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Abstract
Smart contracts are seen as the major building blocks for future autonomous block-
chain- and Distributed Ledger Technology (DLT)-based applications. Engineering 
such contracts for trustless, append-only, and decentralized digital ledgers allows 
mutually distrustful parties to transform legal requirements into immutable and 
formalized rules. Previous experience shows this to be a challenging task due to 
demanding socio-technical ecosystems and the specificities of decentralized ledger 
technology. In this paper, we therefore develop an integrated process model for 
engineering DLT-based smart contracts that accounts for the specificities of DLT. 
This model was iteratively refined with the support of industry experts. The model 
explicitly accounts for the immutability of the trustless, append-only, and decentral-
ized DLT ecosystem, and thereby overcomes certain limitations of traditional soft-
ware engineering process models. More specifically, it consists of five successive 
and closely intertwined phases: conceptualization, implementation, approval, execu-
tion, and finalization. For each phase, the respective activities, roles, and artifacts 
are identified and discussed in detail. Applying such a model when engineering 
smart contracts will help software engineers and developers to better understand and 
streamline the engineering process of DLTs in general and blockchain in particular. 
Furthermore, this model serves as a generic framework which will support applica-
tion development in all fields in which DLT can be applied.
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1 Introduction

Within the last couple of years, blockchain technology, or, more generally, distrib-
uted ledger technology (DLT), has become a highly popular research topic and been 
recognized as a potential game-changer for the industry. The pseudonymous author 
(or group of authors) Satoshi Nakamoto, who mentioned neither the term “block-
chain” nor “DLT” in his paper, introduced the cryptocurrency Bitcoin as the first use 
case of this technology (Nakamoto 2008). The years following this seminal paper 
were characterized by intense discussions in academic communities specialized in 
cryptography and dedicated online groups, but the full potential of the technology 
was not yet properly understood within applied academic and business-oriented 
communities. This situation changed around the year 2014 when the exchange rate 
of Bitcoin started to soar and several authors highlighted the potential of the tech-
nology for countless use cases beyond cryptocurrencies (Swan 2015; Tapscott and 
Tapscott 2016). Not surprisingly, various academic communities have now started 
to rigorously investigate the topic and an ever-increasing number of papers is being 
published in various academic outlets (Johansen 2018).

The immutable, trustless model of decentralized computation and transaction 
handling which is provided by the blockchain strives to ensure fairness for all par-
ticipating actors and has led to an ever-increasing market capitalization of crypto-
currencies in recent years. By June 2018, the capitalization of the five leading cryp-
tocurrencies (Bitcoin, Ethereum, Ripple, Bitcoin Cash, and Litecoin) exceeded 193 
billion dollars (Coinmarketcap 2018). However, the functionality of blockchain does 
not stop at cryptocurrencies. One of the most widely discussed features of block-
chain technology is the possibility to create decentralized and self-executing pro-
grams: so-called smart contracts. Current application scenarios include areas as 
diverse as supply chain/logistics, finance, tourism, Internet of Things (IoT), project 
operations, gamification and education (Treiblmaier and Zeinzinger 2018; Tapscott 
and Tapscott 2016). Numerous organizations are already applying this technol-
ogy stack to supplement or supplant existing legal and financial transactions (Ege-
lund-Müller et al. 2017; Fanning and Centers2016; Friedlmaier et al. 2016; Clack 
et  al. 2016; Notheisen et  al. 2017). The huge monetary values processed through 
smart contracts and/or represented by cryptocurrencies necessitate structured soft-
ware development processes and high levels of quality assurance. Incidents such 
as the DAO attack (Siegel 2016) as well as the King of the Ether incident (King-
OfTheEther 2016), aggregating damage in excess of 60 million dollars, illustrate 
(1) that the current ad-hoc style of engineering is not suitable for such high-value 
transactions, (2) that existing software engineering approaches do not ensure a suffi-
cient level software quality, and (3) that these approaches are either unsuitable for or 
misaligned with the specificities of blockchain technology (Atzei et al. 2016). Atzei 
et al. (2017, p. 182) point out that “a common cause of insecurity of smart contracts 
is the difficulty of detecting mismatches between their intended behavior and the 
actual one”. Subsequently, Destefanis et al. (2018) encouraged the academic com-
munity to further investigate and develop blockchain-oriented software engineering 
processes; We answer that call.
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Traditional software engineering focuses on principles for developing high-qual-
ity software systems and maintaining the systems as they evolve in real-world envi-
ronments (Mens et al. 2010; Edan and Pliskin 2001). Software that does not evolve 
during its lifetime, however, will not be able to keep up with changing requirements 
and will become outdated over time. This has profound implications for existing 
software process models, which must respond to the increasing need for change and 
evolution by introducing iterative, incremental, and evolutionary approaches (Mens 
et al. 2010; Boehm and Turner 2005; Beck et al. 2001). In demonstration, software 
maintenance and evolution have emerged in the last decade as key research fields 
that explicitly differentiate between the time phases before, during, and after the 
software is delivered: denoted development time, deployment time, and runtime, 
respectively (Jacobson et al. 1999). Post-deployment changes are typically realized 
by returning to regular development activities, which eventually result in a new ver-
sion of a software product or a patch that is released to replace or enhance the cur-
rently running version during scheduled downtimes. This process is structured by 
change management activities (Stark 2015; Rajlich and Bennett 2000; Bennett and 
Rajlich 2000). All such changes that occur after the initial development time are 
impossible, however, in settings where the contracts are published on blockchain and 
are immutable from that point onward. To clarify, and to counter an often-repeated 
yet incorrect narrative, DLT systems are only immutable with respect to their spe-
cific context and rules. Changes in the execution environment, in the stakeholder 
agreement (e.g., switching to another technology or invalidating specific entries), or 
in the usage of specific patterns (e.g., proxy pattern) yield mutability.

In this paper, we systematically develop a smart contract engineering process that 
clearly outlines its respective elements and artifacts. This process description repre-
sents an essential tool for numerous strategic and operational activities since it helps 
in defining priorities, clarifying risks, and managing expectations and time frames. 
We further develop a framework that supports stakeholders of smart contract engi-
neering processes in their coordination efforts and which can be used for activities 
such as project management and legal risk management, complexity and standards 
management, as well as for security and quality management.

This paper is structured as follows: First, we identify research topics related to 
DLT technology and give a short introduction to trustless, append-only, decentral-
ized digital ledgers, and to related software engineering process models. Second, we 
describe our methodological approach consisting of expert interviews and qualita-
tive content analysis. Third, we develop an integrated process model for DLT tech-
nology in a stepwise process. Finally, a short discussion and a comparison to con-
ventional engineering processes concludes this paper.

