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Effective Mass of the Polaron—Revisited

Wojciech Dybalski and Herbert Spohn

Abstract. Properties of the energy–momentum relation for the Fröhlich
polaron are of continuing interest, especially for large values of the cou-
pling constant. By combining spectral theory with the available results
on the central limit theorem for the polaron path measure, we prove that,
except for an intermediate range of couplings, the inverse effective mass
is strictly positive and coincides with the diffusion constant. Such a re-
sult is established also for polaron-type models with a suitable ultraviolet
cut-off and for arbitrary values of the coupling constant. We point out
a slightly stronger variant of the central limit theorem which would im-
ply that the energy–momentum relation has a unique global minimum
attained at zero momentum.

1. Introduction

Polaron refers to an electron interacting with the lattice vibrations of a polar
crystal, see [1,7,23] as a guide to the physics literature. In the conventional
approximations, the quantum Hamiltonian reads

H = 1
2p2 +

∫
Rd

dk ω(k)a∗(k)a(k) +
√

α

∫
Rd

dk
v̂(k)√
2ω(k)

(
eikxa(k) + e−ikxa∗(k)

)
.

(1.1)
We use units in which the bare electron mass equals one. x, p are position and
momentum of the electron in R

d, a∗(k), a(k) are the creation and annihila-
tion operators of a free scalar Bose field over R

d with commutation relations
[a(k), a∗(k′)] = δ(k − k′), ω is the dispersion relation of the Bose field, ω ≥ 0,
continuous and strictly positive almost everywhere, and ω(Rk) = ω(k) for all
rotations R. The form factor v̂ is assumed to be real, rotation invariant and
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has the Fourier transform1 v̂. v(x) physically describes the smearing of the in-
teraction between the electron and the Bose field. It is a standard convention
to call g = v̂/

√
2ω the coupling function. Finally, α is the coupling constant,

α ≥ 0. Formally, H acts on the Hilbert space H = L2(Rd)⊗F with F the Fock
space of the Bose field. The coupling between field and particle is translation
invariant, and hence the total momentum

P = p + Pf , Pf =
∫
Rd

dk k a∗(k)a(k), (1.2)

is conserved.
The Fröhlich polaron corresponds to the specific choice d = 3, ω(k) =

1, and g(k) = (
√

2π|k|)−1. In particular, ‖g‖2 = ∞ because of ultraviolet
divergence. Since the strong coupling physics is dominated by the large |k|
behavior of the coupling function, no ultraviolet cut-off can be afforded2 and a
separate discussion is required, see Sect. 4. The acoustic polaron corresponds
to ω(k) = |k| and other variations can be found in the physics literature.
As common practice [15,23], we thus keep d, ω, g general for a while and add
further assumptions on the way. For the purpose of this introductory discussion
‖g‖2 < ∞ is assumed. Under precise conditions to be stated in Sect. 3, H is a
self-adjoint operator and has the fiber decomposition

H = Π∗
(∫ ⊕

Rd

dP H(P )
)

Π, (1.3)

since P is conserved. (Here Π := F eiPfx, where F is the Fourier transform
from x to P variable). The fiber Hamiltonian reads

H(P ) = 1
2 (P − Pf)2 +

∫
Rd

dk ω(k)a∗(k)a(k) +
√

α

∫
Rd

dk g(k)
(
a(k) + a∗(k)

)
(1.4)

and acts on F . The energy–momentum relation, E(P ), is the bottom of the
spectrum of H(P ),

E(P ) = inf spec(H(P )). (1.5)
By construction, E(RP ) = E(P ) for all rotations R and hence E(P ) =
Er(|P |). Also, in generality,

E(P ) ≥ E(0). (1.6)

As a widely accepted definition, the effective mass is the inverse of the curva-
ture of E(P ) at P = 0, which by rotation invariance means

(meff)−1 = E′′
r (0). (1.7)

In [13] an alternative definition of the effective mass has been proposed, which
is based on the response of the ground state energy of the polaron to a weak
confining potential. The agreement with (1.7) is proved.

1We use the convention v̂(k) := 1
(2π)d/2

∫
Rd dx e−ikxv(x) and occasionally write (Fv)(k) :=

v̂(k).
2More precisely, the cut-off should be sent to infinity before the coupling constant.
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A long-standing open problem is to analyze the effective mass of the
Fröhlich polaron in the strong coupling regime [20,23]. As the coupling is
increased, more and more bosons are bound to the electron and one would
expect the effective mass to increase with α, presumably to diverge in the
limit. Recent progress has been achieved by Lieb and Seiringer [12], who by
functional analytic methods prove that indeed meff(α) diverges as α → ∞.
A mathematically orthogonal approach is to study the polaron path measure,
as originally introduced by Feynman [4]; see also [5,22]. Mathematically this
corresponds to a standard Brownian motion with a Gibbsian-like weight which
depends only on the increments. Thus one expects to still observe diffusive
behavior on large scales, however with an effective diffusion constant, σ2. In
other words, one conjectures the validity of a central limit theorem (CLT) for
such weighted Brownian motion. In fact, the CLT has become now available
for a large class of polaron models, including the assertion that σ2 > 0. We
refer to Sect. 2 for more details.

As argued in [23], and presumably before, effective mass and diffusion
constant should be related as

(meff)−1 = σ2. (1.8)

However, at the time, the reasoning was based on considering second moments
for the position of the weighted Brownian motion, a piece of information which
is not so easily available from current CLT proofs. For us, this by itself is a con-
vincingly enough reason to reconsider the case. As an extra bonus, apparently
not noted before, the conventional CLT also yields spectral information about
properties apparently unaccessible by current functional analytic techniques.
To explain this point in more detail, we assume the lower bound ω(k) ≥ c0 > 0
and further conditions as stated in Sects. 3 and 4. Then H(P ) has a unique
ground state with energy E(P ) for |P | < γ for some γ > 0. Furthermore,
the continuum edge of H(P ) is strictly larger than E(P ) in this ball. Possible
eigenvalues have a finite multiplicity and can accumulate only at the continuum
edge [6,15]. In particular, Er is real analytic in P and

√
α. From perturbation

theory, requiring α to be sufficiently small, one then infers that

E′′
r (0) > 0. (1.9)

But for larger α, it is difficult to exclude E(P ) to have vanishing curvature
at P = 0. Under to be stated conditions we will establish the identity (1.8).
Hence from σ2 > 0 one concludes that meff < ∞ for all α.

A related issue is the long-standing (physically obvious) conjecture

E(P ) > E(0), P �= 0. (1.10)

The weaker property (1.6) follows from a Kato inequality for H [6]. So the real
issue is to exclude points P ∗ �= 0 at which E(P ∗) = E(0). Property (1.10) is
claimed in [7, Statement 2]. In the proof on p. 78, the authors argue with the
degeneracy of the ground state of H. But, under the common assumptions,
H has no ground state at all. To have a ground state would require the set
{P ∈ R

d |E(P ) = E(0)} to have nonzero Lebesgue measure. In Sect. 5, we
will explain how (1.10) follows from a CLT with yet to be studied boundary
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conditions. Alternatively, one might invoke a suitable large deviation result in
the context of the available boundary conditions.

