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Abstract
In this paper, we investigate the computation of alternative paths between two locations in a road network. More specifically,
we study the k-shortest paths with limited overlap (kSPwLO) problem that aims at finding a set of k paths such that all paths are
sufficiently dissimilar to each other and as short as possible. To compute kSPwLO queries, we propose two exact algorithms,
termed OnePass and MultiPass, and we formally prove that MultiPass is optimal in terms of complexity. We also study
two classes of heuristic algorithms: (a) performance-oriented heuristic algorithms that trade shortness for performance, i.e.,
they reduce query processing time, but do not guarantee that the length of each subsequent result is minimum; and (b)
completeness-oriented heuristic algorithms that trade dissimilarity for completeness, i.e., they relax the similarity constraint
to return a result that contains exactly k paths. An extensive experimental analysis on real road networks demonstrates the
efficiency of our proposed solutions in terms of runtime and quality of the result.

Keywords Alternative routing · Road networks · Query services

1 Introduction

Computing the shortest path between two locations in a road
network is a fundamental problem that has attracted lots of
attention by both the research community and industry. How-
ever, in many real-world scenarios, determining solely the
shortest path is not enough. For instance, users of naviga-
tion systems are interested in alternative paths that might be
longer than the shortest path but have other desirable proper-
ties. Another scenario where alternative routes are useful is
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transport of humanitarian aid goods through unsafe regions.
The distribution of the load to a fleet of vehicles that follow
non-overlapping routes increases the chances that at least
some of the goods will be delivered. The need for alternative
routes also arises in emergency situations, such as natural
disasters and terrorist attacks. To avoid panic and potential
catastrophic collisions while dealing with the aftermath of
such events, evacuationplans should include alternative paths
that overlap as little as possible.

A first take on providing alternative routes is to solve the
K -shortest paths problem [16,23,37]. In most cases though,
the returned paths share large stretches, and therefore, they
are not helpful in scenarios such as the aforementioned ones.
Consider Fig. 1, which shows three paths connecting two
locations in the city of Oldenburg. The solid/black line indi-
cates the shortest path, the dashed/red line indicates the next
path by length, which however is very similar to the short-
est path, and the dotted/blue line indicates a path that is
clearly longer, but significantly different from the shortest
path as it passes through a very distant part of the city’s road
network. In scenarios like the ones mentioned above, the dot-
ted/blue path is a better alternative to the shortest path than
the dashed/red one.

Existing literature has approached alternative routing from
different perspectives. Notable works include methods that
compute alternative routes either by incrementally building
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Fig. 1 Motivating example

a set of dissimilar paths [18] or by employing edge penalties
[3]. These methods provide no formal definition of the alter-
native routing problem, and typically no guarantee regarding
the length of the recommended paths. Other approaches
[2,4,8] first generate a large set of candidates and, in a post-
processing step, apply a number of constraints to determine
the final result. In these works, alternative paths are defined
solely on their individual similarity to the shortest path. This
yields paths that are very similar to each other and, hence, of
limited interest in many applications.

In this paper, we formalize alternative routing as the k-
Shortest Paths with Limited Overlap (kSPwLO) problem. A
kSPwLO query aims at finding a set of k paths that are (a)
sufficiently dissimilar to each other with respect to a user-
defined similarity threshold θ , and (b) as short as possible.
We prove that the kSPwLO problem is weakly N P-hard,
and we propose two exact algorithms that traverse the road
network by expanding paths from the source in length order,
while employing pruning criteria to reduce the number of
paths that need to be examined.

To balance between performance and result quality, we
present two classes of heuristic algorithms. First, to enable
the processing of kSPwLO query on large road networks,
we propose three performance-oriented heuristic algorithms
that trade shortness (i.e., how short the recommended alterna-
tive paths are) for performance. These algorithms drastically
reduce the number of examined paths and therefore scale
for large road networks, but they do not guarantee that the
returned paths are as short as possible.

Strictly abiding by the similarity constraint may prevent
a kSPwLO algorithm from finding exactly k sufficiently dis-
similar paths. In many cases though, returning a complete
result set of k paths ismore important than abiding by the sim-
ilarity constraint. For this purpose, we introduce a procedure
to gradually relax the similarity constraint, trading dissimi-
larity for completeness. Based on this procedure, we present
two completeness-oriented heuristic algorithms, which guar-
antee that the result set contains exactly k paths.

This paper extends our previous work [9,10] where we
presented the following contributions:

– We formally defined the k-shortest paths with limited
overlap (kSPwLO) problem for computing alternative
routes on road networks (Sect. 4).

– We introduced twoexact algorithms for kSPwLOqueries:
OnePass traverses the road network once expanding
only paths that qualify the similarity constraint; Mul-
tiPass improves OnePass by employing an additional
pruning criterion and traversing the network k−1 times
(Sect. 5).

– We presented three performance-oriented heuristic algo-
rithms that limit the number of examined paths but
do not minimize the length of each subsequent result:
OnePass+ employs the pruning power of MultiPass
but traverses the network only once; SVP+ selects alter-
native paths from the set of single-via paths [2]; ESX
removes edges from the road network incrementally
and computes the shortest path on the updated network
(Sect. 6).

As an extension to our previous work, in this paper we
present the following theoretical and technical contribu-
tions:

– We prove that the kSPwLO problem is weakly N P-hard
(Sect. 4).

– We present comprehensive complexity analyses for all
proposed algorithms (Sects. 5–7).

– We prove that MultiPass is optimal for the kSPwLO
problem (Sect. 5).

– We examine additional edge removal criteria for ESX in
order to further improve its performance and result qual-
ity (Sect. 6.4).

– We present the Complete_kSPwLO function that
gradually relaxes the similarity constraint, and we dis-
cuss two completeness-oriented heuristic algorithms,
termed ESX- C and SVP- C, that employ this function
to always compute a complete result set of k paths
(Sect. 7).

Through an extensive experimental analysis on real road
networks, we evaluate both the algorithms presented in our
previous works and the new ones in terms of runtime, qual-
ity of alternative paths and completeness of the result set
(Sect. 9).

2 Related work

In this section, we overview existing works that approach
alternative routing from different sides.
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Pairwise dissimilar paths To the best of our knowledge,
works that aim at computing a set of pairwise dissimilar paths
are the closest ones to our own.

Jeong’s algorithm [18] aims at computing dissimilar alter-
native paths by directly extending Yen’s algorithm [37].
Given a length limit x and a similarity threshold y, the
goal is to incrementally compute k paths not longer than
x and the similarity between any two paths does not
exceed y. At each step, the algorithm modifies all previ-
ously computed paths to obtain a set of candidate paths
and examines the candidate path that is most dissimilar
to the already recommended paths. While dissimilarity is
guaranteed, in contrast to our approach, the algorithm does
not minimize the length of each subsequent path in the
result.

Another strategy to compute dissimilar alternative paths
is to iteratively apply a penalty on the weights of edges
that lie on previously computed paths. Akgun et al. [3]
proposed amethod that computes alternative paths by repeat-
edly computing the shortest path on the road network, each
time with updated weights. The main shortcoming of this
approach is that there is no intuition behind the penalty
applied in each iteration. A large penalty would result in dis-
similar but possibly long alternative paths, whereas a small
penalty would require the algorithm to execute more itera-
tions. Similar to Jeong’s algorithm, penalty-based methods
make no effort to minimize the length of the alternative
paths.

Another approach is the k-dissimilar paths with minimum
collective length (k-DPwML) problem introduced by Liu et
al. [22]. In contrast to kSPwLO, a k-DPwML query computes
the set of k sufficiently dissimilar paths w.r.t. a similarity
threshold θ , that exhibits the lowest collective path length
among all sets of k sufficiently dissimilar paths. As shown by
Chondrogiannis et al. [11], the requirement to minimize the
collective length of the result renders the problem strongly
NP-hard and its exact computation prohibitively expensive.
Note that Liu et al. [22] did not study the exact computa-
tion of the k-DPwML problem. Instead, the authors proposed
a greedy approach FindKSPD, which solves our kSPwLO
problem. In fact, the kSPwLO can be seen as an approxima-
tion to the much harder but clearly less practical k-DPwML
problem.

Candidate sets A different definition of alternative routing
is to compute paths that are alternatives only to the shortest
path. The Plateaux method [8] aims at computing paths that
cross different highways of the road network. Bader et al.
[4] introduced the concept of alternative graphs, which have
a similar functionality as the plateaus. Abraham et al. [2]
introduced the notion of single-via paths, which we adopt
and extend for developing one of our heuristic algorithms,
i.e., SVP+. The proposed approach evaluates each single-

via path individually by comparing it to the shortest path and
checks whether it meets a set of user-defined constraints, i.e.,
local optimality and stretch.

Segment avoidance Another definition of alternative route is
to compute paths that avoid certain segments of the road net-
work. Xie et al. [35] study the computation of paths that avoid
specific edges of the road network and then introduce iSQPF,
a spatial data structure that extends the shortest path quadtree
[31], to enable the efficient computation of such paths. The
concept of segment avoidance has also been studied in the
context of traffic management. Methods in this category uti-
lize traffic information obtained from trajectory data [39],
fromsensor networks [24] or fromVANETs [17]. They aim to
identify congested segments of the road network and to com-
pute paths that avoid them. Xu et al. [36] proposed a first-cut
approach to compute traffic-aware routes on dynamic road
networks. Li et al. [21] utilized historical traffic information
and study the computation of the k traffic-tolerant paths, i.e.,
the paths with the minimum (historic) travel time.

Multi-objective path planning The computation of multiple
routes has also been approached as a multi-objective prob-
lem. Pareto-optimal paths [13,25] and the route skyline [20]
can be directly seen as alternative routes, or they can be fur-
ther examined in a post-processing phase to obtain the final
alternative paths. Another approach involves solving amulti-
objective traffic assignment problem [27,29]. Works in this
direction aim at assigning paths to different users while opti-
mizing for a set of user preferences. Such approaches are
frequently employed in urban traffic management systems to
achieve flow optimization [26].

Popular route extraction Finally, there are also historical
data-based methods that aim at analyzing and mining tra-
jectory data in order to extract popular routes [6,7,34,38].
Popularity is usually measured by the number of trajecto-
ries that cross a specific edge/segment. The more popular the
edges/segments of a route are, the more popular the route
is. This line of work aims at exploiting the wisdom of the
crowd and recommending routes that are frequently used by
experienced users, e.g., taxi drivers.

3 Preliminaries

Let road network G = (N , E) be represented by a directed
weighted graph with a set of nodes N and a set of edges
E ⊆ N × N 1. The nodes of the graph represent road inter-
sections, and edges represent road segments. Every each
edge (ni , n j ) ∈ E is assigned a positive weight w(ni , n j ),

1 For ease of presentation, we draw a road network as an undirected
graph in our examples. However, our proposed methods directly work
on directed graphs as well.
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which captures the cost of moving from node ni to node
n j . This weight can represent any nonnegative cost, e.g.,
distance and travel time, or even a composite cost, e.g.,
a linear combination of travel time with financial cost. A
(simple) path p(s → t) from a source node s to a tar-
get node t is a connected and cycle-free sequence of edges
〈(s, ni ), . . . , (n j , t)〉. The length �(p) of a path p is the sum
of the weights of all contained edges. The shortest path
psp(s → t) is the path with the lowest length among all
paths that connect nodes s and t .

Given two paths p, p′ from s to t . The similarity Sim of
p and p′ is defined by their overlap ratio [2], i.e.,

Sim(p, p′) =
∑

∀(ni ,n j )∈p∩p′ w(ni , n j )

min{�(p), �(p′)} (1)

where p ∩ p′ denotes the set of edges shared by p and p′.
For the similarity, we have 0 ≤ Sim(p, p′) ≤ 1, where
Sim(p, p′) = 0 if path p′ shares no edges with p, while
Sim(p, p′) = 1 holds if p′ ≡ p. Since only simple cycle-
free paths are considered, the similarity between different
paths is strictly lower than 1.

