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Gaussian Process Based Visual Pursuit Control with Unknown Target
Motion Learning in Three Dimensions

Marco OMAINSKA ∗, Junya YAMAUCHI ∗, Thomas BECKERS ∗∗, Takeshi HATANAKA ∗∗∗,
Sandra HIRCHE ∗∗∗∗, and Masayuki FUJITA ∗,∗∗∗

Abstract : In this paper, we propose an observer-based visual pursuit control integrating 3-dimensional target motion
learning by Gaussian Process Regression (GPR). We consider a situation where a visual sensor equipped rigid body
pursuits a target rigid body whose velocity is unknown, but dependent on the target’s pose. We estimate the pose from
visual information and propose a Gaussian Process (GP) model to predict the target velocity from the pose estimate.
We analyze stability of the proposed control by showing that estimation and control errors are ultimately bounded with
high probability. Finally, simulations illustrate the performance of the proposed control schemes even if the visual
measurement is corrupted by noise.
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1. Introduction
Vision sensors are essential for the recognition of the external

world because of their capability of obtaining rich information.
The use of vision sensors in robot control has a long history
[1] and their importance is increasing along with technological
advances in mobile robots. Important applications for vision-
equipped mobile robots include infrastructure inspections [2],
bird control for farm [3] and biological studies [4]. This paper
deals with the problem of estimating and tracking the motion of
an object by a mobile robot equipped with a vision sensor.

Control methods that use a vision sensor to estimate the state
of a robot in the environment and maintain it in a desired po-
sition have been proposed, for example in [5],[6]. The authors
of [7],[8] consider tracking control of a target with simultane-
ous vision-based estimation of the unknown target pose in two
dimensions. In contrast to [7] and [8], [9] proposes an observer-
based control to pursuit a target rigid body moving in three di-
mensions. Furthermore, since the target motion is generally
unknown, the approach in [9] extends the control law by a tar-
get body velocity generator model to achieve pursuit with zero
steady-state error. However, since the information of the gen-
erator is required prior to the control system design, applicable
situations are possibly limited. A promising technique to iden-
tify uncertain dynamics without the necessity of prior abundant
knowledge is exploited in Machine Learning (ML).

Attention in the control community has been given to Gaus-
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sian Process (GP) models due to the strong Bayesian foun-
dation including their advantage of estimating the uncertainty
[10]. However, ML techniques typically suffer from lacking
theoretical guarantees such as stability analysis, which limits
the applicability to non-safety relevant systems. In [11]–[14],
a GP model is utilized to learn the unknown dynamics and to
analyze control performance and stability. By using the mean
function of a GP model in a feed-forward manner, [13] aims to
eliminate unmodeled dynamics and further provide a method to
adjust the error feedback gains based on the GP variance. The
author’s recent publication [15] extends the result in [9] with
the technique from [13] by integrating the learned GP target
motion model into the visual pursuit control scheme to guaran-
tee stability with high probability. In [15], a GP model learns
the unknown body velocity as a function of the target’s posi-
tion for an observer-based control, assuming that the target is
moving influenced by the environment, such as terrains and ob-
stacles. However, since the target motion consists of both trans-
lation and rotation, the proposed visual pursuit control scheme
is limited to a special class of target motions.

This paper proposes a stability-guaranteed visual pursuit con-
trol scheme based on a GP model that learns the unknown target
body velocity, which is not only dependent on the position but
also orientation. To begin with, we introduce rigid body mo-
tion, visual measurements and GPR. Then, the learning method
by using GP models is addressed. Next, we propose a visual
pursuit control law where the learned GP mean function is uti-
lized to cancel the target body velocity, and the variance func-
tion to adjust error feedback gains. We then derive conditions
on the gains to prove ultimate boundedness with high proba-
bility of the estimation and control errors. The main contribu-
tions of this paper are as follows: (i) extending the class of tar-
get body velocity to that of pose-dependent body velocity, (ii)
proposing a visual pursuit control law based on the learned GP
model and proving stability, (iii) showcase effect of gain adjust-
ments by variance for noise attenuation in visual measurement.

In the following, Section 2 briefly describes the problem set-
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Target

Fig. 1: Target rigid body and camera configuration.

ting and Section 3 addresses a method of Visual Motion Ob-
served-based target motion learning. Thereafter, a new visual
pursuit control with GP-prediction is proposed and stability is
also analyzed in Section 4. Finally, simulations illustrate the
efficiency of the proposed control law in Section 5.

2. Problem Setting
This section introduces the basics of rigid body motion, vi-

sual measurement [9], and the class of the target body velocity.

2.1 Rigid Body Motion
Assume a target and visual sensor moving in 3-dimensional

space (Fig. 1) with inertial coordinate frame Σw and body-fixed
frames Σo, Σc. Their orientation and position are denoted by
eξ̂wiθwi ∈ SO(3) B

{
R ∈ R3×3 | RRᵀ = I3, det(R) = 1

}
, i ∈ {c, o}

and pwi ∈ R
3, respectively. Further, ξwi ∈ R

3 describes the
normalized rotation axis (i.e. ξᵀwiξwi = 1) and θwi ∈ (−π, π]
resembles the angle of rotation, while for simplicity hereon the
shortened notation ξθwi is used. The operator ∧ used in eξ̂θwi

maps a vector R3 to a 3 × 3 skew symmetric matrix, i.e. âb =

a × b, a, b ∈ R3 where × the vector cross product [9]. On
the contrary, ∨ denotes its inverse operator. The pair of both
position and orientation is called the pose gwi =

(
pwi, eξ̂θwi

)
∈

SE(3) B R3 × SO(3) of Σi with respect to Σw for i ∈ {c, o}. To
denote the pose gwi, we use the following matrix representation:

gwo =

[
eξ̂θwo pwo

0 1

]
, gwc =

[
eξ̂θwc pwc

0 1

]
. (1)

Similarly, the body velocity is defined as Vb
wi =

(
vb

wi, ω
b
wi

)
∈ R6

with the translational body velocity vb
wi ∈ R

3 and the angular
body velocity ωb

wi ∈ R
3. Then, the target motion and camera

motion are described by

ġwo = gwoV̂b
wo, V̂b

wo B

[
ω̂b

wo vb
wo

0 0

]
,

ġwc = gwcV̂b
wc, V̂b

wc B

[
ω̂b

wc vb
wc

0 0

]
.