Our paper is organized as follows. In Sect. 2, we explain the connection
to the probabilistic CLT and discuss recent results of interest in our context.
In Sects. 3 and 4, we show the relations (1.8), (1.9) for polaron-type models
with the UV cut-off ‖g‖2 < ∞ and for the Fröhlich polaron, respectively. In
Sect. 5, we study the functional analytic side of a CLT with general two-sided
pinning.

2. Probabilistic Approach and Central Limit Theorem

We choose the boundary states φ± = ϕ± ⊗ Ω ∈ H with Ω the Fock vacuum
and ϕ± nonzero and real-valued, and define

G̃T−,T+(k, t) = 〈φ−, e−T−Heikxe−tHe−ikxe−T+Hφ+〉, t, T−, T+ ≥ 0. (2.1)

Using the direct integral decomposition (1.3), (1.4), see also formula (B.1), one
obtains the identity

G̃T−,T+(k, t) =
∫
Rd

dP ϕ̂−(P )ϕ̂+(P )〈Ω, e−T−H(P )e−tH(P+k)e−T+H(P )Ω〉.
(2.2)

In spirit of the Feynman–Kac formula for a Schrödinger operator, the semi-
group e−tH , t ≥ 0, can be written as a weighted average with respect to a
Gaussian measure. For the particle trajectories, we introduce the Wiener pro-
cess P

W, i.e., standard Brownian motion starting with Lebesgue measure on
R

d, with expectation E
W. The continuous paths of the Wiener process are

denoted by q(t). The Bose field maps to the Gaussian process u(x, t) whose
path measure is denoted by P

G, with expectation E
G. The Gaussian process

has mean zero, is stationary in space time and is uniquely defined through its
covariance

E
G

(
u(x, t)u(x′, t′)

)
=

∫
Rd

dk
1

(2π)d

1
2ω(k)

eik(x−x′)e−ω(k)|t−t′|. (2.3)

Then

G̃T−,T+(k, t) = E
W×E

G
(
ϕ−(q(−T−))ϕ+(q(T+ + t))e−ik(q(t)−q(0))

× exp

[
√

α

∫ T++t

−T−
ds

∫
Rd

dx v(x)u(q(s) − x, s)

])
, (2.4)

which makes more explicit how v(x) smears the field u relative to the position
of the particle. If ‖g‖2 < ∞, the term in the square brackets is a well-defined
Gaussian random variable with respect to P

G. The Gaussian average E
G can
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be carried out explicitly leading to

G̃T−,T+(k, t) = E
W

(
ϕ−(q(−T−))ϕ+(q(T+ + t))e−ik(q(t)−q(0))

× exp

[
1
2α

∫ T++t

−T−
ds

∫ T++t

−T−
ds′ W (q(s) − q(s′), s − s′)

])

(2.5)

with
W (x, t) =

∫
Rd

dk|g(k)|2eikxe−ω(k)|t|. (2.6)

Note that W is real, continuous, rotation invariant in x, and |W (x, t)| ≤ ‖g‖2
2.

In particular, the integrand under the double time integral appearing in (2.5)
is pathwise bounded and continuous.

The Fröhlich polaron is the special case d = 3, ω = 1, and g(k) =
(
√

2π|k|)−1, thereby defining the Hamiltonian HFr, for which self-adjointness
is established in [6,8]. The kernel W of the Fröhlich polaron is given by

WFr(x, t) = |x|−1e−|t|, (2.7)

which is no longer bounded. Still the factor exp[·] in (2.5) is integrable [3]. To
establish the validity of the basic identity (2.5) for HFr, one introduces the
cut-off coupling gκ(k) = (

√
2π|k|)−1e− 1

κ |k|, thereby defining the Hamiltonian
Hκ. The strong limit limκ→∞ e−tHκ = e−tHFr

is established in [6,14], which
controls the left side of (2.5). On the right side, W is replaced by

Wκ(x, t) = |x|−1 2
π

arctan(κ|x|)e−|t|, (2.8)

which increases monotonously to WFr(x, t). Thus by monotonicity, the right-
hand side of (2.5) converges to the corresponding expression with kernel given
by WFr(x, t) and hence (2.5) remains valid for the Fröhlich polaron.

In (2.5), the reference process is a standard Brownian motion over the
time interval [−T−, t+T+]. The Brownian motion is pinned by the function ϕ−
at the left border and by ϕ+ at the right one. The Brownian path is weighted by
the exponential of the double time integral involving W . Note that the weight
depends only on the increments. To have a probability measure, we have to
normalize by the partition function G̃T−,T+(0, t). The difference q(t) − q(0) is
the Brownian motion increment over the time interval [0, t]. Of interest is its
characteristic function, i.e., the Fourier transform of the corresponding proba-
bility density function. Altogether, this leads to the normalized characteristic
function

GT−,T+(k, t) = G̃T−,T+(k, t)/G̃T−,T+(0, t). (2.9)
Depending on the precise setup, one then has to establish the limits T−, T+ →
∞ followed by the CLT which requires t → ∞.

In the probabilistic literature, two distinct boundary conditions have been
studied and we discuss them one by one. In both cases T− = 0, ϕ−(x) = δ(x),
and ϕ+(x) = 1, of which the latter two have to be approximated by a suitable
sequence of L2 functions. We set T+ = T in the sequel.
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In [2] and the follow-up by Gubinelli [10], the authors require the condi-
tions
∫
Rd

dk|g(k)|2
⎛
⎝ ∑

j=1,2,3

ω(k)−j

⎞
⎠ < ∞,

∫
Rd

dk|g(k)|2|k|2
⎛
⎝ ∑

j=2,4

ω(k)−j

⎞
⎠ < ∞.

(2.10)
They consider G̃0,T of the form

G̃0,T (k, t)

= E
W

(
δ(q(0))e−ikq(t) exp

[
1
2α

∫ T+t

0

ds

∫ T+t

0

ds′W (q(s) − q(s′), s − s′)

])

(2.11)

and establish the limit

lim
T→∞

G0,T (k, t) = G0,∞(k, t). (2.12)

The CLT is proved, thus ensuring the limit

lim
ε→0

G0,∞(εk, ε−2t) = e− 1
2σ2k2t (2.13)

for some σ > 0. In fact, the stronger functional CLT is established, see [2,
Theorem 1.1].

