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Analysis of shape optimization problems for unsteady fluid-structure

interaction

Johannes Haubner ∗ Michael Ulbrich † Stefan Ulbrich ‡

November 1, 2019

Abstract

Shape optimization via the method of mappings is investigated for unsteady fluid-structure interaction
(FSI) problems that couple the Navier-Stokes equations and the Lamé system. Building on recent existence
and regularity theory we prove Fréchet differentiability results for the state with respect to domain variations.
These results form an analytical foundation for optimization und inverse problems governed by FSI systems.
Our analysis develops a general framework for deriving local-in-time continuity and differentiability results
for parameter dependent nonlinear systems of partial differential equations. The main part of the paper
is devoted to conducting this analysis for the FSI problem, transformed to a shape reference domain. The
underlying shape transformation — actually we work with the corresponding shape displacement instead
— represents the shape and the main result proves the Fréchet differentiability of the solution of the FSI
system with respect to the shape transformation.

Keywords: Fluid-structure interaction, shape optimization, shape identification, Fréchet differentiability,
method of mappings, method of successive approximations, Navier-Stokes equations, Lamé system, local-in-
time analysis.

1 Introduction

Shape optimization for fluid-structure interaction (FSI) has many important applications in engineering and
other fields. So far, most of the research devoted to this challenging class of optimization problems mainly
targeted at numerical approaches, e.g., for biomedical applications [38], naval architecture [37] or wind engi-
neering [27, 45], using direct differentiation [39] or adjoint based gradient computation [25], while a rigorous
supporting theory is scarce. In this paper, we build on recent work by Raymond and Vanninathan [43] on the
existence and regularity of solutions to an unsteady FSI problem. We extend these results and prove continuity
and Fréchet differentiability of the solution of an unsteady Navier-Stokes-Lamé-system with respect to domain
variations. Existence and regularity theory for FSI is challenging due to the hyperbolic nature of the elasticity
equation, which leads to a lack of regularity that needs to be compensated by hidden regularity results. To the
authors’ knowledge, analytical results for unsteady FSI models that consider elastic structures in fluids are so
far restricted to cases with stationary interfaces [14, 2], a priori known time-dependency of the domain [8], very
smooth data [11, 12] or geometrical constraints on the interface [33, 28, 43], whereas differentiability results are
only available for steady FSI models [41, 51].
The fluid-structure interaction model that is considered in this paper couples the transient Navier-Stokes equa-
tions with the Lamé system and is formulated in a fully Lagrangian framework: Denote by Ω̌f ptq and Ω̌sptq,
respectively, the domains occupied by the fluid and the solid, respectively, at time t. Further, let Ω̌ptq denote

the interior of Ω̌f ptq Y Ω̌sptq and Γ̌iptq :“ BΩ̌f ptq X BΩ̌sptq the fluid-solid interface. In the considered setting,

Ω̌ptq “ Ω̂ is time-independent, while Ω̌f ptq, Ω̌sptq, and Γ̌iptq change with time. The Lagrangian framework uses
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the displacement field induced by the velocity field to obtain a transformation between the reference domain
Ω̂f and the physical domain Ω̌f ptq. For the solid, the Lagrangian formulation provides the standard framework

and the displacement field induces a transformation between the reference domain Ω̂s and Ω̌sptq. Let Tf ą 0,

Γ̂i :“ BΩ̂f XBΩ̂s, Γ̂f Ă BΩ̂f zΓ̂i, Γ̂s Ă BΩ̂szΓ̂i and the space-time cylinders be denoted by Q̂T :“ Ω̂ˆp0, T q, Q̂Tf ,

Q̂Ts , Σ̂Ti :“ Γ̂i ˆ p0, T q, Σ̂Tf and Σ̂Ts for all 0 ă T ď Tf . A coupled Navier-Stokes-Lamé system in Lagrangian
coordinates can be written in the form

Bt v̂ ´ ν∆y v̂ `∇y p̂ “ F̂pv̂, p̂q in Q̂Tf ,

divy pv̂q “ Ĝpv̂q in Q̂Tf ,

v̂p¨, 0q “ v̂0 in Ω̂f ,

v̂ “ 0 on Σ̂Tf ,

v̂ “ Bt ŵ on Σ̂Ti ,

σf,ypv̂, p̂qn̂f “ σs,ypŵqn̂f ` Ĥpv̂, p̂q on Σ̂Ti ,

Btt ŵ ´ divy pσs,ypŵqq “ 0 in Q̂Ts ,

ŵ “ 0 on Σ̂Ts ,

ŵp¨, 0q “ 0, Bt ŵp¨, 0q “ ŵ1 in Ω̂s.

(1)

The fluid and solid stress tensors σf,y and σs,y are given by

σf,ypv̂, p̂q :“ 2νεypv̂q ´ p̂I, and σs,ypŵq “ λtrpεypŵqqI` 2µεypŵq,

where εyp¨q :“ 1
2 pDy ¨ `pDy ¨q

Jq and λ, µ are Lamé coefficients with µ ą 0 and λ ` µ ą 0. Here, Dy ¨ denotes

the Jacobian and n̂f is the unit outer normal vector of Ω̂f . The variables v̂, p̂ denote the fluid velocity and
pressure, ŵ the solid displacement, and v̂0 as well as ŵ1 appropriate initial conditions. We define the underlying
transformation by

χ̂p¨, tq|Ω̂f : Ω̂f Ñ Ω̌f ptq, yÑ y `

ż t

0

v̂py, sqds, pFχ “ Dy χ̂ “ p∇y χ̂q
J

for any t P p0, T q and its inverse Υ̌p¨, tq :“ pχ̂p¨, tqq´1 as well as pFΥ :“ pF´1
χ , which exist if T ą 0 is sufficiently

small and the initial data are smooth enough, cf. [43]. Then the right hand side terms read

F̂pv̂, p̂q “ ν
d

ÿ

j,k“1

pBxjxjΥ̌k ˝ χ̂q Byk v̂ ` ν
d

ÿ

i,j,k“1

pBxjΥ̌i ˝ χ̂q pBxjΥ̌k ˝ χ̂q Byiyk v̂ ´ ν∆y v̂ ` pI´ pFJΥq∇y p̂,

Ĥpv̂, p̂q “ ´νpDy v̂pFΥ ` pFJΥpDy v̂qJq cofppFχq n̂f ` p̂ cofppFχq n̂f ` νpDy v̂ ` pDy v̂qJq n̂f ´ p̂ n̂f ,

Ĝpv̂q “ divy v̂ ´ detppFχqDy v̂ : pFJΥ “ Dy v̂ : pI´ detppFχq pFJΥq,

where cof denotes the cofactor matrix. We define ĝpv̂q :“ pI´ detppFχqpFΥqv̂, such that divy pĝpv̂qq “ Ĝpv̂q due
to Piola’s identity.

Shape optimization problems can be analyzed with different, yet closely related, techniques. On the one
hand, shape calculus can be used to investigate functionals ĴpΩ̂q that depend on the domain Ω̂. The Eulerian
derivative dĴpΩ̂, V̂ q can be represented by the Hadamard-Zolésio shape gradient, which is the representation
of the shape gradient as a distribution that is supported on the design boundary and only acts on the normal
boundary variation V̂ ¨ n̂f [13, 42, 47]. If a state equation is involved, then the Eulerian derivative depends on
the shape derivative of the state and can also be expressed using an adjoint state. An alternative approach is
the method of mappings [3, 20, 32, 17, 40, 46], also called perturbation of identity, which parametrizes the shape
by a bi-Lipschitz homeomorphism τ̃ : Rd Ñ Rd via Ω̂ “ τ̃ pΩ̃q, where Ω̃ Ă Rd is a nominal domain (or shape
reference domain). Optimization can be performed based on the function J̃ : τ̃ ÞÑ Ĵpτ̃ pΩ̃qq. An underlying
state equation is then transformed to Ω̃ and derivatives of J̃ can be obtained via sensitivities or adjoints. The
Hadamard-Zolésio shape gradient representation can be derived from this approach essentially by an integration
by parts. The method of mappings directly yields an optimal control setting in Banach spaces. Further, it fits
well in the theoretical setting of the FSI model that was introduced above since it also employs the idea of
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domain transformations. In this paper we use the method of mappings to transform the fully Lagrangian FSI
system to a shape reference domain. The major part of the paper is devoted to the study of existence, uniqueness
and especially continuity and Fréchet differentiability of solutions to the transformed FSI system with respect
to transformations of the domain.

The investigations in this paper have several important connections to inverse problems. Shape identification
and other inverse problems for FSI systems have many interesting applications in engineering, e.g., wind turbines
[27] and naval structures [50], in hemodynamics [6, 7], i.e., blood flows, and in other fields. Since shape variations
belong to the most challenging types of parametric dependencies that can arise in PDEs, our differentiability
results for the state with respect to shape variations can be transferred to many other parametric dependencies
in FSI systems and often the analysis then would become less complex. The theory and methods of nonlinear
inverse problems often make use of Fréchet derivatives of the underlying operator, e.g., in the formulation of
(generalized) source conditions [15, 30, 31], in iteratively regularized (Gauß-) Newton methods [30, 31], and
in Landweber iterations [15, 21]. This makes the differentiability of the parameter-to-state operator a crucial
ingredient. Further, shape optimization problems can be ill-posed without a suitable regularization [22]. For the
method of mappings considered here, Tikhonov-type regularizations are often employed to enforce the required
smoothness of the transformation. Without additional measures, the shape representation by transformations
is not unique, which requires special care when applying optimization methods. One possibility is to prepend an
(often linear) smooth injective mapping from a space of unique shape parametrization to the space of domain
variations. For instance, shapes can be represented by normal displacements of the design boundary, which
then can be extended to corresponding domain displacements by solving a suitable linear elliptic equation.

The outline of the paper is as follows. Section 2 recalls the basic definitions and properties of the function
spaces that are used in the analysis. Further, it presents the ideas for proving existence, uniqueness, continuity,
and differentiability in a general setting. In Section 3 the main results and analytical tools of [43] are recalled
and presented in a suitably adjusted way. Section 4 constitutes the main part of the paper, where the plan
developed in Section 2 is carried out and the continuity and differentiability of the solution of the FSI problem
with respect to domain transformations are proved.
Throughout the paper the superscripts over the functions correspond to the superscripts of the domains on
which they are defined. Furthermore, the spatial coordinates on the physical domain Ω̌ are denoted by x, on
Ω̂, Ω̃ by y, z, respectively. If a result is valid for a general domain the notation Ω is used and the coordinates
are denoted by ξ.

2 Preliminaries

We now introduce the required function spaces and their properties and sketch the main ideas used in [43].

2.1 Fractional Sobolev and Sobolev-type spaces

Let s, r P r0,8q, θ P p0, 1q, X, X̃, Y, Ỹ , Z be separable Hilbert spaces. The analysis is carried out in fractional
order Sobolev spaces Hspp0, T q, HrpΩqq and in anisotropic Sobolev spaces Hr,spQT q. The vector-valued versions
are denoted by Hspp0, T q, HrpΩqdq and Hr,spQT qd. For more details on these spaces the reader is referred to
[35, Ch. 1, Sec. 9], [36, Ch. 4, Sec. 2] and [18, Sec. 2]. These references assume Ω to be a bounded, open
domain Ω Ă Rd, d P N, with smooth boundary BΩ “ Γ of class C8. However, these results adapt to the setting
in [43].
The fractional order Sobolev spaces Hspp0, T q, Xq can be endowed with the norm

| ¨ |Hspp0,T q,Xq “ p} ¨ }
2
Hmpp0,T q,Xq ` |B

m
t ¨ |

2
σ,p0,T q,Xq

1
2 , (2)

where m,σ are chosen such that s “ m` σ, m P N0 and for 0 ă σ ă 1 the semi-norm | ¨ |σ,p0,T q,X is defined by

| ¨ |2σ,p0,T q,X “

ż T

0

ż T

0

} ¨ ptq ´ ¨ psq}2X
|t´ s|2σ`1

ds dt. (3)

The choice of the norm on the spaces Hspp0, T q, Xq is crucial for the theoretical analysis which requires the
knowledge of the T -dependency of appearing constants. More precisely, for ´8 ă T1 ă T2 ă 8 and Tf ě T ,
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the spaces HsppT1, T2q, Xq and the recursively defined subspaces

Y spT1,T2q
:“

$

’

&

’

%

tu P HsppT1, T2q, Xqu if s P r0, 1
2 q,

tu P HsppT1, T2q, Xq : upT1q “ 0u if s P p 1
2 , 1s,

tu P HsppT1, T2q, Xq : upT1q “ 0, Bt u P Y
s´1
pT1,T2q

u if s P p1, 2szt 3
2uu,

are endowed with a norm } ¨ }HsppT1,T2q,Xq such that

P1 for all s ě 1 such that s` 1
2 R N,

} ¨ }HsppT1,T2q,Xq “ p} ¨ }
2
L2ppT1,T2q,Xq

` }Bt p¨q}
2
Hs´1ppT1,T2q,Xq

q
1
2 .

and } ¨ }H0ppT1,T2q,Xq “ } ¨ }L2ppT1,T2q,Xq, where } ¨ }L2ppT1,T2q,Xq denotes the standard L2ppT1, T2q, Xq-norm.

P2 for all s ě 0 such that s` 1
2 R N, there exist constants c∆T , C∆T ą 0 depending on ∆T “ T2 ´ T1 such

that
c∆T | ¨ |HsppT1,T2q,Xq ď } ¨ }HsppT1,T2q,Xq ď C∆T | ¨ |HsppT1,T2q,Xq.

P3 for all s ě 0 such that s` 1
2 R N, the extension operator Ext defined by

Extpuqptq :“

#

uptq if t P p0, T q,

0 if t P pT ´ Tf , 0q,

is continuous as a mapping Y s
p0,T q Ñ Y s

pT´Tf ,T q
with a continuity constant that does not depend on T .

P4 for all s ě 0 such that s` 1
2 R N, we have

}u}Hspp0,T q,Xq ď C}u}HsppT´Tf ,T q,Xq

for all u P HsppT ´ Tf , T q, Xq such that u|pT´Tf ,0q “ 0 with a constant C independent of T .

P5 for all s ě 0 such that s` 1
2 R N, the restriction operator R defined by

Rpuqptq :“ uptq

is continuous as a mapping Hspp0, Tf q, Xq Ñ Hspp0, T q, Xq with a continuity constant that does not
depend on T .

P6 for s P r0, 1qzt 1
2u and ε ą 0 such that s` ε P p0, 1szt 1

2u, we have

}u}Hspp0,T q,Xq ď CT ε}u}Hs`εpp0,T q,Xq

for all u P Y s
p0,T q with a constant C that does not depend on T .

P7 for s P r0, 1szt 1
2u, real, separable Hilbert spaces X1, X2 and a linear operator K that is continuous as a

mapping from X1 to X2, we have

}Kpuq}Hspp0,T q,X2q ď C}u}Hspp0,T q,X1q

for all u P Hspp0, T q, X1q with a constant C that does not depend on T .

P8 for all s ě 0 such that s` 1
2 R N, T1 ă T2,

}u}HsppT1,T2q,Xq “ }ũ}Hspp0,T2´T1q,Xq,

for all u P HsppT1, T2q, Xq, where ũptq :“ upt` T1q for (a.e.) t P p0, T2 ´ T1q.
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The equivalence of the norm to standard norms stated in P2 and the T -independent norms of extension, see
P3, and restriction operators according to P4, P5 are needed to show that the norm of solution operators
for the considered partial differential equations are independent of T . Explict time dependencies are obtained
by estimating right hand side terms using properties P1, P6 and P7. Translation invariance of the norm
(P8) is another desirable property that we will exploit. The case s ` 1

2 P N is excluded since the choice

Y
1
2

pT1,T2q
“ H

1
2 ppT1, T2q, Xq violates P3 due to [35, p.60, Thm. 11.4] and an analogous choice as for s P p 1

2 , 1s is

not possible since the trace operator is not continuous for s “ 1
2 , see [35, p.41, Thm. 9.4].

Lemma 1. Let X be a separable Hilbert space, ´8 ă T1 ă T2 ă 8. There exists a norm } ¨ }HsppT1,T2q,Xq on
HsppT1, T2q, Xq that fulfills P1–P8.

Proof. Let
} ¨ }H0ppT1,T2q,Xq :“ } ¨ }L2ppT1,T2q,Xq

and, for σ P p0, 1qzt 1
2u,

} ¨ }HσppT1,T2q,Xq :“

#

p| ¨ |2HσppT1,T2q,Xq
` 1

σ

şT2

T1
pt´ T1q

´2σ} ¨ ptq}2Xdtq
1
2 if σ P p0, 1

2 q,

p| ¨ |2HσppT1,T2q,Xq
` 1

σ

şT2

T1
pt´ T1q

´2σ}p¨ ´ Lp¨qqptq}2Xdtq
1
2 if σ P p 1

2 , 1q,

where, for σ P p 1
2 , 1q and Tf ą 0, L is chosen as the linear operator defined by

Lpuqptq “

#

upT1qT
´1
f pTf ` T1 ´ tq for t P pT1, T1 ` Tf q,

0 for t P rT1 ` Tf ,8q.

