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1. Introduction

Spectral and grating-based differential phase-contrast (DPC) x-ray imaging are two emerging technologies that 
offer additional information compared to conventional attenuation-based x-ray imaging.

In the case of spectral imaging, information about the energy-dependent attenuation of an object is obtained 
by acquiring measurements with two or more photon energy spectra. Material decomposition algorithms use 
the energy-resolved measurements to generate basis material images, which can provide information about the 
chemical composition of an object. Various dual-energy acquisition schemes and recent advances in photon-
counting detector (PCD) technology (Ballabriga et al 2016, Willemink et al 2018) have encouraged research 
towards medical applications of spectral x-ray imaging (McCollough et al 2015, Nadjiri et al 2018, Schwaiger et al 
2018, Symons et al 2018). The ability of PCDs to acquire multiple energy-resolved measurements that are spa-
tially and temporally registered has proven advantageous for multi-material decomposition (Symons et al 2017, 
Dangelmaier et al 2018, Mechlem et al 2018).

Grating-based DPC imaging exploits an entirely different contrast generating mechanisms in addition to 
the conventional attenuation contrast: the phase-contrast image is obtained by indirectly measuring the (differ-
ential) phase shift that an x-ray wave exhibits when transversing an object (Pfeiffer et al 2006, 2007). This differ-
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Abstract
Spectral and grating-based differential phase-contrast (DPC) x-ray imaging are two emerging 
technologies that offer additional information compared with conventional attenuation-based x-ray 
imaging. In the case of spectral imaging, energy-resolved measurements allow the generation of 
material-specific images by exploiting differences in the energy-dependent attenuation. DPC imaging 
uses the phase shift that an x-ray wave exhibits when traversing an object as contrast generation 
mechanism. Recently, we have investigated the combination of these two imaging techniques (spectral 
DPC imaging) and demonstrated potential advantages compared with spectral imaging. In this work, 
we present a noise analysis framework that allows the prediction of (co-) variances and noise power 
spectra for all three imaging methods. Moreover, the optimum acquisition parameters for a particular 
imaging task can be determined. We use this framework for a performance comparison of all three 
imaging methods. The comparison is focused on (projected) electron density images since they can 
be calculated with all three imaging methods. Our study shows that spectral DPC imaging enables the 
calculation of electron density images with strongly reduced noise levels compared with the other two 
imaging methods for a large range of clinically relevant pixel sizes. In contrast to conventional DPC 
imaging, there are no long-range noise correlations for spectral DPC imaging. This means that excessive 
low frequency noise can be avoided. We confirm the analytical predictions by numerical simulations.
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ential phase shift can be directly related to the projected electron density (PED) of the object. The dark-field 
image is generated by ultra-small angle x-ray scattering from microstructures (Pfeiffer et al 2008). It is connected 
to the real space autocorrelation function (Yashiro et al 2010, Strobl 2014) and thus provides information about 
the internal structure or surface properties (Yashiro et al 2019) of an object far below the detector resolution. 
Laboratory experiments have demonstrated that the phase-contrast image can provide a strongly improved 
contrast-to-noise ratio compared with attenuation-based imaging (Herzen et al 2009, Donath et al 2010, Zam-
belli et al 2010). However, based on a theoretical noise analysis, doubts have been raised whether these improve-
ments can be transferred to clinical computed tomography (CT) applications (Raupach and Flohr 2011, 2012). 
Experimental studies have demonstrated that similarly to spectral imaging, material-specific information can be 
extracted from phase-contrast measurements (Braig et al 2018).

Recently, we have investigated the combination of grating-based DPC radiography and spectral radiography 
(Mechlem et al 2019) and have developed a basis material decomposition algorithm that uses the spectral and 
the phase contrast information simultaneously. Our numerical experiments have demonstrated that spectral 
differential phase-contrast (SDPC) radiography yields quantitatively correct basis material images with strongly 
reduced noise levels compared with conventional spectral imaging.

Taking the characteristics of all three aforementioned imaging methods into account, the question of the 
optimal method for a particular imaging task arises. In this work, we investigate one important aspect of this 
question by conducting an in-depth noise analysis of all three imaging methods. Towards this end, we develop 
a noise analysis framework based on the Cramér Rao lower bound (CRLB) (Kay 1993). This framework allows 
the determination of the optimum imaging parameters for all three methods and the prediction of noise correla-
tions and noise power spectra. Since all three aforementioned imaging methods can determine the PED, we focus 
on PED images for our comparison. Although only projection imaging is considered in this work, a generaliza-
tion to 3D CT is possible. Using an imaging task that can be viewed as a simplified version of human x-ray radiog-
raphy, we demonstrate that the combination of spectral and phase-contrast imaging has the potential to generate 
PED images with strongly reduced noise levels compared with the individual methods. Our theoretical analysis 
suggests that SDPC imaging outperforms spectral and DPC imaging for a large range of clinically relevant pixel 
sizes. Finally, we discuss the noise characteristics of SDPC imaging in the context of the comparison between 
attenuation-based imaging and DPC imaging by Raupach and Flohr (2011).

2. Methods

Before explaining the derivation of the noise analysis framework based on the CRLB, we give a brief overview of 
the physical models (forward models) of the measurement acquisition processes for all three imaging methods 
under consideration (spectral, SDPC and DPC imaging). Furthermore, we formulate the signal extraction 
process as a maximum-likelihood (ML) estimation problem for all three imaging methods. ML estimation has 
already been used successfully for projection-based material decomposition in spectral imaging (Schlomka et al 
2008, Ehn et al 2017). In this case, the ML estimator has many desirable properties such as the capability to 
handle overdetermined systems (i.e. having more energy bins than basis materials). Moreover, it is unbiased and 
efficient (i.e. it achieves the minimum variance for an unbiased estimator) in the limit of low noise levels. We also 
successfully applied an ML-based decomposition algorithm to SDPC imaging (Mechlem et al 2019). In the case 
of DPC imaging, Fourier processing (Pfeiffer et al 2008) is the most commonly used method of signal extraction 
due to the comparatively low computational complexity. Using error propagation, the noise properties of DPC 
imaging in combination with Fourier processing have already been investigated for CT reconstruction (Chen 
et al 2011) and in the projection domain (Yashiro et al 2008, Revol et al 2010, Chabior et al 2011b). However, it 
has been demonstrated that a Fourier-based estimator for DPC imaging is not efficient (Ge et al 2014). For this 
reason, and to make the signal extraction for all three methods more comparable, we use an ML estimator for 
DPC imaging. This estimator is similar to weighted least-squares signal extraction methods for DPC imaging 
(Marschner et al 2016, Kaeppler et al 2017).