(2)

Next, the relative pose of the target (2) relative to the camera (2)
is defined as gco B g−1

wc gwo ∈ SE(3) and by taking the deriva-
tive, one yields the relative rigid body motion (RRBM):

ġco = −V̂b
wc gco + gcoV̂b

wo . (3)

Here we assume that the camera is able to obtain its relative
pose gwc. However, because the target pose gwo is unknown as
there is no way to communicate, gco cannot be obtained either.

This paper considers a situation where the target rigid body
is assumed to move under the influence of terrain and obstacles,

and the body velocity can be considered as a map of the pose
gwo to R6, i.e. Vb

wo : SE(3) → R6. Note that this also means
that each pose gwo ∈ SE(3) is related to one single body velocity
Vb

wo ∈ R
6. In order to learn the body velocity by GPR we need

to define a proper vector representation, which is not a trivial
problem since we also aim to guarantee system stability.

To this end, we define the ball with radius π centered at the
origin as Bπ(0) := {a ∈ R3 | ‖a‖ ≤ π}. Since the exponential
map is surjective from Bπ(0) to SO(3) [16], all target orientation
eξ̂θwo are described by ξθwo ∈ Bπ(0). Thus, we introduce the
vector representation of g ∈ SE(3) as

ǧ B
[

p
ξθ

]
∈ R6 (4)

and denote the body velocity as

Vb
wo : R3 × Bπ(0)→ R6, ǧwo 7→ Vb

wo

(
ǧwo

)
. (5)

This is a wider class of the body velocity than that assumed
in [15] where the class of body velocity is assumed to be de-
pendent just on the position pwo, namely, Vb

wo : R3 → R6. This
paper uses a GP model to identify the unknown body velocity
Vb

wo as a function of the pose ǧwo, and use it for visual pursuit
control later in Section 4. The stability of the proposed visual
pursuit system is also discussed there.

2.2 Visual Measurements
In line with [9,p.105] and following the author’s results, the

camera model of a pinhole camera is defined. It is used to mea-
sure feature points of the moving target in a 3D-environment
as shown in Fig. 1. This process of extracting feature points in
vast image data is common for real-time visual control scenar-
ios [17]. Thus, we assume that the target has n f feature points
whose position vectors relative to its object frame Σo are de-
noted by poi ∈ R

3, i = {1, · · · , n f }, which are known a priori.
Let the position of poi as viewed from Σc be pci =[

xci yci zci
]ᵀ
∈ R3 satisfying [pᵀci 1]ᵀ = gco[pᵀoi 1]ᵀ, i =

{1, · · · , n f }. It is then projected onto the image plane of the
camera by perspective projection [1] as a feature point f i ∈ R

2:

f i =
λ

zci

[
xci

yci

]
, (6)

with λ > 0 the focal length. By stacking (6) into a vector we
obtain the visual measurement f B

[
fᵀ1 · · · fᵀn f

]ᵀ
∈ R2n f .

3. Observer-based Target Motion Learning
This section addresses how the target motion is learned. Con-

sequently, the GP model for the purpose of target motion learn-
ing is defined, and in order to collect data for learning of the GP
model, the Visual Motion Observer (VMO) [9] is introduced.

3.1 Gaussian Process Regression
Gaussian Process Regression (GPR) predicts unknown func-

tions based on input output data and further provides a measure
to quantify the model fidelity. Suppose one can measure data
pairs of an unknown function h : RN → RN as

y = h(x) + ε ∈ RN , x ∈ RN

ε ∼ N
(
0, σ2

n

)
σn B diag

(
σn,1, · · · , σn,N

) (7)

with sub-Gaussian noise such that |εi| ≤ σn,i almost surely. The
training dataset D consists of M measurements of the input{
x{m}

}M

m=1
and output

{
y{m}

}M

m=1
stacked into matrices
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D = {X, Y},
X B

[
x{1} · · · x{M}

]
∈ RN×M

Y B
[
y{1} · · · y{M}

]ᵀ
∈ RM×N

(8)

Consequently, the prediction y∗ ∈ RN at an input x∗ ∈ RN is
jointly Gaussian distributed with prior mean zero, and the mean
and variance are defined as follows:

µi
(
y∗i | D, ϕi, x∗

)
= Kϕi

(x∗, X)
(
Kϕi

+ σ2
n,iIM

)−1
Yi

Σi
(
y∗i | D, ϕi, x∗

)
= Kϕi

(x∗, x∗)

−Kϕi
(x∗, X)

(
Kϕi

+ σ2
n,iIM

)−1
Kϕi

(X, x∗) .

(9)

For notational convenience, the above terms are shortened to
µi(x∗) and Σi(x∗) hereon. Let the correlation between two in-
puts (x, x′) be measured by the SE-ARD kernel

kϕi

(
x, x′

)
= σ2

fi exp

−1
2

N∑
j=1

(
x j − x′j

)2

l2i, j

 . (10)

Remark 1 Since the SE-ARD kernel is an universal kernel,
GPR with (10) can approximate any continuous function ar-
bitrarily close on a compact set.