The norm is constructed such that for any T ą 0 and u P Hσ
0 pp0, T q, Xq there holds }u}Hσpp0,T q,Xq “

|Extpuq|Hσpp´8,T q,Xq. For s “ m ` σ, m ą 0, the norm is chosen such that P1 holds. [35, Thm. 9.4,
11.2–11.5] and their proofs imply P2. P3–P8 can be shown with standard estimates, see Appendix of [23].

Let s0, s1 P r0,8q, s0 ą s1, and let X,Y and X̃, Ỹ , respectively, be continuously embedded in Hausdorff
topological vector spaces V and Ṽ , respectively. By [1, (3.5)–(3.7), Thm. 3.1, Cor. 4.3], [10, Rem. 3.6], and [5,
Thm. 3.4.1] there holds

rHs0pp0, T q, Xq, Hs1pp0, T q, Y qsθ “ Hp1´θqs0`θs1pp0, T q, rX,Y sθq,

where r¨, ¨sθ denotes the complex interpolation space, cf. [9], [49], [4, p.166], [34, Sec. 0.2.1], and the interpolation
inequality, see, e.g., [35, p.19, Prop. 2.3], yields

} ¨ }Hp1´θqs0`θs1 pp0,T q,rX,Y sθq ď C} ¨ }1´θHs0 pp0,T q,Xq} ¨ }
θ
Hs1 pp0,T q,Y q (4)

for a constant C that might depend on T . If, in addition, θ P p0, 1q and

A P LpHs0pp0, T q, Xq, H s̃0pp0, T q, X̃qq X LpHs1pp0, T q, Y q, H s̃1pp0, T q, Ỹ qq,

then A P LpHp1´θqs0`θs1pp0, T q, rX,Y sθq, Hp1´θqs̃0`θs̃1pp0, T q, rX̃, Ỹ sθqq and

}A}LpHp1´θqs0`θs1 pp0,T q,rX,Y sθq,Hp1´θqs̃0`θs̃1 pp0,T q,rX̃,Ỹ sθqq
ď C}A}1´θLpHs0 pp0,T q,Xq,H s̃0 pp0,T q,X̃qq}A}

θ
LpHs1 pp0,T q,Y q,H s̃1 pp0,T q,Ỹ qq,

(5)

for a constant C that might depend on T , cf., e.g., [9, p.115, 4.].
The spaces Hr,spQT q are defined by

Hr,spQT q “ L2pp0, T q, HrpΩqq XHspp0, T q, L2pΩqq

and endowed with the norm

} ¨ }Hr,spQT q “ p} ¨ }
2
L2pp0,T q,HrpΩqq ` } ¨ }

2
Hspp0,T q,L2pΩqqq

1
2 .
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For 0 ď r1 ď r, s1 “ spr ´ r1q{r, the inequality

} ¨ }Hs1 pp0,T q,Hr1 pΩqq ď C} ¨ }Hr,spQT q

holds true for a constant C ą 0 that might depend on T , cf. [18, (2.9)] or [19, (2.7)], which implies

} ¨ }Hp1´θqspp0,T q,HθrpΩqq ď C} ¨ }Hr,spQT q (6)

for θ P p0, 1q. Trace theorems for the Sobolev-type spaces Hr,spQT q imply

} ¨ |ΣTi
}Hr1,s1 pΣTi q

ď C} ¨ }Hr,spQT q, (7)

where C ą 0 is dependent on T , r ą 1
2 , s ě 0, r1 “ r ´ 1

2 and s1 “ pr ´ 1
2 q
s
r , cf. [36, Chap. 4, Thm. 2.1], [19,

Prop. 2.2] or [16, Thm. 3].

2.2 Method of successive approximations

The method of successive approximations is a well known approach for establishing existence and uniqueness
results for nonlinear partial differential equations. On an abstract level, the FSI system can be considered as a
nonlinear partial differential equation of the form

Apyq “ 0, (8)

where y P Y and Y is a Banach sace. As in [43] we write this in the form By “ Fpyq, where Fpyq :“ By´Apyq
and B is a linear operator that represents the principal part of the FSI system, i.e., the PDE operator in a
linear FSI system. For our setting we will show that the system By “ f has a unique solution y “ Sf , where
S P LpW,Y q, with W being a Banach space. Existence and uniqueness of solutions is now studied via the fixed
point equation

y “ SFpyq. (9)

Unique solvability of (9) on a closed subset Ỹ Ă Y can be shown if y ÞÑ SFpyq maps Ỹ into itself and is a
contraction on Ỹ . This, e.g., is the case if }S}LpW,Y q ď LS and if F : Ỹ Ñ W is Lipschitz continuous with a

constant LF ă
1
LS

. Uniqueness on Ỹ then also follows.

2.3 Framework for continuity and differentiability results

One can extend the considerations of the previous section to an equation

Apy, zq “ 0 (10)

with parameter or control z in a Banach space Z. As before, we consider solutions of the fixed point equation

y “ S Fpy, zq, (11)

where Fpy, zq :“ By ´Apy, zq, B is as in section sec. 2.2 and S P LpW,Y q is the solution operator of By “ f .

Theorem 1. Let W̃ ,W, Y, Z be Banach spaces, W̃ continuously embedded in W , S P LpW̃ , Y q, and LS ą 0 a
constant such that }Sf}Y ď LS}f}W for all f P W̃ . Let Z̃ Ă Z be open, Ỹ Ă Y be closed and F : Ỹ ˆ Z̃ Ñ W̃
be an operator. Let there exist constants LF P p0,

1
LS
q and C ą 0 such that, for all y, y1, y2 P Ỹ , z, z1, z2 P Z̃,

there hold

}Fpy2, z2q ´ Fpy1, z1q}W ď LF}y2 ´ y1}Y ` C}z2 ´ z1}Z , (12)

SFpy, zq P Ỹ . (13)

Then, for all z P Z̃, the system (11) has a unique solution ypzq and z ÞÑ ypzq is Lipschitz continuous on Z̃:

}ypz2q ´ ypz1q}Y ď
CLS

1´ LSLF
}z2 ´ z1}Z @ z1, z2 P Z̃. (14)

6
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In addition, let ypzq lie in the relative interior of Ỹ and denote by ỸL the linear subspace parallel to the affine
hull affpỸ q. Assume that F is Fréchet differentiable at pypzq, zq, where py, zq-variations are taken in ỸL ˆ Z.
Then yp¨q is Fréchet differentiable at z. The derivative is given by y1pzqphq “ δhypzq, where h P Z and
δhypzq P ỸL Ă Y solves the formally linearized equation

δhypzq “ SδFpypzq, zqpδhypzq, hq, (15)

where δFpypzq, zqpδhypzq, hq :“ Fypypzq, zqδhypzq ` Fzpypzq, zqh.

Proof. For any fixed z P Z̃, (12) implies the Lipschitz continuity of the mapping Fp¨, zq : Ỹ Ñ W . Using (12),
(13), and the properties of F , LF and LS shows that the map y P Ỹ ÞÑ SFpy, zq P Ỹ is a well-defined contraction.
The existence of a unique solution ypzq P Ỹ is thus ensured by the method of successive approximations. Now
(14) follows from }ypz2q ´ ypz1q}Y “ }SpFpypz2q, z2q ´Fpypz1q, z1qq}Y ď LS}Fpypz2q, z2q ´Fpypz1q, z1q}W and
(12). For showing differentiability, we fix z P Z̃ and assume that F is differentiable at pypzq, zq in the way stated
in the theorem. Let h P Z be arbitrarily fixed. Since ypzq is a relative interior point of Ỹ , we obtain from (12)
that, for all d1, d2 P ỸL, there holds:

}δFpypzq, zqpd2, hq ´ δFpypzq, zqpd1, hq}W “ }Fypypzq, zqpd2 ´ d1q}W ď LF}d2 ´ d1}Y . (16)

Thus, since LF ă
1
LS

, the method of successive approximations applied to the fixed point equation δhypzq “

SδFpypzq, zqpδhypzq, hq posed in ỸL, see (15), yields a unique solution δhypzq P ỸL Ă Y which by linearity of
(15) depends linearly on h. Let }h}Z be sufficiently small. Then z ` h P Z̃ and, as hÑ 0,

}Fpypz ` hq, z ` hq ´ Fpypzq, zq ´ δFpypzq, zqpδhypzq, hq}W
ď }δFpypzq, zqpypz ` hq ´ ypzq, hq ´ δFpypzq, zqpδhypzq, hq}W ` op}ypz ` hq ´ ypzq}Y ` }h}Zq

ď LF}ypz ` hq ´ ypzq ´ δhypzq}Y ` op}h}Zq,

where (16) is used. Now

}ypz ` hq ´ ypzq ´ δhypzq}Y “ }SFpypz ` hq, z ` hq ´ SFpypzq, zq ´ SδFpypzq, zqδhypzq}Y
ď LS}Fpypz ` hq, z ` hq ´ Fpypzq, zq ´ δFpypzq, zqδhypzq}W
ď LSLF}ypz ` hq ´ ypzq ´ δhypzqpzq}Y ` LSop}h}Zq p}h}Z Ñ 0q.

Therefore,

}ypz ` hq ´ ypzq ´ δhypzq}Y ď
LS

1´ LSLF
op}h}Zq “ op}h}Zq p}h}Z Ñ 0q,

which proves the Fréchet differentiability of z ÞÑ ypzq at z with y1pzqh “ δhypzq.

The rest of the paper is dedicated to the application of this argumentation to shape optimization for the
FSI problem via the method of mappings. The parameter z then corresponds to a domain transformation that
represents a variation of a reference shape domain.

3 Existence and uniqueness results for Navier-Stokes-Lamé system

In order to have the theoretical tools at hand that will be used for showing differentiability of the state with
respect to domain variations the main results of [43] are recalled. Since, in contrast, the analysis will be carried
out on a nominal domain Ω̃ instead of Ω̂, the statements are presented for a general domain Ω P tΩ̂, Ω̃u. We
will work under the following Assumption 1 on the unique solvability of the Stokes equations and the elastic
wave equation. We will see in Lemma 2 that according to [43] Assumption 1 is satisfied for particular boundary
conditions and geometrical settings.

Assumption 1. Let ` P p 1
2 , 1q, Tf ą 0. In addition, let β ą 0,

• Ω, Ωf , Ωs be open domains with Ω “ Ωf Y Ωs, ΩfXΩs “ H, Γi :“ BΩsXBΩf , Γf Ă BΩf zΓi, Γs Ă BΩszΓi,

• D Ă C8pΩq be a closed linear subspace, for which the following holds true: If f P D, then ∇f P Dd; If
f, g P D, then fg P D; If f P D, f ą 0, then f´1 P D,

7
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• D “ Dd, D “ Ddˆd, DT “ C8pr0, T s, Dq, DT “ C8pr0, T s,Dq, DT “ C8pr0, T s,Dq,

ET “ DT
H2``,1` `

2 pQTf q
d

, GT “ DT
L2
pp0,T q,H1``

pΩf qqXH
`
2 pp0,T q,H1

pΩf qq
,

FT “ DT
H`,

`
2 pQTf q

d

, PT “ DT
tpPL2

pQTf q : ∇ pPH`,
`
2 pQTf q

d, p|
ΣT
i
PH

1
2
``, 1

4
` `

2 pΣTi qu,

GT “ DT
H1` `

2 pp0,T q,L2
pΩf q

d
q
, WT “ DT

C0
pr0,T s,H

7
4
` `

2 pΩsq
d
qXC1

pr0,T s,H
3
4
` `

2 pΩsq
d
q
,

HT “ DT
H

1
2
``, 1

4
` `

2 pΣTi q
d

, NT “ DT
Hβpp0,T q,H

3
2
``
pΓsYΓiq

d
qXH

1
2
```β

pp0,T q,H1
pΓsYΓiq

d
qXH

7
4
` `

2 pp0,T q,L2
pΓsYΓiq

d
q
,

V0 “ D
H1``

pΩf q
d

, W1 “ D
H

1
2
```β

pΩsq
d

,

where, for a Banach space X, D
X

denotes the closure of D w.r.t. X,

• v0 P V0, w1 P W1,

such that

• Lemma A.4, (6) and (7) are valid.

• v0|Γf “ 0, div pv0q “ 0, v0|Γi “ w1|Γi and 2νpεpv0qnf q ¨ τ “ 0 on Γi for any unit vector τ tangent to Γi.

• for all f P FT , h P HT , g P GT XH
1pp0, T q, H`pΩf q

dq and g P GT for which the compatibility conditions

g|ΣTf “ 0, gp0q “ 0, and hp0q “ 0,

are satisfied the system

Bt v ´ ν∆ v `∇ p “ f in QTf ,

div pvq “ g “ div pgq in QTf ,

vp0q “ v0 in Ωf ,

v “ 0 on ΣTf ,

σf pv, pqnf “ h on ΣTi ,

admits a unique solution pv, pq P V ˆ P and there exists a constant C ą 0 for which

}v}
H2``,1` `

2 pQTf q
d
` }∇ p}

H`,
`
2 pQTf q

d
` }p|ΣTi }H

1
2
``, 1

4
` `

2 pΣTi q
ď Cp}v0}H1``pΩf qd ` }f}pH`,

`
2 pQTf qq

d

` }g}
H1` `

2 pp0,T q,L2pΩf qdq
` }g}

L2pp0,T q,H1``pΩf qqXH
`
2 pp0,T q,H1pΩf qq

` }h}
H

1
2
``, 1

4
` `

2 pΣTi q
d
q.

• for arbitrary η P NT for which the compatibility conditions

ηp0q “ 0, and Btηp0q “ w1|ΣTs YΣTi
,

are satisfied the system

Btt w ´ divy pσs,ypwqq “ 0 in QTs ,

w “ η on ΣTs Y ΣTi ,

wp0q “ 0, Bt wp0q “ w1 in Ωs

admits a unique solution w P WT and there exists a constant C ą 0 for which

}w}
C0pr0,T s,H

7
4
` `

2 pΩsqdqXC1pr0,T s,H
3
4
` `

2 pΩsqdq
` }σs,ypwqnf }

Hβpp0,T q,H
1
2
``
pΓiqdqXH

3
4
` `

2 pp0,T q,L2pΓiqdq

ď Cp}w1}
H

1
2
```β

pΩsqd
` }η}

Hβpp0,T q,H
3
2
``
pΓsYΓiqdqXH

1
2
```β

pp0,T q,H1pΓsYΓiqdqXH
7
4
` `

2 pp0,T q,L2pΓsYΓiqdq
q.

8
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Remark 1. The main difficulty in finding a setting that fulfills Assumption 1 is the improved regularity for the
normal stress of the Lamé system on the boundary ΣTi . [43] provides a setting that fulfills the assumption, see
Lemma 2. Another restriction is the validity of the requirements for the fluid system. Existing results require,
e.g., that Γi X Γf “ H, see [19, Def. 7.2, Thm. 7.5].

Lemma 2. Let

Ω “ty P R3 : 0 ă y1 ă L1, 0 ă y2 ă L2, 0 ă y3 ă L3u,

Ωf “ty P R3 : 0 ă y1 ă L1, 0 ă y2 ă L2, 0 ă y3 ă La or Lb ă y3 ă L3u,

Ωs “ty P R3 : 0 ă y1 ă L1, 0 ă y2 ă L2, La ă y3 ă Lbu,

(17)

where 0 ă La ă Lb ă L3. Furthermore, let the interface be defined by Γi “ BΩf X BΩs, Γf :“ ty P Ω : y3 “

0 or y3 “ L3u and periodic boundary conditions be imposed on BΩzΓf by setting

D “ C8# pΩq :“ tv P C8pΩq : Dv̄ P C8pR2 ˆ r0, L3sq s.t. v̄|Ω “ v,

v̄py1, y2, y3q “ v̄py1 ` L1, y2, y3q, v̄py1, y2, y3q “ v̄py1, y2 ` L2, y3qu.

Then, β ą 0, v0 and w1 can be chosen such that Assumption 1 is fulfilled.

Proof. cf. [43, Sec. 3-4].

Remark 2. As we will see, any geometrical configuration satisfying Assumption 1, for example the one in
Lemma 2, can be used as shape reference domain Ω̃ for shape optimization. The shape reference domain is
mapped by a C1-diffeomorphism to the ALE reference domain Ω̂ for the FSI system. We will show in Theorem
3 that there exists a suitable open neighborhood in H2``pΩ̃qd of C1-diffeomorphisms containing the identity, see
(30) and Lemma 4, such that the solution of the corresponding FSI-system pulled-back to the reference shape
domain depends continuously differentiable on the transformation.