In the following, we assume that a PCD is used to acquire energy-resolved measurements for all three imag-
ing methods. The number of registered photon counts is therefore modeled by a Poisson distribution. Moreo-
ver, we assume that there is no correlation between the photon counts registered in different detector pixels or 
energy bins. These assumptions are valid for an ideal PCD, but current real PCDs exhibit various undesired sen-
sor effects (e.g. pulse pile-up, charge sharing) that could cause a violation of these assumptions (Wang et al 2011, 
Rajbhandary et al 2017). In the limit of negligible electronic noise and detector blur, the noise analysis presented 
in this work could be extended to other spectral imaging methods, such as dual source CT or kVp-switching. 
As will be explained later, the differential phase shift for SDPC and DPC imaging couples pixels in the direc-
tion perpend icular to the orientation of the grating bars. However, the pixels remain uncoupled in the direction 
parallel to the grating bars. For simplicity, we will therefore consider a one-dimensional PCD in the following 
because each detector row can be treated separately for all three imaging methods.

Phys. Med. Biol. 65 (2020) 065010 (16pp)
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2.1. Forward models and signal extraction
Basis material decomposition for spectral imaging relies on the assumption that the energy-dependent 
attenuation of any material can be modeled by a linear combination of a few basis materials. Neglecting materials 
with K-edges in the relevant energy range for medical imaging (≈20–140keV), only two basis materials are 
needed. This is a consequence of the fact that there are only three interaction mechanisms (photoelectric effect, 
Compton-scattering and Rayleigh-scattering) in this energy range. Furthermore, the contribution of Rayleigh-
scattering to the total attenuation cross-section is typically small compared with the other two interaction 
mechanisms. For simplicity, we will focus on two basis materials in the following. For spectral imaging, the 
expected number of photon counts ŷs

i  registered in energy bin s and detector pixel i is thus modeled by:

ŷs
i =

∫ ∞

0
t(E)Rs(E)e−Ai

1f1(E)−Ai
2f2(E)dE , (1)

where t(E) is the source spectrum and Rs(E) describes the detector response, i.e. the probability that a photon 
with energy E is detected by energy bin s of the PCD (Schlomka et al 2008). The functions f1(E) and f2(E) 
represent the energy-dependent attenuation of the two basis materials and the corresponding basis material line 
integrals (for detector pixel i) are denoted by Ai

1 and Ai
2.

Assuming uncorrelated Poisson statistics, the negative log-likelihood function for spectral imaging is given 
by:

−L(�A1, �A2) =

N∑
i=1

S∑
s=1

ŷs
i − ys

i ln (ŷs
i) , (2)

where N and S represent the number of detector pixels and energy bins of the PCD, respectively. The quantity ys
i  

denotes the measured number of photon counts. ML decomposition is performed by finding the basis material 

line integrals �A1 = (A1
1, . . . , AN

1 ) , �A2 = (A1
2, . . . , AN

2 ) that minimize −L(�A1, �A2). This optimization problem 
can be solved separately for each detector pixel. The PED (ρe) can be calculated by a linear combination of the 
basis material line integrals:

ρi
e = Ai

1ρ
V
e (M1) + Ai

2ρ
V
e (M2), (3)

where ρV
e (M1) and ρV

e (M2) are the volume electron densities of the two basis materials. The idea of approximating 
the electron density of any material by a linear combination of the two basis materials is conceptually very similar 
to the standard dual energy assumption of modeling the energy-dependent attenuation with two basis materials. 
Consequently, equation (3) is also only valid for the dual energy parameter range (low-Z materials, energy range 
≈20–140 keV). For DPC imaging, the three contrast modalities (attenuation, differential phase shift and dark-
field) are extracted from stepping curve measurements that are generated by shifting one of the gratings (Pfeiffer 
et al 2006, 2008). In contrast to spectral and SDPC imaging, no energy-resolved measurements are acquired. We 
therefore assume a PCD with just one threshold for DPC imaging. The stepping curve is typically modeled by a 
cosine (or sine) function (Pfeiffer et al 2008) and beam hardening effects caused by the polychromatic spectrum 
are neglected. The expected intensity ŷr

i  for stepping position r and detector pixel i can thus be written as: 

ŷr
i = be−µi

(
1 + Ve−εi cos (φr +∆φi)

)
, (4)

where φr and V  are the reference phase (for step r) and the reference visibility of the stepping curve, respectively 
(Brendel et al 2016). The quantities µi, ∆φi  and εi describe the attenuation of the object, the phase shift of the 
stepping curve and the visibility reduction (dark-field signal), respectively. The reference intensity measured 
with an open beam is given by the parameter b. The standard DPC stepping curve model (equation (4)) implicitly 
represents the polychromatic spectrum by an effective x-ray energy. This approximation is reasonably accurate 
for weakly attenuating samples that only slightly distort the incident x-ray spectrum. Since enhancing soft tissue 
contrast is one of the main application cases for DPC imaging, this assumption is often justified. The attenuation, 
differential phase and dark-field images (�µ,∆�φ,�ε ) are calculated by minimizing the negative log-likelihood of 
the measured data:

−L
(
�µ,∆�φ,�ε

)
=

N∑
i=1

R∑
r=1

ŷr
i − yr

i ln (ŷr
i ) , (5)

where R is the number of stepping positions and yr
i  denotes the number of photon counts measured for detector 

pixel i and stepping position r. Similarly to spectral imaging, this optimization problem is separable with respect 
to the detector pixels. From the differential phase shift, the gradient of the PED can be calculated:

Phys. Med. Biol. 65 (2020) 065010 (16pp)
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∆φi = S
(
ρi+1

e − ρi
e

)
, (6)

where the sensitivity S  represents the conversion factor between a PED difference and the corresponding phase 
shift of the stepping curve. The higher the sensitivity, the larger the phase shift for a given electron density 
difference between two neighboring pixels. Assuming that the sample is placed between the G1 and G2 grating 
(compare figure 1), the sensitivity is given by:

S =
red

p2a

(
1 − l

d

)(
hc

Eeff

)2

, (7)

where re is the classical electron radius, d is the distance between the G1 and G2 grating, l is the distance  
between the G1 grating and the object and p 2 is the period of the G2 grating (Donath et al 2009). The parameter 
a represents the effective pixel size (i.e. the detector pixel size divided by the geometrical magnification of the 
setup) and Eeff is the effective energy of the setup. In analogy to attenuation-based imaging, it can be defined as 
Chabior et al (2011a):

Eeff =

(∫∞
0 t(E)R(E)e−µ(E)V(E)E−2dE∫∞

0 t(E)R(E)e−µ(E)V(E)dE

)− 1
2

, (8)

where µ(E) and V(E) represent the energy-dependent attenuation of the object and the energy-dependent 
visibility of the interferometer, respectively (Chabior et al 2011a). Assuming a known value of the PED at the left 
and right edges of the detector (for simplicity we assume that the open beam hits the edges of the detector, i.e. 
ρ1

e = ρN
e = 0), the PED for an arbitrary pixel can be calculated by integration of the differential phase shifts:

