
Vol.:(0123456789)

Information Systems and e-Business Management
https://doi.org/10.1007/s10257-020-00465-5

1 3

ORIGINAL ARTICLE

Laying the foundation for smart contract development:
an integrated engineering process model

Christian Sillaber1 · Bernhard Waltl2 · Horst Treiblmaier3 · Ulrich Gallersdörfer2 ·
Michael Felderer1,4

Received: 25 February 2019 / Revised: 12 October 2019 / Accepted: 18 January 2020
© The Author(s) 2020

Abstract
Smart contracts are seen as the major building blocks for future autonomous block-
chain- and Distributed Ledger Technology (DLT)-based applications. Engineering
such contracts for trustless, append-only, and decentralized digital ledgers allows
mutually distrustful parties to transform legal requirements into immutable and
formalized rules. Previous experience shows this to be a challenging task due to
demanding socio-technical ecosystems and the specificities of decentralized ledger
technology. In this paper, we therefore develop an integrated process model for
engineering DLT-based smart contracts that accounts for the specificities of DLT.
This model was iteratively refined with the support of industry experts. The model
explicitly accounts for the immutability of the trustless, append-only, and decentral-
ized DLT ecosystem, and thereby overcomes certain limitations of traditional soft-
ware engineering process models. More specifically, it consists of five successive
and closely intertwined phases: conceptualization, implementation, approval, execu-
tion, and finalization. For each phase, the respective activities, roles, and artifacts
are identified and discussed in detail. Applying such a model when engineering
smart contracts will help software engineers and developers to better understand and
streamline the engineering process of DLTs in general and blockchain in particular.
Furthermore, this model serves as a generic framework which will support applica-
tion development in all fields in which DLT can be applied.

Keywords Smart contract · Development process model · Software engineering ·
Blockchain · Distributed ledger technology · Survey · Design science · Trustless
append-only decentralized digital ledgers (TADDL)

 * Michael Felderer
 michael.felderer@uibk.ac.at

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10257-020-00465-5&domain=pdf

 C. Sillaber et al.

1 3

1 Introduction

Within the last couple of years, blockchain technology, or, more generally, distrib-
uted ledger technology (DLT), has become a highly popular research topic and been
recognized as a potential game-changer for the industry. The pseudonymous author
(or group of authors) Satoshi Nakamoto, who mentioned neither the term “block-
chain” nor “DLT” in his paper, introduced the cryptocurrency Bitcoin as the first use
case of this technology (Nakamoto 2008). The years following this seminal paper
were characterized by intense discussions in academic communities specialized in
cryptography and dedicated online groups, but the full potential of the technology
was not yet properly understood within applied academic and business-oriented
communities. This situation changed around the year 2014 when the exchange rate
of Bitcoin started to soar and several authors highlighted the potential of the tech-
nology for countless use cases beyond cryptocurrencies (Swan 2015; Tapscott and
Tapscott 2016). Not surprisingly, various academic communities have now started
to rigorously investigate the topic and an ever-increasing number of papers is being
published in various academic outlets (Johansen 2018).

The immutable, trustless model of decentralized computation and transaction
handling which is provided by the blockchain strives to ensure fairness for all par-
ticipating actors and has led to an ever-increasing market capitalization of crypto-
currencies in recent years. By June 2018, the capitalization of the five leading cryp-
tocurrencies (Bitcoin, Ethereum, Ripple, Bitcoin Cash, and Litecoin) exceeded 193
billion dollars (Coinmarketcap 2018). However, the functionality of blockchain does
not stop at cryptocurrencies. One of the most widely discussed features of block-
chain technology is the possibility to create decentralized and self-executing pro-
grams: so-called smart contracts. Current application scenarios include areas as
diverse as supply chain/logistics, finance, tourism, Internet of Things (IoT), project
operations, gamification and education (Treiblmaier and Zeinzinger 2018; Tapscott
and Tapscott 2016). Numerous organizations are already applying this technol-
ogy stack to supplement or supplant existing legal and financial transactions (Ege-
lund-Müller et al. 2017; Fanning and Centers2016; Friedlmaier et al. 2016; Clack
et al. 2016; Notheisen et al. 2017). The huge monetary values processed through
smart contracts and/or represented by cryptocurrencies necessitate structured soft-
ware development processes and high levels of quality assurance. Incidents such
as the DAO attack (Siegel 2016) as well as the King of the Ether incident (King-
OfTheEther 2016), aggregating damage in excess of 60 million dollars, illustrate
(1) that the current ad-hoc style of engineering is not suitable for such high-value
transactions, (2) that existing software engineering approaches do not ensure a suffi-
cient level software quality, and (3) that these approaches are either unsuitable for or
misaligned with the specificities of blockchain technology (Atzei et al. 2016). Atzei
et al. (2017, p. 182) point out that “a common cause of insecurity of smart contracts
is the difficulty of detecting mismatches between their intended behavior and the
actual one”. Subsequently, Destefanis et al. (2018) encouraged the academic com-
munity to further investigate and develop blockchain-oriented software engineering
processes; We answer that call.

1 3

Laying the foundation for smart contract development: an…

Traditional software engineering focuses on principles for developing high-qual-
ity software systems and maintaining the systems as they evolve in real-world envi-
ronments (Mens et al. 2010; Edan and Pliskin 2001). Software that does not evolve
during its lifetime, however, will not be able to keep up with changing requirements
and will become outdated over time. This has profound implications for existing
software process models, which must respond to the increasing need for change and
evolution by introducing iterative, incremental, and evolutionary approaches (Mens
et al. 2010; Boehm and Turner 2005; Beck et al. 2001). In demonstration, software
maintenance and evolution have emerged in the last decade as key research fields
that explicitly differentiate between the time phases before, during, and after the
software is delivered: denoted development time, deployment time, and runtime,
respectively (Jacobson et al. 1999). Post-deployment changes are typically realized
by returning to regular development activities, which eventually result in a new ver-
sion of a software product or a patch that is released to replace or enhance the cur-
rently running version during scheduled downtimes. This process is structured by
change management activities (Stark 2015; Rajlich and Bennett 2000; Bennett and
Rajlich 2000). All such changes that occur after the initial development time are
impossible, however, in settings where the contracts are published on blockchain and
are immutable from that point onward. To clarify, and to counter an often-repeated
yet incorrect narrative, DLT systems are only immutable with respect to their spe-
cific context and rules. Changes in the execution environment, in the stakeholder
agreement (e.g., switching to another technology or invalidating specific entries), or
in the usage of specific patterns (e.g., proxy pattern) yield mutability.

In this paper, we systematically develop a smart contract engineering process that
clearly outlines its respective elements and artifacts. This process description repre-
sents an essential tool for numerous strategic and operational activities since it helps
in defining priorities, clarifying risks, and managing expectations and time frames.
We further develop a framework that supports stakeholders of smart contract engi-
neering processes in their coordination efforts and which can be used for activities
such as project management and legal risk management, complexity and standards
management, as well as for security and quality management.