It is instructive to rewrite the expectation values from above in the lan-
guage of operators as in (2.1), (2.2), with the result

G̃0,T (k, t) = 〈φ−, eikxe−tHe−ikxe−THφ+〉
=

∫
Rd

dPδ(P )〈Ω, e−tH(P+k)e−TH(P )Ω〉 = 〈Ω, e−tH(k)e−TH(0)Ω〉,
(2.14)

where we used ϕ̂−(P ) = (2π)−d/2, and ϕ̂+(P ) = (2π)d/2δ(P ). For polaron-
type models treated in Sect. 3, H(0) has a spectral gap and a unique ground
state ψ0, thus by the spectral theorem

G0,∞(k, t) = 〈Ω, e−t(H(k)−E(0))ψ0〉/〈Ω, ψ0〉. (2.15)

More recently, Mukerjee and Varadhan studied the CLT under weaker
conditions than imposed in [2,10]. Their starting formula is

G̃0,0(k, t) = E
W

(
δ(q(0))e−ikq(t) exp

[
1
2
α

∫ t

0

ds

∫ t

0

ds′W (q(s) − q(s′), s − s′)
])

,

(2.16)
hence T = 0, which one recognizes as a particular case of (2.14) and

G0,0(k, t) = 〈Ω, e−tH(k)Ω〉/〈Ω, e−tH(0)Ω〉. (2.17)

In [17, Theorem 4.2], the CLT of the following form is established for the
Fröhlich polaron,

lim
ε→0

G0,0(εk, ε−2t) = e− 1
2σ2k2t, (2.18)
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for some σ > 0, with the restriction α ∈ [0, α0) ∪ (α1,∞) for some 0 < α0 <
α1 < ∞. The functional CLT is not touched upon.

In the related study [18], the strong coupling limit and its relation to
the Pekar process are investigated. Mukherjee [19] also starts from (2.16) and
considers a general weight function W , for which he requires |W (x, t)| ≤ C(1+
|t|)−(2+δ) for some C, δ > 0. In particular, this condition covers the polaron
whenever g ∈ L2. [In the currently posted version, in addition W ≥ 0 is
required. As communicated to us by the author this condition can be dropped.]
In [19, Theorem 2.1] the conventional CLT of the form (2.18) is proved for
arbitrary α ≥ 0.

Physically one is also interested in the behavior of E(P ) away from the
origin. Starting from (2.17), instead of k = O(ε) one would have to con-
sider k = P = O(1), which probabilistically is a problem of large deviations.
In Sect. 5, we explore a different approach by starting from (2.1) with gen-
eral square-integrable boundary functions ϕ± in the limit T± → ∞, but still
invoking a CLT.

3. Polaron-Type Models with a UV Cut-off

In this section, we show that σ > 0 appearing in the CLT (2.18) coincides with
the square root of the inverse effective mass for a large class of polaron-type
Hamiltonians with a UV cut-off. It is convenient to start from a family of the
fiber Hamiltonians of the form

H(P ) =
1
2
(P − Pf)2 + Hf +

√
α

∫
Rd

dk g(k)
(
a(k) + a∗(k)

)
, (3.1)

where Hf =
∫
Rd dk ω(k)a∗(k)a(k), Pf =

∫
Rd dk k a∗(k)a(k). Further assump-

tions are listed in

Condition C (i) g ∈ L2(Rd) is real and rotation invariant. The coupling con-
stant α ≥ 0 is arbitrary.

(ii) ω(k) ≥ c0 > 0, ω is continuous, rotation invariant, and sub-additive in the
sense that

ω(k1 + k2) ≤ ω(k1) + ω(k2). (3.2)

Then, by the Kato–Rellich theorem, H(P ) are self-adjoint, semi-bounded op-
erators on the domain D(P 2

f + Hf) which is independent of P . By the direct
integral formula (1.3), one obtains a Hamiltonian of the form (1.1). Under the
above assumptions, the HVZ theorem for these models was shown in [6,15].
All the properties below can be found in [15] except for part 0 for which we
refer to [9] or [25, Section 15.2], and part 6 which can be found in [16]. We
refer to [15] for a discussion of the literature.

Lemma 3.1 [6,15]. Assume Condition C and define E(P ) = inf spec(H(P )),
Eess(P ) = inf specess(H(P )). Then the following statements hold true:

0. E(0) ≤ E(P ) for all P ∈ R
d.
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1. Eess(P ) = infk∈Rd(E(P − k) + ω(k)).
2. The set I0 := {P ∈ R

d |E(P ) < Eess(P ) } is non-empty and contains a
neighborhood of any global minimum of |P | �→ Er(|P |).

3. E(P ) is an isolated, simple eigenvalue for P ∈ I0.
4. Suppose that ω is bounded along some sequence {kn}n∈N s.t. limn→∞ |kn| =

∞. Then, for any E ∈ R, and any sequence {Pn}n∈N s.t. limn→∞ |Pn| =
∞, E(Pn) ≤ E we have lim|Pn|→∞(Eess(Pn) − E(Pn)) = 0.
For general ω, E(P ) ≥ c1ω(P ) + c2 for some c1 > 0.

5. For P ∈ I0 we have |〈Ω, ψP 〉| > 0, where ψP is the ground state of H(P ).
6. I0 � P �→ E(P ) and P �→ |ψP 〉〈ψP | are real analytic functions.

Let us comment briefly on the proof of properties 1–5 and the role of various
assumptions on ω. We consider the thresholds

E(n)(P ) := inf
k1,...,kn∈Rd

(E(P − k1 − · · · − kn) + ω(k1) + · · · + ω(kn)). (3.3)

Assuming only that ω is continuous, bounded and massive (i.e. ω(k) ≥ c0 >
0), Theorem 2.1 of [15] gives Eess(P ) = infn≥1 E(n)(P ). As sub-additivity
of ω clearly gives monotonicity of thresholds, with this additional assump-
tion one obtains property 1 of Lemma 3.1 above. As pointed out in [15],
it is clear from this relation, and from the fact that ω is massive, that if
E(P ) < infP ′ E(P ′) + infk′ ω(k′) then E(P ) < Eess(P ), which gives prop-
erty 2 of Lemma 3.1. Clearly, the spectrum below Eess(P ) consists at most of
eigenvalues of finite multiplicity with Eess(P ) as the only possible accumula-
tion point. Thus E(P ) is an isolated eigenvalue, which is simple by Theorem
2.3 of [15]. Thus we obtain property 3 of Lemma 3.1. For the first part of
property 4 and property 5, we refer to Theorems 2.3 and 2.4 of [15]. (The
assumption lim|k|→∞ ω(k)/|k|2 = 0 from Theorem 2.3 of [15] holds in our case
by the sub-additivity and Fekete’s lemma). The second part of property 4 can
be found in [6] (see also [25, Section 15.2, property (v)]).

As for part 6, we note that for ξ in the resolvent set of H(P0) the function
P �→ (H(P ) − ξ)−1 can be expanded around any P0 ∈ R

d as in formula (A.2).
The real analyticity of the eigenprojections I0 � P �→ |ψP 〉〈ψP | follows imme-
diately via the Cauchy formula. (We note that by a suitable choice of the phase,
we can ensure that I0 � P �→ ψP is norm-continuous, which is the property we
will need below). Since |P | �→ H(P̂ |P |) is a real analytic family of self-adjoint
operators in the sense of [11, Chapter VII, §1, §3] and P �→ E(P ) is a rotation
invariant function, we obtain by [11, Chapter VII, §3] that I0 � P �→ E(P ) is
real analytic.