ρi
e =

1

S

i−1∑
q=1

∆φq. (9)

Alternatively, it would be possible to integrate starting from the right side of the detector:

ρi
e = − 1

S

N−1∑
q=i

∆φq. (10)

However, these integration strategies are suboptimal for our goal of providing an in-depth noise analysis of 
all three imaging methods. The summation introduces a strong spatial dependency of the PED variance, even 
for a homogeneous sample (i.e. a sample that produces the same expected stepping curve measurements for 
each detector pixel). In this case, the variance of the PED increases linearly from left to right or right to left 
(if using equation (9) or (10), respectively). However, error propagation calculations show (see appendix) that 
the variance remains constant (even for nonhomogeneous samples) if the electron density is calculated as the 
average of both summation strategies:

ρi
e =

1

2S




i−1∑
q=1

∆φq −
N−1∑
q=i

∆φq


 . (11)

In the appendix, we show that the electron density variance is reduced by a factor of two when compared to 
variance obtained using equation (9) or (10).

Figure 1. Overview of the setup geometry that is kept fixed for all three imaging methods. The three gratings are removed for 
spectral imaging.

Phys. Med. Biol. 65 (2020) 065010 (16pp)
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SDPC imaging can be viewed as a combination of spectral and DPC imaging. The spectral and phase contrast 
information is used simultaneously by acquiring energy-resolved stepping curve measurements. The expected 
number of photon counts ŷrs

i  for detector pixel i, stepping position r and energy bin s can be modeled as:

ŷrs
i =

∫ ∞

0
t(E)Rs(E)e−Ai

1f1(E)−Ai
2f2(E)

[
1 + V(E)e−di

εfε(E) cos (φr(E) + ∆φi(E))
]

dE ,
 (12)

where di
ε is the line integral of an artificial dark-field basis material (see Mechlem et al (2019) for a more 

detailed explanation) and fε(E) is the corresponding energy-dependency of the dark-field signal. Compared 
to the forward model of DPC imaging (equation (4)), the polychromatic spectrum is taken into account and 
thus the visibility V(E), reference phase φr(E) and the phase shift ∆φi(E) become energy-dependent. In a real 
experiment, all setup-dependent quantities (t(E),Rs(E), V(E),φr(E)) can depend on the spatial position and 
therefore on the detector pixel index i. For simplicity and clarity, we have omitted this possible dependency in this 
section. Similarly to DPC imaging, the phase shift depends on the gradient of the PED:

∆φi(E) =
red

p2a

(
1 − l

d

)(
hc

E

)2 (
ρi+1

e − ρi
e

)
≡ S(E)

(
ρi+1

e − ρi
e

)
, (13)

where S(E) is the energy-dependent sensitivity of the setup. The key idea behind connecting spectral and DPC 
imaging and eliminating the PED as an additional optimization variable is expressing the PED as the sum of the 
projected basis material electron densities:

ρi
e = Ai

1ρ
V
e (M1) + Ai

2ρ
V
e (M2). (14)

Two basis materials images (�A1, �A2) and a dark-field (�dε) image can be reconstructed by minimizing the following 
negative log-likelihood function:

−L(�A1, �A2,�dε) =

N∑
i=1

S∑
s=1

R∑
r=1

ŷrs
i − yrs

i ln (ŷrs
i ) . (15)

As the forward model depends on the basis material thicknesses and their spatial gradients (via the gradient of 
the PED), the log-likelihood cannot be optimized separately for each detector pixel.

2.2. Noise analysis with the Cramér Rao lower bound (CRLB)
The CRLB is a powerful tool from estimation theory that predicts a lower bound for the variance of an unbiased 
estimator. Given a parameter vector �a , it can be shown that (Scharf 1991):

C(�a)− [F(�a)]−1 � 0, (16)

i.e. the matrix C(�a)− [F(�a)]−1 is positive semidefinite. Here, C(�a) is the covariance matrix of �a :

Cuv = E [(au − E(au))(av − E(av))] , (17)

where E(·) denotes the expectation value. The Fisher information matrix F(�a) is the expectation value of the 
curvature of the negative log-likelihood function:

Fuv = E

[
− ∂2L(�a)

∂au∂av

]
. (18)

From equation (16), a lower bound for the variance of the estimated parameters can be deduced:

Cuu = σ2(au) � (F−1)uu. (19)

Since the ML estimator is unbiased and achieves the CRLB in the limit of low noise levels, the CRLB can be used 
to predict the noise levels for all three imaging methods under consideration. As will be shown later, the CRLB is 
a good predictor of the noise levels for clinically realistic photon statistics.

In the case of spectral imaging, the optimization problem is separable with respect to different pixels. We 
therefore obtain N 2 × 2 (inverse) Fisher matrices. For simplicity, the dependency on the pixel index i is sup-
pressed in the following. As derived by Roessl and Herrmann (2009), the Fisher matrix is given by:

Fuv =

S∑
s=1

1

ŷs

∂ŷs

∂Au

∂ŷs

∂Av
, (20)

Phys. Med. Biol. 65 (2020) 065010 (16pp)
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where u, v ∈ (1, 2) are the basis material indices and

∂ŷs

∂Au
= −

∫ ∞

0
t(E)Rs(E)e−A1f1(E)−A2f2(E)fu(E)dE . (21)

The elements of the Fisher matrix can be rewritten in a slightly more intuitive form:

Fuv =

S∑
s=1

ŷsf̄ s
u f̄ s

v , f̄ s
u =

1

ŷs

∂ŷs

∂Au
, (22)

where f̄ s
u is the weighted average attenuation caused by basis material u in energy bin s. The weights for each 

energy bin are determined by the effective spectra (including object attenuation). The lower bound for the 
variances of the basis material line integrals (see equation (19)) is then calculated using the analytical inversion 
formula for 2 × 2 matrices. From the variances of the basis material thicknesses, the variance of the PED can be 
calculated by standard error propagation:

σ2(ρe) = ρV
e (M1)

2σ2(A1) + ρV
e (M2)

2σ2(A2) + 2ρV
e (M1)ρ

V
e (M2)Cov(A1, A2), (23)

where the covariance of the two basis material thicknesses Cov(A1, A2) is estimated by (F−1)12.
Similarly to the derivation for spectral imaging (Roessl and Herrmann 2009), The Fisher matrix for DPC 

imaging can be calculated as:

Fuv(�a) =
R∑

r=1

1

ŷr

∂ŷr

∂au

∂ŷr

∂av
, �a = (µ,∆φ, ε)T . (24)

Explicitly calculating the gradients leads to:

F =

R∑
r=1

1

ŷr




(ŷr)
2 ŷrQ sin(φeff

r ) ŷrQ cos(φeff
r )