2  Identification of DLT research topics

The immutable nature of smart contracts in trustless, append-only, and decentralized 
digital ledgers makes the traditional software engineering lifecycle both inappropri-
ate and insufficient (Sillaber and Waltl 2017). Instead, the technical specificities of 
blockchain technologies demand central consideration as a robust frame of reference 
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that helps in decomposing its overall complexity and accommodating the new 
requirements of smart contract engineering. In Table 1 we list several research top-
ics and questions pertaining to a variety of different managerial aspects of software 
development that need to be systematically addressed. In the domain of project and 
legal risk management, we list topics surrounding the consideration of all relevant 
issues and requirements prior to the deployment of the smart contract, including 
cost comparisons, project duration, mitigation of legal and project-related risks, and 
potential problems arising due to legal requirements related to “anti-money launder-
ing” (AML) and “know your customer” (KYC). When it comes to complexity and 
standards management, questions arise as to which concepts and elements of smarts 
contracts need to be standardized, which components of contracts should be indi-
vidualized: considerations include the decomposition of complexity, the impact of 
smart contracts on negotiation processes, the integration into legacy systems as well 
as the portability of existing systems on the blockchain, the identification of the best 
modeling languages and smart contract patterns, and the handling of contracts that 
are interrelated. Important issues related to security and quality management include 
the testing and validation of smart contracts, the mitigation of risks that might arise 
from bugs and vulnerabilities not known at the time of development, the auditing of 
smart contracts, and the security of the underlying platform.

3  Related work

Although the term blockchain is relatively new (Swan 2015; Tapscott and Tapscott 
2016), its underlying concepts are not. Some of the foundations of this technology, 
such as Merkle trees, proof of work algorithms, or smart contracts, were already 
developed decades ago (Narayanan and Clark 2017). Smart contract engineering, 
therefore, builds on (1) the conceptual foundation of smart contracts, as well as on 
(2) state-of-the-art software engineering with a focus on blockchain technology. We 
briefly outline both topics in the following sections.

3.1  Smart contracts in trustless, append‑only, decentralized digital ledgers

The term smart contract was introduced by Szabo (1997) when he first described 
how the computer-based execution of contracts between two parties can be secured 
without requiring a third party for intermediation or confirmation. His original arti-
cle provides the first description of decentralized smart contracts as computer pro-
grams that are executed by all participants. This allows all participating parties, who 
do not necessarily know or trust each other, to securely transact with each other. The 
correct execution of these programs is ensured by a so-called consensus protocol 
(Luu et al. 2016).

The basic technological properties of trustless, append-only, decentralized digi-
tal ledgers (TADDL), which includes blockchain technology, are well-studied and 
described in the literature (e.g., Tschorsch and Scheuermann 2016). Several separate 
active research streams focusing on specific technological issues of TADDLs can 
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be identified, including topics such as anonymity versus pseudonymity, transaction 
rates, and proof-of-X (Tschorsch and Scheuermann 2016; Anderson et al. 2016). A 
TADDL is a decentralized virtual state and computing machine that enables several 
parties to share a common state, the integrity of which is ensured and verified by 
other participating parties or “volunteers”, including, for example, miners (Anderson 
et al. 2016). Various incentives promote participation in the mining process, most 

Table 1  Research topics

Domain Related questions Sources

Project and legal 
risk management

How can all relevant issues and requirements 
of stakeholders be safeguarded before the 
smart contract is finalized in the blockchain?

What are the costs of smart contracts com-
pared to offline contracts?

What is the expected project duration of the 
implementation?

How can well-known risks be mitigated and 
unknown risks be identified as early as pos-
sible?

How can legal risks be mitigated?
How can challenges from AML and KYC be 

efficiently addressed?

Wang et al. (2016), Rückeshäuser 
(2017), Deshpande et al. (2017), 
Porru et al. (2017), Xu et al. 
(2017), Böhme et al. (2015), 
Pesch and Sillaber (2017), 
Fairfield (2014), Kiviat (2015), 
Moyano and Ross (2017)

Complexity and 
standards man-
agement

Which concepts and elements of smart 
contracts need to be standardized across the 
entire ecosystem or within specific legal 
environments?

Which components of smart contracts should 
be individualized for each customer?

How can the complexity that results from 
the holistic and comprehensive nature of 
legal requirements and their translation into 
smart contracts be decomposed to make it 
manageable?

How can the codification of legal requirements 
into smart contract code improve the nego-
tiation process between the involved parties?

How can smart contracts be integrated into 
existing IT systems?

Which parts of an enterprise IT Architecture 
can be ported to blockchain?

What are the best modeling notations for smart 
contract development?

What are the patterns in smart contracts?
How should contracts that have dependencies 

between them be dealt with?

Seijas et al. (2016), Frantz and 
Nowostawski (2016), Mar-
janovic and Milosevic (2001), 
Clack et al. (2016), Beck and 
Müller-Bloch (2017), Bartoletti 
and Pompianu (2017)

Security and qual-
ity management

How can smart contracts be tested and vali-
dated?

How can stakeholders efficiently mitigate 
risks from bugs and vulnerabilities in smart 
contracts?

How can smart contracts be audited?
How secure is the underlying platform?

Delmolino et al. (2016), Clack 
et al. (2016), Bhargavan et al. 
(2016), Atzei et al. (2016), 
Idelberger et al. (2016), Leitner 
et al. (2007)
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notably coin rewards. The use of a so-called consensus protocol that is binding for 
all participating parties and which forms the mechanism through which consensus 
is achieved within a peer-to-peer network, implies that the data being stored—cryp-
tocurrency asset balances, for instance—are accepted by all participants. With the 
components provided by the TADDL, complex digital asset transactions and finan-
cial instruments can be created (Buterin 2014; Koulu 2016; Anderson et al. 2016). 
The use of smart contracts executed in a TADDL can be observed in many differ-
ent domains, ranging from online gambling to fundraising (e.g., Porru et al. 2017; 
Egelund-Müller et al. 2017; Xu et al. 2017; Böhme et al. 2015; Klöhn et al. 2018).