For ` P p 1
2 , 1q, the function spaces

HT :“ DT
H

1
2
``, 1

4
` `

2 pΣTi q, ST :“ DT
H1
pp0,T q,H1``

pΩf qqXH
3
2
` `

2 pp0,T q,L2
pΩf qq

,

ST :“ DT
H1
pp0,T q,H1``

pΩf q
d
qXH

3
2
` `

2 pp0,T q,L2
pΩf q

d
q
, ST :“ DT

H1
pp0,T q,H1``

pΩf q
dˆd

qXH
3
2
` `

2 pp0,T q,L2
pΩf q

dˆd
q
,

T :“ D
H2``

pΩqd

, (18)

the norms

} ¨ }ET :“ p} ¨ }2
pH2``,1` `

2 pQTf qq
d
` } ¨ }2H1pp0,T q,H`pΩf qdqq

` } ¨ }2

H
`
2 pp0,T q,H2pΩf qdq

` } ¨ |ΣTi
}2

H
1
4
` `

2 pp0,T q,H1pΓiqdq

` } ¨ |ΣTi
}2

H
3
4
` `

2 pp0,T q,L2pΓiqdq
` } ¨ }2

H
1
2
` `

2 pp0,T q,H1pΩf qdq
` } ¨ }2

H
1
4
` `

4 pp0,T q,H1``pΩf qdq
q

1
2 ,

} ¨ }ST :“ p} ¨ }2
H1pp0,T q,H1``pΩf qqXH

3
2
` `

2 pp0,T q,L2pΩf qq
` } ¨ p0q}2H1``pΩf q

` }Bt ¨ p0q}
2
L2pΩf q

q
1
2 , (19)

with analogous definitions on the spaces ST and ST , and, for v0 P V0, the metric spaces

ET,M0,v0
:“ tv P ET : vp¨, 0q “ v0, }v}ET ďM0u,

PT,M0,v0
:“ tp P PT : }∇ p}FT ďM0, }p|ΣTi }H

1
2
``, 1

4
` `

2 pΣTi q
ďM0, p|Γiˆt0u “ 2νεpv0qnf ¨ nf |Γiu

(20)

are defined. Due to trace theorems and interpolation theorems the modified norms on ET and ST ,ST ,ST
are equivalent to the standard norms on these function spaces. However, the appearing equivalence constant
might depend on T without further knowledge about this dependency. Since the dependency of the appearing
constants on T is a key point in the theoretical analysis it is therefore necessary to work with the modified
norms defined above.

Remark 3. The following adaptions have been made compared to [43]:

9
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• the ET -norm does not contain the term } ¨ }
H

1
2 pp0,T q,H1``pΩf qq

, which is not needed for estimating the right

hand side terms and is not compatible to our choice of the norm, but other norms of interpolation and
trace spaces.

• In the theoretical setting considered here, it is not guaranteed that g P Cpr0, T s, H1``pΩf q
dq which is

required in [43, Thm. 5.1] to use a trace theorem and give a meaning to g|ΣTf “ 0. However, the proof of

[43, Lem. 4.2] is the only point where g P Cpr0, T s, H1``pΩf q
dq is used. A reinspection of the proof shows

that g P H1pp0, T q, H`pΩf q
dq is actually sufficient.

The following continuity result that is also part of the proof of Theorem 2 corresponds to [43, Thm. 5.1]
with the modification that only g P H1pp0, T q, H`pΩf q

dq is required instead of g P Cpr0, T s, H1``pΩf q
dq, which

is possible by Remark 3. It will be needed for showing the Fréchet-differentiability of the state with respect to
domain variations.

Lemma 3. Let Assumption 1 be fulfilled. Assume that

f P FT , h P HT , g P GT , g P GT XH
1pp0, T q, H`pΩf q

dq.

Furthermore, let

g|ΣTf “ 0, gp¨, 0q “ 0, and hp¨, 0q “ 0.

Then, the system

Bt v ´ ν∆ v `∇ p “ f in QTf ,

div pvq “ g “ div pgq in QTf ,

vp¨, 0q “ v0 in Ωf ,

v “ 0 on ΣTf ,

v “ Bt w on ΣTi ,

σf pv, pqnf “ σspwqnf ` h on ΣTi ,

Btt w ´ div pσspwqq “ 0 in QTs ,

w “ 0 on ΣTs ,

wp¨, 0q “ 0, Bt wp¨, 0q “ w1 in Ωs,

(21)

admits a unique solution pv, p,wq P ET ˆ PT ˆWT and the states depend continuously on the initial data and
the right hand sides, more precisely,

}v}ET ` }∇ p}FT ` }σpwqnf }HT
` }p|ΣTi }HT ` }w}WT

ď CSp}v0}H1``pΩf qd ` }w1}
H

1
2
```β

pΩsqd
` }f}FT ` }g}GT

` }g}GT ` }h}HT
q,

for all 0 ă T ď Tf . The constant CS depends on Tf but is independent of T .

For obtaining time independent continuity estimates for the Stokes equations and the Lamé system with
respect to the right hand sides, the partial differential equations are split into several systems that have either
zero initial conditions or the right hand sides are obtained by lifting initial values to the interval p0,8q [43,
Sections 3, 4]. The systems are extended to the time-interval pT ´ Tf , T q or p0, Tf q of length Tf . In the
first case, the temporal fractional order of the right hand side terms is smaller than 1

2 or with additional zero
initial conditions. Property P3 of the norm yields continuity of the extension-by-zero-operator Ext : Y s

p0,T q Ñ

HsppT ´ Tf , T q, Xq with }Ext}LpY s
p0,T q

,HsppT´Tf ,T q,Xqq “ C, where s P r0, 5
2 qzt

1
2 ,

3
2u, X is a Hilbert space and

C is independent of T . Now, the solution theory for the equations can be applied on this extended systems
yielding constants CTf that might depend on Tf but do not depend on T . Due to property P2 of the norm the
equivalence constants of } ¨ }HsppT´Tf ,T q,Xq to an equivalent norm on HsppT ´ Tf , T q, Xq might depend on Tf
but not on T (using (6) with r “ 2` `, s “ 1` `

2 and (7) explains why we can add norms in the definition of
the norm on ET ). Now, by property P4 of the norm we obtain the estimates on the time interval p0, T q with

10
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constants independent of T . In the second case, the right hand sides can be bounded above by a constant times
the norm of the initial values [35, p.22, Remark 3.3], where the appearing constant does not depend on T and
we use property P5 of the norm. In order to obtain an existence and regularity result for the coupled system,
a fixed point argument is used [43, Thm. 5.1], which requires property P6 of the norm. The extension of the
local-in-time result to arbitrary time intervals requires P8.
The main result of [43] is given by the following theorem (with the same adaptions as in Lemma 3), which shows
existence and uniqueness of solutions to the FSI problem if some additional requirements are met.

Theorem 2. Let Assumption 1 be fulfilled. Denote by Tf ą 0 a fixed terminal time, let CS be the constant
from Lemma 3, and K0 :“ CSp}v0}H1``pΩf qd `}w1}

H
1
2
```β

pΩsqd
q. Assume that one can find some 0 ă T˚ ă Tf

such that for all 0 ă T ď T˚ the following estimates hold for arbitrary M0 ą K0, v,v1,v2 P ET,M0,v0
and

p, p1, p2 P PT,M0,v0 :

Fpv, pq P FT , Hpv, pq P HT , Gpvq P GT , gpvq P GT XH
1pp0, T q, H`pΩf q

dq,

and

}Fpv, pq}FT ď CχpM0q, }Hpv, pq}HT
ď CχpM0q,

}Gpvq}GT ď CχpM0q, }gpvq}GT
ď CχpM0q,

(22)

and

}Fpv2, p2q ´ Fpv1, p1q}FT ď CTαχpM0qp}v
2 ´ v1}ET ` }∇ p2 ´∇ p1}FT q,

}Hpv2, p2q ´Hpv1, p1q}HT
ď CTαχpM0qp}v

2 ´ v1}ET ` }p
1|ΣTi

´ p2|ΣTi
}HT q,

}Gpv2q ´ Gpv1q}GT ď CTαχpM0qp}v
2 ´ v1}ET q,

}gpv2q ´ gpv1q}GT
ď CTαχpM0qp}v

2 ´ v1}ET q,

(23)

for some α ą 0, a positive constant C that does not depend on T but only on Tf and a polynomial χ. Further-
more, let

gpvq|ΣTf “ 0, gpvqp¨, 0q “ 0, and Hpv, pqp¨, 0q “ 0.

Then, there exists T ą 0 and M0 ă 8 such that the system

Bt v ´ ν∆ v `∇ p “ Fpv, pq in QTf ,

div pvq “ Gpvq “ div pgpvqq in QTf ,

vp¨, 0q “ v0 in Ωf ,

v “ 0 on ΣTf ,

v “ Bt w on ΣTi ,

σf pv, pqnf “ σspwqnf `Hpv, pq on ΣTi ,

Btt w ´ div pσspwqq “ 0 in QTs ,

w “ 0 on ΣTs ,

wp¨, 0q “ 0, Bt wp¨, 0q “ w1 in Ωs,

(24)

admits a unique solution

pv, p,wq P ET,M0,v0
ˆ PT,M0,v0

ˆWT .

Proof. This theorem corresponds to a large extent to [43, Thm. 2.1], where the requirements (22) and (23)
replace [43, Prop. 6.1]. As a first step the system (24) is reformulated as a fixed point system that can be
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started with homogeneous F , G and H. To this end, pv0, p0,w0q is introduced as the solution of the system

Bt v
0 ´ ν∆ v0 `∇ p0 “ 0 in QTf ,

div pv0q “ 0 in QTf ,

v0p¨, 0q “ v0 in Ωf ,

v0 “ 0 on ΣTf ,

v0 “ Bt w on ΣTi ,

σf pv
0, p0qnf “ σspw

0qnf on ΣTi ,

Btt w
0 ´ div pσspw

0qq “ 0 in QTs ,

w0 “ 0 on ΣTs ,

w0p¨, 0q “ 0, Bt w
0p¨, 0q “ w1 in Ωs,

(25)