This paper is structured as follows: First, we identify research topics related to
DLT technology and give a short introduction to trustless, append-only, decentral-
ized digital ledgers, and to related software engineering process models. Second, we
describe our methodological approach consisting of expert interviews and qualita-
tive content analysis. Third, we develop an integrated process model for DLT tech-
nology in a stepwise process. Finally, a short discussion and a comparison to con-
ventional engineering processes concludes this paper.

2 Identification of DLT research topics

The immutable nature of smart contracts in trustless, append-only, and decentralized
digital ledgers makes the traditional software engineering lifecycle both inappropri-
ate and insufficient (Sillaber and Waltl 2017). Instead, the technical specificities of
blockchain technologies demand central consideration as a robust frame of reference

 C. Sillaber et al.

1 3

that helps in decomposing its overall complexity and accommodating the new
requirements of smart contract engineering. In Table 1 we list several research top-
ics and questions pertaining to a variety of different managerial aspects of software
development that need to be systematically addressed. In the domain of project and
legal risk management, we list topics surrounding the consideration of all relevant
issues and requirements prior to the deployment of the smart contract, including
cost comparisons, project duration, mitigation of legal and project-related risks, and
potential problems arising due to legal requirements related to “anti-money launder-
ing” (AML) and “know your customer” (KYC). When it comes to complexity and
standards management, questions arise as to which concepts and elements of smarts
contracts need to be standardized, which components of contracts should be indi-
vidualized: considerations include the decomposition of complexity, the impact of
smart contracts on negotiation processes, the integration into legacy systems as well
as the portability of existing systems on the blockchain, the identification of the best
modeling languages and smart contract patterns, and the handling of contracts that
are interrelated. Important issues related to security and quality management include
the testing and validation of smart contracts, the mitigation of risks that might arise
from bugs and vulnerabilities not known at the time of development, the auditing of
smart contracts, and the security of the underlying platform.

3 Related work

Although the term blockchain is relatively new (Swan 2015; Tapscott and Tapscott
2016), its underlying concepts are not. Some of the foundations of this technology,
such as Merkle trees, proof of work algorithms, or smart contracts, were already
developed decades ago (Narayanan and Clark 2017). Smart contract engineering,
therefore, builds on (1) the conceptual foundation of smart contracts, as well as on
(2) state-of-the-art software engineering with a focus on blockchain technology. We
briefly outline both topics in the following sections.

3.1 Smart contracts in trustless, append‑only, decentralized digital ledgers

The term smart contract was introduced by Szabo (1997) when he first described
how the computer-based execution of contracts between two parties can be secured
without requiring a third party for intermediation or confirmation. His original arti-
cle provides the first description of decentralized smart contracts as computer pro-
grams that are executed by all participants. This allows all participating parties, who
do not necessarily know or trust each other, to securely transact with each other. The
correct execution of these programs is ensured by a so-called consensus protocol
(Luu et al. 2016).

The basic technological properties of trustless, append-only, decentralized digi-
tal ledgers (TADDL), which includes blockchain technology, are well-studied and
described in the literature (e.g., Tschorsch and Scheuermann 2016). Several separate
active research streams focusing on specific technological issues of TADDLs can

1 3

Laying the foundation for smart contract development: an…

be identified, including topics such as anonymity versus pseudonymity, transaction
rates, and proof-of-X (Tschorsch and Scheuermann 2016; Anderson et al. 2016). A
TADDL is a decentralized virtual state and computing machine that enables several
parties to share a common state, the integrity of which is ensured and verified by
other participating parties or “volunteers”, including, for example, miners (Anderson
et al. 2016). Various incentives promote participation in the mining process, most

Table 1 Research topics

Domain Related questions Sources

Project and legal
risk management

How can all relevant issues and requirements
of stakeholders be safeguarded before the
smart contract is finalized in the blockchain?

What are the costs of smart contracts com-
pared to offline contracts?

What is the expected project duration of the
implementation?

How can well-known risks be mitigated and
unknown risks be identified as early as pos-
sible?

How can legal risks be mitigated?
How can challenges from AML and KYC be

efficiently addressed?

Wang et al. (2016), Rückeshäuser
(2017), Deshpande et al. (2017),
Porru et al. (2017), Xu et al.
(2017), Böhme et al. (2015),
Pesch and Sillaber (2017),
Fairfield (2014), Kiviat (2015),
Moyano and Ross (2017)

Complexity and
standards man-
agement

Which concepts and elements of smart
contracts need to be standardized across the
entire ecosystem or within specific legal
environments?

Which components of smart contracts should
be individualized for each customer?

How can the complexity that results from
the holistic and comprehensive nature of
legal requirements and their translation into
smart contracts be decomposed to make it
manageable?

How can the codification of legal requirements
into smart contract code improve the nego-
tiation process between the involved parties?

How can smart contracts be integrated into
existing IT systems?

Which parts of an enterprise IT Architecture
can be ported to blockchain?

What are the best modeling notations for smart
contract development?

What are the patterns in smart contracts?
How should contracts that have dependencies

between them be dealt with?

Seijas et al. (2016), Frantz and
Nowostawski (2016), Mar-
janovic and Milosevic (2001),
Clack et al. (2016), Beck and
Müller-Bloch (2017), Bartoletti
and Pompianu (2017)

Security and qual-
ity management

How can smart contracts be tested and vali-
dated?

How can stakeholders efficiently mitigate
risks from bugs and vulnerabilities in smart
contracts?

How can smart contracts be audited?
How secure is the underlying platform?

Delmolino et al. (2016), Clack
et al. (2016), Bhargavan et al.
(2016), Atzei et al. (2016),
Idelberger et al. (2016), Leitner
et al. (2007)

 C. Sillaber et al.

1 3

notably coin rewards. The use of a so-called consensus protocol that is binding for
all participating parties and which forms the mechanism through which consensus
is achieved within a peer-to-peer network, implies that the data being stored—cryp-
tocurrency asset balances, for instance—are accepted by all participants. With the
components provided by the TADDL, complex digital asset transactions and finan-
cial instruments can be created (Buterin 2014; Koulu 2016; Anderson et al. 2016).
The use of smart contracts executed in a TADDL can be observed in many differ-
ent domains, ranging from online gambling to fundraising (e.g., Porru et al. 2017;
Egelund-Müller et al. 2017; Xu et al. 2017; Böhme et al. 2015; Klöhn et al. 2018).

3.2 Software engineering process models

The IEEE 1074-1995 Standard for Developing Software Lifecycle Processes defines
a process as a set of steps that can be executed in a certain predefined, sequential,
parallel, or conditional order (IEEE 1995). Software engineering processes are part
of the general Software Engineering Body of Knowledge (Bourque and Fairley
2014). Various process models cover the order and frequency of phases in software
projects. Those phases typically include planning, analysis, design, implementa-
tion, testing, and maintenance. Waterfall models progress sequentially through these
phases, whereas iterative models are typified by repeated execution of the water-
fall phases, in whole or in part (Braude and Bernstein 2016). Differing from these
phase-oriented process models, agile process models are based on the principles
of individuals and interaction, working software, customer collaboration, and fast
response to change (Beck et al. 2001; Vidgen and Wang 2009; Lee and Xia 2010). A
recent trend is to combine phase-oriented with agile process models to obtain hybrid
software engineering process models (Kuhrmann et al. 2017).

