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Abstract
In this paperwe introduce and analyze an iteratively re-weighted algorithm, that allows
to approximate the weak solution of the p-Poisson problem for 1 < p � 2 by itera-
tively solving a sequence of linear elliptic problems. The algorithm can be interpreted
as a relaxed Kačanov iteration, as so-called in the specific literature of the numerical
solution of quasi-linear equations. The main contribution of the paper is proving that
the algorithm converges at least with an algebraic rate.

Mathematics Subject Classification 35J70 · 65L60

1 Introduction

In this paper we approach the numerical solution of the p-Poisson problem

− div(|∇u|p−2∇u) = f in �,

u = 0 on ∂�, (1.1)

where � ⊂ R
d is open and bounded and 1 < p < ∞. The solution might be scalar

or vector-valued.1

1 All our results also hold for the p-Poisson system, where the functions are vector-valued. To this end
sometimes R

d has to be replaced by R
N×d .
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2 L. Diening et al.

Nonlinear problems of this type appear in many applications, e.g. non-Newtonian
fluid theory [21], turbulent flow of a gas in porous media, glaciology or plastic
modeling. Moreover, the p-Laplacian has a similar model character for nonlin-
ear problems as the ordinary Laplace operator for linear problems; see [22] for an
introduction.

As usualwe are looking for theweak solution of (1.1). In particular,we are searching
for a function u ∈ W 1,p

0 (�) such that

∫

�

|∇u|p−2∇u · ∇ξ dx = 〈 f , ξ 〉 ∀ξ ∈ W 1,p
0 (�), (1.2)

where in the most general case f ∈ (W 1,p
0 (�))∗. It is well-known that the solution is

unique and coincides with the minimizer of the energy J : W 1,p
0 (�) → R defined

by

J (v) := 1
p

∫

�

|∇v|p dx − 〈 f , v〉. (1.3)

Due to the nonlinearity of the problem it is harder to obtain efficient numerical
solutions of this problem with a guaranteed performance. Our goal is to construct
solutions of (1.2) by means of a numerically accessible algorithm. In particular,
we construct an iterative algorithm that approximates solutions of (1.2), where in
each step only a linear elliptic problem has to be solved. Primarily, we focus here
on the iteration on the infinite dimensional space W 1,p

0 (�). However, the same
algorithm will immediately apply also to discretized versions of the p-Poisson
problem, e.g., by means of finite elements or wavelets. This approach would coin-
cide with the one adopted, for instance, in [5] of first finding an iteration on the
infinite-dimensional solution space and then discretizing in space. We will consider
in subsequent work the effect of the discretization and its adaptation to error
estimators.

In this paper we also restrict ourselves to the case p ∈ (1, 2], since we are in
particular interested in relatively small values of p, also because the case of p > 2 is
already addressed to a certain extent in [5]. We will see, e.g., in Example 20 that our
algorithm actually only works properly for the range of p ∈ (1, 2].

Coming from theweak formulation (1.2) one can interpret the problemas aweighted
Poisson problem

∫

�

a p−2∇u · ∇ξ dx = 〈 f , ξ 〉 ∀ξ ∈ W 1,2
0 (�) (1.4)

for the given f , where a : � → R and a = |∇u|. This suggests to iteratively calculate
for a given function vn the new iterate vn+1 as the solution of
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A Relaxed Kačanov iteration for the p-poisson problem 3

∫

�

|∇vn|p−2∇vn+1 · ∇ξ dx = 〈 f , ξ 〉 ∀ξ ∈ W 1,2
0 (�).

The advantage of this step is that the calculation of vn+1 only requires solving a
linear problem. This allows invoking relatively standard appraoches to discretize this
step and solve it numerically with guaranteed performances. The problem with this
approach, however, is that the weighted Poisson problem is only well posed if a is
bounded from above and from below away from zero. However, the weight |∇vn|p−2

may be degenerating, at points where |∇u| = 0 or |∇u| = ∞.
To overcome this problem we will use a relaxation arguments. Therefore, we intro-

duce in our algorithm two relaxation parameters ε−, ε+ ∈ (0,∞) with ε− � ε+ that
ensure that the weight is truncated properly from below and above. In particular, we
replace a by its truncation

ε− ∨ a ∧ ε+ := max {ε−,min {a, ε+}}.

Note that this is just the (pointwise) closest point projection of a to the truncation
interval [ε−, ε+]. The limits ε− ↘ 0 and ε+ ↗ ∞ will recover the unrelaxed or
original problem. We also write ε := [ε−, ε+] and interpret ε both as a pair {ε−, ε+}
and as the truncation interval [ε−, ε+]. We will write ε → [0,∞] as a short version
of ε− ↘ 0 and ε+ ↗ ∞. We will see later, see Corollary 15, that for f in the Lorentz
space Ld,1(�) the lower parameter ε− is the crucial one.

According to these considerations we propose the following algorithm:

Algorithm: The relaxed p-Kačanov algorithm

Data: Given f ∈ (W 1,p
0 (�))∗, v0 ∈ W 1,2

0 (�);
Result: Approximate solution of the p-Poisson problem (1.2);
Initialize: ε0 = [ε0,−, ε0,+] ⊂ (0,∞), n = 0;
while desired accuracy is not achieved yet do

Define an := εn,− ∨ |∇vn| ∧ εn,+
end
;
Calculate vn+1 by means of

∫

�

(εn,− ∨ |∇vn| ∧ εn,+)p−2∇vn+1 · ∇ξ dx = 〈 f , ξ 〉 ∀ξ ∈ W 1,2
0 (�);

Choose new relaxation interval εn+1 ⊃ εn ;
Increase n by 1;

Since 0 < εn,− � εn,+ < ∞ the equation for vn+1 in the algorithm is always well
defined, since it is uniformly elliptic (with constant depending on εn).

This algorithm is not completely new in the realm of quasi-linear equations. Such
an iterative linearization approach is in fact called the Kačanov method in [17,18] and
we refer to those papers for additional references related to the history of this method
for solving numerically quasi-linear equations. It was also proposed and analyzed
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4 L. Diening et al.

to solve total variation minimization problems in image processing, which can be
formally related to the 1-Laplace differential operator in [6,27].

Unfortunately, the results obtained in these aforementioned papers cannot be
applied straightforwardly to justify the convergence of the Kačanov iteration for equa-
tions involving the p-Laplace operator. In particular, to obtain quantitative estimates
of convergence with precise rates, as we do in this paper, one needs to employ sev-
eral finer tools, which have been explored in, e.g., [2,11,12,24], precisely to handle
singularities in nonlinear differential operators such as the p-Laplacian. In particular,
the theory of N-functions, Orlicz spaces [19], shifted N-functions [11] and Lipschitz
truncations, see [13] and [4] have been used systematically in the analysis of such
nonlinear operators, allowing the development of a potential theory analogous to the
one known of linear equations.

Besides these tools from nonlinear potential theory, the variational formulation
of the algorithm, as introduced first in [6], and further used to analyze other related
iteratively re-weighted least squares algorithms [10,16], offers the right framework
for the analysis also of the p-Kačanov iteration.

Taking inspiration from [6,10], in Sect. 2 we provide the variational derivation of
this algorithm based on the alternating minimization of a relaxed energy with two
parameters.

If we apply the algorithm with fixed relaxation parameter ε independent on n, i.e.
0 < ε− � ε+ < ∞, then our iterates vn converge to the unique minimizer uε of
another one-parameter relaxed energy Jε . We study this limit in Sect. 4 and present
(linear) exponential rates of convergence.

In Sect. 3 we study how the minimizers uε of the relaxed energy Jε converge to
the minimizer u of the original problem. This convergence can also be interpreted as
a limit in the sense of �-convergence [3,9]. Differently, e.g., from [6], we use a novel
argument based on the Lipschitz truncation technique to establish a recovery sequence
for the � − lim sup. In particular, thanks to the finer tools mentioned above, we can go
beyond a pure compactness argument as provided by the �-limit and derive precise
rates of convergence depending on ε.

Finally, in Sect. 5 we combine the estimates of the two previous sections to deduce
an overall error analysis with algebraic rates.

2 Variational formulation of the algorithm

In this section we show that the algorithm can be deduced from an alternating min-
imization of a relaxed energy. Recall that 1 < p � 2 throughout this article. Since
the case p = 2 is just the standard Laplace problem, it suffices in the following to
consider the case 1 < p < 2 only.

Let us introduce some standard notation. We use W 1,p(�) and W 1,p
0 (�) for the

Sobolev space without and with zero boundary values. We use c for a generic positive
constant whose value may change from line to line. We use f � g for f � c g. We
also write f � g for f � g and g � f .

The most important feature of the algorithm is that it only needs to solve linear sub-
problems, which carry their own energy depending on the weight. Therefore, very
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A Relaxed Kačanov iteration for the p-poisson problem 5

much inspired by the work [6,10] and with appropriate adjustments, we extend the
energy by an additional parameter a : � → [0,∞) such that the new functional is
quadratic with respect to v. In particular, we define

J (v, a) :=
∫

�

1
2a

p−2|∇v|2 +
(
1
p − 1

2

)
a p dx − 〈 f , v〉.

