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Abstract
This research note is concerned with static choices between alternative mixtures of lotter-
ies with one common mixture component and identical mixture weights. It is shown that 
the common component induces a conditional preference relation on the underlying lot-
tery space with given (unconditional) preference structure. Induced preferences of this type 
arise in the comparisons with which the independence axiom of expected utility theory 
is specifically concerned. Given a few obvious properties of the induced preferences, two 
basic results are obtained: first, the conditionalisation operation is an order-preserving iso-
morphism, and, secondly, if the conditional preferences satisfy stochastic dominance pref-
erence, they necessarily violate the independence axiom. Together, the two results preclude 
any possibility of postulating independence consistently for static decision making under 
risk. The independence axiom is thus generally invalid as a normative principle of rational 
risky choice.

Keywords  Rational choice · Risky choice · Normative theory · Expected utility · 
Independence axiom

JEL Classification  D81

1  Introduction

Despite its notorious lack of empirical validity, expected utility (EU) theory continues to 
prevail as the standard normative model of economic rationality in theoretical and applied 
risk and decision analyses. The significance of the model largely rests on the independence 
axiom of EU theory, which ensures dynamically consistent choices in multiple-stage deci-
sion making under risk. Dynamic consistency of risky choice, in turn, is a basic criterion 
of economic rationality in the sense that it requires an individual´s choices at later stages of 
a decision process to conform with this individual´s preferred course of action planned at 
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earlier stages (Karni and Schmeidler 1991; for a related concept of dynamically consistent 
behaviour, see Hammond 1998; Hammond and Zank 2014). In recent decision research, 
dynamic choice theory has indeed been extended beyond EU maximisation from various 
perspectives, especially those of risk, uncertainty and ambiguity (Machina 1989; Sarin and 
Wakker 1998; Siniscalchi 2011; Nebout 2014). But the extensions have remained essen-
tially restricted to descriptive models of decision making in the sense that they violate, 
or “sacrifice”, other normative principles of rational choice where necessary to preserve 
dynamic consistency.

The present analysis goes one critical step beyond the descriptive intent of non-EU 
models. It refutes the normative interpretation of EU theory. To serve as a universally valid 
principle of rational decision making, EU maximisation would have to take implications 
of static choice into account that arise in comparisons between compound lotteries, but 
are usually ignored in normative interpretations of EU theory. Preferences for compound 
lotteries will be shown not only to violate the independence axiom under well-defined 
conditions, but also to exclude any possibility of postulating independence consistently in 
models of static decision making under risk. Theoretically, this inconsistency arises from 
conditional preferences induced by alternative mixtures of lotteries with one common mix-
ture component and identical mixture weights. The independence axiom is specifically 
concerned with convex combinations of lotteries of this type. In practice, the inconsistency 
occurs in assessments of one risk in the presence of others, commonly called “background 
risks”. An example will be given in terms of conditional preferences for compound lotter-
ies in which the component lotteries (or “sublotteries”) are resolved at uncertain times.

In more technical terms, the scope of the present research note can be delineated as 
follows. We consider preference comparisons between two mixtures of lotteries p and r, 
and q and r, respectively. The mixture weights of p and q are the same and, hence, so are 
those of the common component r. Contrary to what the independence axiom of EU theory 
proposes, we admit choices between the two compound lotteries to depend not only on the 
component lotteries, but also on the particular nature and numerical values of the mixture 
weights. A typical example of the impact of the mixture weights on preference arises where 
the mixture weight assigned to p (or q) is the probability with which p (or q) is resolved 
first (i.e., prior to the resolution of r) or else persists and is rejected with the complemen-
tary probability in the alternative case of premature resolution of r. In this example, the 
compound lotteries are, by construction, one-stage and, hence, give rise to static choices, 
but involve uncertainty of the timing of risk resolution. Realistic examples are familiar 
from applied statistics (multivariate survival-time analysis) and static investment decision 
making with uncertain time horizon. Assume now that the decision maker first ranks p and 
q in preference and then makes his choice between the two compound lotteries. Then, the 
presence of the common component r in either mixture induces a reference risk so that the 
decision maker is not, in effect, concerned with the advantage of p over q when consider-
ing the impact of p and q on his choice. Rather, he must assess the advantage of p in the 
presence of r over q in the presence of r, for independently of his choice, he confronts r in 
case p (or q) fails to be resolved first. The conditionalisation of risk thus entails condition-
alisation of preference of which we will show that it is an order-preserving isomorphism: 
the conditional preferences satisfy the independence axiom excatly if the unconditional 
preferences do, from which they are derived. Yet, it turns out that, given a few obvious 
properties of the induced preferences, the latter necessarily violate the independence axiom 
if they satisfy stochastic dominance preference. Stochastic dominance preference, on its 
part, is widely viewed as an indispensable normative requirement of rational risky choice 
weaker than independence.
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To demarcate the present analysis from previous approaches to conditional risk prefer-
ences available in the literature, a few remarks are in order. Although we will represent lot-
teries as probability distributions (or, equivalently, random variables associated with them), 
our concept of conditional risk—unlike that used by Pratt (1988), for instance—is different 
from conditional probability, nor are the conditional preferences we consider of the kind 
which arise in multi-attribute preference analyses (Keeney and Raiffa 1976; Geiger 2012). 
Other than in many previous approaches to the subject, background risk is not treated as an 
exogenous, non-tradable risk (e.g., Franke et  al. 2006; Malevergne and Rey 2010) but as 
one endogenously induced by convex combination of the lotteries to be compared. Like-
wise, we may ignore preferences induced in choices involving “temporal risk” and “tempo-
ral preference”, that is, sequential risk and decision problems in which preference depends 
on when uncertainty resolves (for review and references, see Machina 1984). There is no 
interference with the normative view of the independence axiom in the temporal risk case 
since dynamic consistency, as a criterion of EU preferences, deals with “atemporal” risk 
preferences (Kreps and Porteus 1979; Machina 1984; Karni and Schmeidler 1991). This 
non-interference is most obvious in representations of EU preferences as special, atempo-
ral boundary cases of temporal risk preference (Kreps and Porteus 1979; Machina 1984) 
arising under conditions which also ensure the dynamic consistency of choice (Kreps and 
Porteus 1978). Indeed, the present analysis, too, applies to preferences depending on when 
uncertainty resolves, but choices are static, while risks are resolved at uncertain times. Like 
in our approach, convex mixtures of lotteries have previously been modelled as probability-
weighted averages of bivariate lotteries (uncertainty of resolution time and monetary out-
come) and applied in static-decision analyses (for examples and review of the literature, see 
Martellini and Urošević 2006). But as it seems, their normative implications for EU theory 
have not been examined so far.