Modern software engineering approaches rely heavily on the (re-)use of software
patterns (Kuhrmann et al. 2017). Patterns are collections of abstract best practices of
software code that engineers can easily adapt. These best practices are the result of
previous software engineering experience and often allow faster, more secure, and
more reliable software development. As industry experience with smart contracts
grows, it is very likely that a set of smart contract patterns will emerge in order to
foster efficiency and effectiveness in the creation of smart contracts.

In their overview on the current status of research and practice regarding soft-
ware engineering process models, Fuggetta and Di Nitto (2014) highlight several
challenges caused by the Internet as a basic development, execution, distribution,
and business infrastructure. They list research issues such as the fading distinction
between design, development, and operation, but also highlight topics such as secu-
rity, privacy, and trust. Blockchain-oriented software engineering has also attracted
recent interest. Porru et al. (2017), for example, outline new research directions for
blockchain-oriented software engineering processes, which include the areas of col-
laboration, enhancement of testing and debugging, as well as the creation of soft-
ware tools for smart contract languages. In this paper, we extend previous research
by developing an integrated process model for smart contract engineering.

1 3

Laying the foundation for smart contract development: an…

4 Methodology

We conducted interviews on smart contracts with eleven industry experts. Table 2
gives an overview of the participants, their organizational roles, qualifications, and
previous involvement in blockchain projects, structured by blockchain type and use
case. The primary goal of the interviews was to get a better understanding of how
the study participants develop smart contracts and which processes, artifacts, and
tools they apply. We used a Delphi study approach wherein the findings from the
first round (interview partners 1–9) were evaluated and refined in the second round,
in which interview partners 8–11 participated (Prusty et al. 2017). Interview part-
ners 8 and 9 were part of both rounds and helped to connect the findings by critically
commenting on the feedback from the second round. The experts were identified by
contacting the respective leaders of the development teams of the 20 largest block-
chain projects, as measured by their token market capitalization listed on ICOAlert
(www.icoal ert.com) as at November 2017, as well as through the authors’ personal
networks. All potential experts were invited via email and eleven of them agreed to
participate in our study. The participants were briefly informed by the researchers
about the context, goals, and scope of the study, and the interviews were conducted
via video conferencing or in person. Each interview was recorded and transcribed.
After the interviews, the resulting process model, as well as the changes resulting
from the interview, were sent to the interviewees for further feedback, which was
then again incorporated by the researchers.

We used the open questions shown in Table 3 to structure the interviews and fre-
quently applied follow-up questions to clarify specific issues (cf., Chau and Tam
1997). In a first step, the experts were informed about the goals and the procedures
of this research project. Most notably, we presented various intermediate versions of
the process model that included modifications and extensions based on the findings
generated from previous interviews. Next, they discussed the different stages of the
processes they use in their companies in a stepwise manner and included their find-
ings in the model. Finally, summaries were produced from the interviews in order to
derive concepts and constructs for further model development (Mayring 2014; Lac-
ity and Janson 1994).

5 Process model development

In the following sections we develop the smart contract engineering process in a
stepwise manner. First, we discuss the conceptual base and describe the main types
of artifacts that emerged from the interviews. Second, we discuss the findings from
the qualitative interviews with several software developers. Third, we present vari-
ous roles, activities, and artifacts and, fourth, we incorporate these components into
one integrative model.

http://www.icoalert.com

 C. Sillaber et al.

1 3

5.1 Conceptual base

We followed a design science approach to precisely define the respective steps of
the process model (Baskerville et al. 2018; Zakarian and Kusiak 2001). The core
concept of design science is the artifact: an object that can be instantiated with
physical or social properties. Examples of artifacts can be as diverse as software,
models, or norms (Hevner et al. 2004). In their proposed research framework
for the conceptualization of design science research within information systems
(IS) research, Hevner et al. (2004) propose three integrated dimensions: (1) the
environment including people, organizations, and technology, (2) IS research pin-
pointing the creation and justification of artifacts, and (3) the knowledge base
bringing forward foundations and methodologies to be used in the creation and
evaluation of artifacts. More specifically, March and Smith (1995) differentiate
between four types of artifacts: constructs, models, methods, and instantiations.
Constructs, which consist of language and vocabulary specifying problems and
solutions, form the baseline design science vocabulary. The construct level estab-
lishes a common understanding of the involved entities, by identifying those enti-
ties, their attributes, and the relationships between them. Furthermore, constructs
describe the terms being used and ensure their consistent usage throughout the
domain. Models are descriptions and representations of real-world phenomena
with a focus on utility, not truth (March and Smith 1995). They can therefore be
abstract and may represent nothing more than arbitrary aggregations and group-
ings of instances. In order to be useful, the entities chosen for the model have to
be representative of the underlying information system (Wood 2014). The steps
needed to execute a specific process are called methods, which are procedures
for solving problems and developing solutions. Methods are built on constructs
and models. They are used to transform constructs and models from one repre-
sentation into another and consequently operate on models and concepts as input
and output parameters. Methods also subsume abstract algorithms and procedures
(e.g., human activities) which are part of the overall process. Instantiations (i.e.,
physical assets) are the realizations of artifacts within their respective environ-
ments. They constitute the most concrete entities among the four different artifact
types and are most suitable for empirical analysis including performance meas-
ures in terms of effectiveness and efficiency of the smart contract engineering
process. In Table 4 we map the artifacts from Hevner et al. (2004) to the domain
of smart contract engineering, with the respective artifacts shown in the left col-
umn and their manifestations within the domain in the right column.

5.2 Expert evaluation

In order to create an integrated process model that accounts for the specificities of
smart contracts, we thoroughly analyzed the previous experiences from our experts
following the guidelines for qualitative research (Mayring 2014) and design science
research (Hevner et al. 2004). All but one interviewee (#7) were familiar with exist-
ing software engineering process models and confirmed that they actually build their

1 3

Laying the foundation for smart contract development: an…

Ta
bl

e
2

 S
ur

ve
y

sa
m

pl
e

ID
Ro

le
Sm

ar
t c

on
tra

ct
s e

xp
er

ie
nc

e
So

ftw
ar

e
en

gi
ne

er
-

in
g

ex
pe

rie
nc

e
H

ig
he

st
de

gr
ee

B
lo

ck
ch

ai
n

ty
pe

/d
om

ai
n

1
In

de
pe

nd
en

t d
ev

el
op

er
6

m
on

th
s

>
 5

ye
ar

s
Ph

D
 (C

S)
Et

he
re

um
 w

ith
 a

 fo
cu

s o
n

pr
oj

ec
ts

 re
la

te
d

to
 e

ne
rg

y
2

In
de

pe
nd

en
t d

ev
el

op
er

M
or

e
th

an
 1

2
m

on
th

s
>

 10
 y

ea
rs

M
Sc

 (C
S)

