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Subdiffusion in the Anderson model on the random regular graph
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We study the finite-time dynamics of an initially localized wave packet in the Anderson model on the random
regular graph (RRG) and show the presence of a subdiffusion phase coexisting both with ergodic and putative
nonergodic phases. The full probability distribution �(x, t ) of a particle to be at some distance x from the initial
state at time t is shown to spread subdiffusively over a range of disorder strengths. The comparison of this
result with the dynamics of the Anderson model on Zd lattices, d > 2, which is subdiffusive only at the critical
point implies that the limit d → ∞ is highly singular in terms of the dynamics. A detailed analysis of the
propagation of �(x, t ) in space-time (x, t ) domain identifies four different regimes determined by the position
of a wave front Xfront(t ), which moves subdiffusively to the most distant sites Xfront(t ) ∼ tβ with an exponent
β < 1. Importantly, the Anderson model on the RRG can be considered as proxy of the many-body localization
transition (MBL) on the Fock space of a generic interacting system. In the final discussion, we outline possible
implications of our findings for MBL.
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Introduction. The common belief that generic, isolated
quantum systems thermalize as a result of their own dynamics
has been challenged by a recent line of works showing that
strong enough disorder can prevent them reaching thermal
equilibrium [1,2]. This phenomenon, referred to as many-
body localization (MBL) [1–7], generalizes the concept of
Anderson localization [8] to the case of interacting particles,
and has an important bearing on our understanding of quan-
tum statistical mechanics.

Although MBL has been extensively studied [3,6,7], many
of its aspects are still under intense debate. For example,
only little is known on the nature of the MBL transition
[9–13]. Recent numerical results show that the critical point
of the transition may have been previously underestimated
[14,15] and critical exponents extracted with exact numerics
seems to violate general constraints (i.e., so-called Harris
bounds) [3,16]. Even the nature of the ergodic phase is not
completely settled. For instance, subdiffusive dynamics has
been observed on finite time scales and system sizes [17–24],
but its mechanism and asymptotic limit are far from being
clear [14,25–28].

Numerically these difficulties originate from the exponen-
tially increasing complexity of the problem with system sizes,
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which makes the resolution of these open issues an extremely
hard task. One way to overcome this problem is to consider
approximate calculation methods like matrix product states
[14,29–32] in order to increase significantly system sizes. An-
other way is to find proxies of interesting observables in more
tractable models, which can reproduce the salient intrinsic
features of MBL systems [33–38]. In this work we take the
latter route considering an Anderson model on a hierarchical
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FIG. 1. Schematic phase diagram of the anomalous transport
of the Anderson model in d dimension. In d = 1, 2 the system is
fully localized at any finite disorder. For d > 2 the system has an
Anderson transition at disorder strength W = WAT; for W < WAT the
transport is diffusive and subdiffusive only at the critical point. At
small d − 2 � 1 the critical disorder WAT ∼ (d − 2) (linear behavior
of dashed line), while at large d it is given by WAT ∼ d ln d (dashed
line saturation). The limit d → ∞ is given by the Anderson model
on the RRG with the branching number K . The latter limit is
characterized by three distinct phases: a diffusive, subdiffusive, and
a localized one.
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treelike structure as a proxy for more realistic many-body
systems. Indeed, in [1,39], the idea of mapping interacting dis-
ordered electrons to an effective Anderson model on a section
of Fock space was used to give evidence of the stability of
the MBL phase. Recently, this paradigm and the hierarchical
structure of the Fock space of generic many-body systems
have revived interest in the Anderson problem on locally
treelike structures, such as the random regular graph (RRG).

Combining the hierarchical structure of the Fock space
with the simplicity of regular graphs, i.e., the fixed branch-
ing number, RRG can be considered as a natural choice to
approximate MBL systems [33–35] and hope to overcome
some of the numerical difficulties that have been mentioned
earlier. Apart from the fact that RRG gives a new emphasis
on the field of Anderson localization, independently also its
own physics is extremely rich [40–49]. For instance, it has
been shown that there is a possibility of a nonergodic extended
(NEE) phase composed of critical states and placed between
the ergodic and the localized phase [33,41–44]. Nevertheless,
it has been argued that this NEE phase might merely be a
finite-size effect and would disappear in the thermodynamic
limit [34,50–61]. However, this intricate question is far from
being resolved.

Following the mapping of RRG to the Fock space of
many-body systems, one expects the ergodic phase of wave
functions on RRG to be qualitatively mapped to the valid-
ity range of the eigenstate thermalization hypothesis (ETH)
[62–64] for many-body eigenstates. Furthermore, it has been
recently suggested analytically and numerically confirmed
that subleading corrections of ETH assumptions may lead to
slow dynamics of local observables after quench instead of a
diffusive one [17].