While variousmeasures to compute the similarity between
two paths have been proposed [22], we argue that the simi-
larity measure of Eq. 1 is the most suitable one for alternative
routing on road networks, as it enables us to disregard need-
lessly long paths when searching for alternative paths. In
practice, there is no value in defining an alternative path p′
to a path p, if p′ is shorter than p. The shortest of two paths
will always be the first option, and the longer one will be the
alternative.

Given a similarity threshold θ , path p′ is called an alter-
native path to p if p′ is sufficiently dissimilar to p, i.e.,
Sim(p, p′) < θ . We also call a path p alternative to a set of
paths P if p is sufficiently dissimilar to every path in P .

Definition 1 (Alternative Path) Let P be a set of paths from
s to t and θ be a similarity threshold. A path p′ from s to t is
alternative to set P iff ∀p ∈ P : Sim(p, p′) ≤ θ .

Example 1 Consider the road network in Fig. 2. Let set P =
{p1, p2}, where p1 = 〈(s, n3), (n3, n5), (n5, t)〉 and p2 =
〈(s, n3), (n3, n4), (n4, t)〉 with �(p1) = 8 and �(p2) = 10,
respectively. Furthermore, assume a similarity threshold θ =
0.5. Path p3 = 〈(s, n3), (n3, n5), (n5, n4), (n4, t)〉 shares
edges (s, n3) and (n3, n5) with p1, yielding Sim(p3, p1) =
6/8 = 0.75 > θ . Therefore, p3 is not an alternative
path to P . On the contrary, the similarity of path p4 =
〈(s, n2), (n2, n4), (n4, t)〉 to p1 and p2 is Sim(p4, p1) =
0 < θ and Sim(p4, p2) = 2/10 = 0.2 < θ , respectively.
Therefore, p4 is an alternative path to P .

Fig. 2 Running example

4 k-Shortest paths with limited overlap

Intuitively, the goal of a kSPwLO(G, s, t, k, θ) query is to
identify a set of k paths from a source node s to a target
node t , such that (a) the shortest path psp(s→t) is always
returned, (b) all returned paths are sufficiently dissimilar to
each other with respect to a given similarity threshold θ , and
(c) the paths are as short as possible. This is captured in the
following definition.

Definition 2 (kSPwLO Problem) Given a road network G =
(N , E), a source node s and a target node t both in N , a
requested number of paths k, and a similarity threshold θ ∈
[0, 1], find the set PLO of k paths from s to t , such that:

(A) all paths in PLO are sufficiently dissimilar to each other,
i.e.,

∀pi , p j ∈ PLO with i �= j : Sim(pi , p j ) ≤ θ

(B) every path p /∈ PLO is either too long or too similar
to a shorter path in PLO, i.e., one of the following two
conditions holds for p:

(1) ∀pi ∈ PLO : �(p) ≥ �(pi )
(2) ∃pi ∈ PLO : �(pi ) ≤ �(p) ∧ Sim(p, pi ) > θ

Condition (A) ensures the dissimilarity of the recommended
paths, i.e., all paths are sufficiently dissimilar to each other
w.r.t. the given similarity threshold θ . Condition (B) guar-
antees that each path p in PLO is the shortest possible path
that is sufficiently dissimilar to all paths in PLO shorter than
p. As a result, the shortest path psp(s→t) is always part of
PLO.

Example 2 Consider the road network in Fig. 2 and the query
kSPwLO(G, s, t, 3, 0.5). The result of the query is PLO =
{p1, p2, p3}, where p1 = 〈(s, n3),(n3, n5),(n5, t)〉, p2 =
〈(s, n3),(n3, n4),(n4, t)〉, and p3 = 〈(s, n2),(n2, n4),(n6, t)〉
with �(p1) = 8, �(p2) = 10, and �(p3) = 11, respectively.
Path p1 is the shortest path and is always included in the result
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Fig. 3 Road network
demonstrating the weakly
N P−hardness of kSPwLO

due to Condition (B) of Definition 2. Among all other paths
from s to t , path p2 is the shortest one that is sufficiently
dissimilar to p1, i.e., Sim(p2, p1) = 3/8 = 0.375 < θ .
Subsequently, among all remaining paths from s to t , p3 is
the shortest one that is sufficiently dissimilar to both p1 and
p2, i.e., Sim(p3, p1) = 0 < θ and Sim(p3, p2) = 2/10 =
0.2 < θ .

4.1 Complexity analysis

Next, we elaborate on the complexity of the kSPwLO.

Theorem 1 The kSPwLO problem is weakly NP-hard.

Proof We prove the theorem by reduction from the sub-
set sum problem, a famous weakly N P-complete problem
[12]. Given natural numbers a1, . . . , am ∈ N, S ∈ N,
the subset sum problem asks whether there is an index set
I ⊆ {1, . . . ,m} such that

∑
i∈I ai = S. For reducing this

problem to kSPwLO, we fix an instance ({ai }mi=1, S) of the
subset sumproblemand define the road networkG = (N , E)

sketched in Fig. 3 where:

N = {ni | i = 0, . . . ,m} ∪ {n′
i | i = 1, . . . ,m}

E = {(ni-1, ni ) | i = 1, . . . ,m}
∪ {(ni-1, n′

i ) | i = 1, . . . ,m}
∪ {(n′

i , ni ) | i = 1, . . . ,m}

Furthermore, for all i = 1, . . . ,m, we define the edge
costs � as w(ni-1, ni ) = ai , w(ni-1, n′

i ) = M ·ai/2, and
w(n′

i , ni ) = M ·ai/2, where M > A = ∑m
i=1 ai is

a very large number. Let {psp, p2} be a solution for a
kSPwLO(G, n0, nm, 2, S/A) query on G. Such a solution
exists because there are two edge-disjoint (n0−nm) paths in
G. We claim that there is an index set I ⊆ {1, . . . ,m} such
that

∑
i∈I ai = S if and only if �(p2) = A·M − S·(M − 1).

Since the size of the constructed instance of kSPwLO is poly-
nomial in the size of ({ai }mi=1, S), this proves the theorem;
if there was a polynomial-time algorithm for kSPwLO, then
we could solve the subset sum problem in polynomial time.

For proving our claim, we first note that the shortest
(n0−nm) path psp equals {(ni-1, ni ) |= 1, . . . ,m} and
has length �(psp) = A. Let p be a n0-nm-path with
Sim(p, psp) ≤ θ and let p∩ psp be the intersection of pwith
psp. Note that p ∩ psp completely defines the path p: For
each (ni-1, ni ) ∈ psp \ p, we know that p contains the edges

(ni-1, n′
i ) and (n′

i , ni ). We nowmake two observations. First,
we note that, because of the definition of Sim, the choice of θ ,
and �(psp) = A, it holds that �(p∩psp) ≤ S. Second, by con-
struction of G, we have �(p) = A·M − �(p∩ psp)·(M − 1),
which implies that �(p2) = A·M − max{�(p ∩ psp) | p is
(n0−nm) path with Sim(p, psp) ≤ θ}·(M − 1). These two
observations directly imply the claim and prove the theorem.

��

4.2 Computing kSPwLO queries

A naïve approach for computing kSPwLO queries is to enu-
merate all paths from s to t and choose the subset that satisfies
Definition 2. This is clearly impractical. A more efficient
approach involves the examination of paths in increasing
length order. After adding the shortest path psp(s→t) to the
result set PLO, every next path p in length order is constructed
using some algorithm for the K -shortest paths [16,23,37]. If
p is an alternative to PLO, then p is added to the result.
This process continues until PLO contains k paths or all
paths from s to t have been examined. Despite its simplicity,
this approach is not practical even for small road networks.
Chondrogiannis et al. [9] introduced the BSL algorithm that
captures this approach and showed that the number of con-
structed paths is prohibitively high. In theworst case, all paths
from s to t have to be constructed, which is a well-known
#P-complete problem [33].

To improve computation even further, Liu et al. [22] pro-
posed the FindKSPD algorithm that employs two lower
bounds. The first bound is determined using a reverse short-
est path tree, while the second is derived from the similarity
function of Eq. 1. These bounds prioritize the examination of
paths that are more likely to lead to the next shortest alterna-
tive path. In practice though, the number of examined paths
is still very high. Our experiments in Sect. 9 show that our
exact algorithms clearly outperform FindKSPD.

4.3 Incomplete solutions

Regardless of the approach, it is important to note that com-
puting an exact solution to a kSPwLO query is not always
possible. For instance, consider the query kSPwLO(G, s, t,
5, 0.3) on our running example in Fig. 2. By examining
paths in length order aiming for constructing the PLO result,
we obtain the set {p1, p4, p11} that contains less than the
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requested five paths but still satisfies both conditions of
Definition 2. We call such a set of paths an incomplete solu-
tion. Apparently, if an exact algorithm returns an incomplete
result, then an exact solution for the given combination of k
and θ does not exist. Nevertheless, as an incomplete result
may still be meaningful to the user, our algorithms in Sects. 5
and 6 return the incomplete result if a complete solution does
not exist.

4.4 Extending kSPwLO

Throughout this paper, we consider a single optimization
criterion (i.e., edge weight) and a single constraint (i.e.,
path overlap) for computing alternative routes. However, our
problem definition and our solutions can be adapted to take
into account more optimization criteria and/or constraints.
A direct approach would be to have composite weights
assigned to the edges of the road network edges using a lin-
ear combination of multiple criteria. Standard multicriteria
optimization can also be supported, as the term ‘shortest’
can be interpreted as ‘the best path according to a set of
optimization criteria’. This, however, would also increase
the complexity of the problem. With regard to additional
constraints, despite focusing on the path overlap, our prob-
lem definition and all the algorithms we present support any
monotonic similarity measure. Nevertheless, our aim is to
provide a general purpose solution. Investigating optimiza-
tion criteria and/or constraints that might be interesting in
specific application scenarios is out of the scope of this
paper.

5 Exact algorithms

In this section, we investigate the exact computation of
kSPwLO queries, and we propose two label-setting algo-
rithms that traverse the road network examining paths in
length order.

5.1 TheONEPASS algorithm

OnePass, our first exact algorithm, traverses the road net-
work expanding paths from the source node s while pruning
partially expanded paths that cannot lead to a result as early
as possible. We call such paths infeasible. For this purpose,
we first introduce the notion of one-way similarity, which
enables the comparison of partially expanded paths p(s→n)

to paths p(s→t) already in the tentative result set. Formally:

−−→
Sim(p, p′) =

∑
∀(ni ,n j )∈p∩p′ w(ni , n j )

�(p′)
(2)

Compared to Eq. 1, we observe that Eq. 2 is asymmet-
ric, i.e.,

−−→
Sim(p′, p) �≡ −−→

Sim(p, p′). The following lemma
follows naturally from the asymmetric nature of Eq. 2.

Lemma 1 Let p, p′ be two paths and p ∩ p′ = {e1, . . . , em}
be the set of their shared edges. The following holds for the
one-way similarity of p to p′:

−−→
Sim(p, p′) =

∑

∀ei∈p∩p′

−−→
Sim(〈ei 〉, p′)

where 〈ei 〉 is the subpath of p′ containing only edge ei .

Proof From Eq. 2 we have:

−−→
Sim(p, p′) =

∑
∀ei∈p∩p′ w(ei )

�(p′ = w(e1) + . . . + w(em)

�(p′)

= w(e1)

�(p′)
+ . . . + w(em)

�(p′)
= −−→

Sim(〈e1〉) + . . . + −−→
Sim(〈em〉)

=
∑

ei∈p∩p′

−−→
Sim(〈ei 〉, p′)

thus proving the Lemma. ��
Lemma 1 unveils the monotonicity of the one-way sim-

ilarity that enables the incremental computation of Eq. 1.
Given two paths p and p′, to compute

−−→
Sim(p, p′) it suffices

to accumulate the individual similarities of the edges of the
longer path. Formally:

Sim(p, p′)=
∑

ei∈p∩p′

−−→
Sim(〈ei 〉, p), iff �(p)<�(p′) (3)

Apart from enabling the incremental computation of the
similarity measure, Lemma 3 also enables the early pruning
of partially expanded paths that cannot lead to a solution.
Let psub be a subpath of p. If psub shares some edges with
some pi ∈ PLO, then p contains all those edges as well.
From Eq. 2, we have

−−→
Sim(psub, pi ) ≤ −−→

Sim(p, pi ). Hence,
given a similarity threshold θ , if there exists pi ∈ PLO such
that

−−→
Sim(psub, pi ) ≥ θ , then path p is infeasible and can be

safely discarded. This pruning criterion is formally captured
by the following lemma:

Lemma 2 Let PLO be the tentative result of a kSPwLO(G, s,
t, k, θ) query and p /∈ PLO be a path from s to t. If p is an

alternative path to PLO, then
−−→
Sim(psub, pi ) ≤ θ holds for

every subpath psub of p and for all paths pi ∈ PLO.