Et
he

re
um

 w
ith

 a
 fo

cu
s o

n
pr

oj
ec

ts
 re

la
te

d
to

 g
am

bl
in

g
3

H
ea

d
of

 th
e

de
ve

lo
pm

en
t t

ea
m

6
m

on
th

s
>

 10
 y

ea
rs

M
BA

Et
he

re
um

, h
yp

er
le

dg
er

4
Se

ni
or

 d
ev

el
op

er
6

m
on

th
s

>
 10

 y
ea

rs
Ph

D
 (C

S)
Et

he
re

um
 w

ith
 a

 fo
cu

s o
n

pr
ed

ic
tio

n
m

ar
ke

ts
5

H
ea

d
of

 th
e

de
ve

lo
pm

en
t t

ea
m

6
m

on
th

s
>

 5
ye

ar
s

N
on

e
Et

he
re

um
, I

O
TA

6
Se

ni
or

 d
ev

el
op

er
M

or
e

th
an

 1
2

m
on

th
s

>
 5

ye
ar

s
Ph

D
 (p

hy
si

cs
)

Et
he

re
um

 w
ith

 a
 fo

cu
s o

n
pr

oj
ec

ts
 re

la
te

d
to

 g
am

bl
in

g
7

Ju
ni

or
 d

ev
el

op
er

4
m

on
th

s
3

ye
ar

s
B

Sc
 (C

S)
Et

he
re

um
 w

ith
 a

 fo
cu

s o
n

pr
oj

ec
ts

 re
la

te
d

to
 fi

na
nc

e
8

Se
ni

or
 d

ev
el

op
er

6
m

on
th

s
>

 5
ye

ar
s

N
on

e
Et

he
re

um
, d

id
 n

ot
 w

an
t t

o
di

sc
lo

se
9

In
de

pe
nd

en
t d

ev
el

op
er

8
m

on
th

s
>

 5
ye

ar
s

N
on

e
Et

he
re

um
, h

yp
er

le
dg

er
10

In
de

pe
nd

en
t d

ev
el

op
er

4
m

on
th

s
>

 20
 y

ea
rs

Ph
D

 (C
S)

Et
he

re
um

 w
ith

 a
 fo

cu
s o

n
pr

oj
ec

ts
 re

la
te

d
to

 g
am

bl
in

g
11

H
ea

d
of

 th
e

de
ve

lo
pm

en
t t

ea
m

12
 m

on
th

s
>

 5
ye

ar
s

N
on

e
Et

he
re

um
, b

itc
oi

n

 C. Sillaber et al.

1 3

own processes on them according to their needs—including modifications that are
needed to account for the specifics of TADDL environments. All interviewees con-
curred that developing smart contracts is different from developing software in tra-
ditional ways and more comparable to developing hardware: “… it is much more
like developing hardware that is shipped off to customers—without any chance to fix
bugs once it has been sent off”. Additionally, we found almost all described projects
to be a mix of traditional software engineering and TADDL-specific engineering (cf
“non-SC specific development” in Fig. 2). Additionally, all interviewees agreed that
the submission of the smart contract to the live TADDL constitutes the most criticial
part of the whole development process. For example, one interviewee stated that “…
we even follow a paper-based approach where the entire team has to sign off before
it is submitted. The entire team has to be present—it is very ceremonial”.

Some interviewees had already perceived problems with existing testing
approaches in a blockchain-based environment: “It is not possible to test under real-
world conditions—we have a Testnet, but can never be sure to have similar condi-
tions as in the real [TADDL] network”. There was a general agreement regarding
the importance of the analysis, specification, and validation of the implementation
against the requirements: “We have tight feedback loops, where both the backend
developers as well as the smart contract developers and our customers discuss the
requirements and the implementation”. Approval of a smart contract is in general

Table 3 Expert interviews

Professional background
 What is your formal education?
 What is your experience as a software developer/engineer?

Smart contracts development in general
 Briefly describe the kind of smart contracts you develop.
 Do you develop smart contracts for public/private or permissioned/permissionless blockchains?
 For which blockchains do you develop smart contracts? Ethereum, Neo, Hyperledger, etc.?

Smart contract development process
 Please describe how the roles of your smart contract development team are organized
 How many team members are involved in the development of smart contracts?
 Do you use a modeling approach?
 Do you have a structured software development process? Which practices do you adopt?
 What type of notation does your team use to document requirements for smart contracts?
 Which programming languages and environments do you use when developing smart contracts?
 Do you use tools to support the SW engineering? If yes, which one(s)?

Testing in smart contract development processes
 Do you think that vulnerability to security incidents (e.g., due to software bugs) is a problem in current

smart contract development?
 Which parts are the hardest to test?
 How often are software testing practices carried out during smart contract development? How often do

you conduct the different types of test activities?
 Do you automate your testing activities? To what extent? How do you incorporate security testing in

this process?

1 3

Laying the foundation for smart contract development: an…

accompanied by extensive documentation: “… we document the entire [approval].
We print out all the relevant documentation and put it into a binder. We have test
reports, coverage reports and, most importantly, the signed approval from our cli-
ents in there”. Another interview partner reported challenges while launching their
platform. As demand for the system exceeded expectations, too many server-side
transactions were issued in a short period. As transaction costs were not adjusted,
thousands of transactions were computed in the wrong order and thus failed. The
engineers concluded that the calculation of transactions costs needs access to real-
time data. Additionally, a queue for to-be-issued transactions was implemented
within the platform.

Several major challenges were explicitly mentioned with regards to the availabil-
ity of testing data from oracles. As some of our interviewees develop smart contracts
that are intended (at least in theory) to run forever, they support the idea of a dedi-
cated finalization phase—but were not able to specifically link it to their respective
use cases. A comprehensive documentation is therefore important during contract
runtime: “We definitely store everything, even after the smart contract is no longer
under active development—especially since we do not know when something bad
[referring to the DAO hack] might happen”. Finally, based on the fact that smart
contracts cannot be changed after deployment, a careful monitoring during runtime
turns out to be crucial: “We have a dedicated watchdog [i.e., custom piece of soft-
ware] that tracks the smart contract’s spending and alerts us in case something odd
happens.”

