
Zeeshan Saeed1

Department of Mechanical Engineering,
Politecnico di Torino,

Corso Duca degli Abruzzi 24,
Turin 10129, Italy

e-mail: zeeshan.saeed@polito.it

Steven W. B. Klaassen1

Chair of Applied Mechanics,
Technical University of Munich,

Boltzmannstr. 15,
D-85748 Garching, Germany

e-mail: steven.klaassen@tum.de

Christian M. Firrone
Department of Mechanical Engineering,

Politecnico di Torino,
Corso Duca degli Abruzzi 24,

Turin 10129, Italy
e-mail: christian.firrone@polito.it

Teresa M. Berruti
Department of Mechanical Engineering,

Politecnico di Torino,
Corso Duca degli Abruzzi 24,

Turin 10129, Italy
e-mail: teresa.berruti@polito.it

Daniel J. Rixen
Chair of Applied Mechanics,

Technical University of Munich,
Boltzmannstr. 15,

D-85748 Garching, Germany
e-mail: rixen@tum.de

Experimental Joint Identification
Using System Equivalent Model
Mixing in a Bladed Disk
A joint between two components can be seen as a means to transmit dynamic information
from one side to the other. To identify the joint, a reverse process called decoupling can be
applied. This is not as straightforward as the coupling, especially when the substructures
have three-dimensional characteristics, or sensor mounting effects are significant, or the
interface degrees-of-freedom (DoF) are inaccessible for response measurement and excita-
tion. Acquiring frequency response functions (FRFs) at the interface DoF, therefore,
becomes challenging. Consequently, one has to consider hybrid or expansion methods
that can expand the observed dynamics on accessible DoF to inaccessible DoF. In this
work, we attempt to identify the joint dynamics using the system equivalent model mixing
(SEMM) decoupling method with a virtual point description of the interface. Measurements
are made only at the internal DoF of the uncoupled substructures and also of the coupled
structure assuming that the joint dynamics are observable in the assembled state. Expand-
ing them to the interface DoF and performing coupling and decoupling operations itera-
tively, the joint is identified. The substructures under consideration are a disk and blade
—an academic test geometry that has a total of 18 blades but only one blade-to-disk
joint is considered in this investigation. The joint is a typical dove-tail assembly. The
method is shown to identify the joint without any direct interface DoF measurement.
[DOI: 10.1115/1.4047361]
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1 Introduction
Substructure identification in dynamic substructuring (DS)

framework [1] has gained much attention in the last two decades.
That is, an unknown subsystem is generally identified by decou-
pling a known subsystem from a known assembled system [2,3].
If the assembled system and all its subsystems are known, one
can apply decoupling to identify the joint in between by introducing
an appropriate joint model [4].
The classic decoupling methods [4,5] require that the dynamics at

the interface are measured (or available) explicitly both at transla-
tional and rotational degrees-of-freedom (DoF) on a substructure.
However, due to narrow spaces, the interface may be largely inac-
cessible for sensor mounting or excitation in all directions. Such an
inability renders these methods applicable only to simpler substruc-
tures. For complex geometries, expansion methods are needed in
order to extrapolate the dynamics measured on easy-to-measure
DoF to those that are difficult-to-measure.
A modal expansion method called system equivalent reduction

expansion process (SEREP) [6] expands the measured modes of
substructures on their numerical modes. The so-called expanded
modal basis can then be used to couple or decouple the substruc-
tures [7–9]. However, the modal expansion is restricted because
one can only use in the expansion basis as many modes as the
number of measured DoF, thereby limiting the measurement of
higher modes. As a result, the system cannot be accurately

represented at higher frequencies especially when the modal
density is high, for example, in case of bladed-disks [10]. On the
other hand, frequency-based substructuring (FBS) methods
provide a great advantage due to the fact that the directly measured
FRFs are utilized without any modal parameters estimation. A
recently developed expansion method, system equivalent model
mixing (SEMM) [11], based on the FBS formulation provides a
direct and convenient way to expand the measured FRFs over the
numerical FRFs. It is a method of coupling (and decoupling) differ-
ent equivalent models of the same (sub)structure, namely, parent,
overlay, and removed models. The output model is an expansion
of the overlay model (measured dynamics) over the DoF of the
parent model (numerical). Specifically, SEMM offers some benefits
listed below:

(1) The measured FRFs in the overlay model do not need to be
inverted. Inversion of measured matrices, as usually per-
formed in substructure assembly, is known to cause spurious
peaks in the experimental DS [12].

(2) FRFs can be expanded to the inaccessible boundary DoF by
measuring accessible internal DoF, provided that the bound-
ary DoF are observable.

(3) By virtue of the expansion, one can easily construct a collo-
cated DoF set. By collocated, we mean that each DoF is an
input as well as an output DoF resulting in square FRF matri-
ces. Drive-point FRFs are in practice quite difficult to
measure [13,14] and need special arrangements for good
accuracy [9]. Note that the square matrices are an essential
prerequisite for coupling (and decoupling) methods [4,5,15].

Other than SEMM, the FRFs can also be expanded at the inacces-
sible DoF in order to construct collocated FRFs, see for example,
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Refs. [16,17]. Particularly, the round-trip theory [17] constructs the
collocated FRFs by avoiding the excitations at the interface (or
passive) DoF. However, the responses still have to be measured at
the interface which may not be possible in many types of interfaces
such as those found in bladed-disks [18,19]. Due to this limitation
and the above-listed advantages of SEMM, it will be chosen in this
work to expand the FRFs to the interface DoF.
In order to accurately capture the interface behavior, rotational

information is also very important in experimental DS [12,20].
One possibility is to measure the rotations directly [21–23] by rota-
tional accelerometers. However, these sensors are usually heavy
and may only be suitable for bulky structures. Sensor loading
becomes too significant for small-sized structural components.
Therefore, one has to rely on calculating rotations either by finite dif-
ference [24] or by equivalent multi-point connection (EMPC) [25]
with an interface consisting of a non-collinear DoF set. Based on
the latter, the virtual point transformation method [26] transforms
the measured translations to one or more virtual points, which
describes the interface with both translations and rotations.
After one has acquired a collocated set of DoF consisting of

translational and rotational interface DoF, the joint identification
can be performed by the inverse substructuring or substructure
decoupling methods. Inverse substructuring methods [15] assume
that the joint elements (usually rubber isolators) have negligible
mass. This allows for a way to decouple the joint dynamic stiffness
from that of the total system without knowing the dynamics of the
connected substructures, i.e., only the connection dynamics of sub-
structures are to be known. In Refs. [27–29], this approach has been
applied successfully to the resilient or flexible rubber joints. These
methods are also often referred to as in-situ identification.
The substructure decoupling [2,4,5,30,31] can be applied to any