3.2  Software engineering process models

The IEEE 1074-1995 Standard for Developing Software Lifecycle Processes defines 
a process as a set of steps that can be executed in a certain predefined, sequential, 
parallel, or conditional order (IEEE 1995). Software engineering processes are part 
of the general Software Engineering Body of Knowledge (Bourque and Fairley 
2014). Various process models cover the order and frequency of phases in software 
projects. Those phases typically include planning, analysis, design, implementa-
tion, testing, and maintenance. Waterfall models progress sequentially through these 
phases, whereas iterative models are typified by repeated execution of the water-
fall phases, in whole or in part (Braude and Bernstein 2016). Differing from these 
phase-oriented process models, agile process models are based on the principles 
of individuals and interaction, working software, customer collaboration, and fast 
response to change (Beck et al. 2001; Vidgen and Wang 2009; Lee and Xia 2010). A 
recent trend is to combine phase-oriented with agile process models to obtain hybrid 
software engineering process models (Kuhrmann et al. 2017).

Modern software engineering approaches rely heavily on the (re-)use of software 
patterns (Kuhrmann et al. 2017). Patterns are collections of abstract best practices of 
software code that engineers can easily adapt. These best practices are the result of 
previous software engineering experience and often allow faster, more secure, and 
more reliable software development. As industry experience with smart contracts 
grows, it is very likely that a set of smart contract patterns will emerge in order to 
foster efficiency and effectiveness in the creation of smart contracts.

In their overview on the current status of research and practice regarding soft-
ware engineering process models, Fuggetta and Di Nitto (2014) highlight several 
challenges caused by the Internet as a basic development, execution, distribution, 
and business infrastructure. They list research issues such as the fading distinction 
between design, development, and operation, but also highlight topics such as secu-
rity, privacy, and trust. Blockchain-oriented software engineering has also attracted 
recent interest. Porru et al. (2017), for example, outline new research directions for 
blockchain-oriented software engineering processes, which include the areas of col-
laboration, enhancement of testing and debugging, as well as the creation of soft-
ware tools for smart contract languages. In this paper, we extend previous research 
by developing an integrated process model for smart contract engineering.
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4  Methodology

We conducted interviews on smart contracts with eleven industry experts. Table 2 
gives an overview of the participants, their organizational roles, qualifications, and 
previous involvement in blockchain projects, structured by blockchain type and use 
case. The primary goal of the interviews was to get a better understanding of how 
the study participants develop smart contracts and which processes, artifacts, and 
tools they apply. We used a Delphi study approach wherein the findings from the 
first round (interview partners 1–9) were evaluated and refined in the second round, 
in which interview partners 8–11 participated (Prusty et al. 2017). Interview part-
ners 8 and 9 were part of both rounds and helped to connect the findings by critically 
commenting on the feedback from the second round. The experts were identified by 
contacting the respective leaders of the development teams of the 20 largest block-
chain projects, as measured by their token market capitalization listed on ICOAlert 
(www.icoal ert.com) as at November 2017, as well as through the authors’ personal 
networks. All potential experts were invited via email and eleven of them agreed to 
participate in our study. The participants were briefly informed by the researchers 
about the context, goals, and scope of the study, and the interviews were conducted 
via video conferencing or in person. Each interview was recorded and transcribed. 
After the interviews, the resulting process model, as well as the changes resulting 
from the interview, were sent to the interviewees for further feedback, which was 
then again incorporated by the researchers.

We used the open questions shown in Table 3 to structure the interviews and fre-
quently applied follow-up questions to clarify specific issues (cf., Chau and Tam 
1997). In a first step, the experts were informed about the goals and the procedures 
of this research project. Most notably, we presented various intermediate versions of 
the process model that included modifications and extensions based on the findings 
generated from previous interviews. Next, they discussed the different stages of the 
processes they use in their companies in a stepwise manner and included their find-
ings in the model. Finally, summaries were produced from the interviews in order to 
derive concepts and constructs for further model development (Mayring 2014; Lac-
ity and Janson 1994).

5  Process model development

In the following sections we develop the smart contract engineering process in a 
stepwise manner. First, we discuss the conceptual base and describe the main types 
of artifacts that emerged from the interviews. Second, we discuss the findings from 
the qualitative interviews with several software developers. Third, we present vari-
ous roles, activities, and artifacts and, fourth, we incorporate these components into 
one integrative model.

http://www.icoalert.com
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5.1  Conceptual base

We followed a design science approach to precisely define the respective steps of 
the process model (Baskerville et al. 2018; Zakarian and Kusiak 2001). The core 
concept of design science is the artifact: an object that can be instantiated with 
physical or social properties. Examples of artifacts can be as diverse as software, 
models, or norms (Hevner et  al. 2004). In their proposed research framework 
for the conceptualization of design science research within information systems 
(IS) research, Hevner et  al. (2004) propose three integrated dimensions: (1) the 
environment including people, organizations, and technology, (2) IS research pin-
pointing the creation and justification of artifacts, and (3) the knowledge base 
bringing forward foundations and methodologies to be used in the creation and 
evaluation of artifacts. More specifically, March and Smith (1995) differentiate 
between four types of artifacts: constructs, models, methods, and instantiations. 
Constructs, which consist of language and vocabulary specifying problems and 
solutions, form the baseline design science vocabulary. The construct level estab-
lishes a common understanding of the involved entities, by identifying those enti-
ties, their attributes, and the relationships between them. Furthermore, constructs 
describe the terms being used and ensure their consistent usage throughout the 
domain. Models are descriptions and representations of real-world phenomena 
with a focus on utility, not truth (March and Smith 1995). They can therefore be 
abstract and may represent nothing more than arbitrary aggregations and group-
ings of instances. In order to be useful, the entities chosen for the model have to 
be representative of the underlying information system (Wood 2014). The steps 
needed to execute a specific process are called methods, which are procedures 
for solving problems and developing solutions. Methods are built on constructs 
and models. They are used to transform constructs and models from one repre-
sentation into another and consequently operate on models and concepts as input 
and output parameters. Methods also subsume abstract algorithms and procedures 
(e.g., human activities) which are part of the overall process. Instantiations (i.e., 
physical assets) are the realizations of artifacts within their respective environ-
ments. They constitute the most concrete entities among the four different artifact 
types and are most suitable for empirical analysis including performance meas-
ures in terms of effectiveness and efficiency of the smart contract engineering 
process. In Table 4 we map the artifacts from Hevner et al. (2004) to the domain 
of smart contract engineering, with the respective artifacts shown in the left col-
umn and their manifestations within the domain in the right column.