After sketching out the conceptual framework of EU theory and some of its most basic 
normative implications in the next section, we develop formal representations of back-
ground risk and conditional preference in Sects. 3 and 4. Section 5 presents an applica-
tion of the formalism. In Sect. 6, the invalidity of the independence axiom as a normative 
principle of static, rational risky choice is proved. Section 7 concludes, with a few remarks 
concerning the meaning and significance of the results obtained and their possible exten-
sions to more broadly circumscribed domains of rational risky choice.

2 � Normative implications of EU theory

Let P be the convex set of simple probability distributions, or lotteries, defined on a com-
pact real interval I of lottery outcomes. A degenerate lottery which gives x, x ∈ I, with 
certainty is denoted by x̂ , x̂ ∈ P. Lottery outcomes are evaluated as gains (x > x0) or losses 
(x < x0) with reference to some neutral point, or “aspiration level” x0, x0 ∈ I (Kahneman and 
Tversky 1979; Diecidue and van de Ven 2008), which is normalised to zero without loss of 
generality (x0 = 0, 0 ∈ I). A preference relation ≿ exists which satisfies the familiar axioms 
of weak order and continuity. If, in addition, the independence axiom is postulated,

the more restricted version of independence (replacement of ≿ by strict preference ≻), the 
indifference version of (1) (replacement of ≿ by ~) and, eventually, EU theory follow (e.g., 
Hammond 1998). EU theory implies the principle of stochastic dominance preference. 

(1)p≿ q ⇒ 𝛼p + (1 − 𝛼)r≿𝛼q + (1 − 𝛼)r, 0 < 𝛼 ≤ 1, p ∈ P, q ∈ P, r ∈ P
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This principle states that p ≻ q if p has first-order stochastic dominance over q, that is, if 
p ≠ q and Fp(x) ≤ Fq(x), x ∈ I, where Fp and Fq denote cumulative distribution functions. 
As a postulate weaker than the independence axiom, stochastic dominance preference is a 
fundamental normative requirement of rational choice, but as such is compatible with vio-
lation of the independence axiom (Tversky and Kahneman 1986, p. S253; Machina 1989, 
pp. 1634–1635).

The convex combination αp + (1 − α)r entering (1) is often viewed as the single-stage 
representation of a two-stage lottery which, in the first stage, gives an α : (1 − α) chance of 
receiving a ticket for the second-stage lottery p or r. When viewed as a single-stage lottery 
in P, however, αp + (1 − α)r gives the outcome x, x ∈ I, with probability αp(x)+ (1 − α)r(x). 
Choices between multiple-stage lotteries can be dynamic or static depending on whether 
or not they involve contingent decisions to be taken between particular lottery stages. 
Dynamic consistency of preferences implies that, in a choice between the two-stage lot-
teries corresponding to αp + (1 − α)r and αq + (1 − α)r, the preferred two-stage lottery 
gives the preferred second-stage lottery p or q, respectively, when the initial α-lottery gets 
resolved, with r being rejected. As a normative principle of rational choice, the independ-
ence axiom rests on the result that, under a few reasonable restrictions, independence is 
equivalent to dynamic consistency (Karni and Schmeidler 1991; Hammond 1998). One 
such reasonable restriction is reduction of compound lotteries, which will be addressed 
in the concluding section. It means that decision makers are indifferent between multiple-
stage lotteries and their single-stage, or “reduced”, representations in P (Segal 1990, 1992).

3 � Background risk in compound lotteries

The independence axiom also raises a static-choice problem, which has been largely 
ignored in normative interpretations of EU theory, however. To show that this neglect 
leaves normative interpretations of the independence axiom inconsistent, we first introduce 
the concept of background risk into the analysis of (1). A lottery with random outcome 
variable X2 is usually called the background risk of another lottery with random outcome 
variable X1 if the decision maker faces the risk of X2 while assessing the risk of X1. Typi-
cal examples are additive and multiplicative risk-background interactions involving out-
come variables X and functions χ of the form X = χ(X1, X2) = X1 + X2 and χ(X1, X2) = X1X2, 
respectively (Pratt 1988; Tsetlin and Winkler 2005; Franke et  al. 2006; Malevergne and 
Rey 2010). Here, we admit more generally defined functions χ(X1, X2) as well as functions 
of more than two random variables. Comparison of X and X’, where X’ = χ(X1′, X2) for 
some X1′, induces a preference ranking between X1 and X1′ conditional on the background 
risk X2 which can be expressed symbolically as X1 ≿� ,X2

 X1′,

and similarly for the more restrictive relations ≻𝜒 ,X2
 and ∼� ,X2

 . We refer to the random vari-
able X = χ(X1, X2) as X1 in the presence of X2, or, briefly, X1 given X2. In the literature, 
≿� ,X2

 has almost invariably been treated as an EU preference relation, excluding violation 
of independence from the outset (for rare exceptions, see Quiggin 2003; Geiger 2008). 
However, the equivalence (2) suggests that whether ≿� ,X2

 has, or has not, the EU property 
depends, besides on ≿, on χ and X2: if χ and X2 can be shown to exist so that ≿� ,X2

 violates 

(2)X1 ≿𝜒 ,X2
X′
1
⇔ 𝜒

(

X1,X2

)

≿𝜒
(

X′
1
,X2

)



435Annals of Operations Research (2020) 289:431–448	

1 3

the independence axiom, (2) excludes ≿ as an EU preference relation. This is what our 
results obtained below demonstrate (see remark following Proposition 4 below).

Background risks do not only exist where decision makers face one risk while assessing 
others. They also arise in weaker cases where the decision maker, while assessing some risks, 
confronts another risk, but only with some finite probability. Examples of this broader notion 
of background risk can be found where the timing of the resolution of risk is uncertain, for 
instance, in the management of risky investments with uncertain time horizon or reliability 
engineering (Sect. 5). We begin to analyse this situation by developing a suitable conceptual 
framework for risk assessment and choice under constraints that are themselves uncertain.

