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A B S T R A C T

The human anterior insula (aINS) is a topographically organized brain region, in which ventral portions
contribute to socio-emotional function through limbic and autonomic connections, whereas the dorsal aINS
contributes to cognitive processes through frontal and parietal connections. Open questions remain, however,
regarding how aINS connectivity varies over time. We implemented a novel approach combining seed-to-whole-
brain sliding-window functional connectivity MRI and k-means clustering to assess time-varying functional
connectivity of aINS subregions. We studied three independent large samples of healthy participants and longi-
tudinal datasets to assess inter- and intra-subject stability, and related aINS time-varying functional connectivity
profiles to dispositional empathy. We identified four robust aINS time-varying functional connectivity modes that
displayed both “state” and “trait” characteristics: while modes featuring connectivity to sensory regions were
modulated by eye closure, modes featuring connectivity to higher cognitive and emotional processing regions
were stable over time and related to empathy measures.
1. Introduction

The human anterior insula (aINS) is a functionally heterogeneous
region implicated in functions ranging from interoceptive awareness and
emotion processing to time perception and cognitive control (Craig,
2009). In humans, neuroimaging studies have begun to parcellate the
aINS, based on its patterns of functional and structural connectivity. For
example, task-free fMRI (tf-fMRI) studies, which measure the brain-wide
correlation structure in slow (<0.1 Hz), spontaneous blood oxygen level
dependent (BOLD) signal fluctuations (Smith et al., 2009; Fox et al.,
2005), have shown that the ventral, agranular aINS is functionally con-
nected to limbic and autonomic processing regions that include the
pregenual anterior cingulate cortex, the amygdala, and subcortical
structures such as the thalamus and periaqueductal gray (Seeley et al.,
d oxygen level dependent; IFG, in
94158, San Francisco, CA, USA.
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2007; Deen et al., 2011; Kurth et al., 2010; Touroutoglou et al., 2012;
Uddin, 2014). These regions make up the “salience network”, a
large-scale distributed system that represents the homeostatic signifi-
cance of prevailing stimuli and conditions (Critchley, 2005; Critchley and
Harrison, 2013; Sturm et al., 2018; Guo et al., 2016; Zhou and Seeley,
2014). In contrast, the dorsal, dysgranular aINS is connected to a
cingulo-opercular “task-control network” whose nodes include dorso-
lateral and opercular prefrontal, anterior midcingulate, and anterior
parietal areas involved in cognitive control processes such as task-set
initiation and maintenance (Seeley et al., 2007; Touroutoglou et al.,
2012; Uddin, 2014; Dosenbach et al., 2006). Under task-free conditions,
both aINS subregions, but perhaps especially the dorsal aINS (Uddin,
2014; Nomi et al., 2016), show activity that is anticorrelated with the
“default mode network”, a system including the posterior cingulate
ferior frontal gyrus; tf-fMRI, task-free functional MRI.
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Table 1
Demographics and sample characteristics.

Dataset Cross-
sectional

Longitudinal Eyes closed/
open

Number of subjects 121 44 20
Age in years, mean (s.d.) 69.3 (3.6) 72.9 (7.6) 42.8 (6.4)
Sex (Female/Male) 73/48 25/19 9/11
Handedness (L/A/R) 0/0/121 6/0/38 0/0/20
Education in years, mean (s.d.) 17.6 (2.0) 17.5 (1.9) 14.4 (2.6)
IRI-EC, mean (s.d.) 27.4 (4.8) NA NA
IRI-PT, mean (s.d.) 24.3 (5.7) NA NA
IRI-PD, mean (s.d.) 13.1 (5.0) NA NA
IRI-FS, mean (s.d.) 18.3 (5.1) NA NA
Interval between scanning dates in
months, mean (s.d.)

NA 9.2 (2.7) 1.0 (0.2)

A ¼ ambidextrous; EC ¼ empathic concern; FS ¼ fantasy score; IRI ¼ Interper-
sonal Reactivity Index; L ¼ left; NA ¼ not applicable; PD ¼ personal distress; PT
¼ perspective taking; R ¼ right; s.d. ¼ standard deviation.
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cortex, inferior parietal lobules, and precuneus (Buckner et al., 2008). In
addition to the dorsal-ventral axis, hemispheric lateralization of the aINS
is proposed to help maintain bodily homeostasis by adjusting and
balancing autonomic outflow based on bioenergetics demands (Craig,
2009; Critchley and Harrison, 2013; Sturm et al., 2018). Recent evidence
suggests that while the left-sided (dominant hemisphere) aINS controls
parasympathetic tone, the homotopic right (non-dominant) aINS is more
closely linked to sympathetic tone and responses (Craig, 2009; Critchley
and Harrison, 2013; Sturm et al., 2018). Structural and functional
changes in aINS subregions have been reported in a variety of neuro-
psychiatric conditions, ranging from mood and anxiety disorders to
schizophrenia, autism, and frontotemporal dementia (Zhou and Seeley,
2014; Menon and Uddin, 2010; Seeley et al., 2012; Brandl et al., 2019;
Williams, 2016).

Standard tf-fMRI has helped to reveal the functional organization of
the human aINS and other brain areas by providing a snapshot of func-
tional connectivity as averaged across the duration of a scanning session.
Although long-range structural connections are assumed to be relatively
stable in the adult brain (Sporns et al., 2005), coordinated functional
activity is dynamic, with the brain continuously reshaping network
configurations in response to prevailing conditions or task demands
(Lurie et al., 2018; Preti et al., 2017; Allen et al., 2014). Approaches that
capture time-varying connectivity bring the potential to clarify how brain
dynamics are organized and relate to function. We reasoned that this
approach could help clarify how the aINS may change its network part-
ners in response to salient internal and external stimuli and possibly
contribute to the development of more granular and personalized fin-
gerprints of brain function in health and disease. Such time-varying
functional connectivity has been shown to relate to clinical outcomes
(Damaraju et al., 2014; Kaiser et al., 2016; Sourty et al., 2016); task
performance (Saggar et al., 2018); and behaviorally relevant measures of
cognitive (Madhyastha et al., 2015; Shine et al., 2016a; Vidaurre et al.,
2017), emotional (R�esibois et al., 2017; Tobia et al., 2017), and atten-
tional processing (Sadaghiani et al., 2015; Ekman et al., 2012). One of the
few studies applying time-varying functional connectivity analyses to the
insula parcellated it into posterior, middle, and dorsal and ventral ante-
rior components, revealing partially overlapping time-varying connec-
tivity profiles for ventral and dorsal aINS subregions. Ventral and dorsal
profiles diverged based on distinct contributions from limbic/emotional
processing and cingulo-opercular/cognitive regions mirroring findings
from static tf-fMRI studies (Nomi et al., 2016).

Despite this body of research, it remains unclear how distinct aINS
subregions dynamically engage the salience and task-control networks
over time. Moreover, it is largely unknown whether time-varying func-
tional connectivity of the aINS — or any region for that matter — is
modulated by externally-driven states or instead displays trait charac-
teristics such as within-subject temporal stability and relationships to
behavioral or dispositional measures. To gain a deeper understanding of
these issues, we implemented a novel approach combining seed-to-
whole-brain sliding-window functional connectivity and k-means clus-
tering to derive time-varying functional connectivity profiles of aINS
subregions across three large, independent samples of healthy partici-
pants, including eyes open vs. eyes closed conditions and longitudinal
datasets. Across methods and samples, we found that aINS subregions
display shared and distinct time-varying connectivity “modes” that bind
together cognitive and/or emotional processing areas versus upstream
sensory and motor cortices. Overall, the findings suggest that short-term
temporal variability in aINS connectivity reflects both state and trait
characteristics, revealing a path toward use of such data for assessing
psychopharmacological treatment efficacy as well as long-term thera-
peutic disease modification in neuropsychiatric conditions.

2. Materials and methods

Participants. All participants were healthy, cognitively normal adults,
recruited from two different centers (Table 1, Supplementary Fig. S1).
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Elderly participants were retrospectively selected from the Hillblom
Aging Network, an extensively characterized longitudinal cohort
assessed at the University of California, San Francisco (UCSF) Memory
and Aging Center. Subjects were required to have a Clinical Dementia
Rating Scale score (Morris, 1997) of 0 (range 0–3) and a Mini-Mental
State Examination score (Tombaugh and McIntyre, 1992) of 28 (range
0–30) or higher. Secondary inclusion criteria were based on availability
of the Interpersonal Reactivity Index, a widely used questionnaire
measuring emotional and cognitive empathy. Out of 224 elderly subjects
with a tf-fMRI scan and at least one Interpersonal Reactivity Index
available, a cross-sectional cohort of 121 elderly adults was selected
based on availability of the Interpersonal Reactivity Index within three
months of the tf-fMRI scan. A second sample was built based on avail-
ability of longitudinal tf-fMRI scans. Out of total 184 older adults with
longitudinally assessed tf-fMRI, 68 were excluded because they over-
lapped with the cross-sectional sample (N ¼ 121, described above) and
72 were excluded since they did not meet our selection criteria of being
scanned twice within a 5–13 month interval. This procedure resulted in a
final selection of 44 participants having longitudinal data and that did
not overlap with the cross-sectional sample. All visits included neuro-
psychological testing and a neurologic exam in addition to a structural
MRI and tf-fMRI scan. Exclusion criteria included a history of drug abuse,
psychiatric or neurological conditions, and current use of psychoactive
medications.

Twenty additional younger participants were recruited from a
simultaneous FDG-PET/tf-fMRI study at the Klinikum rechts der Isar,
Technische Universit€at München (Riedl et al., 2016). Neuroimaging data
was assessed twice within an interval of one month, during task-free
conditions with either eyes closed or eyes open. Participants were
randomly assigned to one of the two conditions, resulting in eight par-
ticipants assessed with eyes closed at the first and with eyes open at the
second scan, and 12 participants assessed with eyes open at the first and
eyes closed at the second scan. Exclusion criteria included a history of
psychiatric or neurological conditions, use of psychoactive medications,
pregnancy, and renal failure.

