
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN
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Abstract

Recent advances in mobile connectivity as well as increased computational power
and storage in sensor devices have given rise to a new family of software archi-
tectures with challenges for data and communication paths as well as architectural
reconfigurability at runtime. Established in 2012, Fog Computing describes one of
these software architectures, but lacks a common accepted definition. This mani-
fests itself among others in the missing support for mobile applications as well as
dynamically changing runtime configurations.

This dissertation provides a framework that formalizes Fog Computing and adds
support for dynamic and scalable Fog Architectures. The framework is called xFog
(Extension for Fog Computing) and models Fog Architectures based on mathemat-
ical sets and graphs. xFogPlus, one part of xFog, enables dynamic and scalable Fog
Architectures to dynamically add new components or layers. Additionally, xFog-
Plus provides a View concept which allows stakeholders to focus on different levels
of abstraction. These formalizations establish the foundation for new concepts in
the area of Fog Computing. One such concept, xFogStar, provides a workflow to
find the best service configuration based on quality of service parameters.

xFog has been applied in eight case studies covering different application do-
mains ranging from smart environments, health, and metrology to gaming. They
investigate the applicability of dynamic Fog Components, scalable Fog Architec-
tures, and the service provider selection at runtime.

The case studies successfully demonstrated the feasibility of the formalization
provided by xFog, the dynamic change of Fog Architectures by adding new compo-
nents and layers at runtime, and the applicability of the workflow to establish the
best service configuration.
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Zusammenfassung

Die jüngsten Fortschritte in mobiler Konnektivität und Sensorgeräten mit erhöhter
Rechenleistung und Speicherkapazität führten zu einer neuen Familie von Softwa-
rearchitekturen mit Herausforderungen an Daten- und Kommunikationspfade und
an die architektonische Rekonfigurierbarkeit zur Laufzeit. 2012 wurde unter der Be-
zeichnung Fog Computing eine derartige Softwarearchitektur beschrieben, die aber
über keine allgemein anerkannte Definition verfügt. Dies äußert sich unter ande-
rem in der fehlenden Unterstützung für mobile Anwendungen sowie dynamische
Änderungen der Laufzeitkonfigurationen.

Diese Dissertation stellt ein Framework bereit, das Fog Computing formalisiert
und eine Basis für dynamische und skalierbare Fog Architekturen definiert. Das
Framework namens xFog (Extension for Fog Computing) modelliert Fog Architek-
turen aufbauend auf mathematischen Mengen und Graphen. xFogPlus, ein Teil von
xFog, beschreibt dynamische und skalierbare Fog Architekturen, um neue Kompo-
nenten oder Layer dynamisch hinzuzufügen. Zusätzlich liefert xFogPlus ein View-
Konzept mit dem sich Stakeholder auf verschiedene Abstraktionsebenen fokussie-
ren können. Diese Formalisierungen bilden die Grundlage für neue Konzepte im
Bereich Fog Computing. Eines dieser Konzepte, xFogStar, definiert einen Workflow,
um die beste Servicekonfiguration basierend auf Quality of Service Parametern zu
finden.

xFog wurde in acht Fallstudien aus verschiedenen Anwendungsbereichen ange-
wendet, die von intelligenten Umgebungen über Gesundheitswesen und Messtech-
nik bis hin zu Spielen reichen. Sie untersuchen die Anwendbarkeit dynamischer Fog
Komponenten, skalierbarer Fog Architekturen und die Auswahl von Dienstanbie-
tern zur Laufzeit.

Die Fallstudien zeigten erfolgreich die Umsetzbarkeit der von xFog bereitgestell-
ten Formalisierungen, die dynamische Änderung von Fog Architekturen durch Hin-
zufügen neuer Komponenten und Layer während der Laufzeit und die Anwendbar-
keit des Workflows, um die beste Servicekonfiguration zu ermitteln.
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Conventions

This dissertation uses American English, except for direct quotes. Direct quotes
are highlighted in ”double quotes” and changes to them are indicated by [squared
brackets]. Text in italic font is used whenever referring to labels, names of fig-
ures, tables, new concepts, or when addressing provided definitions. We use the
Typewriter font to refer to parts of UML diagrams such as classes, objects, and
activities. Concepts that are introduced or redefined within this dissertation are
written in uppercasing throughout the entire document.

Mathematical definitions, equations, corollaries, or proofs are highlighted using
boxes of the following styles:

Definition 1: Title

A new definition.

Equation 1: Title

A new equation.

Corollary 1: Title

A new corollary.

Proof 1: Title

A proof.

In the mathematical context, variables in lower case are considered instances,
while upper cases are used for concepts.
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Additionally, to highlight important aspects such as research goals, we use the
following boxes:

Research Goal: A research goal.

This document contains colored figures and should therefore be printed in color.
All figures are checked to be readable in greyscale, but might lose clarity.

Whenever trademarked names, such as company names, are used, they are used
for identification only and are followed by links in footnotes forwarding to the offi-
cial homepage.
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Chapter 1

Introduction

”Architects need to anticipate changes, changes in the environment in which the
system under development will be deployed, which will in turn trigger requests
for change or evolution.”

— PHILIPPE KRUCHTEN [81]

With the constant increase of computational power and available storage, mo-
bile devices get more and more involved in distributed systems, which are ”collec-
tions of independent computers that appear to be one single system to users” [139].
Nevertheless, mobile devices will always be resource poor in comparison to static
hardware, as static hardware is not capped by properties such as heat dissipation or
battery life [46, 119]. Therefore, mobile devices will always struggle with the most
advanced media and data analysis.

Mobile cloud computing was introduced to bridge this gap and combines mobile
computing with cloud computing to leverage the computational power of the cloud
for mobile devices [43, 113]. However, clouds are usually distant from the mobile
devices and using them creates high latencies, which are insufficient for realtime
applications such as augmented reality.

To address this issue, concepts such as Cloudlets, Edge Computing, and Fog
Computing emerged. Satyanarayanan et al. described these concepts to utilize
resource-rich components near the mobile device to offload computational intense
tasks while having ”low latency, one-hop, high-bandwidth wireless access” [119].
While Cloudlets use trusted, nearby components with excessive computational
power, Edge Computing focuses on the entirety of the network trying to push ser-
vices as close to the edge as possible [44, 118].

Bonomi et al. introduced Fog Computing as a three-layered software architecture
containing a Cloud, Fog, and Edge layer [18]. These layers interact using subscriber
models with one layer acting as the provider and the other one as its user. Ac-
cordingly, application scenarios such as dynamic vehicles, smart grids, distributed
sensor networks, and smart environments can benefit from using Fog Computing.
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1 Introduction

This loose definition has led to many interpretations of Fog Computing as well
as attempts to sharpen the definition. Nevertheless, there is no commonly accepted
definition of what Fog Computing or a Fog Node is, and the difference to similar
concepts such as Edge Computing is not defined [94].

Section 1.1 describes the motivation why Fog Computing requires further re-
search in the context of software architectures. Section 1.2 summarizes the objec-
tives this dissertation addresses and its relations to the developed framework. The
dissertation’s methodology is presented in Section 1.3 providing an overview of the
research process, which is applied and described in Section 1.4. Finally, Section 1.5
gives an overview of the dissertation’s structure.

1.1 Problem

Figure 1.1 and Figure 1.2 show two examples for Fog Architectures in the smart
environment and smart city domains. They are strictly hierarchical with on singular
cloud and a variety of edge devices on the outermost layers. In between those layers,
several other layers compose the Fog.

In the smart environment example, the Fog consists of bigger and bigger group-
ings of edge devices directly related to those found in home environments: First,
all edge devices are gathered in according rooms, the rooms in living units, and
the living units in floors. Each house contains floors and is in a group with other
houses depending on the property they are on. Finally, the cloud is represented by
the holding. Fog Nodes can be placed along these groupings to promote different
services.

In contrast, the smart city example contains dynamic vehicles as edge devices
that are grouped based on the nearest Fog Node to their current location. These
Fog Nodes can for example be placed at each crossing. Several crossings make up
a street, the street belongs to a city, the city to a district, and finally the district to a
state. These layers, represented by at least one Fog Node can offer different services
based on their locality and availability of data.

Based on existing definitions, e. g. the original definition by Bonomi et al. [18] or
the refined definition by Yi et al. [155], it remains unclear if the layers between the
cloud and the edge are considered part of one overarching Fog layer or if the Fog
contains an internal structure itself. Additionally, no information is provided on
how new layers can be added to Fog Architectures. For example, in the smart city
Fog Architecture, big cities might group the streets into city districts before gather-
ing the data themselves.

2
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Holding

Property 1

House 1

Floor 1

Living Unit 1

Floor 0

Living Unit 0
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Figure 1.1: An example setup for a smart environment. All Devices are grouped
into Rooms, each Room is in a Living Unit, which a Floor is composed of. A House
contains Floors and stands on a Property, which can in turn contain other Houses.
Finally, all Properties are in Holdings. This layering can also directly be mapped to a
Fog Architecture with each container being an individual layer that aggregates its
content.

States
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Cities

Streets

Crossings

…

…

…

…

…

Figure 1.2: Infrastructure example with Vehicles deployed in the Edge. Each Vehicle
registers at each Crossing, which are part of a Street. These Streets are within Cities
that are in Districts that are in States.
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Figure 1.3: A set of Fog Components which relate to a Fog Architecture, but missing
their relations to each other as well as their layering.

Figure 1.3 poses another challenge. It shows a collection of internet of things de-
vices, but lacks information on the devices’ connections between each other. Based
on Shaw et al. and Bass et al. the basic building blocks of software architectures are
their components and connectors [13, 134]. Accordingly, it is crucial to know which
of the presented devices are part of one Fog Architecture and which are not, draw-
ing the boundaries of the software architecture. Additionally, Figure 1.3 does not
include information about the different layers. To group the components which are
part of the Fog Architecture to their according layer, we need to know the defining
trades of each layer.

According to Yousefpour et al., the amount of devices and the dynamics in-
creases closer to the edge of the network [158]. This is also supported by Bonomi
et al. who identified the support for mobility as one of Fog Computing’s core con-
cepts [17, 18]. However, it is never mentioned how Fog Architectures handle dy-
namics, and thus components that join and leave a Fog Architecture at runtime.

Consider Figure 1.4, it shows an example with two Fog Nodes which are rep-
resented by the WIFI icons. Each node has a certain reach (dashed circle), within
which other components can establish a connection to them. The other components
are drones, labeled 1 to 11. At timestamp T1, which is indicated by the blue circles of
the drones, some drones are within the Fog Nodes’ reach and others are outside. The
arrows indicate the directions and distances the drones travel until timestamp T2,
which are shown as the greyish-blue circles. Thus, some drones that are currently
inside the Fog Nodes’ reach leave and others join.

This kind of continues, dynamic change is challenging for software architectures
which are defined by their contained components and connectors.
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Figure 1.4: Dynamic Fog Architecture example with two Fog Nodes represented by
WIFI icons. The Fog Nodes’ reach, within which components can connect to them,
is indicated by the dashed circles around the icons. The drones 1 to 11 are dynamic
and can move in and out of the Fog Nodes’ reach. The arrows from each drone
indicate their target destination where they will arrive at timestamp T2.
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1 Introduction

It blurs the boundaries of a Fog Architecture and requires constant updates of its
description. Additionally, dynamics introduces complexity which can get challeng-
ing for stakeholders.

1.2 Research Objectives

As explained in the problem description, Fog Computing’s lack of a common defi-
nition which leads to different researchers understanding and describing Fog Com-
puting in different ways. To counteract these misunderstandings, this dissertation
focuses on the creation of a formalized definition for Fog Computing based on soft-
ware architectures and set theory, introducing the following goals:

Knowledge Goal 1: Establish Fog Computing as a subclass of software architec-
tures.

Technical Research Goal 1: Define a framework that provides a formalized def-
inition of Fog Computing.

These goals should be achieved with xFog, an extension for Fog Computing, and
xFogCore which defines the foundations of the framework. These foundations are
used to address two of the described challenges: Providing support for dynamic
components and addressing the ambiguity of layers, in particular of the Fog.

Technical Research Goal 2: Define an extension to the foundations of Fog Com-
puting that supports components joining and leaving an architecture (Dynamics).

Technical Research Goal 3: Define an extension to the foundations of Fog Com-
puting that supports the process of adding and removing layers (Scalability).

These goals should be addressed with xFogPlus, one part of xFog that relies on
the foundations introduced by xFogCore and formalizes dynamics and scalability
in Fog Architectures.