(linear) joint model. In these methods, the joint dynamics are iden-
tified by decoupling the substructure dynamic models from the total
system. As opposed to inverse substructuring, they require knowl-
edge of the substructure internal and connection dynamics. Due
to many difficulties encountered in experimental DS, these
methods have been applied to only simpler cases. Even then, the
identified joint parameters are strongly influenced by measurement
errors and are usually frequency dependent [4,5,31]. A recent article
[32] compares both the inverse substructuring and substructure
decoupling methods applied on a rubber isolator.
The SEMM method can also be extended to substructure decou-

pling in order to identify the joint dynamics. It was applied on a
numerical truss structure in Ref. [33]. The underlying assumption
is that, in the assembled structure, the joint dynamics are implicitly
and sufficiently observed by measurements at the internal DoF.
Thus, the assembled (built-up) structure’s measured FRFs can be
overlaid on the uncoupled substructure models—obtained sepa-
rately. The joint is then identified through decoupling of the assem-
bled and the uncoupled models. The process can be iteratively
applied until the joint properties have converged.
In this paper, the joint identification by the SEMM decoupling

method [33] is applied to a case of an academic disk coupled to
one blade. The particular shape of the joint between the disk and
the blade (a dove-tail attachment) [18] makes the FRF measure-
ments impossible at the interfaces. For this type of interface, it is
essential that both the translational and rotational behavior is prop-
erly accounted for. The FRFs obtained through the impact testing
campaign on the internal DoF of the blade and disk and also of
their assembly are expanded and transformed to a virtual point
description of the interface.
The paper is organized as follows: Section 2 recalls the theoret-

ical background of the SEMM method starting from the theory of
the FBS with rigid and flexible coupling between substructures.
In Sec. 3, the experimental and numerical setup of a disk connected
to one blade, used as a test geometry for the method, is described. In
Sec. 4, after the validation of the SEMM method on each substruc-
ture, the results of validation on the assembled structure and the
identified joint are presented followed by discussion and conclu-
sions in Secs. 5 and 6, respectively.

2 Theory
In this section, the theoretical background of the SEMM decou-

pling method is presented. In the first part, dual formulation of
Lagrange multiplier frequency-based substructuring (LM-FBS) is
discussed followed by flexible coupling and decoupling. Then, it
is explained how different equivalent models are obtained for all
connecting substructures and how the dynamics are expanded to
get the substructure hybrid models. Finally, the principles, on
which the SEMM decoupling method is based, are explained in
detail.

2.1 Frequency-Based Substructuring. The equation of
motion of an sth substructure in frequency domain with displace-
ment vector u (s), external forces f (s), and interface forces g (s) is
written as

Z(s)u(s) = f (s) + g(s) (1)

where s= 1, 2, …, N is a substructure index and Z (s) is the fre-
quency ω-dependent dynamic stiffness:

Z(s) ≜ Z(s)(ω) ≜ −ω2M(s) + iωC(s) +K(s) (2)

where M (s), C (s), and K (s) are time-invariant mass, damping, and
stiffness matrices, respectively. The displacement vector u (s) is
composed of internal DoF u(s)i and boundary DoF u(s)b of substruc-
ture s, as shown in Fig. 1 for A and B, as an example. The substruc-
ture dynamic stiffness matrices, displacement, and force vectors are
concatenated as block matrices and vectors, respectively, to express
the uncoupled system of substructures.

Z ≜

Z(1)

Z(2)

. .
.

Z(N)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, u ≜

u(1)

u(2)

..

.

u(N)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

f ≜

f (1)

f (2)

..

.

f (N)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, g ≜

g(1)

g(2)

..

.

g(N)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3)

In a measurement campaign, it is the FRF matrix that is measured
and can be obtained in the forms of admittance, mobility, or accel-
erance. Denote the admittance matrix as Y≜Z−1. Equation of
motion is then written for the uncoupled block matrices

u = Y(f + g) (4)

The coupling of the substructures requires that the interface or
boundary DoF are compatible in displacement which is ensured
by a signed Boolean matrix B such that Bu= 0 or u(s)b − u(r)b = 0
for r= 1, 2, …, N. To satisfy the equilibrium at the boundary
DoF, λ (known as Lagrange multipliers) are introduced such that
BTλ=−g. Substituting g in Eq. (4) and supplementing it with the
compatibility equation gives the following system:

u = Y(f − BTλ)

Bu = 0
(5)

Eliminating λ from this dual expression of the assembly yields the
LM-FBS form:

u = Yf − YBT (BYBT )−1BYf ⇒ u = �Yf (6)

where �Y is the coupled admittance

�Y = Y − YBT (BYBT )−1BY (7)

This is a dual formulation [34] consisting of DoF of all the sub-
structures to be coupled. It requires that the driving point
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admittances at the interface DoF can be measured (i.e., collocated
displacement and force can be measured on the interface).

2.2 Flexible Coupling. The coupled substructure admittance
given by Eq. (7) is a rigid coupling of the boundary DoF.
Figure 1 graphically demonstrates this coupling with �Y = YAB.
Any two mating boundary DoF do not necessarily behave rigidly,
and therefore, one needs to account for flexibility of the joint by
introducing a joint model Y J between the two substructures. Includ-
ing Y J in the uncoupled block diagonal admittance matrix Y, the
dually coupled LM-FBS admittance is calculated as:

YAJB = Y − YBT (BYBT )−1BY, with

Y =
YA

YJ

YB

⎡
⎣

⎤
⎦ (8)

The matrix B in Eq. (8) applies compatibility between the substruc-
tures DoF and the joint DoF, as shown in Fig. 2. Theoretically, if
mass is not considered in the joint, the dynamic stiffness of the

joint is singular, and hence, the joint admittance YJ cannot be com-
puted. This is discussed for a dummy joint identification in Sec. 4.2.
The inclusion of the superscript (•)J in YAJB is to emphasize that the
joint dynamics are explicitly present in the coupled structure.