For all samples, written informed consent was obtained from all
involved participants and the study was approved by the institutional
review board where the data was acquired (UCSF/Klinikum rechts der
Isar).

Empathy Assessment. The Interpersonal Reactivity Index (Davis, 1980)
was completed by the participant’s informant within three months of
tf-fMRI scan. This questionnaire is composed by four subscales, each one
consisting of 7 questions that can comprehensively reach a maximum
score of 35. While empathic concern and personal distress measure
emotional aspects of empathy, perspective taking and the fantasy score
are designed to assess cognitive aspects of empathy. The Interpersonal
Reactivity Index was chosen since it has been widely used to assess
different aspects of empathy in healthy and neuropsychiatric conditions
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(Davis, 1980; Rankin et al., 2006). For example, studies in fronto-
temporal dementia, a neurodegenerative diseases of socioemotional
dysfunction, have shown that deficits in subscales of the Interpersonal
Reactivity Index are linked to structural deterioration of the aINS and
regions connected to the aINS such as the anterior cingulate and orbi-
tofrontal cortices (Rankin et al., 2006; Nana et al., 2018).

Neuroimaging data acquisition. The cross-sectional and longitudinal
cohorts from the Hillblom Aging Network were scanned at the UCSF
Neuroscience Imaging Center on a Siemens Trio 3T scanner. A T1-
weighted MP-RAGE structural scan was acquired with acquisition time
¼ 8 min 53 s, sagittal orientation, a field of view of 160� 240� 256 mm
with an isotropic voxel resolution of 1 mm3, TR ¼ 2300 ms, TE ¼ 2.98
ms, TI ¼ 900 ms, flip angle ¼ 9�. Task-free T2*-weighted echoplanar
fMRI scans were acquired with an acquisition time ¼ 8 min 6 s, axial
orientation with interleaved ordering, field of view ¼ 230 � 230 � 129
mm, matrix size ¼ 92 � 92, effective voxel resolution ¼ 2.5 � 2.5 � 3.0
mm, TR¼ 2000 ms, TE¼ 27 ms, for a total of 240 volumes. During the 8-
minute tf-fMRI acquisition protocol, participants were asked to close
their eyes and concentrate on their breathing.

Data from the Klinikum rechts der Isar was acquired on an integrated
Siemens Biograph scanner capable of simultaneously acquiring PET and
MRI data (3T). FDG-PET activity and tf-fMRI was simultaneously
measured during the initial 10 min immediately after bolus injection of
the FDG tracer. Scanning was performed in a dimmed environment ob-
tained by switching off all lights, including those in the scanner bore.
Subjects were instructed to keep their eyes closed or open, to relax, to not
think of anything in particular, and to not fall asleep. MRI data were
acquired using the following scanning parameters: Task-free echoplanar
fMRI scans: TR, 2.000 ms; TE, 30 ms/angle, 90�; 35 slices (gap, 0.6 mm)
aligned to AC/PC covering the whole brain; sFOV, 192 mm; matrix size,
64 � 64; voxel size, 3.0 � 3.0 � 3.0 mm3 (each measurement consists of
300 acquisitions in interleavedmode with a total scan time of 10 min and
8 s); MP-RAGE: TR, 2.300 ms; TE, 2.98 ms; angle, 9�; 160 slices (gap, 0.5
mm) covering the whole brain; FOV, 256 mm; matrix size, 256 � 256;
voxel size, 1.0 � 1.0 � 1.0 mm3; total length of 5 min and 3 s.

Neuroimaging data preprocessing. Before preprocessing, all images
were visually inspected for quality control. Images with excessive motion
or image artifact were excluded. T1-weighted images underwent seg-
mentation using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/
spm12/). For each tf-fMRI scan, the first five volumes were discarded.
SPM12 and FSL (http://fsl.fmrib.ox.ac.uk/fsl) software were used for
subsequent tf-fMRI preprocessing. The remaining volumes were slice-
time corrected, realigned to the mean functional image and assessed
for rotational and translational head motion. Volumes were next co-
registered to the MP-RAGE image, then normalized to the standard
MNI-152 healthy adult brain template using SPM segment, producing
MNI-registered volumes with 2 mm3 isotropic resolution. These volumes
were spatially smoothed with a 6 mm radius Gaussian kernel and
temporally bandpass filtered in the 0.008–0.15 Hz frequency range using
fslmaths. Nuisance parameters in the preprocessed data were estimated
for the CSF using a mask in the central portion of the lateral ventricles
and for the white matter using a highest probability cortical white matter
mask as labeled in the FSL tissue prior mask. Additional nuisance pa-
rameters included the 3 translational and 3 rotational motion parame-
ters, the temporal derivatives of the previous 8 terms (white matter/CSF/
6 motion), and the squares of the previous 16 terms (Satterthwaite et al.,
2013). Subjects were included only if they met all of the following
criteria: no inter-frame head translations greater than 3 mm, no
inter-frame head rotations greater than 3�, and less than 24motion spikes
(defined as inter-frame head displacements > 1 mm), less than 10% of
the total number of frames. Nuisance parameters were regressed out from
the filtered data using fslmaths, and masked with a binarized, skull-
stripped MNI-152 brain mask. The WM/CSF/head movement denoised
data was used for the subsequent time-varying functional connectivity
analysis. Findings with global signal regression are not presented in the
main body of the manuscript but were generated for the longitudinal
3

dataset and are reported as sensitivity analysis in the Supplement.
Time-varying functional connectivity analysis. For each individual,

average blood oxygen level dependent signal time courses were extracted
from the right and left ventral and dorsal aINS using four regions-of-
interest from the Brainnetome Atlas (http://atlas.brainnetome.org/). In
order to assess the impact of seed region selection, in the cross-sectional
dataset activity time courses were also extracted from a language-
relevant region centered on the left inferior frontal gyrus (IFG), using a
region-of-interest defined in a previous study (Gorno-Tempini, 2004).
Using in-house custom scripts based on Python (https://www.pyth
on.org/) and FSL, a sliding-window approach was implemented to
generate time-varying seed-to-whole-brain connectivity maps (Fig. 1A).
The derived time series from the aINS and the entire tf-fMRI scan of each
subject were divided into sliding-windows of 18 TRs (36 s) in steps of 1
TR creating 218 (275 for eyes closed/open) untapered, rectangular
windows. At each window, linear regression was used to derive
seed-to-whole-brain time-varying functional connectivity maps for each
aINS seed (Fig. 1B). A window size of 36 s was chosen based on previous
research showing that window sizes between 30 and 60 s capture addi-
tional variations in functional connectivity not found in larger window
sizes (Allen et al., 2014; Damaraju et al., 2014; Hutchison et al., 2013).
Ideal sliding-window size has been explored by additional methodolog-
ical work assessing the relationship between window length and cut-off
frequencies, supporting the use of sliding-windows between lengths of
30–60 s for tf-fMRI data preprocessed using a low-pass filter set at 0.15
Hz (Leonardi and Van De Ville, 2015). These studies are further sup-
ported by empirical findings showing that cognitive states can be dis-
cerned within such window lengths (Shirer et al., 2012; Wilson et al.,
2015). Nevertheless, in order to assess the impact of sliding-window
length, control analyses were performed with window lengths of 72 TR
(144 s). The resulting findings did not significantly differ from the re-
ported findings with windows of 36 s (Supplementary Results and
Fig. S2); therefore 36 s windows were used throughout. The code used to
derive time-varying functional connectivity maps is provided in the Ap-
pendix of the Supplement and in GitLab (https://gitlab.com/juglans/sl
iding-window-analysis/tree/master). The derived time-varying func-
tional connectivity maps were finally standardized to z-scores (see Video
1 for left ventral aINS time-varying functional connectivity maps of a
typical study participant), masked with a binarized gray matter mask,
vectorized, and concatenated across subjects resulting in windows x
voxels matrices for each aINS seed. K-means clustering was then applied
to the concatenated window matrices using a k ¼ 4 to produce four
clusters representing four time-varying functional connectivity modes of
aINS subregions present across the course of the functional scan (Fig. 1C).
The k-means algorithm used Euclidean distance, and an optimal solution
was selected after 100 iterations and 10 replications. The optimal num-
ber of clusters, referred to henceforward as modes, was determined using
elbow and silhouette plots and by performing additional clustering so-
lutions with k ¼ 3, 5, and 6 (Supplementary Results and Fig. S3). With
lower k solutions, the identified modes merged, resulting in information
loss. Using higher k solutions resulted in the generation of redundant
sub-modes, exemplified by Mode 4 of the left ventral aINS that would
split in anterior and posterior centered components (Supplementary
Fig. S3B). A total of three clustering analyses per aINS subregion were
independently performed on time-varying functional connectivity win-
dows: one on the cross-sectional dataset; one on the longitudinal dataset;
and one on the eyes closed/open dataset (see Supplementary Fig. S1 for a
schematized summary of k-means clustering analyses performed).

Group-averaged maps of the four identified modes were generated,
for each seed region, using the mode-specific centroid maps rendered
using k-means clustering. The spatial similarity of modes derived from
distinct aINS subregions and distinct groups was assessed by vectorizing
the mode’s template maps and performing Pearson’s correlation ana-
lyses. To assess the distinct spatial contribution of major large-scale brain
networks to time-varying connectivity modes, we used publicly available
templates of major brain networks from a study investigating the

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://fsl.fmrib.ox.ac.uk/fsl
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https://www.python.org/
https://www.python.org/
https://gitlab.com/juglans/sliding-window-analysis/tree/master
https://gitlab.com/juglans/sliding-window-analysis/tree/master


Fig. 1. Time-varying functional connectivity pipeline. (A) For each individual Si, average BOLD activity time courses were extracted from subregions of the aINS,
here the left ventral. (B) For each individual, 218 time-varying seed-to-whole-brain connectivity maps (SiW1–SiW218) were generated using a sliding-windows of 18
TRs (36 s) in steps of 1 TR. (C) The derived connectivity windows were vectorized and concatenated across subjects resulting in windows x voxels matrices for each
aINS seed. K-means clustering was then applied to the concatenated window matrices using a value of k ¼ 4 to produce four clusters representing four time-varying
aINS modes present across the course of the functional scan. (D) Group averaged maps of the four modes were generated using the cluster-specific centroid maps
generated through k-means (threshold at �0.5 > z > 0.5). The assignment of each window to a specific mode, was used to derive fractional occupancy profiles for each
mode (i.e. the time spent by an aINS subregion in each mode), defined as the number of windows assigned to one mode divided through the total number of generated
windows. aINS ¼ anterior insula; BOLD ¼ blood oxygen level dependent signal.