The combination of both, xFogCore and xFogPlus, enables xFog to support a
variety of advanced concepts, such as xFogStar. xFogStar is an extension that in-
vestigates the selection of service providers which is addressed with the following
goal:

6



1.3 Methodologies

Technical Research Goal 4: Enable service provider selection in dynamic scal-
able Fog Architectures.

Finally, we want to investigate if and how xFog, its parts, and extension describe
Fog Computing:

Knowledge Goal 2: Investigate the feasibility of xFog.

Knowledge Goal 3: Investigate the feasibility of xFogStar.

Therefore, we validate three different aspects: Dynamic Fog Components, Scalable
Fog Architectures, and the Service Provider Selection. Each aspect is addressed by a
multiple case study with cases from different domains.

1.3 Methodologies

In this section, we introduce the methodologies this dissertation uses. We present
the chosen research approach Design Science that we base the structure of this dis-
sertation on. Second, we present the validation strategy Multiple Case Study, which
we use to validate the three treatment designs introduced in Chapter 3, Chapter 4,
and Chapter 5. The validation is shown in Chapter 6.

1.3.1 Design Science

We base our description of Design Science on Hevner et al. [67] and several publi-
cations by Wieringa [147, 148, 149, 150]. According to Wieringa and Hevner et al.,
Design Science is the design and investigation of artifacts in a context to interact with
a problem. Cross refers to design science as ”[...] an explicitly organised, ratio-
nal and wholly systematic approach to design; not just the utilisation of scientific
knowledge of artefacts, but design in some sense a scientific activity itself” [36].

The involved artifacts have to be seen in a broad sense, ranging from hardware
and software components to services, techniques or even structures, trying to im-
prove a problem in its given problem context. Therefore, the context can be as broad
as the artifacts themselves, i. e., other software components, stakeholders which af-
fect or are affected by the artifact, goals that should be achieved, norms that need to
be fulfilled, or even available budget.

Design Science has two categories of goals: knowledge goals and technical re-
search goals. While knowledge goals are addressed by knowledge questions, tech-
nical research goals are refined to design problems. Knowledge questions try to find
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answers that universally hold true with one single answer, and therefore call for a
change of our knowledge [150, 149]. Design problems, on the other hand, call for
a change of artifacts, for instance a new way to store electrical energy or a more ef-
ficient database. Thus, design problems can be addressed by different artifacts in
different ways, heavily relying on the given context. Both activities are inherently
connected. New answers to knowledge questions can lead to new design prob-
lems and the result and evaluation of design problems can bring up new knowledge
questions and answers. Therefore, the Design Science process is iteratively striving
for improvements of the status-quo.

Design
Cycle

Engineering
Cycle

4. Treatment 
Implementation

5. Implementation Evaluation

1. Problem Investigation

Investigate Phenomena
Investigate Stakeholder

Investigate Effects

2. Treatment Design

Design Requirements
Investigate Treatments
Design new Treatments

3. Treatment Validation

Investigate Effects
Investigate Trade-offs

Investigate Requirement

Figure 1.5: The Engineering Cycle based on Wieringa [148] and adapted from Jo-
hanssen [76]. It is separated into five activities, called Problem Investigation, Treatment
Design, Treatment Validation, Treatment Implementation and Implementation Evaluation.
The first of those three activities form the Design Cycle, a subset of the engineering
cycle which is iterative itself and is often performed several times during research.

Figure 1.5 shows the Engineering Cycle as describe by Wieringa [148] and adapted
from Johanssen [76]. It is a problem solving process consisting of five activities,
starting with the Problem Investigation, which tries to answer the question
”What phenomenon should be improved and why?”, and thus learn more about the
problem that should be addressed. This is achieved by answering knowledge ques-
tions, which we indicate by the keyword Investigate as introduced by Johanssen. The
second step, called Treatment Design, investigates already available treatments,
defines the requirements, and if needed creates a new treatment for the problem
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context. In Figure 1.5, these design problems are indicated by the Design keyword.
Third, the Treatment Validation is based on several knowledge questions and
asks whether the Treatment Design created an artifact that addressed the in-
vestigated problem from the Problem Investigation and brings stakeholders
closer to their goals without deploying the created treatment to the actual prob-
lem domain’s context. These first three steps form a subset of the engineering cycle
called Design Cycle. Independent of the remaining two steps of the engineer-
ing cycle, the design cycle is an iterative process itself that can be performed by
researchers several times before continuing with the deployment. Design science
research projects are usually restricted to this cycle and do not perform the entire
engineering cycle.

Fourth, the Treatment Implementation transfers the validated treatment to
the problem context and is followed by the Implementation Evaluation that
investigates the treatment when applied by the stakeholders in the problem con-
text. These steps are part of the engineering cycle. The evaluation can motivate the
problem investigation of another engineering cycle closing the loop.

1.3.2 Multiple Case Study

As defined by Creswell, ”Case study research involves the study of an issue ex-
plored through one or more cases with a bounded system.” [35]. Therefore, a case
study is a study on a person, groups of people or units [62] in their real-world set-
tings [117] when boundaries between phenomenon and context may not be clearly
evident [157]. Yin also distinguishes between holistic and embedded cases stud-
ies; while holistic case studies have one case and one unit of analysis per context,
embedded case studies can have several units of analysis per case and per context
[157]. Each case study goes through three main stages: Design and Plan, Collect, Ana-
lyze as well as Analyze, Report. While the Design focuses on the theory development,
the second phase focuses on conducting the case study and finally, the last phase
focuses on drawing conclusions.

In comparison, multiple case study research ”explores [...] multiple bounded
systems (cases) over time, through detailed, in depth data collection involving mul-
tiple sources of information” [35]. While case studies focus on a singular case, mul-
tiple case studies investigate more than one case; leading to more information about
the studied phenomenon but with high coupling to the characteristics of the selected
cases. If the selected cases provide similar information about the investigated phe-
nomenon, it indicates robustness. Selecting the right cases is therefore crucial for
the validity of multiple case studies. The cases should be typical, critical, revelatory
or unique in some respect instead of going for availability [14]. Therefore, typical
distinctions are the application domain, the application type, some process or the
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Analyze, ReportPlan, Collect, AnalyzeDesign

Find/Develop
Theory

Select Cases

Design Data 
Collection 
Protocol

Conduct 1st 
Case Study

Conduct 2nd 
Case Study

Conduct n-th 
Case Study

…

Write 
Individual 

Case Report

Write 
Individual 

Case Report

Write 
Individual 

Case Report

Write 
Individual 

Case Report

Draw Cross-
Case 

Conclusions

Modify Theory

Develop Policy 
Implications

Write Cross-
Case Report

Figure 1.6: Process of Multiple Case Study in an activity diagram adapted from
Yin and Runeson [117, 157]. It is separated into three parts, Design and Plan, Collect,
Analyze as well as Analyze, Report. The activities in dark grey boxes highlight activities
that differ from the process of a single case study.

study participants. While the number of cases is coupled with the certainty that
needs to be achieved, Yin advises ”to settle for two or three literal replications [...]
when the issue at hand does not demand an excessive degree of certainty” [157].

The process of a multiple case study is depicted in Figure 1.6 and shows the
same three phases as for a regular case study. To highlight the differences between
a case study and multiple case study, boxes highlighted in dark grey are specific for
multiple case study. The first phase, the Design is based on three activities. First,
Find/Develop a Theory which needs to be investigated. Followed by the two
steps that can be done in parallel, the Selection of the Cases and the Design
Data Collection Protocol activity. With those activities finished, the Design
phase is concluded. The first step of the second phase is Conducting the Case

Studies which is followed by a Written Individual Case Report for each
case. This is of particular importance for multiple case study, which generates the
additional information in this step. The final phase, the Analyze, Report, evalu-
ates all the written reports and compares the different cases.

1.4 Research Approach

The research approach of this dissertation is shown in Figure 1.7 and represents one
engineering cycle which is rooted in the described problem context.

During the problem investigation, the problem context and the resulting research
objectives are investigated in more detail using software engineering techniques as
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Engineering Cycle

Design Cycle 2Design Cycle 1

Problem Investigation

Treatment Design

Treatment Validation

Knowledge Goal 2

Dynamic
Fog Components

ARControl

PdMFrame

Lassie

Scalable 
Fog Architectures

Fog.BOI

eHealth

DisCoFog / DisCoFog 2

xFogCore

Knowledge Goal 1
Technical Research Goal 1

xFogPlus

Technical Research Goal 2
Technical Research Goal 3

Treatment Validation

Knowledge Goal 3

Treatment Validation 3:
Service Provider Selection

Quasar

FoQsIs

Treatment Design

xFogStar

Technical Research Goal 4

Treatment Implementation

Implementation Evaluation

Figure 1.7: The engineering cycle based on Wieringa [148].
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described by Bruegge et al. [21]. These led to functional and non-functional require-
ments that need to be addressed by the xFog framework. Using the design science
methodology, the requirements represent Design Problems which are derived from
the technical research goals.

The problem context as well as the problem investigation triggered two design
cycles: The creation of the xFog framework and the design of the xFogStar workflow.
Within the first design cycle, the treatment design phase addressed Knowledge Goal 1
as well as the first three Technical Research Goals. This treatment design led to the de-
velopment of xFogCore and xFogPlus, which are the core components of the xFog
framework. The resulting validation investigated Knowledge Goal 2 to understand
the feasibility of the xFog framework. It included two multiple case studies that ad-
dress Dynamic Fog Components and Scalable Fog Architectures, which used xFogCore
and the two concepts of xFogPlus.

The xFog framework and the problem investigation triggered the second design
cycle which resulted in the creation of xFogStar. xFogStar is an artifact developed to
address the Technical Research Goal 4. In the subsequent validation, we investigated
Knowledge Goal 3 to evaluate the feasibility of the xFogStar workflow. Therefore, we
created two instantiations of the workflow.

As for most design science projects, the treatment implementation and imple-
mentation evaluation are out of scope for this dissertation and remain future work.

1.5 Dissertation Structure

This dissertation follows an adapted version of the design science methodology by
Wieringa [148] as described in Section 1.3.1 and consists of four parts. Figure 1.8
provides an overview of these parts and their internal structure, and connects the
individual case studies to the different multiple case studies in the treatment valida-
tions. Part I, Part II, and Part III reflect the Design Cycle as indicated by their names:
Problem Investigation, Treatment Design, and Treatment Validation.

Part I describes and investigates the problem this dissertation addresses and es-
tablishes according research goals. In Part II, we describe the xFog framework and
xFogStar, which address the first knowledge goal and the technical research goals
introduced in Section 1.2. The third part describes the treatment validation includ-
ing three multiple case studies to investigate the knowledge goals that are concerned
with the feasibility of xFog and xFogStar. Finally, Part IV concludes this dissertation.
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Part I: Problem Investigation

Chapter 1 Chapter 2

Part II: Treatment Design

Chapter 3

Introduction

Introduces Problem Domain, 
Describes Methodology

Problem Investigation

Reviews Technical Foundations, 
Identifies Actors and Use Cases, 
Presents Requirements

xFog: An Extension to Fog Computing

Reviews Software Architecture Definitions, 
Describes Framework Design,
Describes xFogCore

Addresses Goals: Knowledge Goal 1, 
               Technical Research Goal 1

Addresses RQ:  FR1, FR3, FR6,
                          NFR1, NFR3, NFR5
Results: Definition of Fog Component, 
              Definition of Fog Visibility, 
              Definition of Fog Horizon, 
              Definition of Fog Reachability, 
              Definition of Fog Set, 
              Definition of Communication Set, 
              Graph Representation

Part III: Treatment Validation

Chapter 4

Chapter 5

Chapter 6 Validation of xFog

Addresses Goals: Knowledge Goal 2, Knowledge Goal 3

xFogPlus: Dynamic Scalable Fog Computing

Addresses Goals: Technical Research Goal 2, 
                             Technical Research Goal 3

Addresses RQ: FR1, FR2, FR4, FR5,
                         NFR1, NFR2, NFR3, NFR5, NFR6
Results: Definition of Layers, 
              Addition of Fog Components & Layers, 
              Introduction of Views, 
              Dynamic Type Changes

xFogStar: A Workflow for Service Provider Selection

Addresses Goals: Technical Research Goal 4

Addresses RQ: FR7, FR8, FR9, FR10, FR11,
                         NFR2, NFR4, NFR7
Results: Definition and Categorization of QoS Parameters, 
              Definition of QoS Vector, 
              Definition of QoS Vector Comparability Steps

Smart Environment

Smart City

Health

Metrology

Gaming
Domains

Multiple Case Study 1:

Dynamic Fog Components

Multiple Case Study 2:

Scalable Fog Architectures

Multiple Case Study 3:

Service Provider Selection

ARControl

Fog.BOIPdMFrame

Quasar

FoQsIs

Part IV: Conclusion

Chapter 7 Conclusion & Future Work

Lassie eHealth

DisCoFog / DisCoFog 2

Continuous Integration

Figure 1.8: Overview of the dissertations’s structure.
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Chapter 1 introduces the problem domain of the dissertation, establishes the
research goals, and describes the used research methodology of design
science and multiple case studies.