2.3 Joint Identification by Decoupling. Structures can be
decoupled in a similar way as they are coupled by using fictitious
admittance [2,3]. In detail, if admittances of the coupled (assem-
bled) structure YAJB and the associated substructures YA and YB

are known, one can identify the joint Y J (c.f. Fig. 3) by adding A
and B as negative substructures, namely,

�YJ = Y − YBT (BYBT )−1BY, with

Y =
YAJB

−YA

−YB

⎡
⎣

⎤
⎦ (9)

Note that here �YJ
has the size of all the DoF of the coupled and the

uncoupled structures and one needs to retain only the independent
entries to obtain Y J [3].

Fig. 1 A rigid coupling of two substructures A and B. The coupling exists only at the interface DoF by virtue of the
compatibility condition, i.e., uA

b − uB
b = 0. Note that the DoF of both the substructures are shown in YAB signifying

dual nature of the formulation.

Fig. 2 Flexible coupling between substructures A and B by introducing a joint model consisting of a spring and a
damper between the interface DoF of the substructures. The compatibility conditions read as uA

b − uJ,A
b = 0 and

uB
b − uJ,B

b = 0.

Fig. 3 Identification of the joint YJ is done by coupling the assembled structure’s admittance YAJB and fictitious admittances of
the substructures YA and YB. The compatibility condition reads the same as in the case of coupling the joint in Fig. 2 (standard
interface).
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In a coupling problem, the notion of the interface is standard, i.e.,
the compatibility and equilibrium are applied only at the interface
DoF implying that the DoF are collocated. However, in a decou-
pling problem, the interface can be extended, i.e., the compatibility
and equilibrium DoF need not be only at the boundary and can be
extended to internal DoF resulting in an overdetermined interface
[2,3,35]. In such a case, Eq. (7) can be generalized to the form:

�Y = Y − YBT
E (BC Y BT

E)
+ BCY (10)

where BC and BE are signed Boolean matrices for displacement
DoF and equilibrium DoF, respectively, and (•)+ is the
pseudo-inverse operator. In case of submodels coupling and decou-
pling of a substructure by SEMM (to be discussed next), its hybrid
model is obtained by the extended interface notion.

2.4 Generating Substructure Hybrid Models by SEMM.
The LM-FBS method requires explicitly the interface DoF in its
classic formulation as presented in Eq. (6) including the drive-point
FRFs. In many instances, these DoF are not accessible and substruc-
ture coupling or decoupling may not be performed directly. There-
fore, expansion methods can be used to extrapolate the dynamic
information to those DoF. One such method is SEMM [11] based
on the LM-FBS whose inputs are a parent model Ypar, an overlay
model Yov, and a removed model Y rem, and the output is a
hybrid model YSEMM (or expanded numerical model). In this sub-
section, all the quantities belong to a substructure and not to a
coupled structure. Therefore, the superscripts as component identi-
fiers are omitted.

2.4.1 The Parent Model. The parent model in SEMM is a
numerical model of the substructure under consideration that pro-
vides a DoF structure for the resulting hybrid model. It can be a
full finite element (FE) or its reduced form, for example, a Hurty
Craig-Bampton (HCB) model [36] to retain only the set of master
DoF um. In the latter case, the following relationship holds:

um
us

{ }
=

Imm 0ms
Ψsm Φss

[ ]
um
η

{ }
= R

um
η

{ }
(11)

where Ψsm, Φss and η are constraint modes, a truncated set of
fixed-interface modes and their modal amplitudes, respectively.
The reduced mass and stiffness matrices are obtained by the trans-
formation matrix R such that

�M ≜ RTMR and �K ≜ RTKR (12)

The reduced model using the above reduced matrices is transformed
to frequency domain by Eq. (2). Thus, the dynamic stiffness Zpar is
expressed in the accelerance form2 denoted here as Ypar. This is the
parent model in SEMM notation. Its DoF as illustrated in Fig. 4(a)
can be grouped (Fig. 4(b)) as follows:

(1) Compatibility DoF uc corresponds to the locations where
response measurements are made.

(2) Equilibrium DoF ue corresponds to the locations where
impacts are applied

(3) Boundary DoF ub belong to the interface of the substructure
where it mates with another substructure. Their measure-
ments may not be possible even in the unassembled state.
Those DoF will be explicitly retained in the reduced model
and their behavior will be obtained by the SEMM expansion.

(4) Other DoF uo are extra DoF to be retained in the reduced
model

With all the above DoF sets, denoted by the subscript g, the
parent model Ypar in FRF matrix form is written as

Ypar ≜ Ypar
gg ≜

Ycc Yce Yco Ycb
Yec Yee Yeo Yeb
Yoc Yoe Yoo Yob
Ybc Ybe Ybo Ybb

⎡
⎢⎢⎣

⎤
⎥⎥⎦

par

with uparg ≜

uc
ue
uo
ub

⎧⎪⎪⎨
⎪⎪⎩

⎫⎪⎪⎬
⎪⎪⎭

par

(13)

2.4.2 The Overlay and Removed Models. The overlay model
provides the dynamics of the substructure that are imposed on the
parent model. In this case, these are all the measurement points,
i.e., where the displacements (or accelerations) are measured as
well as where the impact forces are applied. This model is shown
in Fig. 4(c). A set of measured FRFs on the compatibility and equi-
librium DoF on an actual structure gives the overlay model. Note
that, in general, the DoF are not collocated, and hence, the
overlay model is characterized by a rectangular FRF matrix with
the following arrangement:

Yov = Yce
[ ]ov

(14)

The dynamics of the overlay model are superposed linearly on the
parent model’s dynamics, and therefore, the latter’s own dynamics

Fig. 4 (a) The reduced HCBmodel containing only master DoF set um. This is used as a parent model of the substructure. (b) The
master DoF set is labeled according to the classification defined. (c) The overlay model that provides dynamics to the parent
model. (d ) Block matrix illustration of SEMM. Ypar is divided in four DoF sets vertically and horizontally.