Table 4 Mapping of Artifacts

Artifact Manifestation within the domain

Construct Trustless, append-only, decentralized, digital ledgers (TADDL)
Cryptocurrency assets (i.e., tokens)
Smart contract execution engine
Smart contract expression language
Actors (e.g., legal party, smart contract engineer, oracle, miner, legal expert)
Wallets

Model Smart contract code, templates, and patterns
Transaction schemes
The digital representation of assets
Consensus and reward algorithms
Interactions via transactions, function calls, oracle inputs

Method Smart contract engineering (sub-)activities
Iterations of the engineering process
Simulation activities
Test methods for smart contracts

Instantiation An instance of the smart contract engineering process with its activities
Operationalized smart contracts [e.g., instances of high-level languages

compiled to Ethereum Virtual Machine bytecode (Wood 2014)]
Results from smart contract test scenarios (e.g., reports and log files)
Results from smart contract executions and simulations (e.g., transactions)

 C. Sillaber et al.

1 3

5.3 Roles, activities, and artifacts

To formally and constructively describe an engineering process, the Rational Uni-
fied Process (RUP) Framework (Kruchten 2004) can be used as a baseline for adap-
tion since it is document-centric and reflects the smart contract development pro-
cess. More specifically, the RUP is used to differentiate between three distinctive
elements: First, roles pertain to individuals or groups performing activities within
the process. Such roles, which might include smart contract engineers, software
engineers, and legal experts, are responsible for the artifacts that are the outcome of
their activities. Second, activities summarize a unit of work that must be performed.
The outcome is the creation or update of artifacts. Third, artifacts denote the input
and output of activities. Artifacts are created, modified, and used by the roles dur-
ing the procedure and are either the final product, parts of it, or intermediate results.
Examples of artifacts include concepts, models, source code, smart contract code, or
documents such as performance reports.

Figure 1 illustrates the lifecycle of a smart contract. Sillaber and Waltl (2017)
have shown that smart contract lifecycles start with an implementation phase, dur-
ing which requirements are transformed into an implementation (Create and Adapt),
verified against the requirements, and either approved for release or modified again.
Once the smart contract is approved, it is published on the TADDL in the submis-
sion stage. In this phase, the smart contract is submitted and distributed within the
TADDL network. From that point on, every entity with access to the TADDL can
retrieve the contract and share it with other nodes. Once the smart contract has been
spread throughout the network and is accepted by general consensus (i.e., it persists
on the network), reverting or changing it requires—under ideal circumstances—sub-
stantial effort. The contract is now ready to be executed. In a paper contract analogy,
this would be the signing of the contract, which is one important step to make the
contract valid and enforceable. The execution stage of smart contracts is performed
by miners or other participants of the TADDL, since the smart contract code is now
accessible for all participants in the form of bytecode. To execute it, the smart con-
tract is retrieved from the TADDL and carried out by the respective node (compute).
Based on a given input, the output (e.g., a return value, a state transition, or a set of
transactions) of a smart contract is computed, which is then stored and distributed
within the network. This is similar to the “closing” of an offline contract. A smart
contract can be executed as long as it is active. Its execution is resource-consum-
ing and the nodes contributing computational power for its execution are rewarded
according to the distributed ledger’s reward scheme. In the finalization stage, the
smart contract expires. This can happen either because the parties actively declare
the smart contract as invalid (e.g., by withdrawing remaining funds or executing an
appropriate function) or because of intrinsic conditions that make further executions
impossible (e.g., time expiration; inability to pay the fees required for further execu-
tion). In this case, the smart contract remains in the TADDL, but can no longer be
executed by the nodes. This means that the smart contract is disabled through a con-
ditional exit that prevents future execution. This is akin to the “final” state of a busi-
ness process, where specific properties (e.g. successful execution, final state) depend
on the specific context.

1 3

Laying the foundation for smart contract development: an…

5.4 An integrated smart contract engineering process

Figure 2 combines and summarizes our findings from the literature as well as the expert
interviews into a comprehensive framework for the integrated smart contract engineer-
ing process. In the conceptualization phase, the preliminary scope and the goals of the
smart contract are defined. The scope informs all involved parties about what will be,
and what will not be, part of the smart contract and can be directly derived from tra-
ditional contractual requirements. This process is called requirements elicitation. The
problem definition should also state the desired economic outcome(s). After reaching
an agreement about the scope, the next step is the conceptual modeling: the transfor-
mation of the requirements of all involved parties into a smart contract model. In this
phase, the conceptual model is created. The conceptual model defines classes of objects
(e.g., wallets) and the desired relations between these objects and outcomes (e.g., trans-
actions). The construction of the conceptual model will most likely uncover incomplete
and contradictory aspects of the problem definition. Additionally, the modeling process
may raise new questions for the involved parties to answer and resolve through negotia-
tion. In either case, the problem definition should be adjusted.

After the conceptual modeling phase, the implementation phase starts. Here,
the conceptual model is mapped onto an executable model (e.g., in Ethereum by
using Solidity code) as existing smart contract patterns are identified, adapted and
combined. It is critical to note that for performance and cost reasons, most busi-
ness logic to be implemented will be executed outside the smart contract, within a
“traditional software” application (termed “non-smart contract code”). The identi-
fication of those parts that should be included in the smart contract, and those that
should be excluded, requires a thorough analysis of functional requirements as well
as non-functional requirements for confidentiality, integrity, availability, scalability
or efficiency. This analysis may even be performed as a formal risk analysis. In a
banking application, for instance, core-banking functionality may be implemented
as a smart contract, whereas data visualization on a traditional software stack.

An executable smart contract is not necessarily immediately correct and has to
be reviewed, tested, and verified. Verification and simulation of the smart contract
against the scope and stakeholder requirements are necessary to check whether the
code contains errors, including programming errors and mal-adjusted parameters.
For verification purposes (“Simulation, testing, code review”), various scenario-
based executions can be simulated step-by-step in a private blockchain. Apart from
verification, validation of the smart contract is also required. During validation, the
simulation results of the smart contracts are compared to real-world contract states
and stakeholder requirements. New insights may even lead to an adjustment of the
problem definition and/or the conceptual model of the smart contract. A simulated

Fig. 1 Simplified lifecycle of a smart contract

 C. Sillaber et al.

1 3

smart contract found to be correct after validation is called a validated smart con-
tract after the last round of consolidation.

Starting from the consolidated and validated smart contract, an instance of the
smart contract can be frozen and submitted for execution in the live TADDL envi-
ronment. Finally, in the approval and execution phases, the published smart contract
is approved and executed in the TADDL and has to be monitored during runtime.
In case the smart contract’s behavior deviates from the stakeholders’ requirements,
appropriate change management mechanisms have to be activated: in extreme cases,
the deactivation of the smart contract by depleting its funds and the creation of a
new smart contract which better meets the stakeholders’ requirements. Modifica-
tions of non-smart contract components are possible throughout the entire lifecycle
of the smart contract. Although the smart contract becomes immutable after it has
been submitted to the TADDL environment, the environment itself often provides
opportunities to influence the outcome of smart contracts: for example, by influenc-
ing the call graph through a function registry or call delegation. The smart contract’s
runtime behavior is constantly monitored and managed in a change management
process. Once the smart contract has reached the end of its life (e.g., by executing
the “self-destruction” operation in the Ethereum blockchain), proper finalization can
be confirmed in the finalization phase by validating whether the desired outcomes
have been reached. Figure 2 further shows that feedback between phases is possible
and frequently necessary. In practice, many phases will overlap. More specifically,
specification, implementation, validation, and verification will go hand in hand once
the appropriate tools are available to smart contract developers.

