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Abstract

Direct SLAM methods have drawn much attention in the recent years since they
have achieved exceptional performance on visual odometry tasks. However, they are
prone to suffer from lighting or weather changes. To overcome this, we employ an
adapted U-Net that translates the colors of regular images into a high-dimensional
feature space. The network is trained to be insensitive to lighting effects as a Siamese
U-Net, using labels that are automatically generated from synthetic datasets, with-
out any human intervention. To generate more consistent high-dimensional feature
maps, we propose the Cross Triplet Loss utilizing cross information in two im-
ages under different domains, and a new sampling method which can generate a
wider range of samples by adding weights while sampling. Experiments on different
weather and sequences with different textures show that the proposed method out-
performs classical feature extraction methods and state-of-art deep learned feature
extraction methods.
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Chapter 1

Introduction

1.1 Introduction

Simultaneous localization and mapping (SLAM) consists in the concurrent con-
struction of a model of the environment (the map) and the estimation of the state
of the robot in that map. While SLAM might seem redundant at first (e.g., a place
recognition module would suffice for topological mapping), the map offers a natural
defense against wrong data association and perceptual aliasing, where similarly look-
ing scenes that correspond to distinct locations in the environment would deceive
a naive place recognition approach. In addition, the SLAM map provides a way to
predict and validate future measurements not only visually but also in a geometrical
way. We believe that flawless spatial awareness is a key aspect to achieving truly
autonomous and intelligent robots.

Depending on the type of processing of input sensor data, visual SLAM can be di-
vided into two major approaches: feature-based SLAM [Mur-Artal and Tardos, 2017]
and the more recent direct SLAM [Engel et al., 2016]. The latter has shown great
performance on different tasks such as dense environment reconstruction [Stühmer
et al., 2010], RGB-D pose tracking [Kerl et al., 2013], and dense mapping and pose
tracking [Engel et al., 2016]. Since they utilize the input data from the sensor di-
rectly rather than extracting a heuristically-selected sparse subset of feature points,
direct methods can build a very dense geometrical map of the environment, re-
sulting in a boost in precision and robustness. Nevertheless, Compared to indirect
feature-based methods, direct methods suffer from one drawback: Since they di-
rectly optimize photometric errors, they are naturally more sensitive to brightness
variances than feature-based methods. For instance, non-Lambertian reflectance,
changing illumination, or seasonal changes pose a special challenge to them.

The recent trend of learning to solve problems from data (machine learning) has
shown that deep neural networks can achieve superior results in generating consis-
tent and strong visual features for various visual recognition tasks, given a sufficient
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amount of training data. In recent years, researchers have made efforts to solve the
problem of visual matching at multi-daytimes or different weathers. To transform
between multi-time images and multi-weather images, unsupervised cycle GANs are
used [Porav et al., 2018, Liu et al., 2017]. Instead of adapting input image domain
itself, however, the question arises of why would SLAM system be constrained to
1 channel (grey) or 3 channels (color) input images. Could there be alternative,
high-dimensional representations to increase matching robustness as well as pose
and map optimization speed?

Inspired by [Kerl et al., 2013], in which the authors propose an extension of the
RGB-D camera tracker combining color consistency and geometric consistency of
subsequent RGB-D images, in this work we generate multi-dimensional feature maps
that are invariant to lighting and weather changes. Thereby we can address the
problem of brightness variance under different daytime or weather. We employ a
Siamese U-Net trained with labels that are automatically generated from synthetic
datasets, without any human intervention. Compared to the original raw sensor
data, the generated feature maps are better suited for direct SLAM methods in two
respects: first, it produces a visual representation that translates brightness values
into semantic labels that, for instance, bring together deviating projections of the
same object or keep apart different objects of the same appearance; and second, it
produces a representation that enhances the input data to remedy other limitations
of direct methods like their limited basin of attraction for pose optimization (i.e.,
their sensitivity to an accurate initial pose estimation).

To study what factors affect the performance of the network, we compare differ-
ent correspondence sampling methods for the definition of training losses and show
that sampling plays a very important role. In detail, we analyze existing sampling
strategies for the dense correspondences learning task and propose a novel sampling
selection method on the generated correspondences of the final output feature layer,
where samples are drawn uniformly according to their probability density distribu-
tion relative to their distances in high dimension space – on the fly. This corrects
the bias induced by the geometry of higher dimensional feature maps, while at the
same time ensuring that any data point has its fair chance of being sampled. Our
proposed sampling leads to a low variance of gradients and thus stabilizes training,
resulting in qualitatively better feature maps.

To learn to generate more consistent feature maps, the loss function also makes a
big difference. We have studied several loss formulations and propose a new form of
combing the triplet loss and the contrastive loss, which uses a similar formulation
as the cyclic GAN loss. We not only let the network learn to increase the distance
between positive correspondences and negative correspondences by at least margin
M , but also to constrain the negative samples from two branches farther away than
margin M and, in the meantime, put the positive and negative samples from two
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branches away by at least margin M . This further constrains the learned features,
making them more consistent.

We have tested our learned high-dimensional feature maps with different metrics on
the Carla benchmark [von Stumberg et al., 2020], outperforming the traditional and
several previously-learned dense correspondences maps.

We summarize the contribution of this thesis as follows:

• We replace raw intensities (grayscale) with learned feature maps, which on
the one hand are prone to lighting and weather change, and on the other
hand provide more information through high-dimensional, informative feature
vectors.

• We study and analyze different sampling methods for learning high-dimensional
feature maps and propose a new sampling method to make the training more
stable and obtain a quantitatively better result.

• We propose a new loss function that combines the advantages of contrastive
loss and triplet loss in order to give the network a more strict constraint,
whereby it can generate more consistent feature maps.

1.2 Structure

This report is divided into 6 Chapters. In Chapter 2 related works are reviewed. In
Chapter 3 brief introductions about the siamese network, the triplet network, and
the Fully Convolutional Neural Network (FCNN) are given. In Chapter 4 the tech-
nical approaches used in the thesis are described in detail from three aspects: the
network structure, the loss function, and the ampling methods for hard correspon-
dences, and we propose a new loss function and a new sampling method, followed
by their implementation details. In Chapter 5, first the dataset and the metrics for
the experiments are shown. Additionally, an ablation study is conducted to evaluate
our proposed loss and sampling strategy. Our method is then compared with several
classical and state-of-art deep learning methods. In the last Chapter, the conclusion
is drawn and future work is discussed.
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Chapter 2

Related work

2.1 SLAM and Deep Learning

Direct vs. indirect SLAM: The classical methods tackle the problem of real-
time structure from motion (SfM) or visual simultaneous localization and mapping
(SLAM) by extracting a set of feature points first, and then the pose estimation
and environment map building are performed based on an intermediate process-
ing of these feature points. Typical previous works include MonoSLAM [Davison
et al., 2007], PTAM [Klein and Murray, 2007], and ORB-SLAM [Mur-Artal et al.,
2015, Mur-Artal and Tardos, 2017]. Such classical approaches are indirect in the
sense that they do not compute the camera motion and the scene structure directly
from the sensors data, but rather by extracting and matching a set of key-points;
sometimes, lines or curves segments are also used [Pumarola et al., 2017].
Another option is to skip the pre-processing step and directly use the actual sensor
measurements – light received from a certain direction over a certain time period,
which is called the direct method [Engel et al., 2016]. Direct approaches aim at esti-
mating camera motion and dense or semi-dense scene geometry directly from input
images. This has the following advantages: first, direct methods tend to be more ro-
bust to noise; second, they provide a semi-dense geometric reconstruction; and last,
direct approaches are typically faster. Popular methods are DTAM [Newcombe
et al., 2011],RGBD-SLAM [Kerl et al., 2013], LSD-SLAM [Engel et al., 2014], and
DSO [Engel et al., 2016]. However, despite their popularity, direct methods have the
significant shortcoming of the very fundamental assumption of brightness constancy
in a short time (i.e., several consecutive images in a sequence). This assumption,
however, does not always hold due to different weather, daytime, and even drasti-
cally changing lights from one room to another. [Engel et al., 2016] makes an effort
to eliminate brightness variations via a complete photometric calibration. In our
work, we generate consistent feature maps in place of raw images that are immune
to lighting and weather changing, serving better as an input for direct methods.