that due to Lemma 3 admits for 0 ă T ď Tf a solution that fulfills

}v0}ET ` }∇ p0}FT ` }p
0|ΣTi

}HT ` }w
0}WT

ď CSp}v0}H1``pΩf qd ` }w1}
H

1
2
```β

pΩsqd
q “: K0,

where CS ą 0 is a constant that does not depend on T but on Tf . The solution pv, p,wq of the system (24)
then fulfills v “ u` v0, p “ q ` p0 and w “ z`w0, where pu, q, zq is the solution to

Bt u´ ν∆ u`∇ q “ Fpu` v0, q ` p0q in QTf ,

div puq “ Gpu` v0q “ div pgpu` v0qq in QTf ,

up¨, 0q “ 0 in Ωf ,

u “ 0 on ΣTf ,

u “ Bt z on ΣTi ,

σf pu, qqnf “ σspzqnf `Hpu` v0, q ` p0q on ΣTi ,

Btt z´ div pσspzqq “ 0 in QTs ,

z “ 0 on ΣTs ,

zp¨, 0q “ 0, Bt zp¨, 0q “ 0 in Ωs.

(26)

To prove the existence of solutions to the system (24) or the equivalent system (26), the method of successive
approximations is used.
Therefore, we show that there exists some M0 ą K0 such that the mapping

M : ET,M0,v0 ˆ PT,M0,v0 ˆWT Ñ ET,M0,v0 ˆ PT,M0,v0 ˆWT , pu, q, zq Ñ pu, q, zq,

is well-defined and a contraction with respect to the norm

}pu, q, zq}ETˆPTˆWT
:“ }u}ET ` }∇ q}FT ` }q|ΣTi }HT ` }z}WT

,

if we choose T ď Tf small enough. Here, pu, q, zq is defined as the solution of

Bt u´ ν∆ u`∇ q “ Fpu` v0, q ` p0q in QTf ,

div puq “ Gpu` v0q “ div pgpu` v0qq in QTf ,

up¨, 0q “ 0 in Ωf ,

u “ 0 on ΣTf ,

u “ Bt z on ΣTi ,

σf pu, qqnf “ σspzqnf `Hpu` v0, q ` p0q on ΣTi ,

Btt z´ div pσspzqq “ 0 in QTs ,

z “ 0 on ΣTs ,

zp¨, 0q “ 0, Bt zp¨, 0q “ 0 in Ωs.

(27)
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In order to show the contraction property we consider arbitrary pu1, q1, z1q, pu2, q2, z2q P ET,M0,v0
ˆPT,M0,v0

ˆ

WT . Due to Lemma 3 and the inequalities (23) we know that

}Mpu2, q2, z2q ´Mpu1, q1, z1q}ETˆPTˆWT

ď CSp}Fpu2 ` v0, q2 ` p0q ´ Fpu1 ` v0, q1 ` p0q}FT ` }gpu
2 ` v0q ´ gpu1 ` v0q}GT

` }Gpu2 ` v0q ´ Gpu1 ` v0q}GT ` }Hpu2 ` v0, q2 ` p0q ´Hpu1 ` v0, q1 ` p0q}HT
q

ď CSCT
αχpM0q}pu

2 ` v0, q2 ` p0, 0q ´ pu1 ` v0, q1 ` p0, 0q}ETˆPTˆWT

ď CSCT
αχpM0q}pu

2, q2, 0q ´ pu1, q1, 0q}ETˆPTˆWT
,

where C is a constant independent of T . If we define K1 ą 0 such that

}Mp0, 0, 0q}ETˆPTˆWT
ď K1,

and choose M0 ą K1, then there exists T ą 0 such that CSCT
αχpM0q ă 1 and

}Mpu, q, zq}ETˆPTˆWT
ď }Mp0, 0, 0q}ETˆPTˆWT

` CSCT
αχpM0q}pu, q, 0q}ETˆPTˆWT

ď K1 ` 3CSCT
αχpM0qM0 ďM0

for any pu, q, zq P ET,M0,v0
ˆPT,M0,v0

ˆWT . Thus,M is a well-defined contraction and we can apply the fixed
point theorem of Banach in order to show existence and uniqueness of the solution to the fixed point equation
Mpu, q, zq “ pu, q, zq in ET,M0,v0 ˆ PT,M0,v0 ˆWT .

4 Shape optimization via the method of mappings approach

We consider shape optimization problems governed by the FSI model (1). This results in an optimization
problem

min
pv̂,p̂,ŵ,Ω̂qPÊTˆP̂TˆŴTˆÔad

Ĵpv̂, p̂, ŵ, Ω̂q, s.t. Êpv̂, p̂, ŵ, Ω̂q “ 0.

Here, Ôad denotes the set of admissible domains, Ĵ : ÊT ˆ P̂T ˆ ŴT ˆ Ôad Ñ R is an objective function, and
Êpv̂, p̂, ŵ, Ω̂q “ 0 if and only if v̂, p̂, ŵ fulfill (1), where

Ê : ÊT ˆ P̂T ˆ ŴT ˆ Ôad Ñ ẐT ,

and ẐT is a suitable Banach space. There exist different approaches to shape optimization that are closely related
to each other. In particular, one can use shape derivatives in the Hadamard-Zolésio sense or one can apply the
method of mappings (also called perturbation of identity method) [40]. In this paper, we use the method of
mappings for a couple of reasons. It is based on domain transformations of a nominal domain Ω̃ to represent
shapes and thus fits very well to the arbitrary Lagrangian-Eulerian (ALE) approach of which the fully Lagrangian
formulation (1) is a special case. Moreover, the method of mappings transforms the shape optimization problem
to a nonlinear optimal control problem in a Banach space setting, which is attractive from a theoretical as well
as a numerical perspective. The set of admissible domains Ôad :“ tΩ̂ Ă Rd| Ω̂ “ τ̃ pΩ̃q, τ̃ P T̃ adu comprises
all domains that can be obtained by transformation of the shape reference domain Ω̃ via τ̃ P T̃ ad, where
T̃ ad Ă T̃ pΩ̃q is a suitable subset of the Banach space T̃ pΩ̃q of bicontinuous transformations of Ω̃. It is
convenient to define ũτ :“ τ̃ ´ idz and

Ũad :“ tũτ : Rd Ñ Rd, s.t. idz ` ũτ P T̃ adu,

and to optimize over ũτ P Ũad instead of τ P T̃ ad. Thus, we obtain the optimization problem

min
pṽ,p̃,w̃,ũτ qPẼTˆP̃TˆW̃TˆŨad

J̃pṽ, p̃, w̃, ũτ q, s.t. Ẽpṽ, p̃, w̃, ũτ q “ 0,

which yields an optimal control setting with the control ũτ .
Here, ṽ :“ v̂ ˝ τ̃ , p̃ :“ p̂ ˝ τ̃ , w̃ :“ ŵ ˝ τ̃ , which already requires ũτ P H

2``
# pΩ̃f q

d in order to maintain the

regularity. Further, Ẽ is chosen such that Ẽpṽ, p̃, w̃, ũτ q “ 0 if and only if Êpv̂ ˝ τ̃ , p̂ ˝ τ̃ , ŵ ˝ τ̃ , τ̃ pΩ̃qq “ 0.
Since the analysis will be carried out on the nominal domain Ω̃, the geometric assumptions are needed on Ω̃
instead of Ω̂. We require that two transformations with the same normal displacement of the design boundary
part result in the same ALE domains and that the support of the transformation is disjoint from the support
of the initial velocity v0.
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4.1 Navier-Stokes-Lamé system on the nominal domain

We apply the method of mappings approach to the FSI problem. In order to maintain the structure required
by Theorem 2 we have to ensure that the right hand side of the transformed elasticity equation remains 0. For
this purpose, the set of admissible transformations is chosen such that τ̃ |Ω̃s “ idz for all τ̃ P T̃ ad, i.e. ũτ |Ω̃s “ 0

for all ũτ P Ũad. The transformation of the Navier-Stokes-Lamé system (1) from the reference domain Ω̂ to the
shape reference domain Ω̃ via τ̃ yields the system

Bt ṽ ´ ν∆z ṽ `∇z p̃ “ F̃pṽ, p̃, ũτ q in Q̃Tf ,

divz pṽq “ G̃pṽ, ũτ q in Q̃Tf ,

ṽp¨, 0q “ ṽ0 in Ω̃f ,

ṽ “ 0 on Σ̃Tf ,

ṽ “ Bt w̃ on Σ̃Ti ,

σf,zpṽ, p̃qñf “ σs,zpw̃qñf ` H̃pṽ, p̃, ũτ q on Σ̃Ti ,

Btt w̃ ´ divz pσs,zpw̃qq “ 0 in Q̃Ts ,

w̃ “ 0 on Σ̃Ts ,

w̃p¨, 0q “ 0, Bt w̃p¨, 0q “ w̃1 in Ω̃s,

(28)

where

σf,zpṽ, p̃q :“ 2νεzpṽq ´ p̃I, σs,zpw̃q :“ λtrpεzpw̃qqI` 2µεzpw̃q, εzpw̃q :“
1

2
pDz w̃ ` pDz w̃qJq,

ṽ0 “ v̂0 ˝ τ̃ , w̃1 “ ŵ1 ˝ τ̃ and the nonlinear terms F̃ , G̃ and H̃ are defined by

F̃pṽ, p̃, ũτ q “ ν
ÿ

j,k,l

pBxjxjΥ̌k ˝ χ̃τ qpBykpτ̃
´1ql ˝ τ̃ qBzl ṽ ` ν

ÿ

i,k,l

pp
ÿ

j

BxjΥ̌iBxjΥ̌kq ˝ χ̃τ qpByiykpτ̃
´1ql ˝ τ̃ qBzl ṽ

` ν
ÿ

i,k,l,m

pp
ÿ

j

BxjΥ̌iBxjΥ̌kq ˝ χ̃τ qppBykpτ̃
´1qlByipτ̃

´1qmq ˝ τ̃ qBzlzm ṽ ´ ν∆z ṽ

` pI´ rFJΥppDy τ̃
´1qJ ˝ τ̃ qq∇z p̃,

H̃pṽ, p̃, ũτ q “ ´νpDz ṽpDz τ̃ q
´1

rFΥ ` rFJΥpDz τ̃ q
´TDz ṽJq cofprFχq cofpDz τ̃ qñf

` νpDz ṽ ` pDz ṽqJqñf ´ p̃pI´ cofprFχq cofpDz τ̃ qqñf ,

G̃pṽ, ũτ q “ Dz ṽ : pI´ detpDz τ̃ qdetprFχqrF
J
ΥpDz τ̃ q

´T q “ Dz ṽ : pI´ cofprFχq cofpDz τ̃ qq,

where
τ̃ “ idz ` ũτ , χ̃τ “ χ̂ ˝ τ̃ , rFχ “ pFχ ˝ τ̃ , rFΥ “ pFΥ ˝ τ̃ (29)

and thus rFχpz, tq :“ I`
şt

0
Dz ṽpz, sqpDz τ̃ pzqq

´1 ds. Moreover, the function g̃pṽ, ũτ q “ pI´cofpDz τ̃ q
JcofprFχq

Jqṽ

satisfies divz pg̃pṽ, ũτ qq “ G̃pṽ, ũτ q.
Let T̃ be defined by (18) and

Ũ :“ tũτ P T̃ : supppũτ q X supppṽ0q “ H, ũτ |Ω̃s “ 0u,

which is a closed linear subspace of H2``pΩ̃qd, be endowed with the norm

} ¨ }Ũ “ } ¨ }H2``pΩ̃qd .

Furthermore, let α1 ą }I}H1``pΩ̃f qdˆd
. We consider solutions of the FSI problem for transformations idz ` ũτ

induced by displacements ũτ P Ṽ, where

Ṽ :“ tũτ P Ũ : idz ` ũτ can be extended to an orientation-preserving C1-diffeomorphism

τ̃Rd : Rd Ñ Rd with τ̃Rd ´ idz P H
2``pRdqd,

}Dz pidz ` ũτ q}H1``pΩ̃f qdˆd
ă α1, }pDz pidz ` ũτ qq

´1}H1``pΩ̃f qdˆd
ă α1u,

(30)
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which by Lemma 4 is an open subset of Ũ. In particular, if Ũad Ă Ṽ, then our results will hold at any
admissible design displacement. Alternatively, the current design of the ALE domain could be viewed as the
reference shape domain, making it correspond to ũτ “ 0, and our results then can be applied to study continuity
and differentiability w.r.t. variations of this domain.

Remark 4. 1. In [26, Thm. 4.1] it is shown that C1-diffeomorphisms map bounded Lipschitz domains to
bounded Lipschitz domains. Therefore, for all ũτ P Ṽ, pidz ` ũτ qpΩ̃q is a bounded Lipschitz domain.

2. The requirements on the Rd-extended transformations in the definition of the set on the right hand side
of (30) allow to apply [29, Lem. B.5, B.6] showing that they map HspRdq-functions to HspRdq-functions
for all 0 ď s ď 2` `. Furthermore, by [29, Cor. 2.1], there exist constants M ą 0 and ω ą 0 such that

}Dz τ̃Rd}L8pRdqdˆd ăM, }pDz τ̃Rdq
´1}L8pRdqdˆd ăM, inf

zPRd
detpDz τ̃Rdpzqq ą ω. (31)

Lemma 4. For any ũτ P Ṽ there exists ρ “ ρpũτ q ą 0 such that ṽτ P Ṽ holds for all ṽτ P Ũ, }ṽτ ´ ũτ }Ũ ď ρ.

Proof. Let ũτ P Ṽ be arbitrary and set τ̃ “ idz ` ũτ . For ṽτ P Ṽ we use the notation τ̃v “ idz ` ṽτ . It has
to be verified that there exists ρ ą 0 such that for all ṽτ P Ṽ with }ṽτ ´ ũτ }Ũ ď ρ the following holds: τ̃v
can be extended to an orientation-preserving C1-diffeomorphism τ̃v,Rd of Rd satisfying τ̃v,Rd ´ idz P H

2``pRdqd,
}Dz τ̃v}H1``pΩ̃f qdˆd

ă α1, and }pDz τ̃vq
´1}H1``pΩ̃f qdˆd

ă α1.

The set Ωũτ :“ τ̃ pΩ̃q is a bounded Lipschitz domain by the definition of Ṽ and Remark 4. Using, e.g., [48,
Thm. 5, p. 181] combined with interpolation, there exists a bounded linear extension operator H2``pΩũτ q

d Ñ

H2``pRdqd. Further, the embeddings H2``pΩũτ q
d ĂW 1,8pΩũτ q

d and H2``pRdqd ĂW 1,8pRdqd are continuous.
Now ũτ P Ṽ implies }Dz τ̃ }H1``pΩ̃f qdˆd

“: α11 ă α1. Hence, we obtain as required }Dz τ̃v}H1``pΩ̃f qdˆd
ď

}Dz τ̃ }H1``pΩ̃f qdˆd
` }Dz pṽτ ´ ũτ q}H1``pΩ̃f qdˆd

ď α11 ` ρ ă α1 for ρ sufficiently small.

Denote by τ̃Rd P H
2``pRdqd the orientation-preserving C1-diffeomorphism that extends τ̃ . Then, by part 2

of Remark 4, there exist constants M ą 0 and ω ą 0 such that (31) holds.
We use the extension operator to obtain hτ P H

2``pRdqd with hτ |Ω̃ “ ṽτ ´ ũτ , }hτ }H2``pRdqd ď C}ṽτ ´
ũτ }H2``pΩ̃qd , and }hτ }W 1,8pRdqd ď C}ṽτ ´ ũτ }H2``pΩ̃qd . Setting τ̃v,Rd “ τ̃Rd ` hτ , there holds τ̃v,Rd |Ω̃ “ τ̃v and

τ̃v,Rd ´ idz “ pτ̃Rd ´ idzq ` hτ P H
2``pRdqd. By a Sobolev embedding we obtain also that τ̃v,Rd is C1.

Since W 1,8pRdq and C0,1pRdq, are equal with equivalent norms, see [24, Thm. 4.1, Rem. 4.2], there
there exists c1 ą 0 such that any f P W 1,8pRdqd has a Lipschitz continuous representative with modulus
ď c1}f}W 1,8pRdqd .

We now show that τ̃v,Rd : Rd Ñ Rd is bijective. In fact for any fixed z1 P Rd, the equation τ̃v,Rdpzq “ z1 can