5.2  Expert evaluation

In order to create an integrated process model that accounts for the specificities of 
smart contracts, we thoroughly analyzed the previous experiences from our experts 
following the guidelines for qualitative research (Mayring 2014) and design science 
research (Hevner et al. 2004). All but one interviewee (#7) were familiar with exist-
ing software engineering process models and confirmed that they actually build their 
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own processes on them according to their needs—including modifications that are 
needed to account for the specifics of TADDL environments. All interviewees con-
curred that developing smart contracts is different from developing software in tra-
ditional ways and more comparable to developing hardware: “… it is much more 
like developing hardware that is shipped off to customers—without any chance to fix 
bugs once it has been sent off”. Additionally, we found almost all described projects 
to be a mix of traditional software engineering and TADDL-specific engineering (cf 
“non-SC specific development” in Fig. 2). Additionally, all interviewees agreed that 
the submission of the smart contract to the live TADDL constitutes the most criticial 
part of the whole development process. For example, one interviewee stated that “… 
we even follow a paper-based approach where the entire team has to sign off before 
it is submitted. The entire team has to be present—it is very ceremonial”.

Some interviewees had already perceived problems with existing testing 
approaches in a blockchain-based environment: “It is not possible to test under real-
world conditions—we have a Testnet, but can never be sure to have similar condi-
tions as in the real [TADDL] network”. There was a general agreement regarding 
the importance of the analysis, specification, and validation of the implementation 
against the requirements: “We have tight feedback loops, where both the backend 
developers as well as the smart contract developers and our customers discuss the 
requirements and the implementation”. Approval of a smart contract is in general 

Table 3  Expert interviews

Professional background
 What is your formal education?
 What is your experience as a software developer/engineer?

Smart contracts development in general
 Briefly describe the kind of smart contracts you develop.
 Do you develop smart contracts for public/private or permissioned/permissionless blockchains?
 For which blockchains do you develop smart contracts? Ethereum, Neo, Hyperledger, etc.?

Smart contract development process
 Please describe how the roles of your smart contract development team are organized
 How many team members are involved in the development of smart contracts?
 Do you use a modeling approach?
 Do you have a structured software development process? Which practices do you adopt?
 What type of notation does your team use to document requirements for smart contracts?
 Which programming languages and environments do you use when developing smart contracts?
 Do you use tools to support the SW engineering? If yes, which one(s)?

Testing in smart contract development processes
 Do you think that vulnerability to security incidents (e.g., due to software bugs) is a problem in current 

smart contract development?
 Which parts are the hardest to test?
 How often are software testing practices carried out during smart contract development? How often do 

you conduct the different types of test activities?
 Do you automate your testing activities? To what extent? How do you incorporate security testing in 

this process?
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accompanied by extensive documentation: “… we document the entire [approval]. 
We print out all the relevant documentation and put it into a binder. We have test 
reports, coverage reports and, most importantly, the signed approval from our cli-
ents in there”. Another interview partner reported challenges while launching their 
platform. As demand for the system exceeded expectations, too many server-side 
transactions were issued in a short period. As transaction costs were not adjusted, 
thousands of transactions were computed in the wrong order and thus failed. The 
engineers concluded that the calculation of transactions costs needs access to real-
time data. Additionally, a queue for to-be-issued transactions was implemented 
within the platform.

Several major challenges were explicitly mentioned with regards to the availabil-
ity of testing data from oracles. As some of our interviewees develop smart contracts 
that are intended (at least in theory) to run forever, they support the idea of a dedi-
cated finalization phase—but were not able to specifically link it to their respective 
use cases. A comprehensive documentation is therefore important during contract 
runtime: “We definitely store everything, even after the smart contract is no longer 
under active development—especially since we do not know when something bad 
[referring to the DAO hack] might happen”. Finally, based on the fact that smart 
contracts cannot be changed after deployment, a careful monitoring during runtime 
turns out to be crucial: “We have a dedicated watchdog [i.e., custom piece of soft-
ware] that tracks the smart contract’s spending and alerts us in case something odd 
happens.”

Table 4  Mapping of Artifacts

Artifact Manifestation within the domain

Construct Trustless, append-only, decentralized, digital ledgers (TADDL)
Cryptocurrency assets (i.e., tokens)
Smart contract execution engine
Smart contract expression language
Actors (e.g., legal party, smart contract engineer, oracle, miner, legal expert)
Wallets

Model Smart contract code, templates, and patterns
Transaction schemes
The digital representation of assets
Consensus and reward algorithms
Interactions via transactions, function calls, oracle inputs

Method Smart contract engineering (sub-)activities
Iterations of the engineering process
Simulation activities
Test methods for smart contracts

Instantiation An instance of the smart contract engineering process with its activities
Operationalized smart contracts [e.g., instances of high-level languages 

compiled to Ethereum Virtual Machine bytecode (Wood 2014)]
Results from smart contract test scenarios (e.g., reports and log files)
Results from smart contract executions and simulations (e.g., transactions)
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5.3  Roles, activities, and artifacts

To formally and constructively describe an engineering process, the Rational Uni-
fied Process (RUP) Framework (Kruchten 2004) can be used as a baseline for adap-
tion since it is document-centric and reflects the smart contract development pro-
cess. More specifically, the RUP is used to differentiate between three distinctive 
elements: First, roles pertain to individuals or groups performing activities within 
the process. Such roles, which might include smart contract engineers, software 
engineers, and legal experts, are responsible for the artifacts that are the outcome of 
their activities. Second, activities summarize a unit of work that must be performed. 
The outcome is the creation or update of artifacts. Third, artifacts denote the input 
and output of activities. Artifacts are created, modified, and used by the roles dur-
ing the procedure and are either the final product, parts of it, or intermediate results. 
Examples of artifacts include concepts, models, source code, smart contract code, or 
documents such as performance reports.

Figure  1 illustrates the lifecycle of a smart contract. Sillaber and Waltl (2017) 
have shown that smart contract lifecycles start with an implementation phase, dur-
ing which requirements are transformed into an implementation (Create and Adapt), 
verified against the requirements, and either approved for release or modified again. 
Once the smart contract is approved, it is published on the TADDL in the submis-
sion stage. In this phase, the smart contract is submitted and distributed within the 
TADDL network. From that point on, every entity with access to the TADDL can 
retrieve the contract and share it with other nodes. Once the smart contract has been 
spread throughout the network and is accepted by general consensus (i.e., it persists 
on the network), reverting or changing it requires—under ideal circumstances—sub-
stantial effort. The contract is now ready to be executed. In a paper contract analogy, 
this would be the signing of the contract, which is one important step to make the 
contract valid and enforceable. The execution stage of smart contracts is performed 
by miners or other participants of the TADDL, since the smart contract code is now 
accessible for all participants in the form of bytecode. To execute it, the smart con-
tract is retrieved from the TADDL and carried out by the respective node (compute). 
Based on a given input, the output (e.g., a return value, a state transition, or a set of 
transactions) of a smart contract is computed, which is then stored and distributed 
within the network. This is similar to the “closing” of an offline contract. A smart 
contract can be executed as long as it is active. Its execution is resource-consum-
ing and the nodes contributing computational power for its execution are rewarded 
according to the distributed ledger’s reward scheme. In the finalization stage, the 
smart contract expires. This can happen either because the parties actively declare 
the smart contract as invalid (e.g., by withdrawing remaining funds or executing an 
appropriate function) or because of intrinsic conditions that make further executions 
impossible (e.g., time expiration; inability to pay the fees required for further execu-
tion). In this case, the smart contract remains in the TADDL, but can no longer be 
executed by the nodes. This means that the smart contract is disabled through a con-
ditional exit that prevents future execution. This is akin to the “final” state of a busi-
ness process, where specific properties (e.g. successful execution, final state) depend 
on the specific context.
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5.4  An integrated smart contract engineering process