2Accelerance is obtained by multiplying by −ω2 the inverse of the dynamic stiffness
in the frequency domain.
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need to be decoupled by choosing a removed model. Thus, the
removed model is set as the parent model, as proposed in Ref. [11].

Yrem = Ypar (15)

2.4.3 The Hybrid Model. The hybrid model �YSEMM
is obtained

by coupling the overlay model with the parent model and decou-
pling at the same time the removed model. Using the appropriate
Boolean matrices and the coupled accelerance in Eq. (10), the
single-line expression is found in Ref. [11]

�YSEMM ≜ �YSEMM
gg = Ypar

gg − Ypar
gg (Ypar

cg )
+ (Ypar

ce − Yov
ce ) (Y

par
ge )

+ Ypar
gg

(16)

It is to be clearly stated that the interface in SEMM is the extended
interface related to the decoupled part of the information contained
in Y rem=Ypar. This can be understood by the fact that, the differ-
ence (Ypar

ce − Yov
ce ) in Eq. (16) is propagated through the pseudo

inverses (Ypar
cg )

+ and (Ypar
ge )

+ in the hybrid model. The so-called
SEMM interface, depicted in Fig. 4(d ) in gray color, shows two
block matrices of Ypar, namely, cg and ge. Two important observa-

tions of the hybrid model �YSEMM
are that (i) it has the same DoF

structure as Ypar and (ii) it mimics the overlay model at all ce
DoF (output to input), while on the other DoF, it acts as an
expansion.

2.5 Virtual Point Interface Modes. The SEMM expansion
allows for the access to the dynamics of the substructures at loca-
tions that can not be directly measured. These locations (DoF)
can be selected on mating surfaces of the substructures. Note that
any noise or measurement inconsistencies are also present in the
expanded dynamics on these DoF. In order to reduce this effect
on the dynamics delivery by SEMM on the boundary DoF,
virtual points (VP) can be created as representative interface (see
Fig. 7(a) for two VP interface on the blade test-case). This transfor-
mation is done by creating virtual point interface displacement Tu

and force modes TT
f at one or more virtual points [26].

YA,SEMM = TA
u

�YA,SEMM
(TA

f )
T (17)

The transformation, as mentioned in Sec. 1, leads to an interface that
is described by both translations and rotations at the virtual point
DoF. Similarly, the same transformation for substructure B can be
done to get YB,SEMM.

2.6 Decoupling by SEMM. In Sec. 2.4, the hybrid models
were created for each substructure whose parent models were the
equivalent FE models. On the contrary, if joint dynamics are
observable when the structure is in an assembled state, an FE
model is not considered as an equivalent model because it lacks the
joint dynamics. Therefore, an assembled system’s parent model is
created from the previous substructure hybrid models with a joint
Y J. The already created substructure hybrid models can be used
to construct a version n of the parent model (YAJB,par)n for the
coupled structure; calculated from Eq. (8) rewritten here with a joint

(YAJB,par)n = Yn − YnBT (BYnBT )−1BYn, with

Yn =
YA,SEMM

(YJ)n
YB,SEMM

⎡
⎣

⎤
⎦ (18)

where n= 0, 1, 2,… denotes the iteration number to signify the iter-
ative nature of the process as the joint Y J (to be identified) is not
known a priori. This will be further explained shortly. The compat-
ibility needs to be satisfied at the physical boundary DoF between
the substructures, as presented in Sec. 2.2 and shown in Fig. 2.
The assembled system’s parent model is graphically illustrated in
Fig. 5(a).
A set of measurements on the assembled structure provides the

overlay model for the assembly. In order for the mass of the
sensors not to affect the identification procedure, the locations of
the sensors in assembly testing should be the same as they were
in the component testing. In this way, the sensors are effectively
considered a part of the system. The overlay model YAB,ov contains
the joint dynamics implicitly, and the FRFs are stored as

YAB,ov = YAB
ce

[ ]ov
(19)

Here, the subscripts c and e correspond to all the compatibility
and equilibrium DoF on the “coupled structure” AB with the
former being the output (response) DoF and the latter being the
input (impact) DoF. The removed model is again the same as
the coupled parent model in Eq. (18). The coupled structure’s

Fig. 5 A graphical representation of how the hybrid model for a coupled structure is obtained. (a) The parent model is made by
coupling two hybridmodels at the boundary DoF b. The DoF order for substructure B is reversed for this visual illustration. Adding
a joint produces the coupled parent model (YAJB,par)n at nth iteration. (b) The coupled parent model together with the measure-
ments of the assembled structure (overlay model) yields the coupled hybrid model (YAJB,SEMM)n. The overlay model DoF in the full-
system measurements are also shown.
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hybrid model (YAJB,SEMM)n is calculated from Eq. (16). These
models are shown in a pictorial matrix form in Fig. 5(b).
To identify the joint dynamics between two substructures A

and B, we assume that we have trustworthy hybrid models of
the substructures YA,SEMM and YB,SEMM, as explained earlier. To
couple these submodels, we make a first estimate of the interface
dynamics (YJ)0 to build a first estimate of the assembly (YAJB,

par)0 which will be improved with measurements on the assembly
YAB,ov by the SEMM procedure (YAJB,SEMM)0. An improved
estimate of the joint (YJ)1 is then evaluated from this updated
assembly model by decoupling substructures A and B. This is
done by using the standard interface decoupling procedure
explained earlier in Eq. (9) where now YA = YA, SEMM,
YB = YB, SEMM, and YAJB = (YAJB, SEMM)0. The new joint estimate
(YJ)1 is then used to create a new assembly model (YAJB,par)1
that is again updated (YAJB,SEMM)1 with the same measurements
YAB,ov and from which a further estimate of the joint dynamics
(YJ)2 is obtained by decoupling A and B. This iterative procedure
can be repeated, assuming it converges to a joint for which the dis-
crepancy between the model of the assembly and the measurements
are minimized. This strategy was first proposed in Ref. [33] and
applied to a simple numerical truss structure. It is outlined in a
different manner and applied to a complex interface in this paper.
It is worth noting that the initial joint (Y J)0 can be blank (no cou-
pling) or defined by the user. This is because the assembled
parent model will anyway be updated by the measurements on the
assembly in which the joint dynamics are assumed to be observable.
It is interesting to point out that, when integrating the measured

information in the parent model for the assembly, the inverses in
Eq. (16) can be computed as weighted pseudo inverse. A diagonal
weighting matrix W having different weights w for the DoF set is
defined

W = diag(wc, we, wo, wb) (20)

where the subscripts of w correspond to the same set of DoF as
before. Dropping the superscript of the coupled parent model’s
accelerance Ypar for clarity, the right-side pseudo-inverse in Eq.
(16) is then given by

Y+
cg =W YT

cg(Ycg W YT
cg)

−1 (21)

and the left-side pseudo inverse

Y+
ge = (YT

geWYge)
−1YT

geW (22)

The above expressions hold if Ycg has full row rank and Yge has
full column rank. In case of rank deficiency or ill-conditioning, the
inverses can be computed by singular value decomposition with the
smallest singular values truncated.