SLAM using deep learning: In the recent years, deep learning has shown superior
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results on improving the robustness and the precision of a SLAM system in different
parts:

• Deep learning enhanced front-end:

– Replace the classical features with deep learned features: Tang et
al. proposed to replace the ORB in systems such as ORB-SLAM2 [Mur-
Artal and Tardos, 2017] with a binary descriptor vector. A convolutional
neural network is used to extract the keypoints and the descriptors. By
merging deep learned features into the ORB-SLAM2, improved ATE are
reported in general and hardest cases.

– Deep learning for direct image alignment: in [Gomez-Ojeda et al.,
2018] the authors proposed to enhance the input sequences for visual
odometry. To overcome the challenges in high dynamic range environ-
ments or difficult illumination conditions, they propose two different deep
neural networks to enhance the high gradient regions and achieve lower
RMSE errors compared to the original DSO running results.

• Deep learned depth map:
Monocular visual odometry approaches are prone to scale drift and require suf-
ficient motion parallax in successive frames for motion estimation and geom-
etry reconstruction without taking the advantages of depth maps in methods
based on RGB-D sensors. Godard et al. [Godard et al., 2017] generate disparity
images from RGB-D data, and refine their results on the generated disparity
image leading to state-of-art the depth estimation results. Yang [Yang et al.,
2018] leverage the estimated depth prediction result in the state-of-art direct
monocular visual odometry system DSO and achieve comparable performance
to the state-of-art stereo method.

• Deep learning for loop closure (visual localization):
Visual-based localization (VBL) consists of retrieving the pose (position and
orientation) of a visual query material within a known space representation.
For instance, recovering the pose of a camera that took a given photography
according to a set of geo-localized images or a 3D model is a simple illustration
of such a localization system [Piasco et al., 2018]. In SLAM system, visual
localization serves as a loop closure detector when the tracking failed or as
the anchor to perform global optimization across all the estimated poses from
the last same place. The classical method (e.g., ORB-SLAM [Mur-Artal and
Tardos, 2017]) extract the ORB features when reading in every image and
store the ORB features in (Visual) Bag of Words (BoW) [Gálvez-López and
Tardós, 2012]. While performing place recognition, the BoWs of target images
are matched with 3D points in the estimated map to determine if the camera
has returned to the same place. In 2015, Kendall et al. [Kendall et al., 2015]
proposed to learn an end-to-end neural network to predict the pose of an input
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image. Learned from the generated data from structure from motion (SFM),
the network regresses the 6D pose of the input image. To account for the
challenging illumination changes or scenery changes in different daytime or
weathers, Porav [Porav et al., 2018] use a cyclic GAN to perform the domains
transformation in the first place, and classical feature matching is performed
in the transformed image domain. Unlike them, we propose to learn high-
dimensional feature maps without transforming the original images.

2.2 Deep Learning for Correspondence Learning

Deep dense correspondences: The feature point descriptor learning works based
on image patches have shown that it is possible to learn compact image descriptors
that significantly outperform handcrafted methods such as SIFT or SURF [Luo
et al., 2019,Balntas et al., 2016,Hoffer and Ailon, 2015,Zagoruyko and Komodakis,
2015]. However, the above methods have different shortcomings like the difficulty of
defining a universal good margin M in the contrastive loss and the vanishing gradi-
ent due to the easy negative pairs in the triplet loss. To address the above mentioned
problems, Choy et al. [Choy et al., 2016] published a method to learn a dense map
of correspondences from the input images. In their work, a novel correspondence
contrastive loss is adopted and thousands of positive correspondences and ten times
more of negative correspondences can be used for each batch, such that the CNN
converges much faster for a single image pair, allowing faster test time. Similarly,
Wohlhart et al. [Wohlhart and Lepetit, 2015] introduce a method that uses a CNN
to map the input image to a compact and discriminative descriptor. It uses a novel
triplet loss L = max

(
0, 1 − ‖si−sk‖2

‖si−sj‖2+m

)
to enlarge the Euclidean distance between

two different objects and between the same objects from different views. The formu-
lation of the triplet loss does not suffer from vanishing gradients when the distance
of dissimilar pairs is very small, learning a Mahalanobis distance [Hoffer and Ailon,
2015,Wang et al., 2014,Mishchuk et al., 2017,Piasco et al., 2019]. Inspired by [Choy
et al., 2016], Schmidt et al. [Schmidt et al., 2016] train a fully convolutional net-
work (FCN) with a contrastive loss to produce viewpoint- and lighting-invariant
dense descriptors, achieving superior single-frame localization results without us-
ing any labels to identify correspondences between separate videos. In [Florence
et al., 2018] the authors train a deep neural network using the similar pixel-wise
contrastive loss but aiming to find consistent dense correspondences across objects
with data association provided by 3D geometry. The dense map of correspondences
is object dependent and it is used for robotics manipulation. Based on the pixel-wise
contrastive loss and aiming to improve robustness for larger baselines, Stumberg et
al. [von Stumberg et al., 2020] propose the Gauss-Newton loss function, which has
a probabilistic derivation, and the authors apply their resulting features to pose es-
timation. In this way, they outperform the state-of-art direct and indirect methods
for SLAM on their proposed task of relocalization tracking.
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Chapter 3

Background

We are interested in learning a dense visual descriptor mapping which is a non-linear
function mapping a full-resolution RGB image to a dense descriptor, namely from
RW×H×3 to RW×H×D, i.e., mapping each pixel to a vector of length D. To preserve
similarity a siamese architecture [Bromley et al., 1994] is used for training. In this
chapter we give a short introduction about the siamese network and our selected
network, the U-Net [Ronneberger et al., 2015], which will serve as the branch for
the siamese network.

(a) Siamese network (b) Pseudo-siamese network

Figure 3.1: (a) A siamese network has two equal branches sharing their weights,
(b) while a pseudo-siamese network has two different branches that do not share
weights.
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3.1 Siamese Network and Triplet Network

Network Structure: In a siamese network two identical neural networks are placed
in parallel, each branch in a siamese network maps the input into new space and
presents the information in the new space, and the final outputs in the new space
are fed into another neural network and then their similarity is compared either by
minimizing an Euclidean distance, or directly using a similarity loss such as con-
trastive loss, which will be explained in Section 4.1.2, thereby the similarity of two
inputs are compared. The input of a siamese network is a pair of positive samples
or a pair of negative samples during each training step, depending on the similarity
of the two samples. The basic structure of a siamese network is shown in Fig. 3.1(a).

While siamese networks use two equal branches sharing weights to learn the similar-
ity, one variant is to use two different network as branches without sharing the
weights, called pseudo-siamese network, shown in Fig. 3.1(b). The pseudo-
siamese network increases the number of parameters, generally with a large com-
plexity. On the contrary, this also makes it more flexible. Benefiting from its
un-similarity in network structure, pseudo-siamese networks are used to learn the
differences in images, e.g. in [Mou et al., 2017] a pseudo-siamese network was used
to perform change detection in images and in [Hughes et al., 2018] the hard nega-
tives mining is performed via a pseudo-siamese GAN.

If one additional branch is added, the network then becomes a triplet network,
as shown in Figure 3.2. The input of a triplet network is a triplet consisting of
an anchor sample xa, a positive sample x+ and a negative sample x−. These three
samples relate to each other by a similarity relationship, i.e., the positive example
is more similar to the anchor than to the negative sample.

Objectives: Let f(x) be the mapping function of each branch, for two positive
samples x+a and x+b and two negative samples x−a and x+b , the objective of siamese
network is formulated as following:

L =
(
si‖x+a − x+b ‖22 + (1− si) max

(
0,M − ‖x−a − x−b ‖2

)2)
(3.1)

For positive samples we denote si = 1 and for negative samples si = 0, M is the
margin. This loss function is called contrastive loss, which aims at minimizing
the distance between positive correspondences and maximizing the distance between
the negative correspondences from at least margin M .