Motivated by the above-mentioned mapping, we study
the spreading of an initially localized wave packet in the
Anderson model on the RRG as a probe of different dynamical
phases. In many-body systems, this can be considered as a
proxy for the nonequilibrium dynamics of local operators
after quench [33,65,66] and also as a direct measure for
entanglement propagation [65,66]. We give evidence of exis-
tence of subdiffusive dynamical phase over an entire range of
parameters both in a part of the phase diagram where most
of the works [34,42–47,50–61] agree on ergodic nature of
eigenstates according to standard wave-function analysis and
in a putative nonergodic phase [33,41–44]. Moreover, it is im-
portant to point out that the dynamics of the Anderson model
on Zd , d > 2, is believed to be diffusive within its ergodic
phase and subdiffusive only at the critical point [67,68]. Thus
the found subdiffusive phase in the limiting dimension d →
∞ of the RRG provides a further example of the importance
of dimensionality in the physics of localization, beside the
well known example of fully localized systems in d = 1, 2;
see Fig. 1.

Model and methods. The Anderson model on the RRG is
defined as

Ĥ = −
L∑
x,y
x∼y

|x〉〈y| +
L∑
x

hx|x〉〈x|, (1)

where x counts L site states |x〉 on the RRG. The first sum
in Ĥ runs over sites (x, y) that are connected (x ∼ y) on the
RRG with fixed branching number (the number of neighbors

of each site is fixed to K + 1 = 3). {hx} independent random
variables distributed uniformly between [−W/2,W/2]. This
model is known to have an Anderson localization transition at
WAT ≈ 18.1 ± 0.1 [34,44,48].

We are interested in studying the full propagation of a wave
function initially localized in a neighborhood of a site state
|x0〉, and having energy concentrated in a window of size δE
around the center of the band, E = 0.

A standard description for the dynamics employs the distri-
bution function �(x, t ) [69] which determines the probability
to find the particle at time t in some state at distance x from
the initial one

�(x, t ) =
∑

y:d (y,x0 )=x |〈y|P̂�E e−iĤt P̂�E |x0〉|2∑
y |〈y|P̂�E |x0〉|2

. (2)

The sum in Eq. (2) runs over all states |y〉 located at distance
d (y, x0) = x from the initial state |x0〉. The distance d (y, x0)
is defined as the shortest path’s length that connects two
sites on the RRG. Importantly, in the many-body setting this
distance is related to the Hamming metric of the Fock space
[39,65,66,70]. The computation of the Hamming distance
between two Fock states involves only the measure of local
observables, and has been measured experimentally in the
MBL context, specially using it as a witness for entanglement
propagation [65].

The overline in Eq. (2) indicates the average over disorder,
graph ensemble, and initial states |x0〉. P̂�E = ∑

E∈�E |E〉〈E |
is the projector onto eigenstates of Ĥ with energy E from
a small energy shell E ∈ �E = [−δE/2, δE/2] around the
middle of the spectrum of Ĥ . In particular, we consider δE to
be a small fraction f ( f = 1/8) of the entire bandwidth EBW

(δE = f EBW ).
The usage of the projector is motivated by several reasons.

First, P̂�E avoids the localized eigenstates at the edge of the
spectrum [71]. Second, the initialization of the system in the
microcanonical state with well-defined energy E ∈ �E in a
small interval in the middle of the spectrum mimics ETH
assumptions of many-body physics and under otherwise equal
conditions prefers thermalization. Thus slow nondiffusive
propagation of such projected wave packet should rule out
the possibility of a fully ergodic phase (equivalent to random
matrix theory [72]). Finally, the projector can be used as
a dynamical indicator to distinguish a fully ergodic system
from a nonergodic one [73,74]. In a fully ergodic phase, as a
consequence of level repulsion, the return probability, �(0, t ),
takes a standard form [74] given by

�(0, t )

�(0, 0)
=

(
sin δEt

δEt

)2

. (3)

The projector P̂�E slightly spreads the initial delta-
function-like state |x0〉 to the wave packet P̂�E |x0〉 with a finite
width. This initialization supports the semiclassical descrip-
tion of wave-packet propagation in the system. We ensure that
our results do not change significantly with δE , provided it is
not too big [75].