Now we are ready to state and prove our main result concerning polaron-
type models with a UV cut-off.

Theorem 3.2. Consider polaron-type models satisfying Condition C. Then, for
all α ≥ 0,

(meff)−1 = σ2 > 0. (3.4)
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Proof. The proof relies on the CLT as stated in (2.18). We consider the ex-
pression

G0,0(εk, ε−2t) =
〈Ω, e− t

ε2
(H(εk)−E(0))Ω〉

〈Ω, e− t
ε2

(H(0)−E(0))Ω〉
. (3.5)

The spectral calculus gives limε→0〈Ω, e− t
ε2

(H(0)−E(0))Ω〉 = 〈Ω, ψ0〉〈ψ0,Ω〉.
Concerning the numerator in (3.5), we obtain

〈Ω, e− t
ε2

(H(εk)−E(0))Ω〉 = 〈Ω, e− t
ε2

(H(εk)−E(0))ψεk〉〈ψεk,Ω〉 (3.6)

+ 〈Ω, e− t
ε2

(H(εk)−E(0))(|ψεk〉〈ψεk|)⊥Ω〉 (3.7)

→
ε→0

〈Ω, ψ0〉〈ψ0,Ω〉e− 1
2 tk2(∂2

|P |Er)(0), (3.8)

where in the leading term (3.6) we used the analyticity of P �→ E(P ) near
zero (see Lemma 3.1) and we noted that the expression in (3.7) tends to zero
as ε → 0 by the spectral calculus. �

We remark that a priori the diffusion constant obtained from the CLT
of the characteristic function (2.17) could differ from the one of (2.13). Our
analysis implies that they agree under Condition C and assumption (2.10).
Indeed, making use of the CLT in (2.13) and following the steps of the proof
of Theorem 3.2, we obtain σ2 = m−1

eff also for the diffusion constant from
(2.13). This modification of the proof amounts to replacing G0,0 with G0,∞,
that is replacing Ω with ψ0 in (3.5)–(3.8).

4. The Fröhlich Polaron

Let Hκ(P ) be the polaron Hamiltonian (3.1) with d = 3, ω ≡ 1 and g(k) =
χ[0,κ](|k|)√

2π|k| , where κ is the UV cut-off.3 Explicitly, it has the form

Hκ(P ) =
1
2
(P − Pf)2 + Nf +

√
α

∫
|k|≤κ

dk
1√

2π|k|
(
a(k) + a∗(k)

)
, (4.1)

where Nf is the number operator. It is well known, that this sequence of
Hamiltonians converges in the norm-resolvent sense as κ → ∞ to the lim-
iting Fröhlich Hamiltonian HFr(P ). Also, the sequence of the full Hamil-
tonians Hκ = Π∗ ∫ ⊕ dP Hκ(P )Π converges in the norm-resolvent sense to
HFr = Π∗ ∫ ⊕ dPHFr(P )Π, cf. [8] and references therein. Making use of these
approximation properties, Lemma 3.1 and further results from [14], it is easy
to establish the following:

Lemma 4.1. Let E(P ) = inf spec(HFr(P )) and Eess(P ) = inf specess(HFr(P )).
Then the following statements hold true:

0. E(0) ≤ E(P ) for all P ∈ R
3.

3We use here a different UV cut-off than in the discussion in Sect. 2. However, the limiting
Fröhlich Hamiltonians HFr(P ) are the same, as one can infer from [14, Proposition A.4] and
the strong convergence of the Gross transform.
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1. Eess(P ) = E(0) + 1.
2. The set I0 := {P ∈ R

d |E(P ) < Eess(P ) } contains a neighborhood of
any global minimum of |P | �→ Er(|P |).

3. E(P ) is an isolated, simple eigenvalue for P ∈ I0.
4. All global minima of |P | �→ Er(|P |) are contained in a compact set.
5. For P ∈ I0, we have |〈Ω, ψP 〉| > 0, where ψP is the ground state of H(P ).
6. I0 � P �→ E(P ) and P �→ |ψP 〉〈ψP | are real analytic functions.

Let us comment on the proofs of the above properties. It is a general conse-
quence of the strong resolvent convergence that for any eigenvalue λ of H(P ),
there exists an approximating sequence λκ → λ of eigenvalues of Hκ(P )
[21, Theorem VIII.24]. Therefore, part 0 of Lemma 4.1 follows from part 0
of Lemma 3.1. Next, by [14, Proposition A.4], limκ→∞ Eess,κ(P ) = Eess(P ),
where Eess,κ(P ) is the bottom of the essential spectrum of Hκ(P ). Now part 1
of Lemma 4.1 follows from part 1 of Lemma 3.1 applied to the case of ω ≡ 1.
(Alternatively, one can refer to [24, Section IV]). Parts 2 and 3 of Lemma 4.1
follow from parts 1 and 2 of the same lemma, considering that the proof of
[14, Theorem 6.4] gives the uniqueness of the ground state whenever it exists,
also outside of the ball |P | <

√
2 from the statement of the theorem. Con-

cerning part 4, suppose by contradiction that there is a sequence P
, � ∈ N,
s.t. E(P
) = E(0) and |P
| → ∞. We pick a function f ∈ C∞

0 (R) supported
in a ball around E(0) of radius strictly smaller than 1 and s.t. 0 ≤ f ≤ 1
and f(E(0)) = 1. Then, by the norm-resolvent convergence of Hκ and [21,
Theorem VIII.20], we have

0 = lim
κ→∞ ‖f(Hκ) − f(HFr)‖ = lim

κ→∞ sup
P∈R3

‖f(Hκ(P )) − f(HFr(P ))‖

≥ lim
κ→∞ sup


≥
κ

‖f(Hκ(P
)) − f(HFr(P
))‖ = 1, (4.2)

which is a contradiction. Here in the third step, we choose �κ so large that
the spectrum of Hκ(P
) is outside of the support of f , which is possible by
Lemma 3.1, part 4. Part 5 of Lemma 4.1 is a consequence of the strict positivity
statement in [14, Theorem 6.4], where again we can disregard the restriction
|P | <

√
2, considering the structure of the proof. Part 6 is proven analogously

as the corresponding part of Lemma 3.1, given the input from “Appendix A.”
Now we come to our main result concerning the Fröhlich polaron.

Theorem 4.2. Consider the Fröhlich polaron. Then, for all α ∈ [0, α0)∪(α1,∞)
for some 0 < α0 < α1 < ∞,

(meff)−1 = σ2 > 0. (4.3)

Proof. The claim follows from the CLT stated in (2.18) by the same steps as
in the proof of Theorem 3.2. Instead of Lemma 3.1, Lemma 4.1 is used. �

5. A CLT for Two-Sided Pinning

We return to the setup of Eq. (2.1) with square-integrable boundary functions
ϕ± = ϕ, T± = T , and T → ∞. A probabilistic study of this variant does not
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seem to be available in the literature, and we focus on the functional analytic
side. It will be more transparent to work in a general framework, which includes
the polaron models discussed so far, but many more, e.g., systems with a non-
quadratic energy momentum relation for the electron.