The weighted pseudo-inverses help expand the dynamics to the
unmeasured DoF in a weighted least squares sense. Particularly,
the physical boundary DoF ub are assigned a higher weighting
factor because these are the DoF to be identified in the process.
The solution converges fast with such weights as shown in the
Appendix.

2.6.1 Summary of the Decoupling Method. The linear SEMM
decoupling process can be briefly summarized as follows:

(1) Get hybrid models of each substructure YA,SEMM and YB,

SEMM as outlined in Secs. 2.4 and 2.5.
(2) Perform measurements on the coupled structure on the same

sensor and impact points as in the unassembled condition to
get the coupled overlay model YAB,ov.

(3) Create the coupled parent model (YAJB,par)n as per Eq. (18)
with an estimated joint (Y J)n.

(4) Obtain the hybrid model (YAJB,SEMM)n from the estimated
parent model (YAJB,par)n and the overlay model YAB,ov

using Eq. (16).
(5) Perform decoupling as per Eq. (9) to obtain the joint (Y J)n+1.
(6) Repeat Steps 3–5 until the expansion error ‖(YAJB,par

ce )n −
YAB,ov‖ is minimized.

3 Experimental and Numerical Setup
The test-case for application of the method is a disk with 18 slots

in which as many blades can be connected, as shown in Fig. 6. In
the present study, only one blade is connected to its respective
slot since only one joint is considered.
The application of the SEMM decoupling method requires an

experimental campaign with measurements of FRFs at internal
DoF of both blade and disk in three measurement setups: (1)
blade only, (2) disk only, and (3) coupled disk-blade. In detail,
the three setups were arranged as follows:

(1) Blade suspended on flexible wires (Fig. 6(a)).
(2) Disk rigidly connected by six bolts to a cylindrical attach-

ment (Fig. 6(b)).
(3) Disk coupled with the blade (Fig. 6(c)) where the disk is

rigidly connected as above and the blade is pushed on the
base of its root by a pin. The pin keeps the blade-root in
contact with the surfaces of the disk slot (as can be seen in
Fig. 6(c)).

Five tri-axial accelerometers are positioned on the blade and five
on the disk. During the FRFs measurement campaign, an instru-
mented hammer is used for the excitation. For practical experimen-
tal reasons, the impact excitation points are never coincident with
the measurement points where the accelerometers are positioned.

Fig. 6 The experimental setupwith all the accelerometersmounted on (a) the blade hanged bywires, (b) the disk fixed at
its center, and (c) the coupled blade and disk with the same constraint conditions as the disk
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Figure 7 shows the locations of both the impacts and the acceler-
ometer channels as single arrows and triads, respectively. It must be
noted that the measurement and impact points remain the same in
the coupled configuration (Fig. 7(c)), in order to decouple the
effect of sensor mass loading. As it can be observed from the
figures, the impacts and accelerometers are made only at the internal
DoF. This means that the FRFs are not measured on the interface
(joint surface); neither on the blade root nor in the disk slot. The
interface FRFs are, thus, derived through the SEMM technique,
as explained in Section 2.
It is assumed that the coupled system behaves linearly since the

energy of the impacts is not so high to introduce slip in the interface.
Therefore, the SEMM approach for assembling and decoupling as
proposed here is thus licit.
Recalling that the SEMM needs a parent (numerical) model of

each substructure, FE models in ANSYS were created for both the
blade and the disk. These FE models were then reduced by HCB
transformation to retain only the physical master DoF together
with 200 fixed-interface eigen modes, according to Eq. (11). The
retained master DoF include all the internal DoF in Figs. 7(a) and
7(b) as well as the boundary DoF on the joint surfaces. The
parent models according to the SEMM terminology are then
obtained by computing the accelerance FRFs.
As described in Sec. 2.5, the interface between the blade and disk

is modeled by using virtual points (VPs). For this test-case, two VPs
are considered on each substructure [18] where each VP consists of
three translations and three rotations. The two VPs are depicted on
the blade-root in Fig. 7(a). Thus, the joint is represented by a 24 ×
24 DoF system.

4 Results
This section presents application and validation of the method to

identify the joint by the process explained in Sec. 2 and for the setup
shown in Sec. 3. First, we present the results for the uncoupled
blade and disk as validation of the SEMM method in Sec. 4.1. A
numerical dummy joint is introduced between the two substructures

in Sec. 4.2 to verify the SEMM decoupling method, presented in
Sec. 2.6. The actual joint between the two components is then iden-
tified in Sec. 4.3 with a discussion on the joint in Sec. 4.4.

4.1 Validation of SEMM for Substructures. In the SEMM
method, the overlay model is a set of experimental FRFs that
provide the dynamics at some DoF to the parent model. For valida-
tion purpose, a group of this experimental FRFs was kept out of the
overlay model as reference measurements, designated as uo and
shown with the red square markers in Figs. 7(a) and 7(b). On the
same group, the SEMM expansion was performed. The resulting
expanded FRFs are compared with those reference measurements.
Figure 8 shows the validation of the SEMM method for both the
single blade and single disk FRFs. In Fig. 8(a), the FRF predicted
by SEMM is overlapping well with the experimental one for the
blade. In particular, we see that the SEMM model corresponds
much better than the parent numerical model to the measurement
in the three resonance peaks in the frequency range, correcting
the numerical model for sensor mass-loading and non-modeled
damping. It is, however, to be observed that around 900 Hz, the
location of the anti-resonance that was well predicted by the
parent numerical model is actually getting worse in the SEMM
model. This can be understood by the fact that anti-resonances
depend on the location of the input and of the output and thus
any error in location and orientation of the input or output sensors
creates a shift in the anti-resonance frequencies. Small imperfec-
tions that can be hardly avoided when determining the location
and orientation of our sensors are most probably the cause of this
effect in our results.
The FRFs predicted by SEMM for the disk in Fig. 8(b) do not

agree so well with the experiment. This discrepancy between
numerical, experimental, and SEMM case is attributed to the
reasons listed below:

(1) The numerical model of the disk does not take into account
the masses of the accelerometers. They alter the cyclic sym-
metry of the disk—an effect not present in the numerical
model.

