code of the class method for the determination of R.
The assembling of the values of the shape functions is written in lines 89 to 96. This method
is implemented in a class called SSE. This class is not described in detail in this thesis. It
is a "light" version of the class SSEsystem described in section A.5.1, which allows only
the calculation of a single spectral super element with displacement constraints and load
application at its two ends. The properties of the class SSE are similar to those of the class
SSEsystem. SSEsystem contains just a few more which are necessary for the system
definition.

Listing A.15: Class method CalculateR of the class SSE

1 function CalculateR(sse)

2 % 1. Determination of the owner elements for all nodes of the
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3 % coarse mesh

4 OwnerElements = zeros(size(sse.NodesCoarse,1),1); %column array which will

5 % contain the owner element number for each coarse node

6
7 for i = 1:size(sse.NodesCoarse,1) %loop over all nodes in the coarse mesh

8 CurrentNode = sse.NodesCoarse(i,:); % y and z coordinate of current

node

9 OwnerElmDetermined = false;

10 j = 0;

11 while OwnerElmDetermined == false

12 j = j+1;

13 % Check wheter any of the elements found as owner elment

14 if j > size(sse.cs.f_i,1)

15 error(['Could not determine an owner element for'...

16 'node number ' num2str(i) '. This node is located'...

17 'probably outside of the fine mesh.'])

18 end

19 OwnerElmDetermined = CrossProductTest(sse.cs.f_i(j,:),CurrentNode)

;

20 % nested function CrossProductTest see below

21 if OwnerElmDetermined == true

22 OwnerElements(i)=j;

23 end

24 end

25 end

26
27 % 2. Analytical inverse mapping + storage of evaluated shape

28 % functions in Matrix R

29 sse.R = zeros(size(sse.NodesCoarse,1)*3,sse.cs.nDOFs);

30 %Number of DOFs is three times the number of nodes in the cross section

31
32 for i = 1:size(sse.NodesCoarse,1) %loop over all nodes in the coarse mesh

33 CurrentNode = sse.NodesCoarse(i,:); % y and z coordinate of current

34 % node of the coarse mesh

35 OwnerElement = sse.cs.f_i(OwnerElements(i),:); % Node numbers of the

36 %owner element in the fine mesh

37 % Coordinates of the Nodes of the owner element:

38 y1 = sse.cs.v_i(OwnerElement(1),1);

39 y2 = sse.cs.v_i(OwnerElement(2),1);

40 y3 = sse.cs.v_i(OwnerElement(3),1);

41 y4 = sse.cs.v_i(OwnerElement(4),1);

42 z1 = sse.cs.v_i(OwnerElement(1),2);

43 z2 = sse.cs.v_i(OwnerElement(2),2);

44 z3 = sse.cs.v_i(OwnerElement(3),2);
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45 z4 = sse.cs.v_i(OwnerElement(4),2);

46 % factors in the y-equation

47 a0 = (y1+y2+y3+y4)/4;

48 a1 = (-y1+y2+y3-y4)/4;

49 a2 = (-y1-y2+y3+y4)/4;

50 a3 = (y1-y2+y3-y4)/4;

51 % factors in the z-equation

52 b0 = (z1+z2+z3+z4)/4;

53 b1 = (-z1+z2+z3-z4)/4;

54 b2 = (-z1-z2+z3+z4)/4;

55 b3 = (z1-z2+z3-z4)/4;

56 % y0 and z0 coordinate of the current node

57 y0 = CurrentNode(1)-a0;

58 z0 = CurrentNode(2)-b0;

59 % factors in the quadratic equation for eta

60 A = b2*a3-b3*a2;

61 B = -z0*a3-b1*a2+b2*a1+b3*y0;

62 C = b1*y0-a1*z0;

63 % Solving the quadratic equation for natural coordinate eta

64 if A == 0 % linear equation in this case

65 eta = -C/B;

66 else % quadratic equation

67 eta = (-B+sqrt(B^2-4*A*C))/(2*A);

68 if eta < -1 || eta > 1

69 eta = (-B-sqrt(B^2-4*A*C))/(2*A);

70 end

71 if eta < -1 || eta > 1

72 error(['Could not determine a valid natural coordinate eta for

' ...

73 'node number' num2str(i) 'in the inverse mapping procedure

.'])

74 end

75 end

76 % Natural coordinate xi depends on eta:

77 xi = (y0-a2*eta)/(a1+a3*eta);

78
79 % Shape functions evaluated at natural coordinates xi and

80 % eta:

81 N1 = (1-xi)*(1-eta)/4;

82 N2 = (1+xi)*(1-eta)/4;

83 N3 = (1+xi)*(1+eta)/4;

84 N4 = (1-xi)*(1+eta)/4;

85
86 % Assignment of the evaluated shape functions to the R
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87 % matrix: Each shape function has to be used three times -

88 % once for each DOF u,v,w at one node.

89 sse.R((i-1)*3+1:(i-1)*3+3,(OwnerElement(1)-1)*3+1:...

90 (OwnerElement(1)-1)*3+3) = eye(3)*N1;

91 sse.R((i-1)*3+1:(i-1)*3+3,(OwnerElement(2)-1)*3+1:...

92 (OwnerElement(2)-1)*3+3) = eye(3)*N2;

93 sse.R((i-1)*3+1:(i-1)*3+3,(OwnerElement(3)-1)*3+1:...

94 (OwnerElement(3)-1)*3+3) = eye(3)*N3;

95 sse.R((i-1)*3+1:(i-1)*3+3,(OwnerElement(4)-1)*3+1:...

96 (OwnerElement(4)-1)*3+3) = eye(3)*N4;

97 end

98
99 function scp = scp(P0,P1,P2)

100 % Calculates the scalar cross product in 2D-plane of the vectors

101 % P0-P1 and P0-P2

102 % INPUT: y and z cooridnates in a row array for each point

103 scp = (P1(1,1)-P0(1,1))*(P2(1,2)-P0(1,2))-(P1(1,2)-P0(1,2))*...

104 (P2(1,1)-P0(1,1));

105 end

106
107 function IsOwnerElement = CrossProductTest(Element,Node)

108 % Determines with the help of the cross product test (Silva

109 % et al. 2009) whether a node is located in an element.

110 % INPUT:

111 % Element .. Array with the node numbers in the fine

112 % mesh of the element to be tested

113 % Node .. Array with the pysical coordinates of the

114 % node to be tested

115 ElementNode1 = sse.cs.v_i(Element(1),:);

116 ElementNode2 = sse.cs.v_i(Element(2),:);

117 ElementNode3 = sse.cs.v_i(Element(3),:);

118 ElementNode4 = sse.cs.v_i(Element(4),:);

119 if scp(ElementNode1,ElementNode4,Node)*...

120 scp(ElementNode1,Node,ElementNode2) < 0

121 IsOwnerElement = false;

122 return

123 end

124 if scp(ElementNode2,ElementNode1,Node)*...

125 scp(ElementNode2,Node,ElementNode3) < 0

126 IsOwnerElement = false;

127 return

128 end

129 if scp(ElementNode3,ElementNode2,Node)*...

130 scp(ElementNode3,Node,ElementNode4) < 0
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131 IsOwnerElement = false;

132 return

133 end

134 if scp(ElementNode4,ElementNode3,Node)*...

135 scp(ElementNode4,Node,ElementNode1) < 0

136 IsOwnerElement = false;

137 return

138 end

139 IsOwnerElement = true;

140 end

141 end
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