Let H, H be Hilbert spaces and Π:H → L2(Rd,H) a unitary. For any
φ ∈ H, we have the corresponding representation φ = Π∗ ∫ ⊕

Rd dP φP . For any
k ∈ R

d, we define the unitary U(k) by its action on such vectors φ

U(k)φ = Π∗
∫ ⊕

Rd

dP φP+k. (5.1)

Furthermore, we are interested in self-adjoint operators H on a domain D(H) ⊂
H which have the representation

H = Π∗
(∫ ⊕

Rd

dP H(P )
)

Π. (5.2)

Here R
d � P �→ H(P ) is a real analytic family of positive operators with

domains D(H(P )) ⊂ H, as stated more precisely in the standing assumption
0 below. Furthermore, we note that for any bounded Borel function f

U(k)f(H)U(k)∗ = Π∗
(∫ ⊕

Rd

dP f(H(P + k))
)

Π. (5.3)

In this section, we impose the following standing assumptions:

0. The family P �→ H(P ) is real analytic in the sense that for any P0 ∈ R
d

and any ξ /∈ spec(H(P0)) there exists a real neighborhood NP0 of P0

s.t. ξ /∈ spec(H(P )) for any P ∈ NP0 and NP0 � P �→ (H(P ) − ξ)−1

is real analytic. As a consequence, for any P̂ on the unit sphere |P | �→
H(P̂ |P |) is a real analytic family of unbounded operators in the sense
of [11, Chapter VII, §1]. Another consequence of this property and of
the Helfer–Sjöstrand method of almost analytic extensions is the strong
continuity of Rd � P �→ e−tH(P ), which will be used in the proofs below.

1. The function P �→ E(P ) := infspec(H(P )) is rotation invariant and we
write as before E(P ) = Er(|P |). E attains its global minima in the sets
M
 = {P ∈ R

d | |P | = Q
 }, � = 0, 1, 2 . . . , L, where 0 ≤ Q0 < Q1 < · · · <
QL and L finite. Also, we assume Er(Q
) = 0.

2. E is analytic in sets M̃
 = {P ∈ R
d | |P | ∈ Δ
 }, where Δ
 is a neigh-

borhood of Q
. Then we have Er(Q
 + R) ∼ Rn� for small R and some
n
 ∈ N, n
 ≥ 2.

3. For P ∈ M̃
, E(P ) are simple eigenvalues and the corresponding family of
projections M̃
 � P �→ |ψP 〉〈ψP | is strongly continuous. (It easily follows
that P �→ ψP can be chosen strongly continuous by a suitable choice of
the phases, possibly at a cost of shrinking M̃
. We assume that such a
choice has been made).

4. There exist vectors φ ∈ H such that M̃
 � P �→ |〈φP , ψP 〉| are continuous
and nonzero on M
.
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The above assumptions hold, in particular, for models of Sect. 3 and 4 as
shown in the following proposition. The proof is postponed to “Appendix B.”

Proposition 5.1. For the Fröhlich polaron (4.1) and the polaron-type models
(3.1) satisfying Condition C, the following properties hold true:
(a) The models satisfy the standing assumptions 0, 1, 2, 3 above.
(b) Let φ = ϕ ⊗ Ω ∈ H be s.t. ϕ ∈ L2(Rd), ϕ̂ ∈ C(Rd) and ϕ̂(p) > 0 for all

p ∈ I0. For such φ assumption 4 above holds.

Coming back to the general framework, we note that assumptions 2, 3
follow from 0,1 and analytic perturbation theory [11, Chapter VII, §3] if E(P )
are simple, isolated eigenvalues for P ∈ M̃
. However, our discussion in this
section does not require spectral gaps above E(P ). Also the standard relation
E(0) ≤ E(P ), P ∈ R

d, for polaron-type models, cf. Lemmas 3.1, 4.1, does
not follow from the standing assumptions above. However, with additional
input which we now explain, we will obtain not only this relation, but even
E(0) < E(P ), P �= 0, for d ≥ 2.

For the two-sided boundary condition, the properly normalized charac-
teristic function reads

G̃T (k, t) := 〈φ, e−THU(k)e−tHU(k)∗e−THφ〉, GT (k, t) := G̃T (k, t)/G̃T (0, t)
(5.4)

for φ ∈ H and t, T ≥ 0. By the spectral theorem, the denominator above is
different from zero for any finite T . Furthermore, for φ as in assumption 4, the
limits

G∞(k, t) := lim
T→∞

GT (k, t) and lim
ε→0

G∞(εk, ε−2t) (5.5)

exist under our standing assumptions. The explicit expressions are provided
in Proposition 5.4 and Lemma 5.5 below. We expect that the latter limit has
the form suggested by the CLT.

Conjecture 5.2. There exists φ ∈ H as in assumption 4 above, such that the
CLT of the form

lim
ε→0

G∞(εk, ε−2t) = e− 1
2σ2k2t (5.6)

holds true for some σ > 0.

The consequences of this conjecture for models satisfying the above standing
assumptions are collected in the following theorem.

Theorem 5.3. Suppose that Conjecture 5.2 holds true for some φ ∈ H as in
assumption 4 and σ > 0. Then, for d ≥ 2, there is a global minimum at zero
(i.e., Q0 = 0). Furthermore,
(a) σ2 = (∂2

|P |Er)(0),
(b) E(P ) > E(0) for P �= 0.
For d = 1 we obtain that σ2 = (∂2

|P |Er)(Q
) for � = 0, 1, 2, . . . L and 0 ≤ Q0 <

Q1 < · · · < QL.
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We stated a minimal conjecture as required for Theorem 5.3 to hold. In fact,
the CLT should be in force for a large set of boundary functions, e.g., those
satisfying 4. of the standing assumptions. Our theorem then asserts that the
diffusion constant is always given by σ2 = (∂2

|P |Er)(0).
The observation behind Theorem 5.3 is fairly elementary and can be

grasped most easily for the polaron models underlying (2.2). We note that the
P -integral has the weight |ϕ̂(P )|2 > 0 for ϕ as in Proposition 5.1(b). Thus
in the limit T → ∞ the P -integral concentrates on the set of global minima
{P ∈ R

d |E(P ) = E(0)}. If the CLT would hold, the limit expression must
have come only from P = 0 and hence E(P ) > E(0) for P �= 0.

The actual proof is more involved and the remaining part of this section
is devoted to proving Theorem 5.3. We start with two auxiliary results, which
do not rely on Conjecture 5.2. In the following proposition, dΩ denotes the
spherical measure on Sd−1 normalized to |Sd−1| and P̂ denotes an element of
Sd−1.