Fig. 7 The geometric models of the blade and disk showing the impacts’ positions. The triads denote the response
channels (triaxial accelerometers) and the single arrows denote the impact points. The markers (squares and circles)
indicate the DoF used to validate the SEMM method to be discussed in Sec. 4. The interface consisting of two virtual
points is depicted on the blade geometry.
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(2) Most importantly, the constraints applied to the disk’s FE
model to fix its center do not correspond exactly to the
actual constraint condition of the disk. Actually, the disk
center is connected to a flanged-type fixture which is attached
rigidly to a bench, see Fig. 6(b). The fixture introduces some
of its own dynamics in the frequency band. While modeling
the same fixture (along with the disk) in ANSYS, the displace-
ment boundary condition is not ideally matched with the
actual setup [37].

Generally, SEMM is affected when the mode shapes of the
numerical model are no longer representative, which might be the
case in this scenario [11]. In the future, the numerical models
should be updated to include these effects, especially point two.
However, considering the relatively small discrepancies between
the experimental and hybrid model of the disk, the FRFs in
Fig. 8(b) were deemed acceptable. For the following discussion,
these hybrid (SEMM) models of both blade and disk were used
to make the parent model of the coupled structure, as described in
Sec. 2.6.

4.2 Verification of the Strategy by a Dummy Joint. The next
step was to validate the iterative SEMM decoupling method. The
idea was to introduce a joint between the blade and the disk
whose parameters are known in advance (Table 1). The method is
then applied to verify if it is able to identify these known
parameters.
Between the two components’ expanded models YA,SEMM and

YB,SEMM, the dummy-joint FRF model Y J,dum is introduced to
create a dummy-coupled model that we then used to generate simu-
lated measurements instead of the actual experimental measure-
ments of the full-system. This ensures that measurement and
expansion errors are the same for both the coupled and uncoupled
models. If the internal DoF can observe the dynamics at the

boundary—a minimum requirement for the SEMM expanded iden-
tification—then our proposed iterative strategy should be able to
identify the interface dynamics. The reverse formulation is also
true: if the joint is properly identified, then the internal DoF fully
observe and control the boundary DoF and the decoupling step
itself is validated. The dummy joint is a simple one-to-one
mass-spring-damper system with the parameters3 in Table 1.
Figure 9 shows the identified dummy dynamic stiffnesses along

the frequency axis for translational and rotational DoF. In each
figure, there are two joint identification plots for different weights
of weighted pseudo-inverses discussed in Sec. 2.6. Focusing on
the identified stiffness for the case of wb= 1 × 108 (with all the
other DoF assigned a weight of 1), the figure shows that, with the
exception of spurious effects, the dynamic stiffness of the dummy
joint can be identified. The spurious effects are spread across the
whole frequency band but pronounced in the region between 0
and 500 Hz in which the disk expanded model has some discrepan-
cies. In this region, it is assumed that the boundary dynamics are not
uniquely observed. The same is true for frequency regions near
1200 and 2100 Hz where sub-system resonances of the blade are
observed in the FRF of Fig. 8(a). In these resonance regions, the
identification can be influenced by the internal subsystems. Its
reason and a way to mitigate it are discussed later.
In fact, by the method outlined in Sec. 2.6, the dummy-coupled

system’s dynamics are to be expanded on its coupled parent
model, and subsequently, the joint is to be identified. The expansion
occurs uniformly (if no weightings are assigned to ub) all over the
DoF through the SEMM interface (Fig. 5(b)). This is where the sub-
system’s internal influence comes into play, including resonances4

and noise in the hybrid models, i.e., through the pseudo-inverses in
Eq. (16). If one of the subsystem is near resonance, the expansion
would occur through the ill-conditioned matrices, and hence, the
errors propagate also to the interface which are later identified
and dubbed as the joint. Forcing the SEMM method to observe
only the interface could easily rectify this problem, e.g., by

(a) (b)

Fig. 8 FRFs for the SEMM validation of (a) blade and (b) disk at the DoF marked with squares in Figs. 7(a) and 7(b), respectively.
The numerical FRFs were computed without any damping. The expanded FRF (legend: SEMM) for the blade agrees well with the
experimental reference; whereas for the disk, it has lesser agreement in some regions.

Table 1 Parameters of the dummy joint

Translational Rotational

Stiffness 1 × 107 N/m 1× 104 Nm/rad
Damping 1 × 103 Ns/m 1× 102 Nms/rad
Mass 5 g 5 gm2/rad

3The mass in the joint parameters of Table 1 exists to easily create a non-singular
system. In order to obtain the accelerance matrix, the dynamic stiffness is to be inverted
which is singular without the mass (also see Sec. 2.2). Note that the mass is not nec-
essarily present in the true joint.

4Note that the internal subsystem influence does not apply to a single substructure
being expanded by SEMM because it is not composed of subsystems. This is also why
the weightings were not discussed before Sec. 2.6 and in Sec. 4.1. However, there is no
restriction on using them on a single substructure.
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inclusion of a stronger weight toward interface DoF ub or by ignor-
ing internal DoF altogether through the weighted pseudo-inverses
(see Appendix). By doing so, the internal subsystem’s resonances
or errors are not expanded to the interface or the joint.
The dummy joint of Fig. 9withwb= 1 × 108 has identified some of

the characteristics that belong to the internal subsystem, as discussed
earlier. By further suppressing the weight of internal DoF would
reduce the influence of those errors. This is evident by the identified
joint with wb= 1 × 1010 shown as the black stiffness line. The spur-
ious errors throughout the frequency band have decreased and local-
ized. Further increasing wb would suppress more the internal
subsystem influence but could also significantly deteriorate the
numerical conditioning of the pseudo inverses in Eq. (16). The spur-
ious errors are, nevertheless, easily recognizable as such and could be
ignored in standard fitting or parametrization techniques.