The entries of the GP kernel matrix Kϕi
B Kϕi

(X, X) ∈ RM×M

represent the covariance between two elements of the dataset X

Kϕi, j, j′ B kϕi

(
X j, X j′

)
, j, j′ ∈ {1, . . . , M} .

Kϕi
(x, X) ∈ RM denotes the vector-valued extended covariance

function. Yi, X j resemble the i th, j th column of matrix Y, X
and y∗i , x∗j is the i th, j th element of vector y∗, x∗. Lastly, ϕi B[
l2i,1 · · · l2i,6 σ2

fi

]
∈ R7 represents the set of hyperparameters

with lengthscales l2i > 0 and signal variance σ2
fi
> 0 which are

typically obtained by likelihood maximization [10].
A kernel for SE(3) is proposed in [18], and it can be expected

to achieve better regression performance. However, we leave it
as future work replacing (10) by the kernel proposed in [18].

3.2 Learning of Target Motion
The goal of this section is to propose a learning method for

the unknown target body velocity Vb
wo( ǧwo) by GPR using the

target pose ǧwo as the input x, and the target body velocity Vb
wo

as the output y in equation (7). In other words, the GP model
in this paper predicts a function of the form

y = Vb
wo(x) + ε, x = ǧwo (11)

Further, the following assumption is necessary such that target
motion learning is feasible:

Assumption 1 The target moves in a bounded 3-dimensional
field, namely, its position belongs to a compact set D ⊂ R3.

Because target movements generally happen in bounded fields
and environments, Assumption 1 is non-restrictive.

Since the Cartesian product of two compact sets is again a
compact set, the following set is also compact from Assumption
1 and compactness of Bπ(0):

X := D × Bπ(0) . (12)

The combined multi-variable Gaussian distribution in this pa-
per is defined as the overall GP model

µ
(
ǧ∗wo

)
=

[
µ1 · · · µ6

]ᵀ
∈ R6

Σ
(
ǧ∗wo

)
= diag(Σ1, . . . , Σ6) ∈ R6×6 .

(13)

We now derive the following lemma regarding the upper bound
of model fidelity from [19,Theorem 6]:

Lemma 1 Consider the target model (2) and the trained GP
model (13) with the datasetD (8). Further, define the maximum
information gain after observing M′ = M + 1 data pairs as

ζi = max
X′∈X

1
2

log
∣∣∣IM′ + σ−2

n,i K
′
ϕi

∣∣∣ , i ∈ {1, . . . , 6} (14)

with the dataset X′ B
[
x{1} · · · x{M′}

]
∈ R6×M′ and K′ϕi

B

Kϕi

(
X′, X′

)
∈ RM′×M′ . Then, the model error is bounded by

P

{
∀ ǧwo ∈ X,

∥∥∥∥µ( ǧwo

)
− Vb

wo

(
ǧwo

)∥∥∥∥ ≤ ∥∥∥∥βᵀ(δ)Σ
1
2

(
ǧwo

)∥∥∥∥} ≥ δ
(15)

for any probability δ ∈ (0, 1) and elements of β ∈ R6 satisfy

βi(δ) =

√
2
∥∥∥Vb

woi

∥∥∥2
kϕi

+ 300 ζi ln3
(

M + 1

1 − 6√
δ

)
(16)

where
∥∥∥Vb

woi

∥∥∥
kϕi

is the bounded reproducing kernel Hilbert

space norm associated with kernel kϕi
of i th element of Vb

wo.

Note that one can find an upper-bound ∆̄ of the model error as∥∥∥∥βᵀ(δ)Σ
1
2

(
ǧwo

)∥∥∥∥ ≤ ∆̄(δ) (17)

on X [20]. Furthermore, the parameter βi increases with the
amount of data, but due to a sub-linear dependency of ζi on the
number of data observed, the bound in (15) can be decreased
[12]. Even though Vb

woi
is not an element of the RKHS associ-

ated with kϕi
(i.e.,

∥∥∥Vb
woi

∥∥∥
kϕi

is not bounded), Remark 1 assures

their boundedness for functions arbitrarily close to Vb
woi

[20].

3.3 Visual Motion Observer
Prior to control phase, let the VMO estimate the relative pose

gco of a moving target (2) in the perspective of a camera (2)
in a training phase in order to collect data of the target pose
ḡwo B gwc ḡco. The estimated target velocity can be calculated
from V̄b

wo = ḡ−1
wo

˙̄gwo and ˙̄gwo = ġwc ḡco + gwc ˙̄g.

The estimate of gco is denoted by ḡco =

(
p̄co, e

ˆ̄ξθ̄co

)
and the

model for motion estimation [9,Section 6] is given by

˙̄gco = −V̂b
wc ḡco − ḡcoûe . (18)

The goal of this section is to find an observer input ue for train-
ing phase, and later in Section 4 for control phase.

The vector representation of g 1 is given as

vec
(
g
)
B

 p
sk

(
eξ̂θ

)∨ ∈ R6 (19)

with sk(A) B (1/2)(A − Aᵀ), A ∈ R3×3. Then, the estimation
error gee =

(
pee, eξ̂θee

)
∈ SE(3) and its vector representation

ee ∈ R
6 are defined as

1 Using vec
(
g
)

is crucial to show passivity of the visual pursuit
system in Lemma 2, but disadvantageous for GP learning and
prediction since sk

(
eξ̂ θ

)∨
= ξ sin θ = ξ sin(θ + π/2) for |θ| ∈

[0, π/2] [9]. Hence, there might be conflicts in the rotation data.
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RRBM Camera
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Model

Camera
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Image
Jacobianー

＋

Visual Motion Observer
ー

Fig. 2: Block diagram of the VMO for collecting data.

gee B ḡ−1
co gco, ee B vec

(
gee

)
. (20)

Consider the following assumption for motion estimation:

Assumption 2 The estimation error angle is bounded by
|θee(t)| ≤ π/2, ∀t ≥ 0.