Different from the contrastive loss, the triplet loss only constrains the distance of
positive correspondences and negative correspondences to be margin M apart. Take
a triplet (xa, x+, x−) as input and f(x) be the mapping function of each branch,
the triplet loss is formulated as follows:

L =
(
‖xa − x+‖22 + max (0,M − ‖xa − x−‖2)2

)
(3.2)
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Figure 3.2: The triplet network takes a triplet (xa, x+, x−) as input, while sharing
the weights.

Applications: Siamese networks and triplet networks have been widely used to
learn similarity in different tasks, which we summarize as similarity learning.
Similarity learning aims at learning to produce consistent representations on the
basis of the similarity or dissimilarity of training data. They are employed in many
areas like face verification, person re-identification, and descriptors learning. There
is a vast corpus of previous works that use siamese architectures of CNNs to learn
the similarity, from which we next select the relevant ones. Sun et al. [Sun et al.,
2014] presented a joint identification-verification approach for learning face verifica-
tion with an Euclidean distance-based contrastive loss. Novel Deep IDentification-
verification features (DeepID2) are compared for different faces. FaceNet [Schroff
et al., 2015] in turn uses a triplet network that combines the Inception network
and an 8-layer CNN which learns to align face patches during training in order to
perform face verification, recognition, and clustering. The method trains the net-
work on triplets of increasing difficulty using a negative example mining technique.
Another success of triplet network is in person re-identification, Hermans et al. [Her-
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mans et al., 2017] proposed to use triplet network and actively mining the hardest
positives and hardest negatives mining.

More relevant work in our context is [Simo-Serra et al., 2015], the authors use a
siamese network to learn a discriminative representation of patches from different
views of a 3D pointcloud; they use the subtractive normalized CNN outputs of the
siamese networks as descriptor, and learn a discriminative result with the contrastive
loss. Similar work in [Balntas et al., 2016] also uses the feature output of the net-
work to represent the learned descriptor without any metric layers, but using a triplet
loss. Similarly, Hoffer et al. [Hoffer and Ailon, 2015] add a metric layer after the
feature outputs from a CNN; the metric layer serves as a L2 distance layer between
the embedded representation, which is also introduced by Zagotuyko [Zagoruyko
and Komodakis, 2015] and is reported to perform better than generic L2 matching,
while leveraging different variants of siamese networks.

Figure 3.3: The original U-Net architecture; the lowest resolution is 32× 32.

3.2 Fully Convolutional Neural Network

The objective of our work is to learn same-sized feature maps as the original input
images. To achieve this goal, the network of each branch should have such decoders,
whose final output is the same size as the input. We choose the U-Net [Ronneberger
et al., 2015] for each branch. Next we will give a brief introduction of the U-Net.
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The U-Net was firstly used for the segmentation of medical imaging. The original
network (as shown in Figure 3.3) consists of a down-sampling path (encoder) and
an up-sampling path (decoder). The encoder follows the typical architecture of two
3× 3 convolutions, each followed by a rectified linear unit (ReLU) and a 2× 2 max
pooling operation with stride 2 for down-sampling. In the original U-Net, the con-
volution is unpadded, which resulted in the loss of a pixel on each side after every
convolutional layer. In contrast to that, we pad the convolution block with zeros
to preserve the size of the feature maps to be same for the convolution operation.
Meanwhile, inspired by [Ioffe and Szegedy, 2015], we add batch normalization (BN)
layers after each 3 × 3 convolution block to get rid of the influence of internal co-
variate shift, which accelerated the training process in our experiment. After each
down-sampling, the channels of feature maps are doubled. For the up-sampling part,
the novel idea is to use a symmetric structure as the encoder part, the only differ-
ence is that for the up-sampling operation, the author used transposed convolution
operation and then concatenated with the output of the convolutional layer from
same level of encoder. At the final layer, a 1 × 1 convolution is used to map each
component feature vector to the desired number of classes.

The U-Net has been widely used in many applications. Many new network designs
have been using the core idea of the U-Net: an Encoder-Decoder structure with
intermediate concatenation. In oder to see deeply why an U-Net-like structure is so
popular, we summarize the reasons in the following:

• The U-Net is a fully convolutional neural network (FCN) with encoder-decoder
architecture, which has several benefits.

– First, since there is no fully-connected layer, this network can map arbi-
trarily large images to desired dense descriptors.

– Second, for overlapping regions some of the activations can be reused,
which reduces the computational cost.

• The skip connections provide local information from the down-sampling path
with the contextual information in the up-sampling path to finally obtain a
general information combining localization and context, which is necessary to
perform a pixel-wise prediction.

• The structure of the U-Net is symmetric, which provides more convolution
layers in the up-sampling path, thus more latent information can be learned.
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Chapter 4

Technical Approach

In this chapter we will explain our approach in detail, this chapter is divided into
two parts. In the first part we will compare different techniques used in up-sampling
in decoder and present the detailed network structure. Then we will discuss different
losses and proposed a new loss formulation to the best use in our task. Finally we
will study the pros and cons of different sampling methods and propose our sampling
method focusing on our task.

4.1 Proposed Method

4.1.1 Network Architecture

The structure of our network is shown in Figure 4.6.

(a) Nearest Neighbor Interpolation (b) Bilinear Interpolation

Figure 4.1: Different methods of interpolation.

Up-sampling: The encoder part of our own implementation follows the original
U-Net structure, which will be described in the Implementation Section 4.2. For the
decoder part we use different up-sampling methods. In the original U-Net paper,
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Ronneberger [Ronneberger et al., 2015] use the stride-half convolution, also known as
deconvolution, to up-sample the features of low resolution to double-sized features.
Fig. 4.2 gives an example for a deconvolution with 3 × 3 kernel and a half stride.
From the leftmost figure it can be observed that 8 out of 9 pixels are zeros, but still
they contribute to the computation, wasting computational resources. Other than
that, if we take a look at the third figure from left to right, it is notable that 2 out of
9 pixels are non-zeros, while in the leftmost only 1 out of 9 is non-zero, which means
that different amounts of information enter the computation at different parts of the
deconvolution, which is not optimal and yields artifacts.

Figure 4.2: An example for 3×3 kernel stride-half convolution, namely double sized
up-sampling.

In recent years, it has been widespread to use the Nearest Neighbor Interpolation and
the Bilinear Interpolation [von Stumberg et al., 2020], which can be seen in Figure
4.1. In the Bilinear Interpolation method the spaces are filled with the interpolated
values of the nearby pixel values. First by interpolating between i and j:

i = A+ w ∗ B − A
W

(4.1)

j = C + w ∗ D − C
W

(4.2)

and then by interpolating Y :

Y = i+ h ∗ j − i
H

(4.3)

For both interpolations a 1 × 1 convolution always follows in order for the net to
be able to learn the best presentation of the interpolated features maps with high
resolution.

Another novel idea called Sub-Pixel Convolution is proposed by Shi et al. in 2016 [Shi
et al., 2016], in which they rearrange every pixel in each grid cell into the little r× r
grids that are located throughout, following a normal convolution. The last two
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Figure 4.3: Pixel shuffle operation for r = 3.

steps in Fig. 4.3 show Sub-Pixel Convolution; the elements of H × W × r2C are
rearranged to form rH × rW × C feature channels. Before the pixel shuffle oper-
ation, a convolution with the size of weights C × r2C × k × k is performed in the
lower resolution space. Compared with the above mentioned interpolation method,
this requires less activation calculations since the interpolation is followed by a con-
volution in high resolution space, and it performs r2 times more computation of
activations. Besides the reduction of the computation, a recent work based on the
Attention Residual Network for image classification [Liang et al., 2019] also reports
some performance improvement; they report a test error reduction by 0.17% using
pixel shuffle up-sampling compared with interpolation methods.