Figure 2 combines and summarizes our findings from the literature as well as the expert 
interviews into a comprehensive framework for the integrated smart contract engineer-
ing process. In the conceptualization phase, the preliminary scope and the goals of the 
smart contract are defined. The scope informs all involved parties about what will be, 
and what will not be, part of the smart contract and can be directly derived from tra-
ditional contractual requirements. This process is called requirements elicitation. The 
problem definition should also state the desired economic outcome(s). After reaching 
an agreement about the scope, the next step is the conceptual modeling: the transfor-
mation of the requirements of all involved parties into a smart contract model. In this 
phase, the conceptual model is created. The conceptual model defines classes of objects 
(e.g., wallets) and the desired relations between these objects and outcomes (e.g., trans-
actions). The construction of the conceptual model will most likely uncover incomplete 
and contradictory aspects of the problem definition. Additionally, the modeling process 
may raise new questions for the involved parties to answer and resolve through negotia-
tion. In either case, the problem definition should be adjusted.

After the conceptual modeling phase, the implementation phase starts. Here, 
the conceptual model is mapped onto an executable model (e.g., in Ethereum by 
using Solidity code) as existing smart contract patterns are identified, adapted and 
combined. It is critical to note that for performance and cost reasons, most busi-
ness logic to be implemented will be executed outside the smart contract, within a 
“traditional software” application (termed “non-smart contract code”). The identi-
fication of those parts that should be included in the smart contract, and those that 
should be excluded, requires a thorough analysis of functional requirements as well 
as non-functional requirements for confidentiality, integrity, availability, scalability 
or efficiency. This analysis may even be performed as a formal risk analysis. In a 
banking application, for instance, core-banking functionality may be implemented 
as a smart contract, whereas data visualization on a traditional software stack.

An executable smart contract is not necessarily immediately correct and has to 
be reviewed, tested, and verified. Verification and simulation of the smart contract 
against the scope and stakeholder requirements are necessary to check whether the 
code contains errors, including programming errors and mal-adjusted parameters. 
For verification purposes (“Simulation, testing, code review”), various scenario-
based executions can be simulated step-by-step in a private blockchain. Apart from 
verification, validation of the smart contract is also required. During validation, the 
simulation results of the smart contracts are compared to real-world contract states 
and stakeholder requirements. New insights may even lead to an adjustment of the 
problem definition and/or the conceptual model of the smart contract. A simulated 

Fig. 1  Simplified lifecycle of a smart contract
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smart contract found to be correct after validation is called a validated smart con-
tract after the last round of consolidation.

Starting from the consolidated and validated smart contract, an instance of the 
smart contract can be frozen and submitted for execution in the live TADDL envi-
ronment. Finally, in the approval and execution phases, the published smart contract 
is approved and executed in the TADDL and has to be monitored during runtime. 
In case the smart contract’s behavior deviates from the stakeholders’ requirements, 
appropriate change management mechanisms have to be activated: in extreme cases, 
the deactivation of the smart contract by depleting its funds and the creation of a 
new smart contract which better meets the stakeholders’ requirements. Modifica-
tions of non-smart contract components are possible throughout the entire lifecycle 
of the smart contract. Although the smart contract becomes immutable after it has 
been submitted to the TADDL environment, the environment itself often provides 
opportunities to influence the outcome of smart contracts: for example, by influenc-
ing the call graph through a function registry or call delegation. The smart contract’s 
runtime behavior is constantly monitored and managed in a change management 
process. Once the smart contract has reached the end of its life (e.g., by executing 
the “self-destruction” operation in the Ethereum blockchain), proper finalization can 
be confirmed in the finalization phase by validating whether the desired outcomes 
have been reached. Figure 2 further shows that feedback between phases is possible 
and frequently necessary. In practice, many phases will overlap. More specifically, 
specification, implementation, validation, and verification will go hand in hand once 
the appropriate tools are available to smart contract developers.

6  Discussion and implications

Smart contracts may well become the backbone of businesses based on blockchain 
and related technologies (Bailis 2017; Werbach and Cornell 2017). However, prior 
to the creation of industry-specific solutions, it is prudent to consider the general 

Fig. 2  Integrated smart contracts engineering process
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characteristics of smart contracts and the roles they play during their lifecycle. 
In this paper, we therefore present an integrated process model for smart con-
tracts that was developed and iteratively improved using findings from previous 
research and the feedback of eleven industry experts. This model highlights the 
important role of smart contracts during their lifecycle and thus supports quality 
management in software engineering. This is of utmost importance for the busi-
ness community striving to use blockchain-based solutions, since immutable bugs 
in smart contracts with no possibility of rectification have been exploited in previ-
ous attacks. For example, the controversial hard-fork of the Ethereum blockchain, 
which basically nullified the effects of malicious transactions, poses an example of 
how laborious and far-reaching ex-post changes on blockchain can potentially be 
(Buterin 2016).

Our proposed smart contract engineering process is generic and is applicable to 
a wide variety of distributed ledger technologies. It is based on traditional software 
engineering process models and methodologies, such as the waterfall model as well 
as iterative models that have been successfully applied in a wide variety of use 
cases, and can be easily integrated with these existing models. For example, one 
cycle of the implementation phase can be aligned with a Scrum sprint (Schwaber 
and Beedle 2002). Traditional phase-oriented software engineering process mod-
els like the waterfall model typically progress linearly through an analysis, design, 
implementation, and testing phase. While the analysis, design and implementation 
phases align with our proposed conceptualization and implementation phases, spe-
cial care has to be given to the testing phase of smart contracts, as this must be con-
ducted and concluded prior to publishing the contract. Iterative software engineer-
ing process models typically iterate sequentially through the aforementioned four 
phases. The implementation phase proposed in this paper iterates through a pattern 
selection and adaption, development, consolidation, review, testing, and simulation 
phase, aligning these process activities with iterative software engineering process 
models.