4 � Formal representation of background risk

Where not otherwise stated, we denote the probability distributions of X1, X1′ and X2 by p, 
q and r, respectively, throughout this analysis. The ranges of X1, X1′ and X2 are thus subsets 
of I. Without further explicit reference, we anticipate that, by construction, all multivari-
ate, composite random functions χ, ζ, … considered below, which will typically be of the 
form ζ(χ(X1, X2), …), have ranges in I and, therefore, probability distributions in P. We are 
especially concerned with functions of X1, X1′ and X2 and other variables giving rise to joint 
probability distributions of the form αp + (1 − α)r. We aim to establish how the comparison 
αp + (1 − α)r ≿ αq + (1 − α)r translates into the preference between X1 and X1′ given X2. This 
task amounts to determining the probability distribution of χ(X1, X2), which is derived, but 
different, from αp + (1 − α)r. More precisely, it is derived from the joint probability distribu-
tion of X1, X2 and another real random variable, or, more generally, a random vector T which 
is supposed to range over a finite subset S of an m-dimensional real interval IT, m ≥ 1. The 
joint probability distribution of T has finite support S, S ⊂ IT. For every partition of S into 
subsets S1 and S2 and given T, there clearly exists some α, 0 ≤ α ≤ 1, so that the overall joint 
probability of t, T = t and t ∈ S1, is α, and analogously for T, S2 and 1 − α. T being con-
structed in this way shows that the α-lottery can be associated with any suitably distributed 
T. The latter can be any quantitative constraint on risk measurement, assessment and com-
parison specifying the impact of a given background risk on risk preference. An example 
of a vector T of random time variables with m = 2 will be presented in the next section; it is 
clearly distinct from “temporal” risk in dynamic risky choice problems, however.

Let f(x1, x2, t) be the joint probability distribution of X1, X2 and T with the marginal dis-
tributions fXi

(xi), fT(t), etc. in the usual notation, and assume a partition of S into subsets S1 
and S2 as mentioned above. Consider the random variable Y = ψ(X1, X2, T) with probability 
distribution g(y),

where “ 
∑

x1,x2,t
[…]�(x1,x2,t)=y

 ” means summation over all outcome values of X1, X2 and T 
satisfying ψ(x1, x2, t) = y for given y. In particular, given ψ(x1, x2, t) = y, it follows g(y) = 
 fXi

(xi) from Eq. (3) for t ∈ Si, i = 1, 2, so that Eq. (4) simplifies to g(y) = f(x1, x2, t). Putting 
p = fX1

 , r = fX2
 , and α =  

∑

t∈S1
fT(t), one trivially has,

(3)�(X1,X2,T) =

{

X1 if T = t, t ∈ S1

X2 if T = t, t ∈ S2

(4)g(y) =
∑

x1,x2,t

[f (x1, x2, t)]�(x1,x2,t)=y
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Proposition 1  For i = 1, 2, assume stochastic independence of Xi and T. Then, 

Since equal random variables have the same probability distribution, one has Y = X1 
and g(y) = p(y) with probability α, and Y = X2 and g(y) = r(y) with probability 1 − α. Thus, 
Eq. (3) and Proposition 1 imply g = αp + (1 − α)r. Note that this construction of Y as a ran-
dom variable with a compound probability distribution makes no reference to the notion of 
sequential lottery.

The probability distribution of X1 in the presence of X2 can now be computed on the 
basis of Eq. (5). Similarly to the definition of Y, the dependence of X on the α-lottery can 
generally be expressed as a random function ζ(X, T) determined differently for T-values in 
S1 and S2, respectively. To define ζ(X, T) in a fashion similar to Eq. (3) means to represent 
the probability distribution of X1 given X2 as a convex mixture of lotteries. As such, it is in 
P if the mixture components are. This is a requirement necessary for ζ and χ to have finite 
ranges in I, and for their probability distributions to be in P, since the preference relations 
concerned are defined on P. Now, let ζ1 and ζ2 be real functions so that1

Let z(ζ1(x), ζ2(x), t) be the probability distribution of ζ(X, T). The marginal distribution 
zζ1ζ2(ζ1(x), ζ2(x)) is the probability function of X = χ(X1, X2) to be determined. Since Xi and 
T are independent, so are ζi(χ(X1, X2)) and T (as for this stochastic-independence property 
of composite definitions of functions of random vectors, see, e.g., Pfeiffer (1990), esp. p. 
251 and Theorem 11.3.3). Equations (3) to (6) imply zT(t) = fT(t) so that

Equation  (7) follows immediately from Eq.  (6) in a fashion similar to the derivation of 
Eq. (5) from Eq. (3), with the replacement of the stochastic independence condition for Xi 
and T by that of ζi(χ(X1, X2)) and T.

The dependence of z�1�2 on p and r needs to be determined next. Put ω = 1 − α in Eq. (7) 
and define2

Consistently with the interpretation of zζ1ζ2(ζ1(x), ζ2(x)) as the probability distribution of X1 
given X2, p∣ωr means p given r (“p in the presence of r”), with r being the background risk 
of p. The condition r ≠ ̂0 (i.e., r(0) < 1) excludes the trivial case in which r gives zero with 
certainty, that is, the case of no background risk at all. Let the conditionalisation operation 

(5)fX1X2

(

x1, x2
)

=
∑

t∈S

f
(

x1, x2, t
)

= �p(x1) + (1 − �)r(x2), 0 ≤ � ≤ 1

(6)� (X,T) =

{

�1(X) if T = t, t ∈ S2

�2(X) if T = t, t ∈ S1

(7)z�1�2

(

�1(x), �2(x)
)

= (1 − �)z�1 (�1(x)) + az�2 (�2(x))

(8)(p∣𝜔r)(x) = z𝜁1𝜁2

(

𝜁1(x), 𝜁2(x)
)

, r ≠ 0̂, x ∈ I

1  Observe that the subsequent notation for the T-dependence of ζ is inverted as compared to that of ψ as 
specified on the right-hand side of Eq.  (3) (X1 → ζ2(X), X2 → ζ1(X)). The change is adopted for technical 
reasons and is consistent with Eq. (3); it admits a more natural and more coherent notation in the following 
paragraphs, especially in Eqs. (9) and (15) below, but otherwise has no theoretical significance. .
2  Reference to ω rather than α in the following definition is for reasons of convenience. It admits a more 
compact and consistent formalism, as will be obvious from Eqs.  (8) to (15) below and from the realistic 
interpretation of ω in the application example of Sect. 5.
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∣ωr: P → Pω, r be a function operating to the left on the function variable p in “p∣ωr”, where 
P∣ωr is the range of ∣ωr, Pω, r ⊂ P. From Eqs. (7) and (8) follows

It remains to determine p∣1r and p∣0r. To this goal, a few more properties of p∣ωr have to be 
specified. First, consider the boundary case ω = 1. In this special case, one has α = 0 so that 
the comparison of αp + (1 − α)r and αq + (1 − α)r reduces to the trivial indifference r ~ r for 
all p, q and r. Hence, p and q in the presence of r are unconstrained by r, meaning

Secondly, recall that the aspiration level x0 has been assumed to be an exogenously 
fixed parameter. As such, it is not related to probability and does not vary with the back-
ground risk (Diecidue and van de Ven 2008). In the normalisation x0 = 0 adopted above, 
this implies 0̂∣ωr = ̂0 , and conversely, if p∣ωr = ̂0 for some p and every ω, 0 ≤ ω ≤ 1, then 
p∣1r = p = ̂0 as a special case for ω = 1 so that altogether

Thirdly, if p = r, this means that p obtains with certainty. This is equivalent to ω = 0 so that

Considering Eqs. (3) and (9), one has

Proposition 2  For given r, r(0) < 1, and 0 ≤ ω ≤ 1, ∣ωr: P → Pω, r is a linear function.