ŷrQ sin(φeff
r ) Q2sin2(φeff

r ) Q2 sin(φeff
r ) cos(φeff

r )

ŷrQ cos(φeff
r ) Q2 sin(φeff

r ) cos(φeff
r ) Q2cos2(φeff

r )


 , (25)

where φeff
r = φr −∆φ is the effective phase and Q = be−µVe−ε is the expected intensity (be−µ) multiplied by 

the effective visibility (Ve−ε) of the stepping curve. We are particularly interested in the lower bound for the 
variance of the differential phase shift σ2(∆φ), as the PED is calculated by integration of the differential phase 
shifts (compare equation (11)). It is given by:

σ2(∆φ) �
(

F−1
)

22
. (26)

For standard phase stepping with R  >  3 equidistantly distributed steps, the off-diagonal elements  
F12, F21, F13, F31 vanish (Weber et al 2011). Moreover, numerical evaluations show that F23 and F32 are small 
compared with the corresponding diagonal entries and vanish in the limit of R → ∞. In this case, a simple 
interpretation of the lower bound for σ2(∆φ) is possible:

σ2(∆φ) �
1

F22
∝

[
Rbe−µ

(
Ve−ε

)2
]−1

, (27)

i.e. σ2(∆φ) is inversely proportional to the number of phase steps, the average number of photon counts per step 
and the effective visibility squared. The same result was obtained for a least-squares estimator (instead of an ML 
estimator) (Weber et al 2011). By applying standard error propagation techniques to equation (11), the variance 
of the PED can be calculated from the variance of the differential phase shift:

σ2(ρi
e) =

1

4S2

N−1∑
q=1

σ2(∆φq). (28)

For SDPC imaging, the optimization problem cannot be solved separately for each detector pixel. Consequently, 

there are 3N optimization variables, which we summarize in the vector �a = (A1
1, . . . , AN

1 , A1
2, . . . , AN

2 , d1
ε, . . . , dN

ε )
T 

The Fisher matrix has 3N × 3N  entries that are calculated similarly to the other two imaging methods:

Fuv =

N∑
i=1

S∑
s=1

R∑
r=1

1

ŷrs
i

∂ŷrs
i

∂au

∂ŷrs
i

∂av
. (29)

However, most of the elements of the Fisher matrix are zero because the differential phase shift only couples 
neighboring pixels. To write the partial derivatives of the forward model more compactly, we define the following 
abbreviations:

Phys. Med. Biol. 65 (2020) 065010 (16pp)
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αs
i(E) = t(E)Rs(E)e−Ai

1f1(E)−Ai
2f2(E)

βr
i (E) = V(E)e−di

εfε(E) cos (φr(E) + ∆φi(E))

γr
i (E) = V(E)e−di

εfε(E) sin (φr(E) + ∆φi(E)) .

 (30)

The non-zero partial derivatives of the forward model ( ŷrs
i ) are given by:

∂ŷrs
i

∂Ai
u

=

∫ ∞

0
−αs

i(E) (1 + βr
i (E)) fu(E) + αs

i(E)γr
i (E)S(E)ρe(Mu)dE , u ∈ (1, 2)

∂ŷrs
i

∂A(i+1)
u

= −
∫ ∞

0
αs

i(E)γr
i (E)S(E)ρe(Mu)dE , u ∈ (1, 2)

∂ŷrs
i

∂di
ε

= −
∫ ∞

0
αs

i(E)βr
i (E) fε(E)dE .

 

(31)

The Fisher matrix for SDPC imaging must be inverted numerically to calculate the CRLB.

2.3. Prediction of covariances and noise power spectra
In this section, we explain our approach for predicting covariances and noise power spectra for all three imaging 
methods. Given an estimate of the covariances of the projected electron densities between different pixels, the 
noise power spectrum (NPS) can be estimated as:

NPS(k) =
N−1∑
u=0

N−1∑
v=0

e2πj v−u
N Cov(ρ(u+1)

e , ρ(v+1)
e ),

 

(32)

where k is the spatial frequency and j  is the imaginary unit. In the appendix, we give a quick derivation of this 
result. For spectral imaging, the material decomposition is conducted separately for each pixel. This means that 
there are no noise correlations between different pixels:

Cov (ρu
e , ρ̃v

e) = 0, u �= v, Cov (ρu
e , ρu

e ) = σ2(ρu
e ). 

(33)

For DPC imaging, the differential phase shifts are also uncorrelated. The covariance matrix of the differential 

phase shifts C∆φ is thus a diagonal matrix with diagonal elements C∆φ
ii = σ2(∆φi). However, the integration step 

that is necessary to obtain the projected electron densities (compare equation (11)) introduces noise correlations. 
Using error propagation, the covariance matrix Cρe for the projected electron densities can be calculated from the 
covariance of the differential phase shifts:

Cρe = BC∆φBT , (34)

where B is the transformation matrix between phase shifts (∆�φ ) and projected electron densities (�ρe):

�ρe = B�φ. (35)

The entries of the matrix B can be deduced form equation (11). In the case of SDPC imaging, we use the entries of 
the inverse Fisher matrix as an estimate for the covariances:

Cov(au, av) ≈ F−1
uv , �a =

(
A1

1, . . . , AN
1 , A1

2, . . . , AN
2 , d1

ε, . . . , dN
ε

)T
. (36)

Similarly to DPC imaging, the covariance matrix for the projected electron densities is calculated as:

Cρe = B̃F−1B̃
T

, �ρe = B̃�a. (37)

The entries of the transformation matrix B̃ can be deduced from equation (14).

2.4. Numerical simulation
To compare the noise level of the projected electron densities for all three imaging methods and to test the 
predictions of the noise analysis framework, we simulated a radiography measurement of an homogeneous 
object. The x-ray beam had to penetrate 12 cm  of soft tissue and 1 cm of cortical bone, which corresponds 
to a PED of 12 cm · 3.52 · 1023 cm−3 + 1 cm · 5.95 · 1023 cm−3 = 4.82 · 1024 cm−2. The aforementioned 
thicknesses could reflect typical path lengths for medical imaging tasks (e.g. thorax radiography or head CT). 
The simulated object had no internal microstructure, i.e. it did not generate a dark-field signal. We assumed a 
tungsten x-ray source and a PCD with a pixel size of 200 µm, a 2 mm thick cadmium telluride sensor and two 
thresholds per pixel. As explained in the methods section, only one detector row (containing 400 pixels) was 
simulated. The detector response was simulated with an empirical model (Schlomka et al 2008) that includes 
sensor effects (charge sharing, K-escapes). The source spectrum and the detector response were discretized 
in 1 keV steps. For DPC and SDPC imaging, a symmetric three-grating interferometer (operated at the first 
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fractional Talbot order) was inserted into the beam path. The attenuation gratings (G0 and G2) were assumed 
to be made of gold with a grating height of 200 µm. The G1 grating was assumed to be made of nickel and to 
induce a phase shift of π/2 for the design energy. Although the duty cycle of the gratings influences the noise level 
(Thuering and Stampanoni 2014), it was kept fixed at its standard value (0.5) in this simulation study in order to 
reduce the number of possible acquisition parameter combinations. The total length of the simulated setup was 
2.4 m and the object was placed between G1 and G2 (40 cm  away from G1). Figure 1 shows an overview of the 
setup geometry that was kept fixed for all three imaging methods.