Proof The proof follows directly from Eq. 2. Let pi ∈ PLO
be some already recommended path. As for both

−−→
Sim(p, pi )

and
−−→
Sim(psub, pi ) the denominator is the same, i.e., �(pi ),
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the numerator gets the greatest value when all edges of pi
shared by p or psub are counted for the computation. As
psub ⊆ p, we have that

−−→
Sim(psub, pi ) ≤ −−→

Sim(p, pi ), which
shows that if

−−→
Sim(p, pi ) < θ , then

−−→
Sim(psub, pi ) < θ as

well. ��
As a result of Lemma 2, we observe that, if the one-way
similarity of a path p(s→n) violates the threshold θ , then
all of its extensions p(s→n) ◦ p(n→t) to target node t are
infeasible as they violate the similarity constraint.

Next, we present the OnePass algorithm that traverses
the road network, expanding every path from source node s
that qualifies the pruning criterion of Lemma 2. Similar to all
label-setting algorithms, OnePass maintains a set of labels
Λ(n), where each label 〈n, p(s→n)〉 represents a path from
s to n.2 The paths are examined in increasing length order. By
doing so, OnePass ensures that the shortest alternative path
to each tentative kSPwLO result is computed. Let PLO =
{p1, . . . , pk} be the result of a kSPwLO query. Every path
pi+1 is the shortest alternative to each tentative result Pi

LO =
{p1, . . . , pi }. Since after the computation of each alternative
path more paths are pruned but no new edges are added,
every subsequent result path pi+1 will be longer than every
pi ∈ Pi

LO. Hence,
−−→
Sim(pi+1, pi ) = Sim(pi+1, pi ) for all

pi ∈ Pi
LO.

Algorithm 1 illustrates the pseudocode of OnePass. First,
the shortest path psp(s→t) is retrieved and the result set PLO
is initialized with psp in Line 1. The algorithm uses a min
priority queue Q (initialized with label 〈s,∅〉 in Line 2) to
traverse the road network. Between Lines 5-16, OnePass
examines the contents ofQ until either PLO contains k paths
or the queue is depleted. At each round, current label 〈n, pn〉
is popped from Q (Line 6). If n is the target node t , then pn
is recommended, i.e., added to PLO (Line 8). Next, between
Lines 8–10, for each label 〈nq , pq〉 in Q, OnePass com-
putes the similarity of pq to the newly recommended path
pn and determines whether pq qualifies the pruning crite-

rion of Lemma 2; in particular, if
−−→
Sim(pq , pn) > θ then

pq can be safely discarded. If node n is not the target t ,
the algorithm expands the current path pn considering all
outgoing edges (n, nc) (Lines 13-16), provided that the new
path pc ← pn ◦ (n, nc) qualifies the pruning criterion of
Lemma 2 (Line 15). Finally, OnePass returns the result set
PLO in Line 17. Note that ifQ is depleted before k paths are
added to the result, then the result set PLO is incomplete and
an exact solution does not exist.

Example 3 Figure 4 exemplifies OnePass for the kSPwLO
(s, t, 3, 0.5) query. Initially, the shortest path psp = 〈(s, n3),

2 In practice,OnePass stores only the predecessor of each label during
the expansion. By tracing backwards each step of the expansion, the
actual path can be retrieved at any time.

ALGORITHM 1: OnePass
Input: Road network G = (N , E), source s ∈ N , target t ∈ N , #

of results k, sim. threshold θ

Output: Result set PLO

1 PLO ← {psp(s→t)}; � Init. result with psp
2 initialize min-priority queue Q with 〈s,∅〉;
3 foreach n ∈ N do
4 Λ(n) ← ∅;
5 while |PLO| < k and Q not empty do
6 〈n, pn〉 ← Q.pop(); � Current path
7 if n = t then
8 PLO ← PLO ∪ {pn};
9 foreach label 〈nq , �(pq )〉 in Q do

10 if
−−→
Sim(pq , pi ) > θ , ∀pi ∈ PLO then � Lemma 2

11 remove 〈nq , �(pq )〉 from Q;

12 else
13 foreach outgoing edge (n, nc) ∈ E do
14 pc ← pn ◦ (n, nc); � Expand path pc

15 if ∀pi ∈ PLO : −−→
Sim(pc, pi ) ≤ θ then

16 Q.push(〈nc, pc〉);

17 return PLO;

(n3, n5), (n5, t)〉 is added to PLO. Starting from s, the first
alternative path examined by OnePass is p1. Since the
similarity

−−→
Sim(p1, psp) = 3/8 = 0.375 is below the thresh-

old θ = 0.5, path p1 is not pruned. The same holds for
p2, the second path examined by OnePass. Subsequently,
OnePass examines paths p3, p4 and p5. Paths p3 and p4 are
not pruned as their respective similarities

−−→
Sim(p3, psp) =

3/8 = 0.375 and
−−→
Sim(p4, psp) = 0 do not exceed the

similarity threshold. In contrast, for path p5 the similar-
ity

−−→
Sim(p5, psp) = 6/8 = 0.75 exceeds the threshold,

hence p5 is pruned. OnePass proceeds in the same man-
ner until alternative paths p14 = 〈(s, n3), (n3, n4), (n4, t)〉
and p17 = 〈(s, n2), (n2, n4), (n4, t)〉 are found and added to
PLO. At this point, |PLO| = 3=k and PLO = {psp, p14, p17}
is returned as the final result.

Complexity analysis Since the pruning criterion of Lemma 2
does not give any guarantee as to how many paths are
pruned, in the worst case OnePass has to enumerate all
(s→t) paths. If K is the number of such paths, OnePass
runs in O(poly(K )) time. K is vastly superpolynomial, i.e.,
E(K ) = Ω((|N |−2)!d |N |) for randomgraphswith density d
[28], which implies thatOnePass is prohibitively expensive.

5.2 TheMULTIPASS algorithm

Despite employing the pruning criterion of Lemma 2,
OnePass still has to expand and examine a large portion
of all possible p(s→t) paths. To address this shortcoming,
we introduce MultiPass, our second exact algorithm. In
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Fig. 4 OnePass computing kSPwLO(s, t, 3, 0.5)

Fig. 5 Pruning paths with Lemma 3

addition to the pruning criterion of Lemma 2, MultiPass
employs a second pruning criterion that aims at reducing the
search space by avoiding the expansion of non-promising
paths.

Let psp(s→t) be the shortest path from a source node s
to a target t as illustrated in Fig. 5. In addition, let pi (s→n)

and p j (s→n) be two distinct paths from source s to a node
n of the shortest path psp such that �(pi )<�(p j ). Assuming
that both pi , p j are extended to reach t following the same
path p(n→t), any extension of pi will be shorter than the
respective extension of p j . Furthermore, let

−−→
Sim(pi , psp) ≤−−→

Sim(p j , psp), i.e., the similarity of pi with psp is equal or
lower than the similarity of p j with psp. Due to the mono-
tonicity of the one-way similarity, any extension of pi to n
will have the same or less similarity with psp compared to the
respective extension of p j . As a result, for any extension of
p j there will always be a shorter extension of pi with less or
equal similarity with psp; thus, p j can be pruned. The same
idea canbeutilized to prune the search spacewhencomputing
the shortest alternative path to a set of paths P . This pruning
criterion is formally captured by the following lemma:

Lemma 3 Let P be a set of paths from a source node s to a
target node t, and pi , p j be two paths from s to some node n.

If �(p j ) > �(pi ) and ∀p ∈ P : −−→
Sim(pi , p) ≤ −−→

Sim(p j , p)
hold then path p j cannot be part of the shortest alternative
path to P and we write pi ≺P p j .

Proof We prove the lemma by contradiction. Let p′
j =

〈(s, ∗), . . . , (∗, n), . . . , (∗, t)〉 be an extension of p j (s→n)

to target t is the shortest alternative path to P . Then, we
show that an extension p′

i = 〈(s, ∗), . . . , (∗, n), . . . , (∗, t)〉
of pi (s→n) to target t is also an alternative path and it will
be examined and recommended before p′

j .

According to the definition of an alternative path,
−−→
Sim

(p′
j , p) ≤ θ holds ∀p ∈ P , and following Lemma 2

−−→
Sim(p j , p) ≤ θ also holds ∀p ∈ P . Also, due to the

∀p ∈ PLO : −−→
Sim(pi , p) ≤ −−→

Sim(p j , p) assumption of

Lemma 3, we get that
−−→
Sim(pi , p) ≤ θ holds ∀p ∈ P .

As extension paths p′
i and p′

j share the same sequence
of edges connecting n to target t , we deduce that (a)−−→
Sim(p′

i , p) ≤ θ holds ∀p ∈ P , i.e., p′
i is alternative to P

and (b) �(p′
i ) < �(p′

j )which means that p′
i will be examined

before p′
j . ��

Lemma 3 can be utilized to compute the shortest alterna-
tive to a set of paths as follows. Let P be the set of paths for
which we want to compute the shortest alternative path, and
Pn the set of paths from s to some node n created during the
expansion of all paths from s. If Pn contains a path p′(s→n)

such that (a) p′ is longer than any path pn ∈ Pn \ {p′}, and
(b) for every path p ∈ P the similarity

−−→
Sim(p′, p) is higher

than
−−→
Sim(pn, p) for all paths pn ∈ Pn \ {p′}, then p′ can

be pruned. Note that the addition of a path in Pn may render
Condition (B) of Definition 2 not applicable for another path
already in Pn . To ensure that set Pn always contains only
paths that satisfy Conditions (A) and (B), we have to check
whether both conditions still hold every time a new path is
added to Pn .

We now present MultiPass, an algorithm that employs
the pruning criteria of both Lemma 2 and Lemma 3. For each
node n of the road network, MultiPass maintains a set of
labelsΛ(n). Each label represents a path from s to n and is of
the form 〈n, p(s→n)〉3. The algorithm examines paths from

3 Similar to OnePass,MultiPass stores only the predecessor of each
label during the expansion, thus enabling the retrieval of the actual path
at any time.
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s in increasing order of their length and expands every path
p(s→n) from s to a node n that satisfy the conditions set by
Lemma 2 and Lemma 3. Similar to OnePass, by examining
paths from s in length order, MultiPass ensures that the
shortest alternative path to each tentative kSPwLO result is
computed.

Algorithm 2 illustrates the pseudocode of MultiPass.
First, the PLO result set is initialized to the shortest path in
Line 1. Before each round, a min priority queueQ is initial-
ized to 〈s,∅〉 (Line 3) and each node n is associated with a
(initially empty) set of labelsΛ(n) (Lines 4–5).At each round
in Lines 5-20,MultiPass pops label 〈n, pn〉 for current path
pn in Line 7. If n is the target t , then pn is added to PLO and
the round terminates (Lines 8–10). Otherwise, MultiPass
expands pn considering all outgoing edges (n, nc) (Lines 11–
17). Each new path pc ← pn ◦ (n, nc) (Line 13) is evaluated
against the pruning criteria of Lemma 2 (Lines 14–15) and
Lemma 3 (Lines 16–17). If pc qualifies both pruning criteria,
MultiPass removes from Q and Λ(nc) every label repre-
senting a path p′

n such that pc ≺PLO p′
n (Line 19). The new

label is added to Q (Line 20) and Λ(nc) (Line 21), and the
next label is popped fromQ. The loop terminates when either
k paths are added to PLO orQ is empty. Finally,MultiPass
returns the result set PLO in Line 22. Note that, similar to
OnePass if the loop terminates before k paths are found,
then the result set PLO is incomplete; an exact solution does
not exist.