Chapter 2 investigates the described problem from Chapter 1 using software
engineering techniques as described by Bruegge et al. [21]. We identify
actors, use cases, and requirements which form the basis for the xFog
framework based on the research goals. We establish the technical back-
ground including the concepts of Internet of Things, Fog Computing,
and Quality of Service.

Chapter 3 presents the first treatment design to address the investigated prob-
lems and to set the foundations for the following treatments. It describes
XFOG, an extension for Fog Computing, to formalize Fog Computing as
a software architecture based on sets and graphs. Therefore, xFogCore
establishes the concepts Fog Component, Fog Visibility, Fog Horizon, Fog
Reachability, Fog Set, and the Communication Set.

Chapter 4 introduces the treatment design called XFOGPLUS. It adds support
for dynamics and scalability which enables components and layers to
be dynamically added and removed from a Fog Architecture. Therefor,
we establish definitions for the different layers of Fog Computing. We
define a View concept to support stakeholders to address specific parts of
Fog Architectures.

Chapter 5 introduces the third treatment design: XFOGSTAR. It represents a
concept that is enabled by xFog and its foundations provided by xFog-
Core and xFogPlus. xFogStar is a workflow that allows Fog Components
within the xFog framework to find the ”best” fitting communication part-
ner for a requested service among several service providers in one Fog
Horizon. Therefor, the Fog Component uses a discovery mechanism to
find all available service providers and quality of service parameters to
define its needs and preferences.

Chapter 6 validates the xFog framework and xFogStar using multiple case
studies and domain engineering. We address three aspects reflecting the
foundations of xFog and the xFogStar workflow: Dynamic Fog Compo-
nents, Scalable Fog Architectures, and the Service Provider Selection.

Chapter 7 concludes this dissertation by summarizing its contributions and
providing an outlook on concepts that can be addressed in the future.
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Chapter 2

Problem Investigation

”Software architects should design, develop, nurture, and maintain the archi-
tecture of the software-intensive systems they are involved with.”

— PHILIPPE KRUCHTEN [82]

The problem investigation tries to accurately describe the phenomenon that
should be improved. It does so by investigating the status quo of the problem do-
main as well as the reasoning why the problem needs improvement. Based on the
problem description in Chapter 1, in this chapter, we focus on a detailed require-
ments analysis of the problem as described by Bruegge et al. [21]. Therefore, in
Section 2.1, we start by describing the technical background of the problem domain
to establish the status quo. The following section, Section 2.2, uses the description
of the problem and the set technical research goals to create a use case model which
describes the interactions between the actors of the system and the use cases among
each other. Finally, Section 2.3 formalizes the presented use cases into requirements
that map to design problems in terms of design science. In the following chapters,
we address and relate to them during the creation of the framework.

2.1 Technical Background

In this section, we introduce the technical knowledge, the concepts, as well as defi-
nitions to create a common understanding of the problem domain. This represents
the status quo of the given concepts which we base our framework on. We address
three aspects: The Internet of Things, which is the basis for all components that we
work with, Fog Computing itself, and the related term Edge Computing, and finally,
quality of service, which we use to address the Technical Research Goal 4.
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2.1.1 Internet of Things

According to Gubbi et al., the Internet of Things (IOT) is defined as interconnected
sensing and actuating devices which share information across platforms using data
analytics, ubiquitous and Cloud Computing [60]. Therefore, these devices require
computational capabilities and are uniquely addressable, making them ”close the
gap between the physical and the virtual world”[47] through scalable software sys-
tems [138, 151]. According to Atzori et al., this approach can be realized in three
different ways: things-oriented, internet-oriented, or semantic-oriented [10]. All
of those approaches share a huge amount of provided information that allows ”to
mine and detect patterns, perform predictions or optimization” [38], but also intro-
duces new business models and challenges due to the increasing interconnectivity
[32, 48, 140].

As one of the first IoT devices, a Coke vending machine at Carnegie Mellon Uni-
versity in Pittsburgh, USA, in 1982 1, IoT rapidly spread to all domains. Especially
in day-to-day life, IoT devices found a way in all domains: in smart environments,
smart textiles, household appliances, etc. This consumer focused trend led to two
subclasses to enable the integration into production lines [92] and to increase opera-
tional effectivity [153]: Consumer IoT (CIOT) and Industrial IoT (IIOT) that focuses
on IIoT devices which have a bigger emphasis on reliability and connectivity [125].
Traditionally, IIoT systems use centralized architectures that require sensor data,
actions and control commands to be routed through the entire network [95], but ad-
vances in miniaturization and costs shifted the role of sensors and actuators from
simple interaction devices to autonomous systems with general-purpose computers
[20, 135, 153].

2.1.2 Fog & Edge Computing

In this section, we address Fog Computing and Edge Computing but also mention
other concepts with the same intention. The main goal of all of these concepts is
to reduce latency, increase the available context by introducing location awareness,
and reduce communication overhead [127]. The problems that should be addressed
by these goals can mainly be traced back to the growing interest in the IoT. Al-
ready in 2018, a total of 17.8 billion active device connections were calculated of
which 7 billion are considered IoT devices. Until 2025, depending on the progno-
sis, this number is predicted to rise to between 34.22 and 753 billion devices with
more than 60% of them being IoT. This increase results in a vast amount of data
which makes networks the bottlenecks and challenges centralized approaches such

1http://www.cs.cmu.edu/ coke/
2https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
3https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
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2.1 Technical Background

as Cloud Computing. Distributed approaches can not only help to regulate the traf-
fic by aggregating and preprocessing the data [70, 112], but also by making decisions
that do not require central instances [52, 93, 127, 128, 129], making the existing ar-
chitectural boundaries blurry [153]. Due to the technological advancements already
addressed in Section 2.1.1 on IoT, the central processing unit (CPU), graphics pro-
cessing unit (GPU), storage, etc. of devices at the edge increases and should be ex-
ploited by offering a wide variety of services [20, 77]. This idea was also addressed
by Bonomi et al. in 2012 by bringing the power of central instances closer to the con-
sumer, and therefore the edge that result in lower latencies [17, 18]. While services
and data evaluation is pushed closer to the edge, most decentralized services still
leverage the benefits of Cloud Computing, by offloading big data analytics or ma-
chine learning tasks [19]. Finally, many IoT applications rely on location awareness,
as for instance in smart environments as shown by Alletto et al. and Applin et al.
[6, 8], which Cloud Computing lacks.

Although the terms Fog Computing and Edge Computing are often used as syn-
onyms, as for instance by Varghese et al. and Vi et al. [143, 155], we differentiate two
important aspects. While Edge Computing tries to push services and data as close
to the edge as possible, and therefore heavily uses Edge Networks, Fog Computing
includes every device on the way from the cloud to the edge [85]. We consider Edge
Computing a subset of Fog Computing, which is also supported by Mahmud et al.
[91].

Both, Edge Computing and Fog Computing, describe a three layer approach.
The cloud represents the topmost layer providing remote services and at the other
end, the end user devices, also called Edge Devices, are on the Edge Layer. In both
concepts, an intermediate layer is in between those layers which we call Fog Layer.

Figure 2.1 shows an hierarchical overview of this structure. Additionally, it
shows the properties of Fog Computing. The closer a device is to the cloud, the
more Resources it has available, the more Reliable Connectivity is ensured, the more
Reliability it provides, and the greater the Latency is to devices at the edge. On the
other side, the closer a device is to the edge of the network, the more Devices are
present on its and adjacent layers, the more important are Real-Time requirements,
Dynamic aspects, Location Awareness, Geo Distribution, and Interactivity. Edge and
Fog Computing differ on the placement of this intermediate layer that is used to pro-
vide services, lower bandwidth usage and latency, and allows locality [18, 120, 142].
These intermediate layers consist of heterogeneous devices [138] and can be seen as
”mini-clouds” [142].
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Cloud Device

Fog Node Fog Node Fog Node

Edge Device Edge Device Edge Device

Fog
Layer
Set

Edge
Layer

Cloud
Layer

Resources
Reliable Connectivity

Latency
Reliability

Dynamics
Real-Time
Devices

Location Awareness
Geo Distribution

Interactivity

Figure 2.1: Hierarchical structure of Fog Computing adapted from Seitz and Yousef-
pour [126, 158]. In addition to the structure, it also shows that the available Re-
sources, Reliable Connectivity, Latency, and Reliability increase the closer the compo-
nent is to the Cloud. On the other side, the amount of Devices, the Real-time require-
ment, Dynamics, Location Awareness, Geo Distribution, and Interactivity increase the
closer the component is to the Edge.

The following definition by Yi et al. [155] reflects not only a description for Fog
Computing, but also for Edge Computing:

“Fog computing is a geographically distributed computing architecture with a
resource pool consists of one or more ubiquitously connected heterogeneous de-
vices (including Edge Devices) at the edge of network and not exclusively seam-
lessly backed by cloud services, to collaboratively provide elastic computation,
storage and communication (and many other new services and tasks) in isolated
environments to a large scale of clients in proximity.” [155]

In addition to the mentioned characteristics by Yi et al. [155], Bonomi et al. add
the importance of interoperability between heterogenous devices and the support
of mobility [18].

2.1.3 Quality of Service

Quality of service (QOS) describes non-functional properties [50], qualitative or
quantitative, that define and can be assigned to any kind of service offered or con-
sumed. These properties can also be referred to as resource or service metrics [87,
91, 116]. Especially in computer science, quality of service is typically found in
the area of networking, as for instance in [29, 37, 55, 144], real-time applications

18



2.2 Use Case Model

[154], or middleware [50, 161]. Depending on the application domain, different
non-functional properties are of importance. These application domains specify in
which way quality of service is used. While in networking QoS is used to find op-
timal routing strategies, real-time applications focus on the selection of the ”right”
service based on different characteristics. Common properties are Time, Cost, Data,
and Energy [27, 91, 161]. In particular in real-time applications, properties such as
Reliability and Availability are suggested [50]. The emphasis of Fog Computing on
real-time also pushes those properties into its QoS. According to Yi et al., quality
of service parameters in the fog environment are divided into the four categories
Connectivitity, Reliability, Capacity, and Delay [156].

After collecting QoS parameters, the properties need to be compared to select the
best network route, the cheapest service, or the most available service. This can be
achieved by hand, comparing single values as for instance for the cheapest service,
or by using extensive calculations, as for example in the QoS Model by Liu et al.
[90], Al-Mastri et al. [4], or Zheng et al. [160].

2.2 Use Case Model

Figure 2.2 shows the use case model for an extension for Fog Computing. The use
cases are derived from the problem description in Section 1.1, the technical research
goals in Section 1.2, and are based on the technical background.

It distinguishes between two types of actors: Component Developers and
Software Architects. While Component Developers implement single
components and their functionality, and accordingly, care about the direct surround-
ing of the component, Software Architects have the bigger picture of the entire
Fog Architecture in mind.

The Software Architect wants to Define Architecture

Boundar[ies] and keep them up to date during the lifetime of the architec-
ture. This involves to know which components, connectors and layers are present.
Therefore, the use case Define Architecture Boundary includes the three
use cases: Define Components, Define Connectors, and Define Layers.
These use cases also represent functional requirements based on the definitions
of a software architecture which we address in Section 3.1.1. The definition of
layers is linked to the offered services on each layer. Accordingly, Define Layers

includes the use case Limit Components to Service which extends Define
Components.

In addition to defining the boundaries, a Software Architect can Add new

Component[s] and Add new Layer[s]. These use cases describe the dynamic
properties of Fog Architectures and allow Software Architects to integrate
new components and layers at runtime.
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Figure 2.2: The use case model for an extension for Fog Computing (UML Use Case
Model). It depicts the interactions of the two actors, Software Architect and Compo-
nent Developer, with the system. While the Software Architect is more concerned with
the definition and design of the Fog Architecture, and therefore defining a clear sys-
tem boundary, the Component Developer represents an actor that develops individual
components of the architecture. Thus, the Component Developer is more interested in
smaller sections of the Fog Architecture. These relations are also highlighted by the
use cases the actors interact with.
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After adding a new component, the Software Architect can Assign

[the] Component to [a] Layer which is an extension to the use case: Add

new Component.
While a Fog Architecture is designed by one or only a few Software

Architects, usually several Component Developer[s] are included. From
their perspective, they need to know who is in their close surrounding, and
thus who they can interact with. Accordingly, a Component Developer can
Find Surrounding Components which is related to Define Components,
that Software Architects use to define all involved Fog Components of a Fog
Architecture, just on a smaller scale. Additionally, they can Limit Surrounding

Components to [a] Service which is an extension to Find Surrounding

Components and is included in Limit Components to Service. Limiting all
components to a service allows Component Developers to find all components
in the surrounding that are interested in a specific service.