L. Pasquini et al. NeuroImage 208 (2020) 116425
functional network organization of the human brain (Power et al., 2011)
(https://www.jonathanpower.net/2011-neuron-bigbrain.html). Briefly,
in this study subgraphs corresponding to major brain systems were
derived from tf-fMRI data of >300 healthy adults by retaining 2% of the
strongest correlations. This procedure resulted in 12 binary templates
spanning cognitive, primary sensory and subcortical systems: the
salience, default, cingulo-opercular task-control, executive-control,
ventral attention, dorsal attention, auditory, visual, ventral sensori-
motor, dorsal sensorimotor, medial temporal lobe (“memory retrieval”)
and subcortical networks (Seeley et al., 2007; Power et al., 2011; Dos-
enbach et al., 2007) (Supplementary Fig. S4). Subsequently, for each
aINS subregion the averaged z-score value enclosed within these brain
network templates was extracted from the mode-specific centroid maps
generated in the cross-sectional dataset.

Further, the assignment of each window to a specific mode was used
to derive: (i) the number of transitions from one mode to another; (ii) a
fractional occupancy metric for each mode, defined as the number of
windows assigned to that mode divided by the total number of windows;
and (iii) how often aINS subregions simultaneously occupy distinct mode
configurations in time. To identify meta-profiles of aINS time-varying
functional connectivity, individual subject fractional occupancy pro-
files, defined as a vector of 16 elements summarizing the time fraction
separately spent by individual aINS subregions on the four identified
modes, were derived from the cross-sectional dataset. Fractional occu-
pancy profiles were subsequently clustered using k-means with a
4

clustering solution of k ¼ 4 based on a silhouette analysis (using
Euclidean distance, 100 iterations, and 10 replication). On the cross-
sectional sample, static functional connectivity maps were also gener-
ated through voxel-wise regression analyses of each aINS seed’s time-
course for the duration of the entire scan, following previous estab-
lished methods (Seeley et al., 2009; Toller et al., 2018).

Statistical analysis. Statistical analyses were carried out using R
(https://www.r-project.org/) and Matlab-R2018 (https://www.mathw
orks.com/products/matlab.html). Pearson’s correlation was used to
assess the spatial similarity of modes derived from different clustering
analyses, using maps thresholded for z-values higher than 0.3 and lower
than �0.3.

In the cross-sectional dataset, the Shannon diversity index was used to
analyze whether aINS subregions of an individual subject transitioned
repeatedly between distinct modes or showed instead a stereotypic
behavior spending most of the time only in a specific aINS mode:

Shannon diversity index ¼ �
Xn�1

i¼0

pilog2pi

wherein p is the fractional occupancy of an aINS subregion in a specific
time-varying functional connectivity mode. A Shannon diversity index of
1.4 indicates that all modes are equally occupied by the aINS, while the
lower the Shannon diversity index, the higher the fractional occupancy of
the aINS on one specific mode.

https://www.jonathanpower.net/2011-neuron-bigbrain.html
https://www.r-project.org/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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In the cross-sectional dataset, one-way ANOVAs were used to inves-
tigate whether aINS subregions differed, within subjects, in terms of
mode-specific fractional occupancy, number of transitions, and Shannon
diversity index. For descriptive purposes, averages and standard de-
viations derived over all aINS subregions and modes are reported.
Additionally, for each meta-profile cluster identified in the cross-
sectional dataset, one-way ANOVAs were used to assess differences in
mode-specific fractional occupancy averaged across aINS subregions.
The assignment of participant to four meta-profiles of time-varying aINS
fractional occupancy was additionally used to test differences in aINS
subregions’ static connectivity using ANOVA models and post-hoc t-tests
implemented in SPM12 (height threshold p < 0.005; extent threshold p
< 0.05 FWE corrected for multiple comparisons).

Finally, in the cross-sectional dataset, four multiple linear regression
Fig. 2. Time-varying functional connectivity modes of the aINS. (A) Spatial maps
aINS subregions in the cross-sectional dataset. Threshold at �0.5 > z > 0.5, negativ
shown on the right side of the image. (B) Correlation matrix reflecting the spatial sim
varying connectivity between correspondent modes of the right dorsal and ventral aIN
in red, higher connectivity of the ventral aINS in blue).

5

models were used to test the association of mode-specific fractional oc-
cupancies with subscales of the Interpersonal Reactivity Index (Davis,
1980). Subscales of the Interpersonal Reactivity Index were used as
dependent variables, and each model contained the mode-specific frac-
tional occupancies averaged across aINS subregions. Each model was
corrected for age, sex, and sum frame-wise head displacement (p < 0.05
uncorrected for multiple comparisons). To assess specificity of the aINS
results, four additional models were estimated, using subscales of the
Interpersonal Reactivity Index as dependent variables and fractional
occupancy of time-varying functional connectivity modes derived from
the left IFG as predictors.

For the longitudinal datasets, cosine similarity was used to assess the
similarity of fractional occupancy profiles across distinct scanning dates.
of the four time-varying functional connectivity modes identified across the four
e connectivity is depicted in blue, positive in red. The right side of the brain is
ilarity of modes identified in distinct aINS subregions. (C) Differences in time-
S (threshold at �0.3 > z > 0.3, higher connectivity of the dorsal aINS is depicted
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Fig. 3. Temporal characteristics of the identified aINS time varying functional connectivity modes. (A) Violin plots reflecting group fractional occupancy in the
four identified time-varying functional connectivity modes across the four aINS subregions. (B) Violin plots representing the number of transitions between time-
varying functional connectivity modes across the four aINS subregions. (C) Violin plots representing the diversity of fractional occupancy profiles – measured
using the Shannon diversity index – across aINS subregions. This measure reflects whether an aINS subregion tends to spend similar amounts of time in different modes
or spends most of its time in only one mode. (D) Polar plots schematizing the fractional occupancies of aINS subregions into the four time-varying functional con-
nectivity modes. On the left side, the fractional occupancy profile of Subject 47 transitions between several modes, and is characterized by a high number of transitions
and by high Shannon diversity index averaged across aINS subregions. On the right side, we can appreciate the highly stereotyped fractional occupancy profile of
Subject 22, with aINS subregions spending most of their time in a single mode. Regardless of the subregion, aINS subregions in this participant tend to spend time only
in Mode 1, showing hence a low number of transitions and low Shannon diversity index averaged across aINS subregions. (E) Heat maps reflecting how specific modes
are jointly occupied at the same time by distinct aINS subregions. Scale bar reflects the average group probability that distinct aINS subregions occupy certain mode
configurations.

L. Pasquini et al. NeuroImage 208 (2020) 116425
Cosine similarity¼ 1�B@
Pn

i¼1AiBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq CA
0

Pn
i¼1A

2
i

Pn
i¼1B

2
i

1

WhereA and B are the vectorized fractional occupancy profiles of all aINS
subregions at two different scanning dates. Cosine similarity varies be-
tween 1 and 0, with 1 indicating identical fractional occupancy profiles.
Paired t-tests were performed to assess differences in fractional occu-
pancy in the longitudinal and in the eyes closed/open datasets. All sta-
tistical findings are reported at p < 0.05, two-tailed, uncorrected for
multiple comparisons except where specified otherwise.

3. Results

3.1. Bilateral ventral and dorsal aINS occupy four overlapping but distinct
time-varying functional connectivity modes

By combining seed-to-whole-brain functional connectivity, sliding-
Fig. 4. Time-varying functional connectivity modes across time. In the longitud
where identified across the four aINS subregions bearing high similarity to the modes
sagittal plane only panels A-D). Fractional occupancy in the identified modes did not
(blue violin plots) ~9 months apart (paired t-test; p < 0.05 uncorrected for multiple
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window analysis, and k-means clustering, we found that aINS sub-
regions adopt four overlapping but distinct large-scale configurations or
“modes” of time-varying functional connectivity (Fig. 2A). All modes
were characterized by bilateral connectivity between the aINS and
anterior cingulate cortices. Modes could be distinguished from each
other, however, by specific patterns of connectivity to other brain regions
(Fig. 2A and Supplementary Table S1). In Mode 1, all four aINS sub-
regions showed connectivity to the anterior midcingulate/pre-
supplementary motor area, right frontal operculum, and dorsal parietal
and dorsolateral prefrontal areas that together make up the task-control
network. Mode 2 was characterized by negative connectivity to primary
visual and sensorimotor areas and prominent connectivity to the ventral
striatum and thalamus. Mode 3 showed inverted connectivity patterns to
the same regions. Finally, Mode 4 showed connectivity patterns aligned
with more ventral salience network regions, including pre- and sub-
genual anterior cingulate and orbitofrontal cortices, with additional
connectivity to the temporal poles for the right ventral aINS. All four
modes were identified in each aINS subregion, as shown by the
inal data sample, spatial patterns of time-varying functional connectivity modes
identified in the cross-sectional sample (maps averaged across both time points,
significantly differ between the first (red violin plots) and second scanning dates
comparisons).