be written as

z “ τ̃´1
Rd pz

1 ´ hτ pzqq “: Apz1; zq.

For sufficiently small ρ, the map Apz1; ¨q is a contraction since, for any z1, z2 P Rd, by using (31)

}τ̃´1
Rd pz

1 ´ hτ pz1qq ´ τ̃´1
Rd pz

1 ´ hτ pz2qq} ď c1}pDz τ̃Rdq
´1}L8pRdqdˆd}hτ pz1q ´ hτ pz2q}

ďMc1}hτ }W 1,8pRdqd}z1 ´ z2} ď CMc1ρ}z1 ´ z2}.

Hence, by the Banach fixed point theorem, if ρ is sufficiently small, then for any z1 P Rd there exists a unique
z P Rd with τ̃v,Rdpzq “ z1.

We show next that τ̃´1
v,Rd is C1. From (31) and }hτ }W 1,8pRdqd ď Cρ we obtain a constant C 1 ą 0 with

inf
zPRd

detpDz τ̃v,Rdpzqq ě ω ´ }detpDz τ̃v,Rdq ´ detpDz τ̃Rdq}L8pRdq ě ω ´ C 1}Dz τ̃v,Rd ´Dz τ̃Rd}L8pRdqdˆd

ě ω ´ C 1}hτ }W 1,8pRdqd ě ω ´ CC 1ρ.

Hence, for ρ ą 0 small enough we obtain detpDz τ̃v,Rdpzqq ą ω{2 for all z P Rd and thus τ̃´1
v,Rd is C1 by the

inverse function theorem.
We have shown that for ρ ą 0 small enough detpDz τ̃v,Rdq ě ω{2. Now pDz τ̃vq

´1 “ 1{detpDz τ̃vqcofpDz τ̃vq
J.

Since by Lemma A.4 products of functions in H1``pΩ̃f q are again in H1``pΩ̃f q, we have detpDz τ̃vq, cofpDz τ̃vq P

H1``pΩ̃f q and since detpDz τ̃vq ě ω{2 ą 0 by [44, pp. 336 and 297] also 1{detpDz τ̃vq P H
1``pΩ̃f q. Hence,

pDz τ̃vq
´1 P H1``pΩ̃f q

dˆd for }ṽτ ´ ũτ }Ũ ď ρ.
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Finally, with a constant C 1 ą 0 we obtain

}pDz τ̃vq
´1 ´ pDz τ̃ q

´1}H1``pΩ̃f qdˆd
“ }pDz τ̃vq

´1pDz τ̃ ´Dz τ̃vqpDz τ̃ q
´1}H1``pΩ̃f qdˆd

ď C 1}pDz τ̃vq
´1}H1``pΩ̃f qdˆd

}pDz τ̃ q
´1}H1``pΩ̃f qdˆd

}Dz pṽτ ´ ũτ q}H1``pΩ̃f qdˆd

ď α1C
1p}pDz τ̃vq

´1 ´ pDz τ̃ q
´1}H1``pΩ̃f qdˆd

` α1qρ,

from which }pDz τ̃vq
´1}H1``pΩ̃f qdˆd

ă α1 follows if ρ is chosen sufficiently small.

Let with ρ “ ρp0q according to Lemma 4

Ṽρ :“ tũτ P Ṽ : }ũτ }Ũ ă ρu. (32)

Then Ṽρ is by Lemma 4 an open subset of Ũ and we will study the differentiability of the solution of (28) on

Ṽρ at ũτ “ 0.
The choice of the space of admissible transformations restricts the shape optimization to the optimal design

of the fluid domain, but keeps the interface in the Lagrangian frame fixed. The boundedness properties of Ṽ
allow us to establish estimates of the right hand sides in (28). The following Lemma is a helpful tool that takes
the special structure of the right hand side terms into account.

Lemma 5. Let T ą 0, k P N, k ě 2, X,Xj , Y,Wn, Z be real, separable Hilbert spaces, 1 ď j ď k, 2 ď n ď k´1,
s1 P r0, 1szt

1
2u, si P p

1
2 , 1s for 2 ď i ď k and 0 ď s ď minj sj. Let m1 : X1 ˆW2 Ñ X, ml : Xl ˆWl`1 Ñ Wl

for 2 ď l ď k ´ 2 and mk´1 : Xk´1 ˆXk Ñ Wk´1 be continuous bilinear forms, m :
Śk

j“1Xj Ñ X be defined
by mpx1, . . . , xkq “ m1px1,m2px2, . . .qq and Tj : Y ˆ Z Ñ Sj, where Sj :“ Hsj pp0, T q, Xjq is endowed with the
norm

• } ¨ }Sj :“ } ¨ }Hsj pp0,T q,Xjq, if sj P r0,
1
2 q,

• } ¨ }Sj :“ p} ¨ }2Hsj pp0,T q,Xjq ` } ¨ p0q}
2
Xj
q

1
2 , if sj P p

1
2 , 1s,

and S :“ Hspp0, T q, Xq be endowed with the analogously defined norm } ¨ }S. Furthermore, let T : Y ˆ Z Ñ S
be defined by

T py, zq “ mpT1py, zq, . . . , Tkpy, zqq.

1. Let Mj ą 0, Ỹ Ă Y and Z̃ Ă Z be such that }Tjpy, zq}Sj ď Mj for all py, zq P Ỹ ˆ Z̃, 1 ď j ď k. Then,

there exists a constant C ą 0 that is independent of T such that }T py, zq}S ď CΠjMj for all py, zq P Ỹ ˆZ̃.

2. Let in addition to 1. Tj : Y ˆ Z Ñ Sj be Lipschitz continuous on Ỹ ˆ Z̃ for all 1 ď j ď k, i.e., there
exist Mj,1,Mj,2 ą 0 such that }Tjpy2, z2q ´ Tjpy1, z1q}Sj ďMj,1}y2 ´ y1}Y `Mj,2}z2 ´ z1}Z for arbitrary

y1, y2 P Ỹ and z1, z2 P Z̃. Then, }T py2, z2q ´ T py1, z1q}Hspp0,T q,Xq ď CpmaxjpMj,1Πn‰jMnq}y2 ´ y1}Y `

maxjpMj,2Πn‰jMnq}z2 ´ z1}Zq with a constant C ą 0 that is independent of T .

3. Let py1, z1q be an element of the relative interior of Ỹ ˆ Z̃ and Tj : Ỹ ˆ Z̃ Ñ Sj be Fréchet differentiable

in py1, z1q for all 1 ď j ď k. Then, T : Ỹ ˆ Z̃ Ñ S is Fréchet differentiable in py1, z1q.

Proof. By recursively applying Lemmas A.4 and A.1 it can be verified that m : ΠjSj Ñ Hspp0, T q, Xq is a
continuous multilinear form that fulfills

}mpx1, . . . , xkq}Hspp0,T q,Xq ď CΠj}xj}Sj ,

where C is a constant independent of T . Assertion 1 follow immediately if one directly uses the continuity
properties of m in order to estimate the norms at the initial value t “ 0. Further, for y1, y2 P Ỹ , z1, z2 P Z̃ we
have

mpT1py2, z2q, . . . , Tkpy2, z2qq ´mpT1py1, z1q, . . . , Tkpy1, z1qq

“ mppT1py2, z2q ´ T1py1, z1qq, T2py2, z2q, T3py2, z2q . . . , Tkpy2, z2qq

`mpT1py1, z1q, pT2py2, z2q ´ T2py1, z1qq, T3py2, z2q, . . . , Tkpy2, z2qq

` ¨ ¨ ¨ `mpT1py1, z1q, . . . , Tk´1py1, z1q, pTkpy2, z2q ´ Tkpy1, z1qqq,
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which implies

}mpT1py2, z2q, . . . , Tkpy2, z2qq ´mpT1py1, z1q, . . . , Tkpy1, z1qq}S

ď C
k

ÿ

j“1

ppΠnăj}Tnpy1, z1q}SnqpΠnąj}Tnpy2, z2q}Snq}Tjpy2, z2q ´ Tjpy1, z1q}Sj q

ď Cpmax
j
pMj,1Πn‰jMnq}y2 ´ y1}Y `max

j
pMj,2Πn‰jMnq}z2 ´ z1}Zq

for a generic constant C independent of T and therefore assertion 2. Since a continuous multilinear form is
infinitely differentiable 3 follows with the chain rule.

Lemma 6. Let T ą 0, k P N, X1, X2, Xj,1, Xj,2, Y, Z be real, separable Hilbert spaces, 1 ď j ď k, s1 P r0, 1szt
1
2u,

si P p
1
2 , 1s for 2 ď i ď k. Let m be a k-linear form that is recursively constructed via bilinear forms as in Lemma

5 such that m :
Śk

j“1Xj,1 Ñ X1 and m :
Śk

j“1Xj,1`δjl Ñ X2 are continuous for all 1 ď l ď k, where δjl
denotes the Kronecker delta. Let 0 ď s ď minj sj and

Sj :“ H1pp0, T q, Xj,1q XH
1`sj pp0, T q, Xj,2q

be endowed with the norm

• } ¨ }Sj :“ p} ¨ }2
H1pp0,T q,Xj,1qXH

1`sj pp0,T q,Xj,2q
` } ¨ p0q}2Xj,1q

1
2 , if sj P r0,

1
2 q.

• } ¨ }Sj :“ p} ¨ }2
H1pp0,T q,Xj,1qXH

1`sj pp0,T q,Xj,2q
` } ¨ p0q}2Xj,1 ` }Bt p¨qp0q}

2
Xj,2

q
1
2 , if sj P p

1
2 , 1s.

and S :“ H1pp0, T q, X1q XH1`spp0, T q, X2q be endowed with the analogously defined norm } ¨ }S. Further, let
Tj : Y ˆ Z Ñ Sj and T : Y ˆ Z Ñ S be defined by

T py, zq “ mpT1py, zq, . . . , Tkpy, zqq.

Then,

1. Let Mj ą 0, Ỹ Ă Y and Z̃ Ă Z be such that }Tjpy, zq}Sj ď Mj for all py, zq P Ỹ ˆ Z̃, 1 ď j ď k. Then,

there exists a constant C ą 0 that is independent of T such that }T py, zq}S ď CΠjMj for all py, zq P Ỹ ˆZ̃.

2. Let in addition to 1. Tj : Y ˆ Z Ñ Sj be Lipschitz continuous on Ỹ ˆ Z̃ for all 1 ď j ď k, i.e.,
there exist Mj,1,Mj,2 ą 0 such that }Tjpy2, z2q ´ Tjpy1, z1q}Sj ď Mj,1}y2 ´ y1}Y `Mj,2}z2 ´ z1}Z for

arbitrary y1, y2 P Ỹ and z1, z2 P Z̃. Then, }T py2, z2q ´ T py1, z1q}S ď CpmaxjpMj,1Πn‰jMnq}y2 ´ y1}Y `

maxjpMj,2Πn‰jMnq}z2 ´ z1}Zq with a constant C ą 0 that is independent of T .

3. Let py1, z1q be an element of the relative interior of Ỹ ˆ Z̃ and Tj : Ỹ ˆ Z̃ Ñ Sj be Fréchet differentiable

in py1, z1q for all 1 ď j ď k. Then, T : Ỹ ˆ Z̃ Ñ S is Fréchet differentiable in py1, z1q.

Proof. We recursively apply Lemma A.1 in order to get continuity of m :
Śk

j“1 Sj Ñ L2pp0, T q, X1q, Btm :
Śk

j“1 Sj Ñ L2pp0, T q, X1q, as well as, Btm :
Śk

j“1 Sj Ñ Hspp0, T q, X2q and use that

Btmpx1, . . . , xkq “ mpBt x1, x2, . . . , xkq `mpx1, Bt x2, . . . , xkq ` ¨ ¨ ¨ `mpx1, x2, . . . , Bt xkq.

It holds
}mpx1, . . . , xkq}L2pp0,T q,X1q ď C}x1}L2pp0,T q,X1,1qΠ

k
i“2}xi}Ŝi ,

}mpx1, . . . , Bt xj , . . . , xkq}L2pp0,T q,X1q ď C}Bt xj}L2pp0,T q,Xj,1qΠi‰j}xi}Ŝi ,

where Ŝj :“ H1pp0, T q, Xj,1q is endowed with the norm } ¨ }Ŝj
:“ p} ¨ }2H1pp0,T q,Xj,1q

` } ¨ p0q}2Xj,1q
1
2 for 1 ď j ď k.

Furthermore, there holds

}mpx1, . . . , Bt xj , . . . , xkq}Hspp0,T q,X2q ď C}Bt xj}S̃jΠi‰j}xi}Ŝi ,

where S̃j :“ Hsj pp0, T q, Xj,2q is endowed with the norm
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• } ¨ }S̃j :“ } ¨ }Hsj pp0,T q,Xj,2q, if sj P r0,
1
2 q.

• } ¨ }S̃j :“ p} ¨ }2Hsj pp0,T q,Xj,2q ` } ¨ p0q}
2
Xj,2

q
1
2 , if sj P p

1
2 , 1s.

In order to show the boundedness in the norm }¨}S the initial values have to be bounded appropriately. However,
this is ensured by the continuity properties of the multilinear form m. Moreover, property P1 of the norm is
used. The assertions now follow directly as in Lemma 5.

Furthermore, the following results will be needed for establishing the required right hand side estimates.

Lemma 7. 1. Let f̃ , g̃ P S̃T . Then, f̃ g̃ P S̃T and }f̃ g̃}S̃T ď C}f̃}S̃T }g̃}S̃T with a constant C that is indepen-
dent of T .

2. Let f̃ P S̃T . If f̃ ě ω ą 0 holds a.e. on Ω̃Tf with a constant ω ą 0 then f̃´1 P S̃T and

}f̃´1}S̃T ď Cp1` }f̃}S̃T q
10}f̃}S̃T

for a constant C that is independent of T .

Proof. 1. The bilinear form mpx1, x2q :“ x1 ¨ x2 is by Lemma A.4 continuous as a mapping L2pΩ̃f q ˆ

H1``pΩ̃f q Ñ L2pΩ̃f q and as a mapping H1``pΩ̃f q ˆ H1``pΩ̃f q Ñ H1``pΩ̃f q. Therefore, Lemma 6 implies

}f̃ g̃}S̃T ď C}f̃}S̃T }g̃}S̃T for a constant C that is independent of T . Here, we recall that the norm on S̃T is
defined by (19).

2. By [43, Lemma A.7] we know that

}f̃´1}L2pp0,T q,H1``pΩ̃f q
ď Cp1` }f̃}H1pp0,T q,H1``pΩ̃f qq

` }f̃p¨, 0q}H1``pΩ̃f q
q}f̃}L2pp0,T q,H1``pΩ̃f qq

,

}Bt f̃
´1}L2pp0,T q,H1``pΩ̃f q

ď Cp1` }f̃}H1pp0,T q,H1``pΩ̃f qq
` }f̃p¨, 0q}H1``pΩ̃f q

q4}f̃}H1pp0,T q,H1``pΩ̃f qq
.

for a constant C independent of T . The proof of this Lemma also shows that

}f̃´1p¨, 0q}H1``pΩ̃f q
ď Cp1` }f̃p¨, 0q}H1``pΩ̃f q

q}f̃p¨, 0q}H1``pΩ̃f q
.

Let C now denote a generic constant independent of T . In order to bound }Bt f̃
´1p¨, 0q}L2pΩ̃f q

, we consider

G P C8pRq such that Gp0q “ 0 and Gpxq “ x´1 for all x ě ω. Then,

}Bt f̃
´1p¨, 0q}2

L2pΩ̃f q
“ }BtGpf̃qp¨, 0q}

2
L2pΩ̃f q

“ }G1pf̃qp¨, 0qBt f̃p¨, 0q}
2
L2pΩ̃f q

“

ż

Ω̃f

pG1pf̃qpz, 0qBt f̃pz, 0qq
2 dz

ď sup
zPΩ̃f

|G1pf̃qpz, 0q|}Bt f̃p¨, 0q}
2
L2pΩ̃f q

ď C}Bt f̃p¨, 0q}
2
L2pΩ̃f q

.

These estimates imply

}f̃´1}H1pp0,T q,H1``pΩ̃f q
ď Cp1` }f̃}H1pp0,T q,H1``pΩ̃f qq

` }f̃p¨, 0q}H1``pΩ̃f q
q4}f̃}H1pp0,T q,H1``pΩ̃f qq

ď Cp1` }f̃}H1pp0,T q,H1``pΩ̃f qq
` }f̃p¨, 0q}H1``pΩ̃f q

q5.

Now,
}f̃´1}L2pp0,T q,L2pΩ̃f qq

ď C}f̃´1}L2pp0,T q,H1``pΩ̃f qq

for a constant independent of T and it remains to estimate }Bt f̃
´1}

H
1
2
` `

2 pp0,T q,L2pΩ̃f qq
. We obtain with Lemma

A.1, 2.

}Bt f̃
´1}

H
1
2
` `

2 pp0,T q,L2pΩ̃f qq
“ }f̃´2Bt f̃}

H
1
2
` `

2 pp0,T q,L2pΩ̃f qq

ď Cp}f̃´2}H1pp0,T q,H1``pΩ̃f qq
` }f̃´2p¨, 0q}H1``pΩ̃f q

qp}Bt f̃}
H

1
2
` `

2 pp0,T q,L2pΩ̃f qq
` }Bt f̃p¨, 0q}L2pΩ̃f q

q

ď Cp}f̃´1}H1pp0,T q,H1``pΩ̃f qq
` }f̃´1p¨, 0q}H1``pΩ̃f q

q2p}Bt f̃}
H

1
2
` `

2 pp0,T q,L2pΩ̃f qq
` }Bt f̃p¨, 0q}L2pΩ̃f q

q

ď Cp1` }f̃}H1pp0,T q,H1``pΩ̃f qq
