
Parameter Estimation for Incompressible
Cake Filtration: Advantages of a Modified
Fitting Method

There is a widely used linear strategy to determine the parameters specific cake
resistance and filter medium resistance in incompressible cake filtration. In this
article, it is intended to demonstrate that this strategy has some disadvantages and
should be replaced by an alternative nonlinear approach which yields more exact
results. Even though the gains in precision are small for most cases, the nonlinear
strategy is favored because it involves no extra effort and is grounded in the same
physical theory as the original approach. This claim is based on a broad simula-
tion study using noisy data with known parameter values to compare both fitting
strategies and judge their accuracies.
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1 Introduction

In cake filtration, important parameters are filter cake resis-
tance and filter medium resistance. Resistance of cake and
medium cause pressure drop in the fluid phase and, therefore,
influence the filtration setup, such as choice of filter apparatus
and suitable pumps as well as integration of filtration into the
larger process. As long as filter cakes can be considered incom-
pressible, these two parameters are indeed decisive and are the
only descriptors to be determined by parameter fitting as all
others are known from the experimental conditions [1, 2].
Filter cakes can be considered incompressible depending on
their material properties and the operation conditions. Material
properties are, e.g., compressibility of the primary particles and
friction between the particles [3].

Important operation conditions are flow rate or overall
differential pressure, respectively, and maximal cake height.
Compressibility effects become more pronounced when these
variables increase. In case of compressible filter cakes, further
parameters need to be determined that characterize the com-
pression behavior [4, 5]. Even though many substances can
exhibit compressible behavior during filtration, also the as-
sumption of incompressibility is often valid, especially for
incompressible primary particles and moderate operation con-
ditions. For this reason, we focus only on incompressible cake
filtration in this article and, therefore, on the parameters filter
cake resistance and filter medium resistance.

Additionally, it must be assured that the substance system
considered exhibits pure cake filtration behavior, i.e., that all
newly separated particles are captured on the cake surface only.
If, on the contrary, also depth filtration occurs, i.e., small par-
ticles are separated within the already existing filter cake, the
phenomenological behavior changes and other analysis tools

have to be used [6, 7]. Depth filtration effects can be expected
especially when very broad and possibly multimodal particle
size distributions of the dispersed phase are encountered be-
cause in that case small particles can pass through the pores
created by the larger particles and internally block the previ-
ously built-up cake. However, just as compression, this effect is
neglected and only ideal cake filtration is considered here.

There is a relatively simple and widely used procedure to
determine the parameters filter cake resistance and filter medi-
um resistance, which is reported classically in the guideline
VDI 2762, Part 2 [1]. The approach is also described in over-
view articles and established textbooks [1, 8], used as a refer-
ence for validating alternative strategies [9], and is still em-
ployed in very recent publications [10–12]. It is also standard
in industrial research. For this reason, the classical procedure
must be seen as state-of-the-art.

Before more details are given on the general approach, a
comment on the two characteristic parameters is in order. In
most cases, the sought-for filter cake resistance is used as spe-
cific resistance. In some cases, it refers to filter cake mass, i.e.,
resistance per filter cake mass; sometimes it is expressed in
relation to filter cake height, i.e., resistance per cake height. In
the latter case, specific cake resistance is the inverse of the filter
cake permeability. In the remaining article, we will rely on
height-specific cake resistances; this does, however, not restrict
the generality of the found results because both height- and
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mass-specific resistances can easily be converted into each
other, as will be shown later on.

Additionally, it is important to note that the so-called medi-
um resistance does not characterize the used filter medium or
septum alone, but is characteristic for the used medium togeth-
er with the first layers of separated substances. Additional resis-
tance effects resulting from these first layers are, therefore, also
called ‘‘interference resistance’’, referring to the interference
between medium and the separated dispersed phase [13]. The
interaction of the filter medium with the particles to be separat-
ed is, e.g., discussed by Hund et al. [14]. In case of precoat
filtration, the interaction was investigated by Rainer et al.
[15, 16]. Due to the fact that in classical experiments specific
cake resistance is the decisive parameter because it is usually
much larger than the medium resistance, including the inter-
ference effect [1], we will focus in the remaining article mainly
on this variable.