Example 4 Figure 6 demonstrates MultiPass for the
kSPwLO(G, s, t, 3, 0.5) query. Initially, the shortest path
psp(s→n) = 〈(s, n3), (n3, n5), (n5, t)〉 is computed and
added to PLO. The first path examined byMultiPass is p1.
The similarity

−−→
Sim(p1, psp)= 3/8= 0.375 is below the sim-

ilarity threshold θ = 0.5; hence, p1 is not pruned. The same
holds for p2, which is the next path examined by Multi-
Pass. Subsequently,MultiPass examines paths p3, p4 and
p5. Path p3 is not pruned as

−−→
Sim(p3, psp)= 3/8= 0.375

does not exceed the similarity threshold. For p4 the simi-
larity

−−→
Sim(p4, psp)= 0.375 also does not exceed the sim-

ilarity threshold. Since node n1 has already been visited
by p3 though, we also check Lemma 3, and we have−−→
Sim(p3, psp)>

−−→
Sim(p4, psp) and �(p3)<�(p4). Therefore,

Lemma 3 cannot be applied and p4 is not pruned. On the
contrary, for p5 the similarity

−−→
Sim(p5, psp)= 6/8= 0.75

exceeds the similarity threshold and so, p5 is pruned by
Lemma 2. MultiPass continues the execution of the cur-
rent round in the same fashion until the alternative path p14
with �(p14)= 10 is found and subsequently added to PLO.
Next, MultiPass performs the second round in the same
fashion, computes the alternative path p′

13 with �(p′
13)= 11

and completes the result set PLO.

ALGORITHM 2: MultiPass
Input: Road network G = (N , E), source s ∈ N , target t ∈ N , #

of results k, sim. threshold θ

Output: Result set PLO

1 PLO ← {psp(s→t)}; � Init. result with psp
2 while |PLO| < k and last round updated PLO do
3 initialize min-priority queue Q with 〈s,∅〉;
4 foreach n ∈ N do
5 Λ(n) ← ∅;
6 while Q not empty do
7 〈n, pn〉 ← Q.pop(); � Current path
8 if n = t then
9 PLO ← PLO ∪ {pn};

10 break;
11 else
12 foreach outgoing edge (n, nc) ∈ E do
13 pc ← pn ◦ (n, nc); � Expand path pc

14 if ∃pi ∈ PLO : −−→
Sim(pc, pi ) ≥ θ then

� Lemma 2
15 continue;
16 else if ∃〈nc, p′

c〉 ∈ Λ(nc) : p′
c ≺PLO pc then

� Lemma 3
17 continue;
18 else
19 remove from Q and Λ(nc) all

〈nc, p′
c〉 : pc ≺PLO p′

c; � Lemma 3
20 Q.push(〈nc, pc〉);
21 Λ(nc) ← Λ(nc) ∪ {〈nc, pc〉};

22 return PLO;

Complexity analysisWith regard to the complexity of Mul-
tiPass we state the following theorem:

Theorem 2 MultiPass is optimal for the kSPwLO problem.

Proof To determine the complexity of MultiPass, we
assume without loss of generality that the edge weights
�(u, v) are natural numbers. For each node nc and each iter-
ation j of the main while-loop (Line 2), we define c j (nc)
as the number of non-dominated labels 〈nc, pc〉 such that
pc respects the similarity constraints for all previously com-
puted paths pi ∈ PLO. Note that, because of the pruning in
Lines 14, 16, and 19, we have |Λ(nc)| ≤ c j (nc) throughout
iteration j . Furthermore,we know that atmost

∑
nc∈N c j (nc)

labels are added to Q (Line 20). Hence, MultiPass enters
the inner while-loop (Line 6) at most

∑
nc∈N c j (nc) times.

For upper-bounding c j (nc), we observe that, for each pre-

viously computed path pi ∈ PLO, we have
−−→
Sim(pc, pi )= 0

if and only if �(pc∩ pi )= 0, and
−−→
Sim(pc, pi )= θ if and only

if �(pc ∩ pi )= θ · �(pi ). Since the weights are natural num-
bers, we hence know that

−−→
Sim(pc, pi ) can assume at most

�θ�(pi )� + 1 different values. Now let C(nc) be a collec-
tion of (s→nc) paths that respect the similarity constraints
for all previously computed paths pi ∈ PLO. If |C(nc)| >
∏ j−1

i=0 �θ ·�(pi )�+1, then there are paths pc, p′
c ∈ C(nc) such
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Fig. 6 MultiPass computing kSPwLO(s, t, 3, 0.5)

that
−−→
Sim(pc, pi ) = −−→

Sim(p′
c, pi ) for all pi ∈ PLO. Assume

without loss of generality that �(pc) ≤ �(p′
c). Then pc dom-

inates p′
c. This implies c j (nc) ≤ ∏ j−1

i=0 �θ ·�(pi )� + 1 =
O((θL) j ), where L = ∑

e∈E �(e).
Due to the aforementioned considerations, we know that

in the j th iteration of the main while-loopMultiPass enters
the innerwhile-loop starting in Line 6 atmostO(|N |·(θ ·L) j )

times. Moreover, if the priority queue Q is implemented as
a Fibonacci heap, each iteration of the inner loop runs in
O(|N | · (θ ·L) j ) time. By summing over iterations of the
main loop, we conclude that the overall runtime complex-
ity of MultiPass is O(k · |N |2 · (θ ·L)2k). For k =O(1),
MultiPass is a pseudo-polynomial algorithm. Following on
Theorem 1, as answering kSPwLO queries is weakly N P-
hard even for constant k, MultiPass is optimal in terms
of complexity. In other words, unless P = N P , there are
no substantially faster algorithms for answering kSPwLO
queries. ��

Note that, in contrast to OnePass, MultiPass traverses
the road network multiple times, i.e., k − 1 times in total. As
the pruning criterion of Lemma 3 can be utilized to compute
only a single alternative path to a set of paths, there is no
guarantee that a path pruned at a given round of MultiPass
using the pruning criterion of Lemma 3, will not lead to a
result during a subsequent round. Consider again the exam-
ple in Fig. 5. Let psp be the only path in the tentative set
PLO of alternative paths. If during the search for the alterna-
tive path p1 to PLO, p j is pruned because pi≺P p j holds, p j

cannot be part of the shortest alternative to PLO. However,
there is no guarantee that p j will not be part of the shortest
alternative to both psp and p1. If pi is a subpath of p1, then
during the search for the alternative path to PLO = {psp, p1},
pi may be pruned much earlier by Lemma 2. Consequently,
MultiPass needs to restart the traversal to ensure the cor-
rectness of the result and may potentially re-examine paths
already examined in previous rounds. However, in contrast to
the runtime complexity of OnePass, the runtime complexity
of MultiPass does not depend on the exponentially large
number K of (s→t) paths. Hence, despite traversing the net-

work k − 1 times instead of one, MultiPass is expected to
be much faster than OnePass.

6 Performance-oriented heuristic algorithms

Despite employing the pruning criteria of Lemma 2 and
Lemma 3, the exact algorithms still examine a large num-
ber of paths, which renders them impractical for large road
networks. In view of this, we investigate three heuristic algo-
rithms to accelerate the computation of kSPwLO queries.
Intuitively, the algorithms treat Condition (B) in Definition 2
as a soft constraint, i.e., the alternative paths are sufficiently
dissimilar to each other, but not necessarily as short as pos-
sible.

6.1 TheONEPASS+ algorithm

Our first heuristic algorithm, denoted by OnePass+, pro-
vides a first cut solution for computing kSPwLO queries.
Given a source node s and a target node t , OnePass+ tra-
verses the road network expanding every path p(s→n) from
the source to a node n that qualifies both Lemma 2 and
Lemma3.This procedure is the sameas one roundofMulti-
Pass. In contrast toMultiPass though, each time a new path
is added to the result set PLO,OnePass+ does not restart the
traversal like MultiPass, but continues in a similar fashion
to OnePass, thus traversing the network only once. Recall
our discussion for MultiPass though, that a path which is
pruned as non-promising during the current round may be
promising during the next round. As such, OnePass+ can-
not guarantee that the exact solution is found. However, as
this case applies to only a small subset of the examined paths,
the result of OnePass+ is expected to be close to the optimal
solution in terms of length, a fact which is supported by our
experiments in Sect. 9.

Algorithm3 illustrates the pseudocode of OnePass+. The
PLO result set is initialized to the shortest path psp(s→t)
(Line 1). The algorithm employs a min-priority queue Q
(initialized with s in Line 2) to traverse the road network.
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ALGORITHM 3: OnePass+
Input: Road network G = (N , E), source s ∈ N , target t ∈ N , #

of results k, sim. threshold θ

Output: Result set PLO

1 PLO ← {psp(s→t)}; � Init. result with psp
2 initialize min-priority queue Q with 〈s,∅〉;
3 foreach n ∈ N do
4 Λ(n) ← ∅;
5 while |PLO < k| and Q not empty do
6 〈n, pn〉 ← Q.pop(); � Current path
7 if n = t then
8 PLO ← PLO ∪ {pn}; � Update result set
9 foreach label 〈nq , �(pq )〉 in Q do

10 if
−−→
Sim(pq , pi ) > θ , ∀pi ∈ PLO then � Lemma 2

11 remove 〈nq , �(pq )〉 from Q;

12 else
13 foreach outgoing edge (n, nc) ∈ E do
14 pc ← pn ◦ (n, nc); � Expand path pc

15 if ∃pi ∈ PLO : −−→
Sim(pc, pi ) ≥ θ then � Lemma 2

16 continue;
17 else if ∃〈nc, p′

c〉 ∈ Λ(nc) : p′
c ≺PLO pc then

� Lemma 3
18 continue;
19 else
20 remove from Q and Λ(nc) all

〈nc, p′
c〉 : pc ≺PLO p′

c; � Lemma 3
21 Q.push(〈nc, pc〉);
22 Λ(nc) ← Λ(nc) ∪ {〈nc, pc〉};

23 return PLO;

Between Lines 5 and 22, OnePass+ examines the contents
of Q until either k paths are added to PLO or Q is depleted.
At each iteration, a label 〈n, pn〉 is popped fromQ (Line 6).
If node n is target t (Line 7), then pn is added to PLO
(Line 8) and the same update procedure as in OnePass takes
place (Lines 9–11), i.e., all paths ph with

−−→
Sim(ph, pc) > θ

are discarded. Otherwise, the algorithm expands the current
path pn considering all outgoing edges (n, nc)(Lines 13–22).
OnePass+ checks whether the new path pc ← pn ◦ (n, nc)
qualifies the pruning criteria of both Lemma 2 (Lines 15–
16) and Lemma 3 (Lines 17–18) and updates Q and Λ(nc)
accordingly. Then, OnePass+ adds a new label for pc to Q
(Line 21) and Λ(nc) (Line 22) and proceeds with popping
the next label from Q. Finally, the result set PLO is returned
in Line 23.

Complexity analysis OnePass+ and MultiPass use the
same pruning criteria. Hence, following the complexity anal-
ysis of MultiPass in Sect. 5.2, we obtain that OnePass+
enters the main while-loop at most O(|N | · (θ ·L)k) times
and that each of its iterations runs in O(|N | · (θ ·L)k)

time. Therefore, the runtime complexity of OnePass+ is
O(|N 2| · (θ ·L)2k) time. AsOnePass+ traverses the network
only once, the overall runtime complexity of OnePass+ cor-

responds to the complexity of one traversal carried out by
MultiPass.

6.2 The SVP+ algorithm

Our second heuristic algorithm, denoted by SVP+, rec-
ommends alternative paths by employing the concept of
single-via paths [2]. Given a road network G = (N , E),
a source node s and a target node t , the single-via path of
every node n ∈ N is the concatenation of the shortest paths
psp(s→n) and psp(n→t). SVP+ aims at finding a set of
k single-via paths such that: (a) the shortest single-via path,
i.e., the shortest path psp(s→t), is always recommended, (b)
every single-via path is dissimilar to its predecessors with
respect to a similarity threshold θ , and (c) all k single-via
paths are as short as possible. The main idea behind SVP+
is similar to the baseline method for computing kSPwLO
queries discussed in Sect. 4.2. However, instead of iterating
over all possible (s→t) paths, SVP+ iterates over the much
smaller set of single-via paths.