L. Pasquini et al. NeuroImage 208 (2020) 116425
correlation matrix highlighting the spatial correspondence of equivalent
modes (Fig. 2B). Important distinctions were found, however, when
comparing dorsal and ventral aINS connectivity patterns within modes.
In Mode 1, the dorsal aINS showed prominent anti-correlations to the
precuneus, angular gyrus, andmedial prefrontal cortex regions that make
up the default mode network (Buckner et al., 2008). In Mode 4, the
ventral aINS showed a more ventral connectivity pattern that encom-
passed subgenual anterior cingulate cortex and temporal poles, when
compared to the dorsal aINS (Fig. 2C, Supplementary Fig. S6A). Modes
derived from homologous left and right aINS regions differed from each
other mainly with regard to the extent of ipsilateral connectivity to
neighboring regions (Supplementary Figs. S6B–C). Importantly, similar
aINS time-varying functional connectivity modes were identified using
longer sliding-window lengths (Supplementary Fig. S2), lower and
higher clustering solutions (Supplementary Fig. S3), and data pre-
processed using global signal regression (Supplementary Fig. S7).

3.2. aINS subregions coherently transition between time-varying functional
connectivity modes

Average fractional occupancy, i.e. the proportion of time spent by
aINS subregions in the four time-varying functional connectivity modes
ranged from 0.18 (left ventral aINS in Mode 2) to 0.30 (right ventral aINS
Fig. 5. Individual fractional occupancy of aINS subregions across time. (A) Vio
scanning dates assessed using cosine similarity. Subjects 10, 41, 21 and 26 are hig
occupancy profiles of these subjects and correspondent cosine similarity values are fu
the first (red) and second (blue) scanning dates. aINS fractional occupancy in Subject
in the polar plots and the high cosine similarity index), while Subjects 21 and 26 sho
time points (note the little overlap in the polar plot and the low cosine similarity in
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in Mode 1), with an overall average of 0.25� 0.20 (Fig. 3A). Importantly,
no significant differences in mode-specific fractional occupancy were
found across the four aINS subregions (Mode 1: F ¼ 0.2, p ¼ 0.82; Mode
2: F ¼ 0.7, p ¼ 0.56; Mode 3: F ¼ 0.4, p ¼ 0.77; Mode 4: F ¼ 0.5, p ¼
0.71). In only a few participants did aINS subregions spend dispropor-
tionate time in only one mode. The number of transitions was also
comparable across aINS subregions (F ¼ 0.4, p¼ 0.759; Fig. 3B), with an
overall average of 18.0� 6.6 transitions over the task-free acquisition. In
particular, our data shows that there were no direct transitions between
the primary sensory anticorrelated Mode 2 and the primary sensory
correlated Mode 3 (Supplementary Fig. S8), suggesting that aINS sub-
regions need to transition to modes rooted in cognitive networks before
occupying primary sensory-centered modes characterized by opposing
connectivity patterns. The Shannon diversity index was used to quantify
the diversity of fractional occupancy and to compare this diversity across
subregions. On average, aINS subregions showed high Shannon diversity,
suggesting that each subregion moved between modes in most subjects,
rather than stacking on a single mode. The overall average Shannon di-
versity index of fractional occupancy across aINS subregions was 1.0 �
0.2 and did not significantly differ between subregions (F ¼ 0.8; p ¼
0.503; Fig. 3C). Subject-level fractional occupancy profiles are illustrated
in Fig. 3D, which shows two subjects with contrasting signatures. We
finally sought to assess whether aINS subregions coherently occupy the
lin plot representing the similarity of aINS fractional occupancy profiles across
hlighted with red circles in the individual data plot. The individual fractional
rther schematized in panels B-E, where the fractional occupancies are shown at
s 10 and 41 did not substantially differ between scanning dates (note the overlap
wed very different aINS fractional occupancy profiles when assessed at different
dex).
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same modes at the same time, or for instance, how often the right ventral
and dorsal aINS are simultaneously connected to Mode 1. For each sub-
ject and each aINS subregion, we assessed how often possible mode
configurations were jointly occupied in time. This analysis revealed a
tendency across aINS subregions to occupy the same modes in time
(Fig. 3E). On average, the right ventral and dorsal aINS occupied the
same modes 50% of the time, the left ventral and dorsal aINS 53% of the
time, the right and left ventral aINS in 51% of the time, and the right and
left dorsal aINS 61% of the time. These findings suggest an overall ten-
dency for aINS subregions to cohesively engage the same modes over
time under task-free scanning conditions.

3.3. Individual aINS connectivity mode occupancy profiles are
reproducible across samples and within subjects over time

To assess the generalizability and reproducibility of our findings, we
next turned to a longitudinal healthy aging dataset, which consisted of 44
participants who were scanned twice over an interval between 5 and 13
months. Clustering of time-varying connectivity windows identified
modes that strongly resembled the four modes derived from the larger
(and non-overlapping) cross-sectional dataset (Fig. 4A–D and Supple-
mentary Fig. S5 panels A, C and E). Average fractional occupancies of
aINS subregions in the four modes were comparable with the cross-
sectional sample (comparing Figure 3A to 4A-D). Across aINS sub-
regions and modes, paired t-tests revealed no significant differences in
fractional occupancy when comparing the first scanning date with the
second (p < 0.05 uncorrected for multiple comparisons, for details on
Fig. 6. Time-varying functional connectivity modes during scanning with eyes
time-varying functional connectivity modes where identified across the left dorsal, rig
identified in the cross-sectional sample (maps averaged across eyes closed/open cond
fractional occupancy in the visually anticorrelated Mode 2 was significantly higher d
plots). On the other hand, in the eyes open condition participants spent significantl
multiple comparisons). *p < 0.05; **p < 0.005.
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paired t-test statistics see Supplementary Table S2). Within subjects,
cosine similarity analysis showed that most participants had relatively
stable fractional occupancy profiles over time (mean cosine similarity ¼
0.70 � 0.19 s.d.), as further supported by the inverted bell-shaped dis-
tribution of cosine similarity (Fig. 5A). Stable fractional occupancies are
exemplified in Subjects 10 (first scanning date in red; second scanning
date in blue; cosine similarity ¼ 0.98) and 41 (cosine similarity ¼ 0.92)
(Fig. 5B–C). A few participants, however, showed very different frac-
tional occupancy profiles when comparing the two scanning dates, as
exemplified by Subjects 21 (cosine similarity ¼ 0.46) and 26 (cosine
similarity¼ 0.24) (Fig. 5D–E). Overall, however, the temporal stability of
the individual profiles suggests a major contribution from trait-level
factors.

3.4. Eye opening decreases the time aINS spends anticorrelated with visual
cortices

Independently performed clustering of time-varying connectivity
data from the eyes closed/open dataset revealed similar aINS modes to
those identified in the cross-sectional and longitudinal aging datasets
(Fig. 6A–B and Supplementary Fig. S5 panels B, D and E). For all sub-
regions except the right ventral aINS, participants showed higher frac-
tional occupancies in the anti-correlated primary sensory/motor Mode 2
with eyes closed and higher fractional occupancies in the task-control
Mode 1 with eyes open (p < 0.05 uncorrected, for details on paired t-
test statistics see Supplementary Table S2).
closed versus eyes open. In the eyes closed/open dataset, spatial patterns of
ht dorsal, left ventral, and right ventral aINS bearing high similarity to the modes
itions, sagittal plane only panels A-D). With exception of the right ventral aINS,
uring eyes closed (red violin plots) than during eyes open scanning (blue violin
y more time in the task-control Mode 1 (paired t-test; p < 0.05 uncorrected for
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3.5. Time-varying functional connectivity meta-profiles show that aINS
subregions cohesively occupy the same modes

Individual subjects were clustered into meta-profiles (see Methods
“Time-varying functional connectivity analysis”), based on the tendency of
their aINS subregions to occupy specific time-varying functional
Fig. 7. Meta-profiles of time-varying dynamic connectivity modes. (A) Individ
clusters, reflecting four meta-profiles of time-varying aINS functional connectivity.
profile 2 (þsign, blue), 44 into Meta-profile 3 (circles, violet), and 20 into Meta-pro
tative of the identified meta-profiles (see black circles in the scatterplots). Across aIN
Subject 80 in Mode 3, and Subject 88 in Mode 4. (B) When averaged across aINS su
participants clustered in Meta-profile 1 showed significantly higher fractional occupa
or 4, spent more time on Modes 2, 3, or 4, respectively.
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connectivity modes. Individual fractional occupancy profiles of the cross-
sectional sample (n ¼ 121) were clustered into four clusters using k-
means. Silhouette plots were used to choose the ideal number of clusters,
k ¼ 4 (Supplementary Fig. S9). This analysis revealed four meta-profiles,
characterized by preferred fractional occupancy in one of the four time-
varying functional connectivity modes (Fig. 7A). Meta-profile 1 (in green,
ual fractional occupancy profiles of aINS subregions were clustered into four
26 subjects were clustered into Meta-profile 1 (triangles, green), 31 into Meta-
file 4 (x’s, red). Panels show individual fractional occupancy profiles represen-
S subregions, Subject 22 tended to spend time in Mode 1, Subject 79 in Mode 2,
bregions, one-way ANOVAs and related post-hoc t-tests reveal that the aINS of
ncy in Mode 1. Similarly, the aINS of participants clustered on Meta-profiles 2, 3,
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26 subjects) was characterized by a tendency to spend time in the task-
control Mode 1 (see Subject 22, Fig. 7A); Meta-profile 2 (in blue, 31
subjects) was characterized by a tendency to spend time in the sensory
anticorrelated Mode 2 (see Subject 79, Fig. 7A); Meta-profile 3 (in violet,
44 subjects) was characterized by a tendency to spend time in the sensory
connected Mode 3 (see Subject 80, Fig. 7A); while Meta-profile 4 (in red,
20 subjects) was characterized by a tendency to spend time in the
salience network Mode 4 (see Subject 88, Fig. 7A). To evaluate statistical
differences in mode occupancy across meta-profiles, we averaged the
time spent in each mode across aINS subregions and used one-way
ANOVAs to test for significant group differences in mode-specific frac-
tional occupancy across the distinct aINS meta-profiles (Meta-profiles 1,
F ¼ 50.1, p < 0.0001; Meta-profile 2, F ¼ 39.8, p < 0.0001; Meta-profile
3, F ¼ 79.6, p < 0.0001; Meta-profile 4, F ¼ 46.1, p < 0.0001, see also
Fig. 7B). These differences were further statistically assessed via post-hoc
t-tests. In summary, these analyses revealed a preference for aINS sub-
regions to collectively spend similar fractions of time in a given mode,
whereas distinct modes were primarily occupied by subjects in different
meta-profiles.