Considering the experimental strategy to determine the
sought-for parameters, a suspension is created with known
mass concentration of the substance to be separated. This sus-
pension is filtered in a laboratory filter cell, either in the mode
of constant flow or constant pressure, where the latter is the
dominant mode of operation because no process control sys-
tem is needed to assure a constant flow rate while the overall
flow resistance increases due to cake growth. For this reason,
also constant pressure filtration is focused upon in this article.
During the whole separation process, the accumulated liquid
mass at the filter outlet is measured by an automatic scale.
Using either the filter cake height at the end of filtration or the
mass of separated matter together with the collected liquid
volume, converted from the mass using the density, as a func-
tion of time, the parameters cake resistance and medium resis-
tance can be calculated [1, 2].

In the next section, the mathematics behind this calculation
procedure is described. So far, it is only noted that the already
mentioned standard method is based on a linear representation
of the measured data and a corresponding linear model formu-
lation that is fitted to these data points [1, 2, 17]. In our opin-
ion, such strategies were very helpful to evaluate experimental
data manually on paper sheets; however, current computer
tools make them obsolete. The aim of this article is to show
that the said linear representation leads to a decreased accuracy
in the parameter fitting procedure. Therefore, an alternative
procedure is proposed. It is based on the same basic model
equations, i.e., the same physical theory, only the data are not
represented linearly and instead a root function is fitted to the
raw data. It is shown that this latter fitting procedure, even
though it does not cause any extra effort and is, as mentioned,
based on the same established theory, leads to more accurate
results.

It is worth mentioning that an analogous development took
place in a completely different field of research, namely enzyme
kinetics based on the Michaelis-Menten equation [18–20]. In
this area, also first linear representations were used to deter-
mine the characteristic parameters. Afterwards, nonlinear fit-
ting of algebraic equations was applied and still later the devel-
opment shifted to the direct use of differential equations [21].
Whereas working with differential equations directly is not re-
quired in case of incompressible cake filtration as all equations

can be solved analytically, the analogy between enzyme kinetics
and filtration holds for the decision between linear and nonlin-
ear fits. As will be seen in Sect. 3, the quality of fits crucially
depends on the distribution of errors. Accordingly, it was found
in enzyme kinetics research that linear plots result in ‘‘error
bars which are asymmetrical’’ [18] and ‘‘suffer from a highly
biased weighting of points and should never be used.’’ [19].

2 Model Equations

Modeling of incompressible cake filtration is briefly recapitu-
lated now. For deriving the general model equation, from
which specific cake and medium resistance are derived, one
starts by decomposing the overall pressure drop across the fil-
ter Dp1) into the pressure drop across the cake Dpc and across
the medium DpM, i.e.:

Dp ¼ DpC þ DpM (1)

For the cake, Darcy’s law is used in the following form:

DpC ¼
Q mH

A k
¼ Q mH r

A
(2)

where Q is the volumetric flow rate, i.e., dV/dt, m is the dynam-
ic viscosity, A is the filter’s cross-sectional area, k denotes the
permeability, and r the height-specific resistance. Cake height
H can be substituted and expressed by:

H ¼ V K
A

(3)

with the factor K, often referred to as concentration constant
[1], being defined as:

K ¼ c
1� eð Þ ¼

H A
V

(4)

and c being the volumetric concentration of impurities in the
suspension; e is the cake’s porosity. Also, for the filter medium
Darcy’s law is applied. However, as the medium height does
not play a role here, specific resistance and height are com-
bined into the total resistance of the medium RM, yielding:

DpM ¼
Q mRM

A
(5)