As a further measure of the spread of the wave packet, we
study the first moment of �(x, t ),

X (t ) =
∑

x

x�(x, t ). (4)
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FIG. 2. Probability �(x, t ) for the particle to be at distance x
from the initial state at time t . (a) �(x, t ) versus distance x and time
t in a color plot. Blue (red) color corresponds to high (low) values
of �(x, t ) and shows the propagation of the initially localized wave
packet with the initial size X (0) 
 2 through the uniform distribution
over distance �(x, tTh ) 
 const (see the dashed line tTh ≈ 22) to
the uniform distribution over sites �(x,∞) 
 N (x)/L. (b) Cross
section of the color plot in panel (a) at several times below tTh,
showing how the wave front propagates to the diameter of the graph.
All plots are shown at the most representative disorder amplitude
W = 8 for fixed system size L = 220.

The wave-packet width at time t = 0 induced by P̂�E can be
simply estimated by X (0) = ∑

x x�(x, 0).
In Ref. [73] we have shown that for small values of W

(0 < W < 0.16WAT 
 3) the return probability �(0, t ) is con-
sistent with the result of Eq. (3), confirming that the system
is in a fully ergodic phase [76,77]. For larger disorder, W ∈
[0.4WAT, 0.7WAT] 
 [8, 13], �(0, t ) decays as a stretched ex-
ponential ∼e−�tβ(W )

, where the exponent is well approximated
by

β(W ) 
 1 − W/WAT, 0.4WAT � W � 0.7WAT (5)

and goes to zero at the Anderson transition. As a consequence,
the drastic change in the time evolution of �(0, t ) gives
evidence of the existence of two dynamically distinct phases.

As a side remark, before coming to the results, we stress
the difference between the wave-packet propagation on hi-
erarchical structures and d-dimensional lattices like Zd . It is
well known that the return probability for a classical unbiased
random walk on a Bethe lattice with branching number K
decays exponentially fast in time ∼e−�(K )t [78] due to the
exponential growth Kx of the number of sites with the distance
x from an initial point |x0〉. Instead, in Zd lattices the typical
behavior is diffusive ∼t−d/2 as the number of sites at dis-
tance x grows algebraically N (x) ∼ xd−1. Thus the diffusive
propagation on hierarchical tree lattices is characterized by
a linear growth of the width of the wave packet with time
X (t ) ∼ t [see Eq. (4)] unlike X (t ) ∼ t1/2 in d-dimensional
lattices. Noticing this difference, we call the propagation in
RRG subdiffusive if X (t ) ∼ tβ with β < 1.

In this work, we show that, as time increases, �(x, t ) re-
laxes forming a wave front Xfront(t ) that moves subdiffusively
to the most distant sites, as shown in Fig. 2. More specifically
the propagation of �(x, t ) can be divided into four regions
in space-time domain (x, t ) depending on the position of the
moving front Xfront(t ).

(b)(a)

FIG. 3. Probability �(x, t ) versus distance x at large times t >

tTh. (a) The cross sections of Fig. 2(a) at several times above tTh, when
the propagation front has already reached the diameter of the graph
Xfront > D = ln L/ ln K . �(x, t ) relaxes from the uniform distribution
in the distance �(x, tTh ) 
 const to the uniform distribution over
sites �(x,∞) 
 N (x)/L. Dashed line shows the initial distribution
�(x, 0) as a guide for eyes. (b) The distribution from panel (a) renor-
malized by the mean number of sites N (x) at some distance x from
an initial site state |x0〉. This figure gives evidence of the space-time
factorization Eq. (8), once the front has already passed, Xfront(t ) > D.
The parameters are the same as in Fig. 2.

(i) At large distances (small times), x > Xfront(t ), the wave
front has not yet reached x, and the distribution is nearly
unperturbed

�(x, t ) ≈ �(x, 0), x > Xfront(t ) (6)

(see the red area at small times in Fig. 2 and the plateau at
short times in the inset of Fig. 4).

(ii) At x 
 Xfront(t ) in proximity of the front propaga-
tion, �(x � Xfront(t ), t ) renormalized by its maximal value
�(Xfront(t ), t ) collapses to a universal function

�(x, t ) − �(x,∞) = �(Xfront(t ), t ) f (Xfront(t ) − x) (7)

with the semiclassical (x, t) front propagation governed by the
parameter Xfront(t ) − x, as shown in Fig. 4(b).

In particular, the front moves subdiffusively, Xfront(t ) ∼
tβ(W ), where β(W ) is given by Eq. (5) [79].

(iii) At larger times (smaller distances within the wave
packet), x < Xfront(t ), �(x, t ) shows space-time factorization

�(x, t ) − �(x,∞) = g(x)[�(0, t ) − �(0,∞)], (8)

with respect to the return probability �(0, t ) and a certain
function g(x), as shown in Figs. 3 and 4(a). Thus, in this
regime, the relaxation is dictated by the return probability
which is connected to the front of propagation by the follow-
ing relation:

�(0, t ) ∼ exp [−λXfront(t )], λ > 0. (9)

(iv) Eventually at very long times �(x, t ) saturates at the
uniform distribution over sites �(x,∞) = N (x)/L, where
N (x) ∼ Kx is the mean number of sites at some distance x
from an initial site state |x0〉 and L is the number of sites; see
Fig. 3.