Component Developer[s] can also Find Service Providers and
Offer Services. Finding service providers for a specific service includes Limit
Surrounding Components to Service. If one out of many service providers
should be selected, the Component Developer has to Compare Service

Providers, Define Priorities on the service providers characteristics, and
Define Limits such as a maximum price for the service. If service providers
do not provide information, e. g., for the energy consumption of a component,
Component Developers also have to Handle Unavailable Parameters

which is an extension to the comparison of service providers. Finally, these
steps lead to a Select[ion of a] Service Provider. On the other side,
Component Developer[s] can Offer Service[s]. To support the selection
process of service providers, the use case can be extended by Provide Service

Characteristics.

2.3 Requirements

Based on the Technical Research Goals, the proposed use cases, and the actors, we
derive the functional (FR) and non-functional requirements (NFR) for the design
of the framework. These requirements refer to the Design Problems of the design
science approach which need to be addressed to achieve the Technical Research Goals.
Section 2.3.1 lists the functional requirements grouped by the two identified actors:
Software Architect and Component Developer.

The requirements based on the needs of the Software Architect describe function-
ality to support the creation of a Fog Architecture, adjust it to changing needs, and
maintain it during its lifecycle.
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The Component Developer’s requirements, on the other hand, address the needs
that arise during the development process and lifecycle of individual components
and their relation to other components within their surrounding.

2.3.1 Functional Requirements

Software Architects have many responsibilities, among others, they have to ”[define]
the architecture of the software”, ”[maintain] the architectural integrity of the soft-
ware”, and ”[propose] the order and contents of the successive iterations” [81]. We
summarize these tasks as the definition of clear architectural boundaries which is es-
pecially important in a set of highly connected components that can be dynamically
added and removed from the architecture. This dynamic aspect poses a challenge
to the maintenance of the architecture’s integrity and needs to be addressed. There-
fore, we want to enable Software Architects that use the extension of Fog Computing
to add new components to the architecture and define their used communication
channels. These components have to be assigned to the different layers of a Fog
Architecture, but it should also be possible to add new layers to enable scalability.

The following four requirements result from these functionalities for an exten-
sion for Fog Computing from a Software Architect’s point of view:

FR1 Define the system boundaries of the Fog Architecture. The system
boundary defines which components are part of the architecture and
which are not.

FR2 Add new components to the Fog Architecture.

FR3 Define the communication channels which are used by components
to connect to other components.

FR4 Assign components to layers.

FR5 Add new layers to the Fog Architecture.

The second actor in the use case model (Figure 2.2) is the Component Developer.
In comparison to the Software Architect, the Component Developer is primarily inter-
ested in solving the problems of the specific component, they are working on. The
solutions to these problems have to fit into the definition of the overarching Fog
Architecture, but other components, that the particular component does not inter-
act with, are of less concern. Especially in Fog Computing, with its emphasis on
locality, these other components can be found in the immediate surrounding of the
component. Therefore, Component Developers want to find all components in the sur-
rounding of the developed component. The interactions between components are
described as services that can be offered, advertised, and consumed.
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When searching for a component that offers a service, it should be possible to
restrict the components in the surrounding to those that offer the service. If sev-
eral potential service providers are remaining, the Component Developer should be
able to compare the service providers based on their needs. This includes that
the Component Developer can specify priorities, e. g., preferring energy efficient ser-
vice providers, but also provide preconditions to characteristics of the service that
should not be exceeded, such as the total costs for the service. The name precondi-
tion is based on the concept ”design by contract” by Bertrand Meyer [96]. It allows
to specify conditions that need to hold true before a subtask, in our case a service
from another component, can be executed. As we do not consider postconditions,
we refer to these preconditions as limits.

When offering services to other components, Component Developers want to pro-
vide information about their offered services to the requesting component to ensure
that the limits of the requesting component can be met, and therefore increase their
chance of being selected.

The respective requirements of the Component Developer, and therefore the re-
quirements of the developed component are shown in the following:

FR6 Search for other components in the local surrounding. This search
can be restricted to a specific service which a Component Developer
needs.

FR7 Compare different service providers based on their characteristics.

FR8 Select a service provider to communicate with.

FR9 Define limits for characteristics of services. Those limits allow, e. g.,
the specification of a maximum price a component is willing to pay
for a service or the minimum provided bandwidth.

FR10 Define priorities to describe which characteristic of a service are of
which importance, e. g., putting a high emphasis on sustainability.

FR11 Send the component’s service characteristics to other components
that request a service from it.
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2.3.2 Non-Functional Requirements

This section describes the non-functional requirements for an extension for Fog
Computing to describe ”quality attributes and concerns for productivity, time and
cost” [31]. In this context, ”software quality is the degree to which software pos-
sesses a desired combination of attributes” [103]. As proposed by Bruegge et al.,
we use the FURPS+ model initially proposed by Grady [57] to categorize the non-
functional requirements [21]. FURPS+ is an acronym standing for Functionality,
which we described in the previous section, and the non-functional categories:
Usability, Reliability, Performance, and Supportability. The + indicates the addition
of subcategories for each category.

NFR1 Supportability: The Fog Computing extension should allow the
addition of new components of different types that are unknown at de-
sign time.

NFR2 Supportability: The Fog Computing extension should allow the
addition of new layers including services that are unknown during de-
sign time.

NFR3 Supportability: The Fog Computing extension should allow the
addition of new communication channels and communication media.

NFR4 Supportability: As not all characteristics for the service discovery
can be defined for all domains in which Fog Computing can be applied,
the list of characteristics should be extensible.

NFR5 Usability: Clear boundaries can be identified at any time of the
execution of a Fog Architecture. This allows the identification of compo-
nents and connectors, as well as the layers the components refer to.

NFR6 Usability: The Fog Computing extension should provide support
for large Fog Architectures. These may include more layers than the typ-
ical three layers of a Fog Architecture.

NFR7 Reliability: In case a service of a service provider is no longer avail-
able, other service providers which offer the same service should be able
to substitute the initial service provider.
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Chapter 3

xFog: An Extension for Fog
Computing

“In my experience, I am sorry to say, industrial software makers tend to react
to the system with mixed feelings. On the one hand, they are inclined to think
that we have done a kind of model job; on the other hand, they express doubts
whether the techniques used are applicable outside the sheltered atmosphere of a
University and express the opinion that we were successful only because of the
modest scope of the whole project. It is not my intention to underestimate the
organizing ability needed to handle a much bigger job, with a lot more people,
but I should like to venture the opinion that the larger the project, the more
essential the structuring!”

— EDSGER W. DIJKSTRA [40]

xFog is a framework which formalizes Fog Computing and extends it by dy-
namic and scalable behavior. The dynamic behavior, as introduced in Chapter 1
and investigated in Chapter 2, has several aspects to it which we formalized in func-
tional and non-functional requirements. We use those requirements throughout the
framework to show which part of the extension addresses which functionality and
needs to fulfill which quality attributes. xFogCore establishes the basic concepts for
the extension including the set theoretical approach. It uses sets to describe Fog
Computing using the core building blocks of Software Architectures: Components
and Connectors. xFogPlus adds the dynamic and scalable aspect to the xFog frame-
work. Finally, xFogStar shows one concept as an addition to xFog which is enabled
by the set theoretical concepts: A Workflow for Service Provider Selection. Also we
only introduce one workflow, xFogStar shows how xFog creates the basis for many
other concepts to come.
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Also the entirety of the framework is called xFog, in this chapter, we address
xFogCore the core concepts needed for the framework. We address functional re-
quirements FR1, FR3, and FR6, which address functionality that is driven by the
definition of a software architecture. These requirements are linked to the non-
functional requirements NFR1, NFR4, and NFR5. Thus, in Section 3.1, we take a
look at software architectures and how they evolved throughout the history. We
introduce the framework’s design and explain where the framework’s names come
from and set the following concepts into context in the meta model:

In Section 3.2, we define the term Fog Component which establishes the differ-
ence between a component and a component within a Fog Architecture. Based on
those Fog Components, we introduce the concepts Fog Visibility (Section 3.2.2), Fog
Horizon (Section 3.2.3), and Fog Reachability (Section 3.2.4), which we ultimately use
to define the Fog Set in Section 3.2.5; the set of Fog Components that defines a Fog
Architecture. Additionally, we introduce the idea of limiting the concepts to certain
services in Section 3.2.6. We use these as a basis for the following chapters to define
dynamics, scalability, and the quality of service based discovery workflow.

The second part of this chapter addresses the Communication Set in Section 3.3
and the different communication channels that can be found in Fog Architectures.
In Section 3.4, the Fog Set and the Communication Set are used as the foundation to
represent Fog Architectures as graphs.

3.1 Framework Design

This section addresses the design of the framework for Fog Computing as a soft-
ware architecture. Therefore, we look at the development of software architectures
from a historical point of view in Section 3.1.1, compare different software architec-
ture definitions, and highlight their accordances and differences through models to
investigate Knowledge Goal 1.

In the following Section 3.1.2, we introduce the design of a framework called
xFog which is an extension to the Fog Computing concept and focuses on the soft-
ware architecture implications to achieve the Technical Research Goal 1. Additionally,
we provide an outlook into the two additional parts xFogPlus and xFogStar, which
address the Technical Research Goal 2, Technical Research Goal 3, and Technical Research
Goal 4.

3.1.1 Software Architectures

As soon as software systems became more complex and difficult to understand, es-
pecially in terms of impact a change might imply, programmers and designers used
box-and-line diagrams and written explanations to describe their thoughts [130].
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3.1 Framework Design

Therefore, using graphs with nodes and edges as a representation technique for
software architectures is as old as the discipline itself and has proven to be inher-
ently fitting. While some programmers and designers could identify common ap-
proaches and similarities between software system designs, the lack of standard-
ization, best practices, tool support, and the teaching of those, led to low quality
software, unmaintainable code, projects running over-budget and time, and often
not being delivered at all. This phase, referred to as ”software crisis” or ”software
gap” by attendees of the software engineering conference sponsored by the NATO
Science Committee in Garmisch, Germany 1968 [102], had several origins among
which the increasing challenges and complexity stood out. This is also highlighted
by Dijkstra:

“The major cause [of the software crisis] is that the machines have become several
orders of magnitude more powerful! To put it quite bluntly: as long as there
were no machines, programming was no problem at all; when we had a few weak
computers, programming became a mild problem, and now we have gigantic
computers, programming had become an equally gigantic problem.”

— EDSGER W. DIJKSTRA [41]

This crisis motivated several scientists to work on the management of complex-
ity and spreading knowledge within the computer science community. Their key
premise was simple: implementation and design are not one combined, but rather
two separate activities [15, 115, 145]. This premise introduced but also required the
idea of seeing components as black boxes which was based on several ideas such
as information hiding as introduced by Parnas [106, 108] to reveal the structure in-
herent to software systems [107]. Treating components as black boxes allowed to re-
duce the complexity of software by focusing on structure and design while leaving
out implementation details. This encouraged the use of graphs as representations
for structure once more. In ”On the criteria to be used in decomposing systems
in modules” [106] and ”The structure of the THE multiprogramming system” [40],
Parnas and Dijkstra emphasize the importance of getting the structure right. In ret-
rospective, Dijkstra created in the THE multiprogramming system the first layered
architecture.

This focus on structure also enabled the rise of architectural styles — abstractions
of common problems in software architecture independent of the problem domain
[99]. Several generalized approaches to describe such architectural styles can be
found in the work of Mary Shaw, David Garlan, and others [5, 13, 53, 92, 93, 134].
Using these approaches, Garlan and Shaw published several papers refining the
their definitions for architectural styles as well as establishing definitions for Soft-
ware Architecture per se [54, 133, 131, 132, 134] as shown in Figure 3.1.
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3 xFog: An Extension for Fog Computing

Shaw & Garlan 1993

Component

Interaction
Software 

Architecture

Figure 3.1: The software architecture definition of Shaw and Garlan from 1993 [134]
using Components and Interactions to describe the individual elements (UML class
diagram)

For the generalized description of architectural styles, they mainly focused on
”dataflow systems” such as pipes-and-filters, ”call-and-return systems” including
the hierarchically layered architecture, as presented by Dijkstra [40], ’independent
components’ as for instance event systems, ’virtual machines’ like rule-based sys-
tems, and ’repositories’ including the blackboard architectural style. This resulted
in the following definition:

“Software architecture involves the description of elements from which system
are built, interactions among those elements, patterns that guide their composi-
tion, and constraints on these patterns. In general, a particular system is defined
in terms of a collection of components and interaction among those components.
Such a system may in turn be used as a (composite) element in a larger system
design.”