Putting these components together and writing dV/dt for Q
yields:

Dp ¼ r m K
A2 V

dV
dt
þ RM m

A
dV
dt

(6)

Solving this differential equation by separation of variables
and using the initial condition V(t=0) = 0 leads to:

t ¼ r mK
2 Dp A2 V2 þ RM m

Dp A
V ¼ P2 V2 þ P1 V (7)
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which can be rearranged to

t
V
¼ r mK

2 Dp A2 V þ RM m
Dp A

¼ P2 V þ P1 (8)

as traditionally used for determining the parameters r and RM.
As can be easily seen, in both equations, the parameters P1 and
P2 have the same meaning, namely P1 ¼ RM m Dp Að Þ�1 and
P2 ¼ r mK 2 Dp A2ð Þ�1. As m, Dp, and A are known from the
experimental conditions as well as the used setup, and the final
cake height H, contained in K, can be determined after the ex-
periment, RM can be directly computed from P1 and r from P2.
However, the quadratic Eq. (7) can also be resolved for V, yield-
ing the root function:

V ¼ �P1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

1 þ 4 P2t
p
2 P2

(9)

The claim of the present article is that it makes a difference
whether Eq. (8) or (9) is used for fitting it to the experimental
data and determining RM and r. Before moving on to the
parameter fitting strategy, a remark is made on the specific re-
sistance r. As mentioned, here r is considered as height-specific;
therefore, also the final cake height H is included in the factor
K. However, substituting Km = m/V for K in Eq. (4), where m is
the filter cake mass at the end of filtration, the equation stays
the same, only r takes the meaning of rm, i.e., the mass-specific
resistance [1, 2]. This was meant when we mentioned earlier
that the height- and mass-specific form are equivalent and that
we do not limit the generality of our approach due to the
primary focus on height-specific filter cake resistances.

3 Parameter Estimation

In this section, the fitting strategy is described and some theo-
retical background on parameter estimation is provided.
Regarding notation, the independent variable is denoted by x,
the dependent variable by y. Measured data are marked using a
hat sign, i.e., x̂ and ŷ, and data from the model f depend on the
parameter vector P. In case of the usual least-squares strategy
for N experimentally determined points, the cost function is
formulated as:

J ¼
XN

i¼1

ŷi � f x̂i; Pð Þ
� �2

(10)

and the corresponding optimization problem is:

min
p

J x̂i; ŷi; P
� �

(11)

Now, different strategies for parameter estimation are formu-
lated; the first is based on the linear model of Eq. (8), the sec-
ond on the nonlinear form of Eq. (9). In the remaining article,
the two cases are referred to as Strategy 1 and 2, respectively.
Strategy 1 is the classical approach known from the literature
[1, 2]. Strategy 2 is the alternative method proposed in this pa-
per. For Strategy 1, the cost function becomes:

J1 ¼
XN

i¼1

t̂i

V̂ i

� �
� P2V̂ i þ P1
� �	 
2

(12)

i.e., a linear parameter fitting problem is encountered. Corre-
spondingly, Strategy 2 yields the following nonlinear cost func-
tion

J2 ¼
XN

i¼1

V̂ i �
�P1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

1 þ 4 P2 t̂i

q
2 P2

0
@

1
A

2
4

3
5

2

(13)

To assess the adequacy of the two fitting strategies proposed
so far, some theoretical background is required. As mentioned,
both Strategy 1 and 2 rely on a least-squares approach. Due to
the fact that both fitting equations, Eqs. (8) and (9), can be
analytically recast into each other, fitting results are expected to
be identical for perfect experimental data, which is, however,
not realistic in an actual experimental setting. So, the main
question is how both approaches deal with real data that are
inevitably noisy.