Stages (i) and (ii) are presented only for times t < tTh

corresponding to front propagation inside the graph Xfront(t ) <

D, where D 
 ln L/ ln K is the diameter of the graph. At
larger times only relaxation with the return probability (iii)
and saturation (iv) stages are relevant.
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(b)(a)

FIG. 4. Collapse of the probability �(x, t ) versus t at different
distances x. (a) Space-time factorization of �(x, t ) Eq. (8) at large
times t > tTh(x) corresponding to the relaxation inside the wave
packet x < Xfront(t ). This relaxation is proportional to the return
probability �(0, t ) ∼ e−�tβ(W )

. The time axis is properly rescaled
with the power β(W ) = 1 − W/WAT, Eq. (5), to emphasize stretched
exponential decay of �(x, t ). The inset shows �(x, t ) on a log-log
scale for all four stages of the evolution: initial distribution �(x, t ) ≈
�(x, 0) before wave front coming x > Xfront(t ), the maximum, the
common tail after front passing, and the eventual saturation. (b) Col-
lapse of �(x, t ) Eq. (7) around the wave front confirming subdiffu-
sive propagation Xfront(t ) ∼ tβ(W ). The parameters are the same as in
Fig. 2.

Results. We focus our attention on intermediate disorder
values 8 � W � 14, for which the return probability shows
slow dynamics �(0, t ) ∼ e−�tβ(W )

, with β(W ) given by Eq. (5)
[80]. The propagation of �(x, t ) versus distance x and time
t at fixed system size L = 220 ≈ 106 is shown in Fig. 2(a).
At small times, δE t ∼ O(1), the wave-packet width is small
X (0) ∼ 2, Eq. (4). As time evolves, the wave packet spreads
in the form of wave-front Xfront(t ) [81] which transfers most
of its weight to the most distant sites [X (∞) 
 D], as shown
in Fig. 2.

Although the dynamics on the RRG is typically not
isotropic, the time scale tTh at which the wave front reaches
the diameter could be seen as a natural choice for the Thouless
time analogous to the time that a charge needs to propagate
through a diffusive conductor [82]. The wave-front propaga-
tion at times t < tTh, Xfront(t ) < D, can be seen in Fig. 2(a) and
is explicitly shown in Fig. 2 (b). Already for time tTh ≈ 22, as
emphasized in the color plot of Fig. 2(a) (red dashed line), the
main core has lost most of its amplitude �(x � 5, tTh)/�(x �
5, 0) ∼ 10−1 and �(x, t ) becomes nearly uniform over the
distance, �(x, tTh) 
 const.

Figure 3(a) shows �(x, t ) as a function of x at large times,
t > tTh, when the front has already reached the diameter
of the graph. In this regime, �(x, t ) relaxes uniformly in
distance x to the equiprobable configuration on the graph
�(x,∞) = N (x)

L [dashed line in Fig. 3(a)]. Thus, at these
times, �(x, t ) − �(x,∞) is factorized in (x, t ) according to
Eq. (8), with g(0) = 1 due to the uniform relaxation seen as
well for x = 0.

Detailed analysis shows that the factorization works be-
yond the limit, t > tTh, provided the wave front crossed the
observation point x < Xfront(t ); see Fig. 4(a). Subtracting from
�(x, t ) its long time limit �(x,∞) results in the collapse in

10−1 100 101 102 103 104

t

100

101

X
(t

)

W = 8
10
12
14

0.0 2.5 5.0 7.5
log t

0

2

4

6

8

lo
g

X
(t

)/
(1

W
/W

A
T
)

L = 220

f = 1/8

(b)(a)

FIG. 5. Subdiffusive wave-packet spreading. (a) Wave-packet
width X (t ) = ∑

x x�(x, t ) versus time t on a log-log scale for
different disorder strengths supplemented by a guide for eyes ∼tβ(W )

(dashed lines), with β(W ) = 1 − W/WAT, Eq. (5). (b) Collapse of
wave-packet width ln X (t )/β(W ) from panel (a) showing the unit
slope versus t (dashed line) in increasing time interval with growing
disorder amplitude W . The parameters are the same as in Fig. 2.