This energy is well-defined for all v ∈ W 1,p
0 (�) and measurable a : � → [0,∞)

but might take the value ∞.
This relaxed energy is convex with respect to (v, a). This follows from the fact that

β(t, a) := 1
2a

p−2t2 is convex on [0,∞)2, since

(∇2β)(t, a) =
(

a p−2 (p − 2)a p−3t
(p − 2)a p−3t 1

2 (p − 2)(p − 3)a p−4t2

)

is nonnegative definite as a p−2 � 0 and det((∇2β)(t, a)) = a2p−6t2(2− p)(p−1) �
0. Notice that in the latter lower bound we specifically used 1 < p � 2.

Remark 1 If p > 2, then the relaxed energy J (v, a) is neither bounded from below
nor convex with respect to a. Therefore, the algorithm derived below using the min-
imization with respect to a does not lead to a feasible problem for p > 2. See also
Remark 21.

Note that J (v, a) (for fixed a) is quadratic with respect to v and a minimization
with respect to v leads formally to the elliptic equation

− div(a p−2∇v) = f ,

see (1.4) for its weak form.
Unfortunately, the ellipticity of this system degenerates for a(x) → 0 and a(x) →

∞. To overcome this problem we restrict the minimization with respect to a (for
fixed v) to functions with values within a relaxation interval [ε−, ε+] ⊂ (0,∞), i.e.
ε− � a(x) � ε+. This minimization with respect to a (for fixed v) has a simple
solution, namely

argmin
a : ε−�a�ε+

J (v, a) = ε− ∨ |∇v| ∧ ε+, (2.1)

where ∨ denotes the maximum and ∧ the minimum, since

∂
∂a

(
1
2a

p−2|∇v|2 + ( 1p − 1
2 )a

p
)

= 2−p
2 a p−3(a2 − |∇v|2).

This allows us to define for fixed ε = [ε−, ε+] ⊂ [0,∞] another relaxed energy

Jε(v) := J (v, ε− ∨ |∇v| ∧ ε+) = min
a : ε−�a�ε+

J (v, a). (2.2)
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6 L. Diening et al.

This immediately implies that the relaxed energy Jε(v) is monotonically decreasing
with respect to ε, i.e., an increasing interval ε in terms of inclusion decreases the
energy Jε(v).

This new relaxed energy Jε somehow “hides” the constrained minimization with
respect to a. We can write Jε : W 1,p

0 (�) → R ∪ {∞} explicitly as

Jε(v) =
∫

�

κε(|∇v|) dx − 〈 f , v〉

with κε : R�0 → R given by

κε(t) :=

⎧⎪⎨
⎪⎩

1
2ε

p−2
− t2 + ( 1p − 1

2 )ε
p
− for t � ε−

1
p t

p for ε− � t � ε+
1
2ε

p−2
+ t2 + ( 1p − 1

2 )ε
p
+ for t � ε+.

Note that 1
p t

p � κε(t) for all t � 0 and 1
p t

p = limε→[0,∞] κε(t) for all t � 0.

Since κε(t) � ε
p−2
+ t2 for large t , we see that Jε(v) < ∞ if and only if v ∈

W 1,2
0 (�). Moreover, limε→[0,∞] Jε(v) = J (v) for all v ∈ W 1,2

0 (�) and J (v) �
lim infε→[0,∞] Jε(v) for all v ∈ W 1,p

0 (�).
Based on the above observations it is natural to iteratively minimize J (v, a) alter-

nating between v and a. Certainly, we have also to increase the relaxation interval ε.
Thus our algorithm reads as follows:

Algorithm: The relaxed p-Kačanov algorithm (variational formulation)

Data: Given f ∈ (W 1,p
0 (�))∗, v0 ∈ W 1,2

0 (�);
Result: Approximate solution of the p-Poisson problem (1.2);
Initialize: ε0 = [ε0,−, ε0,+] ⊂ (0,∞), n = 0;
while desired accuracy is not achieved yet do

Calculate an by means of

an := argmin
a : ε−�a�ε+

J (vn, a);

Calculate vn+1 by means of

vn+1 := argmin
v∈W 1,2

0 (�)

J (v, an);

Choose a new relaxation interval εn+1 ⊃ εn ;
Increase n by 1;

end
This is just the algorithm given in the introduction written in different form.
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A Relaxed Kačanov iteration for the p-poisson problem 7

3 Convergence in the relaxation parameter

In this section we show that the minimizers uε of the relaxed energy Jε converge to
the minimizer u of J for ε → [0,∞] and derive an upper bound for the relaxation
error.

Since Jε(v) � J (v) and J isW 1,p
0 (�) coercive, it follows that Jε is also coercive

in W 1,p
0 (�). However, Jε(v) < ∞ requires v ∈ W 1,2

0 (�), as we have seen above.

Certainly, there is a gap between the space W 1,p
0 (�) and W 1,2

0 (�). To close this gap
we need a finer analysis of the energies, which requires the use of Orlicz spaces. We
state in the following some standard results for these spaces, see for Example [19].

A function φ : R�0 → R is called an N-function if and only if there is a right-
continuous, positive on the positive real line, and non-decreasing functionφ′ : R�0 →
R with φ′(0) = 0 and limt→∞ φ′(t) = ∞ such that φ(t) = ∫ t

0 φ′(τ ) dτ . An N-
function is said to satisfy the �2-condition if and only if there is a constant c > 1
such that φ(2t) � c φ(t). For an N-function satisfying the �2-condition we define
the Orlicz space to consist of those functions v ∈ L1

loc(�) with
∫
�

φ(|v|) dx < ∞. It
becomes a Banach space with the norm ‖ f ‖φ := inf {γ > 0 : ∫

�
φ(|v|/γ ) dx � 1}.

The Orlicz-Sobolev space W 1,φ(�) then consists of those v ∈ Lφ such that the weak
derivative∇v is also in Lφ , equippedwith the norm ‖v‖φ+‖∇v‖φ . The spaceW

1,φ
0 (�)

denotes the subspace of those functions fromW 1,φ(�)with zero boundary trace,which
coincides with the closure ofC∞

0 (�) inW 1,φ(�). For example choosing φ(t) := 1
p t

p

we have Lφ(�) = L p(�) and W 1,φ
0 (�) = W 1,p

0 (�).
The function κε cannot be an N-function, since κε(0) �= 0, . However, if we define

φε(t) := κε(t) − κε(0), (3.1)

then φε is actually an N-function. It can be verified that φε satisfies the �2-condition
with a constant independent of ε.

Since φε(t) � ε
p−2
+ t2 for large t and � is bounded, we have Lφε (�) � L2(�).

However, the constant of the embedding Lφε (�) ↪→ L2(�) depends on ε, so this
equivalence is not of much use. Instead we use the chain of embeddings

L2(�) ↪→ Lφε (�) ↪→ L p(�), (3.2)

with constants independent of ε. This follows from the fact that the Simonenko indices
of φε are within [p, 2]. We refer the reader to, e.g., [28, Chapter 2] for the details.

Since φε is strictly convex and κε(t) = φε(t)+κε(0), the energyJε admits a unique
minimizer uε ∈ W 1,φε

0 (�) whose Euler-Lagrange equation is

∫
�

(ε− ∨ |∇uε | ∧ ε+)p−2∇uε · ∇ξ dx = 〈 f , ξ 〉 ∀ξ ∈ W 1,φε

0 (�). (3.3)

123



8 L. Diening et al.

At this we used that

φ′
ε(t)

t
= (ε− ∨ t ∧ ε+)p−2. (3.4)

Remark 2 Let us consider the special case ε+ = ∞. Then, the derivative of the
truncated function reads φ′

ε(t) = (ε− ∨ t)p−2t . A different modification, namely
(ε− + t)p−2t , would lead to the so-called shifted N-function of 1

p t
p, as introduced

in more generality in [11], which has similar properties as our truncation functions.
However, the version from this paper ismore suitable for our energy relaxation, since it
is closer to the original function 1

p t
p on the truncation interval ε (the derivatives agree

there). See the Appendix for more information on uniformly convex Orlicz functions
and their shifted verions.

Lemma 3 The functions φ and φε are uniformly convex Orlicz functions in the sense
of Sect. B from the Appendix. The convexity constants are independent of ε.

Proof The uniform convexity of φ follows from φ′′(t) t
φ′(t) = (p − 1) and Lemma (B.2).

Now, for t ∈ (ε−, ε+) we have φ′′
ε (t) t

φε′(t) = (p − 1), while for t ∈ (0,∞) \ [ε−, ε+] we
have φ′′

ε (t) t
φ′

ε (t)
= 1. Hence, the claim for φε follows again by Lemma (B.2). ��

Since W 1,p
0 (�) is the largest space, see (3.2), which contains both uε and u, it is

natural to consider all energies J and Jε as functionals on W 1,p
0 (�) with possible

value ∞.
Let us recall that the goal of this section is to show thatuε converges tou inW

1,p
0 (�).

Since W 1,p
0 (�) is uniformly convex, strong convergence is a consequence of weak

convergence and norm convergence, or equivalently, in this case, energy convergence
J (uε) → J (u). It is possible to show the weak convergence as well as that of the
energy by means of �-convergence. Indeed, we will see in Remark 11 thatJε → J in
the sense of �-convergence. However, we will derive in the following much stronger
results that provide us with a precise rate of convergence for the energies. This energy
convergence implies strong convergence of the sequence, see the proof of Corollary 10.