Least-squares methods can be shown to be reliable for linear
as well as nonlinear cost functions as long as all errors are nor-
mally or at least approximately normally distributed [22]. At
this point, the crucial question is how the errors occurring in
filtration experiments behave. t/V, i.e., the decisive quantity in
case of Strategy 1, is intuitively not expected to scatter in a nor-
mally distributed way. However, if this were the case, Strategy 1
would be reliable to determine the parameters. On the contrary,
Strategy 2 is reliable as long as the errors of V are normally dis-
tributed. The actual distribution of errors for both strategies is
discussed in the next sections when we turn to our simulation
study.

Please note that an increasing error magnitude with larger
values of the independent variable, i.e., liquid volume in case of
Strategy 1 and time for Strategy 2, is not a problem with respect
to the quality of the found parameter values. As the mentioned
heteroscedasticity, i.e., the increasing spread or dispersion of
the observed variables, does not affect the accuracy but only
the efficiency with which the parameters are determined, it is
not further accounted for in this work. Should computational
efficiency be an issue, different strategies to handle heterosce-
dasticity are known in the literature, e.g., by scaling of variables
[22, 23]. To substantiate our claim further, i.e., that the applied
fitting strategy makes a difference, a numerical study is pre-
sented in the following article.

4 Computational Methods and
Simulation Strategy

Strategy 1 and 2 are tested for determining the decisive param-
eters P1 and P2, respectively, RM and r. In this respect, as men-
tioned, the focus is laid on the more important parameter of
specific filter cake resistance r. To truly test a fitting strategy,
the actual parameter values must be known. For that reason,
forward simulations are conducted in which Eq. (9) is solved
with known values of P1 and P2 for 100 s with one data point
per second. These ideal solutions are perturbed with different
levels of noise, and the obtained noisy data are in turn used as
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fictitious experiments to determine the parameter values. In
each case, it is checked how well the true parameter values are
found again as is a common strategy when testing parameter
fitting procedures [24].

Forward simulations as well as parameter fitting are con-
ducted in MATLAB (version 2018a; Mathworks, Natick, MA).
Noise is generated using the function randn which yields nor-
mally distributed random numbers; the optimization problem
is solved with fminsearch in which the maximal number of
iterations and of function evaluations are both set to 1 000 000
while the other options remained at their default settings.

Next, the exact generation of noisy data is explained in more
detail. In all cases, noise is assumed to be normally distributed
with previously defined standard deviations. Flow rate
dV/dt = Q and specific filter cake resistance r are supplied with
noise. In both cases, the level of noise, i.e., its standard devia-
tion, is given in % of the nominal variable value. Please note
that this also implies that the standard deviation changes over
time for the flow rate as dV/dt decreases with time in the mode
of constant pressure filtration. Noise is added to dV/dt because
the flow rate was observed to show some scattering in pub-
lished studies [9] as well as in our own experiments [11].

It is important to mention that normally distributed noise
on dV/dt causes also scattered values of the cumulated volume
V as schematically shown in some publications [1, 2]. As the
noise on dV/dt simply adds up, scattering on V is also normally
distributed because any linear combination of independent
randomly distributed variables is also randomly distributed [9].
Due to this summing up, the error bands on V can become
larger over time which is also in agreement with published ex-
perimental findings [11]. For the reasons discussed, we believe
that our noise model simulates the true flow behavior in con-
stant-pressure filtration quite well, a point we will also elabo-
rate more in the discussion of the results.

However, there is also another possible source of experimen-
tal errors. It can be imagined that r itself is prone to uncertain-
ties, e.g., due to biases when taking samples of the powder or
particle system used for the experiments. To account for this
effect, also normally distributed noise is added to specific cake
resistance r. Noise on dV/dt and r, therefore, accounts for two
different effects: the first covers non-idealities when conducting
the experiment, the second includes uncertainties when prepar-
ing the experiment.