Although further refinement of different aspects of the integrated process model 
may be necessary for specific applications, the integrated model as presented in this 
paper can immediately be applied in real-world industry settings. It can help smart 
contract engineers to better understand the strengths and weaknesses of their engi-
neering processes and support them in further optimizing different process activi-
ties and artifacts such as software, models, and norms. Additionally, the process 
model can advance applied smart contract engineering processes and serve as a 
basis for critically investigating those processes in great detail, which is of practi-
cal value for any industry that needs to react fast while at the same time ensuring 
supreme software quality. Additionally, there are also implications for academic 
research. The engineering process model is accompanied by directions concerning 
the involved artifacts, roles, and interdependencies, and thereby lays the foundation 
for future research. This may include a detailed specification of the different roles 
and their required profiles.
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7  Conclusions, limitations and future research

In this paper, we develop an integrative process model for smart contract engineer-
ing and describe its activities, roles, and artifacts. This model lays the foundation for 
further smart contract development, which has the potential to revolutionize many 
different industries. We argue that conventional software engineering process mod-
els do not provide adequate support for the trustless, append-only, and decentral-
ized environment in which smart contracts are executed. Traditional process mod-
els do not account for the immutability of smart contracts after they are submitted, 
because they assume a (mostly) frictionless transition between software releases 
and that modifications of existing software releases are possible. Our smart contract 
engineering process accounts for these peculiarities of blockchain-based software 
development and consists of five sequential phases: (1) conceptualization, (2) imple-
mentation, (3) approval, (4) execution, and (5) finalization. These phases are derived 
from the properties of the underlying blockchain ecosystem. We propose new direc-
tions for smart contract engineering that focus on collaboration among domain 
experts, testing activities, quality assurance, and specialized workflow tools.

Currently, we see two major limitations of this research that deserve further atten-
tion. First, there are no validated measurements for the concepts of the process activi-
ties. An attempt was made to use existing process model artifacts and to make as few 
changes as possible. However, the construct validity of these artifacts cannot currently 
be guaranteed. Second, due to a lack of established best practices in smart contract engi-
neering, an empirical evaluation of the hypothesized artifacts is not currently feasible.

Future research, therefore, needs to investigate if and how the proposed engineering 
process model can be tailored to and with different software engineering methodologies 
(e.g., Scrum, V-model). In this context, research could investigate how the development 
of smart code can be integrated with the development of traditional software code, as 
well as how risk analysis can support this integration. Furthermore, it is necessary to 
integrate this framework with existing work on testing and quality assurance in software 
engineering. An important aspect here is especially the role of simulation for quality 
assurance. The behavioral aspects of smart contract engineering have not yet received 
enough attention. While data is sparse, we have seen DevOps and “full-stack” software 
engineering behavior with many interviewees and many interesting patterns (e.g., ran-
domness patterns or oracle patterns) that have been adapted from these and related dis-
ciplines that warrant future research. Furthermore, there is a pending need to cover the 
increasing demand for inter- TADDL transactions and developing secure applications 
that rely on more than one TADDL. Combining various approaches will lead to new 
insights into how best to cope with the challenges of modern blockchain-based software 
development and how smart contracts can be used to create viable business models.

Acknowledgements Open access funding provided by University of Innsbruck and Medical University 
of Innsbruck.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 



1 3

Laying the foundation for smart contract development: an…

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen 
ses/by/4.0/.

References

Anderson L, Holz R, Ponomarev A, Rimba P, Weber I (2016) New kids on the block: an analysis of modern 
blockchains. CoRR. arXiv preprint http://arxiv .org/abs/1606.06530 

Atzei N, Bartoletti M, Cimoli T (2016) A survey of attacks on Ethereum smart contracts. IACR Cryptol-
ogy ePrint archive 2016:1007

Atzei N, Bartoletti M, Cimoli T (2017) A survey of attacks on Ethereum smart contracts SoK. In: Proceed-
ings of the international conference on principles of security and trust, Uppsala, Sweden, pp 164–186

Bailis P (2017) Research for practice: cryptocurrencies, blockchains, and smart contracts; hardware for deep 
learning. Commun ACM 60(5):48–51

Bartoletti M, Pompianu L (2017) An empirical analysis of smart contracts: platforms, applications, and 
design patterns. In: Proceedings of the international conference on financial cryptography and data 
security. Springer, Cham, pp 494–509

Baskerville R, Baiyere A, Gregor S, Hevner A, Rossi M (2018) Design science research contributions: find-
ing a balance between artifact and theory. J Assoc Inf Syst 19(5):358–376

Beck R, Müller-Bloch C (2017) Blockchain as radical innovation: a framework for engaging with distrib-
uted ledgers as incumbent organization. In: Proceedings of the 50th Hawaii international conference 
on system sciences, Hawaii, HI, pp 5390–5399

Beck K, Beedle M, Van Bennekum A, Cockburn A, Cunningham W, Fowler M, Grenning J, Highsmith 
J, Hunt A, Jeffries R, Kern J, Marick B, Martin RC, Mellor S, Schwaber K, Sutherland J, Thomas D 
(2001) Manifesto for agile software development. http://agile manif esto.org/. Accessed 20 Apr 2018

Bennett KH, Rajlich VT (2000) Software maintenance and evolution: a roadmap. In: Proceedings of the 
conference on the future of software engineering, pp 73–87

Bhargavan K, Delignat-Lavaud A, Fournet C, Gollamudi A, Gonthier G, Kobeissi N, Kulatova N, Rastogi 
A, Sibut-Pinote T, Swamy N, Zanella-Béguelin S (2016) Formal verification of smart contracts: short 
paper. In: Proceedings of the 2016 ACM workshop on programming languages and analysis for secu-
rity, pp 91–96

Boehm B, Turner R (2005) Management challenges to implementing agile processes in traditional develop-
ment organizations. IEEE Softw 22(5):30–39

Böhme R, Christin N, Edelman B, Moore T (2015) Bitcoin: economics, technology, and governance. J Econ 
Perspect 29(2):213–238

Bourque P, Fairley RE (2014) Guide to the software engineering body of knowledge (swebok (r)): version 
3.0. IEEE Computer Society Press, Washington, DC

Braude EJ, Bernstein ME (2016) Software engineering: modern approaches. Waveland Press, Long Grove
Buterin V (2014) A next-generation smart contract and decentralized application platform. White paper. 