The proof of Proposition 2 is outlined in the Appendix together with the proofs of Prop-
ositions 3–5 stated below. From Proposition 2, it follows immediately that, if {x1, …, xn} is 
the support of p and pi = p(xi), then

for p as a finite convex combination of the degenerate distributions x̂1, …, x̂n.3 Given 
Eqs. (9) and (10), our next result completes the formal representation of p∣ωr,

Proposition 3  For every r, r(0) < 1, |0r has the idempotent property (p∣0r)∣0r = p∣0r, and 

Because of this idempotence, which is a familiar characteristic of projection operations 
(e.g., Yanai et al. 2011), the transformation ∣0r: P → P0, r can be understood as a parallel 
projection which maps P onto P0, r along hypersurfaces p(0) = constant in convex subsets 
Δ ⊂ P with r ∈ Δ and 0̂ ∈ Δ (Fig. 1).

(9)p∣𝜔r = 𝜔p∣1r + (1−𝜔)p∣0r, r ≠ 0̂, 0 ≤ 𝜔 ≤ 1

(10)p∣1r = p, p ∈ P

(11)p∣𝜔r = 0̂ ⇔ p = 0̂

(12)p∣0p = p,

(13)p∣𝜔r =

(

∑

i≤n

pix̂i

)

∣𝜔r =
∑

i≤n

pi(x̂i∣𝜔r), r ≠ 0̂,

(14)
(p∣0r)(0) = p(0)

(p∣0r)(x) = r(x)
1 − p(0)

1 − r(0)
, x ≠ 0

3  To keep the notation simple, we do not consistently distinguish between the particular values x1, x2, … of 
the real variable X and the real values x1, x2 the random variables X1 and X2 may respectively take on. The 
special meaning attached to the xi’s should always be clear from the context.
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Inserting the results (10) and (14) into Eq. (9) gives the desired representation of p in 
the presence of r,4

Recall that q is the probability distribution of X1′. The comparison X1 ≿� ,X2
 X1′ implicitly 

defines a preference ranking of p and q conditional on r. It can be written as p ≿ω, r q, while 
(2) goes over into

This definition means that in a choice between αp + (1 − α)r and αq + (1 − α)r, the mixture 
component r induces a preference ranking ≿ω, r between p and q conditional on the back-
ground risk r. For independently of his choice, the decision maker always faces r while 
assessing p and q, except in case ω = 1. He is not concerned with the advantage of p over q, 
but the relative advantage of p given r over q given r, or, formally, p∣ωr ≿ q∣ωr.

5 � Example: uncertain risk resolution time

In practice, often decision makers cannot be sure when, exactly, the risks they are fac-
ing will be resolved. This situation is critical for the management of risky investments 
with uncertain time horizon, for example (Martellini and Urošević 2006; Blanchet-Scal-
liet et al. 2008). It also induces time duration of risk as a random variable in many static 
decision tasks. In fact, “static” in the sense of “non-dynamic” means non-sequential, but 

(15)p∣𝜔r = 𝜔p + (1−𝜔)p∣0r r ≠ 0̂, 0 ≤ 𝜔 ≤ 1

(16)p≿𝜔, r q ⇔ p∣𝜔r≿ q∣𝜔r, r ≠ 0̂, 0 ≤ 𝜔 ≤ 1

Fig. 1   Convex set Δ of lotter-
ies with possible outcomes 
x1 < x2 = 0 < x3, given background 
risk r. The dashed line is P0, r

4  An equation similar to (15) is used in Geiger (2008) as a plausible model of p given r, but not rigorously 
derived. Yet the interpretation of the parameter ω differs from that in Geiger (2008), where it is defined as 
the complementary probability obtained by substituting ω → 1 − ω. Our formal results are clearly compat-
ible with our previous approach despite this change in notation.
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not necessarily time-independent and definitely not deterministic in the sense that the date 
when a static risk resolves is known to the decision maker in advance with certainty. Cor-
respondingly, time duration of risk as a random constraint on static choice is studied in 
many operational and applied sciences besides financial management. Survival analysis in 
reliability engineering is a prevalent example (e.g., Marshall and Olkin 2007; Finkelstein 
2008). We adopt a few basic concepts of failure risk analysis for illustrative purposes.

Since in comparisons of the form (2) uncertain resolution time may characterise the lot-
teries X1, X1′ and the background risk X2 alike, the preference χ(X1, X2) ≿ χ(X1´, X2) also 
depends on the probability that X2 persists at least until (i.e., is not resolved prior to) the 
resolution of X1 and X1´. The exception is the limiting case in which the background risk 
prematurely vanishes with certainty, that is, the decision maker knows for sure that X2 is 
resolved first while X1 and X1´ persist. In this case, the comparison of X1 and X1´ is in effect 
independent of the background risk, in agreement with Eq. (10). To provide a bivariate sur-
vival time model of (2), each Xi entering (2) is assigned to a random time variable Ti and 
the joint probability that Xi = xi at time Ti = ti ≥ 0, where ti ∈ITi ITi is a real interval, and i = 1, 
2. Put T = (T1, T2) and IT = IT1 × IT2 so that ζ(X, T) = ζ(X, T1, T2), and assume finite support S 
of zT1T2 , S ⊂ IT1 × IT2 . Let S1 = {(t1, t2)∣ T1 = t1 ≤ t2 = T2} and S2 = {(t1, t2)∣ T1 = t1 > t2 = T2} in 
Eqs. (3) and (6). The overall probability that T1 = t1 ≤ t2 = T2 is 

∑

t1≤t2
 zt1t2(t1, t2) = α, where 

“ 
∑

t1≤t2
 ″ means summation over all pairs t1, t2 in S1. Likewise, 

∑

t1≤t2
 zT1T2(t1, t2) = ω, which 

is to be inserted into Eq. (15). By construction, α can be viewed as the relative persistence 
of the background risk X2, while the complementary probability ω measures the relative 
persistence of p in the presence of r. In other words, p∣ωr implies an ω:(1 − ω) chance of r 
being resolved first or else rejected, and conversely for p.