Proposition 5.4. The following statements hold:
1. If Q0 = 0 and it is the only global minimum of E, then

lim
T→∞

GT (k, t) = 〈ψ0, e−tH(k)ψ0〉. (5.7)

2. If Q0 = 0 and there are other global minima at Q
 > 0, � = 1, 2, . . . , L,
we set n := max
 �=0(n
) (see assumption 2) and distinguish the following
cases:
(a) For n > n0

d

lim
T→∞

GT (k, t) =

∑

 C


∫
dΩ(P̂ )|〈φQ�P̂ , ψQ�P̂ 〉|2〈ψQ�P̂ , e−tH(Q�P̂+k)ψQ�P̂ 〉∑


 C


∫
dΩ(P̂ )|〈φQ�P̂ , ψQ�P̂ 〉|2 ,

(5.8)

where C
 > 0 and the sums extend only over � > 0 s.t. n
 = n.
(b) For n = n0

d

lim
T →∞

GT (k, t)

=
c0|〈φ0, ψ0〉|2〈ψ0, e−tH(k)ψ0〉 +

∑
� c�

∫
dΩ(P̂ )|〈φQ�P̂ , ψQ�P̂ 〉|2〈ψQ�P̂ , e−tH(Q�P̂+k)ψQ�P̂ 〉

c0|〈φ0, ψ0〉|2 +
∑

� c�

∫
dΩ(P̂ )|〈φQ�P̂ , ψQ�P̂ 〉|2 ,

(5.9)

where c0, c
 > 0 and the sums extend only over � > 0 s.t. n
 = n.
(c) For n < n0

d

lim
T→∞

GT (k, t) = 〈ψ0, e−tH(k)ψ0〉. (5.10)

3. If 0 < Q0 < Q1 < · · · < QL, for L ≥ 0, we obtain

lim
T→∞

GT (k, t) =

∑

 C


∫
dΩ(P̂ )|〈φQ�P̂ , ψQ�P̂ 〉|2〈ψQ�P̂ , e−tH(Q�P̂+k)ψQ�P̂ 〉∑


 C


∫
dΩ(P̂ )|〈φQ�P̂ , ψQ�P̂ 〉|2 ,

(5.11)

where C
 > 0 and the sum extends over � s.t. n
 = n̄ := max
′ n
′ .
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For d = 1, the angular integrations above amount to summations over
P̂ = ±1.

Proof. In the fiber representation, expression (5.4) has the following form

G̃T (k, t) =
∫
Rd

dP 〈φP , e−TH(P )e−tH(P+k)e−TH(P )φP 〉. (5.12)

We denote the spectral measure of H(P ) by MP ( · ) and choose δ > 0 s.t.
E(P ) ≤ δ implies that P ∈ M̃ :=

⋃L

=0 M̃
. By spectral calculus, we have

n-limT→∞e−TH(P )MP ((δ,∞)) = 0, s-limT→∞e−TH(P )MP ((E(P ),∞)) = 0.
(5.13)

Therefore, it suffices to study

G̃
(1)
T (k, t) =

∫
M̃

dP 〈φP , ψP 〉〈ψP , e−TH(P )e−tH(P+k)e−TH(P )ψP 〉〈ψP , φP 〉

=
∫

M̃

dP |〈φP , ψP 〉|2e−2TE(P )〈ψP , e−tH(P+k)ψP 〉

=
∫

M̃

dP |〈φP , ψP 〉|2e−(2T+t)E(P )〈ψP , e−tH(P+k)etH(P )ψP 〉. (5.14)

Hence, setting G
(1)
T (k, t) := G̃

(1)
T (k, t)/G̃(1)

T (0, t),

G
(1)
T (k, t)

=
∫

M̃

dP

{ |〈φP , ψP 〉|2e−(2T+t)E(P )∫
M̃

dP ′|〈φP ′ , ψP ′〉|2e−(2T+t)E(P ′)

}
〈ψP , e−tH(P+k)etH(P )ψP 〉.

(5.15)

We write P̂ := P/|P | and move on to polar coordinates in P and P ′ integra-
tions:

G
(1)
T (k, t) =

∑
�

∫
dΩ(P̂ )

∫
Δ�

d|P | |P |d−1 〈ψ|P |P̂ , e−tH(|P |P̂+k)etH(|P |P̂ )ψ|P |P̂ 〉

×
{ |〈φ|P |P̂ , ψ|P |P̂ 〉|2e−(2T+t)Er(|P |)

∑
�

∫
dΩ(P̂ ′)

∫
Δ�

d|P ′| |P ′|d−1|〈φ|P ′|P̂ ′ , ψ|P ′|P̂ ′〉|2e−(2T+t)Er(|P ′|)

}
,

(5.16)

where we also used that P �→ E(P ) is rotation invariant.
Let us first consider a possible global minimum at zero. Since E is analytic

near zero, we have that Er(|P |) ∼ |P |n0 in this region for some n0 ∈ N0, n0 ≥ 2.
Thus an elementary analysis gives for the numerator in (5.16)

lim
T→∞

(2T + t)d/n0

∫
dΩ(P̂ )

∫
Δ0

d|P | |P |d−1|〈φ|P |P̂ , ψ|P |P̂ 〉|2e−(2T+t)Er(|P |)

× 〈ψ|P |P̂ , e−tH(|P |P̂+k)etH(|P |P̂ )ψ|P |P̂ 〉

= C0|〈φ0, ψ0〉|2〈ψ0, e−tH(k)ψ0〉
∫ ∞

0

dUe−U U (d/n0)−1,

(5.17)
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for some C0 > 0. An analogous formula holds for the denominator in (5.16)

lim
T→∞

(2T + t)d/n0

∫
dΩ(P̂ )

∫
Δ0

d|P | |P |d−1|〈φ|P |P̂ , ψ|P |P̂ 〉|2e−(2T+t)Er(|P |)

= C0|〈φ0, ψ0〉|2
∫ ∞

0

dUe−U U (d/n0)−1. (5.18)

Let us now analyze a global minimum at Q
 �= 0. By analyticity, we have
that Er(Q
 + R) ∼ Rn� near R = 0 for some n
 ∈ N0, n
 ≥ 2. In this case, we
obtain for the numerator in (5.16)

lim
T→∞

(2T + t)(1/n�)

∫
dΩ(P̂ )

∫
Δ�

d|P | |P |d−1|〈φ|P |P̂ , ψ|P |P̂ 〉|2e−(2T+t)Er(|P |)

×〈ψ|P |P̂ , e−tH(|P |P̂+k)etH(|P |P̂ )ψ|P |P̂ 〉

= C�

∫
dΩ(P̂ )|〈φQ�P̂ , ψQ�P̂ 〉|2〈ψQ�P̂ , e−tH(Q�P̂+k)ψQ�P̂ 〉

∫ ∞

0

dU e−U U (1/n)−1,

(5.19)

for some C
 > 0. For the denominator in (5.16), we get in this case

lim
T→∞

(2T + t)(1/n�)

∫
dΩ(P̂ )

∫
Δ�

d|P | |P |d−1|〈φ|P |P̂ , ψ|P |P̂ 〉|2e−(2T+t)Er(|P |)