Checkerboard artifacts: A major drawback for deconvolution are the checker-
board artifacts. This happens when the deconvolution has an ”uneven overlap”. In
particular, as shown in Figure 4.4 [Odena et al., 2016], deconvolution has an uneven
overlap when the kernel size (the output window size) is not divisible by the stride
(the spacing between points on the top). While the network could, in principle,
carefully learn weights to avoid this result, in practice neural networks struggle to
avoid it completely.

Figure 4.4: Uneven overlap for kernel size 3 and stride 2.

In the up-sampling path of the U-Net, the up-sampling blocks are repeated for
multiple times (4 times for our implementation), iteratively building up the feature
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maps with the same size as the input image from the bottleneck of the lowest res-
olution descriptions. These stacked deconvolution operations in practice compound
and create artifacts on a variety of scales, which are illustrated in Figure 4.5 [Odena
et al., 2016].

Figure 4.5: Stacked uneven overlaps for kernel size 3 and stride 2.

In the pixel shuffle convolution operation similar checkerboard artifacts are observed,
but because of the repeating initialization problem when the convolutional kernel is
initialized, the 9 pixels in this 3 × 3 grid are going to be random values and thus
totally different. While the next set of 9 pixels are randomly different to each other,
they are very similar to their corresponding pixels in the previous 3× 3 section. As
the network tries to optimize the weights, it is starting from this repeating 3 × 3
starting point, leading to repeated 3× 3 patterns, as shown in Figure 4.3. To avoid
these checkerboard patterns, Aitken et al. [Aitken et al., 2017] propose a novel ini-
tialization method which is named ICNR. In order to keep these 3 × 3 pixels the
same, one channel out of the r2 sets of channels is randomly initialized; then, in
the next step these randomly initialized weights are copied to the remaining r2 − 1
channels. In this way, each of the 3× 3 regions will be equal.

The results of the three different up-sampling techniques will be demonstrated in
Section 5.

4.1.2 Loss Function

As mentioned before, there exist two types of losses to learn dense correspon-
dences: contrastive loss [Choy et al., 2016,Florence et al., 2018,von Stumberg et al.,
2020, Schmidt et al., 2016] and triplet loss [Wohlhart and Lepetit, 2015]. Triplet
losses are generally reported to outperform siamese losses, sometimes by a large
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margin. Hoffer and Ailon [Hoffer and Ailon, 2015] report that siamese losses failed
completely in their experiments while triplet losses performed well. To give this an
illustration, suppose we are given faces of two different people, one is smiling, while
the other one is upset, and we tell to the net that these are negative (dissimilar)
samples. The question that arises here is: what aspect makes them dissimilar? Is
it because the images show two different people? Or is it because of the different
emotions? If we had some additional information telling that a smiling face and a
third face with a smiling emotion are similar, then it would be clear that we are
more interested in putting the faces with similar emotions together [Keller et al.,
2018]. This example indicates that only pairs of samples will fail in some tasks due
to the lack of context. Triplets add context by removing ambiguity.

Next we will formalize of two losses from our perspective of view and discuss the
advantages and disadvantages of both losses.

Figure 4.6: Detailed structure of our network. Note that we take out every level of
feature maps by a 1 × 1 convolution operation to leverage the hierarchical feature
maps of U-Net.

Contrastive loss and triplet loss: Given 2 input images Ia and Ib, the two U-
Net branches will output the pyramid feature maps of F l

a and F l
b , in which l is the

different scale level in the output feature pyramid. The contrastive loss takes the
features at coordinates xai and xbi , F

l
a(x

a
i ) F

l
b(x

b
i). If xai and xbi correspond to the

same 3D vertex, we treat this pair as a positive pair and encourage them to be close
in feature space; otherwise we want them to be at least margin M apart [Choy et al.,
2016]. The full loss is calculated as follows:
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Lcontr =
∑
l

(
1

Npos

Npos∑
i

siD
l
feat

2
+

1

Nneg

Nneg∑
i

(1− si) max
(
0,M −Dl

feat

)2)
(4.4)

where Dl
feat(·) is the L2 Euclidean distance between the features at two coordinates:

Dl
feat =‖ F l

a(x
a
i )− F l

b(x
b
i) ‖2; for positive pairs we denote si = 1 and for negative

pairs si = 0.

The triplet loss takes a triplet as an input. A triplet (ta, tp, tn) is formed such that
the following condition is fulfilled: ta, tp stem from the same 3D vertex, and ta, tn
from the different one. The triplet loss can be defined as follows:

Ltriplet =
∑
l

 1

Ntriplets

Ntriplets∑
i

max
(
0, Dl

ap −Dl
an +M

)2 (4.5)

in which Dl
ap(·) =‖ ta − tp ‖2 and Dl

an(·) =‖ ta − tn ‖2 present the distances between
the positive pairs and negative pairs.

Discussion: One potential drawback of the contrastive loss is that a constant mar-
gin M has to be selected for all pairs of negative samples. This leads to the problem
that all the negative pairs corresponding to the different 3D points are embedded in
the same small space as the visually similar ones, despite different viewpoint, lighting
condition, weathers etc. [Wu et al., 2017]. In contrast, the triplet loss merely tries
to keep all positives closer to any negatives for each triplet, and does not impose a
constant margin M , which allows the embedding space to be arbitrarily distorted.

However, in triplet loss another problem arises. In the process of learning dense
correspondence maps, we would like to have the positive pairs as close as possible;
while contrastive loss will limit the distance between positives as close to zero as
possible, triplet loss only considers to push the distances between positives and neg-
atives as far as possible, until a margin M .

Chen et al. [Chen et al., 2017] proposed an improved loss function based on the
triplet loss, coined quadruplet loss, which aims to push away negative pairs from
positive pairs with respect to different pairs:

Lquad =
∑
l

 1

Ntriplets

Ntriplets∑
i

max
(
0, Dl

ap −Dl
an +M1

)2+

∑
l

 1

Ntriplets

Ntriplets∑
i

max
(
0, Dl

ap −Dl
nn +M2

)2 (4.6)
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The first term is the same as in Eq. (4.5), which focuses on the relative distances
between positive and negative pairs w.r.t. the same feature points; the second term
is the new constraint considering the maximization of the distance between negative-
negative pairs and anchor positive pairs to a particular margin; and by negative-
negative pairs we mean the negatives sampled on each image.

The question will arise of whether the Euclidean norm is the right metric of the real
difference of the samples. As well known, to compare two high-dimensional vectors,
we have these different criteria:

D = ‖xa − xb‖2 (4.7)

D = ‖xa − xb‖ (4.8)

D =
xa

Txb√
xaTxaxbTxb

(4.9)

The first two forms are widely used in deep metric learning. The form in Eq. (4.8) is
the absolute distance, which has been used in [Hao et al., 2018], but the shortcoming
of the absolute loss is that it is not differentiable at some point, more specifically
when the distance is equal to zero. In Eq. (4.7) (Euclidean norm) the problem is
that it cannot distinguish the magnitude of the vectors, but this is not a problem
in our case, since we have L2 normalized final feature vectors. The final distance
could be simplified to

D = xa
Txb (4.10)

However in the experiment, we find that for these two different criteria, the final
performance dose not make much difference.