A case in point is the failure of a single component of a technical system that may dis-
rupt the operation of the entire system. Random time to failure, T1, of the component part 
will then have to be assessed in the presence of the risk of system failure at uncertain time 
T2 due to continuous wear-out or any other kind of deterioration of the overall system over 
time. One may also reasonably assume that the (economic) consequences X1 and X2 respec-
tively incurred by continued operation or failure of the system are different. For instance, 
repair or replacement of a single component will normally be less expensive than that of 
the entire system. If each Xi is stochastically independent of (T1, T2), T1 and T2 are sto-
chastically independent and, in a continuous approximation, exponentially distributed with 
constant failure rates τ1 and τ2, respectively,5 one straightforwardly finds

for the overall probability that T1 ≤ T2, and ω ≈ τ2/(τ1 + τ2) for the complementary prob-
ability that T1 > T2 (see, e.g., Pitman 1993, p. 352; Finkelstein 2008, Chap. 2; as for the 
accuracy of the approximation required to use the exponential probability density distri-
bution within a simple-probability framework, see Pitman 1993, p. 300). In particular, if 
τ1 ≪ τ2, the failure rate associated with X1 is rather low, and the relative persistence of p 
given r is high and close to 1. Conversely, if τ2 ≪ τ1, one has ω ≪ 1. In less simple situ-
ations, the approximations made do not obtain, especially the assumption of exponential 

∑

t1≤t2

zT1T2

(

t1, t2
)

= 1−� ≈ �1∕(�1 + �2)

5  That these conditions involve strong idealisations and as such are rarely met in real technological systems 
is widely acknowledged in the literature on reliability and survival time analysis (e.g., Pfeiffer 1990, Sec. 
8.6). Nevertheless, they often admit useful mathematical models of practical-life distributions, while facili-
tating mathematical tractability.
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time-dependence of the failure probability density function with constant failure rate. The 
computation of ω then requires more complex integrations (e.g., Finkelstein 2008, Chap. 
2), or summations in the finite discrete probability case, but the role of ω as a parameter 
quantifying the relative persistence of risk given a background risk of course remains the 
same.

The example is instructive not only because it illustrates the significance of the pre-
sent approach to background risk in a realistic application setting. It also demonstrates that 
αp + (1 − α)r can be interpreted as a single-stage lottery by definition rather than by reduc-
tion of compound lotteries. The ambiguous nature of αp + (1 − α)r is due to the α-lottery, 
which, in the present account, gives the probability of p or r being obtained by being 
resolved first. Thus, endogenously induced violation of independence, as analysed in the 
next section, can well arise in settings in which decision making exhibits a critical depend-
ence on time, but is in no way related to the dynamics of choice.

6 � Violation of independence

The equivalence (16) entails various simple, closely related results, which we summarise in

Proposition 4  For every r, r ≠ ̂0, and ω, 0 < ω ≤ 1: (i) Pω, r is a convex set; (ii) the prefer-
ence structures (P, ≿ω, r) and (Pω, r, ≿) are isomorphic under ∣ωr: P → Pω, r; (iii) (Pω, r, ≿) 
is an EU preference structure if and only if (P, ≿ω, r) is an EU preference structure; (iv) 
(Pω, r, ≿) satisfies stochastic dominance preference if (P, ≿) does.

Proposition 4(iii) means that if ≿ω, r violates the independence axiom, (16) excludes 
≿ as an EU preference relation, and conversely. This result mutatis mutandis confirms 
the remark following (2) that, if χ and X2 can be shown to exist so that ≿� ,X2

 violates the 
independence axiom, (2) excludes ≿ as an EU preference relation. Proposition 4(iv) states 
that ∣ωr preserves stochastic dominance preference. This result is a trivial consequence 
of Pω, r ⊂ P but does not necessarily include the stochastic dominance preference of ≿ω, r 
given that of ≿. On the other hand, ≿ω, r must satisfy stochastic dominance preference in 
order for ≿ω, r and ≿ to be EU preference relations because of Proposition 4(iii). Our final 
result clarifies this point.

Proposition 5  For every r, r ≠ ̂0, and ω, 0 < ω < 1, if ≿ω, r satisfies stochastic dominance 
preference, then ≿ω, r violates the independence axiom.

Propositions 4(iii) and 5 together exclude ≿ as an EU preference relation if ≿ω, r satis-
fies stochastic dominance preference. This result means that, with stochastic dominance 
preference holding in the presence of r, the comparison p ≿ q does not generally entail 
αp + (1 − α)r ≿ αq + (1 − α)r, contrary to (1). But Proposition 5 goes further still. It strictly 
rules out any possibility of postulating independence consistently. To see this, assume that 
≿ satisfies the independence axiom together with the other EU axioms on P and, hence, on 
Pω, r since this is a convex subset of P. Then ≿ω, r, too, is an EU preference relation on P, 
by Proposition 4(iii). As such, it satisfies the independence axiom. Now Proposition 5 rules 
out stochastic dominance preference for ≿ω, r by indirect reasoning. This violation of sto-
chastic dominance preference by ≿ω, r excludes the EU property of ≿ω, r since together with 
the other EU axioms the independence principle implies stochastic dominance preference. 
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The assumption of an EU preference relation ≿ thus entails a contradiction: there is no 
room for joint interpretations of Propositions 4 and 5 other than rejection of the independ-
ence principle.

The proof of Proposition 5 involves some technicalities, so an informal remark on the 
basic argument on which it builds would seem appropriate. Stochastic dominance prefer-
ence in combination with the axioms of weak order and continuity is well-known to ensure 
the existence of a real-valued utility representation of preference. The representation is 
unique up to strictly increasing transforms of the utility scale, but its axiomatic basis is 
still too weak to determine its explicit functional form (see, e.g., Becker and Sarin 1987). 
In proof of Proposition 5, one can therefore start from the premise that utility functionals 
representing ≿ and ≿ω, r do exist. But they do not necessarily provide EU representations 
since p∣ωr is generally not a convex mixture of p and r (except in special cases p∣0r = r), nor 
does p ≿ q ⇒ p∣ωr ≿ q∣ωr generally hold as an analogue or substitute of (1). Now, Proposi-
tion 5 states that ≿ω, r and, by Proposition 4(ii), ≿ not only are not necessarily EU prefer-
ences, but also that EU preferences are excluded in principle, even if ≿ and ≿ω, r satisfy 
stochastic dominance preference. On the other hand, the assumption of stochastic domi-
nance preference is strong enough to ensure a non-EU utility representation of the underly-
ing preference relation ≿, which the proof of Proposition 5 widely exploits.