Let us turn to the convergence of the energies J (uε) → J (u) for ε → [0,∞].
SinceJε is monotonically decreasing with respect to ε, it follows from theminimizing
properties of u and uε that

0 � J (uε) − J (u) � Jε(uε) − J (u). (3.5)

Therefore, it suffices to prove the stronger claim

Jε(uε) − J (u) → 0 as ε → [0,∞]. (3.6)

In fact, we will later need this stronger estimate in the other sections.
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A Relaxed Kačanov iteration for the p-poisson problem 9

It follows from the minimizing property of uε that

Jε(uε) − J (u) � Jε(u) − J (u).

So it would be natural to estimate Jε(u) − J (u) in terms of ε and u. However,
the solution u is unfortunately a priori only a W 1,p

0 -function, so Jε(u) might be
infinity. Hence, we cannot assure that this difference is small. This is only possible
if we assume higher regularity of u. In order to treat arbitrary right-hand sides f ∈
(W 1,p

0 (�))∗ at this point, we have to use a much more subtle argument. For this we
need a result from [13, Subsection 3.5] and [4, Theorem 2.7], which allows to change u
on a small set such that it becomes a Lipschitz function. This technique is known as
the Lipschitz truncation technique. Its origin goes back to [1]. As a tool we need the
Hardy-Littlewood operator, e.g. [25],

(Mg)(x) := sup
r>0

−
∫
Br (x)

|g|dx := sup
r>0

1

|Br (x)|
∫
Br (x)

|g|dx

where |Br (x)| denote the Lebesgue measure of Br (x).

Theorem 4 [Lipschitz trunction [4,13]] Let v ∈ W 1,p
0 (�) and for all λ > 0 define

Oλ := Oλ(v) := {x ∈ � : M(∇v)(x) > λ},

Then, there exists an approximation Tλv ∈ W 1,∞
0 (�) of v with the following proper-

ties:

(a) {v �= Tλv} ⊂ Oλ.
(b) ‖Tλv‖L p(�) � ‖v‖L p(�).
(c) ‖∇Tλv‖L p(�) � ‖∇v‖L p(�).
(d) |∇Tλv| � λχOλ

+ |∇v|χ�\Oλ
� λ almost everywhere.

(e) ‖∇(v − Tλv)‖L p(�) � ‖∇v‖L p(Oλ).

(f) vλ → v in W 1,p
0 (�) as λ → ∞.

All our convergence results concerning the relaxation parameter ε are based on the
following result, which shows how the energy relaxation depends on the truncation
interval ε.

Theorem 5 The estimate

Jε(uε) − J (u) � ε
p
− +

∫

Oλ(u)

|∇u|p dx (3.7)

holds for all λ � ε+/c1, where c1 is the (hidden) constant from Theorem 4 (d).

Proof Let λ � ε+/c1 and let Tλu be the Lipschitz truncation of u. Then

|∇Tλu| � c1 λ � ε+.
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10 L. Diening et al.

Using the minimizing property of uε and the equation for u we get

Jε(uε)−J (u) � Jε(Tλu) − J (u) =
∫

�

(
κε(|∇Tλu|)− 1

p |∇u|p
)
dx − 〈 f , Tλu − u〉

=
∫

�

(
κε(|∇Tλu|)− 1

p |∇u|p
)
dx −

∫
�

|∇u|p−2∇u · ∇(Tλu−u) dx .

Using |∇Tλu| � ε+, κε(t) = 1
p t

p for t ∈ [ε−, ε+], κε(t) � 1
p ε

p
− for t ∈ [0, ε−], and

Tλu = u outside of Oλ we get

κε(|∇Tλu|) − 1
p |∇u|p �

⎧⎪⎨
⎪⎩

1
p ε

p
− on {|∇Tλu| � ε−},

0 on
(
� \ Oλ

) ∩ {|∇Tλu| > ε−},
1
p |∇Tλu|p on Oλ ∩ {|∇Tλu| > ε−}.

This, the previous estimate and Theorem 4 (e) imply

Jε(uε) − J (u) � |�| 1
p ε

p
− +

∫

Oλ(u)

1
p |∇Tλu|p dx +

∫

Oλ(u)

|∇u|p−1|∇(Tλu − u)| dx

� ε
p
−+

∫

Oλ(u)

|∇Tλu|p dx +
∫

Oλ(u)

|∇u|p dx+
∫

Oλ(u)

|∇(Tλu − u)|p dx

� ε
p
− +

∫

Oλ(u)

|∇u|p dx .

This proves the claim. ��
Corollary 6 Jε(uε) → J (u) and J (uε) → J (u) as ε → [0,∞].
Proof Due to (3.5) it suffices to prove Jε(uε) → J (u). Consider the right-hand side
of (3.7) with λ := ε+/c1. The first term goes to zero as ε− → 0. Now consider the
second term. SinceOλ(u) ⊂ {M(∇u) > λ} and∇u ∈ L p(�)we get by the weak L p-
estimate of the maximal operator |Oλ(u)| � λ−p‖∇u‖p

p. Therefore |Oλ(u)| → 0
as ε+ → ∞, which implies

∫
Oλ(u)

|∇u|p dx → 0 as ε+ → ∞. ��
Before we continue we need the following natural quantities, see [11].

Definition 7 For P ∈ R
d we define

Aε(P) :=
{

φ′
ε (|P|)
|P| P if P �= 0

0 if P = 0
and Vε(P) :=

{√
φ′

ε (|P|)
|P| P if P �= 0

0 if P = 0.

Moreover, by A := A[0,∞] and V := V[0,∞] we denote the unrelaxed versions.
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A Relaxed Kačanov iteration for the p-poisson problem 11

The following two lemmas are modifications of similar results of [11, Lemma 3]
and [12, Lemma 16]. In fact, they follow from the properties of uniformly convex
Orlicz functions; see Sect. B from the Appendix for more details.

Lemma 8 For P, Q ∈ R
d

(Aε(P) − Aε(Q)) · (P − Q) �
φ′

ε(|P| ∨ |Q|)
|P| ∨ |Q| |P − Q|2 � |Vε(P) − Vε(Q)|2.

where the constants can be chosen independently of ε.

Proof This follows directly from the uniformconvexity ofφε , seeLemma3, Lemma41
and Lemma 40. ��
Lemma 9 The following estimates hold for arbitrary v ∈ W 1,φε

0 (�) and uε being the
minimizer of Jε:

Jε(v) − Jε(uε) �
∫

�

(Aε(∇v) − Aε(∇uε)) · ∇(v − uε) dx

�
∫

�

|Vε(∇v) − Vε(∇uε)|2 dx

� Jε(v) − Jε(uε).

In particular, for the case where ε = [0,∞] the statement actually implies also

J (v) − J (u) �
∫
�

|V (∇v) − V (∇u)|2 dx .

Proof This is just Lemma 42 applied to φε . ��
We are now prepared to show the convergence of minimizers uε of Jε to u.

Corollary 10 uε → u in W 1,p
0 (�) as ε → [0,∞].

Proof Due to Corollary 6 we haveJ (uε)−J (u) → 0 as ε → [0,∞]. Now Lemma 9
for the case where ε = [0,∞] and v = uε implies V (∇uε) → V (∇u) in L2(�). It
follows from the shift-change-lema, see Corollary 44 or [12, Corollary 26], that for
all δ > 0 there exists cδ > 0 such that

|∇u − ∇uε |p � cδ|V (∇uε) − V (∇u)|2 + δ|∇u|p.

This and V (∇uε) → V (∇u) in L2(�) implies ∇uε → ∇u in L p(�). ��
Remark 11 [�-convergence] It is also possible to deduceJε(uε) → J (u) anduε → u
in W 1,p

0 (�) by means of �-convergence: As the underlying topological space we

choose W 1,p
0 (�) equipped with the weak topology. Then the Lipschitz truncation
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12 L. Diening et al.

provides a recovery sequence for v ∈ W 1,p
0 (�) implying �- limε→[0,∞] Jε = J .

Indeed, it follows as in the proof of Theorem 5 that for all v ∈ W 1,p
0 (�)

∣∣Jε(Tε+/c1v) − J (v)
∣∣ � ε

p
− +

∫
Oε+/c1 (v)

|∇v|p dx + ∣∣〈 f , Tε+/c1v − v〉∣∣.

So the properties of the Lipschitz truncation, see Theorem 4 (f), imply that the right-
hand side goes to zero as ε → [0,∞]. Hence, Tε+/c1v is a recovery sequence of v.

Moreover, Jε � J , so the standard theory of �-convergence [3,9] proves uε⇀u
inW 1,p

0 (�) andJε(uε) → J (u) for ε → [0,∞]. The uniform convexity ofW 1,p
0 (�)

implies uε → u in W 1,p
0 (�).

To our knowledge this is the first time that the Lipschitz truncation is used to
construct a recovery sequence for the�−lim sup in a�-convergence argument related
to energies on W 1,p

0 (�).

Up to now,wediscussed the convergence of uε → uwithout any additional assump-
tions on the data f ∈ (W 1,p

0 (�))∗ and the domain �. If f is more regular and ∂�

is suitably smooth, then we obtain specific rates for the convergence. The rates of
convergence will follow from the regularity of ∇u in terms of the weak-Lq spaces
Lq,∞(�), which consists of all functions v such that

‖v‖Lq,∞(�) := sup
t>0

‖t χ{|v|>t}‖Lq (�) < ∞.