Algorithm 4 illustrates the pseudocode of SVP+. In
Line 1, the result set PLO is initialized to the shortest path
psp(s→t). Then, two shortest path trees are computed, one
from s to every node n of G (Line 2) and a reverse one from
every node n ofG to t (Line 3). During this step, all distances
d(s, n) and d(n, t) are computed. The algorithm organizes
the nodes of the road network according to the length of their
single-via path, i.e., �(psvp(n)) = d(s, n)+d(n, t), inside
min-priority queueQ (Lines 4–6). At each iteration between
Lines 7 and 11, SVP+ pops from the queue the top element
representing a node n (Line 8) and retrieves the single-via
path pn for node n (Line 9). The single-via paths are exam-
ined in increasing order of their length. In Line 10, SVP+
checks whether pn is simple (contains no cycles) and suffi-
ciently dissimilar to all paths currently in PLO; if so, pn is
added to PLO (Line 11). The algorithm terminateswhen either
k paths have been added to PLO or there exist no more single-
via paths to examine, i.e., queueQ is depleted, in which case
the PLO result set contains less than k paths. Finally, the result
set PLO is returned in Line 12.

Example 5 Figure 7 exemplifiesSVP+ for the query kSPwLO
(G, s, t, 3, 0.5). First,SVP+ adds the shortest path psp(s→t)
= 〈(s, n3), (n3, n5), (n5, t)〉 to the PLO result set. Then,
SVP+ iterates over the set of single-via paths in length
order. The table in Fig. 7 shows the entire set of single-
via paths for the example road network. The first single-via
paths examined are psvp(n3) and psvp(n5). Both paths are
rejected as their similarity to psp exceeds the similarity
threshold θ . Single-via path psvp(n4) is also rejected as
Sim(psvp(n4), p) = 6/8 = 0.75 exceeds the similar-
ity threshold. Next, SVP+ examines psvp(n2) for which
the similarity to the shortest path is Sim(psvp(n2), p) =
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Fig. 7 SVP+ computing kSPwLO(s, t, 3, 0.5)

ALGORITHM 4: SVP+
Input: Road network G = (N , E), source s ∈ N , target t ∈ N , #

of results k, sim. threshold θ

Output: Result set PLO

1 PLO ← {psp(s→t)}; � Init. result with psp
2 Ts→N ← shortest path tree from s to all n ∈ N ;
3 TN→t ← shortest path tree from all n ∈ N to t ;
4 initialize min-priority queue Q with ∅;
5 foreach n ∈ N do
6 Q.push(〈n, d(s, n)+d(n, t)〉);
7 while |PLO| < k and Q not empty do
8 〈n, d(s, n)+d(n, t)〉 ← Q.pop();
9 pn ← GetSingleViaPath(Ts→N , TN→t , n);

10 if pn is simple and ∀pi ∈ PLO : Sim(pn, pi ) ≤ θ then
11 PLO ← PLO ∪ {pn}; � Update result

12 return PLO;

0. Hence, psvp(n2) is added to the result set. Finally,
single-via path psvp(n1) is examined, for which we have
Sim(psvp(n1), p) = 3/8 = 0.375 and Sim(psvp(n1),
psvp(n2)) = 0. Thus, psvp(n1) is also added to the
result set. At this point, |PLO| = 3 = k and PLO =
{psp, psvp(n2), psvp(n1)} is returned as result.

Notice that in Example 5, SVP+ fails to find the exact
result for the given kSPwLO query. In particular, path p =
〈(s, n3), (n3, n4), (n4, t)〉, which is in the exact kSPwLO
result, is not a single-via path; hence, p is not examined
by SVP+. At a more general level, this example shows that
SVP+ is unable to compute the exact solution to a kSPwLO
query if a path p is part of the exact result, but is not a single-
via path.

Complexity analysis To build the set of single-via paths,
SVP+ needs to runDijkstra’s algorithm twice,which requires
O(|E | + |N | · log|N |) time. Since, by definition, there is
one single-via path for each node n ∈ N \ {s, t}, the num-
ber of paths that have to be examined by SVP+ is in the
worst case O(|N |). Examining whether a given single-via
path should be added to the PLO set or not requires O(k)

time. Therefore, the overall runtime complexity of SVP+ is
O(|N | · k + |E | + |N | · log|N |).

6.3 The ESX algorithm

Our third heuristic algorithm, denoted by ESX, computes
kSPwLO by executing shortest path searches while progres-
sively excluding edges from the road network4. We identify
two important factors that affect the processing of a kSPwLO
query with ESX: (1) the order in which edges are removed
from the road network and (2) the maintenance of the con-
nectivity of the network. We investigate the former in detail
in Sect. 6.4. Regarding the latter, removing an edge from
the road network may cause the network to become discon-
nected. This prevents any subsequent iteration from finding
a valid path. To avoid such cases, if the shortest path search
fails to find a path from s and t after the removal of an edge e
from the road network, ESX re-inserts e in the network and
marks it as non-removable. Non-removable edges are never
removed from the road network regardless of their priority.

Algorithm 5 illustrates the pseudocode of ESX. The algo-
rithm maintains a heap Hi for each path pi (s→t) added to
the PLO result set. The heap organizes every edge e j con-
tained in pi according to their priority prio(e j );Hi can be
either a min-heap or a max-heap depending on the strategy in
which the edges are prioritized (see Sect. 6.4). Initially, the
psp(s→t) shortest path is added to the result and the asso-
ciated heap Hsp is initialized with the edges of psp(s→t)
(Lines 1–2). The algorithm keeps track of the non-removable
edges inside set EDNR (initialized to an empty set in Line 3).

In Lines 4–19, ESX iterates over the already computed
paths and their heaps to determine the next alternative path,
until either the PLO result set contains exactly k paths or there
are no more edges to be removed from the road network.
Specifically, ESX first accesses the most recently recom-
mended path, denoted by pc in Line 5 and then executes
the loop in Lines 6–16. At each iteration of this loop, the

4 In practice, the edges are not actually deleted from the network but
only marked as such to be ignored by the search.
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Fig. 8 ESX computing
kSPwLO(s, t, 3, 0.5) and edge
priorities

ALGORITHM 5: ESX
Input: Road network G = (N , E), source s ∈ N , target t ∈ N , #

of results k, sim. threshold θ

Output: Result set PLO

1 PLO ← {psp(s→t)}; � Init. result with psp
2 initialize heap Hsp ← 〈ei ,prio(ei )〉,∀ei ∈ psp; � An Hi
heap assigned to each pi ∈ PLO

3 EDNR ← ∅;
4 while |PLO| < k and ∃Hi not empty do
5 pc ← last path added to PLO;
6 while max{Sim(pc, pi ) : pi ∈ PLO} > θ and Hi not empty

do
7 〈e,prio(e)〉 ← Hi .pop();
8 if e ∈ EDNR then
9 continue;

10 E ← E \ e; � Excluding edge from G
11 pc ← ShortestPath(G, s, t);
12 if pc is null then
13 E ← E ∪ e; � Re-inserting edge to G
14 EDNR ← EDNR ∪ e;
15 continue;

16 if ∀pi ∈ PLO : Sim(pc, pi ) ≤ θ then
17 PLO ← PLO ∪ {pc};
18 initialize heap Hc ← 〈e j ,prio(G, e j )〉, ∀e j ∈ pc;

19 return PLO;

already computed path pi ∈ PLO with the highest similar-
ity to pc is chosen as long as pi contains edges that can be
removed from the road network. ESX then considers edge
e of path pi , i.e., the top of the Hi max-heap (Line 7). If e
is not marked as non-removable, then the algorithm removes
the edge from road network in Line 10 and computes the new
shortest path pc in Line 11. If pc is null, then the removal
of e has rendered the network disconnected. Consequently,
e is re-inserted to the road network (Line 13) and is inserted
to EDNR (Line 14), and ESX proceeds to the next round.
Otherwise, pc is checked whether it is an alternative to PLO
(Line 16), the result set is updated accordingly in Line 17
and a new heapHc associated with pc is initialized with the
edges of pc in Line 18. This process is repeated until either k
paths have been added to PLO or there are no more edges that
can be removed, in which case the PLO result set contains
less than k paths. Finally, the result set PLO is returned in
Line 19.

Example 6 Figure 8 exemplifies ESX for the query kSPwLO
(G, s, t, 3, 0.5). To determine the priority of an edge,we con-
sider its stretch shown on the upper table in Fig. 8. Without
loss of generality, assume that ESX removes the edge with
the smallest stretch first; hence, every Hi is a min-heap.

Initially, the shortest path from s to t , i.e., psp(s→t) =
〈(s, n3), (n3, n5), (n5, t)〉, is computed and added to the PLO
result set. Based on the edge priorities, ESX first removes
the (n5, nt ) edge of psp and compute the shortest path on the
updated network, p2 = 〈(s, n3), (n3, n5), (n5, n4), (n4, t)〉
with �(p2)= 9. Path p1 is not an alternative to PLO as
Sim(p2, psp)= 0.75 > θ . Hence, ESX proceeds by remov-
ing edge (n3, n5) ∈ psp and computing the new shortest
path p3 = 〈(s, n3), (n3, n4), (n4, t)〉 with �(p3 = 10). We
now have Sim(p3, psp) < θ and hence, p3 is added to the
result set PLO. Subsequently, ESX updates the edge priori-
ties table by computing the priorities of (n3, n4) and (n4, t)
and proceed to the next round. As the current path is p3
(the last path added to the result set) and e1 has the high-
est stretch, either (n3, n4) and (n4, t) is removed. For this
example, let ESX remove edge (n3, n4) and compute the
new shortest path p4 = 〈(s, n2)(n2, n4)(n4, t)〉. The new
path p4 is sufficiently dissimilar to both paths in the set, i.e.,
Sim(p4, psp)= 0 and Sim(p4, p2) = 0.2, and therefore, it
is added to PLO. At this point |PLO| = 3=k and ESX termi-
nates, returning PLO = {psp, p3, p4} as the final result.

Complexity analysis The total amount of time ESX spends
in the if-block that starts in Line 16 is O(k · |N |): ESX enters
it (k−1) times and then has to initialize the Hc heap. This
initialization is linear in the length of pc, which is upper
bounded by |N−1|. In each iteration of the inner while-loop
starting in Line 6, one edge is popped from the head associ-
ated to one of the first (k−1) paths. Since all paths have length
at most |N |−1, ESX enters the inner while-loop as most
O(k · |N |) times. The most expensive operation that has to be
carried out in one iteration of the innerwhile-loop is the short-
est path computation, which requires O(|N | · log |N | + |E |)
time. Therefore, ESX runs in O(k·|N |·(|N |· log |N | + |E |))
time.
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6.4 Optimizing ESX

The order in which edges are removed from the road net-
work affects both the result quality and the performance of
ESX. Since determining the optimal order is prohibitively
expensive, in what follows we describe three strategies to
determine which edge to remove at each iteration. Depend-
ing on the strategy and the nature of the heap (min or max)
that is used to organize the edges of a path, we discuss six
variants of ESX.

Smallest/largest edge weight The first strategy uses the edge
weight to select which edge to remove at each iteration. We
prioritize either edges with small weight (MinW variant) or
edges with large weight (MaxW variant). Removing first
edges with a large weight causes the next path to be less
similar to the already computed paths, thereby enabling the
algorithm to terminate sooner. However, there is a higher
chance that ESX will miss alternative paths that have small
differences in length with the paths already found. Hence, on
average the result set is expected to contain longer paths. On
the contrary, prioritizing edges with a small weight decreases
the chances of missing such paths, but leads to more itera-
tions of the algorithm, thereby increasing the overall runtime
of ESX.