Our objectives: Different from metric learning or patch matching in the similarity
learning task, where in a triplet (ta, tp, tn) each element is unique, e.g. in the task
of face recognition, ta is the face of one person, tp is the face of the same person but
from a different view of perspective, and tn is the face of a different person, or in
patch matching task, ta could be a patch which include a pattern of paintings, and
tp is the same pattern but in a different view of scale or different lighting, tn is the
patch containing a different pattern. In contrast, in our task, since we are matching
the correspondence of 2 different images. Taking 2 images Ia, Ib, and the positive
pairs xa+ and xb+ and xa− and xb− are on the corresponding images, in this case, the
positive part(ta, tp) in triplet are xa+ and xb+, but for the tn there are two directions:

• If we treat Ia as the anchor image, then the anchor is xa+, positive triplet is xb+,
the negative triplet is then xb−. Dl

ap(·) =‖ xa+ − xb+ ‖2, Dl
an(·) =‖ xa+ − xb− ‖2,

and we define La→b as triplet loss from Ia to Ib:

La→b =
∑
l

 1

Ntriplets

Ntriplets∑
i

max
(
0, ‖ xa+ − xb+ ‖2 − ‖ xa+ − xb− ‖2 +M

)2
(4.11)
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• If we treat Ib as the anchor image, then the anchor is xb+, positive triplet is xa+,
the negative triplet is then xa−. Similar to (4.11) we define triplet loss from Ib
to Ia : Lb→a as:

Lb→a =
∑
l

 1

Ntriplets

Ntriplets∑
i

max
(
0, ‖ xa+ − xb+ ‖2 − ‖ xb+ − xa− ‖2 +M

)2
(4.12)

We formulate our objective for triplet loss as

Lab =
1

2
(La→b + Lb→a) (4.13)

Now consider the positive part of contrastive loss, the objective is to pull the positive
pairs as close as possible, which leads to the problem of generalization: If two
positive pairs are pulled together, the pixels in its neighbor are also pulled together,
resulting in the same feature vectors value near the positive pairs, thus affecting the
re-projection errors in direct SLAM. Instead of pulling the positive pairs as close as
possible, we aim to learn to pull the positives as close in a margin as possible, which
are formulated as following:

Lpos =
∑
l

(
1

Npos

Npos∑
i

(Dl
feat −Mpos)

2

)
(4.14)

The explanation of two different positive objectives is shown in Fig. 4.7.

The full objective is formulated as follows:

L = Lpos + λLab (4.15)

4.1.3 Hard Negative Mining

From Eq. (4.4) we notice that not all negative pairs contribute to the final hinge
loss. Only those pairs, for which the Euclidean norm of the difference between the
negatives is smaller than the margin M , take some effect on the back-propagation
of the negative loss. The same problem appears in Eq. (4.5). According to the
different distance boundaries the triplet can be divided into three groups:

1. Easy triplets where Dap +M < Dan; it will contribute nothing to the triplet
loss.

2. Hard triplets where Dan < Dap; it is hard to push negative pairs apart from
positive pairs.
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(a) (b)

(c) (d)

Figure 4.7: Examples for two different positive losses. Left column: (a) shows the
original positive loss before learning, (c) shows how positive samples change after
learning. Right column: (b) shows the margin-based positive loss before learning,
(c) shows how positive samples change after learning. This shows that after the loss
has converged, the positives samples are not in the same values.

3. Semi-hard triplets where Dap < Dan < Dap + M ; these contribute to the
triplet loss and are easier to separate.

An important decision for training with triplet loss is the negatives selection or
triplet mining. The strategy chosen will have a high impact on the training ef-
ficiency and final performance. An obvious appreciation is that training with easy
triplets should be avoided, since their resulting loss will be zero. Very similarly for
contrastive loss, the samples of positive correspondences and negative correspon-
dences can also be divided into three groups, but with a different criteria:

1. Easy negatives where Dneg > M ; negative loss will be zero, thus these
negative pairs contribute nothing to the gradient.
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(a) Triplet loss (b) Contrastive loss

Figure 4.8: Metric space for triplet loss and contrastive loss.

2. Hard negatives where Dneg < Dpos < M ; these negatives are important; we
will benefit most by putting these negatives apart.

3. Semi-hard negatives where Dpos < Dneg; these contribute to the negative
loss and are easier to separate.

Among all different losses discussed in the last subsection, the different samples can
be divided into the above-mentioned classes, as shown in Fig. 4.8. Most works in the
literature consider negative mining as a very important step: Wu et al. [Wu et al.,
2017] claim that in deep metric learning the sample selection plays an equal or more
important role than the loss, and they propose a sampling method leading to a low
variance of gradients and thus a more stable training, resulting in an improvement
irrespective of the loss function. In [Florence et al., 2018] Florence proposed to
uniformly mine only the hard negative samples for cross objects contrastive loss,
which are the hard negatives and semi-hard negatives in Fig. 4.8(b). These negatives
fulfill the condition Dneg < M , making the negative loss always greater than zero:

M −Dneg > 0 (4.16)

thus the mined negatives will always contribute to the negative loss and accelerate
the convergence of the negatives loss.

This mining method is, however, not optimal: once the network has reached a rea-
sonable level of performance, most of the negatives pairs will be discarded, leading
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Figure 4.9: (a) The concentration of measurements as the dimensionality increases
— most points are almost equidistant. (b) High variance means that the gradient
is close to random, while low variance implies a deterministic gradient estimate.
Lower is better. It shows the empirical distribution of samples drawn for different
strategies. All three approaches are biased towards certain distances; in contrast,
our proposed weighted sampling selects a wide range of samples instead.

to a slow convergence near the optimum and effectively stall the learning process. If
the hardest examples are selected and are optimized (e.g., pushed away from each
other), then the learned hard examples are finally performing well. That can be
seen in the result of [Simo-Serra et al., 2015], which shows that final performance is
benefited from choosing only the hard negatives.

One crucial issue of selecting the hardest negatives can, however, lead to a collapsed
model. Consider a negative pair t := (xi, x−) or a triplet t := (ta, tp, tn). The
gradient with respect to the negative example f(xn) is in the form of

∂f(xn)L(·) =
1

Dneg

ω(t) (4.17)

in which ω(t) is some function, Dneg := ‖f(xi) − f(xn)‖2 and note that 1
Dneg

de-

termines the gradient. A problem arises when Dneg is small, and the estimates are
noisy; introduced enough noise z by the training algorithm, the gradient 1+z

Dneg+z
is

dominated by noise. In FaceNet [Schroff et al., 2015], the authors proposed to select
negative samples such that

Dap < Dan < Dap +M (4.18)

that is, they sample the semi-hard triplets.

To fully understand what good sampling depends on, we should firstly take a dive
into the distribution of samples. Recall that the sampled features F (xi) are con-
strained to the D-dimensional unit sphere SD−1 for large D ≥ 16. Consider the
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situation where the points are uniformly distributed on the sphere. Then the distri-
bution of pairwise distribution follows [Lehnen and Wesenberg, ]

q(d) ∝ dn−2
(
1− 1

4
d2
)n−3

2 (4.19)

Fig. 4.9(a) [Wu et al., 2017] shows a concentration of measures occurring. In fact,
in high dimensional space, q(d) approaches N

(√
2, 1

2n

)
. In other words, if negative

examples are scattered uniformly, and we sample them randomly, we are likely to
obtain examples that are away by

√
2. Figure 4.9(b) compares the above mentioned

sampling strategies. We can see that the above mentioned uniform sampling [Flo-
rence et al., 2018] yields only easy examples and induces near no loss, thus stalling
the learning process; due to the narrow distance between anchor and negatives, in
hard negative mining the gradient is dominated by noise, which is why the samplings
lay mostly on high variance areas. Semi-hard negative mining finds a narrow set
in-between; after some point, no examples are left within the band, and the network
will stop making progress [Schroff et al., 2015].

Proposed Sampling: To avoid the large variance in hard negatives mining and the
narrow band in semi-hard negatives mining, we thus proposed a sampling strategy
based on the distribution of high dimensional feature vector with respect to distance:
We sample uniformly according to distance Dan, i.e., sampling with weights q(d)−1.
In oder to cut off the easy negatives, we set the threshhold to make sure all distances
are not so easy to separate, meanwhile, we also clip the weighted sampling to avoid
noise samples. To formulate our sampling strategy, we formulate as follows:

Pr(n? = n|a) ∝ max(min(λmin, q(d)−1(Dan)), λmax) (4.20)

in which (a, n?) is the negative pair, λmin is the minimal threshhold to clip the
samples, and λmax is the maximum threshold that removes the easy negatives. The
simulated example comparing our proposed method with the above-mentioned three
methods is shown in 4.9(b).
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4.2 Implementation

4.2.1 Training Data Generalization

In order to generate the training labels under different weather conditions, we for-
malized our training regime as follows. Assume we have a collection of V videos
under W different weathers or lighting conditions under different perspectives S,
where each vi = {(I0, D0, T0), · · · , (Ij, Dj, Tj)}, where for each frame j we have an
image Ij and a corresponding depth map Dj to back-project the image pixels in Ij
to vertex map Mj in world coordinates. Specifically, for (uj, vi) on Ij, the depth di
in Dj, and the corresponding Pi in Mj is given as follows:

Pi = π−1(xi, di) = di

(
ui + cx
fx

,
vi + cy
fy

, 1

)T

(4.21)

In which π(·) is the function projecting 3D points onto the image plane and cx, cy
and fx, fy denote the optical center and focal length of the pinhole camera model.