Lemma 12 Let ∇u ∈ Lq,∞(�) for some q > p. Then,

Jε(uε) − J (u) � ε
p
− + ε

−(q−p)
+ ‖∇u‖qLq,∞(�).

Proof First note thatM : Lq,∞(�) → Lq,∞(�) is bounded. This follows for example
by extrapolation theory, see [8, Theorem 1.1]. In particular,

λ|Oλ(u)| 1q � ‖λ χ{M(∇u)>λ}‖Lq (�) � ‖M(∇u)‖Lq,∞(�) � ‖∇u‖Lq,∞(�).

Moreover, let Lq,1(�) denote the usual Lorentz space, which consists of functions v

such that

‖v‖Lq,1(�) := q

∞∫

0

|{|v| > t}| 1q dt = q

∞∫

0

‖t χ{|v|>t}‖Lq (�)

dt

t
< ∞.

Since (Ls′,1)∗ = Ls,∞ for 1 < s < ∞ and 1
s + 1

s′ = 1 we obtain

∫

Oλ(u)

|∇u|p dx �
∥∥|∇u|p∥∥

L
q
p ,∞

(�)
‖χOλ(u)‖

L
q

q−p ,1
(�)
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A Relaxed Kačanov iteration for the p-poisson problem 13

� ‖∇u‖p
Lq,∞(�)|Oλ(u)| q−p

q

� ‖∇u‖qLq,∞(�) λ−(q−p),

where |Oλ| denotes the Lebesgue measure of Oλ. Applying Theorem 5 with λ :=
ε+/c1 yields the statement. ��
To exemplify the consequences of Lemma 12 we combine it with the regularity results
of [7,14]:

Theorem 13 ([7], Theorems 1.3 and 1.4) Let � ⊂ R
d be convex or let its boundary

∂� ∈ W 2Ld−1,1 (for example ∂� ∈ C2 suffices2) and additionally f ∈ Ld,1(�).
Then ∇u ∈ L∞(�).

Theorem 14 ([14], (4.3)) Let � be a polyhedral domain where the inner angle is

strictly less than 2π and f ∈ L p′
(�) and 1

p + 1
p′ = 1. Then ∇u ∈ L

pd
d−1 ,∞(�).

Proof Actually, it is proven in [14] (4.3) that |∇u| p
2 ∈ N 1

2 ,2(�) (Nikolskiı̆ space).

Now, one can use the embedding N 1
2 ,2(�) ↪→ L

2d
d−1 ,∞(�) of Lemma 26 in the

Appendix. ��
Corollary 15 Under the assumptions of Theorem 13 we have

Jε(uε) − J (u) � ε
p
−.

Proof Since ∇u ∈ L∞(�), we have M(∇u) ∈ L∞(�) and so for λ := ε+/c1 and ε+
large enough, Oλ(u) = ∅. Hence, Theorem 5 implies the estimate. ��
Corollary 16 Under the assumptions of Theorem 14 we have

Jε(uε) − J (u) � ε
p
− + ε

− p
d−1+

Proof Since ∇u ∈ L
pd
d−1 ,∞(�), an application of Lemma 12 finishes the pf. ��

Remark 17 The choice f = 0 and hence u = 0 gives Jε(u) = κε(0)|�| � ε
p
−. This

shows that the estimate in Corollary 15 is sharp.

4 Convergence of the Kačanov-iteration

In this section we study the convergence of the Kačanov-iteration for fixed relax-
ation parameter ε = [ε−, ε+]. In particular, for v0 ∈ W 1,2

0 (�) arbitrary we calculate
recursively vn+1 by

∫

�

(ε− ∨ |∇vn| ∧ ε+)p−2∇vn+1 · ∇ξ dx = 〈 f , ξ 〉 ∀ξ ∈ W 1,2
0 (�). (4.1)

2 The condition ∂� ∈ W 2Ld−1,1 means that the weak Hessians of the local maps characterizing the
boundary are in the Lorentz space Ld−1,1.
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14 L. Diening et al.

We will show that vn converges to the minimizer uε of the relaxed energy Jε . In
particular, we show exponential decay of the energy error Jε(vn)−Jε(uε). The proof
is based on the following estimate, proved below.

Theorem 18 There is a constant cK > 1 such that

Jε(vn) − Jε(vn+1) � δ (Jε(vn) − Jε(uε))

holds for δ := 1
cK

(
ε−
ε+ )2−p.

This theorem says that in each iteration we reduce the energy by a certain part of the
remaining energy error. This implies

Jε(vn+1) − Jε(uε) = (Jε(vn) − Jε(uε)
) − (Jε(vn) − Jε(vn+1)

)
� (1 − δ)

(Jε(vn) − Jε(uε)
)
.

(4.2)

As a direct consequence we will obtain the following exponential convergence result.

Corollary 19 There is a constant cK > 1 such that

Jε(vn) − Jε(uε) � (1 − δ)n(Jε(v0) − Jε(uε)).

holds for δ := 1
cK

(
ε−
ε+ )2−p.

Let us get to the proof of Theorem 18.

Proof (Proof of Theorem 18) Using Lemma 9, the equation (3.3) for uε, the equa-
tion (4.1) for vn+1, and Young’s inequality (see Remark 32) we get, for arbitrary
γ > 0,

Jε(vn) − Jε(uε) �
∫

�

(Aε(∇vn) − Aε(∇uε)) · ∇(vn − uε) dx

=
∫

�

φ′
ε (|∇vn |)
|∇vn | ∇(vn − vn+1) · ∇(vn − uε) dx

� 1
γ

1
2

∫

�

φ′
ε (|∇vn |)
|∇vn | |∇(vn − vn+1)|2 dx

︸ ︷︷ ︸
=:I

+γ 1
2

∫

�

φ′
ε (|∇vn |)
|∇vn | |∇(vn − uε)|2 dx

︸ ︷︷ ︸
=:I I

.

Let us define

Jε(v, a) := J (v, ε− ∨ a ∧ ε+) .
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A Relaxed Kačanov iteration for the p-poisson problem 15

For the first term I we calculate with the equation (4.1) for vn+1

I = 1
2

∫

�

φ′
ε (|∇vn |)
|∇vn | |∇(vn − vn+1)|2 dx

= Jε(vn, |∇vn|) − Jε(vn+1, |∇vn|)
� Jε(vn, |∇vn|) − Jε(vn+1, |∇vn+1|)
= Jε(vn) − Jε(vn+1).

To establish the inequality above, we used the fact that

an+1 = ε− ∨ |∇vn+1| ∧ ε+ = argmin
a : ε−�a�ε+

J (vn+1, a),

and

Jε(vn+1, |∇vn+1|) = J (vn+1, ε− ∨ |∇vn+1| ∧ ε+)

� J (vn+1, ε− ∨ |∇vn| ∧ ε+) = Jε(vn+1, |∇vn|).

For the second term I I we use ε
p−2
+ � φ′

ε (t)
t � ε

p−2
− , implying φ′

ε (t)
t � (

ε+
ε− )2−p φ′

ε (s)
s ,

for any s, t � 0, Lemma 8 and Lemma 9 to get

I I � 1
2 (

ε+
ε− )2−p

∫

�

φ′
ε (|∇vn |∨|∇uε |)
|∇vn |∨|∇uε | |∇(vn − uε)|2 dx

� c (
ε+
ε− )2−p (Jε(vn) − Jε(uε)).

Putting all estimates together we get

γ (1 − cγ (
ε+
ε− )2−p) (Jε(vn) − Jε(uε)) � Jε(vn) − Jε(vn+1).

Now, maxγ>0 γ (1 − cγ (
ε+
ε− )2−p) = 1

4c (
ε−
ε+ )2−p yields the statement. ��

Example 20 (Peak function) Let� := B1(0) and f (x) = − div( x
|x | ). Then f /∈ L1(�)

but still f ∈ (W 1,1
0 (�))∗ ⊂ (W 1,p

0 (�))∗ . Then the minimizer of J is given by
u(x) = 1 − |x |, which look like a peak. Since |∇u| ≡ 1, the factor |∇u|p−2 in the
p-Laplace operator does not appear for the minimizer. So in this case u also minimizes
every Jε as long as ε− � 1 and ε+ � 1. This follows from

Jε(u) = J (u) � J (v) � Jε(v)

for all v ∈ W 1,φε

0 (�).
Let us see how our algorithm performs with the starting value v0 := 0. It is easy to

see that vn = αnu with

α0 := 0 and αn+1 := (ε− ∨ αn ∧ ε+)2−p. (4.3)
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16 L. Diening et al.

Since p ∈ (1, 2) one can show αn = ε
(2−p)n

− by induction and

Jε(vn) − J (u)p(ε(2−p)n

− − 1)).

Note that

1
p t

p − 1
p − (t − 1) � p−1

2 (ln(t))2 for all t ∈ (0, 1].