The isopreference structures of ≿ω, r on Pω, r and ≿ on P illustrate these results. They 
are depicted in Fig.  2 on convex sets Δω, r ⊂ Pω, r and Δ ⊂ P, respectively, as low-dimen-
sional examples. The indifference lines of ≿ (solid lines, Fig. 2b) show the characteristic 
“fanning-out” familiar from violations of independence observed in risky choice experi-
ments (e.g., Starmer 2000).

Apart from its theoretical consequences, Proposition 5 bears on the meaning of “ration-
ality” in risky choice. An axiomatic account of non-EU preferences consistent with the 
present findings can be found in Geiger (2008). It deals with status quo dependent decision 
making, where status quo risk means the decision maker’s extant, risky economic situa-
tion as a special instance of background risk. The account straightforwardly explains vari-
ous types of observed violations of EU preference, notably “fanning-out” and loss aversion 

Fig. 2   Indifference lines of (a) 
≿ω, r on convex set Δω, r ⊂ Pω, r 
(shaded area, dashed lines) and 
(b) ≿ on convex set Δ ⊂ P (solid 
lines). The indifference pattern 
shown is based on the example 
used in proof of Proposition 5
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(Starmer 2000, Abdellaoui et  al. 2008). Together with the above results, it suggests that 
observed systematic violations of EU do not so much indicate departure from rationality of 
risky choice, but rather exhibit rationality under constraints, that is, pragmatic rationality 
as opposed to independence as a requirement of purely theoretical rationality. “Pragmatic 
rationality”, in turn, means utility maximisation with explicit reference to the decision 
maker’s economic situation, time constraints on risk exposure, demands, and aspiration 
level.

7 � Conclusions and extensions

A definitional extension of EU theory has been developed on the basis of the equivalences 
(2) and (16). Once the concept of risk in the presence of a background risk is given a suit-
able formal representation, (2) and (16) define conditional preferences induced by back-
ground risks such as arise in the comparison of compound lotteries in (1). This definitional 
extension of EU theory is in fact necessary if the independence axiom is given a norma-
tive interpretation and applied to conditional preferences. However, it has turned out that 
EU theory cannot, as a matter of principle, be consistently extended in this way. Apart 
from definitions such as (2) and (16) and trivial normalisations such as x0 = 0, the proof 
of this impossibility result involves no assumptions that essentially limit the generality of 
the result; nor was it obtained under conditions exogenously imposed on preference rank-
ings such as the induced non-EU preferences for temporal risk mentioned in the Introduc-
tion.6 Rather, as Eq.  (15) and the equivalence (16) make clear, the conditional non-EU 
preferences are defined in terms of mixtures of lotteries and arise in comparisons of such 
mixtures, which constitute the very meaning and significance of the independence princi-
ple. To avoid the non-EU consequences, Proposition 5 does not even admit background-
dependent risk preferences to violate stochastic dominance preference, for EU preference 
logically includes stochastic dominance preference. On the other hand, the impossibility 
result is compatible with the notion of stochastic dominance preference as “perhaps the 
most obvious principle of rational choice” and—unlike EU theory—a “cornerstone of the 
normative theory of choice” (Tversky and Kahneman 1986, p. S253).

We close by a few remarks concerning the range of significance of the preceding 
results. Dynamic consistency and conditionalisation of risk preferences have both been 
referred to above as necessary theoretical requirements of rational preference orderings, 
one of which forces independence, while the other excludes it. To clarify this discrep-
ancy, conditional preferences induced by identical sublotteries which occur in alterna-
tive multiple-stage lotteries, but may themselves be compound lotteries, would have to 
be introduced into models of dynamic choice. This task can arguably be tackled within 
existing frameworks of rational sequential choice corresponding to Hammond´s (1998, 
Sects. 5 and 6) account of dynamically consistent behaviour. In fact, using reduction 
of compound lotteries in combination with backward recursion,7 Hammond provides 

7  Backward recursion means starting the analysis of a sequential choice problem from the final decision 
task and working successively backward to the antecedent decision task, respectively, to determine the risky 
alternatives available in each step and, from these, the overall (= compound) probabilities of the final out-
comes.

6  Observe that the sole exogenously fixed parameter x0 entering the analysis has only been used to normal-
ise the preference order to x̂

0
  ~ 0̂.
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multiple-stage lotteries with single-stage representations to which the conceptualisa-
tions and results of the present analysis directly apply. On the other hand, the concept of 
dynamic consistency will have to be strongly modified to incorporate the conditionalisa-
tion of risks and preferences induced by mixture of lotteries. Thus, the decision maker 
will face different background risks, with different conditional preference relations aris-
ing at different stages of a sequential decision task, even if his underlying unconditional 
preference relation ≿ is “atemporal” and as such remains unchanged. Moreover, he will 
generally exhibit quite different aspiration levels x0 at different stages, depending on the 
gains or losses incurred in previous choices made at antecedent stages. If the alterna-
tive lotteries involved in a multiple-stage decision problem are finally given reduced 
single-stage representations with the use of backward recursion, Propositions 4 and 5 
still exclude the possibility that ≿ satisfies independence. From the proof of Proposition 
5 one infers that the reduced versions of multiple-stage lotteries, too, show the fanning-
out of indifference lines typical of violation of independence (Figs. 2 and 3).

Finally, one may wish to extend the preceding analysis to infinite discrete and con-
tinuous probability distributions as important risk models. Under additional, sufficiently 
strong conditions, the equivalence of dynamic consistency and independence holds for 
non-simple probability distributions as well (Hammond 1998, Secs. 8 and 9). But on 
the other hand, under these conditions, convex sets P* of infinite discrete or continu-
ous probability distributions necessarily contain convex subsets P of simple probability 
distributions (Hammond 1998, p. 197), to which the above impossibility result applies. 
More precisely, every weak preference relation ≿* on P* possesses restrictions ≿ on P 
so that ≿* violates independence if any such ≿ does. Thus, there is in effect no norma-
tive justification for the independence axiom even under the stronger conditions under 
which EU preference orderings exist and are equivalent to dynamically consistent ones 
on convex sets P* of non-simple probability distributions.