All other imaging parameters (acceleration voltage, threshold positions and design energy of the interferom-
eter) were optimized individually for each imaging method (if applicable). For all three imaging methods, the 
low threshold of the PCD was kept fixed at 15 keV. The position of the high threshold was optimized for SDPC 
and spectral imaging while only one threshold (at 15 keV) was used for DPC imaging. For DPC and SDPC imag-
ing, the design energy was tuned by changing the height of the phase shifting grating as well as the grating peri-
ods. Changing the grating periods is necessary to keep the first fractional Talbot distance at the detector position. 
Stepping curves (using 5 steps equally distributed between 0 and 2π) were simulated with a wave-optical simula-
tion package based on Fresnel propagation (Engelhardt et al 2008, Wang et al 2010) and the projection approx-
imation (Paganin 2006). For all three imaging methods, the variable setup parameters were optimized by mini-
mizing the variance of the PED predicted by the CRLB while keeping the dose to the object constant (1 mGy). 
The dose was estimated based on an empirical model that was fitted to Monte-Carlo simulations (Boone 1992). 
Since the G0 and G1 gratings are placed between the source and the object, they only influence the (spectral) pho-
ton flux incident on the object. The G2 grating, however, attenuates photons that have (potentially) contributed 
to the dose delivered to the object because it is placed between the object and the detector.

3. Results

The method for finding the optimum setup parameters is illustrated in figures 2(a) and (b). Figure 2(a) shows 
a contour plot of the predicted PED variance for SDPC imaging (at the optimum threshold position) as a 
function of the acceleration voltage and the design energy. As demonstrated in the last section, the PED for the 
simulated decomposition task is on the order of 1024 cm−2, while the corresponding standard deviations are 
approximately two orders of magnitude lower. This explains the larger numerical values for the PED variances of 
up to 1046 cm−4. The minimum variance is achieved for an acceleration voltage of 140 kVp and a design energy 
of 60 keV. As the acceleration voltage is decreased, the optimum design energy also decreases. Figure 2(b) shows 
a similar contour plot for DPC imaging. In comparison with SDPC imaging, the optimum acceleration voltage is 
much lower (for this particular decomposition task). However, similarly to SDPC imaging, the optimum design 
energy is positively correlated with the acceleration voltage. This behavior is reasonable because a large part of 
the spectrum should be concentrated around the design energy of the interferometer for optimum performance. 
Table 1 shows the optimum setup parameters as well as the minimum PED variances for all three imaging 
methods. Interestingly, the optimum setup parameters for SDPC imaging are very similar to those for spectral 
imaging, while DPC imaging favors a considerably lower acceleration voltage (60 kVp) and design energy 
(44 keV). A possible explanation for these results can be found by looking at figure 3, which shows the energy-
dependent visibility as well as the effective spectra for DPC and SDPC imaging with optimum setup parameters. 
The effective spectrum includes the source spectrum, the attenuation of the gratings and the detector response. 
Kottler et al (2010) demonstrated that a grating interferometer with a π/2 phase shifting grating (G1) exhibits a 
second visibility peak at twice the design energy. The second important factor that influences the visibility is the 
attenuation of the gold gratings. In the range from 60–80 keV, the gold gratings become increasingly transparent, 
but for energies above the K-edge of gold (80.7 keV), the attenuation of the gratings and thus also the visibility 
rises sharply. In the case of DPC imaging, a lower effective energy (see equation (8)) is preferable because it 
increases the sensitivity of the setup (compare equation (6)). In other words, a fixed gradient of the PED causes 
a larger phase shift for lower effective energies. Since the spatial resolution and the setup geometry are fixed for 
our simulation, the sensitivity can only be tuned via the design energy and the effective energy. The acceleration 
voltage (60 kVp) is matched to the design energy (44 keV) so that a large fraction of the effective spectrum is 
concentrated around the visibility peak. Achieving a high visibility is important because for DPC imaging, the 
variance of the PED is proportional to the visibility squared (compare equation (27)). The comparatively high 
acceleration voltage (140 kVp) for SDPC imaging leads to a decreased sensitivity compared with DPC imaging. 
However, this decrease in sensitivity is compensated by the improved performance of spectral imaging at higher 
acceleration voltages. Moreover, the decrease in sensitivity and visibility compared with DPC imaging is less 
pronounced for the low energy bin. Due to the higher acceleration voltage, the optimum design energy for SDPC 
imaging is considerably larger (60 keV). Consequently, the visibility peak for low energies is reduced compared 
with DPC imaging. On the other hand, the visibility for energies larger than the K-edge of Gold (80.7 keV) is 

increased.
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The predicted PED variances show that for this particular imaging task, SDPC imaging can achieve consider-
ably lower noise levels compared with spectral and DPC imaging (variance reduction by a factor of 5.8 and 12.6. 
respectively). It is important to note that for DPC imaging, the variance depends approximately linearly on the 
number of pixels in one detector row. This behavior is caused by the integration that is required to convert the 
differential phase shifts to a PED profile (see equation (11)). For SDPC imaging, the PED variance only depends 
very weakly on the number of pixels. The reason for this weak dependence will be explained later when we ana-
lyze the noise correlations for all three imaging methods.

Figure 2. (a) Contour plot of the predicted PED variance (at the optimum threshold position) for SDPC imaging as a function of 
the acceleration voltage and the design energy. (b) Predicted PED variance for DPC imaging as a function of the acceleration voltage 
and the design energy.

Table 1. Optimum imaging parameters and PED variances for spectral, DPC and SDPC imaging. The optimum parameters were 
determined by minimizing the PED variance predicted by the CRLB while keeping the dose to the object constant (1 mGy).