Moreover,

1
p t

p − 1
p − (t − 1)

p−1
2 (ln(t))2

→ 1 as t ↗ 1. (4.4)

This estimate with s := (2 − p)n ∈ (0, 1] and t := εs− ∈ (0, 1] gives

Jε(vn) − J (u) � 1
2 |B1(0)|(p − 1) ln(ε−)2(2 − p)2n (4.5)

is sharp. Indeed, the energydifferencesJ (vn)−J (u) = Jε(vn)−J (u) asymptotically
behave like 1

2 |B1(0)|(p − 1) ln(ε−)2(2 − p)2n for large n, in view of (4.4).
This shows that it is impossible to get an energy reduction as in (4.2) with δ inde-

pendent of ε. Indeed, Corollary 19 would imply

Jε(vn) − Jε(uε) � (1 − δ)n
(Jε(v0) − Jε(uε)

)
� (1 − δ)nJ1(v0),

which contradicts the above asymptotic estimate (4.5).
Nevertheless, our asymptotic shows that in this particular case

Jε(vn) − Jε(uε) � cε (1 − δ)n

with 1 − δ = (2 − p)2 < 1 independent of ε. Therefore, it remains open if such an
estimate holds in the general case.

Remark 21 Although our considerations are all under the assumption 1 < p � 2 it is
interesting to check how the algorithm performs in the case p > 2 for our Example 20.

If p � 3 and ε+ := 1
ε− for some ε− < 1, then it follows from (4.3) that

α0 = 0 and αn = ε
(−1)n(p−2)
− for n � 1.

Therefore, the Kačanov iteration does not converge as p � 3.
If p ∈ (2, 3) and ε+ := 1

ε− , then it follows from (4.3) that

α0 = 0 and αn = ε
(2−p)n

− for n � 1

and vn still converges to u.
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A Relaxed Kačanov iteration for the p-poisson problem 17

5 Algebraic rate

Aswe learned in the last section theKačanov iteration converges for fixed ε, but the rate
depends badly on the choice of the relaxation interval ε = [ε−, ε+]. Furthermore, we
have algebraic convergence of the error Jε(uε)−J (u) induced by the relaxation. We
will combine these results to deduce an algebraic rate of the full error Jεn (vn)−J (u)

in terms of n for a specific predefined choice of εn . To achieve our goal we will use
that |∇u| ∈ Lq,∞(�) for some q > p, which is justified by Theorems 13 and 14.

Let us consider a sequence of solutions created byour relaxed p-Kačanov algorithm.
In particular, εn = [εn,−, εn,+] is nowan increasing sequence of intervals. Then exactly
as in Theorem 18 we get the following estimate.

Theorem 22 There is a constant cK > 1 such that

Jεn (vn) − Jεn (vn+1) � δn (Jεn (vn) − Jεn (uεn ))

holds for δn := 1
cK

(
εn,−
εn,+ )2−p.

Since εn ⊂ εn+1, we have Jεn+1 � Jεn . This and Theorem 22 imply

Jεn+1(vn+1) − J (u)

� Jεn (vn+1) − J (u)

= (Jεn (vn) − J (u)
) − (Jεn (vn) − J εn(vn+1)

)
�

(Jεn (vn) − J (u)
) − δn

(Jεn (vn) − Jεn (uεn )
)

= (1 − δn)
(Jεn (vn) − J (u)

) + δn
(Jεn (uεn ) − J (u)

)
.

Now, Lemma 12 and |∇u| ∈ Lq,∞(�) ensure the existence of cR > 0 such that

Jε(uε) − J (u) � cR(ε
p
− + ε

−(q−p)
+ ). (5.1)

This and the previous estimate therefore imply

Jεn+1(vn+1) − J (u) � (1 − δn)
(Jεn (vn) − J (u)

) + δncR(ε
p
n,− + ε

−(q−p)
n,+ ).

(5.2)

Without the last term δn+1cR(ε
p
n,− + ε

−(q−p)
n,+ ) we would get a reduction of the

error Jεn (vn) − J (u) by the factor (1 − δn). On the other hand this last term is
small if εn,− → 0 and εn,+ → ∞, so it should not bother too much. Nevertheless, the
reduction factor (1− δn) tends to 1 if εn,− → 0 and εn,+ → ∞. The idea however is
the following: if δn goes to zero slowly, then the product

∏n
i=1(1 − δi ) still tends to

zero algebraically.
Let us be more precise. We define another relaxed energy Gn by

Gn := Jεn (vn) + K1 (ε
p
−,n + ε

−(q−p)
+,n ) and G∞ := J (u), (5.3)
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18 L. Diening et al.

where K1 > 0 will be determined below. Moreover, choose

α, β > 0 with α + β � 1
2−p (5.4)

and define

εn := [(n + 1)−α, (n + 1)β ]. (5.5)

Then

δn = 1
cK

( εn,−
εn,+

)2−p = 1
cK

((n + 1)−α−β)2−p � 1
cK

1
n+1 . (5.6)

In particular, the algorithm with this choice of εn reads as follows:
Algorithm: The relaxed p-Kačanov algorithm with algebraic rate

Data: Given f ∈ (W 1,p
0 (�))∗, v0 ∈ W 1,2

0 (�);
Result: Approximate solution of the p-Poisson problem (1.2);
Initialize: n = 0; α, β > 0 such that α + β < 1

2−p ;

while desired accuracy is not achieved yet do
Define εn := [(n + 1)−α, (n + 1)β ];
Calculate vn+1 by means of

∫

�

(εn,− ∨ |∇vn| ∧ εn,+)p−2∇vn+1 · ∇ξ dx = 〈 f , ξ 〉 ∀ξ ∈ W 1,2
0 (�) ;

Increase n by 1;
end

We continue to derive a decay estimate for Gn − G∞.

Lemma 23 There exists K = K (α, β, p, q) (which appears in the definition of Gn)
and some c3 = c3(α, β, p, q) � 1, such that for all n ∈ N

(Gn+1 − G∞) � (1 − 1
c3(n+1) )(Gn − G∞).

Proof Define

ρn := ε
p
−,n + ε

−(q−p)
+,n = (n + 1)−α p + (n + 1)−(q−p)β .

Hence it follows by Lemma 27 in the Appendix that there exists c2 = c2(α, β, p, q) �
1 with

ρn − ρn+1 � 1
c2

1
n+1ρn . (5.7)

In particular, ρn satisfies a decay estimate!
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A Relaxed Kačanov iteration for the p-poisson problem 19

On the other hand it follows from Theorem 22 that

Jεn (vn) − Jεn+1(vn+1)

� Jεn (vn) − Jεn (vn+1)

� δn(Jεn (vn) − Jεn (uεn ))

� 1

cK

1

n + 1
(Jεn (vn) − Jεn (uεn ))

= 1

cK

1

n + 1
(Jεn (vn) − J (u)) − 1

cK

1

n + 1
(Jεn (uεn ) − J (u)).

We deduce from (5.1), the definition of εn and ρn that

Jε(uε) − J (u) � cR(ε
p
n,− + ε

−(q−p)
n,+ ) = cRρn .

This and the previous estimate prove

Jεn (vn) − Jεn+1(vn+1) � 1
cK

1
n+1 (Jεn (vn) − J (u)) − cR

cK
1

n+1ρn .

Since Gn = Jεn (vn) + K1ρn , it follows together with (5.7) that

Gn+1 − Gn � 1
cK

1
n+1 (Jεn (vn) − J (u)) +

(
K1
c2

− cR
cK

)
1

n+1ρn .

We finally fix K1: We choose K1 so large such that

K1

c2
− cR

cK
� K1

2 max {cK ,c2} ,

which is always possible. Combining this with our previous estimates we deduce

Gn+1 − Gn � 1
2 max {cK ,c2}

1
n+1 (Gn − G∞).

This proves the theorem with c3 = 2 max {cK , c2}. ��
We are now able to present our convergence result.

Theorem 24 Let ∇u ∈ Lq,∞(�) for some q > p (as given for example in Theo-
rem 13 or Theorem 14). Then, the sequence (vn)n∈N produced by the algorithm above
described satisfies

Jεn (vn) − J (u) � Gn − G∞ � n
− 1

c3 (G0 − G∞),

where c3 is the constant of Lemma 23. In particular, the energy error decreases at
least algebraically.
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20 L. Diening et al.

Proof The estimate Jεn (vn)−J (u) � Gn −G∞ is obvious, so it remains to prove the
decay of Gn − G∞. If follows from Lemma 23 that, for n ∈ N,

Gn − G∞ �
∏n−1

i=0

(
1 − 1

c3(i+1)

)
(G0 − G∞).

Now,

n∏
i=0

(
1 − 1

c3(i+1)

)
= exp

( n∑
i=0

ln
(
1 − 1

c3(i+1)

))
� exp

(
−

n∑
i=0

1

c3(i + 1)

)

� exp

(
− ln(n)

c3

)
= n

− 1
c3 .

This proves the lemma. ��
Remark 25 We have seen that the choice εn = [(n + 1)−α, (n + 1)β ] ensures that the
error decreases at least with an algebraic rate. However, the decay of the relaxed energy
error Gn − G∞ can never be faster than algebraical with this choice of εn . Hence, this
choice is also very restrictive. From the numerical experiments we performed, we have
seen that it is possible to decrease εn,− and increase εn,+ much faster and still obtain
convergence. Moreover, the observed convergence is much faster than algebraic and
more of exponential type. We will present the details of such numerical experiments
in a subsequent work. Let us summarize: the algorithm of this section ensures an
algebraic convergence rate, but in practice we expect a better behavior for other,
perhaps adaptive, choices of εn , still to be fully investigated.