4.3 Identification of the Actual Joint. After being validated
on a known dummy joint, the method is applied to the identification
of the actual joint in this section. We recall that the SEMM decou-
pling in Sec. 2.6 is an iterative and weighting the pseudo-inverses in
Eq. (16) helps in faster convergence. The convergence of the joint
identification strategy strongly depends on the weightings and is
further described in the Appendix. In the following discussion on
the actual joint identification, the presented results are, obviously,
extracted from a converged system. The identification process
was validated in two different steps.
In the first step, here called self-validation, all the measured

FRFs are included in the overlay model of the assembled disk
and blade YAB,ov. It is called self-validation because the set of
expanded FRFs YAJB,SEMM used in the identification process of
the joint Y J (Sec. 2.6) are at the same DoF as in YAB,ov. The result-
ing agreement check between the measured and the recoupled
FRFs (YA,SEMM, YJ, and YB,SEMM) should be a trivial comparison
which is shown in Fig. 10. Ideally, the FRF of the recoupled
system labeled as “Coupled with Joint” should overlap the reference
measurement at all frequencies which is however not the case. Note
that the FRF labeled “Reference” was measured on the circle
marked DoF in Fig. 7(c) and was included in the identification pro-
cedure. This shows that, in the joint identification process, the self-
validation step is not so trivial. Indeed, it is assumed that the only
difference between the coupled and uncoupled models was the exis-
tence of joint dynamics. Theoretically, this may be true but practi-
cally other differences exist between the coupled and uncoupled
measurements, and the method cannot discriminate between them.

This is the reason why the joints are generally noisy and sensitive
to measurement and expansion bias errors [4,5,31].
In Fig. 10, the dotted curve named as rigid coupling is the FRF

obtained by rigidly coupling the blade and the disk models
(YA,SEMMand YB,SEMM), without any joint between them. From
the comparison of the rigid coupling and the Reference FRFs, it
can be noted that they are poorly overlapping. This confirms that
the there is a significant contribution of the joint flexibility YJ to
the dynamics of the assembled system, which cannot be modeled
just with a rigid connection between the blade and disk.
In the second step of validation, here called on-board validation,

we kept out from the measured FRFs of the assembled system (disk
plus blade) some FRFs in order to use them only as reference for
validation. This approach is the same as for SEMM validation on
the single component blade or disk in Sec. 4.1. In the field of trans-
fer path analysis (TPA)—a field narrowly related to joint identifica-
tion—this type of validation is often referred to as an on-board or
in-situ validation, and it can be performed in the same measurement
campaign. This is more restrictive than the self-validation step since

(a) (b)

Fig. 9 The reference and identified dynamic stiffness of the dummy joint for: (a) Translational DoF and (b) rotational DoF on
one of the two virtual points depicted on the blade in Fig. 6(a). The identified stiffness plots are obtained after three itera-
tions. In the first iteration, no initial guess was used, i.e., the substructures were left uncoupled.

Fig. 10 The agreement of the FRF before and after identification.
The solid validation line is a measured FRF of the full-system
labeled “Reference” (measured on circle marked DoF in
Fig. 7(c)). The dotted line indicates the coupled results (with
the joint identified by the SEMM procedure). The dash-dotted
line is the would-be rigid coupling (without joint). The coupled
results are in agreement with the full-system reference FRF.
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the measured FRFs considered as reference are not included in the
procedure of the joint identification, but they are kept only for val-
idation purposes.
In Fig. 11, one of the measured FRFs, retained for validation

is named as reference. On the same DoF (see Fig. 7), the FRF
obtained after the identification procedure and recoupled
YA,SEMM, YJ, and YB,SEMM, is labeled as coupled with Joint. The
comparison of these two FRFs is acceptable but, as expected, not
so good as in Fig. 10. The coupled with Joint FRF is more noisy
than the Reference one and its amplitude is higher throughout the
frequency band. However, the resonance frequencies are well cap-
tured and it can be noted that the FRF of the first mode is also well
captured in both amplitude and frequency. The dotted curve named
as rigid coupling is the FRF obtained by rigidly coupling the blade
and the disk models, with a fully rigid connection between them. It
can be observed that FRF with rigid coupling is completely different
from the Reference one even for the first mode. This validation
process, therefore, leads to two main conclusions:

(1) Inserting a joint, after identifying it, between the blade and
the disk models is better than rigidly coupling them, since

the obtained FRFs are more similar to the measured FRFs
of the assembled system.

(2) The set of chosen measurements are suitable to identify the
joint in the frequency range around the first mode, while
they do not lead to an accurate reconstruction of the FRFs
of the jointed system, both in amplitude and in frequency,
for a wider frequency range.

4.4 The Joint. The identified joint is a 24 × 24 DoF system, as
mentioned in Sec. 3. Figure 12 shows the plots of dynamic stiffness
of one of the translational and rotational DoF versus the frequency.
As expected, there are spurious effects which are typical of the iden-
tification process [31]. Their presence indicates that some measure-
ment or expansion errors have propagated in the identified joint.
If the only contribution of the joint was the spring stiffness, then

the dynamic stiffness of Fig. 12 would be a frequency independent
line—known as a zeroth order line. The identified joint dynamic
stiffness does not have a straight horizontal line (constant spring
stiffness); however, it can be easily seen that a curve can be fit on
it. This applies to the dynamic stiffness of both the translational
and of the rotational DoF.
The damping effects should be visible at higher frequencies. If

the interface exhibits a viscous damping, a frequency-dependent
contribution is expected which becomes dominant at higher fre-
quencies. In the case of structural damping, this relation is not as
straightforward. Regardless of the type of damping in the joint, its
effects should be derivable from the imaginary part of the complex
FRF. Unfortunately, due to the limited damping contributions these
effects are under the noise floor of the identification procedure,
which makes fitting the damping parameters inappropriate.