Optimization range Optimum parameters

Spectral DPC SDPC

Acceleration voltage (kVp) 40–140 140 60 140

High threshold (keV) 15–140 63 — 65

Design energy (keV) 20–70 — 44 60

G2 grating period (µm) 9.22–17.25 — 11.63 9.96

Min. PED variance (cm−4) 1.77 · 1045 3.82 · 1045 3.04 · 1044

Figure 3. Energy-dependent visibilities and effective spectra for DPC (a) and SDPC (b) imaging using the optimum acquisition 
parameters given in table 1.
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We conducted numerical experiments with 100 different dose levels ranging from 0.001 to 10 mGy in order 
to test if the ML-based estimators achieves the predicted PED variances. For these experiments, we reduced the 
detector size to 100 px to reduce the computational time. For each dose level and imaging method, 10 000 differ-
ent noise realizations were simulated and the ML-based estimators (compare equations (2), (5) and (15)), were 
used to calculate the PED. Figure 4 shows the experimentally achieved PED variances (dots) together with the 
variances predicted by the CRLB (solid lines) for all three imaging methods. All estimators achieve the CRLB 
for a large range of dose levels (≈0.1–10 mGy). For lower dose levels, deviations from the CRLB are observable, 
especially for DPC and SDPC imaging. In the case of DPC imaging, a similar dependency of the variance on the 
dose level (or photon statistics) has been reported for a Fourier-based estimator (Raupach and Flohr 2011). In 
this simulation, DPC imaging achieves a lower variance than spectral imaging because of the reduced detector 
size. However, the main goal of this simulation was to test the predictions of the noise analysis framework rather 
than comparing the performance of the three imaging methods.

It has already been pointed out that the integration step for DPC imaging causes long-range correlations 
between the PED values for one detector row. Consequently, the NPS for DPC imaging is dominated by low fre-
quencies. In the case of spectral imaging, the basis material line integrals can be determined separately for each 
detector pixel and thus the PED values determined by spectral imaging are uncorrelated (at least for an ideal 
PCD). Therefore, the noise power should be equally distributed between all frequencies (‘white noise’). Since 
SDPC imaging is a combination of both aforementioned imaging methods, it could be expected that the NPS for 
SDPC imaging is a mixture between the noise power spectra for the other two imaging methods. In section 2.3, 
we have presented a framework for predicting the PED covariances as well as the noise power spectra for all three 
imaging methods. We conducted another numerical experiment to verify the predicted covariances and noise 
power spectra. In this simulation, the dose was fixed at 1 mGy and the original detector size (400 px) was used. 
For each of the three imaging methods, 50 000 different noise realizations were simulated and the PEDs were cal-
culated separately for each noise realization. Figure 5(a) shows the experimentally calculated normalized covari-
ances (dots) together with the theoretical predictions (solid lines) for all three imaging methods. More precisely, 
the covariances between the PED for the central detector pixel (i.e. pixel index 200) and the PEDs of all other pix-
els is shown. In figure 5(b), the experimentally obtained noise power spectra are plotted together with the theor-
etical predictions. We used equation (A.5) for the experimental calculation of the NPS. For both the covariances 
and the noise power spectra, the theoretical predictions are in good agreement with the experimentally obtained 
values. As expected, the covariance of the PED between two different detector pixels is zero for spectral imaging. 
For DPC imaging, the covariance decreases linearly with the distance from the central detector pixel until it drops 
to zero at the edges of the detector (not shown in figure 5(a)). This reflects the well-known long-range noise cor-
relations introduced by the integration step. In the case of SDPC imaging, however, the covariance rapidly drops 
to zero with increasing distance from the central pixel. For the imaging parameters given in table 1, almost no 
noise correlations are observable if the distance to the central pixel is larger than approximately 25 px. Compared 
to DPC imaging, the additional spectral information eliminates long-range noise correlations. On the other 
hand, it could be argued that compared with spectral imaging, the additional phase shift term for SDPC imaging 

Figure 4. Experimentally obtained PED variances (dots) and theoretical predictions (solid lines) for all three imaging methods as a 
function of the dose level.
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couples the PED values of neighboring pixels and thus introduces local noise correlations. The covariance graph 
for SDPC imaging explains the aforementioned weak dependence of the PED variance on the number of detector 
pixels. Contrary to DPC imaging, the covariance rapidly decreases with the distance between two pixels and thus 
the assumption of fixed, known PED values at the edges of the detector does not influence the noise level (except 
for pixels close to the edges). The different noise correlations for the three imaging methods are also reflected in 
the different noise power spectra. As expected, the noise power is independent of the frequency for spectral imag-
ing, whereas the noise power for DPC imaging increases drastically for lower spatial frequencies. For high fre-
quencies, the noise power spectrum for SDPC imaging is similar to DPC imaging. For low frequencies, however, 
the noise power does not increase but converges to a constant value that lies slightly above the noise power graph 
for spectral imaging. The higher noise power for SDPC imaging in the low frequency area can be explained by the 
attenuation of the G2-grating, which removes a part of the x-ray beam that has contributed to the dose delivered 
to the object.

In our simulation study, we assumed a fixed total length of the setup and a symmetric grating interferometer 
that operates in the first fractional Talbot distance. Given these conditions, the effective pixel size is the most 
important tuning factor for the sensitivity of a DPC or SDPC imaging setup (compare equations (7) and (13)). 
Since the PED variance strongly depends on the sensitivity, we investigated the theoretically predicted perfor-
mance of all three imaging methods as a function of the effective pixel size. For each pixel size, the optimum 
imaging parameters were determined with the noise analysis framework presented in the methods section.  
Figure 6(a) shows the predicted PED variances as a function of the effective pixel size. For visualization purposes, 
the number of photon counts per pixel (instead of the dose delivered to the object) was kept constant. This means 
that the dose delivered to the object was chosen inversely proportional to the squared effective pixel size (i.e. the 
effective pixel area). If the dose was kept constant, the PED variances would have to be multiplied by an additional 
factor that is inversely proportional to the effective pixel area for all three imaging methods. Under these condi-
tions, the PED variance for spectral imaging is independent of the pixel size. In the case of DPC imaging, the vari-
ance is proportional to the squared effective pixel size, which reflects the well-known sensitivity-dependent noise 
level for DPC imaging (compare also equation (28)). For large effective pixel sizes (a > 4 mm), the PED variance 
for SDPC imaging is almost constant and approximately twice as large as the variance for spectral imaging. It 
coincides with the PED variance one would obtain if spectral imaging was performed with the ‘unnecessary’ 
grating interferometer inserted into the beam path (see dashed line in figure 6(a)). It follows that for larger pixel 
sizes (or low sensitivities), the additional information on the basis material line integrals provided by the phase 
shift of the stepping curve can be neglected compared to the spectral information. Consequently, SDPC imag-
ing reduces to spectral imaging in the limit of large effective pixel sizes. For this particular imaging task, SDPC 
imaging and spectral imaging have equal PED variances for an effective pixel size of a = 950 µm. At this point, 
the benefit of the additional phase shift information is counterbalanced by the reduced photon statistics caused 
by the attenuation of the G2 grating. For very small pixel sizes (a < 10 µm), the SDPC variances almost coincide 
with the DPC variances. In this case, SDPC imaging reduces to DPC imaging because the spectral information 
provides little additional value for determining the PED in comparison to the phase shift of the stepping curve. 
In the area between these limiting cases (10 µm < a < 950 µm), the SDPC variance lies below both the spectral 
and the DPC variance because both the spectral and the phase shift information are relevant for determining the 
PED. The largest variance reduction (by a factor of 8.8) compared to both DPC and spectral imaging is achieved 

Figure 5. (a) Experimentally calculated normalized covariances between the central detector pixel and the other pixels (dots) 
together with the theoretical predictions (solid lines). (b) Noise power spectra for all three imaging methods obtained in the 
numerical experiment (dots) and the corresponding theoretical predictions (solid lines).