Eq. (8) of the curves for any x < Xfront(t ). It is important to
note that in Fig. 4 the time axis is rescaled as tβ(W ), with
β(W ) given by Eq. (5) to emphasize the stretched-exponential
time relaxation shown to be true for the return probability
in Ref. [73], �(0, t ) − �(0,∞) 
 e−�tβ(W )

. Moreover, raw
�(x, t ) is shown in the inset of Fig. 4(a) on a log-log scale
to demonstrate nearly unperturbed short-time behavior of
�(x, t ) in Eq. (6).

In order to analyze the time dependence of the wave-front
propagation Xfront(t ) in Fig. 4(b) we collapse the curves divid-
ing �(x, t ) by its maximum, �(Xfront(t ), t ), and rescale the
time tβ(W ) in order to collapse the position of the maximum.
This collapse allows us to extract the following subdiffusive
wave-front evolution:

Xfront(t ) 
 �(W )tβ(W ), β(W ) < 1. (10)

Moreover, the collapse of the curves, Fig. 4(b), implies the
simple exponential dependence, Eq. (9), of the return proba-
bility versus Xfront(t ) with a certain decay rate λ, f (z) = e−λz,
Eq. (7) [83]. The front-propagation collapse, Eq. (7), is shown
to work also for different disorder strengths in the range of
interest 8 � W � 13 [80].

As a further consequence, the Thouless time, defined as the
time when the wave front reaches the graph diameter, scales
as tTh ∼ ( ln L

K )1/β(W ). The similar scaling of the Thouless time
calculated for MBL systems in the subdiffusive phase [84,85]
supports the idea that wave-packet dynamics on RRG is a
good proxy for MBL systems.

Finally, we analyze the first moment X (t ), Eq. (4), of the
radial probability distribution �(x, t ). Figure 5(a) shows the
algebraic growth of X (t ) in time for several W

X (t ) ∼ tβ(W ), (11)

with the same subdiffusive exponent β(W ), Eq. (5), as in the
wave-front propagation Xfront(t ). Furthermore, the curves X (t )
can be reasonably well collapsed for the range of disorder
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strengths by considering the rescaled function ln X (t )
β(W ) versus

ln t . This result is checked to be robust with respect to the
finite-size effects and to the variation of the fraction f [80].

Conclusion and discussions. In this work, we provide
evidence of the existence of a subdiffusive phase for a finite
range of parameters by probing the dynamics of an initially
localized particle on the RRG via the probability distribution
�(x, t ) to detect it at distance x at time t .

The relaxation of �(x, t ) is characterized by the formation
of a semiclassical wave front Xfront(t ), moving subdiffusively
to the most distant sites. Remarkably, as soon as the wave front
passed the observation point x, the space-time factorization,
�(x, t ) = g(x)h(t ), is found.

The Anderson model on RRG gives the first example of
an entire subdiffusive phase as the systems on Zd lattices are
either localized for any finite disorder in d = 1, 2 or show
subdiffusion only at the critical point, d > 2 [67,68].

It is important to note that the existence of a subdiffusive
phase is not in contrast with the possibility that the eigenfunc-
tions are ergodic in terms of the inverse participation ratio
(IPR) scaling as the inverse of the volume. To emphasize
further, the IPR scaling is a statement about the nature of
the fluctuations of the eigenfunctions equivalent to the long
time limit (t → ∞) of certain dynamical observables. On
the other hand, in our study we probe the time evolution of
a wave packet and far away from the aforementioned limit.
Thus our study excludes the scenario that the system is fully
ergodic at W � 8, which is a stronger requirement than just
IPR ergodicity discussed above [86].

We have to mention that some works [61,87] claim only
diffusive propagation [β(W ) = 1] for all W < WAT; how-
ever, in the mathematically rigorous work [87], an absolutely

continuous spectrum is assumed, which may not be so. We
do not report any crossover to diffusivity for our available
system sizes and time scales. Although we cannot completely
rule out this possibility in the thermodynamic limits L → ∞
and t → ∞, the above finite-time subdiffusive dynamics is
highly relevant for corresponding experiments in many-body
systems.

In addition, the Anderson model on the RRG can be
considered as a proxy for the dynamics of more realistic
MBL systems. Our finding thus opens the possibility to have
a subdiffusive dynamical phase in Fock space, that might
imply slow relaxation of local observables. This possible
implication of subdiffusive spatial dynamics in MBL systems
[17–22,25] from slow Fock space dynamics may give rise to
a different mechanism which does not invoke the existence of
Griffiths effects [11,12,22]. Recent works (see, e.g., Ref. [88])
show that in MBL systems the subdiffusive phase is also
consistent with a weakly ergodic phase confirming RRG as
the commonly believed proxy.
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