Minimum/maximum stretchOur second strategy is to remove
edges based on their stretch. Given an edge e = (ni , n j ), let
p be the shortest path from ni to n j computed by excluding
e from the network. The stretch of an edge e is the difference
between the length of p and the length of e, i.e., stretch(e) =
|�(p)−�(e)|. Similar to MinW/MaxW, the removal of edges
with a high stretch (MaxS variant) is more likely to cause
a detour, leading to paths that are less similar to the paths
already in the result set and, hence, allowing ESX to find
a result sooner. In contrast, prioritizing edges with a small
stretch (MinSvariant) leads to the examination ofmore paths.
This increases the overall runtime, but at the same time, it
also increases the chances that on average the result set will
contain shorter paths.

Least/most local shortest paths Our third strategy is inspired
by the edge betweenness. Given an edge e(a, b) on some
path p ∈ PLO, let Einc(a) and Eout (b) be the set of all
incoming edges e(ni , a) to a from some nodes ni ∈ N\{b}
and the set of all outgoing edges e(b, n j ) from b to some
nodes n j ∈ N\{a}, respectively. First, ESX computes the set
Ps which contains the shortest paths psp(ni , n j ) such that
ni ∈ Einc(a) and n j ∈ Eout (b). Then, ESX defines the set
P ′
s of all paths psp(ni , n j ) that cross e. Finally,ESX assigns a

priority to e, denoted by prio(e), which is set to |P ′
s |. Similar

to the previous variants, the intuition behindMaxP is that the
more (shortest) paths cross an edge, themore the chances that
removing this edge causes a detour; thus, ESX will find an
alternative path sooner. By employing MinP, ESX examines

more paths and increases the chance of computing alternative
paths that are shorter on average, at the cost of an increased
overall runtime.

7 Completeness-oriented heuristic
algorithms

Up to this point, we have discussed how to efficiently
compute the exact result to kSPwLO queries as well as
approximations, where the paths in the result set are not
necessarily as short as possible. Since guaranteeing the
dissimilarity threshold of the returned paths may lead to
incomplete results (cf. Sect. 4.3), we next investigate the
approximate computation of kSPwLO queries while treat-
ing the Condition (A) in Definition 2 as a soft constraint in
order to ensure that the result set contains exactly k paths.5

7.1 Relaxation of�

A naive solution to deal with an incomplete result set PLO is
to execute multiple kSPwLO queries, each time increasing
the original similarity threshold θ manually. Such a trial-and-
error approach is impractical unless there is a hint on how
much to increase θ . Furthermore, executing multiple queries
means that all previously computed intermediate results, e.g.,
rejected paths, are disregarded. To this end, we aim for a
solution that determines the smallest increase of θ that yields
a complete result automatically and computes the complete
result without running another query from scratch.

Let kSPwLO(G, s, t, k, θ)be aquerywhose PLO result set
is incomplete, i.e, |PLO| < k. In addition, let Pcand be a set of
paths from s to t with PLO ⊆ Pcand . We will elaborate on the
nature of Pcand and how it is computed in Sect. 7.2. Without
loss of generality, assume for now that Pcand contains all
possible p(s→t) paths in road network G. By the definition
of the kSPwLO problem, for every path p ∈ Pcand\PLO,
there exists a shorter path p′ ∈ PLO such that Sim(p, p′) >

θ . Based on this, we define the maximum similarity of a path
p ∈ Pcand to result set PLO as:

Simmax (p,PLO) = max
∀pi∈PLO:�(p′)≤�(p)

Sim(p,p′) (4)

Consequently, path p ∈ Pcand cannot be part of the
result set PLO, as long as either p′ is part of the result, or
the similarity threshold is greater than θ and lower than
Simmax (p, PLO). In fact, even if we use a new similarity
threshold equal or higher than Simmax (p, PLO), we cannot
guarantee that p will be included in the new result set PLO.

5 Provided that at least k distinct paths from s to t exist on road network
G.
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That is because the new threshold may cause a shorter path
p′′ with �(p′′) ≤ �(p) to join PLO that keeps p out. In other
words, with this new threshold, we can only guarantee that
the result set PLO will indeed change. In this context, we
next define θmin as the minimum value for the new similarity
threshold such that query kSPwLO(G, s, t, k, θ) will return
an updated result as:

θmin = min∀p/∈PLO
Simmax (p, PLO). (5)

Essentially, if the new threshold is set inside [θ, θmin), the
PLO result remains unchanged, while a value equal or higher
than θmin will cause PLO to change.

To ensure a complete result, we need to progressively
increase θmin until PLO contains exactly k paths.This iterative
procedure is captured by Complete_kSPwLO illustrated
in Function 1. The function receives as input a set of candi-
date paths Pcand out of which the result will be extracted, the
number k of requested paths, and an initial similarity thresh-
old θ . The first step is to sort the paths in Pcand in increasing
length order. Note that if Pcand contains less than k paths, it
is impossible to return a complete result; hence, the function
terminates and PLO ← Pcand .

Next, between Lines 4 and 15 the function progressively
relaxes the similarity threshold θ until the PLO result is com-
plete. At each round, θmin and PLO are re-initialized to 1
and the shortest path psp, respectively (Lines 5-6); note that
psp is the first path in Pcand . Then, in between Lines 7 and
14, Complete_kSPwLO examines the paths in Pcand in
increasing length order. Fix such a path p. If p is alternative
to the current result set PLO, p is added to PLO. At this point,
the function will terminate if PLO already contains k paths
as the result set is now complete. In contrast, if the current
path p is not alternative to PLO, the current θmin is checked
against Simmax of p to PLO in Line 13 and is updated in
Line 14 accordingly using Eqs. 4 and 5. Finally, the value
of θ is relaxed, i.e., increased to θmin to prepare for the next
round. Note that the while loop eventually terminates due to
the condition in Line 10, i.e., after k paths are added to PLO.

Example 7 Consider the kSPwLO(G, s, t, 5, 0.3) query on
the road network in Fig. 9 and its incomplete result PLO =
{p1, p5, p11}.Also assume that Pcand contains all 24 possible
paths from s to t . Figure 10 illustrates the process of relaxing
similarity threshold θ and completing the result set. The paths
contained inside the initial PLO are marked with (∗).

The first round starts by setting θmin = 1 and PLO = {p1}.
We then iterate over the paths in Pcand . Path p2 is more than
30% similar to p1 and so it is ignored but enables us to update
θmin = 0.75. In the same manner, p3 is ignored but allows us
to set θmin = 0.375. The first sufficiently dissimilar path to
p1 is p4, hence PLO is updated to {p1, p4}. All subsequent
paths are not alternative to the current PLO until p11, which is

FUNCTION 1: Complete_kSPwLO
Input: Set of paths Pcand , # of results k, similarity threshold θ

Output: Result set PLO

1 sort Pcand by length in ascending order;
2 if |Pcand | ≤ k then
3 return Pcand ; � Result cannot be completed

4 while true do
5 θmin ← 1; � Initialization for next round
6 PLO ← {psp}; � First path in Pcand
7 foreach p ∈ Pcand \ {psp} do
8 if ∀pi ∈ PLO : Sim(p, pi ) ≤ θ then
9 PLO ← PLO ∪ {p};

10 if |PLO| = k then
11 return PLO; � Result completed

12 else
13 if θmin > Simmax (p, PLO) then
14 θmin ← Simmax (p, PLO); � Update θmin,

Equations 4, 5

15 θ ← θmin ; � Relax similarity threshold

Fig. 9 Result set of query kSPwLO(G, s, t, 5, 0.3)

added to PLO. Complete_kSPwLO continues in the same
manner until all 24 paths are examined. Note that when p17
is examined, θmin is set to 0.365, which is also the value
at the end of the round. Consequently, θ gets a new value
θ = θmin = 0.364, indicating that in order for the PLO to
change, paths should be allowed to be at most 36.4% similar
to each other instead of the initial 30%. Columns 4–6 in
Fig. 10 report all path similarities computed during the first
round.

The second round starts by setting θmin and PLO to
1 and {p1}, respectively; remember that θ is now 0.364.
Complete_kSPwLO operates exactly as in the first round
until p17 is examined. This time, the path is sufficiently
dissimilar to the current result set, and PLO is updated
to {p1, p4, p11, p17}. At the end of the second round, the
similarity threshold is further relaxed to θ = 0.375. For
illustration purposes, Fig. 10 reports only the extra path sim-
ilarities computed in the second round.
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Fig. 10 Sample execution of Complete_kSPwLO function for query kSPwLO(G, s, t, 5, 0.3) on our running example

Finally, the third round commences by setting again
θmin = 1 and PLO = {p1}. Due to the new threshold
θ = 0.375, Complete_kSPwLO adds to PLO paths p1,
p3, p4, p6, and p15, in this order. Note that it is possible
to add p15 because p11 is now excluded from the result
as Sim(p11, p6)= 0.58 > θ . The process terminates after
adding p15, as PLO contains k = 5 paths.

Theorem 3 Given a set of paths Pcand from s to t and a
similarity threshold θ ,Complete_kSPwLO determines the
lowest value for θmin ≥ θ such that there is a solution set
PLO ⊆ Pcand with |PLO| = k.

Proof Let Pcand be an input set of at least k distinct paths
from s to t . Also, let Complete_kSPwLO terminate after
I iterations of its main while-loop. Let θi denote the value
of the similarity threshold and kθi the size of the result set
PLO during the i-th iteration. We prove by induction on i ∈
{1, . . . , I } that kθ ′<k holds for all θ ′ ∈ [θ, θI ). If I= 1, i.e.,
the function Complete_kSPwLO terminates after a single
iteration, we have θ1 = θ which is by definition the minimum
possible value.Now, if the inductive hypothesis holds for i<I
but not for i+1, there is a θ ′ ∈ [θ, θi+1) such that kθ ′ = k.
We know from the hypothesis that θ ′≥θi . Furthermore, we
know from the definition of θi and θi+1 that all θ ′ ∈ [θi , θi+1)

yield the same result set (cf. Eqs. 4 and 5). Together, these
observations imply that kθi = k, which contradicts the fact
that function Complete_kSPwLO did not terminate at the
i-th iteration. ��

Complexity analysis The runtime of function
Complete_kSPwLO depends on the size of |Pcand |. At
each round, the number of paths examined by
Complete_kSPwLO is O(|Pcand |). To determine whether
a path should be added to PLO or not requires O(k) time.
Furthermore, as for each path we keep at most k−1 simi-
larities with paths in the result set, to add a single path to
PLO we need, in the worst case, to run an iteration for all the
similarities of all paths, i.e., O(|Pcand |·k) iterations. Since,
we need to fill the result set with k paths, the total number
of iterations is O(|Pcand |·k2). Therefore, the overall runtime
complexity of Complete_kSPwLO is O(|Pcand |2·k3).

7.2 The SVP-C and ESX-C algorithms

As discussed in the previous subsection, the
Complete_kSPwLO function can operate with any arbi-
trary set of (s→t) paths as input. The only requirement
dictated by Definition 2 for Pcand is to include the shortest
path from s to t .

Paradigm 1 outlines the completeness-oriented computa-
tion of kSPwLO(G, s, t, k, θ) queries. Initially, the query is
processed by a kSPwLO algorithm. Besides PLO, the algo-
rithm also returns the candidate set Pcand of paths from s
to t . If PLO contains k paths, the result is already complete
and the computation terminates. Otherwise, the complete-
ness process takes over in between Lines 4 and 6. To deliver
a complete result set, Pcand must contain k or more paths.
To this end, if Pcand contains less than k paths, we add to it
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PARADIGM 1: Complete PSPwLO computation
Input: Road network G = (N , E), source s ∈ N , target t ∈ N , #

of results k, sim. threshold θ

Output: Result set PLO

1 〈PLO, Pcand 〉 ← kSPwLOAlgorithm(G, s, t, k, θ);
2 if |PLO| = k then
3 return PLO;

4 if |Pcand | < k then
5 Pcand ← Pcand ∪ kShortestPaths(G, s, t, k);

6 return Complete_kSPwLO (Pcand , k, θ);

the k-shortest paths from s to t (Lines 4-5). Finally, Pcand is
fed to the Complete_kSPwLO to produce a complete PLO
result in Line 6.