While we have many sequences of the same scenes from different perspectives of
views under different weathers, the coordinate system defined by Mj ∈ Vk are not
consistent from a different point of view S but it is consistent for different lighting
W . For example, given a video Vk, from different points of view, a leave of a tree
on the roadside can map to a particular model vertex under different weather for
the CARLA Benchmark dataset and different lighting conditions for the ICL NUIM
dataset [Handa et al., 2014] Wa and Wb, but in a different perspective of the same
tree they will be assigned to a different coordinate depending on their relative trans-
formation Tinitial.

However, since we have all the relative transformations between the different posi-
tion of the cameras, we can therefore learn the canonical keypoints. In our case, we
always have an image pair and we indicate the positive pairs in pair-wise based loss
or anchor-positive pairs in triplet based loss, as those pixels which are projections
of the same model point from different videos V .

In practice, we compute dense descriptors for an image with size 512 × 512. In
order to learn the gradient consistent feature maps, we at first extract the Canny
edges from the original input images, or high gradient points as DSO [Engel et al.,
2016] suggests, and then these candidates are back-projected onto the 3D space,
depending on which image plane these 3D model points are projected by applying
the transformation Tj

P jb
i = TjbjaP

ja
i (4.22)

The 3D model points are transformed from the ja to the jb frame, and then projected
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Figure 4.10: Algorithm flow chart to generate training labels.
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onto the jb image frame. Depending on the combination of different upper and lower
thresholds, the Canny edge detector results in over 20,000 edge candidates for one
single image, for high gradient points, since we select all points whose normalized
gradient is larger than 10, and result in about 200,000 candidates, both leading to
high computation cost and high demand for GPU direct storage. To save the storage
of GPU, we first project all candidates from the first image onto second image, then
remove the candidates, which lay out of boundaries (horizontal and vertical), and
then do the inverse projection for the left candidates from the second image onto
the first image, and remove the candidates that are out of the first image in the
same way. This process are illustrated in Figure 4.10. After this, instead of consid-
ering all possible candidates, we sample locations at which we can apply different
pair-wise losses and triplet losses. We first choose a part of pixel locations xa (up
to 3,000 - 5,000) randomly from the left candidates that have a correspondence in
Ijb . For each sample from Ija we apply the loss function to the pair formed by xa
and the corresponding pixel from Ijb , and then to a certain ratio pair formed by xa
and non-corresponding pixel locations chosen according to the sampling methods as
described in Sec. 4.1.3. An example of choosing the training samples is shown in
Figure 4.11.

Figure 4.11: Example of the generated samples.

4.2.2 Network Structure

For the encoder part of the U-Net we use a similar structure as the original. As
shown in Fig. 4.12, the encoder is composed of 4 levels of different scale feature maps.
The down-sampling is a max-pooling with stride 2, after each down-sampling layer
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follow 2 convolution blocks, both composed of one 3 × 3 kernel convolution layer,
one batch normalization layer, and one ReLU non-linear activation. For the first
convolution block after the max-pooling layer, the channels are doubled to maintain
the volume feature numbers from Ci×H×W to Ci+1× H

2
×W

2
such that Ci+1 = 2Ci.

After 4 times down-sampling, the size of the feature maps with lowest resolution is
1
16

of the original size.

For the decoder part we make some modifications compared to the original version
as follows. From the bottleneck, which is the coarsest level, the feature maps are
up-sampled with pixel shuffle by 2, and at the same time the number of channels is
reduced by 2. The up-sampled feature maps are then concatenated with the feature
maps with the same size from the encoder part. After this, we apply D channels
1 × 1 convolution kernels to get the output filter maps of this level. This is done
in an iterative fashion until the finest level, and results in the final output pyramid
maps with the sizes [1

8
, 1
4
, 1
2
, 1] of the original image size. Then, they are used for

deep direct SLAM.

Multi-Scales Loss: To leverage the properties of multi-scale output pyramid maps,
we calculate the loss in a pyramidal fashion, namely, we first calculate the positive
loss in coarsest level, which is 1

8
of the finest level, and we iteratively calculate the

losses until the finest level, then we sum the average of the loss of each level. For
the negative loss we follow the same way. Finally we get the total contrastive loss
as follows:

Ltotal = Lpos + λLneg (4.23)

L2 Normalization and Sigmoid Outputs: We do not give any constraint on the
output of the two U-Net branches, which may lead following problems:

• One possible problem is that the output pyramid feature maps of different
domain have different ranges, which means the evaluation on these feature
maps across different domains are not comparable.

• More problematic is that during the training process, the positive loss and the
negative loss are always not in the same range, which results in a negative
influence for the gradients.

To alleviate these problems, we tried two different methods: one strategy is that
we L2-normalize all the output features from the U-Net branches before calculate
the loss, another is simply using a sigmoid or hyperbolic tangent activation at
the output layers. Both strategies could solve the first problem, however, when
looking in to the possible maximum Euclidean distance between two feature maps
d =

√
‖f(x1)− f(x2)‖22, we call the distance dL2 and dsig for the L2 normalization
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Figure 4.12: The modified U-Net uses the multi-scale properties of the original
U-Net decoder now in order to output multi-scale feature maps directly.
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method, and for the sigmoid activation method for example

d =
√
‖f(x1)− f(x2)‖22

=
√

f(x1)Tf(x1) + f(x2)Tf(x2)− 2f(x1)Tf(x2)
(4.24)

for dL2, since f(x1) and f(x2) are both normalized, and

dL2 =
√

2− 2f(x1)Tf(x2) ≤ 2 (4.25)

As for dsig, each element in f(x1) and f(x2) is in range [0, 1], we have:

dsig =
√

f(x1)Tf(x1) + f(x2)Tf(x2)− 2f(x1)Tf(x2) ≤ 2
√
D (4.26)

Where D is the number of channels for the feature maps. We could see that the
second method still causes the second problem due to the possible big distance of
different features, and the greater the number of channels we choose, the worse this
problem becomes. Besides, the sigmoid or tangent activation is non-linear, mapping
the outputs non-linearly, which is not desired.

4.2.3 Training and Testing

The training is done from scratch with Kaiming weight initialization [He et al.,
2015] to stop the variance of the layers activation from explosion for a very deep
network. As an optimizer we choose ADAM with a learning rate of 10−6 and a
weight decay of 10−3. For the correspondence contrastive loss, we set the Margin
M = 1, and set the maximum distance of the disturbing point to correct point for
the Gauss-Newton loss as the setting in supplementary material of [von Stumberg
et al., 2020]. Restricted by the GPU memory, for every training step 2-4 pairs of
images are used as input to the siamese network. For each image pair we choose
3,000 positive correspondences and for each of them, one negative correspondence
is randomly selected.

In inference mode (testing), the network only takes a single image as input to create
the feature maps, so the runtime of inference scales linearly with the resolution of
the image and also with the number of images involved. Specifically, our network
infers an image at about 10 Hz on a Nvidia GPU 1080 Ti and at 2 Hz on a Nvidia
GPU 750.
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Chapter 5

Evaluation & Discussion

In the following chapter we evaluate our methods on the task of image matching.