` }f̃p¨, 0q}H1``pΩ̃f q

q10p}f̃}
H

3
2
` `

2 pp0,T q,L2pΩ̃f qq
` }Bt f̃p¨, 0q}L2pΩ̃f q

q.

Combining the estimates implies the assertion.
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Lemmas 5, 6 and 7 allow to estimate products of rational functions in terms of the norms of the factors. We
start by estimating the appearing factors.
Since z “ τ̃´1pτ̃ pzqq, it follows that I “ pDy τ̃

´1 ˝ τ̃ qDz τ̃ and

Dy τ̃
´1 ˝ τ̃ “ pDz τ̃ q

´1. (33)

Furthermore, for arbitrary invertible matrices A,B P Rdˆd one has

A´1 ´B´1 “ B´1pB´AqA´1,

A´1 ´B´1 ´B´1pB´AqB´1 “ B´1pB´AqpA´1 ´B´1q “ B´1pB´AqB´1pB´AqA´1. (34)

Let ũiτ P Ṽ , then τ̃ i :“ idz ` ũiτ , i “ 1, 2, satisfy by Lemma A.4, (34) and the definition of Ṽ

}pDz τ̃
1q´1 ´ pDz τ̃

2q´1}H1``pΩ̃f qdˆd
ď C}τ̃ 1 ´ τ̃ 2}H2``pΩ̃f qd

“ C}ũ1
τ ´ ũ2

τ }H2``pΩ̃f qd
,

}pDz τ̃
1q´1 ´ pDz τ̃

2q´1 ` pDz τ̃
2q´1pDz τ̃

1 ´Dz τ̃
2qpDz τ̃

2q´1}H1``pΩ̃f qdˆd
ď C}ũ1

τ ´ ũ2
τ }

2
H2``pΩ̃f qd

.
(35)

We define analogously to rFχ in (29)

rFiχpz, tq “ rFiχpz, t; ṽ
i, ũiτ q :“ I`

ż t

0

Dz ṽipz, sqpDz τ̃
ipzqq´1 ds, i P t1, 2u. (36)

Lemma 8. Let Assumption 1 be satisfied. Let M0 ą 0, α P p0, 1q and α1 ą 0. Then, there exists Tα ą 0

such that rFχp¨, tq is invertible, and detprFχp¨, tqq ě α for all t P p0, Tαq and for all ũτ P Ṽ and ṽ P ẼT,M0,ṽ0
.

In addition, for each of the following terms, there exists a constant C ą 0 independent of T such that for all
0 ă T ă Tα, ṽ, ṽ1, ṽ2 P ẼT,M0,ṽ0

, ũτ , ũ
1
τ , ũ

2
τ P Ṽ we have

1. (a) rFχ P S̃T , }rFχ}S̃T
ď Cp1`M0q,

(b) }rF2
χ ´

rF1
χ}S̃T

ď C}ṽ2 ´ ṽ1}ẼT ` Cp1`M0q}ũ
2
τ ´ ũ1

τ }H2``pΩ̃f qd
,

(c) The mapping ẼT,M0,ṽ0
ˆ Ṽρ Ñ S̃T , pṽ, ũτ q ÞÑ rFχ is Fréchet differentiable on the relative interior of

ẼT,M0,ṽ0
ˆ Ṽρ.

2. (a) cofprFχq P S̃T , }cofprFχq}S̃T
ď Cp1`M2

0 q,

(b) }cofprF2
χq ´ cofprF1

χq}S̃T
ď Cp1`M0qp}ṽ

2 ´ ṽ1}ẼT ` p1`M0q}ũ
2
τ ´ ũ1

τ }H2``pΩ̃f qd
q,

(c) The mapping ẼT,M0,ṽ0
ˆṼρ Ñ S̃T , pṽ, ũτ q ÞÑ cofprFχq is Fréchet differentiable on the relative interior

of ẼT,M0,ṽ0
ˆ Ṽρ.

3. (a) detprFχq P S̃T , }detprFχq}S̃T ď Cp1`M3
0 q,

(b) }detprF2
χq ´ detprF1

χq}S̃T ď Cp1`M2
0 qp}ṽ

2 ´ ṽ1}ẼT ` p1`M0q}ũ
2
τ ´ ũ1

τ }H2``pΩ̃f qd
q,

(c) The mapping ẼT,M0,ṽ0
ˆṼρ Ñ S̃T , pṽ, ũτ q ÞÑ detprFχq is Fréchet differentiable on the relative interior

of ẼT,M0,ṽ0
ˆ Ṽρ.

4. (a) pdetprFχqq
´1 P S̃T , }pdetprFχqq

´1}S̃T ď Cp1`M33
0 q,

(b) }pdetprF2
χqq

´1 ´ pdetprF1
χqq

´1}S̃T ď Cp1`M68
0 qp}ṽ

2 ´ ṽ1}ẼT ` p1`M0q}ũ
2
τ ´ ũ1

τ }H2``pΩ̃f qd
q,

(c) The mapping ẼT,M0,ṽ0 ˆ Ṽρ Ñ S̃T , pṽ, ũτ q ÞÑ pdetprFχqq
´1 is Fréchet differentiable on the relative

interior of ẼT,M0,ṽ0 ˆ Ṽρ.

5. (a) rFΥ P S̃T , }rFΥ}S̃T
ď Cp1`M35

0 q,

(b) }rF2
Υ ´

rF1
Υ}S̃T

ď Cp1`M70
0 qp}ṽ

2 ´ ṽ1}ẼT ` p1`M0q}ũ
2
τ ´ ũ1

τ }H2``pΩ̃f qd
q,

(c) The mapping ẼT,M0,ṽ0
ˆ Ṽρ Ñ S̃T , pṽ, ũτ q ÞÑ rFΥ is Fréchet differentiable on the relative interior of

ẼT,M0,ṽ0
ˆ Ṽρ.
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6. (a) rFΥprFΥq
T P S̃T , }rFΥprFΥq

T }S̃T
ď Cp1`M70

0 q,

(b) }rF2
Υp

rF2
Υq

T ´ rF1
Υp

rF1
Υq

T }S̃T
ď Cp1`M105

0 qp}ṽ2 ´ ṽ1}ẼT ` p1`M0q}ũ
2
τ ´ ũ1

τ }H2``pΩ̃f qd
q,

(c) The mapping ẼT,M0,ṽ0
ˆ Ṽρ Ñ S̃T , pṽ, ũτ q ÞÑ rFΥprFΥq

T is Fréchet differentiable on the relative

interior of ẼT,M0,ṽ0
ˆ Ṽρ.

7. (a) pBxjxkΥ̌q ˝ χ̃τ P H
1pp0, T q, H`pΩ̃f q

dq, }pBxjxkΥ̌q ˝ χ̃τ }H1pp0,T q,H`pΩ̃f qdq
ď Cp1`M70

0 q,

(b) }pBxjxkΥ̌
2 ˝ χ̃2

τ ´ BxjxkΥ̌
1 ˝ χ̃1

τ }H1pp0,T q,H`pΩ̃f qdq

ď Cp1`M105
0 qp}ṽ2 ´ ṽ1}ẼT ` p1`M0q}ũ

2
τ ´ ũ1

τ }H2``pΩ̃f qd
q,

(c) The mapping ẼT,M0,ṽ0
ˆṼρ Ñ H1pp0, T q, H`pΩ̃f q

dq, pṽ, ũτ q ÞÑ pBxjxkΥ̌q˝χ̃τ is Fréchet differentiable

on the relative interior of ẼT,M0,ṽ0
ˆ Ṽρ.

Proof. In order to show the existence of the required Tα ą 0 we consider rFχ ´ I “
şt

0
Dz ṽpz, sqpDz τ̃ pzqq

´1 ds
and estimate with Lemma A.4

}rFχp¨, tq ´ I}H1``pΩ̃f qdˆd
ď Cα1

ż t

0

}Dz ṽp¨, sq}H1``pΩ̃f qdˆd
ds.

Thus, since H1``pΩ̃f q
dˆd ãÑ CpΩ̃f qdˆd, we have

}rFχ ´ I}CpQ̃Tf qdˆd
ď CT

1
2α1M0

for a constant C independent of T . Since detprFχp¨, 0qq “ detpIq “ 1, we can find Tα such that rFχp¨, tq is

invertible and detprFχp¨, tqq ě α for all t P r0, Tαs, all ũτ P Ṽ, and all ṽ P ẼT,M0,ṽ0
.

Now, let 0 ă T ă Tα. Consider the multilinear form mpx1, . . . , xkq “ x1 ¨ . . . ¨ xk for k P N, which is by
Lemma A.4 continuous as a mapping L2pΩ̃f q ˆ H1``pΩ̃f q ˆ ¨ ¨ ¨ ˆ H1``pΩ̃f q Ñ L2pΩ̃f q and as a mapping

H1``pΩ̃f qˆH
1``pΩ̃f qˆ ¨ ¨ ¨ˆH

1``pΩ̃f q Ñ H1``pΩ̃f q. The terms we have to estimate are obtained by inserting

operators Tj : ẼT ˆ Ṽ Ñ S̃T , pṽ, ũτ q ÞÑ Tjpṽ, ũτ q in the multilinear form. If they are bounded, continuous and

Fréchet differentiable for 1 ď j ď k and arbitrary pṽ, ũτ q P ẼT,M0,ṽ0 ˆ Ṽρ, we can use Lemma 6 to show the
claims of the lemma. If we have to estimate vector or matrix valued quantities, we use the argumentation for
every component. In the following, C denotes a generic constant independent of T .

1. Consider rFχ ´ I “ mpT1pṽ, ũτ q, T2pṽ, ũτ qq with T1pṽ, ũτ q “
şt

0
Dz ṽpsqds and T2pṽ, ũτ q “ pDz τ̃ q

´1. We
have }T1pṽ, ũτ q}S̃T

ď Cp1 ` }ṽ}ẼT q, since }T1pṽ, ũτ qp0q}H1``pΩqdˆd “ 0 and }Bt T1pṽ, ũτ qp0q}L2pΩqdˆd “

}Dz ṽ0}L2pΩqdˆd , as well as, with P7,

}T1pṽ, ũτ qp¨, tq}H1``pΩ̃f qdˆd
ď T

1
2 }Dz ṽ}L2pp0,T q,H1``pΩ̃f qdˆdq

ď T
1
2 }ṽ}ẼT ,

}Bt T1pṽ, ũτ q}L2pp0,T q,H1``pΩ̃f qdˆdq
“ }Dz ṽ}L2pp0,T q,H1``pΩ̃f qdˆdq

ď }ṽ}ẼT ,

}Bt T1pṽ, ũτ q}
H

1
2
` `

2 pp0,T q,L2pΩ̃f qdˆdq
“ }Dz ṽ}

H
1
2
` `

2 pp0,T q,L2pΩ̃f qdˆdq
ď }ṽ}

H
1
2
` `

2 pp0,T q,H1pΩ̃f qdˆdq
ď }ṽ}ẼT ,

for almost every t P p0, T q due to the definition of } ¨ }ẼT . Boundedness follows with property P1 of the
norm. Fréchet differentiability and continuity now follow by linearity of T1 and due to

pT1pṽ
2, ũ2

τ q ´ T1pṽ
1, ũ1

τ qqp0q “ Bt pT1pṽ
2, ũ2

τ q ´ T1pṽ
1, ũ1

τ qqp0q “ 0

for all pṽ, ũτ q P ẼT,M0,ṽ0 ˆ Ṽ. Note that T2pṽ, ũτ q is independent of ṽ and depends linearly on pDz τ̃ q
´1

with }T2pṽ, ũτ q}S̃T
ď C}pDz τ̃ q

´1}H1``pΩ̃f qdˆd
. Hence, boundedness, continuity and differentiability follow

from the definition of Ṽ, (32) and (35).

2. Each component of the cofactor matrix cofprFχq can be written as a finite sum of terms a ¨ x1 ¨ x2, where

x1, x2 denote components of the matrix rFχ and a P t´1, 1u. Therefore, cofprFχq is a sum of bilinear forms

with factors T1pṽ, ũτ q :“ aprFχqi,j and T2pṽ, ũτ q :“ prFχqk,l for i, j, k, l P t1, 2, 3u. Due to the estimates in

1.(a) we know that }Tipṽ, ũτ q}S̃T ď Cp1 `M0q for i P t1, 2u, and, therefore, }cofprFχq}S̃T
ď Cp1 `M2

0 q.

1.(b) yields }Tipṽ2, ũ2
τ q ´ Tipṽ1, ũ1

τ q}S̃T ď C}ṽ2 ´ ṽ1}ẼT ` Cp1 ` M0q}ũ
2
τ ´ ũ1

τ }H2``pΩ̃f qd
, i P t1, 2u.

Therefore, the continuity estimate and Fréchet differentiability follow from Lemma 6.
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3. Since detprFχq is a polynomial of degree 3 in the components of the matrix rFχ, the assertions can be
proved similar to 2.

4. (a) Since detprFχq is a cubic polynomial in the components of rFχ and detprFχqp¨, tq ě α ą 0 for all
t P r0, Tαs, the assertion follows from Lemma 7, 2., which implies

}pdetprFχqq
´1}S̃T ď Cp1` }detprFχq}S̃T q

10}detprFχq}S̃T .

Now, 3.(a) implies that

}pdetprFχqq
´1}S̃T ď Cp1`M3

0 q
10p1`M3

0 q ď Cp1`M33
0 q.

(b) The difference

pdetprF2
χqq

´1 ´ pdetprF1
χqq

´1 “ ´pdetprF1
χqq

´1pdetprF2
χqq

´1pdetprF2
χq ´ detprF1

χqq

is a 3-linear form with factors T1pṽ, ũτ q :“ pdetprF1
χqq

´1, T2pṽ, ũτ q :“ pdetprF2
χqq

´1 and T3pṽ, ũτ q :“

´pdetprF2
χq ´ detprF1

χqq. Lemma 7, 1. now yields

}pdetprF2
χqq

´1 ´ pdetprF1
χqq

´1}S̃T ď C}pdetprF1
χqq

´1}S̃T }pdetprF2
χqq

´1}S̃T }detprF2
χq ´ detprF1

χq}S̃T .

The estimates 3.(b) and 4.(a) now imply

}pdetprF2
χqq

´1 ´ pdetprF1
χqq

´1}S̃T

ď Cp1`M33
0 qp1`M

33
0 qp1`M

2
0 qp}ṽ

2 ´ ṽ1}ẼT ` p1`M0q}ũ
2
τ ´ ũ1

τ }H2``pΩ̃f qd
q.

(c) Let pṽ, ũτ q P ẼT,M0,ṽ0
ˆ Ṽρ be arbitrary. Then by 2. and 4.(a) we have }pdetprFχqq

´1}S̃T ď

Cp1`M33
0 q and }cofprFχq}S̃T

ď Cp1`M2
0 q. Hence, Lemma 7 yields

}rF´1
χ }S̃T

“ }pdetprFχqq
´1cofprFχq}S̃T

ď }pdetprFχqq
´1}S̃T }cofprFχq}S̃T

ď Cp1`M35
0 q. (37)

Now detprFχq
´1 “ detprF´1

χ q, thus it suffices by 1., 3. and the chain rule to show that pṽ1, ũ1
τ q P

ẼT,M0,ṽ0
ˆ Ṽρ ÞÑ prF1

χq
´1 P S̃T is Fréchet differentiable at pṽ1, ũ1

τ q. This follows from (34), (37) and

Lemma 7, since with A “ rF1
χ

}A´1´rF´1
χ ´rF´1

χ p
rFχ´AqrF´1

χ }S̃T
“ }rF´1

χ p
rFχ´AqrF´1

χ p
rFχ´AqA´1}S̃T

ď Cp1`M35
0 q

3}rFχ´A}2
S̃T
,

which yields with 1. the Fréchet differentiability.

5. Since rFΥ “ prFχq
´1 “ pdetprFχqq

´1cofprFχq
J, we can prove the result via multilinear forms and use Lemma

7, 1. .

6. Again, the assertions can be shown via multilinear forms.

7. From χ̃´1
τ ˝ χ̃τ “ idz, it follows that

I “ Dz pχ̃
´1
τ ˝ χ̃τ q “ Dxχ̃

´1
τ ˝ χ̃τDz χ̃τ .

Therefore, since Dz χ̃τ “ rFχDz τ̃ , we have

Dxχ̃
´1
τ ˝ χ̃τ “ prFχDz τ̃ q

´1 “ Dz τ̃
´1

rFΥ. (38)

Furthermore, we have ppFΥql,k “ ppF
´1
χ ql,k “ pBxkΥ̌lq ˝ χ̂, which implies

prFΥql,k “ pBxkΥ̌lq ˝ χ̃τ . (39)

21

Page 21 of 32 AUTHOR SUBMITTED MANUSCRIPT - IP-102254.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Thus, pBxjxkΥ̌l
q ˝ χ̃τ “ Bxj p

rFΥ ˝ χ̃
´1
τ ql,k ˝ χ̃τ and with (38) we obtain

Bxj p
rFΥ ˝ χ̃

´1
τ ql,k ˝ χ̃τ “

ÿ

m

pBzm
rFΥql,kBxj pχ̃

´1
τ qm ˝ χ̃τ “

ÿ

m,i

pBzm
rFΥql,kpDz τ̃

´1qm,iprFΥqi,j

and each summand is the composition of a multilinear form mpx1, x2, x3q “ x1 ¨ x2 ¨ x3, which is by
Lemma A.4 continuous as a mapping H`pΩ̃f qˆH

1``pΩ̃f qˆ ¨ ¨ ¨ ˆH
1``pΩ̃f q Ñ H`pΩ̃f q with an operator

ẼT,M0,ṽ0
ˆ Ṽ Ñ H1pp0, T q, H`pΩ̃f qqˆH

1pp0, T q, H1``pΩ̃f qqˆH
1pp0, T q, H1``pΩ̃f qq that by (35), P7 and

5. is bounded and continuous on ẼT,M0,ṽ0 ˆ Ṽρ as well as Fréchet differentiable on ẼT,M0,ṽ0 ˆ Ṽρ. Now,
we can apply Lemma 5 to conclude the proof.

Remark 5. Lemma 8 and its proof could be extended in a canonical way from Fréchet differentiability to
continuous differentiability.

With the above Lemmas the required right hand side estimates can be established.

Lemma 9. Let Assumption 1 be satisfied. Let Tf ą 0 and ρ “ ρp0q be given by Lemma 4. There exist
0 ă T˚ ď Tf , α1 ą 0, as well as, for each of the following terms, a constant C ą 0 independent of T but

dependent on Tf and a polynomial χ such that for all 0 ă T ă T˚, ṽ, ṽ1, ṽ2 P ẼT,M0,ṽ0
, p̃, p̃1, p̃2 P P̃T,M0,ṽ0

and

ũτ , ũ
1
τ , ũ

2
τ P Ṽρ we have

F̃pṽ, p̃, ũτ q P F̃T , H̃pṽ, p̃, ũτ q P H̃T , G̃pṽ, ũτ q P G̃T , g̃pṽ, ũτ q P G̃T XH