Fig. 3   Convex set Δ and shaded 
area Δω, r = Δ ∩ Pω, r of lotter-
ies with possible outcomes 
x1 < x2 = 0 < x3 and background 
risk r ~ ̂0 . The dotted parallel 
line segments in Δω, r indicate 
strictly increasing preference for 
increasing ρω, r (p), p2 = constant. 
The dashed lines indicate the 
isomorphism (A.6)
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Appendix

Proof of Proposition 2 For p′, p″ and α, 0 ≤ α ≤ 1, let p = αp′ + (1 − α)p″ so that

As defined in Eq.  (3), there exist a random variable Y and function ψ, Y = ψ(X1, X2, T), 
with the probability distribution (p|0r)(y) = g(y) = g(ψ(x1, x2, t)) = fX1X2

(x1, x2)fT(t) so that 
∑

t∈S1
 fT(t) = α and similarly for 1 − α, and, further, fX1

(x1) = (p′|0r)(x1) = (p|0r)(x1) and fX2

(x2) =(p″|0r)(x2) = (p|0r)(x2) according to Eq. (A.1) for α = 1 and α = 0, respectively. Recall 
that, by Eq.  (3) and Proposition 1, Y = X1 and g(y) = g(x1) = (p′|0r)(x1) with probability α, 
while Y = X2 and g(y) = g(x2) = (p″|0r)(x2) with probability 1 − α, considering that identical 
random variables have the same probability distribution. One altogether has g = αp′|0r + (1 
− α)p″|0r = p|0r and, from Eq. (A.1),

Hence, |0r: P → P0, r is a linear function, and so is ∣ωr: P → Pω, r, by Eqs. (9) and (10).
Proof of Proposition 3 By assumption, r ≠ ̂0 . From Eq. (13),

The convex hull of the degenerate distributions x̂1, …, x̂n in P is an (n − 1)-simplex in ℝn 
with the vertices x̂1, …, x̂n, which constitute a vector basis of ℝn. Hence, there uniquely 
exist real numbers (p∣0r)i ≤ 1, i ≤ n, so that (A.2) can be rewritten as

Without loss of generality, assume that x̂k = ̂0 for some k, k ≤ n. From (11) and Eq. (A.3), 
one has x̂k∣0r = x̂k. Using (11) and Eq. (A.2) and letting the sum 

∑

′i ≤ n run over all i except 
i = k, one has p = p∣0r = ̂0 if pk = 1, and

meaning that the vectors x̂i∣0r, i ≠ k, are linearly independent of x̂k. Hence, (p∣0r)k = pk, that 
is, (p∣0r)(0) = p(0), by Eqs. (A.2), (A.3) and x̂k∣0r = x̂k. By Proposition 2, ∣0r is a linear oper-
ation in P. Hence, it has the associative property (p∣0q)∣0r = p∣0(q∣0r). Choosing q = r shows 
that it also has the idempotent property (p∣0r)∣0r = p∣0r because of Eq. (12). Hence,

(A.1)p∣0r = (�p� + (1−�)p��)∣0r

(�p� + (1−�)p��)∣0r = �p�∣0r + (1−�)p��∣0r

(A.2)p∣0r =
∑

i≤n

pi(x̂i∣0r), n ≥ 1.

(A.3)p∣0r =
∑

i≤n

(p∣0r)ix̂i

(

1−pk
)−1 ∑�

i≤n
pi(x̂i∣0r) ≠ x̂k, pk < 1,

http://creativecommons.org/licenses/by/4.0/
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Considering (11), which entails ( ̂x k∣0r)i = 0 for i ≠ k, one now compares the expressions for 
p∣0r and (p∣0r)∣0r in a component-by-component fashion to obtain

after an obvious rearrangement of terms. If the matrix of the coefficients ( ̂xj∣0r)i − δ 
ji in (A.4) has maximum rank n − 1, one has (p∣0r)j = 0 for all j ≠ k. Then, (p∣0r)k = 1 and 
p∣0r = p = ̂0 from (11). If the rank of the matrix in (A.4) is less than n − 1, every solution of 
(A.4) must satisfy (p∣0r)i = λri for some real λ, λ > 0, since r is a solution of Eq. (A.4). One 
immediately finds λ = (1 − pk)/(1 − rk) with the use of the above result (p∣0r)k = pk.

Proof of Proposition 4 (i) By definition of Pω, r, ∣ωr maps P onto Pω, r. Considering 
Eqs. (14) and (15) and the condition 0 < ω, the reverse of ∣ωr exists. Hence, ∣ωr: P → Pω, r is 
an isomorphism for 0 < ω. Since it is also linear, one has

Since P is a convex set, βp′ + (1 − β)p″ is in P, while p′∣ωr, p″∣ωr and (βp′ + (1 − β)p″)∣ωr are 
in Pω, r so that the right-hand side of (A.5) is in Pω, r as well. Hence, Pω, r is a convex set. 
(ii) (P, ≿ω, r) and (Pω, r, ≿) are trivially isomorphic under ∣ωr, by the definition (16) and the 
convexity of P and Pω, r. (iii) Because of this isomorphism, ≿ trivially satisfies the axioms 
of EU preference if and only if ≿ω, r does. In particular, if U: Pω, r → ℝ is a linear functional 
and Uω, r (p) = U(p∣ω r), then U represents ≿ on Pω, r if and only if Uω, r represents ≿ω, r on 
P. (iv) Since Pω, r ⊂ P, ≿ trivially satisfies stochastic dominance preference on Pω, r if it sat-
isfies stochastic dominance preference on P.