= C


∫
dΩ(P̂ )|〈φQ�P̂ , ψQ�P̂ 〉|2

∫ ∞

0

dU e−U U (1/n)−1. (5.20)

By substituting (5.17)–(5.20) back to formula (5.16) and considering the differ-
ent cases from the statement of the proposition, we complete the
proof. �

Lemma 5.5. Suppose that Q ≥ 0 is a global minimum of |P | �→ Er(|P |). Then
the following relations hold:

lim
ε→0

〈ψ0, e− t

ε2
H(εk)ψ0〉 = e

− tk2

2
(∂2

|P |Er)(0) for Q = 0, (5.21)

lim
ε→0

〈ψQP̂ , e− t

ε2
H(QP̂+εk)ψQP̂ 〉=e

− t

2
(∂2

|P |Er)(Q)(P̂ ·k)2
for Q > 0. (5.22)

Proof. Suppose that Q = 0. By shifting the vector ψ0 = ψεk + (ψ0 − ψεk), we
obtain
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〈ψ0, e− t
ε2

H(εk)ψ0〉 = 〈ψεk, e− t
ε2

H(εk)ψεk〉 + R(ε)

= e− t
ε2

E(εk) + R(ε) →
ε→0

e− 1
2 tk2(∂2

|P |Er)(0), (5.23)

where R(ε) is an error term which tends to zero as ε → 0 by assumption 3.
Concerning the case Q > 0, we shift the vector as follows ψQP̂ = ψQP̂+εk+

(ψQP̂ − ψQP̂+εk). This gives

〈ψQP̂ , e− t
ε2

H(QP̂+εk)ψQP̂ 〉 = 〈ψQP̂+εk, e− t
ε2

H(QP̂+εk)ψQP̂+εk〉 + R(ε)

= e− t
ε2

E(QP̂+εk) + R(ε) →
ε→0

e− t
2 (∂2

|P |Er(Q))(P̂ ·k)2 ,

(5.24)

which completes the proof. �

Proof of Theorem 5.3. We start with the case d ≥ 2. Suppose, by contradic-
tion, that there is no global minimum at zero. Then, from the last part of
Proposition 5.4 and Lemma 5.5 we obtain

e− tk2σ2
2 =

∑

 C


∫
dΩ(P̂ )|〈φQ�P̂ , ψQ�P̂ 〉|2e− tk2

2 (∂2
|P |Er(Q�))(P̂ ·k̂)2

∑

 C


∫
dΩ(P̂ )|〈φQ�P̂ , ψQ�P̂ 〉|2 . (5.25)

We denote x2 := tk2σ2/2, f
(P̂ ) := C
|〈φQ�P̂ , ψQ�P̂ 〉|2, m−1

 := ∂2

|P |E(Q
).
This gives

∑



∫
dΩ(P̂ )f
(P̂ ) =

∑



∫
dΩ(P̂ ) f
(P̂ )ex2(1− m

−1
�

σ2 (P̂ ·k̂)2). (5.26)

As k̂ on the r.h.s. is arbitrary, we can replace it with Rk̂, where R is a rotation,
and then average over the group of rotations. By a change of variables, this
amounts to averaging f
 on the r.h.s. w.r.t. rotations. We can therefore assume
that the functions f
 are constant and nonzero. Suppose first that all m−1


 are
zero. Then we immediately obtain a contradiction by taking x2 → ∞. Now
suppose that some4 m−1


1
> 0. Then we obtain from (5.26)

∑
�

∫
dΩ(P̂ )f�(P̂ ) ≥

∫
dΩ(P̂ ) f�1(P̂ )ex2(1−

m
−1
�1

σ2 (P̂ ·k̂)2)χ

(
1 − m−1

�1

σ2
(P̂ · k̂)2 > 0

)
.

(5.27)

As before, we obtain a contradiction by taking x2 → ∞, due to the fact that
the functions f
 are constant and nonzero.

Next, we prove part (b). Suppose, by contradiction, that there are several
global minima in addition to the global minimum at zero. Let us assume first

4We note as an aside, that if some m−1
� > 0 then all m−1

� > 0 by definition of n. Indeed,

m−1
� > 0 means that n� = 2. Then n := max�′ �=0(n�′ ) = 2, since the summation extends

only over n� = n.
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that case (a) from Proposition 5.4 occurs, that is n > n0
d . With the help of

Lemma 5.5, we obtain from (5.8)

e− tk2σ2
2 =

∑

 C


∫
dΩ(P̂ )|〈φQ�P̂ , ψQ�P̂ 〉|2e− tk2

2 (∂2
|P |Er(Q�))(P̂ ·k̂)2

∑

 C


∫
dΩ(P̂ )|〈φQ�P̂ , ψQ�P̂ 〉|2 . (5.28)

We obtain a contradiction by repeating the steps (5.25)–(5.27) above.
Now let us assume that case (b) of Proposition 5.4 occurs, that is n = n0

d .
Since d ≥ 2 and n ≥ 2, we obtain that n0 > 2 which implies (∂2

|P |Er)(0) = 0.
With the help of Lemma 5.5, we obtain from (5.9) using the notation intro-
duced above

c0|〈φ0, ψ0〉|2 +
∑




∫
dΩ(P̂ )f
(P̂ )

= c0|〈φ0, ψ0〉|2ex2
+

∑



∫
dΩ(P̂ )f
(P̂ )ex2(1− m

−1
�

σ2 (P̂ ·k̂)2). (5.29)

Due to the presence of the nonzero terms involving c0|〈φ0, ψ0〉|2, we immedi-
ately obtain a contradiction by taking x2 → ∞.

Finally, suppose that we are in case (c) of Proposition 5.4, that is n < n0
d .

Also in this case we have n0 > 2 which implies (∂2
|P |Er)(0) = 0. By Eq. (5.10)

and Lemma 5.5, we obtain e−x2
= 1 which is immediately a contradiction.

This concludes the proof of part (b) of the theorem.
Given that we have only one global minimum, we can apply formula (5.7).

Together with Lemma 5.5, we obtain

e− tk2σ2
2 = e− tk2(∂2

|P |Er)(0)

2 , (5.30)

which gives part (a) of the theorem.
For d = 1, the reasoning above requires several modifications. From the

assumption that there is no global minimum at zero, we obtain via (5.26) that
m−1


 = σ2 for � = 0, 1, . . . , L, which is what we wanted to prove.
Now suppose that there is a global minimum at zero and possibly some

nonzero global minima. In the case n > n0
d from the fact that n0 ≥ 2, we

conclude that n > 2, hence m−1

 = 0 for � �= 0. In this situation, formula

(5.26) gives directly a contradiction.
In the case n = n0

d , we distinguish two sub-cases. First, for n = n0 > 2 we
have m−1


 = 0 for all �, including � = 0, and thus formula (5.29) gives a con-
tradiction. Second, for n = n0 = 2, we have m−1


 �= 0 and thus formula (5.29)
has to be rewritten as follows

c0|〈φ0, ψ0〉|2 +
∑




∫
dΩ(P̂ )f
(P̂ )

= c0|〈φ0, ψ0〉|2ex2(1− m
−1
0

σ2 ) +
∑




∫
dΩ(P̂ )f
(P̂ )ex2(1− m

−1
�

σ2 ), (5.31)
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where angular integration denotes now summation over P̂ = ±1. Clearly, we
avoid a contradiction iff m−1


 = σ2 for � = 0, 1, . . . , L. (It is important here
that if n = max
 �=0(n
) = 2 then n
 = 2 for all � �= 0).