1pp0, T q, H`pΩ̃f q

dq,

g̃pṽ, ũτ q|ΣTf “ 0, g̃pṽ, ũτ qp¨, 0q “ 0, and H̃pṽ, p̃, ũτ qp¨, 0q “ 0, (40)

as well as,

}F̃pṽ, p̃, ũτ q}F̃T ď CχpM0qpT
1´` ` ρq, }H̃pṽ, p̃, ũτ q}H̃T

ď CχpM0qpT
1´` ` ρq,

}G̃pṽ, ũτ q}G̃T ď CχpM0qpT
1´` ` ρq, }g̃pṽ, ũτ q}G̃T

ď CχpM0qp1` ρq,

and

}F̃pṽ2, p̃2, ũ2
τ q ´ F̃pṽ1, p̃1, ũ1

τ q}F̃T

ď CχpM0qppT
1´` ` ρqp}ṽ2 ´ ṽ1}ẼT ` }∇z p̃

2 ´∇z p̃
1}F̃T q ` }ũ

2
τ ´ ũ1

τ }H2``pΩ̃f qd
q,

}H̃pṽ2, p̃2, ũ2
τ q ´ H̃pṽ1, p̃1, ũ1

τ q}H̃T

ď CχpM0qppT
1´` ` ρqp}ṽ2 ´ ṽ1}ẼT ` }p̃

2|Σ̃Ti
´ p̃1|Σ̃Ti

}HT q ` }ũ
2
τ ´ ũ1

τ }H2``pΩ̃f qd
q,

}G̃pṽ2, ũ2
τ q ´ G̃pṽ1, ũ1

τ q}G̃T ď CχpM0qppT
1´` ` ρq}ṽ2 ´ ṽ1}ẼT ` }ũ

2
τ ´ ũ1

τ }H2``pΩ̃f qd
q,

}g̃pṽ2, ũ2
τ q ´ g̃pṽ1, ũ1

τ q}G̃T
ď CχpM0qppT

1
4´

`
4 ` ρq}ṽ2 ´ ṽ1}ẼT ` }ũ

2
τ ´ ũ1

τ }H2``pΩ̃f qd
q,

and

F̃ : ẼT,M0,ṽ0 ˆ P̃T,M0,ṽ0 ˆ Ṽρ Ñ F̃T , H̃ : ẼT,M0,ṽ0 ˆ P̃T,M0,ṽ0 ˆ Ṽρ Ñ H̃T ,

G̃ : ẼT,M0,ṽ0
ˆ Ṽρ Ñ G̃T , g̃ : ẼT,M0,ṽ0

ˆ Ṽρ Ñ G̃T

are Fréchet differentiable on the relative interior of ẼT,M0,ṽ0
ˆ P̃T,M0,ṽ0

ˆ Ṽρ and ẼT,M0,ṽ0
ˆ Ṽρ, respectively.

Proof. The compatibility conditions (40) are fulfilled, due to the choice of Ṽ, which ensures that supp ũτ X
supp ṽ0 “ H and therefore H̃pṽ, p̃, ũτ qp¨, 0q “ 0 and g̃pṽ, ũτ qp¨, 0q “ 0. The boundary condition on ΣTf ensures

that g̃pṽ, ũτ q|ΣTf “ 0. The right hand side terms F̃ , H̃, G̃ and g̃ are sums of multilinear forms as introduced

in Lemma 5 and 6. In Lemma 8 boundedness, continuity and Fréchet differentiability of the corresponding
factors are shown. Thus, it suffices to establish an appropriate boundedness estimate such that the product of
the appearing Mj in Lemma 5 have the structure C̃pTα ` }ũτ }H2``pΩ̃f qd

q for a suitable α ě 0 and C̃ which is

independent of T . The explicit time dependency is obtained by using the extension and restriction properties P3,
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P4 and P5 of the norm and by using Lemma P6. The time dependency for the corresponding constants Mj,1

and Mj,2 follows with similar arguments. The desired continuity estimates, as well as, Fréchet differentiability
can be deduced from Lemma 5 if (33) and thus

pByiDy τ̃
´1q ˝ τ̃ “ pByipDy τ̃

´1 ´ Iqq ˝ τ̃ “
ÿ

m

BzmppDz τ̃ q
´1 ´ IqpByi τ̃

´1
m q ˝ τ̃ ,

are kept in mind, which by Lemma A.4 and the definition of Ṽ implies

}pByiDy τ̃
´1q ˝ τ̃ }H`pΩ̃f q ď C}pDz τ̃ q

´1}H1``pΩ̃f q
}pDz τ̃ q

´1 ´ I}H1``pΩ̃f q
ď Cα1p1` α1q. (41)

Moreover, since for arbitrary matrices A,B P Rdˆd the cofactor-matrix is a polynomial of degree d´ 1 in every
entry, we have that

cofpAq ´ cofpBq ď
ÿ

i,j

χi,jpA,BqpA´Bqi,j ,

where χi,j is a polynomial of degree d´ 2 in the entries of A and B for 1 ď i, j ď 3. Thus,

}cofpAq ´ cofpBq}H1``pΩqdˆd ď Cp}A}d´2
H1``pΩqdˆd

` }B}d´2
H1``pΩqdˆd

q}A´B}H1``pΩqdˆd ,

and for ũτ , ũ
1
τ , ũ

2
τ P Ṽ we have

}cofpDz τ̃ q}H1``pΩ̃f qdˆd
ď C (42)

}cofpDz τ̃
1q ´ cofpDz τ̃

2q}H1``pΩ̃f qdˆd
ď Cαd´2

1 }τ̃ 1 ´ τ̃ 2}H2``pΩ̃f qd
ď Cαd´2

1 }ũ1
τ ´ ũ2

τ }H2``pΩ̃f qd
. (43)

We show boundedness of F̃ , H̃, G̃ and g̃. In order to obtain the estimates we have to split the terms such that
the initial values of selected factors vanish at t “ 0. To this end, we decompose

F̃pṽ, p̃, ũτ q “ F̃1pṽ, ũτ q ` F̃2pṽ, ũτ q ` F̃3pṽ, ũτ q ` F̃4pṽ, ũτ q ` F̃5pṽ, p̃, ũτ q ` F̃6pṽ, p̃, ũτ q,

F̃1pṽ, ũτ q “ ν
ÿ

j,k,l

pBxjxjΥ̌k ˝ χ̃τ qpBykpτ̃
´1ql ˝ τ̃ qBzl ṽ,

F̃2pṽ, ũτ q “ ν
ÿ

i,k,l

pp
ÿ

j

BxjΥ̌iBxjΥ̌k ´ δi,kq ˝ χ̃τ qpByiykpτ̃
´1ql ˝ τ̃ qBzl ṽ,

F̃3pṽ, ũτ q “ ν
ÿ

i,k,l,m

pp
ÿ

j

BxjΥ̌iBxjΥ̌k ´ δi,kq ˝ χ̃τ qppBykpτ̃
´1qlByipτ̃

´1qmq ˝ τ̃ qBzlzm ṽ,

F̃4pṽ, ũτ q “ ν
ÿ

k,l

pBykykpτ̃
´1ql ˝ τ̃ qBzl ṽ ` ν

ÿ

k,l,m

ppBykpτ̃
´1qlBykpτ̃

´1qmq ˝ τ̃ ´ δl,mqBzlzm ṽ,

F̃5pṽ, p̃, ũτ q “ pI´ rFJΥq∇z p̃,

F̃6pṽ, p̃, ũτ q “ rFJΥpI´ pDy τ̃
´1qJ ˝ τ̃ q∇z p̃,

H̃pṽ, p̃, ũτ q “ H̃1pṽ, ũτ q ` H̃2pṽ, ũτ q ` H̃3pṽ, ũτ q ` H̃4pṽ, ũτ q ` H̃5pṽ, ũτ q

` H̃6pṽ, ũτ q ` H̃7pṽ, ũτ q ` H̃8pṽ, ũτ q ` H̃9pṽ, p̃, ũτ q ` H̃10pp̃, ũτ q,

where

H̃1pṽ, ũτ q “ ´νDz ṽpDz τ̃ q
´1

rFΥpcofprFχq ´ Iq cofpDz τ̃ qñf ,

H̃2pṽ, ũτ q “ ´νrFJΥpDz τ̃ q
´JDz ṽJpcofprFχq ´ Iq cofpDz τ̃ qñf ,

H̃3pṽ, ũτ q “ ´νDz ṽpDz τ̃ q
´1prFΥ ´ Iq cofpDz τ̃ qñf ,

H̃4pṽ, ũτ q “ ´νprFΥ ´ IqJpDz τ̃ q
´JDz ṽJ cofpDz τ̃ qñf ,

H̃5pṽ, ũτ q “ ´νDz ṽpDz τ̃ q
´1pcofpDz τ̃ q ´ Iqñf ,

H̃6pṽ, ũτ q “ ´νpDz τ̃ q
´JDz ṽJpcofpDz τ̃ q ´ Iqñf ,

H̃7pṽ, ũτ q “ ´νDz ṽppDz τ̃ q
´1 ´ Iqñf ,

H̃8pṽ, ũτ q “ ´νppDz τ̃ q
´J ´ IqDz ṽJñf ,

H̃9pṽ, p̃, ũτ q “ ´p̃pI´ cofprFχqq cofpDz τ̃ qñf ,

H̃10pp̃, ũτ q “ ´p̃pI´ cofpDz τ̃ qqñf ,
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G̃pṽ, ũτ q “ Dz ṽ : ppI´ cofprFχqq cofpDz τ̃ qq `Dz ṽ : pI´ cofpDz τ̃ qq

“: G̃1pṽ, ũτ q ` G̃2pṽ, ũτ q.

and

g̃pṽ, ũτ q “ cofpDz τ̃ q
JpI´ cofprFχq

Jqṽ ` pI´ cofpDz τ̃ q
Jqṽ

“: g̃1pṽ, ũτ q ` g̃2pṽ, ũτ q.

Since the ideas for the estimates for the different summands of F̃ , H̃, G̃ and g̃ are similar we just present
the proofs for F̃2, F̃6, H̃1, G̃1 and g̃1. Let C denote a generic constant independent of T . In the following
argumentation we frequently use Lemma A.4 in order to ensure that X1, . . . , Xk are chosen such that multilinear
forms mpx1, . . . , xkq :“ x1 ¨ . . . ¨ xk fulfill the requirements of Lemma 5. The notation Si, Mi, Mi,1, Mi,2, si for
i P t1, . . . , ku is defined by Lemma 5.

‚ Estimation of g̃1pṽ, ũτ q:

To apply Lemma 5 we use property P1, which implies } ¨ }2
G̃T

“ } ¨ }2
L2pp0,T q,L2pΩ̃f qdq

` }Bt ¨ }
2

H
`
2 pp0,T q,L2pΩ̃f qdq

,

and estimate g̃1pṽ, ũτ q and Btg̃1pṽ, ũτ q separately.

1. g̃1pṽ, ũτ q is a multilinear form with factors T1pṽ, ũτ q “ ṽ, T2pṽ, ũτ q “ I´ cofprFχq
J, T3pṽ, ũτ q “ cofpDz τ̃ q

J.

With Lemma 5, s “ s1 “ 0, s2 “ `, s3 “ 1, X “ L2pΩ̃f q
d, X1 “ H2``pΩ̃f q

d, X2 “ H1``pΩ̃f q
dˆd, X3 “

H1``pΩ̃f q
dˆd, we obtain

}g̃1pṽ, ũτ q}L2pp0,T q,L2pΩf qdq ď CM0p1`M0qT
1´`,

since by P6, (42) and Lemmas A.3, A.4, 8

}T1pṽ, ũτ q}S1
ď }ṽ}ẼT ďM0,

}T2pṽ, ũτ q}S2
ď CT 1´`}I´ cofprFχq}H1pp0,T q,X2q ď CT 1´`p1`M2

0 q,

}T3pṽ, ũτ q}S3
“ p}cofpDz τ̃ q}

2
X3
` }cofpDz τ̃ q}

2
L2pp0,T q,X3q

q
1
2 ď C}cofpDz τ̃ q}X3 ď C,

(44)

i.e., M1 “M0, M2 “ CT 1´`p1`M2
0 q and M3 “ C in the notation of Lemma 5. Using in addition (43) gives

}T1pṽ
2, ũ2

τ q ´ T1pṽ
1, ũ1

τ q}S1
ď }ṽ2 ´ ṽ1}ẼT ,

}T2pṽ
2, ũ2

τ q ´ T2pṽ
1, ũ1

τ q}S2 ď CT 1´`}cofprF2
χq ´ cofprF1

χq}ẼT

ď CT 1´`p1`M0qp}ṽ
2 ´ ṽ1}ẼT ` p1`M0q}ũ

2
τ ´ ũ1

τ }H2``pΩ̃f qd
q,

}T3pṽ
2, ũ2

τ q ´ T3pṽ
1, ũ1

τ q}S3
ď C}cofpDz τ̃

2q ´ cofpDz τ̃
1q}X3

ď C}ũ2
τ ´ ũ1

τ }H2``pΩ̃f qd
.

Hence, M1,1 “ 1, M1,2 “ 0, M2,1 “ CT 1´`p1`M0q, M2,2 “ CT 1´`p1`M0q
2, M3,2 “ C, M3,1 “ 0 and Lemma

5 yields for a polynomial χ

}g̃1pṽ2, ũ2
τ q ´ g̃1pṽ1, ũ1

τ q}L2pp0,T q,L2pΩf qdq ď CχpM0qT
1´`p}ṽ2 ´ ṽ1}ẼT ` }ũ

2
τ ´ ũ1

τ }H2``pΩ̃f qd
q

and Fréchet differentiability of g̃1pṽ, ũτ q : ẼT ˆ Ṽ Ñ L2pp0, T q, L2pΩ̃f q
dq on ẼT,M0,ṽ0 ˆ Ṽρ.

2. Btg̃1pṽ, ũτ q “ ´cofpDz τ̃ q
JBt cofprFχq

Jṽ ` cofpDz τ̃ q
JpI ´ cofprFχq

JqBt ṽ is a sum of multilinear forms. We

exemplarily estimate the first term. Here, T1pṽ, ũτ q “ ṽ, T2pṽ, ũτ q “ ´Bt cofprFχq
J and T3pṽ, ũτ q “ cofpDz τ̃ q

J.

Choose s “ s1 “
`
2 , s2 “

1
2`

`
4 , s3 “ 1, X “ X2 “ L2pΩ̃f q

d, X1 “ H1``pΩ̃f q
d, X3 “ H1``pΩ̃f q

d. With Lemmas
A.2, 8 we obtain

}T1pṽ, ũτ q}S1 ď Cp}T1pṽ, ũτ qp0q}H1``pΩ̃f qd
` T

1
4´

`
4 }T1pṽ, ũτ q}ẼT q ď Cp1`M0q,

}T2pṽ, ũτ q}S2
ď Cp}T2pṽ, ũτ qp0qq}X2

` T
`
4 }T2pṽ, ũτ q}

H
1
2
` `

2 pp0,T q,L2pΩ̃f qdq
q ď Cp1`M2

0 q,

}T3pṽ, ũτ q}S3 ď C,

(45)

where we use for the second term that 0 “ Bt prFχrFΥq “ Bt rFχrFΥ ` rFχBt rFΥ and thus with (36)

BtpcofprFχq
Jqp0q “ Bt pdetprFχqrFΥqp0q “ pBt detprFχqrFΥ ` detprFχqBt rFΥqp0q

“ ptrpcofprFχq
JBtrFχqrFΥ ´ detprFχqrFΥDz ṽpDz τ̃ q

´1
rFΥqp0q

“ trpDz ṽ0pDz τ̃ q
´1qI´Dz ṽ0pDz τ̃ q

´1.
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Since pTipṽ2, ũ2
τ q ´ Tipṽ1, ũ1

τ qqp0q “ 0 for i P t1, 2, 3u, analogous to (45), we obtain with (43)

}T1pṽ
2, ũ2

τ q ´ T1pṽ
1, ũ1

τ q}S1
ď CT

1
4´

`
4 }T1pṽ

2, ũ2
τ q ´ T1pṽ

1, ũ1
τ q}ẼT ,

}T2pṽ
2, ũ2

τ q ´ T2pṽ
1, ũ1

τ q}S2
ď CT

`
4 }T2pṽ

2, ũ2
τ q ´ T2pṽ

1, ũ1
τ q}H

1
2
` `

2 pp0,T q,L2pΩ̃f qdq
,

}T3pṽ
2, ũ2

τ q ´ T3pṽ
1, ũ1

τ q}S3 ď C}ũ2
τ ´ ũ1

τ }H2``pΩ̃f qd
.

Continuity and Fréchet differentiability follow now by Lemmas 5, 8. Finally, g̃1pṽ, ũτ q P H
1pp0, T q, H`pΩ̃f q

dq,

since v P H1pp0, T q, H`pΩ̃f q
dq, τ̃ P H2``pΩ̃f q

d and pI´ cofprFχqq P H
1pp0, T q, H1``pΩ̃f q

dˆdq.

‚ Bound for }F̃6pṽ, p̃, ũτ q}F̃T :

F̃6pṽ, p̃, ũτ q is a multilinear form with factors T1pṽ, p̃, ũτ q “ ∇z p̃, T2pṽ, p̃, ũτ q “ I´pDy τ̃
´1qJ˝τ̃ “ I´pDz τ̃ q

´J

due to (33) and T3pṽ, p̃, ũτ q “ rFJΥ.

1. }F̃6pṽ, p̃, ũτ q}L2pp0,T q,H`pΩ̃f qdq
:

Choose s “ s1 “ 0, s2 “ 1, s3 “ `, X “ X1 “ H`pΩ̃f q
d, X2 “ X3 “ H1``pΩ̃f q

dˆd. }T1pṽ, p̃, ũτ q}S1
ď M0

follows by (20). With (35) and Lemma A.3 we obtain

}T2pṽ, p̃, ũτ q}S2 ď C}ũτ }H2``pΩ̃f qd
ď Cρ (46)

since ũτ P Ṽρ. rFΥp0q “ I and Lemmas A.2, 8 imply

}T3pṽ, p̃, ũτ q}S3
ď Cp1` T 1´`}rFΥ}H1pp0,T q,X3qq ď Cp1`M35

0 q. (47)

With (35) and Lemma 8 we have

}T1pṽ
2, p̃2, ũ2

τ q ´ T1pṽ
1, p̃1, ũ1

τ q}S1 ď }∇z p̃
2 ´∇z p̃

1}F̃T ,

}T2pṽ
2, p̃2, ũ2

τ q ´ T2pṽ
1, p̃1, ũ1

τ q}S2 ď C}ũ2
τ ´ ũ1

τ }H1``pΩ̃f qdˆd
,

}T3pṽ
2, p̃2, ũ2

τ q ´ T3pṽ
1, p̃1, ũ1

τ q}S3
ď Cp1`M70

0 qT
1´`p}ṽ2 ´ ṽ1}ẼT ` p1`M0q}ũ

2
τ ´ ũ1

τ }H2``pΩ̃f qd
q.

2. }F̃6pṽ, p̃, ũτ q}
H
`
2 pp0,T q,L2pΩ̃f qdq

:

Let s “ s1 “
`
2 , s2 “ 1, s3 “ `, X “ X1 “ L2pΩ̃f q

d, X2 “ X3 “ H1``pΩ̃f q
dˆd. With (20), (46), (47) and

Lemmas A.4, 8 we obtain the same bounds as before.
Thus, with Lemma 5, }F̃6pṽ, p̃, ũτ q}F̃T ď Cp1`M36

0 qρ and

}F̃6pṽ
2, p̃2, ũ2

τ q ´ F̃6pṽ
1, p̃1, ũ1

τ q}F̃T ď CχpM0qpT
1´`}ṽ2 ´ ṽ1}ẼT ` ρ}∇z p̃

2 ´∇z p̃
1}F̃T ` }ũ

2
τ ´ ũ1

τ }H2``pΩ̃f qd
q,

where χ is a polynomial.
As seen in the previous estimates, due to Lemma 5, the derivation of the continuity estimates and Fréchet
differentiability is straightforward if one knows how to show boundedness of the multilinear forms. We thus
only address boundedness in the following.

‚ Bound for }F̃2pṽ, ũτ q}F̃T :

F̃2pṽ, ũτ q is a sum of multilinear forms with factors T1pṽ, ũτ q “ Bzl ṽ, T2pṽ, ũτ q “ νByiBykpτ̃
´1ql ˝ τ̃ , T3pṽ, ũτ q “

p
ř

jpBxjΥ̌iBxjΥ̌kq ´ δi,kq ˝ χ̃τ for i, k, l P t1, . . . , du with T3pṽ, ũτ qp0q “ 0.

1. }F̃2pṽ, ũτ q}L2pp0,T q,H`pΩ̃f qdq
:

Boundedness, continuity and Fréchet differentiability are obtained with Lemma 5 for s “ s1 “ 0, s2 “ 1, s3 “ `,
X “ H`pΩ̃f q

d, X1 “ H1``pΩ̃f q