6 Discussion and implications

Smart contracts may well become the backbone of businesses based on blockchain
and related technologies (Bailis 2017; Werbach and Cornell 2017). However, prior
to the creation of industry-specific solutions, it is prudent to consider the general

Fig. 2 Integrated smart contracts engineering process

1 3

Laying the foundation for smart contract development: an…

characteristics of smart contracts and the roles they play during their lifecycle.
In this paper, we therefore present an integrated process model for smart con-
tracts that was developed and iteratively improved using findings from previous
research and the feedback of eleven industry experts. This model highlights the
important role of smart contracts during their lifecycle and thus supports quality
management in software engineering. This is of utmost importance for the busi-
ness community striving to use blockchain-based solutions, since immutable bugs
in smart contracts with no possibility of rectification have been exploited in previ-
ous attacks. For example, the controversial hard-fork of the Ethereum blockchain,
which basically nullified the effects of malicious transactions, poses an example of
how laborious and far-reaching ex-post changes on blockchain can potentially be
(Buterin 2016).

Our proposed smart contract engineering process is generic and is applicable to
a wide variety of distributed ledger technologies. It is based on traditional software
engineering process models and methodologies, such as the waterfall model as well
as iterative models that have been successfully applied in a wide variety of use
cases, and can be easily integrated with these existing models. For example, one
cycle of the implementation phase can be aligned with a Scrum sprint (Schwaber
and Beedle 2002). Traditional phase-oriented software engineering process mod-
els like the waterfall model typically progress linearly through an analysis, design,
implementation, and testing phase. While the analysis, design and implementation
phases align with our proposed conceptualization and implementation phases, spe-
cial care has to be given to the testing phase of smart contracts, as this must be con-
ducted and concluded prior to publishing the contract. Iterative software engineer-
ing process models typically iterate sequentially through the aforementioned four
phases. The implementation phase proposed in this paper iterates through a pattern
selection and adaption, development, consolidation, review, testing, and simulation
phase, aligning these process activities with iterative software engineering process
models.

Although further refinement of different aspects of the integrated process model
may be necessary for specific applications, the integrated model as presented in this
paper can immediately be applied in real-world industry settings. It can help smart
contract engineers to better understand the strengths and weaknesses of their engi-
neering processes and support them in further optimizing different process activi-
ties and artifacts such as software, models, and norms. Additionally, the process
model can advance applied smart contract engineering processes and serve as a
basis for critically investigating those processes in great detail, which is of practi-
cal value for any industry that needs to react fast while at the same time ensuring
supreme software quality. Additionally, there are also implications for academic
research. The engineering process model is accompanied by directions concerning
the involved artifacts, roles, and interdependencies, and thereby lays the foundation
for future research. This may include a detailed specification of the different roles
and their required profiles.

 C. Sillaber et al.

1 3

7 Conclusions, limitations and future research

In this paper, we develop an integrative process model for smart contract engineer-
ing and describe its activities, roles, and artifacts. This model lays the foundation for
further smart contract development, which has the potential to revolutionize many
different industries. We argue that conventional software engineering process mod-
els do not provide adequate support for the trustless, append-only, and decentral-
ized environment in which smart contracts are executed. Traditional process mod-
els do not account for the immutability of smart contracts after they are submitted,
because they assume a (mostly) frictionless transition between software releases
and that modifications of existing software releases are possible. Our smart contract
engineering process accounts for these peculiarities of blockchain-based software
development and consists of five sequential phases: (1) conceptualization, (2) imple-
mentation, (3) approval, (4) execution, and (5) finalization. These phases are derived
from the properties of the underlying blockchain ecosystem. We propose new direc-
tions for smart contract engineering that focus on collaboration among domain
experts, testing activities, quality assurance, and specialized workflow tools.

Currently, we see two major limitations of this research that deserve further atten-
tion. First, there are no validated measurements for the concepts of the process activi-
ties. An attempt was made to use existing process model artifacts and to make as few
changes as possible. However, the construct validity of these artifacts cannot currently
be guaranteed. Second, due to a lack of established best practices in smart contract engi-
neering, an empirical evaluation of the hypothesized artifacts is not currently feasible.

Future research, therefore, needs to investigate if and how the proposed engineering
process model can be tailored to and with different software engineering methodologies
(e.g., Scrum, V-model). In this context, research could investigate how the development
of smart code can be integrated with the development of traditional software code, as
well as how risk analysis can support this integration. Furthermore, it is necessary to
integrate this framework with existing work on testing and quality assurance in software
engineering. An important aspect here is especially the role of simulation for quality
assurance. The behavioral aspects of smart contract engineering have not yet received
enough attention. While data is sparse, we have seen DevOps and “full-stack” software
engineering behavior with many interviewees and many interesting patterns (e.g., ran-
domness patterns or oracle patterns) that have been adapted from these and related dis-
ciplines that warrant future research. Furthermore, there is a pending need to cover the
increasing demand for inter- TADDL transactions and developing secure applications
that rely on more than one TADDL. Combining various approaches will lead to new
insights into how best to cope with the challenges of modern blockchain-based software
development and how smart contracts can be used to create viable business models.

Acknowledgements Open access funding provided by University of Innsbruck and Medical University
of Innsbruck.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article

1 3

Laying the foundation for smart contract development: an…

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

References

Anderson L, Holz R, Ponomarev A, Rimba P, Weber I (2016) New kids on the block: an analysis of modern
blockchains. CoRR. arXiv preprint http://arxiv .org/abs/1606.06530

Atzei N, Bartoletti M, Cimoli T (2016) A survey of attacks on Ethereum smart contracts. IACR Cryptol-
ogy ePrint archive 2016:1007

Atzei N, Bartoletti M, Cimoli T (2017) A survey of attacks on Ethereum smart contracts SoK. In: Proceed-
ings of the international conference on principles of security and trust, Uppsala, Sweden, pp 164–186

Bailis P (2017) Research for practice: cryptocurrencies, blockchains, and smart contracts; hardware for deep
learning. Commun ACM 60(5):48–51

Bartoletti M, Pompianu L (2017) An empirical analysis of smart contracts: platforms, applications, and
design patterns. In: Proceedings of the international conference on financial cryptography and data
security. Springer, Cham, pp 494–509

Baskerville R, Baiyere A, Gregor S, Hevner A, Rossi M (2018) Design science research contributions: find-
ing a balance between artifact and theory. J Assoc Inf Syst 19(5):358–376

Beck R, Müller-Bloch C (2017) Blockchain as radical innovation: a framework for engaging with distrib-
uted ledgers as incumbent organization. In: Proceedings of the 50th Hawaii international conference
on system sciences, Hawaii, HI, pp 5390–5399

Beck K, Beedle M, Van Bennekum A, Cockburn A, Cunningham W, Fowler M, Grenning J, Highsmith
J, Hunt A, Jeffries R, Kern J, Marick B, Martin RC, Mellor S, Schwaber K, Sutherland J, Thomas D
(2001) Manifesto for agile software development. http://agile manif esto.org/. Accessed 20 Apr 2018

Bennett KH, Rajlich VT (2000) Software maintenance and evolution: a roadmap. In: Proceedings of the
conference on the future of software engineering, pp 73–87