Next, we asked whether the constituents of a given meta-profile
would show group-level differences in terms of their static functional
connectivity patterns. We therefore compared groups based on static
functional connectivity of aINS subregions across the four meta-profiles
described above. This analysis revealed that participants in Meta-
profile 1 showed prominent static anticorrelation of the dorsal aINS to
the default mode network when compared to participants clustered on
other meta-profiles. Participants clustered on Meta-profile 2 and 3
showed marked visual and sensorimotor cortex static hypoconnectivity
and hyperconnectivity, across all aINS subregions, when compared to
participants of other meta-profiles; while participants in Meta-profile 4
showed prominent static connectivity of all aINS subregions to more
ventral frontal regions (Supplementary Fig. S10). In summary, key
components of the time-varying connectivity modes were reflected in
static connectivity differences between meta-profile-based groups.

3.6. Comparison of aINS and left IFG time-varying functional connectivity

To control for the location of the seed, we derived time-varying
functional connectivity modes by seeding the left IFG. Time-varying
functional connectivity modes of the left IFG shared some common
themes with modes identified using aINS subregions (Supplementary
Fig. S11A). The four identified modes showed similar connectivity to
regions of the language network, such as the left IFG, pre-supplementary
motor area, and superior parietal lobule (Gorno-Tempini, 2004; Frie-
derici and Gierhan, 2013). This contrasts with the modes identified in
aINS subregions that showed overlapping time-varying functional con-
nectivity to typical task-control and salience network regions (Supple-
mentary Fig. S11B). Modes derived from both the aINS and left IFG,
however, showed similar patterns of default mode network anti-
correlation (Mode 1), primary sensory anticorrelation (Mode 2), and
primary sensory hypercorrelation (Mode 3). A fourth mode was identi-
fied using the left IFG, showing time-varying functional connectivity to
regions of the dorsal attention network (Dosenbach et al., 2007) (Mode
4).

3.7. Time spent by the aINS in the task-control and salience networks
correlates with metrics related to dispositional empathy

A key question of this work concerns whether individual differences
in aINS time-varying connectivity relate to differences in aINS-associated
traits and functions. Among the many tasks that activate and depend on
the anterior insula, empathy is one of the best documented (Craig, 2009;
Seeley et al., 2012). The Interpersonal Reactivity Index is an
informant-based questionnaire widely used to assess distinct aspects of
empathy (Davis, 1980). Emotional aspects of empathy are covered by the
empathic concern and personal distress measures, with the first assessing
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another-centered emotional response, while the second reflects general
anxiety and self-oriented emotional reactivity. Perspective taking and
fantasy scores measure cognitive aspects of empathy, with the first
assessing the tendency to spontaneously imagine the cognitive perspec-
tive of another person, while the secondmeasures the tendency to project
oneself into the experiences of fictional characters. Mode-specific frac-
tional occupancies were averaged across aINS subregions and used as
regressors in four models using subscales of the Interpersonal Reactivity
Index as dependent variables. These multiple linear regression models
were corrected for age, sex, and sum frame-wise head displacement and
identified two significant positive associations with time-varying con-
nectivity metrics. First, fractional occupancy in the task-control Mode 1
predicted higher levels of personal distress, reflecting self-oriented feel-
ings of personal anxiety and unease in tense interpersonal settings (β ¼
7.1; p < 0.05 uncorrected for multiple comparisons; Supplementary
Table S3). Second, fractional occupancy in the salience Mode 4 corre-
lated with higher scores on the fantasy subscale, reflecting greater ability
to transpose one’s self imaginatively into the feelings and actions of
fictitious characters in books, movies, and plays (β ¼ 9.2; p < 0.05 un-
corrected for multiple comparisons; Supplementary Table S3). These
results remained significant when removing outliers (Mode 1 and per-
sonal distress β ¼ 6.9, p < 0.05 uncorrected for multiple comparisons;
Mode 4 and fantasy score β ¼ 9.2, p < 0.05 uncorrected for multiple
comparisons). No significant associations were found between fractional
occupancy in any mode and the empathic concern or perspective taking
subscales. As hypothesized, fractional occupancy of left IFG time-varying
connectivity modes was not significantly associated with any measure of
dispositional empathy (p < 0.05 uncorrected for multiple comparisons,
see Supplementary Table S3).

4. Discussion

To date, most efforts to relate large-scale networks to individual dif-
ferences have relied on metrics that capture the topology or strength of
node-to-node static functional (or “intrinsic”) connections. Here, we
developed a novel approach combining seed-to-whole-brain functional
connectivity, sliding-window analysis, and k-means clustering on tf-fMRI
data to identify distinct time-varying functional connectivity modes of
the aINS, a brain region critical for many human socio-emotional func-
tions (Craig, 2009; Seeley et al., 2012). These robust modes were iden-
tified across methods and samples, showing both “state” and “trait”
characteristics. In particular, while aINS modes related to sensory pro-
cessing were modulated by visual input (eyes closed vs. open conditions
during scanning), modes featuring connectivity to cognitive and emotion
processing regions were stable over time and related to measures of
dispositional empathy.

4.1. Partially overlapping but distinct time-varying aINS functional
connectivity modes

Our pipeline reliably identified four time-varying functional con-
nectivity modes of the aINS across different subregions, methods, and
samples. These modes were characterized by common connectivity of
aINS subregions to the contralateral insula and to the anterior cingulate
cortex, but could be differentiated from each other based on recruitment
of other brain regions. Mode 1 was characterized by a more dorsal
connectivity pattern that resembles previous characterizations of a
cingulo-opercular task-control network (Seeley et al., 2007; Dosenbach
et al., 2006; Sadaghiani and D’Esposito, 2015) involving the bilateral
aINS and anterior cingulate cortex, with additional connectivity to
dorsomedial parietal and dorsolateral frontal areas. Mode 2 was char-
acterized by negative connectivity to primary sensory areas and
increased connectivity to the thalamus while Mode 3 showed an
inverted connectivity pattern to these regions. Finally, Mode 4 was
characterized by fronto-insular connectivity to more rostral and ventral
portions of the anterior cingulate cortex, resembling the salience
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network (Seeley et al., 2007; Uddin, 2014), with additional connectivity
to the temporal pole and medial orbitofrontal cortex, components of the
“semantic-appraisal network” (Seeley et al., 2012; Guo et al., 2013).
These findings are consistent with those of a previous
region-of-interest-based time-varying functional connectivity study
focusing on the insula, which reported time-varying visual and senso-
rimotor hyperconnectivity of the ventral aINS. Our findings differ,
however, in that we did not detect positive default mode network con-
nectivity to the dorsal aINS and that patterns of hypoconnectivity to
primary visual and sensorimotor areas were less apparent in the afore-
mentioned study (Nomi et al., 2016). While left and right aINS sub-
regions primarily differed with respect to connectivity to regions in the
ipsilateral hemisphere, consistent differences in time-varying functional
connectivity at the system-level were identified when comparing ventral
to dorsal aINS subregions. Mirroring static functional connectivity
studies and the aforementioned time-varying connectivity study on the
insula (Touroutoglou et al., 2012; Uddin, 2014; Nomi et al., 2016), the
task-control Mode 1 of the dorsal aINS showed stronger anti-correlations
to the default mode network than did its ventral counterpart. This
observation is in line with salience network models proposing that the
dorsal aINS receives ventral aINS input streams regarding the
moment-to-moment condition of the body and then, based on these
inputs, recruits task control (Dosenbach et al., 2006) and executive
control (Seeley et al., 2007) network resources to maintain cognitive set
and guide behavior while inhibiting the default mode network (Zhou
and Seeley, 2014). The salience network Mode 4 showed stronger
connectivity between ventral aINS and ventromedial prefrontal, orbi-
tofrontal, and temporopolar cortices when compared to its dorsal aINS
counterpart. This finding is in line with functional-anatomical models
suggesting a close alliance between the salience and the semantic
appraisal networks (Zhou and Seeley, 2014; Seeley et al., 2012; Guo
et al., 2013), whose main components (the temporal pole, ventral
striatum, medial orbitofrontal cortex, and amygdala) have been pro-
posed to interact with autonomic representations in the aINS to
construct the meaning and significance of social and non-social stimuli
under prevailing conditions (Zhou and Seeley, 2014; Seeley et al., 2012;
Guo et al., 2013). Importantly, we did not find any differences across
aINS subregions in the number of transitions or in the diversity of
fractional occupancy profiles. Moreover, our analyses exploring over-
lapping mode occupancy across aINS subregions revealed that distinct
aINS subregions tend to occupy the same mode at the same time. Further
support for this conclusion comes from the clustering analysis of indi-
vidual fractional occupancy profiles, which led to the identification of
four meta-profiles characterized by occupancy of a dominant mode.
Although our findings are not conclusive on whether aINS subregions
always engage the same mode in time, they comprehensively suggest a
tendency for coherent mode occupancy that could potentially underpin
specific trait characteristics or behavioral states. Future studies could
leverage methods such as directed and effective connectivity to assess
the temporal relationships between intrinsic time-varying activity of
distinct aINS subregions, which could be lagged, phase-shifted, or
anticorrelated over time. In order to assess the specificity of aINS
time-varying functional connectivity modes, we assessed and compared
time-varying functional connectivity of the left IFG, a region involved in
language processing and syntax production (Gorno-Tempini, 2004;
Friederici and Gierhan, 2013; Hickok and Poeppel, 2007). The left IFG
showed region-specific contributions from language processing regions
but also displayed pronounced anticorrelation to default mode network
regions in Mode 1 and similar time-varying connectivity to the same
sensory regions found in Modes 2 and 3 derived from the aINS. These
findings suggest that distinct brain regions, although characterized by
seed specific connectivity patterns, may cohesively transition between
broader modes characterized by shared regional time-varying functional
connectivity patterns, possibly revealing a fundamental property of
functional brain organization.
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4.2. “State” characteristics of aINS time-varying functional connectivity
modes