Because of gco being unavailable, gee and ee cannot be com-
puted along definition (20). However, the estimated visual mea-
surement f̄ can be calculated from ḡco and (6), thus the error
f e B f − f̄ can be obtained. Further, for small |θee| (Assump-
tion 2), it holds that f e = J

(
ḡco

)
ee, with the image Jacobian

J
(
ḡco

)
from [9,p.108]. Since the pseudo-inverse J†

(
ḡco

)
of

J
(
ḡco

)
can be obtained when n f ≥ 4, the estimation error can

be calculated from

ee = J†
(
ḡco

)
f e . (21)

In order to design observer input ue, one derives the estimation
error (20) from the definitions of RRBM (3) and VMO (18) as

ġee = ûe gee + geeV̂b
wo. (22)

Defining the notation Vb
ee B

(
g−1

ee ġee

)∨
yields Vb

ee =

Ad(g−1
ee )ue + Vb

wo

(
ǧwo

)
with the adjoint transformation of g [9]

given as

Ad(g) B
eξ̂θ p̂eξ̂θ

0 eξ̂θ

 ∈ R6×6 . (23)

In addition, we define Ad(
eξ̂ θ

) B Ad(
0, eξ̂ θ

). Finally, the observer

input ue = −ktrain
e ee with ktrain

e > 0 makes the equilibrium ee = 0
asymptotically stable when the target is static (Vb

wo ≡ 0) [9,
Corollary 6.3]. Furthermore, with the result of L2 stability in [9,
Theorem 6.4], one can still get good performance for a moving
target when the gain ktrain

e is large enough. Therefore, a high
gain assures that one can train a GP model from the estimated
pose assuming that ˇ̄gwo ≈ ǧwo. The block diagram of the VMO
for target motion learning is shown in Fig. 2.

4. Visual Pursuit Control with GP Target Motion
The goal is now to combine the VMO with the GP model in

feed-forward fashion from the previous Section 3 for a visual
pursuit control scenario. In contrast to the author’s previous
publication [15], the full pose is incorporated for the control
scheme. Further, differently to Section 3, it is not assumed that
ˇ̄gwo ≈ ǧwo since it is too risky in a control setting to use large
gains that might amplify noise severely.

4.1 GP-enhanced Visual Pursuit Control
The visual pursuit control (VPC) aims to drive the relative

pose gco from (3) to a desired pose gd ∈ SE(3) utilizing the

VMO from Section 3.3. Similar to the estimation error (20),
one defines the pose control error gce =

(
pce, eξ̂θce

)
∈ SE(3)

and control error ec ∈ R
6 as

gce B g−1
d ḡco, ec B vec

(
gce

)
. (24)

We assume the following for the control error:

Assumption 3 The control error angle is bounded by |θce(t)| ≤
π/2, ∀t ≥ 0.

This assumption is in general satisfied due to the given scenario
as the target moves slower than the robot with camera.

Again, differentiating the control error (24) we achieve

ġce = ûc gce − gceûe ,

uc B −Ad(g−1
d )Vb

wc , ûc = −g−1
d V̂b

wc gd

(25)

and thus the control error system results to

Vb
ce B

(
g−1

ce ġce

)∨
= −ue + Ad(g−1

ce )uc (26)

with Vb
ce the control error velocity. Finally, the combination of

both Vb
ce and Vb

ee obtained in Section 3.3 yields the error system[
Vb

ce
Vb

ee

]
=

Ad(g−1
ce ) −I3

0 Ad(g−1
ee )

u +

[
0
I6

]
Vb

wo

(
ǧwo

)
u B

[
uc

ue

]
∈ R12 .

(27)

The goal is now to find a suitable input u that adapts the GP
model from Section 3.2.

To this end, we first show passivity of the error system. We
define the positive definite function

S B
1
2

∥∥∥pce

∥∥∥2
+ φ

(
eξ̂θce

)
+

1
2

∥∥∥pee

∥∥∥2
+ φ

(
eξ̂θee

)
φ
(
eξ̂θ

)
B

1
2

tr
(
I3 − eξ̂θ

) (28)

and the total error e =
[
eᵀc eᵀe

]ᵀ
∈ R6 and output ν ∈ R12 as

ν B Ne , N B
 I6 0
−Ad(

e−ξ̂ θce
) I6

 . (29)

Then, the following lemma is derived:

Lemma 2 (Lemma 7.1 [9]) The time derivative of S (28)
along with the error system (27) obeys

Ṡ = νᵀu + eᵀ
 0
Ad(

eξ̂ θee
)
Vb

wo

(
ǧwo

)
. (30)

Proof: Refer to [9,Equation (6.2)].
Hence, for the case of the static target (Vb

wo ≡ 0), the error
system (27) is passive from input u to output ν with respect to
the storage function S . Thus, for the given scenario of a moving
target (Vb

wo , 0) under Assumption 2, we propose the following
input u using ḡwo = gwc gco as:

u = −K
(
Σ
(
ˇ̄gwo

))
ν −

Ad(
eξ̂ θce

)Ad(
eξ̂ θee

)
Ad(

eξ̂ θee
)

︸                ︷︷                ︸
BÃd

µ
(
ˇ̄gwo

)
. (31)

The first term achieves asymptotic stability of the equilibrium
point e = 0 when Vb

wo = 0 [9,Corollary 7.2]. In addition, the
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RRBM
(2, 3)

Camera
(6)

RRBM
Model (18)

Camera
Model (6)

Image
Jacobian

(21)ー

＋

vec (19)

GP
(13)

N
(29)

ー

＋

ー
＋

Visual Motion Observer

(33)

(23)

(31)

Fig. 3: Block diagram of VPC with designed input (31).

mean µ
(
ˇ̄gwo

)
from (13) attempts to cancel the disturbance Vb

wo
in feed-forward fashion. Moreover, the error feedback gain K
varies depending on the GP model confidence Σ

(
ˇ̄gwo

)
, which

is designed later. Hereafter, we denote Σ
(
ˇ̄gwo

)
as simply Σ.