6 Numerical experiments

We have performed numerous experiments on the basis of the adaptive finite element
method with piecewise linear elements. We developed preliminary versions of error
estimators that capture the effect of the truncation, the adaptivity of the mesh and the
fixpoint iteration. Let vn denote the iterated solution generated by the algorithm, then
we used the following ad hoc estimators:

– We use

η2
ε+(vn) := Jεn (vn) − J(εn,−,∞)(vn)

to measure the effect of the upper truncation bound εn,+ and

η2
ε−(vn) := Jεn (vn) − J(0,εn,+)(vn)

to measure the effect of the lower truncation bound εn,−.
– We use the optimal estimators of [2,12] with the Orlicz function φεn to estimate
the error due to mesh refinement, i.e. on elements T we use the estimators

η2h(vn) := ∫
T (φεn ,|∇vn |)∗(hT | f |) dx + ∑

γ⊂∂T hγ

∫
γ

∣∣�Vεn (∇vn)�γ

∣∣2 ds.
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A Relaxed Kačanov iteration for the p-poisson problem 21

– To measure the error due to the fixpoint iteration (for n � 1)

η2Kač(vn) := ∫
�
(φε,|∇vn−1|)∗

(
φ′

ε (|∇vn−1|)
|∇vn−1| |∇(vn−1 − vn)|

)
dx, (6.1)

which is in fact an upper bound for Jε(vn) − Jε(uε) and Jε(vn−1) − Jε(uε).

We used these estimators to implement a fully adaptive version of our relaxed p-
Kačanov iteration.

Algorithm: Adaptive relaxed p-Kačanov Algorithm

Data: Given f ∈ (W 1,p
0 (�))∗, v0 ∈ W 1,2

0 (�);
Result: Approximate solution of the p-Poisson problem (1.2);
Initialize: ε0 = [1, 1] ⊂ (0,∞), n = 0;
while desired accuracy is not achieved yet do

Define an := εn,− ∨ |∇vn| ∧ εn,+;
Calculate vn+1 by means of

∫

�

(εn,− ∨ |∇vn| ∧ εn,+)p−2∇vn+1 · ∇ξ dx = 〈 f , ξ 〉 ∀ξ ∈ W 1,2
0 (�);

Increase total costs by current degrees of freedom;
Calculate and compare the error estimators η2

ε+(vn), η2ε−(vn), η2h(vn) and
η2Kač(vn);
If η2

ε+(vn) is the largest, do εn+1,+ := 1.25 · εn,+;
If η2

ε−(vn) is the largest, do εn+1,+ := 0.8 · εn,+;
If η2h(vn) is the largest, do a mesh refinement with Dörfler marking;
Increase n by 1;

end
Let us present three experiments that measure different aspects. We have chosen

quite critical situations and small exponents p in order to see how the algorithmbehaves
in particularly bad situations. In particular, we have chosen a quite small exponent p =
16
15 for all of our experiments presented here. (The results of our numerical experiments
behave much nicer for p closer to 2.) The results for larger exponents are in fact much
nicer.

• The bump On � = [−1, 1]2 choose f and the boundary values of u such that
u(x) = (x21−1)(x22−1). There is only one critical point at (0, 0), where∇u(0, 0) =
0. This example is chosen to see how the algorithm behaves for smooth functions
with isolated extrema.3

• The needle On � = [−1, 1]2 choose f and the boundary values of u such that

u(x) = |x |1− 1
p − 1. In this case ∇u(x) = |x |− 1

p x
|x | and A(∇u) = |x |− 1

p′ x
|x | and

V (∇u) = |x |− 1
2 x

|x | . This example is chosen such that V (∇u) ∈ W
1
2 L2,∞(�)

3 Note that | f (x)| behaves like |x |p−2. Thus, f ∈ L2 for all p > 1 but f ∈ L p′
only for p >

√
2. This

makes potential troubles with the used error estimator, but since the error estimator is also truncated with ε

the effect is manageable.
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Fig. 1 The bump

meaning that half a derivative4 of V (∇u) is still in the Lorentz space L2,∞. This
corresponds to the regularity of a p-harmonic function on a slit domain. It is the
critical regularity that allows optimal estimates for the adaptive finite element
method, while for uniform refinement a rate of O(h1/2) instead of the optimal
one O(h).

• Constant force in slit domain Choose f = 2 on the slit domain � = (−1, 1)2 \
[0, 1]2 and u = 0 on its boundary. There is no explicit formula for the exact
solution (different from the linear case of p = 2) for the solution. The reentrant
corner reduces the regularity of the solution.

There is a nice gap between our theory and the numerical experiments that we per-
formed. In fact, our experiments shows a significantly faster convergence rate. This
shows that we are on a good track and have developed a good algorithm.

Figures 1, 2 and 3 show the results of our experiments. The pictures show a log-
log-plot of energy accuracy vs. the computed costs. Let us explain the picture from
Fig. 1 in more detail. The others figures are analogously. The dotted black line is the
most important line and shows the energy difference Jε(un) − J (u), which is the
measure of the error between the computational solution and the exact solution. The
lines ε+ and ε− represent the truncation parameters (ε−, ε+). The other lines represent
error indicators for (ε−, ε+) named η2

ε+ and ε2
ε− , the fixpoint iteration η2Kač(uh), and

refinement η2h(uh). The straight black line costs−1 is the optimal convergence rate
(1/costs), where the costs are the accumulative sum of the degrees of freedom for each
step that requires solving a linear system. (Here we have assumed a linear cost for
solving the linear system, which might be possible with a multi grid method.) It is
important that we use the accumulated cost instead of the degrees of freedom, since
only this truly measures the effort, in particular if the number of fixpoint iterations
increases.

Let us explain the numerical results in more detail.

4 This is understood in a heuristic way only: half a derivative of V (∇u) growths like the function |x |−1,
which is in the Lorentz space L2,∞(�).
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Fig. 2 The needle
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Fig. 3 Constant force in slit domain

– Bump The algorithm converges optimally with respect to the accumulated costs.
The exact solution has a bounded gradient, so the upper truncation bound εn,+ does
not increase much. There is only one critical point at x = 0, where ∇u(0) = 0.
Thus, the algorithm decreases the lower truncation bound εn,− quite moderately,
since the error from truncation appears only in a small neighborhood around zero.
All estimators decrease nicely with the optimal rate (1/cost). The number of fix-
point iterations remains bounded, so the cost is proportional to the current number
of degrees of freedom.

– The needle The algorithm converges optimally with respect to the accumulated
costs. The exact solution has unbounded gradient at the isolated point zero. There-
fore, the upper truncation bound εn,+ is increased by the algorithm. This upper
truncation starts quite late, since it is only necessary in set of small measure. The
number of fixpoint iterations remain bounded.

– Constant force in slit domain The gradient of the exact solution is bounded, so
the upper truncation bound εn,+ does not increase much. The energy error still
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decreases very fast. It decreases almost optimally with respect to the accumulated
cost, but the slope seems slightly worse. It is however still much faster, than our
worst-case theory predicts.

Overall, we see that our algorithm converges with a rate, which is optimal in many
cases.
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A Auxiliaries

The following embedding is probably well known. However, since we could not find
a reference for it and we need it for the proof of Theorem 14, we include a short proof

of it.5 In the following N 1
2 ,2 denotes the usual Nikolskiı̆ space, see e.g. [20].

Lemma 26 N 1
2 ,2(�) ↪→ L

2d
d−1 ,∞(�).

Proof We will not recapitulate the definitions of the occurring spaces. First of all, we
use the identity

N 1
2 ,2(�) = B

1
2
2,∞(�)

as stated in [20, Remark 8.4.5], where Bs
p,q(�) denotes the standard Besov spaces.

In [26, Theorems 1 and 2 in 4.3.1] we find the interpolation pair {B
1
4
2,1(�), B

3
4
2,1(�)}

such that

B
1
2
2,∞(�) = (B

1
4
2,1(�), B

3
4
2,1(�)) 1

2 ,∞

holds. The embeddings (see [15] respectively [23])

B
1
4
2,1(�) ↪→ L

4d
2d−1 (�) and B

3
4
2,1(�) ↪→ L

4d
2d−3 (�)

yield

(B
1
4
2,1(�), B

3
4
2,1(�)) 1

2 ,∞ ↪→ (L
4d

2d−1 (�), L
4d

2d−3 (�)) 1
2 ,∞.

5 We thank W. Sickel for explaining the details to us.
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Finally, by [26, Theorem 2 in 1.18.6] we get

(L
4d

2d−1 (�), L
4d

2d−3 (�)) 1
2 ,∞ = L

2d
d−1 ,∞(�).

This proves the claim. ��
Moreover, in the proof Lemma 23 we used the following algebraic estimate:

Lemma 27 Let γ > 0. Then for all n � 1 we have

n−γ − (n + 1)−γ � n−γ−1 min{ γ
2 , 1 − 2−γ }.

Proof Wedefine h : [0, 1
2 ] → Rvia h(t) := 1−(1−t)γ . Note that h′(t) = γ (1−t)γ−1

and h′′(t) = γ (1 − γ )(1 − t)γ−2. For γ � 1 this implies that h is concave, so

h(t) � t
(
h( 12 )−h(0)

1
2

)
= 2(1 − 2−γ )t .

On the other hand, if γ ∈ (0, 1), the function h is convex. Therefore,

h(t) � h(0) + th′(0) = γ t .

This implies h(t) � min{γ, 2(1 − 2−γ )}t . Therefore, we get

n−γ − (n + 1)−γ = n−γ (1 − (1 − 1
n+1 )

γ ) = n−γ h( 1
n+1 )

� n−γ min{γ, 2(1 − 2−γ )} 1
n+1 � n−γ−1 min{ γ

2 , 1 − 2−γ }.