Phys. Med. Biol. 65 (2020) 065010 (16pp)



12

K Mechlem et al

for the point of equal variance of spectral and DPC imaging (a = 90 µm). At this point, the spectral and the 
phase shift information are of equal importance for determining the PED.

It is important to note that the predicted PED variance only depends on the geometrical imaging parameters 
(pixel size, object position, grating distances, grating periods) via the sensitivity. Consequently, similar trends 
for the PED variances could have been observed by varying geometrical parameters other than the pixel size. 
However, increasing the sensitivity via these geometrical parameters also increases the phase shift of the step-
ping curve that a given sample causes (via the gradient of the PED). For DPC imaging, this might lead to addi-
tional phase wrapping artifacts. As will be discussed in the next section, phase wrapping artifacts can in theory be 
avoided for SDPC imaging.

The number of detector pixels (N  =  400) was kept constant in this analysis of the noise characteristics. This 
means that the field of view decreases with decreasing effective pixel size a. If the field of view was kept constant, 
the total number of detector pixels would have to be scaled by 1/a. As discussed in the results section, increasing 
the number of detector pixels would have an adverse effect on the PED variance for DPC imaging, but the influ-
ence on SDPC imaging would be negligible as long as the spectral information prevents long-range noise correla-
tions.

In a real experiment, various undesirable effects (e.g. vibrations, grating imperfections) could cause a 
reduced visibility of the stepping curves compared with the simulations. Moreover, we have assumed that the 
object does not generate a dark-field signal which would also reduce the effective visibility. We therefore inves-
tigated the influence of a visibility reduction on the PED variance for SDPC and DPC imaging. For this study, 
the imaging parameters were kept fixed at their optimum values (compare table 1). We simulated a visibility 
reduction by multiplying the energy-dependent visibilities (compare figure 3) with a visibility reduction param-
eter m (0  <  m  <  1). Figure 6(b) shows the predicted PED variances for SDPC and DPC imaging as a function 
of the visibility reduction parameter. For comparison, the variances for spectral imaging with and without the 
interferometer in the beam path are also plotted as constant lines. As expected, the variance for DPC imaging 
rises rapidly with decreasing visibility (σ2(ρe) ∝ (Ve−ε)−2, compare equation (27)). In the case of SDPC imag-
ing, however, the variances rises much more slowly with decreasing visibility (approximately proportionally to 
(Ve−ε)−1) before it approaches a constant value for low visibilities. This is reasonable because in the limit of 
low visibilities, SDPC imaging effectively reduces to spectral imaging (with the gratings in the beam path). For 
m  =  0.15, the variances for SDPC imaging and spectral imaging are equal. This means that for this particular 
reconstruction task, the visibility can be reduced by a factor of 1/m  =  6.7 compared with the idealized simulation 
before the attenuation of the G2 grating outweighs the variance reduction achieved by the additional phase shift 
information.

4. Discussion

A quantitative comparison between conventional attenuation imaging and DPC imaging is difficult because 
of the different underlying contrast generating mechanisms for these two imaging methods. For example, a 
contrast-to-noise ratio comparison (Herzen et al 2009, Zambelli et al 2010) is complicated because the differences 
in contrast for the two imaging methods depends on the choice of the investigated materials. Moreover, 

Figure 6. (a) Minimum PED variances for all three imaging methods as a function of the effective pixel size. For visualization 
purposes, the number of photon counts per pixel (instead of the dose delivered to the object) was kept constant. (b) PED variances 
with standard resolution and imaging parameters (see table 1) as a function of the visibility. For this experiment, the energy-
dependent visibilities (see figure 3) were multiplied by a visibility reduction factor m (0  <  m  <  1) to simulate a decreased visibility 
due to experimental effects.

Phys. Med. Biol. 65 (2020) 065010 (16pp)



13

K Mechlem et al

depending on the setup parameters, the contrast between different materials can vanish completely for both 
imaging methods. For this reason, we concentrated on electron density images, which can be calculated with 
all three imaging methods (spectral, DPC and SDPC imaging) under consideration in this comparison study. 
Nevertheless, the presented noise analysis framework can also be used to determine the optimum acquisition 
parameters for other imaging tasks, such as dark-field imaging or basis material decomposition. Although we 
have focused on projection imaging, the noise analysis framework could be generalized to CT imaging (e.g. by 
using error propagation for the filtered backprojection (Kak and Slaney 1988)).

For the investigated imaging task, our analysis predicts highly reduced noise levels for SDPC imaging in com-
parison to both DPC imaging and spectral imaging. To achieve a fair comparison, the imaging parameters were 
optimized individually for each of the three methods. For a large range of clinically realistic dose levels, the ML-
based estimators achieve the predicted noise levels for all three imaging methods. The validity of the predicted 
covariances and noise power spectra was confirmed by additional numerical simulations. Our analysis focused 
on the PED, but earlier studies have shown that the noise advantage of SDPC imaging compared to spectral 
imaging is also transferred to the basis material images (Mechlem et al 2019). In our study, DPC imaging only 
outperforms spectral imaging for comparatively high spatial resolutions (a < 90 µm), however this conclusion 
does not apply to SDPC imaging. For a large range of clinically relevant effective pixel sizes (up to 950 µm), 
SDPC imaging theoretically outperforms the other two imaging methods by simultaneously using both the spec-
tral and phase contrast information. Although we have only considered one imaging scenario in this work, the 
general trends should apply to a large range of imaging tasks. Nevertheless, the location of the break-even points 
between the three imaging methods will vary depending on the object size and the chemical composition. In a 
real experiment, both grating imperfections and ultra-small angle scattering by the object (i.e. nonzero dark-
field signals) could reduce the visibility of the stepping curves compared to our simulations. The noise reduction 
for SDPC imaging compared to spectral imaging will thus be smaller than theoretically predicted. Nonetheless, 
because of the large theoretical noise reduction factors, we believe that SDPC imaging can also outperform the 
other two imaging methods in real experiments. Moreover, the noise level for SDPC imaging increases less rap-
idly with decreasing visibility compared with DPC imaging (see figure 6(b)).