The rotational error eξ̂θee in Ad(
eξ̂ θee

) can be calculated from

sk
(
eξ̂θee

)∨
under Assumption 2 from [21] as follows:

eξ̂θee = exp


sin−1

(∥∥∥∥sk
(
eξ̂θee

)∨∥∥∥∥)∥∥∥∥sk
(
eξ̂θee

)∨∥∥∥∥ sk
(
eξ̂θee

) . (32)

As a remark, the controller is similar to [15], but rather than
using only the estimate target position as an input for the GP
model, both estimates of position and orientation are used in
this approach, since a wider class of the target velocity is
considered as given by (5). Furthermore, let the controller
K
(
Σ
(
ˇ̄gwo

))
be of the form

K(Σ) B diag(Kc(Σ), Ke(Σ)) ∈ R12×12

Kc(Σ) B diag
(
kc1 (Σ), · · · , kc6 (Σ)

)
∈ R6×6

Ke(Σ) B diag
(
kep (Σ)I3, keR (Σ)I3

)
∈ R6×6

0 < kci
≤ kci (Σ) ≤ k̄ci , i ∈ {1, . . . , 6}

0 < kep
≤ kep (Σ) ≤ k̄c , 0 < keR

≤ keR (Σ) ≤ k̄eR .

(33)

where kci (Σ), kep (Σ), keR (Σ) are designed to be continuous in Σ.
Furthermore, remember that µ is dependent on the estimate ˇ̄gwo
rather than on the real ǧwo which is unavailable. However, the
difference between µ

(
ǧwo

)
and µ

(
ˇ̄gwo

)
can be bounded based

on Lipschitz continuity of the GP mean function and its kernel
kϕi

[10]:

Lemma 3 The error between the prediction of Vb
wo( ǧwo) by the

real ǧwo and the estimate ˇ̄gwo on X is bounded as follow:∥∥∥∥µ( ǧwo

)
− µ

(
ˇ̄gwo

)∥∥∥∥ ≤ Lp

∥∥∥pee

∥∥∥ + 2πLθ , (34)

where Lp, Lθ denote Lipschitz constants.

Proof: Refer to Appendix A.
Lemma 3 is necessary for stability analysis of the error system
shown in Fig. 3.

4.2 Stability Analysis
This section addresses the main theorem on stability of the

system in Fig. 3 based on the notion of ultimate boundedness.
Now we show the main result.

Theorem 1 Consider the error system (27) with input (31) and
a trained GP model (13) with dataset D (8). Further, suppose

that Assumptions 1 to 3 hold and the gain K
(
Σ
(
ˇ̄gwo

))
in (33)

satisfies the following for all ˇ̄gwo:

Q(Σ) B
[
Kc(Σ) + Ke(Σ) −Ke(Σ)
−Ke(Σ) Ke(Σ) − Γ

]
� 0 (35)

where the matrix Γ is defined as

Γ B
1
2

 1
γ2

1

+
Lp

γ2
2

+
Lθ
γ2

3

I6 +
Lpγ

2
2

2

[
I3 0
0 0

]
(36)

with positive constants γ1, γ2, γ3 > 0 and Lp, Lθ obtained in
Lemma 3. Then, there exist a ρ(δ) > 0 and a T (δ) ≥ 0 with any
probability δ ∈ (0, 1) such that

P{‖e(t)‖ ≤ b, ∀t ≥ T } ≥ δ (37)

b(δ) B

√
γ2

1∆̄2(δ) + 4γ2
3πLθ

2ηλQ
, η ∈ (0, 1) (38)

for any e(0) satisfying ‖e(0)‖ ≤ ρ(δ) where the minimum
eigenvalue of Q(Σ) is represented by λmin(Q(Σ)), and λQ B

minΣ λmin(Q(Σ)).

Proof: Refer to Appendix B.
Inferring from the gain condition (35), large Lipschitz con-

stants Lp and Lθ imply large control and observer gains. This
may indicate that the unknown function Vb

wo may change sen-
sitively with small variations in ǧwo.

Note that [15,Theorem 1] only assures a probabilistic
bounded error for the GP-enhanced VPC for a class of target
body velocities Vb

wo(pwo), and thus Γ and the ball (37) lack
terms specific to the orientation. Furthermore, due to the matrix
Q being a function of the variance Σ

(
ˇ̄gwo

)
, the condition (35)

has to be confirmed for all ˇ̄gwo, which makes the design dif-
ficult. Hence, we derive the following corollary for a simpler
gain condition with the simplified control gain

Kc(Σ) B diag
(
kcp (Σ)I3, kcR (Σ)I3

)
∈ R6×6

0 < kcp
≤ kcp (Σ) ≤ k̄cp , 0 < kcR

≤ kcR (Σ) ≤ k̄cR .
(39)

Corollary 1 Consider the error system (27) with input (31) and
a trained GP model (13) with dataset D (8). Further, suppose
that Assumptions 1 to 3 hold and kci

, kei
satisfy

2kci
kei

kci
+ kei

>
1
γ2

1

+

 1
γ2

2

+ αiγ
2
2

Lp +
Lθ
γ2

3

, i ∈ {p, R} (40)

with γ1, γ2, γ3 > 0 and αp = 1, αR = 0. Then, there exist a
ρ(δ) > 0 and a T (δ) ≥ 0 with any probability δ ∈ (0, 1) such
that (37) with (38) holds for any e(0) satisfying ‖e(0)‖ ≤ ρ(δ).