— MARY SHAW AND DAVID GARLAN [133]

Perry and Wolf introduced their definition of software architectures in ”Founda-
tions for the study of software architecture” [109], stating what benefits they try to
achieve:

• Architecture is a framework to satisfy requirements.

• Architecture is the technical basis for design, cost estimation, and process man-
agement.

• Architecture is the basis for reuse.

• Architecture is the basis for dependency and consistency analysis.

While Shaw and Garlan mainly focused on the components and interactions
within an architecture, Perry and Wolf also tried to grasp more informal aspects
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Boehm 1995

Perry & Wolf 1992

Element

Constraints

Rationale

Form Software 
Architecture

Figure 3.2: Software architecture definition of Perry and Wolf in yellow [109] who
described architectures based on the three classes Element, Form, and Rationale, and
therefore introducing the reasoning behind decisions into architecture. The red box
shows the extension of Perry and Wolf’s definition by Böhm who added Constraints
[51].

of software architecture such as weights, priorities, properties of elements and ra-
tionale, as shown in Figure 3.2. In their definition, components and interactions are
summarized under the term elements also including data elements, which led to
their description of software architecture being a set of elements, their form, and the
rationale behind the architecture. Boehm et al. added the idea of constraints shortly
after extending the set to four elements [51] as shown in Definition 1.

Definition 1: Software Architecture

Software Architecture = { Elements, Form, Rationale, Constraints }

This model was picked up by Kruchten [80] when describing software archi-
tecture with the 4+1 view model. The model describes software architectures as a
composition of multiple views depending on the current intent:

• Logical View: Represents the object model of the design (End-user, Function-
ality).

• Process View: Represents the concurrency and synchronization aspects of the
design (Integrators, Performance, Scalability).

• Physical View: Represents the mapping of software onto hardware (System
Engineers, Topology, Communications).
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Kruchten 1995

View
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Figure 3.3: Software architecture definition by Kruchten [80] who separated archi-
tecture in a collection of 4+1 views shown on the right side and the preexisting
architecture components as proposed by Perry, Wolf and Böhm [51, 109] on the left.

• Development View: Represents the static organization in its development en-
vironment (Programmers, Software Management).

Lastly, the +1 view is an illustration of the four views based on selected use cases
or scenarios. The view approach was quickly adapted in the software architecture
community and even found its way into more practical reading such as ”Applied
Software Architecture” by Hofmeister et al. [68]. Hofmeister et al. call their views
Conceptual View, Module View, Execution View, and Code View. While the conceptual
view can directly be mapped to the Logical View, module, execution, and code
view are subviews of the Physical view describing its idea on different granu-
larity levels. Figure 3.3 shows this definition in a compact representation.

In 2013, Bass et al. introduced another distinction [13]. They differentiated be-
tween the related terms ’View’ and ’Structure’. While views are defined as a repre-
sentation of architectural elements and the relations among them from a stakeholder
perspective, structures are the sets of elements themselves as they exist in software
or hardware. Therefore, software architects create structures that are documented
for the stakeholder as views. Bass et al. distinguish between three kinds of struc-
tures which are shown in Figure 3.4:

• Module Structures show a static functional responsibility by separating the
system into modules.

• Component-and-Connector Structures embody the system as a set of ele-
ments (components) and interactions (connectors) with runtime behavior.

• Allocation Structures define how the software elements are mapped onto non-
software structures such as CPUs, networks, etc.

30



3.1 Framework Design

Bass et al. 2013

Structure View
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Figure 3.4: The software architecture definition by Bass et al. [13]. They focused
on the differentiation between structures and views. While structures are similar to
the views, as introduced by Kruchten, Bass et al. argue that structures describe the
architecture, whereas views are used to present architecture to stakeholders.

One example representation of the structures can be found in software engineer-
ing as shown in [21]. Using the perspective of a software engineer, each struc-
ture can be mapped to different UML diagrams describing different software en-
gineering stages. The Module Structure is represented as an object design, the
Component-and-Connector Structure maps to a subsystem decomposition,
and the Allocation Structure describes a hardware/software mapping.

All software architecture definitions have in common that they build upon basic
building components and their connections, disagreeing on the representation of
those and the amount of additional information needed to define an architecture.
Based on that common idea, it is important to know at any time which components
and respectively which connections are part of a software architecture and which
are not. This is especially challenging in dynamically changing architectures. This
was already addressed by Bass et al. in ”Software Architecture in Practice” [13] who
introduced the following questions to be answered by architectures:

1. What are the major executing components and how do they interact at run-
time?

2. What are the major shared data stores?

3. Which parts of the system are replicated?

4. How does data progress through the system?

5. What parts of the system can run in parallel?

6. Can the system’s structure change as it executes and, if so, how?

The first and last question are particularly interesting as they focus on this dy-
namic idea.
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In ”The Golden Age of Software Architecture” [130] Shaw and Clements also
introduce research fields that still need further investigation:

• Continuing to explore formal relationships between architectural design deci-
sions and quality attributes.

• Finding the right language in which to represent architectures.

• Finding ways to assure conformance between architecture and code.

• Re-thinking our approach to software testing, based on software architecture.

• Organizing architectural knowledge to create reference materials.

• Developing architectural support for systems that dynamically adapt to changes
in resources and each user’s expectations and preferences.

In particular, we want to address the last research field which is described by
Shaw and Clements as follows:

”As computing becomes ubiquitous and integrated in everyday devices, both
base resources such as bandwidth and information resources such as location-
specific data change dynamically. Moreover, each individual user has different
needs that change with time. Developing architectures that can dynamically
anticipate and react to these changes would help to maximize the benefit each
user can obtain. Achieving this will require not only adaptive architectures but
also component specifications that reflect variability in user needs as well as
intrinsic properties of the component.”

— MARY SHAW AND PAUL CLEMENTS [130]

Based on this description, three important goals can be identified:

1. Developing architectural support for dynamically adapting systems

2. Integrating user’s expectations

3. Allowing user preferences

We want to address these goals using Fog Computing, as presented in Section 2.1.2,
an architectural style in the context of Cloud Computing that needs to be further in-
vestigated in terms of software architectures.
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Figure 3.5: Overview of the xFog framework.

3.1.2 xFog Design

The framework xFog addresses the concerns stated by Shaw and Clements that com-
ponents need to be specified and their intrinsic properties need to be described for
adaptive architectures [130]. The name XFOG is short for an Extension for Fog Com-
puting. Its name is inspired by the naming of the extension of the file allocation
table, EXFAT for short, which is an adaption of the file allocation table filesystem
(FAT) for flash drives 4.

Figure 3.5 provides an overview of the xFog framework. For each of its parts, we
designed a logo shown in Figure 3.6 .

xFogCore is an extension for Fog Computing to include the definitions of soft-
ware architecture which are described by Shaw and Garlan [109]. In Chapter 3, we
focus on the definition of the involved components in Fog Architectures, their inter-
actions, and connections to each other in terms of graphs.

4https://docs.microsoft.com/en-us/windows/win32/fileio/exfat-specification
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xFog xFogCore xFogPlus xFogStar

Figure 3.6: xFog framework logos.

The second part of xFog, addressed in Chapter 4, is called XFOGPLUS. It builds
upon xFogCore and integrates dynamic and scalable behavior for Fog Architectures:
New components can be dynamically added, new layers can be established based
on existing components, and entirely new layer can be introduced. Accordingly,
the Plus in xFogPlus represents the addition of components and layers making the
approach dynamic and scalable. xFogPlus defines different Views on Fog Architec-
tures that allow detailed descriptions of the vaguely defined Fog within Fog Com-
puting. Based on these Views, components dynamically change their type based
on the current level of abstraction between Cloud Devices, Fog Nodes, and Edge
Devices.

Using xFog, we introduce a workflow to determine which component within
the Fog Architecture should be selected by another component when requesting a
service in its surrounding. This workflow is based an QoS parameters and called
xFogStar. xFogStar is presented in Chapter 5. The Star in its name refers to the
idea of the modeling language i*5 (pronounced i star) which tries to answer the
questions WHO and WHY rather than WHAT and is therefore actor-oriented and
goal-oriented. xFogStar describes WHO should communicate with WHOM based
on different characteristics which specify the WHY.

The remaining of this chapter addresses the concepts of xFogCore. Figure 3.7
provides an overview of the concepts on the meta model level M2. A short descrip-
tion of MOF can be found in Section 3.2.1. The meta model can be used as a basis
for applications to understand the involved components, the used communications
sets, and the context in which the application will exist. Thus, it provides an initial
understanding of the approached Fog Architecture using UML notation.

Based on the definition of Shaw and Garlan [134], each Software Architecture
consists of multiple Components and Connectors. A Fog Architecture, as a
subclass of a Software Architecture, consists of one Fog Set and one
Communication Set. While the Fog Set relates to the components of the
Software Architecture, the Communication Set relates to the connec-
tions between them. The Fog Set is based on the set definition introduced in

5https://en.wikipedia.org/wiki/I*
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Section 3.2.5. Thus, each Fog Set consists of multiple Fog Horizons that are
transitively connected to each other, creating a unique structure as shown in Proof 1.
Each Fog Horizon is defined by two Fog Visibilities that form a symmetric
pair. In contrast, the Fog Reachability, also consisting of Fog Visibilities,
is the set that includes the transitive closure but lacks the symmetric property. The
Fog Visibility itself is defined by its Fog Components which in turn are part
of the Fog Component Set as shown in Section 3.2.7. As describe in Section 3.2.1,
the Fog Component is of type Fog Type allowing it to be considered as a Cloud
Device, a Fog Node, or an Edge Device depending on the perspective of the
viewer. These Localities, as described by Seitz in [126], provide the basis of each Fog
Architecture.

Each Fog Component can Provide, Consume, or have Interest in several
Services which in turn can be used to reduce the five sets Fog Component Set,
Fog Visibility, Fog Horizon, Fog Reachability, and Fog Set to all Fog
Components that are involved with the specific Service.

The Communication Set, on the other hand, consists of Communication
Components. Communication Components form a triple of two connected
Fog Components over one Communication Channel. These Communication
Channels can be unidirectional or bidirectional, as described in Section 3.3.

3.2 Component Set

In the following sections, we define different concepts which we ultimately use to
define the set of components that compose a Fog Architecture. These concepts are
established on set theory, a mathematical discipline that was defined by Georg Can-
tor in [24] in 1984, creating sets, related relations, and comparisons between those
sets. This allows us to describe which elements are considered part of a Fog Ar-
chitecture, and which are not, providing the mathematical formalizations for Fog
Computing in terms of software architectures. We already presented the ideas for
these sets in our paper ”Fog Horizons–A Theoretical Concept to Enable Dynamic
Fog Architectures” [66]. In the following, we present these initial ideas with ad-
justments and extensions. Beginning in Section 3.2.1, we establish the idea of a Fog
Component which we will use in the remaining sections as the basic building blocks,
the presented sets are made of.

35



3 xFog: An Extension for Fog Computing
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Figure 3.7: Dynamic, scalable Fog Architecture meta model on MOF level M2 set-
ting the set concepts introduced in Chapter 3 in the context of the Fog Architecture.
Each section with the corresponding concept is highlighted in different colors. The
Fog Architecture is defined as a subclass of Software Architecture and introduces the
equivalents to Components and Connectors as defined by Shaw and Garlan in [134].

3.2.1 Fog Component

As described in Section 2.1.2, Fog Computing introduces three types of devices:
Cloud Devices, Fog Nodes and Edge Devices. The Cloud Devices are a kind of server
/ data center in the internet which offers storage, computational power, or specific
software. The Fog Node, in comparison, has less storage and less computational
power available, but is placed on the way between the Cloud and the Edge De-
vices, which provides faster response times, location awareness, and mobility and
can already perform basic operations [18]. Fog Nodes are heterogeneous and can be
anything ranging from a Raspberry Pis to drones. Finally, the Edge Devices repre-
sent the end-user devices that want to use specific services offered by the Fog Nodes
and/or the Cloud Devices.