This proves the claim. ��

B On uniformly convex Orlicz functions

In this appendix we introduce the concept of uniformly convex Orlicz functions and
their shifted versions. The results presented below aremodifications of [11, Lemma 3],
[12, Lemma16], and [12, Corollary 26]. However, sincewe use here a slightly different
notion of shifted functions and less regularity for our Orlicz functions, we decided to
include a proof and keep our paper self-contained. Throughout this section we assume
that our Orlicz function satisfies the following assumptions.

Definition 28 Let φ be an N-function.6 We say that φ is uniformly convex if there
exist c4, c5 > 0 with

c4
φ′(s)
s

� φ′(s)−φ′(t)
s−t � c5

φ′(s)
s for all s > t � 0. (B.1)

6 See the beginning of Sect. 3 for the definition of an N-function.
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The choice t = 0 implies that c4 � 1 � c5. Moreover, (B.1) implies that φ′ is strict
increasing.

For any N-function ρ the complementary (or dual) N-function ρ∗ is given by
ρ∗(u) = supt�0(ut−φ(t)). This is equivalent to (ρ∗)′ = (ρ′)−1. Note that (ρ∗)∗ = ρ.

Lemma 29 If φ is a uniformly convex N-function with constants c4 and c5, then φ∗ is
a uniformly convex N-function with constants 1/c5 and 1/c4.

Proof Let s = (φ∗)′(u) and t = (φ∗)′(v). Then by strict monotonicity of φ′ and (φ∗)′
condition (B.1) is equivalent to

c4
u

(φ∗)′(u)
� u−v

(φ∗)′(u)−(φ∗)′(v)
� c5

u
(φ∗)′(u)

for all u > v � 0.

Taking the reciprocal proves the uniform convexity of φ∗. The reverse conclusion
follows by duality, i.e. φ = (φ∗)∗. ��
Lemma 30 Let φ be an N-function, which is piecwise C2 on (0,∞). Then φ is uni-
formly convex if and only if

c6 � φ′′(t) t
φ′(t)

� c7 for all t > 0 (B.2)

for some c6, c7 > 0. This is in fact the uniform convexity condition in [11].

Proof Note that s ↘ t in (B.1) implies (B.2) with c6 = c4 and c7 = c5. So assume
now, that (B.2) holds.

If s � 2t , then s − t � s/2 and the upper bound of (B.1) is obvious with c7 = 2.
So let us assume t < s � 2t . Then

φ′(s) − φ′(t)
s − t

= 1
s−t

∫ s
t φ′′(τ ) dτ � c7

s−t

∫ s
t

φ′(τ )
τ

dτ � c7φ′(s)
s−t log(s/t).

Now log(1 + a) � a for a � 0 and s � 2t imply

φ′(s) − φ′(t)
s − t

� c7φ′(s)
s−t

s−t
t = c7φ′(s)

t � 2c7
φ′(s)
s .

This proves the upper bound of (B.1). The lower bound follows by duality: Indeed, it
follows from

(φ∗)′′(u)u

(φ∗)′(u)
= φ′(s)

φ′′(s) s with φ′(s) = u

that φ∗ satisfies B.2 with constants 1/c7 and 1/c6. Thus, by the already proven φ∗
satisfies the upper estimate of (B.1). By duality, see Lemma 29. we get the lower
estimate of φ in (B.1). ��
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Lemma 31 Letφ be a uniformly convexN-function. Then the functionsφ andφ∗ satisfy
the �2-condition, with constants only depending on c4 and c5.

Proof Using s = λt with λ > 1 in (B.1) we obtain

(
1 − c5

λ − 1

λ

)
φ′(λt) � φ′(t). (B.3)

Now, we can choose λ0 > 1 such that μ := (1 − c4
λ0−1
λ0

) > 1
2 . So, we have

φ′(λ0t) � 2φ′(t). From this it follows by iteration (also using the monotonicity of φ′)
that φ′(2t) � c̃ φ′(t), where c̃ only depends on λ0 and μ and therefore only on c4.
Thus, it follows that

φ(2t) − φ(t) = 2
∫ t

t/2
φ′(2s) ds � 2 c̃

∫ t

t/2
φ′(s) ds = 2 c̃

(
φ(t) − φ(t/2)

)
� 2c̃ φ(t).

Hence, φ(2t) � (1+2c̃)φ(t), which proves the claim for φ. The claim for φ∗ follows
by duality with Lemma 29. ��
Remark 32 [Young’s inequality] Let φ be an N-function such that φ and φ∗ satisfy
the �2-condition. Then for every s, t � 0 we have by Young’s inequality

st � φ(s) + φ∗(t).

This and φ(t) � φ′(t) t � φ(2t) implies that for all s, t � 0

φ′(s) t � δφ(s) + cδφ(t),

φ′(s) t � cδφ(s) + δφ(t),

where cδ depends only on δ and the �2-constants.

For each a � 0 we define the shifted N-function φa by its derivative

φ′
a(t) := φ′(t∨a)

t∨a t (B.4)

and φa(t) = ∫ t
0 φ′

a(τ ) dτ . In the notation of Section 3 this is just φε with ε = (a,∞),
see also Remark 2.

Lemma 33 There holds (φa)
∗ = (φ∗)φ′(a).

Proof Note that ((φ∗)φ′(a))
′(u) = (φ∗)′(u∨φ′(a))

u∨φ′(a)
u is the inverse ofφ′

a(t). Thus (φ∗)φ′(a)

and (φa)
∗ are conjugate to each other. ��

Remark 34 The shifted N-functions have already been originally introduced in [11]
with the modified definition φ′

a(t) = φ′(t+a)
t+a t . This original version shares almost all

of the properties with the version of this paper. However, our exact formula (φa)
∗ =

(φ∗)φ′(a) of Lemma 33 is replaced in [11] by equivalence. This is one of the advantages
of our new definition.
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Given our uniformly convex N-function φ we define the stress A and the auxiliary
function V as in Definition 7 by

Definition 35 For P ∈ R
d we define

A(P) :=
{

φ′(|P|)
|P| P if P �= 0

0 if P = 0
and V (P) :=

{√
φ′(|P|)

|P| P if P �= 0

0 if P = 0.

Lemma 36 Let φ be a uniformly convex N-function with constants c4 and c5. Defineψ

via its derivative by ψ ′(s)
s :=

√
φ′(s)
s and letψ(t) := ∫ t

0 ψ ′(s) ds. Thenψ is a uniformly

convex N-function with constants 1
2 and 1 + c5. Moreover, V (P) = ψ ′(|P|)

|P| P.

Proof For s > t we calculate

I := ψ ′(s)−ψ ′(t)
s−t =

√
φ′(s)s−√

φ′(t)t
s−t = 1√

φ′(s)s+√
φ′(t)t

φ′(s)s−φ′(t)t
s−t

= φ′(s)√
φ′(s)s+√

φ′(t)t
+ φ′(s)−φ′(t)

s−t
t√

φ′(s)s+√
φ′(t)t

=: I I + I I I .

Now, with (B.1)

1

2

ψ ′(s)
s

=
√

φ′(s)
2
√
s

� I I �
√

φ′(s)√
s

= ψ ′(s)
s

and

0 � I I I � c5
φ′(s)
s

t√
φ′(s)s+√

φ′(t)t
� c5

√
φ′(s)√
s

= c5
ψ ′(s)
s .

Overall, we get 1
2

ψ ′(s)
s � I � (1 + c5)

ψ ′(s)
s , which proves the claim. ��

Lemma 37 Let φ be a uniformly convex N-function. Then φa is also uniformly convex
with constants c4 and c5 replaced by c4 and c5 + 1.

Proof For s > t define

I := φa(s)−φa(t)
s−t and I I := φ′

a(s)
s .

If s, t � a, then φ′
a(s) = φ′(s) and φ′

a(t) = φ′(t). Hence c4 I I � I � c5 I I by
assumptions on φ.

If s, t � a, then φa(s) = φ′(a)
a s and φa(t) = φ′(a)

a t , so I = φ′(a)
a = I I . Since

c4 � 1 � c5 the claim follows in this case.
If remains to consider s > a > t . Then φ′

a(s) = φ′(s) and φ′
a(t) = φ′(a)

a s, so

I = φ′(s)− φ′(a)
a t

s−t = φ′(s)−φ′(a)
s−t + φ′(a)

a
a−t
s−t =: I1 + I2.
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Thus,

I � φ′(s)−φ′(a)
s−a + 0 � c4

φ′(s)
s .

On the hand using that a �→ a−t
a is increasing in a we get

I � φ′(s)−φ′(t)
s−a + φ′(a)

s
s−t
s−t � c5

φ′(s)
s + φ′(s)

s .

This proves the claim. ��
Remark 38 If follows fromLemma37 and 31 that the families {φa}a�0 and {(φa)

∗}a�0
satisfy the �2-condition with constants independent of a.

Lemma 39 Let φ be a uniformly convex N-function with constants c4 and c5. Then for
all P, Q we have

(c4 ∧ 1
2 )

φ′(|P| ∨ |Q|)
|P| ∨ |Q| |P − Q|2 � (A(P) − A(Q)) : (P − Q)

� (c5 ∨ 2)
φ′(|P| ∨ |Q|)

|P| ∨ |Q| |P − Q|2,

|A(P) − A(Q)| � (c5 + 1)
φ′(|P| ∨ |Q|)

|P| ∨ |Q| |P − Q|.