Proof: From the Schur complement, the condition (35) is
simplified to Ke(Σ) − Γ − Ke(Σ)(Kc(Σ) + Ke(Σ))−1Ke(Σ) � 0.
Due to a difference in Γ, it follows two conditions on the gains
for the position part and orientation part that are summarized in
only one condition by defining parameter αi. By employing the
structure of controller (33), the condition is further shortened to

2kci (Σ)kei (Σ)
kci (Σ) + kei (Σ)

>
1
γ2

1

+

 1
γ2

2

+ αiγ
2
2

Lp +
Lθ
γ2

3

(41)

for i = {p, R}. Since the left term is minimal for kci
, kei

, the
condition is simplified to (40).
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Fig. 4: ”Butterfly” trajectory of the moving target. The target
also rotates around world axis z as given by (45).

As long as the minimum controller gains kci (Σ), kei (Σ) of (33)
meet the gain condition (40), stability is assured. The purpose
of having uncertainty-adjustable controller gains is to achieve
better noise attenuation. Hence, small gains are desired if it
does not alter the control performance.

In the next section we will show how to obtain the Lipschitz
constants Lp and Lθ that are used in Theorem 1 and Corollary 1.

4.3 Calculation of Lipschitz Constant
This section aims to show a method to calculate the Lipschitz

constants of the GP-mean function µ
(
ˇ̄gwo

)
that are necessary

for designing the controller gains (33).
By discretizing X properly one can estimate

Li = sup
x∈X

∥∥∥∥∥∂µi(x)
∂x

∥∥∥∥∥, i ∈ {1, . . . , 6} . (42)

Here, we use the notation x = [xᵀ1 xᵀ2 ], x1, x2 ∈ R
3. Then,

the Lipschitz constants Lp, Lθ are calculated from
∥∥∥∥ ∂µ
∂x1

∥∥∥∥ ≤√
L2

1 + L2
2 + L2

3 = Lθ,
∥∥∥∥ ∂µ
∂x2

∥∥∥∥ ≤ √
L2

4 + L2
5 + L2

6 = Lp. For
notational simplicity, restate (9) with kᵀϕi

(x) B kᵀϕi
(x, X) and

τi B
(
Kϕi

+ σ2
n,iIM

)−1
Yi as µi(x) =

∑M
m=1 kϕi,m(x)τi,m. Then,

computing the derivative of the SE-ARD kernel (10) as

∂kϕi,m(x)
∂x j

= kϕi,m(x)
x{m}j − x j

l2i, j
, j ∈ {1, . . . , 6}, (43)

then the norm in (42) obeys

∥∥∥∥∥∂µi(x)
∂x

∥∥∥∥∥ =

√√√√ 6∑
j=1

 M∑
m=1

τi,mkϕi,m(x)
x{m}j − x j

l2i, j


2

. (44)

By finding the maximum value in (44) on the discretized X, the
Lipschitz constants Lp, Lθ are obtained.

5. Simulation Experiment
This section aims to show the effectiveness of the proposed

control scheme (33) in two simulations. The first simula-
tion showcases the effectiveness of using pose information ǧwo
rather than only the position pwo from the author’s previous
work [15]. In the second simulation we show the advantage of
using variance-dependent varying gains when the visual mea-
surements (6) are corrupted by noise. Feature extractions from
visual measurements always cause noise. We consider the com-
bination of two kinds of noise: a stochastic signal and an im-
pulsive signal.

0 2 4 6 8 10 12 14
0

0.2

0.4

0 2 4 6 8 10 12 14
0

0.2

0.4
VPC

VPC+GP : pwo

VPC+GP : gwo

Fig. 5: Estimation and control error.

Table 1: Root Mean Square Error of total error
[
ẽᵀc eᵀe

]ᵀ
no GP µ

(
p̄wo

)
µ
(
ˇ̄gwo

)
RMSE 0.275 0.223 0.167

Now, define the following specific simulation environment.
The target moves according to the body velocity

vb
wo = [± sin(t) cos(t) sin(t)]ᵀ

ωb
wo = [0 0 (π/2) sin(0.5t)]ᵀ ,

(45)

starting from t = 0 and the initial position pwo(0) = [0, 0, 0]ᵀ

and orientation ξθwo(0) = [0, 0, 0]ᵀ, resulting in a butterfly-
like trajectory (Fig. 4), and continuing to move on the right
wing in a region of observed data first. Even though the body
velocity (45) is not described by a function of ǧwo, it is still
possible to learn Vb

wo

(
ǧwo

)
because of its periodic motion. Note

that, depending on the wing, the target approaches the origin at
two different orientations θwo = 0 and θwo = π. It is assumed
that only half of each wing can be measured, resulting in a total
of M = 50 data-pairs indicated by red crosses in Fig. 4. The
method of obtaining the data and training a GP model follows
the discussion in Section 3.2, where the GP model is trained
on the VMO estimate by accurate enough ˇ̄gwo ≈ ǧwo with high
estimation gain ktrain

e . The total simulation time is 15s. Also
define the control error ẽc B vec

(
g−1

d gco

)
when using the real

target’s pose instead of the estimate ḡco to showcase the influ-
ence of noise on the pursuit problem.