In practice, using all possible paths from s to t as Pcand is
prohibitively expensive. Therefore, we rely on the kSPwLO
algorithms to provide a set of candidate paths. Not all of
our kSPwLO algorithms are compatible with Paradigm 1
though. Algorithms that traverse the original network, i.e.,
exact OnePass, MultiPass and heuristic OnePass+, do
not qualify for this purpose, as the only (s→t) paths these
algorithms construct are the ones that constitute the result set.
On the contrary, this is possible with SVP+ and ESX; recall
that SVP+ considers concatenations of single-via paths as
candidate results (cf. Algorithm 4, Line 9) while ESX con-
structs candidate paths by removing edges (cf. Algorithm 5,
Line 11). We denote by SVP- C and ESX- C the algorithms
that follow Paradigm 1 and employ SVP+ and ESX respec-
tively to compute an initial PLO result and a set of candidate
paths Pcand .

8 Optimization with lower bounds

To further improve the performance of both our exact and
heuristic algorithms,we employ a lower bound d(n, t) for the
network distanced(n, t) of every noden to the target t . Such a
lower bound enables algorithms to direct the traversal toward
the target and has been employed by various existing works
as well [22,30]. Also, such bounds can be computed in a
preprocessing phase [32]. However, to enable our algorithms
to work on road networks with changing edge weights, we
compute bounds on query time.

To derive tight d(n, t) lower bounds, we run Dijkstra’s
algorithm [14] in reverse from target t to every node n of
the road network. By executing such an all-to-one query,
we obtain for every node n its exact distance d(n, t) to the
target t , which is the tightest possible lower bound. This
computation takes place at the beginning of the execution of
all algorithm that employ this optimization, i.e., OnePass,
MultiPass, OnePass+, and ESX. Instead of simply com-

puting the shortest path from s to t , we compute the shortest
path tree from target t to each node n in the road network.

Optimizing OnePass/MultiPass/OnePass+. In principle,
OnePass, MultiPass and OnePass+ utilize lower bounds
in the same fashion. Instead of sorting labels into the priority
queue based on their distance from the source, each label
associated with some node n is sorted based on the total
estimated distance d(s, n) + d(n, t). Apart from reducing
the search space of the traversal, the pruning power of the
algorithms is enhanced as well. Paths to nodes that are far
away from the target have less chances of sharing edges with
already recommended paths. Instead, paths to nodes that are
closer to the target aremore likely to share edgeswith already
recommended paths and therefore have more chances to be
pruned.

Optimizing ESX. As we explained in Sect. 6.3, ESX com-
putes alternative paths by executing shortest path searches
repeatedly. By employing the aforementioned lower bounds,
ESX uses A∗-search [15]. Since the lower bounds are the
tightest possible ones, the search space of the traversal is
expected to be small. While the quality of the bounds drops
after each iteration as they are not updated after each edge
removal, the correctness of the A∗-search is still ensured.

9 Experimental evaluation

In this section, we report the results of our experiments that
involve ten real-world road networks obtained from three
different sources [1,5,19]. We selected road networks with
different structural characteristics. Table 1 shows the number
of nodes and edges, and the structure of each road network.

To assess the performance of all algorithms, we measure
their average runtime over 1000 kSPwLO queries with ran-
domly selected source and target nodes, while varying the
number k of requested paths and the similarity threshold θ .
In each experiment,we vary one of the twoparameters and set

Table 1 Datasets

Road networks Nodes Edges Structure

Rome 3353 8870 City-center

Oldenburg 6105 14,058 City-center

San Joaquin 18,263 47,594 Grid-based

Tianjin 31,002 86,584 Ring-based

Porto Alegre 63,751 187,364 Grid-based

Beijing 74,383 222,778 Ring-based

Milan 187,537 525,296 Ring-based

Chicago 386,533 1,121,620 Grid-based

Colorado 435,666 1,057,066 State

Florida 1,070,376 2,712,798 State
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(a) (b)

Fig. 11 Runtime of exact algorithms for kSPwLO queries varying
requested paths k (θ = 0.5)

the other to its default value, i.e., k = 3 and θ = 0.5. For our
performance-oriented heuristic algorithms, we also measure
the quality, i.e., the shortness of the alternative paths, by com-
paring their average length to the length of the shortest path
for each query, and the completeness of the result set, i.e., the
percentage of queries for which an algorithm returns exactly
k paths. For our completeness-oriented heuristic algorithms,
we identify the maximum pairwise similarity between the
results of each query such that the result set contains k paths,
and we report the average similarity value for all queries.

All algorithms were implemented in C++6, the code was
compiled using GNU G++ 8, and the tests run on a machine
with 12 Intel Xeon E5-2650 (2.20GHz) processors and
256GB RAM running Ubuntu Linux. Moreover, our imple-
mentations of OnePass,MultiPass andOnePass+ employ
the lower bounds of Sect. 8.

9.1 Exact algorithms

Figure 11 reports the runtime of our exact algorithms for
processing kSPwLO queries while varying parameter k. As
expected, the runtime of all algorithm goes up for increasing
values of k since more paths need to be examined. Mul-
tiPass clearly outperforms both OnePass and FindKSPD
[22] and, in most cases, by a large margin. By utilizing the
pruning criterion of Lemma 3, MultiPass is able to sig-
nificantly reduce the total number of examined paths, even
though it scans the network multiple times. Furthermore,
while OnePass is always faster than FindKSPD, none of
these two algorithms scale. Even for the road networks of
Rome and Oldenburg, the smallest networks used in our
experiment, both algorithms require in most cases several
seconds on average to process kSPwLO queries.

Figure 12 reports the runtime of our exact algorithms
for processing kSPwLO queries while varying parameter θ .
Similar to varying k, MultiPass is clearly the fastest exact
algorithm. We also observe that the runtime of OnePass

6 https://github.com/tchond/kspwlo

(a) (b)

Fig. 12 Runtime of exact algorithms for kSPwLO queries varying sim-
ilarity threshold θ (k = 3)

(a) (b)

Fig. 13 Response time of ESX variants varying requested paths k (θ =
0.5)

and FindKSPD increases for decreasing values of θ while
the runtime of MultiPass peaks for θ = 0.3. This result
reveals an important trade-off: as θ increases, the pruning
power of Lemma 2 deteriorates, and,MultiPass constructs
more (partial) paths. At the same time, the next path added to
the result set is shorter due to the higher similarity threshold,
and hence, the algorithm terminates earlier. With a decreas-
ing θ , the pruning power of Lemma 3 also increases andmore
partial paths are pruned.

9.2 Heuristic algorithms

Next, we report the performance, result quality, and com-
pleteness of our heuristic algorithms.

9.2.1 Comparison of ESX variants

Before presenting the results of our experiments for all
heuristic algorithms,we analyze the effectiveness of different
ESX variants/edge removal strategies (cf. Sect. 6.4) to deter-
mine the most efficient one. For this purpose, we present
our measurements on the road networks of San Joaquin and
Tianjin.

Runtime Figure 13 and 14report on the runtime of the differ-
ent ESX variants, i.e., ESX varying the number of requested
paths k and the similarity threshold θ . Clearly, MinW and
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(a) (b)

Fig. 14 Response time of ESX variants varying similarity threshold θ

(k = 3)

(a) (b)

Fig. 15 Average length difference to �(psp) of ESX variants varying
requested paths k (θ = 0.5)

MaxW are the fastest variants. That is mainly because these
two variants incur no computational overhead to determine
the priority of each edge. TheMinS andMaxS variants come
in second place, while MinP and MaxP are the slowest ones,
in almost all cases. Regarding the prioritization of edges with
low priority (i.e., Min* variants) or high priority (i.e., Max*
variants), as expected removing first edges with high priority
is more efficient.

Result shortness Figure 15 reports the average length differ-
ence to psp of the alternative paths produced by each ESX
variant. For San Joaquin, MinP is the variant that returns
the shortest paths on average. MinW, MinS and MaxS return
paths of similar average length, MaxW recommends even
longer paths, while MaxP recommends the longest paths
on average among all variants. For Tianjin, we observe that
MinS returns the sets with the shortest paths on average,
MinW, MaxW and MaxP recommend slightly longer paths,
MinP returns even longer paths, while MaxS returns the
longest paths on average.

In summary, MinW is the most consistent variant of ESX.
It produces alternative paths quickly, being the second fastest
variant in all cases, andwith low average length, being ranked
either second or third in all cases. Based on these observa-
tions, we use the MinW variant of ESX for the rest of our
experiments.

(a) (b)

(c) (d)

Fig. 16 Performance of kSPwLO algorithms varying requested paths
k (θ = 0.5)

(a) (b)

(c) (d)

Fig. 17 Performance of kSPwLO algorithms varying similarity thresh-
old θ (k = 3)

9.2.2 Performance-oriented heuristic algorithms

Runtime Figures 16 and 17 report the response time of
our performance-oriented heuristic algorithms OnePass+,
SVP+ and ESX, on four clearly larger road networks than
the ones we used for measuring the performance of the exact
algorithms. We also include the fastest exact algorithm, i.e.,
MultiPass.
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Figure 16 reports the response time of the heuristic algo-
rithms and MultiPass varying the number of requested
paths k. While, as expected, the runtime of all algo-
rithms increases with k, the efficiency of MultiPass and
OnePass+ deteriorates much faster. For k≥3,MultiPass is
approximately three times slower than OnePass+ and more
than three orders of magnitude slower than SVP+ and ESX.
OnePass+ is also clearly outperformed by SVP+ and ESX
on all road networks for k≥3 by approximately three orders
of magnitude. In brief, ESX is clearly the fastest algorithm
in all cases, SVP+ comes second in all networks for k≥3,
while MultiPass and OnePass+ have comparable perfor-
mance to SVP+ and ESX only for k = 2.

Figure 17 reports the response time of the heuristic algo-
rithms and MultiPass varying the similarity threshold θ .
The overall picture is the same as in Fig. 16, i.e., SVP+
and ESX are the clear winners,MultiPass is approximately
three times slower thanOnePass+, which in turn is up to two
orders of magnitude slower than SVP+ and ESX. An inter-
esting observation though is that while the response time of
SVP+ and ESX decreases with increasing values of θ ,Mul-
tiPass and OnePass+ show a local maximum for θ = 0.3.
This indicates an important trade-off: as θ increases, the prun-
ing power of Lemma 2 deteriorates, and both MultiPass
and OnePass+ construct more (partial) paths. At the same
time, the higher similarity threshold causes each next path
to be determined faster and the algorithms to terminate ear-
lier. With θ decreasing, the pruning power of Lemma 3 also
increases and more partial paths are pruned.

Result shortness Figure 18 shows the average length differ-
ence to psp of the exact solution and the computed results of
the heuristic algorithms OnePass+, SVP+ and ESX. Note
that only queries for which all algorithms returned a com-
plete result set, i.e., a set of k paths, are considered. Naturally,
the exact kSPwLO result provides the shortest alternatives.
Looking at the heuristic algorithms,OnePass+ produces the
shortest alternative paths, which are very close to the paths
in the exact solution. Both SVP+ and ESX recommend alter-
native paths that are up to 15% longer on average than the
paths in kSPwLO, with SVP+ returning slightly shorter ones
than ESX.

Completeness As already discussed, the algorithms for
kSPwLOqueries are not always able to compute all requested
k alternative paths. Table 2 reports, for each algorithm, the
percentage of queries for which exactly k alternative paths
were found. Naturally, the exact solution kSPwLO has the
highest completeness ratio. OnePass+ is very close to the
exact solution, achieving a completeness ratio of more than
90% in all scenarios. SVP+ and ESX show similar complete-
ness ratio, i.e., over 90%, in all scenarios, apart from the case
where k = 3 and θ = 0.1 (i.e., the alternative paths are very
dissimilar to each other). In this case, the completeness ration

(a) (b)

(c) (d)

Fig. 18 Average length difference to �(psp) of heuristic algorithms
varying requested paths k (θ = 0.5)

of SVP+ and ESX is clearly lower than that of the exact solu-
tion and OnePass+. Nevertheless, the completeness ratio of
ESX is above 80% is all cases and is clearly higher than the
completeness ratio of SVP+.