In order to make the following concepts more understandable without differ-
entiating between the different device types, we define a Fog Type as the common
superclass for the Cloud Devices, Fog Nodes and Edge Devices on the Meta Object
Facility (MOF) level M3, allowing it to be used in meta models on MOF level M2.
This is similar to the Target Matter definition by Seitz on M2 which could be used
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Meta-Meta ModelM3

ModelM1

Meta ModelM2

Real-Life ObjectM0

<<instance of>>

<<instance of>>

Fog TypeFog Node

Cloud Device

Edge Device

Fog Component

Car

<<instance of>>

Figure 3.8: Meta Object Facility definition for the four layer approach [58]. Addition-
ally, it shows an example for each layer using the Fog Type definition as introduced
in Section 3.2.1 on M3 and the definition of a Fog Component on M2.

on level M1 [126]. In this context, Edge Devices map to the Field stereotype, the Fog
Nodes to the Fog, and the Cloud Devices to the Remote stereotype.

The Meta Object Facility, defined by the Object Management Group, is usually
displayed as a four layered approach to describe meta models and their instanti-
ations [58]. It is designed to be an extensible framework, integrating and manag-
ing meta-information independent of language, also formerly being extracted from
UML [23, 34, 58]. In MOF, each element in one specific layer is defined by the cor-
responding meta class of the next higher level, thus, being an instance of that meta
class. The commonly used four layer framework is shown in Figure 3.8 including
the Fog Type and Fog Component definition down to a concrete example.

Starting at the very bottom, MOF level M0 shows objects of the real life as for
example a car, Raspberry Pi, or lightbulb. Those real life objects can be abstracted
as part of a model on MOF level M1, as for instance, a UML class or object diagram
describing an application. Thus, the real life objects are instances of the model de-
scribed on the M1 level. The definition of a class or object diagram used on M1 can
be found on M2 describing classes, instances etc. On MOF M3, MOF itself is de-
scribed. Even though this four layer approach is usually connected with the Meta
Object Facility, MOF allows an infinite number of layers [58].

Defining a common superclass allows, in addition to reduced complexity, the
dynamic behavior of components which we will take a closer look at in Chapter 4.
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All instances of the Fog Typemeta class are called Fog Components and form
the basis for all concepts which we will introduce in the following. In order to differ-
entiate objects of the Fog Type from regular classes without permanently stating
the corresponding meta class, we draw classes based on that type in bevelled rect-
angles.

The first set that we introduce is the Fog Component Set. It includes, as shown in
Definition 2, all potential Fog Components that we can observe without being tied
to any specific Fog Architecture.

Definition 2: Fog Component Set

FogComponentSet := {x | x is a Fog Component}

3.2.2 Fog Visibility

The Fog Visibility is the virtual area which can be ”seen” by a Fog Component, giving
the concept its name.

Definition 3: Fog Visibility

FogVisibility(x) := {y | y receives direct messages from x}

with:
x,y ∈ FogComponentSet

As shown in Definition 3, the Fog Visibility of a Fog Component x is defined as
all potential Fog Components y which can receive direct messages from x. It forms
a relation on the superset of all Fog Components allowing us to assign and use rela-
tion properties as well as set properties to further specify the concept.

The Fog Visibility’s ”field of view” is limited based on the communication chan-
nels used by the Fog Component. While common communication channels such as
WIFI, 3G, 4G, or radio frequencies can potentially include a large area, others as for
instance Bluetooth or cables might be more limited. We will take a closer look at
the Communication Set in Section 3.3, only focusing on the bare minimum which is
needed for the understandability of the Fog Set concepts in the following.

One of these aspects is the differentiation of unidirectional and bidirectional
communication channels. While bidirectional communication channels allow mes-
sage exchange in both directions, unidirectional communication channels only al-
low messages to be sent from one communication partner to the other but not vise
versa. This idea is integrated within the Fog Visibility by only requiring messages
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3.2 Component Set

being exchanged in one direction, from x to y; thus, including all potential commu-
nication setups. Another aspect, which supports the more generalized, abstract con-
cept of the Fog Visibility, is the communication channel independency. It is possible,
that one Fog Component receives messages from the Fog Component in question
over one communication channel, e. g. WIFI, and another Fog Component receiving
messages over Bluetooth. While this simplification supports the understandability
of the concept, it hides the complexity which occurs when a single Fog Component
supports different communication channels. Therefore, the concept define a ter-
minology across communication channel boundaries which leads to a generalized
concept.

Also the implementation problems of using different communication channels
are not part of this dissertation, the meta model shown in Section 3.1 shows a hierar-
chy of communication channels which can be exchanged using the strategy pattern.
For instance, smartphones switch from 3G or 4G to WIFI as soon as a connection
could be established to reduce the data consumption on the mobile contract.
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(b) Set Example adapted from [66].

Figure 3.9: The figure shows two subfigures; both display the Fog Visibility for a
Fog Component A displayed as blue circles around the Fog Component A which
is displayed as a dot in the middle of the circle. The first figure shows the Empty
Set with no other Fog Component in proximity except Fog Component A itself. The
second figure describes a concrete Fog Visibility example with Fog Components B,
C, and E in Fog ComponentA’s Fog Visibility and Fog ComponentD and F outside.

Figure 3.9 shows the two potential cases of Fog Visibilities for a given Fog Com-
ponent A – the Fog Visibility as a self containing set and a more general example.
While the actual range of the Fog Visibility might differ substantially based on the
communication channels used, in this example, we display the range in which a Fog
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Component can send messages as circles. All Fog Components within this circle can
receive direct messages from the given Fog Component, the Fog Components out-
side of the circle cannot. While the first example (a) Empty Set has limited application
use in Fog Architectures, it is interesting from a theoretical point of view showcasing
the edge case of the Fog Visibility definition and answers the question if Fog Com-
ponents without any communication partners still maintain Fog Visibilities. Based
on the definition in the Fog Horizon paper [66], the Fog Component’s Fog Visibility
would be an empty set, while in contrast, the updated definition as presented in
Definition 3, includes the Fog Component itself as a viable communication partner
as Fog Components could receive direct messages from themselves. This changes
the Fog Visibility to be reflexive which we will use in the following definitions.

The second example, while also using the simplified depiction of the Fog Visibil-
ity as a circle, is more representative with several Fog Components (B - F) in sight.
As shown in Equation 1, the resulting Fog Visibility of Fog Component A is the set
of Fog ComponentsA, B, C, and E excluding as shown in Equation 2D and Fwhich
are outside of the circle.

Equation 1: Fog Visibility Example based on Figure 3.9

FogVisibility(A) = {A,B,C,E}

Equation 2: Fog Visibility Example (2) based on Figure 3.9

D, F /∈ FogVisibility(A)

3.2.3 Fog Horizon

The name Fog Horizon is inspired by two sources. First, it is based on the line
which separates the earth from the sky which creates a circular plain of vision for
the observer. This idea is also described by the Fog Visibility in the previous section.
This circular plain is something that the viewer is familiar with, the area that they
know and with which they closely interact. The same idea holds true for the Fog
Horizon, devices within the Fog Horizon closely interact with each other, share a
common network as for instance a LAN, and also have a locality attached to them.

Second, the term Fog Horizon is based on the concept of event horizons found in
physics in the context of black holes. It describes the point, from which nothing can
escape the gravitational field of a black hole [141]. This can be seen in the context of
Fog Architectures as the virtual area in which a device can interact with others.

In the context of Fog Architectures, as shown in Definition 4, the Fog Horizon
is defined as the symmetrical closure of the Fog Visibility. Thus, the Fog Horizon
of a given Fog Component x contains all Fog Components y which can send and
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receive messages to/from Fog Component x, establishing bidirectional communi-
cation. Therefore, the Fog Horizon relation is reflexive, due to the definition of the
Fog Visibility, and symmetrical. If Fog Component y is in the Fog Horizon of x, Fog
Component x is also in the Fog Horizon of y.

Definition 4: Fog Horizon

FogHorizon(x) := FogVisibility(x)↔ =

FogVisibility(x) ∩ FogVisibility(x)− =

{y | y ∈ FogVisibility(x) ∧ x ∈ FogVisibility(y)}

with:
x,y ∈ FogComponentSet

Figure 3.10 shows an example for Fog Horizons. Using the same simplification
as in the Fog Visibility example (Figure 3.9), the Fog Visibilities are displayed as
circles.

D
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FogVisibility(A) Fog
Vis
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FogVisibility(C)

FogVisibility(D)

Figure 3.10: Visual example adapted from Henze et al. describing the idea of Fog
Horizons with four different Fog Components A, B, C, and D [66]. The according
Fog Visibilities are represented in different colored circles.
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The following Equation 3 lists the Fog Visibilities as well as the Fog Horizons for
all Fog Components within the example, showing the different possibilities for Fog
Horizons.

The first possibility is shown by Fog Component A: It is an isolated Fog Compo-
nent not having any other Fog Components within its Fog Visibility, and therefore
its Fog Horizon. Fog Component B shows the case in which one Fog Component
is in the Fog Visibility of another but not vise versa, breaking the symmetry for the
Fog Horizon. However, the Fog Horizons are identical, only containing the Fog
Components themselves. Finally, the Fog Components C,D represent the third case
in which the Fog Components can send messages to each other; thus, adding each
other to the corresponding Fog Horizons.

Equation 3: Fog Horizon Example

FogVisibility(A) = {A}

FogVisibility(B) = {B,D}

FogVisibility(C) = {C,D}

FogVisibility(D) = {C,D}

FogHorizon(A) = {A}

FogHorizon(B) = {B}

FogHorizon(C) = {C,D}

FogHorizon(D) = {C,D}

3.2.4 Fog Reachability

Using only the Fog Visibility and Fog Horizon concepts, we will not be able to de-
scribe an entire set of Fog Components of a Fog Architecture. Doing so, would result
in small, isolated sets without any connections between them and no access to any
central server. We are missing Fog Components which can be reached using other
Fog Components as hops. Thus, the Fog Reachability is, as shown in Definition 5,
defined as the transitive closure of the Fog Visibility. The transitive closure adds
all components to the set which can be reached through another Fog Component as
shown in Figure 3.11. In this figure, the Fog Visibility of Fog Component A contains
Fog Component B and the Fog Visibility of Fog Component B contains Fog Com-
ponent C, allowing Fog Component C to receive messages from Fog Component A.
This allows us to not only include components which can send direct messages to a
given Fog Component, but also indirect messages forwarded by several other Fog
Components.
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Definition 5: Fog Reachability

FogReachability(x) := FogVisibility+(x) =

{y | y receives direct or indirect messages from x}

with:
x,y ∈ FogComponentSet

CBA

FogVisibility(A)

FogVisibility(B) FogVisibility(C)

Figure 3.11: The diagram visually depicts the transitive idea of multiple Fog Visibil-
ities. The given example shows Fog Component A reaching Fog Component B and
B reaching C. Therefore, A is able to indirectly reach C, while C is not included in
its own Fog Visibility.
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Figure 3.12 shows an example of four Fog Components A, B, C and D including
their Fog Visibilities. The respective Equation 4 shows the Fog Reachabilities for the
Fog Components. As Fog Component A’s Fog Visibility includes Fog Component B
and Fog Component B’s Fog Visibility includes the remaining two Fog Components
C and D, Fog Component A’s Fog Reachability includes the entire set of available
Fog Components. Meanwhile, Fog Component A is not included in any Fog Visibil-
ity. This prevents the other Fog Components to send messages to Fog Component
A excluding it from their Fog Reachability. For Fog Component C with an empty
Fog Visibility, the Fog Reachability and Fog Visibility line up only including the Fog
Component itself.

D

CBA

FogVisibility(A)

FogVisibility(B)

FogVisibility(C)

FogVisibility(D)

Figure 3.12: The diagram shows an example setup which we will use to present the
Fog Reachabilities of the Fog ComponentsA, B, C&D. The different Fog Visibilities
of the Fog Components are indicated as different colored circles.

Equation 4: Fog Reachability Example

FogReachability(A) = {A,B,C,D}

FogReachability(B) = {B,C,D}

FogReachability(C) = {C}

FogReachability(D) = {B,C,D}

The negative side effect of the Fog Reachability shows up as soon as the Fog
Architecture is not an isolated system. Whenever an open connection to the internet
is involved, there is a potential for the entire internet to be seen as part of the Fog
Reachability.
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3.2.5 Fog Set

As the Fog Reachability has the potential to include the entire internet based on the
architecture’s limitations, we would not consider all those Fog Components to be
part of a single Fog Architecture. Thus, it is obvious that the Fog Reachability must
be a superset of the set of Fog Components which form a Fog Architecture which
we call the Fog Set.

Using the same idea as for the Fog Reachability, we can use the transitive closure
of the Fog Horizon, as shown in Definition 6, to further reduce the amount of com-
ponents redefining the idea of the Fog Set. As already shown in Section 3.2.3, Fog
Components within a single Fog Horizon interact more closely and can detect each
other, supporting the idea of this definition even further.