5.1 Performance Comparison with Static Gains
To prove the benefit of using pose information ˇ̄gwo for the

GP model, in this simulation it competes against the standard
VPC in [9] (no GP) and the author’s previous work of using the
position p̄wo only [15]. The diagonal gain elements are all set
as ke = 25, kc = 20. The results are shown in Fig. 5. It is easily
observed that using a GP model with pose estimate ˇ̄gwo always
outperforms p̄wo and the standard VPC. When the target moves
outside the trained data path (from t = 4s ∼ 8s), p̄wo performs
worse than standard VPC which results from a misprediction
due to crossing the trained data path. It can be inferred that
p̄wo imposes a disadvantage at predicting the target motion well
even on trained data path if it is rotating, whilst nearly zero
state error in both control and estimation is achieved for ǧwo.
We achieve a 25% lower RMSE when using ˇ̄gwo compared to
p̄wo (see Table 1).

5.2 Noise Attenuation with Varying Gains
In order to show the advantage of the varying gain, the fol-

lowing simulation incorporates noise in the visual measure-



SICE JCMSI, Vol. 4, No. 1, January 2021 7

0 2 4 6 8 10 12 14
0

5

10

15
Static (ke = 25, kc = 20)

Static (ke = 8, kc = 6)

Varying

0 2 4 6 8 10 12 14
0

5

10

15

0 2 4 6 8 10 12 14
5

10

15

20

25

0 2 4 6 8 10 12 14
5

10

15

20

25

(a)

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6
Static (ke = 25, kc = 20)

Static (ke = 8, kc = 6)

Varying

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

4.8 5 5.2 5.4
0

0.5

9.8 10 10.2
0

0.5

(b)

Fig. 6: (a) control and observer inputs with varying gains, (b)
estimation and control error.

ments (6). For GP learning phase it is assumed that the mea-
sured pose ǧwo and target velocity Vb

wo are both corrupted by
Gaussian noise N

(
0, 0.12

)
. Then, the obtained GP model re-

sults in estimated Lipschitz constants Lp = 1.75 and Lθ = 2.53
by using the result from (44). Finally, by setting the design pa-
rameters in Corollary 1 as γ1 = 4, γ2 = 1, γ3 = 1, different
from the authors previous work [15] the varying gain function
for estimation and control are hereafter chosen as

kci (Σ) =
(
k̄ci − kci

)(
1 − e−1000Σ2

1
)

+ kci
,

kei (Σ) =
(
k̄ei − kei

)(
1 − e−1000Σ2

1
)

+ kei
,

(46)

with k̄ei = 25, kei
= 8, k̄ci = 20, kci

= 6, i = {p, R}. The
varying gain function fulfills the designated bounds (33). The
reason for choosing (46) rather than the linear function used
in [15] is due to the better tuning parameter that allows to adjust
to the width of the uncertainty distribution. In the simulation
the varying gains compete against both static gains of upper
bounds k̄ci , k̄ei and lower bounds kci

, kei
, respectively. During

control phase, the visual measurement f of the camera model
is corrupted by Gaussian noiseN

(
0, 0.00012

)
and an impulsive

noise of power 0.0007 that is added twice on f1 at times t = 5s,
t = 10s and last for 0.1s.

The results are shown in Fig. 6. Since the target moves in the
area where the data are available for GP training before 4s and
after 8s, the varying gain changes between the lower and upper
bound values for the same period as seen in the top of Fig. 6a.
While the influence of the noise on control input uc is small
for all cases, the observer input ue becomes noisy. However,
noise amplification for the lower gain and varying gain case

is smaller than that of the upper gain case. The results of the
varying gain and upper gain cases are shown in Fig. 6b, where
it can be observed that ẽc and ee are similar after the initial
responses converge at around 2s. Furthermore, ẽc shows the
effect of impulsive noise clearly. The lower gain case shows
the best noise attenuation at 5s but the varying gain case has
similar performance at 10s since the variance and gains are also
small. On the other hand, the upper gain amplifies the impulsive
noise at 10s much larger than the other cases. In summary,
the varying gain can achieve similar performance as the upper
bound static gain but with better noise attenuation.

6. Conclusion
This paper proposed a visual pursuit control scheme based

on a GP model that learns the unknown but pose dependent
target body velocity. First, the learning method by using GP
models was addressed. Second, we proposed a visual pursuit
control law in which the learned GP mean function is used to
cancel the target body velocity, and the variance function to ad-
just gains. We then derived conditions on the gains to make
the estimation and control errors ultimate bounded with high
probability. Finally, we demonstrated the effectiveness of the
proposed control law in the situation where the visual measure-
ments are corrupted by noise.
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Appendix
A Proof of Lemma 3

By triangle inequality, [22,Lemma 3.1 & 3.2] about Lipschitz
continuity in the multivariate case, and the fact that kernel (10)
and its partial derivatives are continuous [10], there exist con-
stants Lp and Lθ on X such that

∥∥∥∥µ( ǧwo

)
− µ

(
ˇ̄gwo

)∥∥∥∥ ≤ ∥∥∥µ(pwo, ξθwo
)
− µ

(
p̄wo, ξθwo

)∥∥∥
+

∥∥∥∥µ( p̄wo, ξθwo
)
− µ

(
p̄wo, ξ̄θ̄wo

)∥∥∥∥
≤ Lp

∥∥∥pwo − p̄wo

∥∥∥ + Lθ
∥∥∥ξθwo − ξ̄θ̄wo

∥∥∥ (47)

Since
∥∥∥pwo − p̄wo

∥∥∥ =
∥∥∥∥eξ̂θwc

(
pco − p̄co

)∥∥∥∥ =
∥∥∥pee

∥∥∥ and ξθ, ξ̄θ̄wo ∈

Bπ(0),
∥∥∥ξθwo − ξ̄θ̄wo

∥∥∥ ≤ 2π holds, (34) is obtained from (47).
Note that differently to the position, ξθwo − ξ̄θ̄wo cannot be as-
sociated with ξθee. Thus, the worst case bound is employed.

B Proof of Theorem 1
In this proof, we use the following lemma about the relation

between Q(Σ) and Q̃(Σ). The dependency on Σ is omitted for
simplicity of notation here.