Having determined that two of the four major modes of aINS con-
nectivity involved varying connectivity to sensory, and, most notably,
visual cortices, we chose to evaluate how sensory input modifies aINS
connectivity dynamics. To this end, we studied the same participants
under eyes closed and eyes open scanning conditions. Compared to the
eyes open condition, participants with eyes closed spent significantly less
time in the task-control network Mode 1 but more time in the primary
sensory anti-correlated Mode 2. This finding is consistent with recent
static connectivity studies revealing occipital and sensorimotor func-
tional changes in eyes closed versus open scanning conditions (Wei et al.,
2018; Agcaoglu et al., 2019) and suggests that environmental conditions
impact time-varying aINS connectivity by shifting the major modes
occupied. Therefore, a measurable component of time-varying connec-
tivity may reflect external cues such as conditions of eyes closure (Riedl
et al., 2016; Hahn et al., 2018), mental states (Shine et al., 2016b; Kucyi,
2018), or internally driven physiological conditions of the body (Guo
et al., 2016). Finally, it is tempting to speculate that aINS occupancy of
the visually anticorrelated Mode 2 might reflect levels of drowsiness and
fluctuations in alertness. Intriguingly, a recent study investigated wake-
fulness fluctuations as a source of time-varying functional connectivity by
combining simultaneously acquired tf-fMRI and EEG data (Haimovici
et al., 2017). This study revealed progressive whole-brain hypo-
connectivity during deeper sleep stages (N2 and N3) when compared to
wakefulness, raising the possibility that the increased aINS fractional
occupancy in Mode 2 during eyes closed is related to reduced levels of
alertness and wakefulness.

4.3. “Trait” characteristics of aINS time-varying functional connectivity
modes

To the extent that modes and profiles of time-varying aINS functional
connectivity represent traits, individuals should show stability of these
features over time. To assess this stability, we studied a longitudinal
dataset of cognitively healthy older adults. The four aINS modes were
stable over an average of 9 months in this sample, whether assessed by
comparing fractional occupancy at the group level via parametric tests or
at the individual level via cosine similarity. These findings converge with
several recent studies showing that individual topologies in static func-
tional brain organization are highly stable across time and show unique
features with promise for use in precision functional mapping of indi-
vidual human brains (Gordon et al., 2017; Laumann et al., 2015; Pol-
drack et al., 2015; Guo et al., 2012). In line with previous work
associating aINS function with social-emotional functions such as
empathy (Nomi et al., 2016; Gu et al., 2012; Leigh et al., 2013), we found
that the time aINS subregions cohesively spent in the task-control Mode 1
was positively associated with personal distress, while the time aINS
subregions spent in the salience Mode 4 was positively associated with
the fantasy score from the Interpersonal Reactivity Index. Caution is
advised, however, in the interpretation of these findings since the sta-
tistical associations were modest and did not survive correction for the
four models used to assess these relationships. Nevertheless, the identi-
fied associations were specific to the aINS (compared to the left IFG) and
survived when removing outliers, adding tentative support for the trait
characteristics of aINS time-varying functional connectivity. Nonethe-
less, the strongest evidence for a trait component to the identified modes
remains their reproducibility in individual subjects. The personal distress
subscale measures “self-oriented” feelings of personal anxiety and unease
in tense interpersonal settings. The level of personal distress was asso-
ciated with greater time spent in a mode characterized by dorsal
cingulo-opercular regions overlapping with the task-control network and
anti-correlations to the default mode network, in line with findings
associating connectivity of the anterior cingulate cortex and insula with
pre-scan anxiety levels, dispositional anxiety, and affective symptoms in
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mood disorders (Seeley et al., 2007; Williams, 2016; Menon, 2011). The
fantasy score reflects the capacity of participants to transpose themselves
imaginatively into the feelings and actions of fictitious characters in
books, movies, and plays. This capacity requires a high level of social
contextualization and involves semantic processes typically associated
with regions of the semantic appraisal network, such as the temporal
lobes and ventro-medial prefrontal areas (Zhou and Seeley, 2014; Seeley
et al., 2012; Guo et al., 2013), the same regions contributing to the
salience Mode 4. Importantly, fractional occupancies of time-varying
functional connectivity modes derived from the left IFG were not
significantly associated with measures of dispositional empathy, sug-
gesting a degree of specificity of these findings to the aINS.

4.4. Limitations and future directions

Although time-varying functional connectivity analyses have been of
increasing interest to the human brain mapping community, consensus is
still lacking about whether time-varying fluctuations in BOLD signal
coherence reflect brain physiology or are mainly due to noise stochasti-
cally occurring in the scanner between the acquisition of distinct brain
volumes (Laumann et al., 2017). One limitation of this work relates to the
use of hard clustering techniques such as k-means to extract modes of
time-varying functional connectivity, since distinct modes are likely to
reflect extremes in time-varying connectivity gradients rather than
discrete clusters of topographical connectivity. Therefore, the ideal
number of derived time-varying connectivity modes may vary depending
on the temporal and spatial resolution of the used dataset, on the
investigated anatomical region, and on the specific question of the
researcher. Wemake no claim that the aINS transitions between only four
modes, but since we were interested in large-scale time-varying con-
nectivity patterns, we deemed it impractical to use an overly fine-grained
mode decomposition by applying higher clustering solutions. Further,
the sliding-window approach has been scrutinized because of its mod-
erate reliability (Choe et al., 2017) and since its output is prone to in-
fluence by headmovement, sliding-window length, and other methodical
choices (Hindriks et al., 2016; Byrge and Kennedy, 2017; Nalci et al.,
2018), such as global signal regression. In our study, however, we did not
find any significant association between time spent by distinct aINS
subregions in a specific mode and summary measures of head movement,
as exemplified by the regression analyses associating fractional occu-
pancy and dispositional empathy, which were corrected for mean
frame-wise head displacement (Satterthwaite et al., 2013; Power et al.,
2014). Importantly, our control analyses using the longitudinal dataset
preprocessed with global signal regression resulted in the identification
of time-varying functional connectivity modes that highly resembled the
time-varying modes derived using data without global signal regression
(Supplementary results and Fig. S6). The only exception was for the
primary sensory hyperconnected Mode 3, which was not identified in
three out of four aINS subregions, suggesting that this mode is highly
modulated by the global signal. A recent report suggested that noise
sources (for instance motion and respiration) can have a temporally
lagged effect on the BOLD signal, which is greatly reduced by global
signal regression (Byrge and Kennedy, 2017). However, a recent study
investigating time-varying functional connectivity in mice reliably
mapped distinct time-varying patterns of tf-fMRI co-activation that
occurred at specific phases of global signal fluctuations (Gutierrez-Bar-
ragan et al., 2018). These findings suggest that the global signal may
partially relate to oscillatory cycling of slowly propagating neural ac-
tivity, as observed in lag threads of propagated tf-fMRI signal in the
human brain (Mitra et al., 2015) and transient variation in calcium
co-activation patterns in mice (Matsui et al., 2016). Slow oscillation in
the global signal have been proposed to coordinate fluctuating periods of
brain network topologies characterized by heightened global integration
and shifts in arousal (Shine et al., 2016a; Liu et al., 2018).

Finally, the limitations in temporal resolution affecting the sliding-
window approach may also explain the inability to detect mode-
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specific fractional occupancy differences between the left and right
aINS, although both regions play a distinct role in autonomic outflow and
behavior (Sturm et al., 2018; Guo et al., 2016). More sophisticated
methods that preserve the temporal richness of tf-fMRI data, such as
hidden Markov models and Topological Data Analysis (Saggar et al.,
2018; Vidaurre et al., 2017), may help elucidate lateralized differences in
time-varying connectivity of the left and right aINS. However, the
detection of static functional connectivity heterogeneity informed by
time-varying fractional occupancy profiles and the reproducibility of our
findings across distinct preprocessing pipelines, sliding-window lengths,
clustering choices, samples, and time points (within individuals) (Abrol
et al., 2017) increase confidence in the biological relevance of findings.
In the future, our approach could be extended to analyze time-varying
functional connectivity of other brain regions, or to assess time-varying
fractional occupancy profiles in psychiatric and neurological disorders
characterized by aINS dysfunction.

Credit author statement

Lorenzo Pasquini: Conceptualization, Methodology, Software, Formal
analysis, Writing - original draft, Writing - review & editing. Gianina
Toller: Conceptualization, Resources, Data curation, Writing - review &
editing. Adam Staffaroni: Resources, Data curation, Writing - review &
editing. Jesse A. Brown: Resources, Data curation, Writing - review &
editing. Jersey Deng: Resources, Data curation, Writing - review &
editing. Alex Lee: Resources, Data curation, Writing - review & editing.
Katarzyna Kurcyus: Resources, Data curation, Writing - review& editing.
Suzanne M. Shdo: Resources, Data curation, Writing - review & editing.
Isabel Allen: Resources, Writing - review & editing. Virginia E. Sturm:
Conceptualization, Writing - review & editing. Yann Cobigo: Data cura-
tion, Resources, Writing - review & editing. Valentina Borghesani:
Conceptualization, Resources, Writing - review & editing. Giovanni
Battistella: Conceptualization, Resources, Writing - review & editing.
Maria Luisa Gorno-Tempini: Conceptualization, Resources, Writing - re-
view & editing. Katherine P. Rankin: Data curation, Conceptualization,
Resources, Writing - review & editing. Joel Kramer: Funding acquisition,
Data curation, Resources, Writing - review & editing. Howard H. Rosen:
Data curation, Resources, Writing - review & editing. Bruce L. Miller:
Resources, Writing - review & editing. William W. Seeley: Conceptuali-
zation, Supervision, Funding acquisition, Resources, Writing - original
draft, Writing - review & editing.