Regardless of the potential for noise reduction, the combination of spectral and phase-contrast imaging pro-
vides additional information that is inaccessible with the individual imaging methods. Compared with spectral 
imaging, the dark-field image yields additional information about the object’s microstructure and, compared 
with DPC imaging, two basis material images can be calculated and beam hardening artifacts in all three imaging 
channels can be corrected.

Raupach and Flohr (2012) state that the noise correlations for DPC imaging are disadvantageous for clini-
cal diagnosis. They argue that the dominance of low frequencies in the NPS is unfavourable for recognizing 
structures. Furthermore, because of the low-frequency noise, reducing the noise level by pixel binning is less 
effective compared with conventional attenuation-based imaging. In general, these arguments do not apply to 
SDPC imaging because of the fundamentally different noise correlations compared to DPC imaging. An excep-
tion is the limit of very small pixel sizes (or high sensitivities), where SDPC imaging effectively converges to DPC 
imaging. In our study, the influence of the spectral information causes a rapid decrease of the covariance between 
two pixels with increasing distance. Consequently, there is no excessive low frequency noise. Furthermore, Rau-
pach and Flohr (2011) argue that—contrary to conventional attenuation imaging—there is a dose limit for DPC 
imaging below which no meaningful signals can be extracted. The interferometric measurement acquisition pro-
cess only allows unique determination of the phase shift of the stepping curve across a 2π interval. Larger phase 
shifts are wrapped back into this interval. According to Raupach and Flohr, statistical phase wrapping leads to a 
loss of the phase shift information for low dose levels. More precisely, the average extracted phase shift is biased to 
zero, regardless of the underlying physical phase shift if a standard averaging procedure is used. As a result of the 
additional spectral information when compared to DPC imaging, the calculated phase shift is not restricted to a 
2π interval for SDPC imaging. Qualitatively speaking, the spectral information determines in which 2π interval 
the phase shift lies (via the PED profile) and the exact value is fine-tuned by the stepping curve information. In 
principle, there is thus no information loss through statistical phase wrapping. However, it has been shown that 
the log-likelihood function for SDPC imaging has local optima that can be explained by an analogy to the phase 
wrapping problem for DPC imaging (Mechlem et al 2019). Although we could avoid the convergence to local 
optima in previous simulation studies by choosing a suitable initial guess, this strategy is likely to fail at extremely 
low dose levels. Nevertheless, the convergence to local optima is an optimization problem rather than a funda-
mental restriction of SDPC imaging because it could in principle be avoided with a global optimization strategy 
(or by incorporating prior information in the form of a regularization term).
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5. Conclusion

In this work, we have developed a noise analysis framework that allows the calculation of (co-) variances and 
noise power spectra for spectral, DPC and SDPC imaging. An important practical application of this framework 
is finding the optimum imaging parameters for all three methods. Our analysis shows that the combination of 
spectral and phase-contrast imaging is a promising imaging technique with various advantages compared with 
the individual methods. SDPC imaging provides additional information compared with both spectral imaging 
(dark-field image) and DPC imaging (basis material images). Moreover, we demonstrated that SDPC imaging 
enables a strong noise (or dose) reduction compared with the other two imaging methods for a large range of 
clinically relevant pixel sizes. Finally, the additional spectral information compared to DPC imaging eliminates 
excessive low-frequency noise, which can be a major drawback of DPC imaging, especially in projection space.
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Appendix

A.1. Noise propagation for the integration step in DPC imaging
Applying standard error propagation techniques to equation (9), the variance of the PED for a certain pixel 
(σ2(ρ̃i

e)) can be calculated:

σ2(ρi
e) =

1

S2

i−1∑
q=1

σ2(∆φq), (A.1)

where σ2(∆φq) is the variance of the differential phase shift (which can be calculated using the CRLB). In the 
special case of a homogeneous sample (i.e. σ2(∆φq) = const. = σ2(∆φ) ∀q), the average variance of the 

electron density σ2
avg(ρe) can be calculated as:

σ2
avg(ρe) =

1

N − 2

N−1∑
i=2

σ2(ρi
e) =

1

S2(N − 2)

N−1∑
i=2

i−1∑
q=1

σ2(∆φ)

=
1

S2(N − 2)

N−1∑
i=2

(i − 1)σ2(∆φ) =
N − 1

2S2
σ2(∆φ).

 (A.2)

The pixels with index 1 and N are excluded from the average variance calculation because it was assumed that the 
PED is known with certainty at the edges of the detector. The same result is obtained if the integration from right 
to left (equation (10)) is considered. If the left- and right-integrated PED profiles are averaged (see equation (11)), 
the variance of the PED is given by:

σ2(ρi
e) =

1

4S2




i−1∑
q=1

σ2(∆φq) +

N−1∑
q=i

σ2(∆φq)


 =

1

4S2

N−1∑
q=1

σ2(∆φq). (A.3)

As can be seen from equation (A.3), the variance of the electron density is independent of the detector pixel 
index. Consequently, the variance is spatially constant, even for a nonhomogeneous sample. In the special case of 

a homogeneous sample, σ2
avg(ρe) is given by:

σ2
avg(ρe) =

1

N − 2

N−1∑
i=2

σ2(ρi
e) =

1

4S2
(N − 1)σ2(∆φ). (A.4)

Comparing equations (A.3) and (A.2), it follows that (in the case of a homogeneous sample) the average variance 
is reduced by a factor of two when averaging left- and right-integrated electron density profiles.
A.2. Calculating the noise power spectrum from the covariances
In this section, we derive how the noise power spectrum (NPS) can be calculated from an estimate of the 
covariances (compare equation (32)). For a homogeneous object, the NPS can be calculated as Siewerdsen et al 
(2002):

NPS(k) = E
[
|F(ρ̄e(x)|2

]
, ρ̄e(x) = ρe(x)− E [ρe(x)] ,

 (A.5)
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where k is the spatial frequency and ρ̄e(x) is the offset-corrected PED as a function of the spatial coordinate x. In 
discrete form, the NPS is given by:

NPS(k) = E



∣∣∣∣∣∣

N−1∑
q=0

e−2πj qk
N ρ̄(q+1)

e

∣∣∣∣∣∣

2
 = E






N−1∑
q=0

e−2πj qk
N ρ̄(q+1)

e




(
N−1∑
u=0

e+2πj uk
N ρ̄(u+1)

e

)


= E




N−1∑
q=0

N−1∑
u=0

e2πj (u−q)k
N ρ̄(q+1)

e ρ̄(u+1)
e


 =

N−1∑
q=0

N−1∑
u=0

e2πj (u−q)k
N E

[
ρ̄(q+1)

e ρ̄(u+1)
e

]
.

 

(A.6)

Since E
[
ρ̄
(q+1)
e ρ̄

(u+1)
e

]
  =  Cov

(
ρ
(q+1)
e , ρ(u+1)

e

)
, the result of equation (32) is obtained.
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