In the case n < n0
d , we obtain a contradiction as before. Thus in the case

d = 1 the assumption that there are several global minima of Er led us to the
conclusion that the inverses of their effective masses ∂2

|P |Er(Q
), � = 0, 1, . . . L,
must all be equal to σ2. �
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A. Analyticity of the Fröhlich Polaron in Total Momentum

In this appendix, we verify that P �→ HFr(P ) is a real analytic family as
specified in the standing assumption 0 of Sect. 5.

Lemma A.1. Suppose that ξ /∈ spec(H(P0)). Then ξ /∈ spec(HFr(P )) for P in
a neighborhood NP0 of P0. The function NP0 � P �→ (HFr(P ) − ξ)−1 is real
analytic.

Proof. First, suppose that ξ /∈ spec(Hκ(P )) for κ sufficiently large and note
that on D(P 2

f + Nf)

Hκ(P ) = Hκ(P0) +
1
2
(P − P0)2 − (P − P0)·(Pf − P0). (A.1)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Consequently, for P in a small neighborhood NP0 of P0, which a priori may
depend on κ, the series on the r.h.s. below converges and defines the inverse
of (Hκ(P ) − ξ):

1

Hκ(P ) − ξ

=
1

Hκ(P0) − ξ

∞∑
n=0

{
−

(
1

2
(P − P0)

2 − (P − P0)·(Pf − P0)

)
1

Hκ(P0) − ξ

}n

.

(A.2)

To eliminate the dependence of NP0 on κ, we show in Lemma A.2 below, that

‖Pf,j
1

Hκ(P0) − ξ
‖ ≤ c, j = 1, 2, 3, (A.3)

uniformly in κ.
Now we intend to take the limit κ → ∞ on both sides of (A.2). By [21,

Theorem VIII.23], if ξ /∈ spec(HFr(P )), then ξ /∈ spec(Hκ(P )) for κ sufficiently
large and (Hκ(P ) − ξ)−1 → (HFr(P ) − ξ)−1 in norm. The same is true for P
replaced with P0, and we can use (A.3) to exchange the limit κ → ∞ with
summation in (A.2). Thus the proof is complete. �

Lemma A.2. The following bounds hold uniformly in κ:

‖Pf,j(Hκ(P ) + i)−1‖ ≤ c, j = 1, 2, 3. (A.4)

Proof. First, we recall some material from [14, Appendix A], referring there
for more details. Let

TK,κ =
∫
R3

dk βK,κ[a(k) − a∗(k)],

βK,κ(k) = −√
α

1√
2π

χ[0,κ](|k|)
|k|(1 + k2/2)

χ[K,∞)(|k|), (A.5)

where K is chosen sufficiently large (depending on α but not on κ or P ) as spec-
ified above Lemma A.3 of [14]. Let H free(P ) denote the Hamiltonians (4.1) with
α = 0. Now the Gross-transformed Hamiltonians H̃κ(P ) := eTK,κHκ(P )e−TK,κ

are self-adjoint operators which converge in the norm-resolvent sense to a lim-
iting Hamiltonian H̃(P ) [14, Proposition A.4]. As stated in the proof of this
latter proposition, H free(P ) ≤ C ′(H̃κ(P ) + C), with C,C ′ independent of κ.
Hence,

‖|P − Pf |(H̃κ(P ) + C)−1/2‖, ‖N
1/2
f (H̃κ(P ) + C)−1/2‖ ≤ C ′. (A.6)

Next, we can write on D(H free(P ))

eTK,κPfe−TK,κ = Pf + a(kβK,κ) + a∗(kβK,κ) +
∫
R3

dk k |βK,κ(k)|2, (A.7)
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where the last term is actually zero by symmetry. Noting the bound∫
dk |kβK,κ(k)|2 ≤ c, uniformly in κ, we have ‖a(∗)(kβK,κ)(1 + Nf)−1/2‖ ≤ c

uniformly in κ. Therefore, by estimates (A.6),

‖Pf,j(Hκ(P ) + C)−1‖ ≤ C0(‖Pf,j(H̃κ(P ) + C)−1‖
+ ‖(1 + Nf)1/2(H̃κ(P ) + C)−1‖) (A.8)

is uniformly bounded in κ. This concludes the proof. �

B. Proof of Proposition 5.1

Let us consider first polaron-type models satisfying Condition C. For the
standing assumption 0 we refer to the discussion of Lemma 3.1, part 6. By
part 2 of Lemma 3.1, I0 contains neighborhoods of all the global minima of
|P | �→ Er(|P |). Thus, considering other items of this lemma, it suffices to show
that there is a finite number of such minima to complete the proof of Proposi-
tion 5.1 (a). To this end, we first note that by parts 0 and 1 of Lemma 3.1, for
any sequence {Pn}n∈N, Eess(Pn) is bounded if ω(Pn) is bounded. Furthermore,
since ω(k) ≥ c0 > 0, we have Eess(P ) ≥ E(0) + c0. Now by part 4 of the same
lemma, all global minima must be localized in a compact set. (In particular,
P �→ E(P ) cannot be a constant function in an open set, hence everywhere).
Now suppose there is a finite accumulation point (Q∗, Er(Q∗)) of the set of
global minima. Since the spectrum is closed, the corresponding sphere belongs
to the spectrum. By Lemma 3.1 parts 2 and 3, for |P | = Q∗, E(P ) is an isolated
eigenvalue of H(P ). Thus, by analyticity, this eigenvalue can be continued to
some neighborhood of Q∗ in the radial direction. As any neighborhood con-
tains infinitely many global minima, we conclude that P �→ E(P ) is constant
near |P | = Q∗, hence everywhere, which is a contradiction.

Let us now move on to part (b). For the models in question we have
Π = F eiPfx, where F is the unitary Fourier transform from x to P variable.
We decompose ϕ ⊗ Ω = Π∗ ∫ ⊕

Rd dPφP . Thus to find φP we compute

Π(ϕ ⊗ Ω) =
∫ ⊕

Rd

dP ϕ̂(P )Ω, (B.1)

which gives φP = ϕ̂(P )Ω. The function P �→ |〈φP , ψP 〉| = |ϕ̂(P )| |〈Ω, ψP 〉| is
continuous by continuity of ϕ̂ and analyticity of P �→ |ψP 〉〈ψP |. It is nonzero
by our assumption on ϕ̂ and by part 5 of Lemma 3.1.

Concerning the Fröhlich polaron, standing assumption 0 is proven in “Ap-
pendix A.” The other claims are verified as above, using Lemma 4.1.
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