Data availability

The data that support the findings of this study are available on
request from the corresponding author W.W.S. The data are not publicly
available due to them containing information that could compromise the
privacy of participants in the study.

Author’s contributions

L.P and W.W.S conceived the study; all authors designed the experi-
ments; L.P implemented the analysis of the data; L.P. and W.W.S. wrote
the manuscript; and all the authors edited the manuscript.

Funding

This work was supported by the Larry L. Hillblom Foundation grants
2014-A-004-NET and 2018-A-025-FEL, the Bluefield Project to Cure FTD,
the Tau Consortium, and NIH grants R01AG032289, R01AG048234, and
UCSF ADRC P50 AG023501.
Declaration of competing interest

The authors declare no competing conflicts of interest.



L. Pasquini et al. NeuroImage 208 (2020) 116425
Acknowledgements

We thank the participants for their contributions to neuroscience
research.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2019.116425.

References

Abrol, A., et al., 2017. Replicability of time-varying connectivity patterns in large resting
state fMRI samples. Neuroimage 163, 160–176.

Agcaoglu, O., Wilson, T., Wang, Y., Stephen, J., Calhoun, V.D., 2019. Resting state
connectivity differences in eyes open versus eyes closed conditions. Hum. Brain
Mapp. 40 (8), 2488–2498.

Allen, E., Damaraju, E., Plis, S., Erhardt, E., 2014. Tracking whole-brain connectivity
dynamics in the resting state. Cerebr. Cortex 24 (3), 663–676.

Brandl, F., et al., 2019. Specific substantial dysconnectivity in schizophrenia: a
transdiagnostic multimodal meta-analysis of resting-state functional and structural
magnetic resonance imaging studies. Biol. Psychiatry 10, 1–11.

Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L., 2008. The brain’s default network:
anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38.

Byrge, L., Kennedy, D.P., 2017. Identifying and characterizing systematic temporally-
lagged BOLD artifacts. Neuroimage 171, 376–392.

Choe, A.S., et al., 2017. NeuroImage Comparing Test-Retest Reliability of Dynamic
Functional Connectivity Methods, vol. 158, pp. 155–175.

Craig, A.D., 2009. How do you feel - now? The anterior insula and human awareness. Nat.
Rev. Neurosci. 10 (1), 59–70.

Critchley, H.D., 2005. Neural mechanisms of autonomic, affective, and cognitive
integration. J. Comp. Neurol. 493 (1), 154–166.

Critchley, H.D., Harrison, N.A., 2013. Visceral influences on brain and behavior. Neuron
77 (4), 624–638.

Damaraju, E., et al., 2014. Dynamic functional connectivity analysis reveals transient
states of dysconnectivity in schizophrenia. NeuroImage Clin. 5, 298–308.

Davis, M.H.A., 1980. A multidimensional approach to individual differences in empathy.
In: JSAS catalog of selected documents in psychology, 10, p. 85.

Deen, B., Pitskel, N.B., Pelphrey, K.A., 2011. Three systems of insular functional
connectivity identified with cluster analysis. Cerebr. Cortex 21 (7), 1498–1506.

Dosenbach, N.U.F., et al., 2006. A core system for the implementation of task sets. Neuron
50 (5), 799–812.

Dosenbach, N.U.F., et al., 2007. Distinct brain networks for adaptive and stable task
control in humans. Proc. Natl. Acad. Sci. 104 (26), 11073–11078.

Ekman, M., Derrfuss, J., Tittgemeyer, M., Fiebach, C.J., 2012. Predicting errors from
reconfiguration patterns in human brain networks. Proc. Natl. Acad. Sci. 109 (41),
16714–16719.

Fox, M.D., et al., 2005. The human brain is intrinsically organized into dynamic ,
anticorrelated functional networks. Proc. Natl. Acad. Sci. U. S. A. 02 (27),
9673–9678.

Friederici, A.D., Gierhan, S.M., 2013. The language network. Curr. Opin. Neurobiol. 23
(2), 250–254.

Gordon, E.M., et al., 2017. Precision functional mapping of individual human
NeuroResource precision functional mapping of individual human brains. Neuron 95
(4), 791–807.

Gorno-Tempini, M.L., 2004. Cognition and anatomy in three variants of primary
progressive aphasia. Ann. Neurol. 119 (11), 2658–2666.

Gu, X., et al., 2012. Anterior insular cortex is necessary for empathetic pain perception.
Brain 135 (9), 2726–2735.

Guo, C.C., et al., 2012. One-year test–retest reliability of intrinsic connectivity network
fMRI in older adults. Neuroimage 61 (4), 1471–1483.

Guo, C.C., et al., 2013. Anterior temporal lobe degeneration produces widespread
network-driven dysfunction. Brain 136 (10), 2979–2991.

Guo, C.C., et al., 2016. Dominant hemisphere lateralization of cortical parasympathetic
control as revealed by frontotemporal dementia. Proc. Natl. Acad. Sci., 201509184

Gutierrez-Barragan, D., Basson, M.A., Panzeri, S., Gozzi, A., 2018. Oscillatory Brain States
Govern Spontaneous fMRI Network Dynamics. https://doi.org/10.1101/393389
bioRxiv.

Hahn, A., et al., 2018. Task-relevant brain networks identified with simultaneous PET/
MR imaging of metabolism and connectivity. Brain Struct. Funct. 223 (3),
1369–1378.

Haimovici, A., Tagliazucchi, E., Balenzuela, P., Laufs, H., 2017. On wakefulness
fluctuations as a source of BOLD functional connectivity dynamics. Sci. Rep. 7 (1),
5908.

Hickok, G., Poeppel, D., 2007. The cortical organization of speech processing. Nat. Rev.
Neurosci. 8 (5), 393–402.

Hindriks, R., et al., 2016. Can sliding-window correlations reveal dynamic functional
connectivity in resting-state fMRI? Neuroimage 127, 242–256.

Hutchison, R.M., et al., 2013. Dynamic functional connectivity: promise, issues, and
interpretations. Neuroimage 80, 360–378.

Kaiser, R.H., et al., 2016. Dynamic resting-state functional connectivity in major
depression. Neuropsychopharmacology 41 (7), 1822–1830.
14
Kucyi, A., 2018. Just a thought: how mind-wandering is represented in dynamic brain
connectivity. Neuroimage 180, 505–514.

Kurth, F., Zilles, K., Fox, P.T., Laird, A.R., Eickhoff, S.B., 2010. A link between the
systems: functional differentiation and integration within the human insula revealed
by meta-analysis. Brain Struct. Funct. 214, 1–16.

Laumann, T.O., et al., 2015. Functional system and areal organization of a highly sampled
individual human brain. Neuron 87 (3), 657–670.

Laumann, T.O., et al., 2017. On the stability of BOLD fMRI correlations. Cerebr. Cortex 27
(10), 4719–4732.

Leigh, R., et al., 2013. Acute lesions that impair affective empathy. Brain 136 (8),
2539–2549.

Leonardi, N., Van De Ville, D., 2015. On spurious and real fluctuations of dynamic
functional connectivity during rest. Neuroimage 104, 430–436.

Liu, X., et al., 2018. Subcortical evidence for a contribution of arousal to fMRI studies of
brain activity. Nat. Commun. 1–10.

Lurie, D.J., et al., 2018. On the nature of resting fMRI and time-varying connectivity.
Preprint 1–33. https://doi.org/10.31234/osf.io/xtzre.

Madhyastha M., T., Askren K., M., Boord, P., Grabowski J., T., 2015. Dynamic
connectivity at rest predicts attention task performance. Brain Connectivity 5 (1),
45–59.

Matsui, T., Murakami, T., Ohki, K., 2016. Transient neuronal coactivations embedded in
globally propagating waves underlie resting-state functional connectivity. Proc. Natl.
Acad. Sci. 113 (23), 6556–6561.

Menon, V., 2011. Large-scale brain networks and psychopathology: a unifying triple
network model. Trends Cogn. Sci. 15 (10), 483–506.

Menon, V., Uddin, L.Q., 2010. Saliency, switching, attention and control: a network
model of insula function. Brain Struct. Funct. 1–13.

Mitra, A., Snyder, A.Z., Constantino, J.N., Raichle, M.E., 2015. The lag structure of
intrinsic activity is focally altered in high functioning adults with autism. Cerebr.
Cortex 27 (2), 1083–1093.

Morris, J.C., 1997. Clinical Dementia Rating: a reliable and valid diagnostic and staging
measure for dementia of the Alzheimer type. Int. Psychogeriatr. 9 (Suppl. 1), 173–176.

Nalci, A., Rao, B.D., Liu, T.T., 2018. Nuisance Effects and the Limitations of Nuisance
Regression in Dynamic Functional Connectivity fMRI. https://doi.org/10.1101/
285239 bioRxiv.

Nana, A.L., et al., 2018. Neurons selectively targeted in frontotemporal dementia reveal
early stage TDP-43 pathobiology. Acta Neuropathol. 137 (1), 27–46.

Nomi, J.S., et al., 2016. Dynamic functional network connectivity reveals unique and
overlapping profiles of insula subdivisions. Hum. Brain Mapp. 37 (5), 1770–1787.

Poldrack, R.A., et al., 2015. Long-term neural and physiological phenotyping of a single
human. Nat. Commun. 6, 8885.

Power, J.D., et al., 2011. Article functional network organization of the human brain.
Neuron 72 (4), 665–678.

Power, J.D., et al., 2014. NeuroImage Methods to detect , characterize , and remove
motion artifact in resting state fMRI. Neuroimage 84, 320–341.

Preti, M.G., Bolton, T.A., Van De Ville, D., 2017. The dynamic functional connectome:
state-of-the-art and perspectives. Neuroimage 160 (December 2016), 41–54.

Rankin, K.P., et al., 2006. Structural anatomy of empathy in neurodegenerative disease.
Brain 129 (11), 2945–2956.