5.1 Datasets and metrics

Datasets: We run the experiments on Carla Benchmark [von Stumberg et al.,
2020], which includes 27,000 RGB images, the registered depth images, and the
corresponding poses. The CARLA-Benchmark benchmarks 3 weather conditions
with 9,000 samples for each. In each individual weather condition, 3 sequences with
different image contents are included: the sequence 1 is a road with few landmarks
in the roadside, the sequence 2 contains high parallax with trees in the near, while
sequence 3 include a forest in the far and buildings in the near providing enough
parallax. Examples on three different sequences are demonstrated in Figure 5.1.
The statistics details are summarized in Table 5.1.

sequence weather condition scenery content #cameras total
episode0 WetNoon wild road 6 3000
episode1 WetNoon trees in near parallax 6 3000
episode2 WetNoon far forest and near buildings 6 3000
episode3 SoftRainNoon wild road 6 3000
episode4 SoftRainNoon trees in near parallax 6 3000
episode5 SoftRainNoon far forest and near buildings 6 3000
episode6 WetCloudySunset wild road 6 3000
episode7 WetCloudySunset trees in near parallax 6 3000
episode8 WetCloudySunset far forest and near buildings 6 3000

total 3 - - 27000

Table 5.1: Statistics of the sequences at the CARLA-Benchmark. It describes the
weather scenarios under which data was collected, sequences contents, the number
of cameras, and the images.
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sequence1 sequence2 sequence3

Figure 5.1: An overview of the Carla Benchmark dataset [von Stumberg et al., 2020].
Each row presents a different point of view; each image pair shows the comparison
of the same place in the same sequence in different weather.
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Performance metrics: Mikolajczyk et al. [Mikolajczyk and Schmid, 2005,Miksik
and Mikolajczyk, 2012] propose to use metrics of recall, repeatability, 1-precision
to describe the characteristics of a feature’s performance, and are widely used as
standard measures. The definition of the three terms are:

• Repeatability is the ration between the number of correspondences and the the
total number of matches:

repeatability =
#correspondences

#correct matches+ #false matches

• Recall is the number of correctly matched regions with respect to the number
of corresponding regions between two images of the same scene:

recall =
#corrected matches

#correspondences

• 1-Precision is the number of false matches relative to the total number of
matches:

1− precision =
#false matches

#correct matches+ #false matches

However, there are some subtleties to a feature’s performance that are missed by
only using these measures. Other than that, the evaluated objects are patches, and
the matches criteria are different from our tasks. Inspired by binary descriptor by
Heinly [Heinly et al., 2012], we use the metrics of putative match ratio, precision
and matching score, recall to evaluate our proposed methods.

• Putative Match Ratio quantifies the selectivity of the descriptor in terms of
the fraction of the detected features initially identified as a match, and defined
as following:

putative match ratio =
#putative matches

#features

This metric is directly influenced by the matching criteria: a less restrictive
matching criteria generate a higher putative match ratio, whereas a criteria
that is too restrictive will discard potentially valid matches and will decrease
the putative match ratio.

• Precision defines the inlier ratio of the putative matches, as determined by
geometric verification:

precision =
#correct matches

#putative matches
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It is also influenced by many of the same factors that influenced the putative
match ratio, but the consequences are different. For instance, while a less
restrictive matching criteria will increase the putative match ratio, it will de-
crease the precision as a higher number of incorrect matches will be generated.

• Matching Score defines the number of initial features that will result in inlier
matches:

matching score =
#correct matches

#features

Similar to the previous two metrics, the matching score varies from the match-
ing criteria.

• Recall describes the number of identified ground truth matches:

recall =
#correct matches

#corrrespondences

The correspondences are the matches given only the keypoint location in both
images and are matched beforehand serving as ground truth matches. A low
recall could mean the matching criterion is too strict or the data is too complex.

The relationship of the different matches, features and correspondences are shown
in Figure 5.2.

Figure 5.2: The relationship of features, putative matches, correct matches, and
correspondences.

In other works [Balntas et al., 2017, Luo et al., 2020], the terminology of Keypoint
repeatability (%Rep.), Mean matching accuracy (%MMA), Matching score (%M.S.),
and %Recall is used. However, their definitions are exactly the same. In the fol-
lowing part, we use the notation in HPatches, namely putative match ratio, mean
matching accuracy and matching score and recall.
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Match Criteria: To compute putative matches, nearest neighbor brute searching
is performed followed by a cross check and a ratio style test [Lowe, 2004]. The
cross check aims to select the pairs (i, j) such that for i-th query descriptor the
j-th descriptor in the matcher’s collection is the nearest and vice versa. The ratio
rest is that, for each descriptor from the reference image, the two nearest neighbors
descriptors in the query image are found as the best and the second best matches.
If the ratio of the distance between the referred descriptor and the best match to
the distance between the referred descriptor and the second best match is less than
a certain threshold, then the best match is selected as a putative match, otherwise
both matches are rejected. According to [Lowe, 2004], the ratio is selected as 0.8.

To determine if a putative match is correct, we use ground truth geometric infor-
mation to wrap the keypoints from the referred image to the query images, which
has been described in Section 4.2.1. The matched points that are within a error
threshold k pixels of each other in shared view are considered as inlier matches.

To avoid abuse of notation, we denote the different metrics for different threshold
k as %PTT, MMA@k and MS@k and RC@k putative match ratio, mean matching
accuracy and matching score and recall correspondingly.

5.2 Ablation study

We conduct ablation studies on the Carla Benchmark Dataset in three aspects,
namely, the comparison to original loss function: original contrastive loss, triplet
loss; different sampling strategy; and the choice of up-sampling layer. In all abla-
tion studies, we use edge points detected by Canny Edge Detector [Canny, 1986], the
lower threshold is set to 50, and the ratio between the higher threshold and lower
threshold is set to 3 as suggested by Canny. To demonstrate the influence of different
losses, we show MMA metric for the error threshold of 5 [Liu et al., 2019, DeTone
et al., 2018,Luo et al., 2020], which means that the matches are considered right if
the distance of the matched keypoint is less than 5 in shared view.

Comparison of different loss: We consider three different losses, namely, con-
trastive loss in Equation (4.4), triplet loss in Equation (4.5), and our new loss but
without the positive margin in Equation (4.15). Table 5.2 summarizes results of the
proposed method and other loss functions for error threshold of 5. The proposed
loss function achieves the best performance compared to other losses.

Negative sampling strategies: To demonstrate the benefit of our proposed sam-
pling method, we test on two commonly-used sampling methods, namely uniform
sampling(without any sampling strategies) and hard negative mining [Choy et al.,
2016,Florence et al., 2018]. For all different sampling strategies, we use trained with
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contrastive triplet w/o Pos Margin proposed
Sequence 1 74.52 78.78 81.56 82.17
Sequence 2 80.78 81.45 82.02 82.17
Sequence 3 75.26 77.65 80.87 81.27

Table 5.2: Comparison of different losses on three different sequences for metric
MMA@5.

our proposed new loss and use the up-sampling layer with pixel-shuffle [Shi et al.,
2016]. The result for this ablation study is demonstrated in Table 5.3. As shown in
the table, our proposed sampling methods outperforms uniform sampling by large
margin, e.g. over 10%(13%) on sequence 1. However, on sequence 2, hard negative
mining strategy obtain a higher MMA. Considering the scenery in sequence 2, which
include lots of trees in the near, providing lots of fine textures, this is because hard
negative mining could find out finer structure in the images.

uniform hard negative proposed
Sequence 1 69.17 81.25 82.17
Sequence 2 73.34 83.19 82.17
Sequence 3 71.56 80.52 81.27

Table 5.3: Comparison of different sampling methods on different sequences for
metrics MMA@5.

transposed bilinear proposed
Sequence 1 80.76 81.15 82.17
Sequence 2 81.15 82.01 82.17
Sequence 3 80.56 80.05 81.27

Table 5.4: Comparison of different up-sampling layers on different sequences for
metric MMA@5.

Up-sampling method: To illustrate the advance of pixel-shuffle up-sampling
method, we test on different up-sampling layers, namely Transposed Convolution
or Deconvolution and Bilinear Interpolation. The only modification for this abla-
tion study is that we replace all the up-sampling layers during the up-sampling path
of the U-Net. The result is summarized in Table 5.4.