Bhargavan K, Delignat-Lavaud A, Fournet C, Gollamudi A, Gonthier G, Kobeissi N, Kulatova N, Rastogi
A, Sibut-Pinote T, Swamy N, Zanella-Béguelin S (2016) Formal verification of smart contracts: short
paper. In: Proceedings of the 2016 ACM workshop on programming languages and analysis for secu-
rity, pp 91–96

Boehm B, Turner R (2005) Management challenges to implementing agile processes in traditional develop-
ment organizations. IEEE Softw 22(5):30–39

Böhme R, Christin N, Edelman B, Moore T (2015) Bitcoin: economics, technology, and governance. J Econ
Perspect 29(2):213–238

Bourque P, Fairley RE (2014) Guide to the software engineering body of knowledge (swebok (r)): version
3.0. IEEE Computer Society Press, Washington, DC

Braude EJ, Bernstein ME (2016) Software engineering: modern approaches. Waveland Press, Long Grove
Buterin V (2014) A next-generation smart contract and decentralized application platform. White paper.

https ://githu b.com/ether eum/wiki/wiki/White -Paper #decen trali zed-auton omous -organ izati ons.
Accessed 10 Jan 2018

Buterin V (2016) Hard fork completed. Ethereum Blog. https ://blog.ether eum.org/2016/07/20/hard-fork-
compl eted/. Accessed 17 Dec 2017

Chau PYK, Tam KY (1997) Factors affecting the adoption of open systems: an exploratory study. MIS Q
21(1):1–24

Clack CD, Bakshi VA, Braine L (2016) Smart contract templates: essential requirements and design options.
CoRR. arXiv preprint http://arxiv .org/abs/1612.04496

Coinmarketcap (2018) Top 100 cryptocurrencies by market capitalization. https ://coinm arket cap.com/.
Accessed 17 Apr 2018

Delmolino K, Arnett M, Kosba A, Miller A, Shi E (2016) Step by step towards creating a safe smart con-
tract: lessons and insights from a cryptocurrency lab. In: Clark J, Meiklejohn S, Ryan PYA, Wallach
D, Brenner M, Rohloff K (eds) Proceedings of the international conference on financial cryptography
and data security, pp 79–94

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1606.06530
http://agilemanifesto.org/
https://github.com/ethereum/wiki/wiki/White-Paper#decentralized-autonomous-organizations
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
https://blog.ethereum.org/2016/07/20/hard-fork-completed/
http://arxiv.org/abs/1612.04496
https://coinmarketcap.com/

 C. Sillaber et al.

1 3

Deshpande A, Stewart K, Lepetit L, Gunashekar S (2017) Distributed Ledger technologies/blockchain: chal-
lenges, opportunities and the prospects for standards. Overview report. The British Standards Institu-
tion (BSI). https ://www.bsigr oup.com/PageF iles/50800 3/BSI_Block chain _DLT_Web.pdf. Accessed 1
May 2018

Destefanis G, Marchesi M, Ortu M, Tonelli R, Bracciali A, Hierons R (2018) Smart contracts vulnerabil-
ities: a call for blockchain software engineering? In International workshop on blockchain oriented
software engineering (IWBOSE), Campobasso, Italy, pp 19–25

Edan Y, Pliskin N (2001) Transfer of software engineering tools from information systems to production
systems. Comput Ind Eng 39(1–2):19–34

Egelund-Müller B, Elsman M, Henglein F, Ross O (2017) Automated execution of financial contracts on
blockchains. Bus Inf Syst Eng 59(6):457–467

Fairfield JA (2014) Smart contracts, bitcoin bots, and consumer protection. Wash Lee Law Rev Online
71(2):35–50

Fanning K, Centers DP (2016) Blockchain and its coming impact on financial services. J Corp Account
Finance 27(5):53–57

Frantz CK, Nowostawski M (2016) From institutions to code: towards automated generation of smart con-
tracts. In: Proceedings of the IEEE international workshops on foundations and applications of self*
systems, pp 210–215

Friedlmaier M, Tumasjan A, Welpe IM (2016) Disrupting industries with blockchain: the industry, venture
capital funding, and regional distribution of blockchain ventures. In: Proceedings of the 51st Hawaii
international conference on system sciences, Waikoloa, HI, pp 3517–3526

Fuggetta A, Di Nitto E (2014) Software process. In: Proceedings of the conference on future of software
engineering, Hyderabad, India, pp 1–12

Hevner AR, March ST, Park J, Ram S (2004) Design science in information systems research. MIS Q
28(1):75–105

Idelberger F, Governatori G, Riveret R, Sartor G (2016) Evaluation of logic-based smart contracts for
blockchain systems. In: Alferes J, Bertossi L, Governatori G, Fodor P, Roman D (eds) Rule technolo-
gies. Research, tools, and applications. RuleML 2016. Lecture notes in computer science, vol 9718.
Springer, Cham, pp 167–183

IEEE (1995) 1074-1995—IEEE standard for developing software life cycle processes. IEEE. https ://ieeex
plore .ieee.org/docum ent/49050 1/. Accessed 20 Mar 2018

Jacobson I, Booch G, Rumbaugh J, Rumbaugh J, Booch G (1999) The unified software development pro-
cess, vol 1. Addison-Wesley, Reading

Johansen S (2018) A comprehensive literature review on the Blockchain as a technological enabler for inno-
vation. Working paper, Mannheim University

KingOfTheEther (2016) Post-mortem investigation. https ://www.kingo fthee ther.com/postm ortem .html.
Accessed 10 Apr 2018

Kiviat TI (2015) Beyond bitcoin: issues in regulating blockchain transactions. Duke Law J 65:569–608
Klöhn L, Parhofer N, Resas D (2018) Initial coin offerings (ICOs). Z Bankr Bankwirtsch 30(2):89–106
Koulu R (2016) Blockchains and online dispute resolution: smart contracts as an alternative to enforcement.

SCRIPTed 13(1):40–69
Kruchten P (2004) The rational unified process: an introduction. Addison-Wesley Professional, Boston
Kuhrmann M, Diebold P, Münch J, Tell P, Garousi V, Felderer M, Trektere K, McCaffery F, Linssen O,

Hanser E, Prause CR (2017) Hybrid software and system development in practice: waterfall, scrum,
and beyond. In: Bendraou R, Raffo D, LiGuo H, Maggi FM (eds) Proceedings of the 2017 interna-
tional conference on software and system process, Paris, France, pp 30–39

Lacity MC, Janson MA (1994) Understanding qualitative data: a framework for text analysis methods. J
Manag Inf Syst 11(2):137–155

Lee G, Xia W (2010) Toward agile: an integrated analysis of quantitative and qualitative field data on soft-
ware development agility. MIS Q 34(1):87–114

Leitner A, Ciupa I, Oriol M, Meyer B, Fiva A (2007) Contract driven development = test driven develop-
ment—writing test cases. In: Crnkovic I, Bertolino A (eds) Proceedings of the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on the foundations of
software engineering (ESEC-FSE ‘07). New York, NY, USA, pp 425–434