Definition 6: Fog Set

FogSet(x) := FogHorizon+(x) =

{y | y ∈ FogVisibility+(x) ∧ x ∈ FogVisibility+(y)}

with:
x,y ∈ FogComponentSet

Figure 3.13 shows the same Fog Component as we used in the Fog Reachability
example, but with greater Fog Visibilities to establish Fog Horizons between con-
nected Fog Components. Equation 5 displays the according Fog Sets for each Fog
Component.

Equation 5: Fog Set Example

FogSet(A) = {A,B,C,D}

FogSet(B) = {A,B,C,D}

FogSet(C) = {A,B,C,D}

FogSet(D) = {A,B,C,D}

As shown in the example, all Fog Sets for the different Fog Components A, B, C,
and D are identical, which raises the question: Is the concept of a Fog Set identical
for a connected set of Fog Components, and therefore unique?

To answer this question, the following Table 3.1 shows the properties of the in-
dividual concepts.

The changed definition of the Fog Visibility including the requesting Fog Com-
ponent creates the reflexive closure, in comparison to the definition provided in the
Fog Horizon paper [66]. The Fog Horizon is symmetrical based on its definition as
the symmetrical closure of the Fog Visibility.
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D

CB

A

FogVisibility(A)

FogVisibility(B)

FogVisibility(C)

FogVisibility(D)

Figure 3.13: Adapted version of Figure 3.12 which includes overlaps that introduce
Fog Horizons instead of Fog Visibilities.

Table 3.1: The properties of the different introduced sets based on group theory.

Reflexiv Symmetric Transitiv

FogVisibility X
FogHorizon X X

FogReachability X X
FogSet X X X

With those two properties and the Fog Set being the transitive closure of the Fog
Horizon, the Fog Set relation is an equivalence relation. This means that the Fog
Set relation partitions a given Fog Component set in disjunct subsets. Therefore, the
Fog Set is unique for all Fog Components in each subset creating an equivalence
class as presented in Definition 7.

Definition 7: Uniqueness

In comparison to the definition of the Fog Visibility and Fog Horizon as presented
in Section 3.2.2, respectively Section 3.2.3, which are dependent on the compo-
nent they are evaluated for, the Fog Set is unique for all components within
those sets—thus being identical creating equivalence classes:

Consider x,y ∈ FogComponentSet and x,y ∈ same Fog Set:

⇒ FogSet(X) = FogSet(Y)
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The following Proof 1 shows the correctness of Definition 7, and thus the equality
of the two Fog Sets using the properties of equivalence relations. This allows us
to omit the parameter for which we are creating the Fog Sets, as long as there is
only a single Fog Set involved. As soon as an architecture encapsulates several
independent Fog Sets, the provided parameter uniquely identifies each Fog Set, also
each Fog Component within each Fog Set results in the same set, as proven before.
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Proof 1: Fog Set Uniqueness

Consider A ⊆ FogComponentSet and x, y ∈ A:

To show:
Either the Fog Sets of x and y do not have any overlapping components or the
Fog Sets are equal:

FogSet(x) ∩ FogSet(y) = ∅ (3.1)

FogSet(x) = FogSet(y) (3.2)

Proof by contradiction:
1. Case: If 3.1 holds true, 3.2 cannot hold:

∅ = FogSet(x) ∩ FogSet(y) (3.3)
Using3.2

= FogSet(x) ∩ FogSet(x) (3.4)

= FogSet(x) 6⇒ Reflexivity (3.5)

2. Case: If 3.1 does not hold true, 3.2 has to hold true:
Assumption: It exists a combination of x and y for which the corresponding
Fog Sets’ intersection is not empty.

∃ z ∈ A : z ∈ FogSet(x)∧ z ∈ FogSet(y) (3.6)
Symmetry

=⇒ x ∈ FogSet(z)∧ z ∈ FogSet(y) (3.7)
Transitivity

=⇒ x ∈ FogSet(y) (3.8)

=⇒ FogSet(x) ⊆ FogSet(y) (3.9)

∃ z ∈ A : z ∈ FogSet(x)∧ z ∈ FogSet(y) (3.10)
Symmetry

=⇒ y ∈ FogSet(z)∧ z ∈ FogSet(x) (3.11)
Transitivity

=⇒ y ∈ FogSet(x) (3.12)

=⇒ FogSet(y) ⊆ FogSet(x) (3.13)

FogSet(x) ⊆ FogSet(y) (3.14)

FogSet(y) ⊆ FogSet(x) (3.15)

With z being the transitive connection between the two Fog Sets.

⇐⇒ FogSet(X) = FogSet(Y) (3.16)
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3.2.6 Service Constraint

In addition to the previously introduced concepts, most architectures are limited to
specific services which are offered within them. These services are summarized in
the Service Set as shown in Definition 8.

Definition 8: Service Set

ServiceSet := {s | s is a Service }

To address this, the following three service sets — Provide, Consume, and In-
terest — create sets based on the Fog Components relation to the given service as
defined by their names (Definition 9).

Definition 9: Service Sets

Provide(s) := {x | x offers and advertises s ∈ ServiceSet }
Consume(s) := {x | x requests s ∈ ServiceSet }
Interest(s) := { Provide(s) ∪ Consume(s) }

with:
x ∈ FogComponentSet
s ∈ ServiceSet

Using these definitions, we define the following sets P, C, and I, which present
selections on the given Fog Concept with respect to the provided service as shown
in Definition 10.

Definition 10: Service Constraint

Ps(f(x)) := {f(x) ∩ Provide(s)}
Cs(f(x)) := {f(x) ∩ Consume(s)}
Is(f(x)) := {f(x) ∩ Interest(s)}

with:
x ∈ FogComponentSet
f(x) ∈ { FogVisibility(x), FogHorizon(x),

FogReachability(x), FogSet(x)}
s ∈ ServiceSet
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As in most cases, the interest of a Fog Component for a given service will be used
most often, Definition 11 presents an abbreviated form:

Definition 11: Interest Abbreviation

FogVisibilitys(x) := Is(FogVisibility(x))

FogHorizons(x) := Is(FogHorizon(x))

FogReachabilitys(x) := Is(FogReachability(x))

FogSets(x) := Is(FogSet(x))

with:
x ∈ FogComponentSet
s ∈ ServiceSet

Finally, Definition 12 allows us to specify several services which a Fog Concept f
depends on instead of just single services.

Definition 12: Multi-Service Constraint

Ps1,s2,...,sn(f(x)) := {f(x) ∩ (Provide(s1) ∪ Provide(s2) ∪ ... ∪ Provide(sn))}
Cs1,s2,...,sn(f(x)) := {f(x) ∩ (Consume(s1) ∪ Consume(s2) ∪ ... ∪ Consume(sn))}
Is1,s2,...,sn(f(x)) := {f(x) ∩ (Interest(s1) ∪ Interest(s2) ∪ ... ∪ Interest(sn))}

Abbreviated Form:
fs1,s2,...,sn

(x) := {f(x) ∩ (Interest(s1) ∪ Interest(s2) ∪ ... ∪ Interest(sn))}

with:
x ∈ FogComponentSet
f(x) ∈ { FogVisibility(x), FogHorizon(x),

FogReachability(x), FogSet(x)}
s ∈ ServiceSet
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These limited sets are subsets of the corresponding Fog concept. Therefore, in the
case of Interest (I) a Fog Concept limited to all available services will result in the
original definition of the Fog Concept itself, and thus does not display a constraint,
as shown in Definition 13.

Definition 13: Multi-Service Constraint

Is1,s2,...,sn(f(x)) = f(x)

with:
f(x) ∈ { FogVisibility(x), FogHorizon(x),

FogReachability(x), FogSet(x)}
s ∈ ServiceSet
n = |ServiceSet|

This allows us to model Fog Architectures with several different requested ser-
vices, as we will discuss in the following example, but also address the issue that on
different levels in Fog Architectures different services might be of interest.

Figure 3.14 presents an example Fog Architecture. It shows several Fog Compo-
nents in different contexts namely the Edge (A1-A5), Fog (B1-B4), and Cloud (C) and
depicts the Fog Horizons as connections between Fog Components. Additionally,
the Fog Components in the Fog context provide the Services s1 and s2 and the Fog
Component C provides s3. Based on this example, the following Equation 6 shows
the corresponding sets for the service constraints reduced to the Fog Horizons and
Fog Sets, as no Fog Visibilities are shown.
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C

B1

A1

A2

A3

A4

A5

B2

B3

B4

Edge Fog
(Service s1, s2)

Cloud
(Service s3)

Figure 3.14: The figure shows an example setup for a 3-layered Fog Architecture
with five edge nodes, four Fog Nodes and a single cloud node. Each Fog Node
offers the two services s1 and s2 while the cloud offers service s3. The connections
between the Fog Components indicate their Fog Horizons.
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Equation 6: Multi-Service Constraint Example

FogSet = {A1,A2,A3,A4,A5,B1,B2,B3,B4,C}

Provide(s1) = {B1,B2,B3,B4} = Provide(s2)

Provide(s3) = {C}

Consume(s1) = {A1,A2,A3,A4,A5} = Consume(s2)

Consume(s3) = {B1,B2,B3,B4}

FogHorizons1(A1) = FogHorizons2(A1) = {B1,B2}

FogHorizons1(A2) = FogHorizons2(A2) = {B1,B2,B3}

FogHorizons1(A3) = FogHorizons2(A3) = {B2}

FogHorizons1(A4) = FogHorizons2(A4) = {B2,B3}

FogHorizons1(A5) = FogHorizons2(A5) = {B4}

FogHorizons1(B1) = FogHorizons2(B1) = {B1}

FogHorizons1(B2) = FogHorizons2(B2) = {B2}

FogHorizons1(B3) = FogHorizons2(B3) = {B3}

FogHorizons1(B4) = FogHorizons2(B4) = {B4}

FogHorizons3(B1) = FogHorizons3(B2) = FogHorizons3(B3) =

FogHorizons3(B4) = {C}

FogSets1 = {A1,A2,A3,A4,A5,B1,B2,B3,B4}

FogSets2 = FogSetS1

FogSets1,s2 = FogSets1 = FogSets2

FogSets3 = {B1,B2,B3,B4,C}
FogSets1,s2,s3 = FogSet

53



3 xFog: An Extension for Fog Computing

3.2.7 Set Relations

After introducing the different concepts, we compare the cardinalities of the re-
spective sets and create an order. While all sets could potentially have an infinite
cardinality, given a fixed amount of Fog Components, Figure 3.15 shows how the
different sets relate to each other, excluding the sets Provide and Consume for clarity.

Fog Reachability

Fog Component Set

Fog Visibility
Fog Horizon

Fog Set

Fog VisibilityS

Fog HorizonS

Fog ReachabilityS

Fog SetS

Figure 3.15: Relations between the different xFogCore set concepts adapted from
Henze et al. [66]: The different sets are represented in different colored shapes
showing their cardinality in comparison to the other sets. While we introduced
the Provides, Consumes, and Interest sets and their relations to the different set con-
cepts, we only present the generalized idea of limiting a set to one specific service in
this diagram. Thus, including in addition to the basic sets, the service limited sets
for the Fog Visibility, Fog Horizon, Fog Reachability, and Fog Set.

Looking at all available Fog Components in the Fog Component Set, the next
biggest set is formed by the Fog Reachability. As already described in Sec-
tion 3.2.4 it could in theory include the entire internet. Depending on the Fog Com-
ponents, the next biggest set is either the Fog Visibility or the Fog Set. If X
has many direct partners who could receive messages from it, the Fog Visibility

could be the bigger sets. On the other hand, if many Fog Components are transi-
tively connected and can equally exchange messages, the Fog Set might be the
bigger set.
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Therefore, a direct comparison of those two sets is not possible, but there is an
overlapping area. This overlapping area is the Fog Horizon. It is a subset of the
Fog Visibility and is, by definition, included in the Fog Set.

Finally, we want to address all the subsets created by limiting the concepts to a
specific service S. Starting with the smallest set, the Fog Horizon limited by S is
a subset of the Fog Horizon itself. The Fog Visibility limited by S includes
the Fog Horizons but additionally a part of the Fog Visibility which can be
reached. The Fog Sets overlaps with the Fog Visibilitys in the area of the
Fog Horizons but also includes the transitive connections for this set in the Fog
Set area. The Fog Reachabilitys includes all three of those limited sets and
additionally a part of the Fog Reachability. Equation 7 lists these relations of
sets.