5.3 Comparison with other methods

We compare our method with different classical features pipelines: SIFT [Lowe,
2004], SURF [Bay et al., 2006], ORB [Rublee et al., 2011], and A-KAZA [Alcan-
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tarilla, 2011], and two state-of-the-art deep learning methods: Superpoint [DeTone
et al., 2018] and GIFT [Liu et al., 2019], using the authors’ released trained model
for deep learned features and OpenCV for the classical features. Superpoint [DeTone
et al., 2018] localizes keypoints and interpolates descriptors of these keypoints di-
rectly on a feature map of a vanilla CNN. GIFT [Liu et al., 2019] treat transformed
versions of an image as groups of transformation and extract features on these
groups.
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Figure 5.3: MMA at a different error threshold, experiment running on sequence 1.

Since our task is not aiming for feature matching, but for benefit of direct SLAM
method, we do not use the keypoints generated in consideration of scale or rotation,
but for high gradient points in images. Nevertheless, if we detect high gradient
points in the image as keypoints, there are too many keypoints(50,000 - 200,000) for
feature matching, which is not realistic for evaluation. Instead, we use Canny Edges
Detector [Canny, 1986]. By tuning the lower threshold and the higher threshold, we
finally set the lower threshold as 50 and the higher threshold as 150, which results
in 5,000 - 12,000 keypoints for one image in the final place.

For fair comparison, we use the same keypoints (Canny Edges) as the feature de-
tectors for all deep learned methods during evaluation. As for classical feature
methods, since their own detector is implemented in OpenCV, we use their own
detectors. Results are summarized in Table 5.5. The result for MMK under differ-
ent error threshold on 3 different sequences is shown in Figure 5.3, Figure 5.4, and
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Figure 5.4: MMA at a different error threshold, experiment running on sequence 2.
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Figure 5.5: MMA at a different error threshold, experiment running on sequence 3.
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detector Own detector Canny Edges Detector

sequences
descriptor SIFT SURF ORB A-KAZA GIFT Superpoint Ours

Seq 1 28.94 40.03 51.97 63.87 66.67 19.48 82.17
Seq 2 30.95 42.47 75.51 89.37 82.50 75.67 83.37
Seq 3 30.26 42.05 57.55 68.55 66.77 37.48 81.27
average 30.05 41.25 61.68 73.93 71.98 44.21 82.27

Table 5.5: Comparison with %MMA@5 of our proposed method, classical feature
detection and extraction method and the state-of-the-art methods on three different
sequences of the Carla benchmark dataset [von Stumberg et al., 2020].

detector Own detector Canny Edges Detector

sequences
descriptor SIFT SURF ORB A-KAZA GIFT Superpoint Ours

Seq 1 9.67 12.46 18.66 27.25 6.10 6.90 20.84
Seq 2 10.47 13.45 35.72 54.47 12.70 10.21 20.84
Seq 3 10.47 13.12 19.93 29.10 5.96 2.71 20.75

Table 5.6: Comparison with %MS@5 of our proposed method, classical feature
detection and extraction method and the state-of-the-art methods on three different
sequences of the Carla benchmark dataset [von Stumberg et al., 2020].

detector Own detector Canny Edges Detector

sequences
descriptor SIFT SURF ORB A-KAZA GIFT Superpoint Ours

Seq 1 32.84 30.21 34.35 41.99 8.67 7.67 25.15
Seq 2 33.56 31.51 47.07 60.69 14.91 12.9 25.15
Seq 3 33.32 30.89 33.94 42.02 8.61 6.83 25.33

Table 5.7: Comparison with the PTT Ratio of our proposed method, the classical
feature detection and extraction method, and the state-of-the-art methods on three
different sequences of the Carla benchmark dataset [von Stumberg et al., 2020].
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Figure 5.5.

5.4 Discussion

Note that the Putative Matches Ratio (%PTT ) is affected due to the strict match-
ing criteria, by conducting cross check and ratio test. Another reason is because of
highly similar descriptors (Canny Edges), which results in a low MS.

As shown in Table 5.5, our proposed method outperforms all other state-of-art meth-
ods and classical methods, except on sequence 2, in which A-KAZA [Alcantarilla,
2011] performs best. The reason results from two possible perspectives: Firstly,
A-KAZA uses its own feature detectors, which result in a very high putative match
ratio, as shown in Table 5.7. However, since we are mainly focusing on improving
the front-end of the direct method of SLAM, we do not focus on the putative match
ratio but on the real matching numbers from high gradient regions (which are used
for tracking in direct SLAM [Engel et al., 2016]). Here we use Canny edges, which
have high similarity in the RGB domain. However, compared with two other state-
of-art deep learned features, our method achieves a higher PTT. Other than that,
another reason is that sequence 2 presents a scenery containing rich textures. There
are lots of trees on the roadside creating rich textures, where ORB [Rublee et al.,
2011] and A-KAZA [Alcantarilla, 2011], and two deep learned features GIFT [Liu
et al., 2019] and Superpoint [DeTone et al., 2018] perform better than in the re-
maining two sequences. It is worth noting that the difference in texture does not
affect our proposed method, where for three sequences containing different texture
we perform almost the same, which we note in Italic. The reason is that we only
consider high-gradient points (including Canny Edges), and edges do not rely much
on the texture. This advantage benefits direct SLAM systems like DSO [Engel et al.,
2016] and LSD-SLAM [Engel et al., 2014].

Despite a slightly worse performance on sequence 2, our proposed method achieves a
better average performance on the CARLA-Benchmark overall [von Stumberg et al.,
2020]. More qualitative matching result are demonstrated in Figure 5.6. A detailed
comparison with MMA at different thresholds is illustrated in Figure 5.3 for sequence
1, Figure 5.4 for sequence 2, and Figure 5.5 for sequence 3. It can be seen that on
sequence 1 and sequence 3 our method outperforms the other methods except on
sequence 3, when the error threshold is extremely large (@90). For sequence 2, our
proposed method performs better at low error threshold (@5-15) but then worse
than GIFT [Liu et al., 2019].
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Figure 5.6: Matching results(Error threshold @5) on 3 sequences for different meth-
ods, the red circles represent all the keypoints, while green points represent the
matched inliers. It can be seen that our method produce a much denser matched
Canny Edges than traditional methods and the state-of-art deep learning methods.
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Chapter 6

Conclusion

6.1 Discussion

Deep learning-based approaches excel in robustness when interpreting visual images
of the scene, hence achieving invariance with respect to the illumination conditions
that pose the biggest challenge to direct SLAM methods. In this work we propose
to replace the original input sensor data (RGB images) with learned feature maps,
which provide improved pose estimation accuracy and robustness compared with
the baseline method using only the intensity (grayscale) channel. We also demon-
strate that the sampling of correspondences is a central aspect when constructing
the losses for learning dense feature maps; we focus on the distribution of the high-
dimensional sample related to their distances. Finally, we leverage the advantages
in the definition of the contrastive loss and the triplet loss in order to give the out-
put feature maps more constraints to generate more consistent learned feature maps.

It is worth noting that the proposed algorithm is orthogonal to several existing direct
and feature-based SLAM approaches by embedding the process of learning features
in the feature matching process part.

6.2 Outlook

This learned SLAM approach still suffers from its increased computational cost,
which means that it remains a challenge to run it on real robots on the fly. One pos-
sible future improvements would be to plant the neural network with a pretrained
model onto a chip board.

Secondly, in oder to extract more information around high-gradient pixels, the neigh-
borhood of the pixels could be used to learn a more informative feature map.
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[Engel et al., 2014] Engel, J., Schöps, T., and Cremers, D. (2014). LSD-SLAM:
Large-scale direct monocular SLAM. In eccv.

[Florence et al., 2018] Florence, P. R., Manuelli, L., and Tedrake, R. (2018). Dense
object nets: Learning dense visual object descriptors by and for robotic manipu-
lation. arXiv preprint arXiv:1806.08756.
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