Proof We define Q̂ := P
|P| , P̂ := P

|P| , θ := P̂ : Q̂,

f (P, Q) := (A(P) − A(Q)) : (P − Q) and g(P, Q) := φ′(|P|∨|Q|)
|P|∨|Q| |P − Q|2.

Then

f (P, Q) = (
φ′(|P|)P̂ − φ′(|P|)Q̂) : (|P|P̂ − |Q|Q̂)

= φ′(|P|)|P| + φ′(|Q|)|Q| − (
φ′(|P|)|Q| + φ′(|Q|)|P|)θ

=: f (|P|, |Q|, θ)

and

g(P, Q) = φ′(|P|∨|Q|)
|P|∨|Q|

(|P|2 + |Q|2 − 2θ |P||Q|) =: g(|P|, |Q|, θ).

We need to estimate f (|P|, |Q|, θ)/g(|P|, |Q|, θ). Both f and g are non-negative
and linear in θ . Hence f

g is monotone in θ . In particular, it suffices to control the
cases θ = 1 and θ = −1. We begin with the simple case θ = −1.

f (|P|, |Q|,−1)

g(|P|, |Q|,−1)
= (φ′(|P|)+φ′(|Q|))(|P|+|Q|)

(φ′(|P|)∨φ′(|Q|))(|P|+|Q|) .

Since a ∨ b � a + b � 2(a ∨ b), this implies

1

2
� f (|P|,|Q|,−1)

g(|P|,|Q|,−1) � 2.
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Now consider the case θ = 1. Without loss of generality we can assume |P| � |Q|.
f (|P|, |Q|, 1)
g(|P|, |Q|, 1) = (φ′(|P|)−φ′(|Q|))(|P|−|Q|)(|P|∨|Q|)

(φ′(|P|∨φ′(|Q|))) (|P|−|Q|)2 = (φ′(|P|)−φ′(|Q|))|P|
φ′(|P|) (|P|−|Q|) .

Now, (B.1) implies

c4 � g(|P|,|Q|,1)
f (|P|,|Q|,1) � c5.

Combining the two cases proves the first claim. To prove the second one we assume
again |P| � |Q| and estimate

|A(P) − A(Q)| = ∣∣φ′(|P|)P̂ − φ′(|Q|)Q̂∣∣ �
∣∣φ′(|P|) − φ′(|Q|)∣∣+φ′(|Q|)|P̂ − Q̂|

� (c5 + 1)
φ′(|P| ∨ |Q|)

|P| ∨ |Q| |P − Q|.

This proves the second claim. ��
Lemma 40 Let φ be a uniformly convex N-function with constants c4 and c5. Then for
all P, Q ∈ R

d

φ′|Q|(|P − Q|) �
φ′(|P|∨|Q|)

|P|∨|Q| |P − Q|,
φ|Q|(|P − Q|) �

φ′(|P|∨|Q|)
|P|∨|Q| |P − Q|2,

where the constants only depend on c4 and c5.

Proof The estimates follows from 1
2 (|Q|+|P − Q|) � |P|∨|Q| � 2(|Q|+|P − Q|),

the �2-property of φ (see Lemma 31) and φ′|Q|(t) t � φ|Q|(t). ��
Lemma 41 Let φ be a uniformly convex N-function with constants c4 and c5 and let
A and V be as in Lemma 35. Then for all P, Q ∈ R

d

(A(P) − A(Q)) · (P − Q) � φ|Q|(|P − Q|) � |V (P) − V (Q)|2,
|A(P) − A(Q)| � φ′|Q|(|P − Q|).

where the constants only depend on c4 and c5.

Proof The first equivalence in the first claim and the second claim follow immediately
from Lemma 39 and 40. It remains to prove the second equivalence of the first claim.
For this we recall ψ from Lemma 36 and observe that V is induced by ψ exactly
as A is induced by φ, see Definition 35. In particular, we have |V (P) − V (Q)| �

ψ ′|Q|(|P − Q|). This proves

|V (P) − V (Q)|2 �
∣∣ψ ′|Q|(|P − Q|)∣∣2 =

(
ψ ′(|Q| ∨ |P − Q|)

|Q| ∨ |P − Q| |P − Q|
)2
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= φ′(|Q| ∨ |P − Q|)
|Q| ∨ |P − Q| |P − Q|2 � φ|Q|(|P − Q|).

This proves the claim. ��

Lemma 42 The following estimates hold for arbitrary v ∈ W 1,φ
0 (�) and u being the

minimizer of J (w) := ∫
�

φ(|∇w|) − f w dx:

J (v) − J (u) �
∫

�

(A(∇v) − A(∇u)) · ∇(v − u) dx

�

∫

�

|V (∇v) − V (∇u)|2 dx

� J (v) − J (u).

Proof It follows by convexity and J ′(u) = 0 that

J (v) − J (u) � J ′(v)(v − u) = (J ′(v) − J ′(u))(v − u).

Since J ′(w)(ξ) = ∫
�
A(∇w)∇ξ − f ξ dx , this proves the first estimate. The equiva-

lence in the claim follows then by Lemma 41. For the last estimate we calculate with
Taylor, J ′(u) = 0, Lemma 41 and the uniform �2-condition of the family φa that

J (v) − J (u) =
∫ 1

0

(J ′(u + t(v − u)) − J ′(u)
)
(v − u) dt

=
∫ 1

0

∫
�

(
A(∇(u + t(v − u))) − A(∇u)

) · ∇(v − u) dx dt

�

∫
�

∫ 1

0
φ|∇u|(t |∇(v − u)|)dt

t
dx �

∫
�

∫ 1

1
2

φ|∇u|
( 1
2 |∇(v − u)|)dt dx

�

∫
�

φ|∇u|
(|∇v − ∇u|) dx �

∫
�

|V (∇v) − V (∇u)|2 dx .

This proves the claim. ��
The following lemma is a sharper version of Lemma 25 and Lemma 27 of [12].

Lemma 43 (Shift-change) For all a, b � 0 and t � 0, there holds

|φ′
a(t) − φ′

b(t)| � φ′
a(|a − b|) � φ′

b(|a − b|), (B.5)∣∣((φa)
∗)′

(t) − (
φb)

∗)′
(t)

∣∣ � |a − b|. (B.6)

Proof We begin with the proof of (B.5). The equivalence in (B.5) follows from
Lemma 40. Thus the claim is symmetric in a and b and we can assume that a � b.
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If a � b � t , then φ′
a(t) = φ′

b(t) = 0 and (B.5) follows. If t � a � b, then with
Lemma 41

∣∣φ′
a(t) − φ′

b(t)
∣∣ =

∣∣∣φ
′(a)

a
t − φ′(b)

b
t
∣∣∣ � |φ′(a) − φ′(b)| t

a
+ φ′(b)

∣∣∣1
a

− 1

b

∣∣∣t
� φ′

a(|a − b|) t
a

+ φ′(b) |b − a| t
ab

� φ′
b(|a − b|).

This proves (B.5). It remains to consider the case a � t � b. In this situation we
estimate using the previous two cases

∣∣φ′
a(t) − φ′

b(t)
∣∣ �

∣∣φ′
a(t) − φ′

t (t)
∣∣ + ∣∣φ′

t (t) − φ′
b(t)

∣∣ � φ′
a(|a − t |) + φ′

b(|b − t |)
� φ′

a(|a − b|) + φ′
b(|a − b|).

This proves the remaining case of (B.5). To prove (B.6) we estimate with Lemma 41
and (φ∗

a )
′ = (φ′

a)
−1

∣∣((φa)
∗)′

(t) − (
φb)

∗)′
(t)

∣∣ �
(
(φa)

∗)′
(|φ′(a) − φ′(b)|)

�
(
(φa)

∗)′(
φ′
a(|b − a|)) = |b − a|.

This proves the claim. ��
With Lemma 43 we deduce the following estimates similar to Corollary 26 and Corol-
lary 28 of [12].

Corollary 44 (Shift-change) For all P, Q and all t � 0 there holds

φ|P|(t) � (1 + cδ)φ|Q|(t) + δ|V (P) − V (Q)|2,
φ|P|(t) � (1 + δ)φ|Q|(t) + cδ|V (P) − V (Q)|2,

(φ|P|)∗(t) � (1 + cδ)(φ|Q|)∗(t) + δ|V (P) − V (Q)|2
(φ|P|)∗(t) � (1 + δ)(φ|Q|)∗(t) + cδ|V (P) − V (Q)|2.

Proof We estimate with Lemma 43, Young’s inequality (see Remark 32) with φ|Q|
and Lemma 41

φ|P|(t) =
∫ t

0
φ′|P|(s) ds �

∫ t

0
φ′|P|(s) + c φ′|P|(|P − Q|) ds

= φ|P|(t) + φ′|P|(|P − Q|) t
= (1 + cδ)φ|P|(t) + δφ|P|(|P − Q|)
� (1 + cδ)φ|P|(t) + δ|V (P) − V (Q)|2.

This proves the first inequality. We can exchange δ and cδ within the proof to get
the second inequality (see Remark 32). The other estimates follow analogously using
(φ|Q|)∗ = (φ∗)φ′(|Q|). ��
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