R�esibois, M., et al., 2017. The neural basis of emotions varies over time: different regions
go with onset- and offset-bound processes underlying emotion intensity. Soc. Cogn.
Affect. Neurosci. 12 (8), 1261–1271.

Riedl, V., et al., 2016. Metabolic connectivity mapping reveals effective connectivity in
the resting human brain. Proc. Natl. Acad. Sci. 113 (8), 6260–6266.

Sadaghiani, S., D’Esposito, M., 2015. Functional characterization of the cingulo-opercular
network in the maintenance of tonic alertness. Cerebr. Cortex 25 (9), 2763–2773.

Sadaghiani, S., Poline, J., Kleinschmidt, A., Esposito, M.D., 2015. Ongoing dynamics in
large-scale functional connectivity predict perception. Proc. Natl. Acad. Sci. 112 (27),
8463–8468.

Saggar, M., Sporns, O., Gonzalez-castillo, J., Bandettini, P.A., Carlsson, G., 2018. Towards
a new approach to reveal dynamical organization of the brain using topological data
analysis. Nat. Commun. 9, 1–33.

Satterthwaite, T.D., et al., 2013. An improved framework for confound regression and
filtering for control of motion artifact in the preprocessing of resting-state functional
connectivity data. Neuroimage 64 (1), 240–256.

Seeley, W.W., et al., 2007. Dissociable intrinsic connectivity networks for salience
processing and executive control. J. Neurosci. 27 (9), 2349–2356.

Seeley, W.W., Crawford, R.K., Zhou, J., Miller, B.L., Greicius, M.D., 2009.
Neurodegenerative diseases target large-scale human brain networks. Neuron 62 (1),
42–52.

Seeley, W.W., Zhou, J., Kim, E.-J., 2012. Frontotemporal dementia: what can the
behavioral variant teach us about human brain organization? Neurosci 18 (4),
373–385.

Shine, J.M., et al., 2016a. The dynamics of functional brain networks: integrated network
states during cognitive task performance. Neuron 92 (2), 544–554.

Shine, J.M., Koyejo, O., Poldrack, R.A., 2016b. Temporal metastates are associated with
differential patterns of time-resolved connectivity, network topology, and attention.
Proc. Natl. Acad. Sci. U. S. A. 113 (35), 9888–9891.

Shirer, W.R., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.D., 2012. Decoding
subject-driven cognitive states with whole-brain connectivity patterns. Cerebr. Cortex
22 (1), 158–165.

Smith, S.M., et al., 2009. Correspondence of the brain’s functional architecture during
activation and rest. Proc. Natl. Acad. Sci. U. S. A. 106 (31), 13040–13045.

Sourty, M., Thoraval, L., Roquet, D., 2016. Identifying dynamic functional connectivity
changes in dementia with lewy bodies based on product hidden markov models.
Front. Comput. Neurosci. 10, 60.

https://doi.org/10.1016/j.neuroimage.2019.116425
https://doi.org/10.1016/j.neuroimage.2019.116425
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref1
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref1
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref1
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref2
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref2
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref2
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref2
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref3
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref3
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref3
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref4
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref4
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref4
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref4
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref5
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref5
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref5
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref6
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref6
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref6
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref7
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref7
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref7
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref8
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref8
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref8
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref9
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref9
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref9
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref10
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref10
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref10
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref11
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref11
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref11
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref12
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref12
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref13
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref13
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref13
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref14
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref14
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref14
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref15
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref15
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref15
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref16
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref16
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref16
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref16
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref17
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref17
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref17
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref17
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref18
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref18
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref18
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref19
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref19
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref19
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref19
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref20
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref20
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref20
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref21
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref21
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref21
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref22
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref22
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref22
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref22
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref23
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref23
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref23
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref24
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref24
https://doi.org/10.1101/393389
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref26
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref26
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref26
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref26
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref27
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref27
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref27
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref28
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref28
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref28
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref29
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref29
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref29
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref30
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref30
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref30
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref31
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref31
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref31
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref32
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref32
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref32
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref33
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref33
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref33
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref33
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref34
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref34
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref34
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref35
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref35
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref35
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref36
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref36
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref36
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref37
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref37
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref37
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref38
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref38
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref38
https://doi.org/10.31234/osf.io/xtzre
http://refhub.elsevier.com/S1053-8119(19)31016-X/opt9TmoxxKGKK
http://refhub.elsevier.com/S1053-8119(19)31016-X/opt9TmoxxKGKK
http://refhub.elsevier.com/S1053-8119(19)31016-X/opt9TmoxxKGKK
http://refhub.elsevier.com/S1053-8119(19)31016-X/opt9TmoxxKGKK
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref40
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref40
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref40
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref40
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref41
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref41
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref41
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref42
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref42
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref42
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref43
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref43
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref43
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref43
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref44
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref44
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref44
https://doi.org/10.1101/285239
https://doi.org/10.1101/285239
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref46
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref46
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref46
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref47
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref47
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref47
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref48
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref48
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref49
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref49
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref49
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref50
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref50
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref50
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref51
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref51
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref51
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref52
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref52
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref52
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref53
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref53
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref53
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref53
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref53
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref54
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref54
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref54
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref55
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref55
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref55
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref56
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref56
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref56
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref56
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref57
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref57
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref57
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref57
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref58
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref58
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref58
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref58
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref59
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref59
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref59
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref60
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref60
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref60
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref60
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref61
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref61
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref61
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref61
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref62
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref62
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref62
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref63
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref63
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref63
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref63
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref64
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref64
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref64
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref64
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref65
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref65
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref65
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref66
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref66
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref66


L. Pasquini et al. NeuroImage 208 (2020) 116425
Sporns, O., Tononi, G., K€otter, R., 2005. The human connectome: a structural description
of the human brain. PLoS Comput. Biol. 1 (4), e42.

Sturm, V.E., et al., 2018. Network architecture underlying basal autonomic outflow:
evidence from frontotemporal dementia. J. Neurosci. 415, 0347–18.

Tobia, M.J., Hayashi, K., Ballard, G., Gotlib, I.H., Waugh, C.E., 2017. Dynamic functional
connectivity and individual differences in emotions during social stress. Hum. Brain
Mapp. 38 (12), 6185–6205.

Toller, G., et al., 2018. Individual differences in socioemotional sensitivity are an index of
salience network function. Cortex (March) 1–13.

Tombaugh, T.N., McIntyre, N.J., 1992. The mini-mental state examination: a
comprehensive review. J. Am. Geriatr. Soc. 40 (9), 922–935.

Touroutoglou, A., Hollenbeck, M., Dickerson, B.C., Feldman Barrett, L., 2012. Dissociable
large-scale networks anchored in the right anterior insula subserve affective
experience and attention. Neuroimage 60 (4), 1947–1958.
15
Uddin, L.Q., 2014. Salience processing and insular cortical function and dysfunction. Nat.
Rev. Neurosci. 16 (1), 55–61.

Vidaurre, D., Smith, S.M., Woolrich, M.W., 2017. Brain network dynamics are
hierarchically organized in time. Proc. Natl. Acad. Sci. 201705120.

Wei, J., et al., 2018. Eyes-open and eyes-closed resting states with opposite brain activity
in sensorimotor and occipital regions: multidimensional evidences from machine
learning perspective. Front. Hum. Neurosci. 12, 422.

Williams, L.M., 2016. Precision psychiatry: a neural circuit taxonomy for depression and
anxiety. Lancet Psychiatr. 3 (5), 472–480.

Wilson, R.S., et al., 2015. Influence of epoch length on measurement of dynamic
functional connectivity in wakefulness and behavioural validation in sleep.
Neuroimage 112, 169–179.

Zhou, J., Seeley, W.W., 2014. Network dysfunction in Alzheimer ’ s disease and
frontotemporal Dementia : implications for psychiatry. Biol. Psychiatry 75 (7),
565–573.

http://refhub.elsevier.com/S1053-8119(19)31016-X/sref67
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref67
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref67
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref68
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref68
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref68
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref69
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref69
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref69
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref69
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref70
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref70
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref70
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref71
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref71
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref71
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref72
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref72
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref72
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref72
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref73
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref73
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref73
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref74
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref74
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref75
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref75
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref75
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref76
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref76
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref76
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref77
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref77
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref77
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref77
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref78
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref78
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref78
http://refhub.elsevier.com/S1053-8119(19)31016-X/sref78

	State and trait characteristics of anterior insula time-varying functional connectivity
	1. Introduction
	2. Materials and methods
	3. Results
	3.1. Bilateral ventral and dorsal aINS occupy four overlapping but distinct time-varying functional connectivity modes
	3.2. aINS subregions coherently transition between time-varying functional connectivity modes
	3.3. Individual aINS connectivity mode occupancy profiles are reproducible across samples and within subjects over time
	3.4. Eye opening decreases the time aINS spends anticorrelated with visual cortices
	3.5. Time-varying functional connectivity meta-profiles show that aINS subregions cohesively occupy the same modes
	3.6. Comparison of aINS and left IFG time-varying functional connectivity
	3.7. Time spent by the aINS in the task-control and salience networks correlates with metrics related to dispositional empathy

	4. Discussion
	4.1. Partially overlapping but distinct time-varying aINS functional connectivity modes
	4.2. “State” characteristics of aINS time-varying functional connectivity modes
	4.3. “Trait” characteristics of aINS time-varying functional connectivity modes
	4.4. Limitations and future directions

	Credit author statement
	Data availability
	Author’s contributions
	Funding
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References