Our two noise modes are illustrated in Fig. 1 where it is
shown how a noisy flow rate (a) influences cumulated volume
V (b); the effect of variations in specific filter cake resistance on
the resulting trajectory of V is also displayed (c). The figure re-
veals that a noisy flow rate results in jagged curves whereas
variations in r still give smooth, but diverging curves. This
behavior is due to the fact that noise on r mimics variations
when preparing the experiment as explained, and, therefore,
only affects the model parameter r in a time-invariant way. A
noisy flow rate, on the other hand, is intended to model tran-
sient effects. As in reality both phenomena often occur
together, their combined effects will be studied later on.

The filter medium resistance RM has not been subjected to
noise because, as justified above, it is not studied in detail here.
Please note that data on experimentally occurring noise are
scarce in the literature; raw data and error bands are often not

shown or only single experimental runs are discussed. There-
fore, we also had to rely on our own lab experiences to choose
realistic noise intensities. However, it is claimed that all noise
levels analyzed in the remaining article are within the range
commonly encountered when conducting filtration experi-
ments.
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Figure 1. Illustration of the noise generation procedure. A noisy
flow rate (a) leads to noise on the cumulative volume (b); varia-
tions in specific filter cake resistance also affect the cumulative
volume (c); three randomly generated data sets are shown
(marked by different symbols) as used in each inner iteration of
the Monte-Carlo method; the noise level on the flow rate is
2.5 % and 20 % on specific filter cake resistance.
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To evaluate the model fits, a two-stage strategy is employed
which is divided into an inner and an outer iteration. In the in-
ner iteration, three-fold experiments are mimicked by generat-
ing three different sets of noisy data, i.e., noise is generated with
three different random number seeds, as displayed in Fig. 1.
These three-fold datasets are used together for one model fit.
In an outer iteration, 1000 repetitions of such triple experi-
ments are performed, again each run with different random
number seeds. By the outer iteration, statistical information is
obtained on the determined parameters, i.e., mainly error bars
on r. Therefore, conclusions can be drawn about which fitting
strategy performs better ‘‘in the long run’’. As computational
methods where repeated use is made of random numbers are
often referred to as Monte-Carlo methods, also the described
procedure can be classified as a Monte-Carlo approach.

5 Results

Using the simulation strategy described in the last section, var-
ious data sets were generated to test and compare parameter
fitting Strategy 1 and 2. For didactic reasons, first some single
selected cases are shown and subsequently turned to overview
representations. The first are more tangible but contain less
information, the second are denser information-wise but,
therefore, also more difficult to interpret.

As expected, no detectable differences between Strategy 1
und 2 are found in case of non-noisy data, i.e., the true param-
eter values can be reliably identified with both approaches.
Thus, this case is not further discussed. Before both strategies
are compared in detail, a problem is considered that can occur
with Strategy 1, i.e., the linear fit. Linear representation of the
data can cause highly nonlinear segments at the beginning of
the experiments. Therefore, no meaningful fits can be con-
ducted without cropping the data for small times. A compari-
son of a full, non-cropped data set and an adapted data set is
shown in Fig. 2 together with the corresponding linear fit; a
10 % noise level on flow rate is used.

In case of the non-cropped data, the fitting error of specific
cake resistance r is 9.66 %; after cropping the data, it can be
reduced to 5.65 %. Error, here and in the remaining article, is
defined as the difference between the parameter value deter-
mined by fitting rf and the true value rt relative to rt, i.e.:

Error ¼ rf � rt

rt
· 100% (14)

For the results of Fig. 2, the first 15 data points, i.e., 15 s, were
cropped. It is important to note that this behavior is no artefact
of the simulation strategy or noise generation method, as the
same behavior was also observed with our own experimental
data. The necessity to crop data sets is also mentioned in the
literature [1]. As cropping of data is not required in case of
Strategy 2, here already is the first advantage of the proposed
method because it avoids the decision of how many data points
to drop, which is always to some degree arbitrary. In the
remaining, article only cropped data are used in case of Strat-
egy 1 to allow a meaningful comparison of the two approaches;
the same cut-off of 15 s is used throughout this work as this
proved a good threshold.