https ://githu b.com/ether eum/wiki/wiki/White -Paper #decen trali zed-auton omous -organ izati ons. 
Accessed 10 Jan 2018

Buterin V (2016) Hard fork completed. Ethereum Blog. https ://blog.ether eum.org/2016/07/20/hard-fork-
compl eted/. Accessed 17 Dec 2017

Chau PYK, Tam KY (1997) Factors affecting the adoption of open systems: an exploratory study. MIS Q 
21(1):1–24

Clack CD, Bakshi VA, Braine L (2016) Smart contract templates: essential requirements and design options. 
CoRR. arXiv preprint http://arxiv .org/abs/1612.04496 

Coinmarketcap (2018) Top 100 cryptocurrencies by market capitalization. https ://coinm arket cap.com/. 
Accessed 17 Apr 2018

Delmolino K, Arnett M, Kosba A, Miller A, Shi E (2016) Step by step towards creating a safe smart con-
tract: lessons and insights from a cryptocurrency lab. In: Clark J, Meiklejohn S, Ryan PYA, Wallach 
D, Brenner M, Rohloff K (eds) Proceedings of the international conference on financial cryptography 
and data security, pp 79–94

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1606.06530
http://agilemanifesto.org/
https://github.com/ethereum/wiki/wiki/White-Paper#decentralized-autonomous-organizations
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
http://arxiv.org/abs/1612.04496
https://coinmarketcap.com/


 C. Sillaber et al.

1 3

Deshpande A, Stewart K, Lepetit L, Gunashekar S (2017) Distributed Ledger technologies/blockchain: chal-
lenges, opportunities and the prospects for standards. Overview report. The British Standards Institu-
tion (BSI). https ://www.bsigr oup.com/PageF iles/50800 3/BSI_Block chain _DLT_Web.pdf. Accessed 1 
May 2018

Destefanis G, Marchesi M, Ortu M, Tonelli R, Bracciali A, Hierons R (2018) Smart contracts vulnerabil-
ities: a call for blockchain software engineering? In International workshop on blockchain oriented 
software engineering (IWBOSE), Campobasso, Italy, pp 19–25

Edan Y, Pliskin N (2001) Transfer of software engineering tools from information systems to production 
systems. Comput Ind Eng 39(1–2):19–34

Egelund-Müller B, Elsman M, Henglein F, Ross O (2017) Automated execution of financial contracts on 
blockchains. Bus Inf Syst Eng 59(6):457–467

Fairfield JA (2014) Smart contracts, bitcoin bots, and consumer protection. Wash Lee Law Rev Online 
71(2):35–50

Fanning K, Centers DP (2016) Blockchain and its coming impact on financial services. J Corp Account 
Finance 27(5):53–57

Frantz CK, Nowostawski M (2016) From institutions to code: towards automated generation of smart con-
tracts. In: Proceedings of the IEEE international workshops on foundations and applications of self* 
systems, pp 210–215

Friedlmaier M, Tumasjan A, Welpe IM (2016) Disrupting industries with blockchain: the industry, venture 
capital funding, and regional distribution of blockchain ventures. In: Proceedings of the 51st Hawaii 
international conference on system sciences, Waikoloa, HI, pp 3517–3526

Fuggetta A, Di Nitto E (2014) Software process. In: Proceedings of the conference on future of software 
engineering, Hyderabad, India, pp 1–12

Hevner AR, March ST, Park J, Ram S (2004) Design science in information systems research. MIS Q 
28(1):75–105

Idelberger F, Governatori G, Riveret R, Sartor G (2016) Evaluation of logic-based smart contracts for 
blockchain systems. In: Alferes J, Bertossi L, Governatori G, Fodor P, Roman D (eds) Rule technolo-
gies. Research, tools, and applications. RuleML 2016. Lecture notes in computer science, vol 9718. 
Springer, Cham, pp 167–183

IEEE (1995) 1074-1995—IEEE standard for developing software life cycle processes. IEEE. https ://ieeex 
plore .ieee.org/docum ent/49050 1/. Accessed 20 Mar 2018

Jacobson I, Booch G, Rumbaugh J, Rumbaugh J, Booch G (1999) The unified software development pro-
cess, vol 1. Addison-Wesley, Reading

Johansen S (2018) A comprehensive literature review on the Blockchain as a technological enabler for inno-
vation. Working paper, Mannheim University

KingOfTheEther (2016) Post-mortem investigation. https ://www.kingo fthee ther.com/postm ortem .html. 
Accessed 10 Apr 2018

Kiviat TI (2015) Beyond bitcoin: issues in regulating blockchain transactions. Duke Law J 65:569–608
Klöhn L, Parhofer N, Resas D (2018) Initial coin offerings (ICOs). Z Bankr Bankwirtsch 30(2):89–106
Koulu R (2016) Blockchains and online dispute resolution: smart contracts as an alternative to enforcement. 

SCRIPTed 13(1):40–69
Kruchten P (2004) The rational unified process: an introduction. Addison-Wesley Professional, Boston
Kuhrmann M, Diebold P, Münch J, Tell P, Garousi V, Felderer M, Trektere K, McCaffery F, Linssen O, 

Hanser E, Prause CR (2017) Hybrid software and system development in practice: waterfall, scrum, 
and beyond. In: Bendraou R, Raffo D, LiGuo H, Maggi FM (eds) Proceedings of the 2017 interna-
tional conference on software and system process, Paris, France, pp 30–39

Lacity MC, Janson MA (1994) Understanding qualitative data: a framework for text analysis methods. J 
Manag Inf Syst 11(2):137–155

Lee G, Xia W (2010) Toward agile: an integrated analysis of quantitative and qualitative field data on soft-
ware development agility. MIS Q 34(1):87–114

Leitner A, Ciupa I, Oriol M, Meyer B, Fiva A (2007) Contract driven development = test driven develop-
ment—writing test cases. In: Crnkovic I, Bertolino A (eds) Proceedings of the 6th joint meeting of the 
European software engineering conference and the ACM SIGSOFT symposium on the foundations of 
software engineering (ESEC-FSE ‘07). New York, NY, USA, pp 425–434

Luu L, Chu D-H, Olickel H, Saxena P, Hobor A (2016) Making smart contracts smarter. In: Weippl E, 
Katzenbeisser S, Kruegel C, Myers A, Halevi S (eds) Proceedings of the 2016 ACM Sigsac conference 
on computer and communications security, pp 254–269

https://www.bsigroup.com/PageFiles/508003/BSI_Blockchain_DLT_Web.pdf
https://ieeexplore.ieee.org/document/490501/
https://ieeexplore.ieee.org/document/490501/
https://www.kingoftheether.com/postmortem.html