Proof of Proposition 5 The proof proceeds in two steps. In either step, stochastic domi-
nance preference is supposed to hold for ≿. We first construct a simple counterexample to 
the EU property of ≿ω, r for a special class of neutral background risks r ~ ̂0 , r ≠ ̂0 . Thereby, 
we conveniently restrict the analysis to a convex set Δ of lotteries, Δ ⊂ P, with three pos-
sible outcomes x1 < x2 = 0 < x3 and r ∈ Δ, r(0) = r2, p(0) = p2 in Eq. (14). In the second step, 
we show that Proposition 5 holds for all r, r ≠ ̂0 , if it holds for some such r, r ~ ̂0 , and 
0 < ω < 1. − Step 1 Assume stochastic dominance preference for ≿ω, r. Recall that we also 
suppose the axioms of weak order and continuity to hold for ≿. Use ∣ωr and ≿ to repre-
sent ≿ω, r according to (16), define Δω, r = Δ ∩ Pω, r so that r ∈ Δω, r, and choose 0 < ω < 1 
(Fig. 3). We have the result (Becker and Sarin 1987) that the two axioms, together with the 
principle of stochastic dominance preference, imply the existence of a real-valued func-
tional U: P → ℝ, though not necessarily an EU functional, which uniquely represents ≿ 
(i.e., satisfies U(p) ≥ U(q) if and only if p ≿ q) on P and, hence, on Δω, r. The uniqueness 
is up to strictly increasing (i.e., bijective and order-preserving) transforms of U (Weymark 
2005). Because of stochastic dominance preference, for p2 = q2 < 1 it holds that p∣ωr ≻ q∣ωr 
if and only if (p∣ωr)3> (q∣ωr)3, or, equivalently, (p∣ωr)3/(p∣ωr)1 > (q∣ωr)3/(q∣ωr)1, meaning that 

p∣0r =
∑

i≤n

(p∣0r)ix̂i by (A3)

= (p∣0r)∣0r

=
∑

j≤n

(p∣0r)j(x̂j∣0r) by (A2)

=
∑

i, j≤n

(p∣0r)j(x̂j∣0r)ix̂i by (A3)

(A.4)
∑�

j≤n
(p∣0r)j((x̂j∣0r)i−𝛿ji) = 0, i ≠ k.

(A.5)
(

�p� + (1−�)p��
)

∣�r = �p�∣�r + (1−�)p��∣�r, 0 ≤ � ≤ 1
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preference strictly increases with (p∣ω r)3 and with ρω, r(p) = (p∣ωr)3/(p∣ωr)1 along parallel 
straight line segments p2 = constant < 1 in Δω, r. The ratio ρω, r(p) is invariant under the 
transformation p∣ω r → (p∣ω r)’,

For given p2 < 1, the inverse transformation of (A.6) exists. Hence, under (A.6) parallel 
straight line segments in Δω, r with constant, but different values of p2 are isomorphic, with 
respect to preference, to the boundary segment p2′ = 0 and, hence, to each other (Fig. 3). 
Observe that the real-valued functional U which represents ≿ on P and, hence, on Δω, r 
can be normalised to be unique. Rewrite U(p∣ωr) as U(ρω, r(p), p2), considering that ρω, r(p) 
and p2 uniquely determine p∣ωr. Then U(ρω, r(p2′), 0) and U(ρω, r(p), c) respectively repre-
sent the isomorphic preference orderings on the straight line segments p2′ = 0 and p2 = c, 
0 ≤ c < 1, with U(ρω, r(p2′), 0) and U(ρω, r(p), c) strictly increasing in ρω, r. To exhibit this 
isomorphic property, U(ρω, r(p), p2) must be a strictly increasing transform of U(ρω, r(p), 0) 
for given p2 and take on the general form

where V(p2) > 0 and b is a real constant which can be used to extend Eq. (A.7) to the case 
p2 = 1 and then normalise U to U(ρω, r(0̂ ), 1) = 0. Observe that this extension and normali-
sation imply V(1) = b = 0 and that U(ρω, r(p), 0) is a well-defined expression even if p2 ≠ 0 
since ρω, r(p) is independent of p2. To see that V(p2) strictly decreases with increasing p2, 
consider the special case p3 = 0 in which preference and, hence, U(ρω, r(p), p2) strictly 
increase with p2, by stochastic dominance preference. Considering r ~ ̂0 and the normalisa-
tion U(ρω, r(0̂ ), 1) = 0 with b = 0 in Eq. (A.7), one has

Equation (A.8) implies U(ρω, r(r), 0) = 0, because of r2 < 1 and V(r2) > 0 for r2 < 1. Now, 
one has U(ρω, r(p), 0) < U(ρω, r(r), 0) = 0 for p3 = 0 < r3 so that, according to Eq. (A.7), V(p2) 
must strictly decrease for U(ρω, r(p), p2) to increase strictly with p2, and, clearly, so must 
V(p2) for arbitrary p. Since V(p2) and U(ρω, r(p), 0) are both strictly monotonic and, hence, 
non-constant functions, U(ρω, r(p), p2) is non-linear in the probabilities, by Eq. (A.7). Since 
U(ρω, r(p), p2) represents ≿ω, r uniquely on Δ, ≿ω, r violates the independence axiom on Δ 
and, hence, on P. As an immediate consequence of Propositions 4(i) and 4(ii), (Δω, r, ≿) is 
a non-EU preference structure, too (Fig. 2).8 − Step 2 Let ≿ω, r be given as in Step 1, and 
assume that ≿Ω, s satisfies stochastic dominance preference on P for some arbitrary s except 
s =0̂ , where 0 < Ω < 1. Observe that 0̂ ∈ PΩ, s (see Eq. (11)) and that there exists some r’, 
r’ ∈ PΩ, s, so that r’ ~ ̂0 but r’ ≠ ̂0 . Now construct a convex subset Δ’ ⊂ PΩ, s similar to Δ in 
Step 1, define (ΔΩ, r’)’ = Δ’ ∩ (PΩ, s)Ω, r’ and, following the proof carried out in Step 1, pro-
ceed to show that ≿Ω, r’ violates independence on Δ’ and, hence, on PΩ, s. From 4(ii) one 
immediately concludes that ((PΩ, s)Ω, r’, ≿) is a non-EU preference structure. Recall that 
(PΩ, s)Ω, r’ is a convex subset of PΩ, s so that (PΩ, s, ≿) and, once more by Proposition 4(ii), 
(P, ≿Ω, s) are non-EU preference structures. Hence, ≿Ω, s violates the independence axiom 
on P.

(A.6)
(p∣�r)

�
i
= (p∣�r)i∕(1−p2), i = 1, 3

(p∣�r)
�
2
= p�

2
= 0

(A.7)U(𝜌𝜔, r(p), p2) = V(p2)U(𝜌𝜔, r(p), 0) + b, 0 ≤ p2 < 1

(A.8)U(𝜌𝜔, r(0̂), 1) = U(𝜌𝜔, r(r), r2) = V(r2)U(𝜌𝜔, r(r), 0) = 0

8  To draw the indifference pattern shown in Fig. 2, one puts V(p2) = 1 – p2 without loss of generality. In 
fact, Equation (A.7) with V(p2) = 1 – p2 provides a valid representation of ≿ω, r which is unique only up to 
positive transforms of (1 – p2)U(ρω, r(p), 0).
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