Luu L, Chu D-H, Olickel H, Saxena P, Hobor A (2016) Making smart contracts smarter. In: Weippl E,
Katzenbeisser S, Kruegel C, Myers A, Halevi S (eds) Proceedings of the 2016 ACM Sigsac conference
on computer and communications security, pp 254–269

https://www.bsigroup.com/PageFiles/508003/BSI_Blockchain_DLT_Web.pdf
https://ieeexplore.ieee.org/document/490501/
https://ieeexplore.ieee.org/document/490501/
https://www.kingoftheether.com/postmortem.html

1 3

Laying the foundation for smart contract development: an…

March ST, Smith GF (1995) Design and natural science research on information technology. Decis Support
Syst 15(4):251–266

Marjanovic O, Milosevic Z (2001) Towards formal modeling of e-contracts. In: Proceedings of the fifth
IEEE international conference on enterprise distributed object computing, pp 59–68

Mayring P (2014) Qualitative content analysis: theoretical foundation, basic procedures and software solu-
tion. Dissertation. http://nbn-resol ving.de/urn:nbn:de:0168-ssoar -39517 3. Accessed 1 May 2018

Mens T, Guehénéuc Y-G, Fernández-Ramil J, D’Hondt M (2010) Guest editors’ introduction: software evo-
lution. IEEE Softw 27(4):22–25

Moyano JP, Ross O (2017) KYC optimization using distributed ledger technology. Bus Inf Syst Eng
59(6):411–423

Nakamoto S (2008) Bitcoin: a peer-to-peer electronic cash system. https ://bitco in.org/en/bitco in-paper .
Accessed 12 Aug 2017

Narayanan A, Clark J (2017) Bitcoin’s academic pedigree: the concept of cryptocurrencies is built from
forgotten ideas in research literature. ACM Queue 15(4):1–30

Notheisen B, Cholewa JB, Shanmugam AP (2017) Trading real-world assets on blockchain. Bus Inf Syst
Eng 59(6):425–440

Pesch PJ, Sillaber C (2017) Distributed Ledger, Joint Control? – Blockchains and the GDPR’s Transparency
Requirements. Comput Law Rev Int 18(6):166–172. https ://doi.org/10.9785/cri-2017-0602t

Porru S, Pinna A, Marchesi M, Tonelli R (2017) Blockchain-oriented software engineering: challenges and
new directions. In: Uchitel S, Orso A, Robillard M (eds) Proceedings of the 39th international confer-
ence on software engineering companion, Buenos Aires, Argentina, pp 169–171

Prusty SK, Mohapatra PKJ, Mukherjee CK (2017) House of strategy: a model for designing strategies using
stakeholders’ opinion. Comput Ind Eng 108:39–56

Rajlich VT, Bennett KH (2000) A staged model for the software life cycle. Computer 33(7):66–71
Rückeshäuser N (2017) Do we really want blockchain-based accounting? Decentralized consensus as ena-

bler of management override of internal controls. In: Leimeister JM, Brenner W (eds) Proceedings der
13. Internationalen Tagung Wirtschaftsinformatik (WI 2017), St. Gallen, Switzerland, pp 16–30

Schwaber K, Beedle M (2002) Agile software development with scrum. Prentice Hall, Upper Saddle River
Seijas PL, Thompson SJ, McAdams D (2016) Scripting smart contracts for distributed ledger technology.

https ://eprin t.iacr.org/2016/1156.pdf. Accessed 1 May 2018
Siegel D (2016) Understanding the DAO attack. https ://www.coind esk.com/under stand ing-dao-hack-journ

alist s/. Accessed 10 Apr 2018
Sillaber C, Waltl B (2017) The life cycle of smart contracts in blockchain ecosystems. Datenschutz Datensi-

cherheit DuD 41(8):497–500
Stark J (2015) Product lifecycle management. Springer, London
Swan M (2015) Blockchain: blueprint for a new economy. O’Reilly Media, Sebastopol
Szabo N (1997) The idea of smart contracts. Nick Szabo’s papers and concise tutorials. http://www.fon.

hum.uva.nl/rob/Cours es/Infor matio nInSp eech/CDROM /Liter ature /LOTwi nters chool 2006/szabo .best.
vwh.net/idea.html. Accessed 1 May 2018

Tapscott D, Tapscott A (2016) Blockchain revolution: how the technology behind bitcoin is changing
money, business, and the world. Penguin, New York

Treiblmaier H, Zeinzinger Z (2018) Understanding the blockchain through a gamified experience: a case
study from Austria. In: 25th European conference on information systems, June 23–28, Portsmouth:
UK

Tschorsch F, Scheuermann B (2016) Bitcoin and beyond: a technical survey on decentralized digital curren-
cies. IEEE Commun Surv Tutor (COMST) 18(3):2084–2123

Vidgen R, Wang X (2009) Coevolving systems and the organization of agile software development. Inf Syst
Res 20(3):355–376

Wang H, Chen K, Xu D (2016) A maturity model for blockchain adoption. Financ Innov 2(12):1–5
Werbach K, Cornell N (2017) Contracts ex machina. Duke Law J 67(2):313–382
Wood G (2014) Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow

Paper, pp 1–32
Xu X, Weber I, Staples M, Zhu L, Bosch J, Bass L, Pautasso C, Rimba P (2017) A taxonomy of blockchain-

based systems for architecture design. In: Proceedings of the IEEE international conference on soft-
ware architecture, Gothenburg, Sweden, pp 243–252

Zakarian A, Kusiak A (2001) Process analysis and reengineering. Comput Ind Eng 41(2):135–150

http://nbn-resolving.de/urn:nbn:de:0168-ssoar-395173
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.9785/cri-2017-0602t
https://eprint.iacr.org/2016/1156.pdf
https://www.coindesk.com/understanding-dao-hack-journalists/
https://www.coindesk.com/understanding-dao-hack-journalists/
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/idea.html

 C. Sillaber et al.

1 3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Christian Sillaber1 · Bernhard Waltl2 · Horst Treiblmaier3 · Ulrich Gallersdörfer2 ·
Michael Felderer1,4

 Horst Treiblmaier
 horst.treiblmaier@modul.ac.at

1 University of Innsbruck, Innsbruck, Austria
2 TU Munich, Munich, Germany
3 MODUL University Vienna, Am Kahlenberg 1, 1190 Vienna, Austria
4 Blekinge Institute of Technology, Karlskrona, Sweden

	Laying the foundation for smart contract development: an integrated engineering process model
	Abstract
	1 Introduction
	2 Identification of DLT research topics
	3 Related work
	3.1 Smart contracts in trustless, append-only, decentralized digital ledgers
	3.2 Software engineering process models

	4 Methodology
	5 Process model development
	5.1 Conceptual base
	5.2 Expert evaluation
	5.3 Roles, activities, and artifacts
	5.4 An integrated smart contract engineering process

	6 Discussion and implications
	7 Conclusions, limitations and future research
	Acknowledgements
	References