5 Discussion
In Secs. 3 and 4, a real three-dimensional and a complex struc-

tural system of a blade and disk has been tested and expanded
with SEMM in order to identify the joint. This has been achieved
in following steps:

– validating SEMM on blade and disk as stand-alone substruc-
tures through their hybrid models

– identifying a dummy joint’s dynamic stiffness with the sub-
structure hybrid models.

– identifying the actual joint
– self-validation of the recoupled systemFRFwith the actual joint
– on-board validation of the recoupled system FRF with the

actual joint (a more restrictive test for the identification)

Fig. 11 The on-board validation of the joint. The solid validation
line is a measured FRF of the full-system. This FRF (at the DoF
marked with squares in Fig. 7(c)) has not been used to identify
the joint. The dotted line indicates the coupled results (with the
joint identified by the SEMM procedure). The dash-dotted line
is the would-be rigid coupling (without joint). The coupled
results are not in good agreement with the full-system reference
FRF but outperform the rigid coupling.

(a) (b)

Fig. 12 The identified dynamic stiffness of the actual joint for: (a) translational DoF and (b) rotational DoF
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At each step, some discrepancies have been observed and dis-
cussed in the respective sections. As a general observation, the
results are affected by various factors including the constraint mod-
eling, choice of internal (measurements) and interface (identifica-
tion) DoF, and the measurement errors. In this regard, the
following aspects should be considered in the future to reduce
these effects and improve the joint identification:

(1) The disk should be represented with a different constraint or
left unconstrained to reduce the expansion error. As a result,
the coupled system should also be tested with the same
constraint.

(2) In this work, the interface dynamics were expanded by
means of measurement on the internal DoF. It is assumed
that the chosen set of DoF could fully observe the interface
dynamics. However, this may not be entirely true. A different
set of internal DoF could better observe the interface and
would thus require a different measurement setup.

(3) Another important aspect in the strategy is the choice of actual
interface DoF. A preliminary work on this test-case [18]
showed that using two virtual points in the interface was
appropriate for the numerical model in the frequency range
considered. However, a sensitivity analysis of the type of
interface (one, two, or more virtual points or no virtual
point) should be performed on the full scale measurement.

(4) The overestimation of the FRF in Fig. 11 can also be due to
measurement noise and bias errors and thus should be further
investigated.

6 Conclusions
This paper demonstrates that—without the existence of noise—

joint identification is possible even when no measurements on the
interface are performed. This is achieved by observing dynamics
on the internal DoF of stand-alone substructures and expanding to
the interface DoF as proposed in SEMM denoted here substructure
hybrid models. Extending the SEMM to coupled structures and
assuming that the joint dynamics are observed by the internal DoF,
the SEMM decoupling method can then be used to identify the joint.
The method is tested on a real three-dimensional academic geom-

etry of a blade and disk having a dove-tail joint. The decoupling
method is applied to the experimental measurements of the assem-
bled system to identify the actual joint. The method’s identifiability
is tested by coupling the identified joint with the hybrid models of
the blade and disk. To discern the effect of the joint, two step val-
idation is performed: self-validation and on-board validation. The
former case in which all the FRFs are used in the identification,
although a trivial comparison, shows that the joint identification
is influenced by measurement and expansion errors.
In the on-board validation, a set of input and output channel is not

included in the expansion (a more restrictive check) and compared
with re-coupled model (reconstructed FRF by the SEMM decou-
pling method). The resulting reconstructed FRF captures the first
mode’s estimation fairly well. However, it altogether overestimates
and fails to capture the FRF amplitude for other modes in a wider
frequency band. The failure can be attributed to the inability to suf-
ficiently observe and control the true joint, either due to a wrong
assumption on the joint geometry (by means of choice of interface
DoF) or due to excessive noise and bias errors in the measurements.
Unfortunately, these are problems inherent to all FRF-based multi-
DoF joint identification techniques and are not restricted to the
SEMM-based methodology. The sensitivity of this method to the
mentioned problems with respect to comparable methods is not
easily quantified and remains to be tested.
In our future research, we aim at improving the joint decoupling

by addressing some of the issues regarding measurement and
expansion errors discussed in the preceding section. The method
will then be extended to identify all the joints of the bladed-disk
—being different from each other—leading to experimental under-
standing of joint mistuning effects in bladed-disks.
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Appendix: Convergence of the Iterative Method With
Weighted Pseudo Inverses
We recall from Sec. 2.6 that the assembled system’s hybrid

model was computed by the weighted pseudo inverses in Eqs.
(21) and (22). This helps in a faster convergence of the joint prop-
erties by assigning higher weights to the physical boundary DoF ub
and expanding the measured dynamics in a weighted least squares
sense.
Figure 13 shows Euclidean norm of the expansion error at each

iteration step n for different weights wb assigned to the physical
boundary DoF ub. The weights of the remaining DoF set are, by
default, set to 1. When no weighting value is used for ub, the con-
vergence is not ensured even after 1000 iterations. This means that
the measured dynamics are being expanded equally in all DoF.
Thus, the joint or boundary DoF updating and the identification
takes more iterations. If SEMM is forced to expand or observe
only the boundary DoF, a higher weight is assigned to them. Evi-
dently, the method converges faster when a high weighting value
is used for ub in Fig. 13. To test the method’s convergence, the
weights as high as wb= 1 × 1014 are used. It took only three iter-
ations to convergence at this weight. This implies that SEMM
has ignored the internal DoF almost entirely and focused the
expansion to the boundary and thus it converged to a hybrid
model with minimum expansion error. Such high weightings,
though guarantee the method’s convergence, were avoided in
the joint identification presented in Sec. 4 due to possible numer-
ical issues.
The choice of weights was wb= 1 × 108 for the presented results,

unless otherwise stated, due to the fact that the order of stiffness
from Fig. 12 is between 107 and 108.
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Fig. 13 Effect of weights on the convergence of Euclidean norm
of the expansion error between the coupled parentmodel and the
measured overlay model. The physical boundary DoF ub is
weighted while computing the pseudo inverses, as per Eqs.
(21) and (22).
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[22] Čepon, G., Drozg, A., and Boltežar, M., 2019, “Introduction of Line Contact in
Frequency-based Substructuring Process Using Measured Rotational Degrees
of Freedom,” J. Phys. Conference Series, 1264, pp. 344–355.
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