For uncropped data, Strategy 1 would yield a significantly
worse performance than the results shown in the following.
Also, whereas in Fig. 2 only a single experimental run is shown
to illustrate the problem, all subsequent results will be given for
a triple determination, which was described in Sect. 4 as the
internal iteration of our Monto-Carlo method. Please note that
in the following figures the raw data (displayed by circles in
Fig. 2) are omitted and only the fitted lines are presented to-
gether with the confidence intervals of the raw data (given for
every fifth data point) in order to keep the plots clear and
understandable.

Fig. 3 presents curve fits with both strategies for a case with a
low level of noise, i.e., a standard deviation of 1 % on the nomi-
nal value of the flow rate. Already in this case it can be ob-
served that the fitting with Strategy 2 leads to more exact
results: The fitting error of the specific filter cake resistance is
1.944 % as determined by Strategy 1, compared to a value of
1.75 % when using Strategy 2. Insignificant as this difference
may be for all practical purposes, it proves already that the two
methods deviate. Also, the shown fictitious experiments are
quite close to ideal data that are hardly found in real experi-
ments.

Turning from this singular example with only the threefold
inner iteration to the full data set obtained by the additional
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Figure 2. Exemplary comparison of Strategy 1 for the non-
cropped data set (a) and cropped data (b); raw data are dis-
played as circles; continuous lines are the linear fits.
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1000 outer iterations, Strategy 1 yields an average error of
–0.0128 % (± 0.060 %) compared to the value of –0.001 %
(± 0.053 %) in case of Strategy 2. Here and in the following, the
percentage values within brackets are the confidence intervals
of the fitting errors based on a confidence level of 99 %. The
same confidence level is also used in all plots where confidence
intervals are shown. As the reported confidence intervals refer
to the errors, smaller values are not per se an advantage. If, e.g.,
the average error is large but the obtained confidence interval
for that error is small, this only means that the wrong param-
eter value is identified with a low variation.

All results shown so far also underline the trivial truth that
repetition of experiments is important for a reliable determina-
tion of parameters. Single experimental runs, as, e.g., displayed
in Fig. 2, can exhibit large variations and, therefore, lead to in-
exact parameter values. Three-fold repetitions, as used in Fig. 3
and all remaining fits of this article, already lead to an in-
creased accuracy. If many such three-fold experimental runs
are considered, as modeled by our outer iteration (see Sect. 4),
the accuracy can still be improved remarkably.

Next, data with a higher level of noise but the same true spe-
cific filter cake resistance are considered. In Fig. 4, an analogous

comparison is shown for a flow rate-specific noise of 10 %.
Here, the fitting errors become 1.69 % and –0.31 % for
Strategy 1 und 2, respectively. When turning to the full data set
including the 1000 outer iterations, Strategy 1 yields an average
error of –1.024 % (± 0.6 %) compared to the value of 0.0499 %
(± 0.525 %) from Strategy 2. Thus, it can be observed that the
new Strategy 2 becomes more effective, the higher the noise
level on the experimental data is. It also becomes apparent
what was already conjectured in Sect. 3, namely that the distri-
bution of errors matters for the fitting procedure. Whereas
Strategy 2 relies on data with normally distributed errors, a dis-
torted scaling of errors is encountered in Strategy 1 which is
the reason for the worse quality of the determined parameters.