Lemma 4 Matrix Q̃ is similar to matrix Q.

Proof: It suffices to find a normal matrix P such that
PQP−1 = Q̃. Choose P = diag

(
I6, Ad(

eξ̂ θce
)), then one obtains:

PQP−1 =

 Kc + Ke −KeAd(
eξ̂ θce

)
−Ad(

e−ξ̂ θce
)Ke Ad(

eξ̂ θce
)(Ke − Γ)Ad(

e−ξ̂ θce
)


From the structure of Ke and Γ, Ad(
eξ̂ θce

)(Ke − Γ)Ad(
e−ξ̂ θce

) =

Ke − Γ and PQP−1 = Q̃ holds. Hence, Q̃ is similar to Q.
We start the proof of Theorem 1 by showing that S is lower

and upper bounded by class K functions α1, α2. Consider the
two class K functions:

α1(‖e‖) =
1
2
‖e‖2, α2(‖e‖) = ‖e‖2. (48)

From Proposition 5.3 in [9], ‖sk(eξ̂θ )∨‖2 ≤ φ(eξ̂θ ) ≤

2‖sk(eξ̂θ )∨‖2 holds when Assumption 2 and 3 are satisfied.
Then, α1(‖e‖) ≤ S ≤ α2(‖e‖) holds from (28).

Next, we consider the time derivative of S (28). Applying
the proposed input u in (31) to (30) yields

Ṡ = −νᵀK(Σ)ν + eᵀ
 0
Ad(

eξ̂ θee
)
(Vb

wo

(
ǧwo

)
− µ

(
ˇ̄gwo

))
. (49)

This is further bounded by Cauchy-Schwarz-inequality as

Ṡ ≤ −νᵀK(Σ)ν + ‖ee‖

∥∥∥∥Vb
wo

(
ǧwo

)
− µ

(
ˇ̄gwo

)∥∥∥∥ , (50)

where
∥∥∥∥Ad(

eξ̂ θee
)ee

∥∥∥∥ = ‖ee‖ holds in (50) since a rotation matrix
does not change the norm of a vector. From triangle inequality,
the second term in (50) is bounded as

‖ee‖

∥∥∥∥Vb
wo

(
ǧwo

)
− µ

(
ˇ̄gwo

)∥∥∥∥ ≤
‖ee‖

(∥∥∥∥Vb
wo

(
ǧwo

)
− µ

(
ǧwo

)∥∥∥∥ +
∥∥∥∥µ( ǧwo

)
− µ

(
ˇ̄gwo

)∥∥∥∥) . (51)

From Peter-Paul inequality and Lemma 3, we have

‖ee‖

∥∥∥∥Vb
wo

(
ǧwo

)
− µ

(
ǧwo

)∥∥∥∥
≤

1
2γ2

1

‖ee‖
2 +

γ2
1

2

∥∥∥∥Vb
wo

(
ǧwo

)
− µ

(
ǧwo

)∥∥∥∥2
(52)

‖ee‖
∥∥∥pee

∥∥∥ ≤ 1
2γ2

2

‖ee‖
2 +

γ2
2

2

∥∥∥pee

∥∥∥2
(53)

‖ee‖ · 2π ≤
1

2γ2
3

‖ee‖
2 + 2π2γ2

3 (54)

with positive constants γ1, γ2, γ3 > 0. Then, from Lemma 3
and inserting (51) to (54) into (50) yields

Ṡ ≤ −νᵀK(Σ)ν +
1
2
‖ee‖

2
 1
γ2

1

+
Lp

γ2
2

+
Lθ
γ2

3


+
γ2

1

2

∥∥∥∥Vb
wo

(
ǧwo

)
− µ

(
ǧwo

)∥∥∥∥2
+
γ2

2Lp

2

∥∥∥pee

∥∥∥2
+ 2γ2

3π
2Lθ (55)
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and by refactoring the terms with Γ from (36), we obtain

Ṡ ≤ −eᵀQ̃(Σ)e +
γ2

1

2

∥∥∥∥Vb
wo

(
ǧwo

)
− µ

(
ǧwo

)∥∥∥∥2
+ 2γ2

3π
2Lθ

Q̃(Σ) B

 Kc(Σ) + Ke(Σ) −Ke(Σ)Ad(
eξ̂ θce

)
−Ad(

e−ξ̂ θce
)Ke(Σ) Ke(Σ) − Γ

 .
From Lemma 4, Q̃(Σ) is positive definite when Q(Σ) is positive
definite. Therefore, minΣ λmin(Q̃(Σ)) = λQ also holds. From
(15) in Lemma 1 and (17), the following holds with probability
δ ∈ (0, 1):

Ṡ ≤ −λQ‖e‖2 +
γ2

1

2
∆̄2 + 2γ2

3π
2Lθ . (56)

Thus, using a positive constant η ∈ (0, 1) yields

Ṡ ≤ −λQ(1 − η)‖e‖2 − λQη‖e‖2 +
γ2

1

2
∆̄2 + 2γ2

3π
2Lθ.(57)

Define

ζ(δ) B

√
γ2

1∆̄2(δ) + 4γ2
3π

2Lθ
2ηλQ

(58)

D̄e B {e ∈ R12 | |θee| ≤ π/2, |θce| ≤ π/2, ‖e‖ ≥ ζ}, (59)

then the following holds with probability δ:

P
{

Ṡ < 0, ∀e ∈ D̄e

}
≥ δ (60)

Thus, from [22] it follows that the error e is ultimately bounded
with probability, and the ultimate bound is derived as

α−1(α2(ζ(δ))) =
√

2ζ(δ) =

√
γ2

1∆̄2(δ) + 4γ2
3π

2Lθ
ηλQ

. (61)

This completes the proof.
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