1 3

Laying the foundation for smart contract development: an…

March ST, Smith GF (1995) Design and natural science research on information technology. Decis Support 
Syst 15(4):251–266

Marjanovic O, Milosevic Z (2001) Towards formal modeling of e-contracts. In: Proceedings of the fifth 
IEEE international conference on enterprise distributed object computing, pp 59–68

Mayring P (2014) Qualitative content analysis: theoretical foundation, basic procedures and software solu-
tion. Dissertation. http://nbn-resol ving.de/urn:nbn:de:0168-ssoar -39517 3. Accessed 1 May 2018

Mens T, Guehénéuc Y-G, Fernández-Ramil J, D’Hondt M (2010) Guest editors’ introduction: software evo-
lution. IEEE Softw 27(4):22–25

Moyano JP, Ross O (2017) KYC optimization using distributed ledger technology. Bus Inf Syst Eng 
59(6):411–423

Nakamoto S (2008) Bitcoin: a peer-to-peer electronic cash system. https ://bitco in.org/en/bitco in-paper . 
Accessed 12 Aug 2017

Narayanan A, Clark J (2017) Bitcoin’s academic pedigree: the concept of cryptocurrencies is built from 
forgotten ideas in research literature. ACM Queue 15(4):1–30

Notheisen B, Cholewa JB, Shanmugam AP (2017) Trading real-world assets on blockchain. Bus Inf Syst 
Eng 59(6):425–440

Pesch PJ, Sillaber C (2017) Distributed Ledger, Joint Control? – Blockchains and the GDPR’s Transparency 
Requirements. Comput Law Rev Int 18(6):166–172. https ://doi.org/10.9785/cri-2017-0602t 

Porru S, Pinna A, Marchesi M, Tonelli R (2017) Blockchain-oriented software engineering: challenges and 
new directions. In: Uchitel S, Orso A, Robillard M (eds) Proceedings of the 39th international confer-
ence on software engineering companion, Buenos Aires, Argentina, pp 169–171

Prusty SK, Mohapatra PKJ, Mukherjee CK (2017) House of strategy: a model for designing strategies using 
stakeholders’ opinion. Comput Ind Eng 108:39–56

Rajlich VT, Bennett KH (2000) A staged model for the software life cycle. Computer 33(7):66–71
Rückeshäuser N (2017) Do we really want blockchain-based accounting? Decentralized consensus as ena-

bler of management override of internal controls. In: Leimeister JM, Brenner W (eds) Proceedings der 
13. Internationalen Tagung Wirtschaftsinformatik (WI 2017), St. Gallen, Switzerland, pp 16–30

Schwaber K, Beedle M (2002) Agile software development with scrum. Prentice Hall, Upper Saddle River
Seijas PL, Thompson SJ, McAdams D (2016) Scripting smart contracts for distributed ledger technology. 

https ://eprin t.iacr.org/2016/1156.pdf. Accessed 1 May 2018
Siegel D (2016) Understanding the DAO attack. https ://www.coind esk.com/under stand ing-dao-hack-journ 

alist s/. Accessed 10 Apr 2018
Sillaber C, Waltl B (2017) The life cycle of smart contracts in blockchain ecosystems. Datenschutz Datensi-

cherheit DuD 41(8):497–500
Stark J (2015) Product lifecycle management. Springer, London
Swan M (2015) Blockchain: blueprint for a new economy. O’Reilly Media, Sebastopol
Szabo N (1997) The idea of smart contracts. Nick Szabo’s papers and concise tutorials. http://www.fon.

hum.uva.nl/rob/Cours es/Infor matio nInSp eech/CDROM /Liter ature /LOTwi nters chool 2006/szabo .best.
vwh.net/idea.html. Accessed 1 May 2018

Tapscott D, Tapscott A (2016) Blockchain revolution: how the technology behind bitcoin is changing 
money, business, and the world. Penguin, New York

Treiblmaier H, Zeinzinger Z (2018) Understanding the blockchain through a gamified experience: a case 
study from Austria. In: 25th European conference on information systems, June 23–28, Portsmouth: 
UK

Tschorsch F, Scheuermann B (2016) Bitcoin and beyond: a technical survey on decentralized digital curren-
cies. IEEE Commun Surv Tutor (COMST) 18(3):2084–2123

Vidgen R, Wang X (2009) Coevolving systems and the organization of agile software development. Inf Syst 
Res 20(3):355–376

Wang H, Chen K, Xu D (2016) A maturity model for blockchain adoption. Financ Innov 2(12):1–5
Werbach K, Cornell N (2017) Contracts ex machina. Duke Law J 67(2):313–382
Wood G (2014) Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow 

Paper, pp 1–32
Xu X, Weber I, Staples M, Zhu L, Bosch J, Bass L, Pautasso C, Rimba P (2017) A taxonomy of blockchain-

based systems for architecture design. In: Proceedings of the IEEE international conference on soft-
ware architecture, Gothenburg, Sweden, pp 243–252

Zakarian A, Kusiak A (2001) Process analysis and reengineering. Comput Ind Eng 41(2):135–150

http://nbn-resolving.de/urn:nbn:de:0168-ssoar-395173
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.9785/cri-2017-0602t
https://eprint.iacr.org/2016/1156.pdf
https://www.coindesk.com/understanding-dao-hack-journalists/
https://www.coindesk.com/understanding-dao-hack-journalists/
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html


 C. Sillaber et al.

1 3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

Affiliations

Christian Sillaber1 · Bernhard Waltl2 · Horst Treiblmaier3 · Ulrich Gallersdörfer2 · 
Michael Felderer1,4

 Horst Treiblmaier 
 horst.treiblmaier@modul.ac.at

1 University of Innsbruck, Innsbruck, Austria
2 TU Munich, Munich, Germany
3 MODUL University Vienna, Am Kahlenberg 1, 1190 Vienna, Austria
4 Blekinge Institute of Technology, Karlskrona, Sweden


	Laying the foundation for smart contract development: an integrated engineering process model
	Abstract
	1 Introduction
	2 Identification of DLT research topics
	3 Related work
	3.1 Smart contracts in trustless, append-only, decentralized digital ledgers
	3.2 Software engineering process models

	4 Methodology
	5 Process model development
	5.1 Conceptual base
	5.2 Expert evaluation
	5.3 Roles, activities, and artifacts
	5.4 An integrated smart contract engineering process

	6 Discussion and implications
	7 Conclusions, limitations and future research
	Acknowledgements 
	References