As a third example, noise is added to the specific filter cake
resistance r along with a flow rate-specific noise of 5 %; the
standard deviation of r is 1 % of its nominal value. For this
case, scattered data and fitting results are presented in Fig. 5.
Based on this noisy r, the errors are –4.35 % and –2.95 % for
Strategy 1 und 2, respectively. Including again the outer itera-
tions, average errors of –0.271 % (± 0.29 %) and 0.076 %
(± 0.26 %) are obtained from Strategy 1 and 2, respectively. First
of all, this example demonstrates how important the outer
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Figure 3. Fits of data with low noise level on the flow rate and a
true specific filter cake resistance of 1012 m–2 using the classical
Strategy 1 (a) and the new, nonlinear Strategy 2 (b); confidence
intervals of the raw data are displayed for every fifth value
(green).
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Figure 4. Fits of data with high noise level on the flow rate and
a true specific filter cake resistance of 1012 m–2 using the classi-
cal Strategy 1 (a) and the new, nonlinear Strategy 2 (b); confi-
dence intervals of the raw data are displayed for every fifth
value (green).
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iteration is. Whereas the single example shown in Fig. 5 led to
relatively high fitting errors for both approaches, on the aver-
age Strategy 1 and 2 perform better than in this example. This
shows again that repetition of experiments cannot be overesti-
mated. However, also here Strategy 2 is superior to Strategy 1.

Now the more complex display of results is considered. The
heat maps displayed in Fig. 6 comprise the results of many sin-
gular fits as they were discussed so far; all are shown again for
1000 outer iterations. Various different levels of noise on the
flow rate dV/dt and on specific filter cake resistance r as well as
combinations of both are displayed. The color scale denotes the
resulting fitting errors; areas of green color indicate that the
correct parameter values were identified, blue and red colors
symbolize found parameter values that are too low or too high,
respectively.

In general, Fig. 6 confirms what the single examples dis-
cussed so far already indicated: Strategy 2 consistently performs
better than Strategy 1, i.e., it allows to determine the specific fil-
ter cake resistance with a higher accuracy. Additionally, it can
be seen that, on the average, fitting error increases both with
ascending noise levels on dV/dt and r. For small levels of noise,
e.g., less than 10 % and certainly less than 5 %, both strategies

seem to yield acceptable results. However, it must be taken into
account, that Fig. 6 only shows the long-term behavior. Both
types of noise can still result in considerable fitting errors when
only few experimental runs are considered, as usually done in
experimental practice and as indicated in Fig. 5. An additional
disadvantage of Strategy 1 is that it has a clear tendency to
underestimate the true specific filter cake resistance (mostly the
blue color range is present in Fig. 6a); compare Eq. (14) for our
definition of fitting error. This underestimation might be a
problem for process design because, as a consequence, equip-
ment such as pumps might be chosen undersized.

Before providing some overall conclusions, a few additional
clarifications are required. It is important to note that the qual-
itative behavior displayed in Fig. 6 is the same also for different
nominal values of specific filter cake resistance r. Even though
the nominal value r = 1012 m–2 was used throughout the article,
the findings are unaffected if the decimal power is varied in the
realistic range from 1011 to 1016. Furthermore, the overall time
span and discretization of time points could affect the fitting
results, i.e., the whole experimental time considered and the in-
tervals at which data points are saved. However, it was found
that, excluding unrealistically short experimental times, this
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Figure 5. Fits of data with noise both on flow rate and specific
filter cake resistance; the mean true specific filter cake resistance
is 1012 m–2; comparison of Strategy 1 (a) and the new, nonlinear
Strategy 2 (b); confidence intervals of the raw data are displayed
for every fifth value (green).

a)

b)

Figure 6. Heat maps showing the average fitting errors ob-
tained by Strategy 1 (a) and the new, nonlinear Strategy 2 (b) for
different levels of noise added to the flow rate dV/dt and specif-
ic filter cake resistance r; the mean true specific resistance is
1012 m–2. Dark blue and dark red on the color scale denote the
found parameter values that are too low or too high, respec-
tively.
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effect is negligible. Also, it might be objected that only the new
Strategy 2 was compared with the traditional t/V-V plot (Strat-
egy 1) whereas also some sources suggest to use a dV/dt-V plot
[1]. In answer to this, it must be said that t/V is much more
common in the literature, and, even more importantly, the un-
even scaling of errors does equally occur in the dV/dt-V
approach as in Strategy 1. Also, some conducted simulation
studies confirmed the hypothesis and demonstrated that the
latter strategy performs even worse than Strategy 1. A last
remark about the parameter fitting itself: Both investigated
fitting strategies result in well-posed optimization problems
with pronounced minima regarding the sought-for parameter
r; the obtained solutions are insensitive to the provided initial
values. Fitting errors in case of Strategy 1, therefore, result from
a systematic bias rather than from multiple minima.