Scalability From previous experiments, it is clear that neither
the exact algorithm MultiPass nor the heuristic algorithm
OnePass+ are scalable. However, the situation is different
for SVP+ and ESX. To this end, in what follows we evaluate
the efficiency of SVP+ and ESX for large values of k on
large road networks.

In Fig. 19, we analyze the runtime performance of SVP+
and ESX for large values of k and large road networks set-
ting θ = 0.5. For k ≤ 10, we observe that the runtime of
ESX and the runtime of SVP+ are similar, with ESX being
slightly faster. For k > 10 and the road networks of Milan
and Florida, we observe that ESX is clearly faster the SVP+.
However, observe that for k = 20 and the road networks
of Chicago and Colorado SVP+ is faster than ESX. This
result connected to the completeness of SVP+ that we ana-
lyze below.

In Fig. 20, we report the average length difference to
�(psp) of the result paths computed by SVP+ and ESX.
For the road networks of Milan and Chicago, we observe
that the two algorithms recommend alternative paths of
similar length. More specifically, for k ≤ 10 the two algo-
rithms compute alternative paths of similar length with the
ones returned by SVP+ being slightly shorter, while for
k > 10, ESX clearly computes shorter alternative paths.
On the sparser road networks of Colorado and Florida, for
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Table 2 Completeness ratio (%) of kSPwLO algorithms for different
values of k and θ

Road net. k θ kSPwLO OnePass+ SVP+ ESX

San Joaquin 2 0.5 100 100 100 100

3 0.5 100 99.8 99.6 99.5

4 0.5 99.88 99 96.5 97.8

5 0.5 99.67 98.3 94.1 96.9

3 0.9 100 100 99.9 100

3 0.7 100 99.9 99.7 99.8

3 0.3 99.1 98.5 92.2 96.5

3 0.1 92.1 89.6 55.3 81.7

Tianjin 2 0.5 99.9 99.9 99.8 99.9

3 0.5 99.9 99.8 99.8 99.5

4 0.5 99.8 98.6 99.4 98.6

5 0.5 99.7 97.7 98.6 96.4

3 0.9 100 100 100 100

3 0.7 100 99.7 100 100

3 0.3 99.4 99.2 97.7 97.8

3 0.1 95 93.5 74 87.5

Porto Alegre 2 0.5 100 100 100 100

3 0.5 100 99.9 99.9 99.2

4 0.5 100 99.5 99.5 98.3

5 0.5 100 98.6 98.6 96.8

3 0.9 100 100 100 100

3 0.7 100 100 100 99.9

3 0.3 100 99.7 91.2 97.6

3 0.1 98.5 97.5 53.2 90.9

Beijing 2 0.5 100 100 100 100

3 0.5 100 99.9 99.5 99.6

4 0.5 100 98.7 98.5 99.4

5 0.5 100 97.4 98.5 98.3

3 0.9 100 100 100 100

3 0.7 100 100 100 99.9

3 0.3 99.7 99.6 98.2 98.6

3 0.1 95.4 94.6 85.2 88

k = 5, ESX and SVP+ compute alternative paths of sim-
ilar length, with the ones returned by ESX being slightly
shorter. For k > 8 though, the alternative paths computed
by ESX are clearly much shorter than the ones computed by
SVP+.

Finally, Table 3 reports on the completeness of the SVP+
andESX results. For the roadnetworks ofMilan andChicago,
we observe that while ESX demonstrates a higher com-
pleteness ratio than SVP+, the completeness ratio of both
algorithms is in most cases over 90%. For θ < 0.5 though,
ESX is clearly better thanSVP+,while both algorithms strug-
gle to compute a complete result for θ = 0.1. For the road
networks of Colorado and Florida, the superiority of ESX is

(a) (b)

(c) (d)

Fig. 19 Performance of SVP+ and ESX varying requested paths k
(θ = 0.5)

(a) (b)

(c) (d)

Fig. 20 Average length difference to �(psp) of SVP+ and ESX varying
requested paths k (θ = 0.5)

even more apparent. While ESX demonstrates a complete-
ness ratio of over 90% for θ > 0.1, SVP+ demonstrates
a comparable ratio only for k = 5 and θ > 0.5. Espe-
cially for θ < 0.3 the completeness ratio of SVP+ is below
10%. Similar to the results for Milan and Chicago though,
both algorithms struggle to compute a complete result for
θ = 0.1.
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Table 3 Completeness ratio (%)
of SVP+ and ESX for different
values of k and θ

Milan Chicago

k θ SVP+ ESX k θ SVP+ ESX

5 0.5 100 98.6 5 0.5 100 98.7

10 0.5 99 95.7 10 0.5 98.8 95.3

15 0.5 91.9 94.2 15 0.5 98.2 93.1

20 0.5 72.8 92.6 20 0.5 93.1 91.4

10 0.9 100 99.7 10 0.9 100 99.6

10 0.7 100 98.8 10 0.7 100 99.1

10 0.3 36.5 86.4 10 0.3 69.9 86.9

10 0.1 0 37 0 0.1 0 50.7

Colorado Florida

k θ SVP+ ESX k θ SVP+ ESX

5 0.5 99.4 98.6 5 0.5 94.8 99.1

10 0.5 78.6 96.6 10 0.5 57.1 97.8

15 0.5 43.7 95.2 15 0.5 20.1 97

20 0.5 22.5 94.5 20 0.5 3.8 96.7

10 0.9 100 99.5 10 0.9 100 99.8

10 0.7 99.9 98.8 10 0.7 100 99.4

10 0.3 8.8 91.1 10 0.3 1.1 94.4

10 0.1 0 25.2 10 0.1 0 62

(a) (b)

(c) (d)

Fig. 21 Performance of SVP+,ESX, SVP- C and ESX- C varying sim-
ilarity threshold θ (k = 10)

9.2.3 Completeness-oriented heuristic algorithms

Runtime In Fig. 21, we report the runtime of SVP- C and
ESX- C, varying the similarity threshold θ with k = 10,
and we compare them to their performance-oriented coun-

terparts, i.e., SVP+ and ESX. In the road networks of Milan
and Chicago for θ≥0.5 and in the road networks of Colorado
and Florida θ≥0.7, we observe that all algorithms have sim-
ilar runtime. For kSPwLO queries where SVP+ and ESX
return a complete result, SVP- C and ESX- C do not need to
invoke function Complete_kSPwLO . Hence, the runtime
of SVP- C and ESX- C is almost the same with SVP+ and
ESX, respectively. For smaller values of θ though,weobserve
in all networks that ESX- C clearly outperforms SVP- C.
Also, the difference between the runtime of SVP+ and SVP-
C is much greater than the difference between the runtime of
ESX andESX- C.As the completeness ratio of SVP+ is fairly
low for small values of θ , function Complete_kSPwLO
has to be invoked many times to relax θ and compute a com-
plete result.

To get additional insights in the performance of our
completeness-oriented algorithms, in Fig. 22 we report the
number of paths in the candidate set of SVP- C and ESX- C
for all datasets, for the case where both SVP- C and ESX-
C demonstrated the lowest completeness ratio, i.e., k = 10
and θ = 10%. We observe that the Pcand used by SVP- C
is around three orders of magnitude larger than the Pcand
used by ESX- C. This difference justifies the difference in
the runtime of the two algorithms, since ESX- C invokes
Complete_kSPwLO using a much smaller Pcand as input.

Pairwise Similarity. Figure 23 reports the average relaxed
similarity threshold θmin for which algorithms SVP- C and
ESX- C return a complete result, varying the initial similar-
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Fig. 22 Size of candidate sets constructed by ESX- C and SVP- C for
k = 10 and θ = 10%

(a) (b)

(c) (d)

Fig. 23 Updated similarity threshold for ESX- C and SVP- C varying
similarity threshold θ (k = 10)

ity threshold θ . The line above each bar indicates the average
θmin only for queries that the initial θ resulted in an incom-
plete result. In all road networks, for θ > 0.5, the relaxed
similarity threshold θmin computed by SVP- C and ESX- C
is almost the same. For θ ≤ 0.5, SVP- C performs slightly
better in the road networks of Chicago and Milan, while the
opposite is true in the road networks of Colorado and Florida.
However, this result is influenced directly by the complete-
ness ratios of SVP+ and ESX. On the contrary, for queries
that the initial θ leads to an incomplete result, SVP- C finds a
complete result for a much smaller θmin than ESX- C. These
observations hint that the Pcand constructed by SVP- C is not
only larger but also more diverse than the one constructed by
ESX- C.

9.3 Summary of findings

To sum up, our experimental analysis concludes into three
key findings. First, our tests for the exact computation of
kSPwLO are in line with the theoretical analysis on the opti-
mality ofMultiPass (cf. Sect. 5.2).MultiPass is the fastest
exact algorithm outperforming both OnePass and Find-
KSPD [22] by a significant margin. However, MultiPass
is practical only for k = 2. For k > 2, MultiPass is prac-
tical only on small road networks, as its response time even
for mid-sized road networks is prohibitively high.

Two out of our three performance-oriented heuristic
algorithms manage to address this scalability issue. More
specifically, despite being an improvement over MultiPass
in terms of runtime and computing a result set that is close
to the exact solution,OnePass+ does not scale on large road
networks. On the contrary, SVP+ and ESX are both signifi-
cantly faster thanOnePass+ and able to scale, but on average
they compute slightly longer alternative paths. Overall, ESX
is the best choice as it is the fastest performance-oriented
heuristic algorithm while recommending more and shorter
alternative paths than SVP+.

Finally, in applicationswhere a complete result is required,
i.e., exactly k alternative paths must be retrieved, we dis-
tinguish between two cases. If the response time matters
more than the quality of the complete result set, ESX- C
is the algorithm of choice as it inherits the performance
advantage of ESX. However, if result quality is more impor-
tant, SVP- C is preferred as its candidate set enables the
Complete_kSPwLO to find a result set of more dissimilar
paths than ESX- C.

To provide additional insights on how our approach could
be used in practice, in Fig. 24 we visualize different sets of
3 alternative paths between two locations in the city of Old-
enburg, setting the similarity threshold θ = 50%. Figure 24a
shows the K -shortest paths, which clearly have little prac-
tical value since they are too similar to each other. On the
contrary, both the kSPwLO shown in Fig. 24b and the results
of our heuristic algorithms shown in Fig. 24d–f offer much
more attractive alternative paths. As the heuristic algorithms
compute fairly similar results to the kSPwLO, in applications
where response time is important, we expect these results to
be satisfactory. We also visualize the result of a randomized
search to examine how better or worse the alternative paths
would be if they were to be selected at random. We first add
the shortest path into the result set, and then, we execute
k−1 random walks in order to obtain k paths in total. We
repeat this process multiple times and keep the best result
in terms of shortness. Figure 24c shows that the alternative
paths obtained using this randomization are too long and con-
tain too many needless detours, even after 1000 iterations to
improve the result quality.
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Fig. 24 Example results of exact and approximate algorithms for the kSPwLO in Oldenburg (k = 3, θ = 50%)

10 Conclusions

In this paper, we studied the problem of alternative rout-
ing on road networks. Our goal was to recommend k paths
that are sufficiently dissimilar to each other and as short as
possible. To this end, we proposed kSPwLO, which min-
imizes the length of each individual path in the result set
and we showed that kSPwLO is weakly N P-hard. For
answering kSPwLO queries, we presented two exact algo-
rithms, three performance-oriented heuristic algorithms and
two completeness-oriented heuristic algorithms. Through an
extensive experimental evaluation, we demonstrated the per-
formance of all algorithms in terms of runtime and result
quality, and we identified use-cases each algorithm is useful
for and trade-offs each algorithm comes with.

In the future, we plan to extend the definition of alterna-
tive routing by considering multiple criteria and constraints
to match the requirements of a wider range of appli-
cations. Moreover, we plan to adapt our algorithms for
time-dependent and dynamic traffic-aware road networks.
Finally, we plan to investigate the computation of dissimilar
paths on different types of networks such as social networks
and web graphs.
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