d, X2 “ H`pΩ̃f q, X3 “ H1``pΩ̃f q and Lemma 8. By P6 and (39) we obtain

}T3pṽ, ũτ q}S3
ď CT 1´`}T3pṽ, ũτ q}H1pp0,T q,X3q ď CT 1´`p1` }rFΥprFΥq

J}S̃T
q ď CT 1´`p1`M70

0 q, (48)

(41) and Lemma A.3 imply }T2pṽ, ũτ q}S2 ď C and, with P7,

}T1pṽ, ũτ q}Hs1 pp0,T q,X1q ď C}ṽ}L2pp0,T q,H2``pΩ̃f qdq
ď CM0.
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2. }F̃2pṽ, ũτ q}
H
`
2 pp0,T q,L2pΩ̃f qdq

:

Choose s “ s1 “
`
2 , s2 “ 1, s3 “ `, X “ L2pΩ̃f q

d, X1 “ H1pΩ̃f q
d, X2 “ H`pΩ̃f q, X3 “ H1``pΩ̃f q and use (41),

(48), P6, P7 and Lemmas A.3, A.4, 5 and 8. We obtain }F̃2pṽ, ũτ q}F̃T ď CT 1´`p1`M71
0 q.

‚ Bound for }H̃1pṽ, ũτ q}H̃T
:

H̃1pṽ, ũτ q is a multilinear form with factors T1pṽ, ũτ q “ Dz ṽ, T2pṽ, ũτ q “ pDz τ̃ q
´1, T3pṽ, ũτ q “ rFΥ, T4pṽ, ũτ q “

pcofprFχq ´ Iq, T5pṽ, ũτ q “ νcofpDz τ̃ qñf and T4pṽ, ũτ qp0q “ 0. Due to Lemma A.4 on Γi, which can locally
be mapped to bounded open domains on Rd´1, Lemma 5 can be applied. P7 and boundedness of the trace
operator yield

}Tjpṽ, ũτ q}
Hαpp0,T q,H

1
2
``
pΓ̃iqdˆdq

ď C}Tjpṽ, ũτ q}Hαpp0,T q,H1``pΩ̃f qdˆdq

for α P r0, 1szt 1
2u, j P t1, . . . , 5u.

1. }H̃1pṽ, ũτ q}
L2pp0,T q,H

1
2
``
pΓ̃iqdq

:

Choose s “ s1 “ 0, s2 “ s5 “ 1, s3 “ s4 “ ` and X1 “ X2 “ X3 “ X4 “ H
1
2``pΓ̃iq

dˆd and X “ X5 “

H
1
2``pΓ̃iq

d. We have with P7 and the definition of Ṽ

}T1pṽ, ũτ q}S1
ď C}ṽ}L2pp0,T q,H2``pΩ̃f qdq

ď CM0, }T2pṽ, ũτ q}S2
ď C}pDz τ̃ q

´1}H1``pΩ̃f qdˆd
ď Cα1.

Lemma A.2 and 8 imply

}T3pṽ, ũτ q}S3 ď CpT 1´`}rFΥ}H1pp0,T q,H1``pΩ̃f qdˆdq
` }rFΥp0q}H1``pΩ̃f qdˆd

q ď Cp1`M35
0 q.

Moreover, (42) yields }T5pṽ, ũτ q}S5 ď C}cofpDz τ̃ q}H1``pΩ̃f qdˆd
ď C. Finally, P6 implies

}T4pṽ, ũτ q}S4
ď C}cofprFχq´I}H`pp0,T q,H1``pΩ̃f qdˆdq

ď CT 1´`}cofprFχq´I}H1pp0,T q,H1``pΩ̃f qdˆdq
ď CT 1´`p1`M2

0 q.

2. }H̃1pṽ, ũτ q}
H

1
4
` `

2 pp0,T q,L2pΓ̃iqdq
:

Let s “ s1 “ s3 “ s4 “
1
4`

`
2 , s2 “ s5 “ 1, X “ L2pΓ̃iq

d, X1 “ L2pΓ̃iq
dˆd, X2 “ X3 “ X4 “ H

1
2``pΓ̃iq

dˆd, X5 “

H
1
2``pΓ̃iq

d. The estimates for }T2pṽ, ũτ q}S2
and }T5pṽ, ũτ q}S5

are as above. Since }Dz ¨|Σ̃Ti
}
H

1
4
` `

2 pp0,T q,L2pΓ̃iqdˆdq

appears in the definition of } ¨ }ẼT we have }T1pṽ, ũτ q}S1
ď CM0. Lemma A.2 and 8 yield

}T3pṽ, ũτ q}S3
ď CpT

3
4´

`
2 }rFΥ}H1pp0,T q,H1``pΩ̃f qdˆdq

` }rFΥp0q}H1``pΩ̃f qdˆd
q ď Cp1`M35

0 q.

Lemma A.2 and P6 imply

}T4pṽ, ũτ q}S4
ď CT

3
4´

`
2 }cofprFχq ´ I}H1pp0,T q,H1``pΩ̃f qdˆdq

ď CT
3
4´

`
2 p1`M2

0 q.

Hence, application of Lemma 5 in both cases yields }H̃1pṽ, ũτ q}H̃T
ď CT 1´`p1`M38

0 q.

‚ Estimation of G̃1pṽ, ũτ q:

G̃1pṽ, ũτ q is a sum of multilinear forms with factors T1pṽ, ũτ q “ pDz ṽqi,j , T2pṽ, ũτ q “ pI ´ cofprFχqqi,k,
T3pṽ, ũτ q “ pcofpDz τ̃ qqk,j with i, k, j P t1, . . . , du.

1. }G̃1pṽ, ũτ q}L2pp0,T q,H1``pΩ̃f qq
:

Choose s “ s1 “ 0, s2 “ `, s3 “ 1, X “ X1 “ X2 “ X3 “ H1``pΩ̃f q. }T1pṽ, ũτ q}L2pp0,T q,H1``pΩ̃f qq
ď C}ṽ}ẼT ď

CM0 due to P7 and (20), and with (44) we obtain the bound }G̃1pṽ, ũτ q}L2pp0,T q,H1``pΩ̃f qq
ď CT 1´`M0p1`M

2
0 q.

2. }G̃1pṽ, ũτ qpṽ, ũτ q}
H
`
2 pp0,T q,H1pΩ̃f qq

:

We choose s “ s1 “
`
2 , s2 “ `, s3 “ 1, X “ X1 “ H1pΩ̃f q, X2 “ X3 “ H1``pΩ̃f q. P7 and (20)

yield }T1pṽ, ũτ q}S1
ď C}ṽ}

H
`
2 pp0,T q,H2pΩ̃f qdq

ď CM0. Thus, with (44) and Lemmas A.4, 5, 8 we obtain

}G̃1pṽ, ũτ q}
H
`
2 pp0,T q,H1pΩ̃f qq

ď CT 1´`M0p1`M
2
0 q.

Theorem 3. Let Assumption 1 be fulfilled. Then, there exist εl ą 0, Tl ą 0 and Ml ą 0 such that for all
0 ă T ď Tl and for arbitrary ũτ P Ṽεl the system (28) admits a unique solution ỹpũτ q :“ pṽpũτ q, p̃pũτ q, w̃pũτ qq
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on the relative interior of ẼT,Ml,ṽ0
ˆ P̃T,Ml,ṽ0

ˆ W̃T . The mapping ũτ ÞÑ ỹpũτ q is continuous and Fréchet

differentiable on the interior of Ṽεl and, for h P Ũ the derivative ỹpũτ q
1h :“ δhỹ “ pδhṽ, δhp̃, δhw̃q is given as

the solution of the system

Bt δhṽ ´ ν∆z δhṽ `∇z δhp̃ “ pF̃pṽpũτ q, p̃pũτ q, ũτ qqvδhṽ
`pF̃pṽpũτ q, p̃pũτ q, ũτ qqpδhp̃` pF̃pṽpũτ q, p̃pũτ q, ũτ qquτ h̃ in Q̃Tf ,

divz pδhṽq “ pG̃pṽpũτ q, ũτ qqvδhṽ ` pG̃pṽpũτ q, ũτ qquτ h̃ in Q̃Tf ,

δhṽp¨, 0q “ 0 in Ω̃f ,

δhṽ “ 0 on Σ̃Tf

δhṽ “ Bt δhw̃ on Σ̃Ti ,

σf,zpδhṽ, δhp̃qñf “ σs,zpδhw̃qñf ` pH̃pṽpũτ q, p̃pũτ q, ũτ qqvδhṽ
`pH̃pṽpũτ q, p̃pũτ q, ũτ qqpδhp̃` pH̃pṽpũτ q, p̃pũτ q, ũτ qquτ h̃ on Σ̃Ti ,

Btt δhw̃ ´ divz pσs,zpδhw̃qq “ 0 in Q̃Ts ,

δhw̃ “ 0 on Σ̃Ts ,

δhw̃p¨, 0q “ 0, Bt δhw̃p¨, 0q “ 0 in Ω̃s.

(49)

Proof. In the notation of Theorem 1, choose y “ pṽ, p̃, w̃q, z “ ũτ , Y “ ẼT ˆ P̃T ˆ W̃T , Z “ Ũ, Fpy, zq “
pF̃pṽ, p̃, ũτ q, H̃pṽ, p̃, ũτ q, G̃pṽ, ũτ q, g̃pṽ, ũτ q, ṽ0, w̃1q. Furthermore, let W :“ F̃TˆH̃TˆG̃TˆG̃TˆṼ0ˆW̃1, and
W̃ :“ F̃Tˆth̃ P H̃T : h̃p0q “ 0uˆG̃Tˆtg̃ P G̃TXH

1pp0, T q, H`pΩ̃f q
dq : g̃|Σ̃Tf

“ 0, gp0q “ 0uˆtpṽ0, w̃1q P Ṽ0ˆ

W̃1 : ṽ0|Γ̃f “ 0, divz pṽ0q “ 0, ṽ0|Γ̃i “ w̃1|Γ̃i , 2νpεzpṽ0qq ¨ τ “ 0 on Γ̃i for any unit vector τ tangent to Γ̃iu,

let ρ “ ρp0q be given by Lemma 4. Lemma 3 defines the operator S and yields Tf ą 0 and LS “ CS ą 0

such that S P LpW̃ , ẼT ˆ P̃T ˆ W̃T q for 0 ă T ď Tf and }Sf}Y ď LS}f}W for all f P W̃ . Theorem 2 and

Lemma 9 yield constants M0 ą 0, T0 P p0, Tf q and ε “ minpρ, T
1
4´

l
4

0 q such that, for all 0 ă T ď T0 and z P Ṽε

there exists a unique solution y0pzq P ẼT,M0,v0
ˆ PT,M0,ṽ0

ˆ W̃T , which is a subset of the relative interior

of ẼT,Ml,ṽ0
ˆ PT,Ml,ṽ0

ˆ W̃T for Ml ą M0. Furthermore, Theorem 2 and Lemma 9 yield Tl P p0, T0s and

εl ď minpρ, T
1
4´

l
4

l q such that for all z P Ṽεl there exists a unique solution ylpzq P ẼT,Ml,ṽ0
ˆ PT,Ml,ṽ0

ˆ W̃T

and the required boundedness, continuity and Fréchet differentiability results are fulfilled for the choices Ỹ “
ẼT,Ml,ṽ0

ˆ P̃T,Ml,ṽ0
ˆ W̃T and Z̃ “ Ṽεl and 0 ă T ď Tl. Furthermore, the proof of Theorem 2 implies that

SFpy, zq P Ỹ for py, zq P Ỹ ˆ Z̃. Since y0pzq P ẼT,Ml,ṽ0 ˆ PT,Ml,ṽ0 ˆ W̃T and the solution is unique, we have

y0pzq “ ylpzq for all z P Z̃. Thus, ylpzq is in the relative interior of Ỹ and Theorem 1 can be applied.
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A Appendix

The subsequent Lemma is a concise version of [43, Lemma A.1].

Lemma A.1. Let X,Y, Z be real, separable Hilbert spaces and m be a bounded bilinear mapping from X ˆ Y
into Z. Further, let f P Hs1pp0, T q, Xq and g P Hs2pp0, T q, Y q with s1, s2 ě 0. Then the following holds.

1. If 1
2 ă s1 ď 1, 0 ď s2 ă

1
2 , then mpf, gq belongs to Hs2pp0, T q, Zq and

}mpf, gq}Hs2 pp0,T q,Zq ď Cs1,s2p}f}Hs1 pp0,T q,Xq ` }fp0q}Xq}g}Hs2 pp0,T q,Y q,

for all 0 ď T ď Tf , where Cs1,s2 is independent of T .
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2. If 1
2 ă s1 ď s2 ď 1, then mpf, gq belongs to Hs1pp0, T q, Zq and

}mpf, gq}Hs1 pp0,T q,Zq ď Cs1,s2p}f}Hs1 pp0,T q,Xq ` }fp0q}Xqp}g}Hs2 pp0,T q,Y q ` }gp0q}Y q,

for all 0 ď T ď Tf , where Cs1,s2 is independent of T .

Proof. We prove 2., 1. follows with similar arguments. Let f0 P H
1pp´8,8q, Xq and g0 P H

1pp´8,8q, Y q be
such that f0p0q “ fp0q, g0p0q “ gp0q and for ´8 ă a ă b ă 8,

}f0}H1ppa,bq,Xq ď C0}fp0q}X ,

}g0}H1ppa,bq,Y q ď C0}gp0q}Y ,

with a constant C0 independent of pb´ aq (extension to H1pp0,8q, Xq and mirroring at t “ 0). Let C and CTf
denote generic constants (CTf is used if the constant might depend on Tf ). Using property P2 of the norm and
the first inequality in the proof of [43, Lemma A.1] yields

}mpf, gq}Hs1 ppa,a`Tf q,Zq ď CTf }f}Hs1 ppa,a`Tf q,Xq}g}Hs2 ppa,a`Tf q,Y q, (50)

(use equivalence of norms with Tf -dependent constants). Now,

}mpf, gq}Hs1 pp0,T q,Zq ď p}mpf, gq ´mpf0, g0q}Hs1 pp0,T q,Zq ` }mpf0, g0q}Hs1 pp0,T q,Zqq.

Due to Property P5 of the norm and (50),

}mpf0, g0q}Hs1 pp0,T q,Zq ď C}mpf0, g0q}Hs1 pp0,Tf q,Zq ď CTf }f0}Hs1 pp0,Tf q,Xq}g0}Hs2 pp0,Tf q,Y q

ď CTf }fp0q}X}gp0q}Y .

Furthermore,

}mpf, gq ´mpf0, g0q}Hs1 pp0,T q,Zq ď }mpf ´ f0, g ´ g0q}Hs1 pp0,T q,Zq

` }mpf ´ f0, g0q}Hs1 pp0,T q,Zq ` }mpf0, g ´ g0q}Hs1 pp0,T q,Zq.

We know that pf ´ f0q|t“0 “ 0. Due to properties P3 and P4 of the norm and with (50),

}mpf ´ f0, g ´ g0q}Hs1 pp0,T q,Zq ď CTf }Extpf ´ f0q}Hs1 ppT´Tf ,T q,Xq}Extpg ´ g0q}Hs2 ppT´Tf ,T q,Y q

ď CTf }f ´ f0}Hs1 pp0,T q,Xq}g ´ g0}Hs2 pp0,T q,Y q

ď CTf p}f}Hs1 pp0,T q,Xq ` }f0}Hs1 pp0,Tf q,Xqqp}g}Hs2 pp0,T q,Y q ` }g0}Hs2 pp0,Tf q,Y qq

ď CTf p}f}Hs1 pp0,T q,Xq ` }f0}H1pp0,Tf q,Xqqp}g}Hs2 pp0,T q,Y q ` }g0}H1pp0,Tf q,Y qq

ď CTf p}f}Hs1 pp0,T q,Xq ` }fp0q}Xqp}g}Hs2 pp0,T q,Y q ` }gp0q}Y q.

We now estimate mpf ´ f0, g0q using the norm properties P3, P4:

}mpf ´ f0, g0q}Hs1 pp0,T q,Zq ď C}mpExtpf ´ f0q, g0q}Hs1 ppT´Tf ,T q,Zq

ď CTf }Extpf ´ f0q}Hs1 ppT´Tf ,T q,Xq}g0}Hs2 ppT´Tf ,T q,Y q

ď CTf }f ´ f0}Hs1 pp0,T q,Xq}g0}Hs2 pp´Tf ,Tf q,Y q

ď CTf p}f}Hs1 pp0,T q,Xq ` }fp0q}Xq}gp0q}Y .

Since mpf0, g ´ g0q can be estimated in the same way, this concludes the proof of 2.

Lemma A.2. Let X be a real, separable Hilbert space and α P r0, 1qzt 1
2u. Furthermore, let β ą 0 be such

that α ` β P p 1
2 , 1s, c P X and g P Hα`βpp0, T q, Xq be such that gp0q “ c. Then, there exists a constant C

independent of T such that
}g}Hαpp0,T q,Xq ď CpT β}g}Hα`βpp0,T q,Xq ` }c}Xq.
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Proof. Let C denote a generic constant independent of T , where 0 ă T ď Tf . There exists h P H1pp0, Tf q, Xq
such that hp0q “ c and }h}H1pp0,Tf q,Xq ď C}c}X e.g., hptq :“ cT´1

f pTf ´ tq for t P p0, Tf q. Set g̃ “ g ´ h.

Properties P5, P2, the definition of h and P6 yield

}g}Hαpp0,T q,Xq ď }g̃}Hαpp0,T q,Xq ` }h}Hαpp0,T q,Xq ď }g̃}Hαpp0,T q,Xq ` C}h}H1pp0,Tf q,Xq

ď }g̃}Hαpp0,T q,Xq ` C}c}X ď CT β}g̃}Hα`βpp0,T q,Xq ` C}c}X

ď CpT β}g}Hα`βpp0,T q,Xq ` }c}Xq.

Lemma A.3. Let X be a real, separable Hilbert space and s ě 0. Let c P X and gptq “ c for a.e. t P p0, T q.
Then, g P Hspp0, T q, Xq and there exists a constant C independent of T such that }g}Hspp0,T q,Xq ď C}c}X .

Proof. Let Tf ě T and C denote a generic constant independent of T . For s ě 1 we have, due to P1 and
Btg “ 0,

}g}Hspp0,T q,Xq “ }g}L2pp0,T q,Xq ď T
1
2 }c}X ď C}c}X . (51)

For s P r0, 1q, Lemma A.2 and (51) yield

}g}Hspp0,T q,Xq ď CpT 1´s}g}H1pp0,T q,Xq ` }c}Xq ď C}c}X .

Furthermore, the following result corresponds to [19, Prop. B.1 (i)].

Lemma A.4. Let ζ, υ, ω P R, f P Hζ`υpΩf q, and g P Hζ`ωpΩf q. Then, there exists C ą 0 such that

}fg}HζpΩf q ď C}f}Hζ`υpΩf q}g}Hζ`ωpΩf q,

1. if υ ` ω ` ζ ě d
2 , υ ą 0, ω ą 0, and 2ζ ą ´υ ´ ω,

2. or υ ` ω ` ζ ą d
2 , υ ě 0, ω ě 0, and 2ζ ě ´υ ´ ω.
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