6 Conclusions

The present article had a very simple aim, namely, to show that
a nonlinear fit, based on a root function, is superior to the clas-
sical linear strategy when it comes to determining the parame-
ters for incompressible cake filtration, mainly specific filter
cake resistance. There are different advantages of the nonlinear
approach. First of all, a cropping of data, as is often necessary
for small times when using the linear strategy, is not required.
This eliminates a subjective factor in the fitting process and
prevents that useful data points are discarded. However, the
main advantage is that the nonlinear strategy consistently leads
to more exact results.

In order to warrant this claim, a broad Monte-Carlo simula-
tion study with two different noise models was presented.
Firstly, noise was added to the flow rate which mimics varia-
tions in conducting the filtration experiments; secondly, the
nominal values of specific filter cake resistance were supplied
with noise in order to model variations when preparing the
experiment. For both modes of noise, it was checked how well
the two different fitting approaches were able to identify the
true parameter values. In this respect, it must be stressed that
such an evaluation is only possible by a simulation study be-
cause only then the true parameter values are known and,
therefore, the fitting quality can be assessed adequately.

In conclusion, all filtration experimentalists who deal with
incompressible substances, or substances that can be consid-
ered approximately as such under the given process conditions,
are advised to evaluate their data by the nonlinear method pro-
posed in this article. Even though the gain in precision is in the
order of some percent, there is no reason to refrain from using
the nonlinear fit. It is more exact and involves no extra effort
because practically all available software tools nowadays allow
fitting nonlinear functions with a comparable computational
efficiency as linear models. Also, the nonlinear fitting strategy
removes arbitrariness in data point selection. Finally, it requires
no shift to a new theoretical framework as this new approach is
based on the familiar and well-tested theory of incompressible
cake filtration.

Acknowledgment

This research was supported by the German Federal Ministry
for Economic Affairs and Energy (via AiF and DECHEMA),
IGF-Project No. 19947 BG. We thank Peter Bandelt of our
group (Chair of Process Systems Engineering, Technical Uni-
versity of Munich) for beneficial discussions on the experimen-
tal side of determining parameters in cake filtration and Verena
Hargarten, also a member of the group, for valuable input on
parameter estimation in enzyme kinetics.

The authors have declared no conflict of interest.

Symbols used

A [m2] cross-sectional area of filter
c [–] volumetric concentration or volume

fraction of impurities
H [m] filter cake height
J [variable] value of cost function
k [m2] permeability
K [–] concentration constant, reference to

filter cake height
Km [kg m–3] concentration constant, reference to

solid mass
m [kg] filter cake mass
N [–] maximal index of measured points
Dp [kg m–1s–2] differential pressure
P [variable] fit parameters
Q [m3s–1] volumetric flow rate
r [m–2] specific or relative resistance
RM [m–1] resistance of filter medium
t [s] time
V [m3] liquid volume
x [–] independent variable
y [–] dependent variable

Greek letters

e [–] porosity or void fraction
m [kg m–1s–1] dynamic viscosity

Sub- and superscripts

C cake
f parameter value determined by fitting
i index
m mass
M medium
t true parameter value

References

[1] VDI 2762 – Part 2, Mechanical solid-liquid separation by
cake filtration – Determination of filter cake resistance, VDI
guideline, Verein Deutscher Ingenieure, Düsseldorf 2010.

Chem. Eng. Technol. 2020, 43, No. 3, 493–501 ª 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA. www.cet-journal.com

Research Article 500
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