Equation 7: Set Relations

FogComponentSet ⊇ FogReachability(x)
FogReachability(x) ⊇ FogVisibility(x)
FogReachability(x) ⊇ FogSet(x)
FogVisibility(x) ∩ FogSet(x) = FogHorizon(x)
FogHorizon(x) ⊇ FogHorizonS(x)

FogVisibility(x) ⊇ FogVisibilityS(x)
FogVisibilityS(x) ⊇ FogHorizonS(x)

FogSet(x) ⊇ FogSet(x)
FogSets(x) ⊇ FogHorizons(x)

FogHorizons(x) = FogVisibilitys(x) ∩ FogSets(x)
FogReachability(x) ⊇ FogReachabilitys(x)
FogReachabilitys(x) ⊇ FogVisibilitys(x) ∩ FogSets(x)
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3.3 Communication Set

The second set we want to investigate is the Communication Set, and therefore the
interactions / connectors between the different components of the Fog Set. While
most architectures use the same communication medium for the entire communica-
tion, Fog Architectures often involve different communication channels depending
on the devices used. These channels can range from close proximity such as NFC
or Bluetooth up to long distance communication such as 3G, 4G, or 5G. The follow-
ing Figure 3.16 shows an excerpt of different communication channels which can
be found within Fog Architectures including the channels used in the multi-case
studies presented in the validation in Chapter 6.

In the diagram, the channels are placed within a 2x2 grid in which the columns
indicate whether the channels are wired or wireless and the rows indicate local and
remote proximity. As such, the placement within the grid described a double in-
heritance of the contained channel to the according superclasses indicate by row
and column. Additionally, all superclasses are Communication Channels them-
selves. This set, called Communication Channel Set, is defined in Definition 14. It
contains all potential communication channels that can be used within a Fog Archi-
tecture.

Definition 14: Communication Channel Set

CommunicationChannelSet = {c | c is a communication channel.}

In the paper ”Fog Horizons: A Theoretical Concept for Enable Dynamic Fog
Architectures” [66] in the definition of Fog Visibilities, we mention that communi-
cation channels can be unidirectional or bidirectional. While most communication
channels that are used in the context of Fog Architectures are bidirectional, network
limitations as well as sensors only providing data can include unidirectional com-
munication channels. To include and address these channels, our definition of Fog
Visibility is unidirectional in comparison to the Fog Horizon and accordingly, the
Communication Set can include unidirectional communication channels.

Unidirectional communication is closely linked to unidirectional networks. While
unidirectional communication can include single connections between components
to be only able to send data in one direction, unidirectional networks try to separate
networks using software but also specialized hardware devices such as unidirec-
tional network bridges. These bridges allow data flow in only one direction, and
thus from one network to another one, which makes it physically impossible to
transfer data back [137]. The separation of networks is mainly used as a security
measurement, consisting of one highly secure network and an open counterpart
which makes it very important for practical applications. Another application for
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Figure 3.16: Excerpt of possible communication channels in the context of Fog Ar-
chitectures: The channels are divided based on the physical medium that they are
using (wired versus wireless), but also the physical distance for which the commu-
nication channels can be used.

unidirectional communication is for ”sensed information flow which plays a central
role in schooling and flocking” [100].

Bidirectional communication on the other side describes most of the communi-
cation channels used in Fog Architectures. Also bidirectional communication chan-
nels can be easily limited to unidirectional communication using software solutions,
channels such as Wifi, Bluetooth, or USB rely on an open bidirectional communica-
tion approach. Therefore, encapsulating a certain amount of trust to other partic-
ipants within the communication structure is essential for Fog Architectures; only
trusted instances are described as part of a Fog Architecture.

As shown in the metamodel in Figure 3.7, in addition to the equivalent of a Com-
ponent in the context of a Software Architecture which is the Fog Component and
the related sets, we define a Communication Component as the equivalent to the Con-
nector.
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A Communication Component is a triple that consists of the source Fog Com-
ponent, the used Communication Channel, and the destination Fog Component as
shown in Definition 15. Thus, the source and destination allow to define unidirec-
tional communications.

Definition 15: Communication Component

CommunicationComponent := {SourceFogComponent,

CommunicationChannel,

DestinationFogComponent}

All Communication Components of one Fog Architecture are grouped within the
Communcation Set. The Communication Set is defined as shown in Definition 16 and is
the equivalent to the Fog Set. For a Communication Component to be considered part
of the Communication Set, the source and destination Fog Component have to be part
of the Fog Set, and the Communication channel has to be part of the Communication
Channel Set.

Definition 16: Communication Set

CommunicationSet := {c : CommunicationComponent =

(source, channel,destination) | source ∈ FogSet
∧ destination ∈ FogSet
∧ channel ∈ CommunicationChannelSet}
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3.4 Graph Representation

In addition to modeling a Fog Architecture as a software architecture, the combina-
tion of the two sets – Fog Set and Communication Set – enables the representation of
a Fog Architecture as a graph which is one view on the components and connectors
structure as introduced by Bass et al. [13].

3.4.1 Graph Definition

Representing Fog Architectures as graphs provides the major advantage of getting
an overview of what the architecture looks like, what elements they consist of, and in
which way they are connected. While all the information is already existing within
the sets, the visual representation makes the sets easier accessible. In such a graph,
all elements of the Fog Set are represented as the nodes of the graph while the ele-
ments of the Communication Set represent the edges.

Figure 3.17 shows a generalized representation of a Fog Architecture that allows
a unified syntax for the nodes, edges, and paths throughout the graph. While this
representation assumes that all nodes on higher layers are reachable by all elements
of lower layers, this is often not the case in Fog Architectures. In those architectures,
only a subset of nodes can reach a subset of nodes on the higher layer and so on.
Those subsets of nodes would create true subgraphs of the current graph represen-
tation. As all subgraphs display the same layout as the current graph, we could
then use the current graph to describe those subgraphs. Therefore, the generalized
representation can be used to introduce the following concepts.

In the graph, the colors and shapes represent the concept of a Fog Architecture
having three different subsets; blue, squared nodes represent the set of all Edge De-
vices, red, circled nodes being Fog Nodes, and black, diamond-shaped nodes showing
Cloud Devices. The grey boxes gather nodes of the same layer into sets that are
labeled as X for Edge Devices, Ai for Fog Node layers, and Y for the Cloud Layer.
While the nodes within X and Y are continuously labeled, the first index of the nodes
in the different Fog Layers indicates the node number and the second index indicat-
ing the layer number. For simplicity, only the first few nodes on each layer and only
the first few layers are shown; the indices k, l , m, and n and their indices reflect
the cardinality of each parameter, and therefore the amount of devices and layers.
Additionally, there are two types of connections: Solid lines represent direct con-
nections between the connected nodes, dotted lines on the other hand indicate that
those nodes are connected as well, but many nodes or layers might not be displayed
in between. As an example, the nodes X2 and X3 are not shown, same as for the lay-
ers A3 and A4; those layers are only implicitly given. In order to make the naming
consistent, the Fog Layer’s index starts at 1, while the nodes indices start at 0, to
address the idea that the Edge Layer is layer 0.

59



3 xFog: An Extension for Fog Computing
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Figure 3.17: Generalized model of a Fog Architecture as a graph representation.
The colors and shapes of the Fog Components represent different layers of the Fog
Architecture. The blue, square nodes which are labeled X1 −Xm are the Edge Devices
of the architecture, the circle nodes A1,1 −Amk,nl

in red represent Fog Nodes, and the
black, diamond-shaped nodes labeled Y1 − Ymk+1 represent Cloud Devices.
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On the other hand, the Cloud Layer can be labeled as the n+1 layer with n being
the maximum amount of Fog Layers. We will use this idea later on to simplify the
notation of some formulas, while we use X and Y in this context to clearly separate
the different scopes of the layers.

Definition 17 shows the mathematical description of Figure 3.17: defining the
Fog Architecture as a set of nodes and edges, as well as showing the resulting node
and edge sets. The representation of the node set shows the listing of the nodes in
a specific way: the columns of the set are horizontal paths through the graph, while
the rows represent the layers of the graph. This allows us to define the node set
as a union of the sets of all layers. The edges can be described as the union of all
cartesian products of neighboring layers creating a partitioning of the graph.

Definition 17: Graph Definition – Fog Architecture

Fog Architecture := G = {V ,E} = {FogSet,CommunicationSet}

V =



X0, X1, X2, . . . , Xm,
A0,1, A1,1, A2,1 . . . , Am1,1,
A0,2, A1,2, A2,2 . . . , Am2,2,

...
...

... . . . ...
A0,n0 , A1,n1 , A2,n2 . . . , Amk,nl

,
Y0, Y1, Y2, . . . , Ymk+1


= X ∪A0 ∪A1 ∪ · · · ∪An ∪ Y

E = (X×A0) ∪ (A0 ×A1) ∪ · · · ∪ (An × Y)

This partitioning also leads to another representation of the Fog Architecture
graph as shown in Figure 3.18. In this figure, the graph is separated into subgraphs
connecting neighboring layers which allows us to define a Fog Architecture as a
set of bipartite graphs. Based on our assumption that every node of a higher layer
is reachable by every node on the lower level, those subgraphs are in fact complete
bipartite graphs. The connections between neighboring layers, seen as a relation, are
surjective or right total meaning that every element of the higher layer is reachable
by at least one node in the lower layer and left total or definal meaning that every
element of the lower level can be reached by at least one node of the higher level,
making the relations bi-total [12].

The idea of representing the Communication Set as a set of relations between
neighboring layers, which are defined within the cartesian product of those, also
allows us to pick up the idea of service constraints as introduced in Section 3.2.6
again.
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X A1 An YA1 A2

…

Figure 3.18: The figure presents a set of bipartite graphs of a Fog Architecture with
Edge Devices on the leftmost layer, three layers of Fog Nodes and one layer of Cloud
Devices on the right. In accordance to Figure 3.17, Edge Devices are blue squares, Fog
Nodes red circles, and Cloud Devices black diamonds-shaped nodes.

As shown in Definition 18, we can create a relation as a subset of the cartesian
product of two neighboring layers that includes all edges that start in the lower layer
and end in the higher layer when the Fog Component of the higher layer is part of
the Provides set. Therefore, we define a set of relations consisting of one relation
per neighboring layer pair that creates a subgraph of the Fog Architecture limited
to service s. We rely on this idea and the concept of bipartite graphs in Chapter 4.

Definition 18: Service Constraint – Relation

Rs ⊆ An ×An+1 := {(a,b) | a ∈ An ∧ b ∈ An+1 ∧ b ∈ Provides(s)}

with:
a,b ∈ FogComponentSet
s ∈ ServiceSet

The syntax introduced by Figure 3.17 and Definition 17 also allows us to define
a Fog Paths, a finite sequence of nodes. As shown in Definition 19, this path is
a set of visited nodes, starting at one node within the Fog Architecture Ai,j going
up or down the layers until the final node Al,j+l. The index l is part of Z∗ which
includes all integer values without 0; that ensures a path length of at least two nodes
or one edge. While the node number within one layer can be different on each
step, the layer count has to strictly increase or decrease by one each step. Fog Paths
with increasing layer indices are directed paths towards the cloud, Fog Paths with
decreasing layer indices are directed paths towards the edge. The syntax FogPath↔

followed by the set of Fog Components allows to define undirected paths.
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Definition 19: Fog Path

FogPath := {Ai,j, . . . , Ak,j+l}

with:
i, j,k ∈ N0

l ∈ Z∗

3.4.2 Service Discovery & Service Offer View

Graph representations of software architectures are usually shown as undirected
graphs. If edges have a direction, they are used to indicate in which direction data
is sent. While this is one important aspect, another aspect is often not modeled:
How are software architectures set up. The architecture setup can be accomplished
in two ways: Service Discovery & Service Offering. Service Discovery describes, as
defined in Definition 20, the approach how services can be discovered within a Fog
Architecture which happens in a bottom-up approach indicating that lower level
components search their Fog Horizon for a service of a higher level component.
This would lead to a directed graph from lower level components to higher level
components.

Definition 20: Service Discovery

Service Discovery is a directed graph in which lower level Fog Components can
discover services of higher level Fog Components.

On the other side, Service Offering describe, as shown in Definition 21, the top-
down approach of higher level Fog Components promoting their services within
their Fog Horizon, making discoveries obsolete. Therefore, these graphs are directed
from higher level Fog Components to lower level components.

Definition 21: Service Offering

Service Offer is a directed graph in which higher level Fog Components offer
services to lower level Fog Components.

Inside a Fog Architecture, the use of different communication channels can also
lead to different communication approaches. Especially for components that try to
join the Fog Architecture, the information how to find services is of high importance
and can already be presented by the Fog Architecture. Therefore, the Service Dis-
covery versus Service Offering view of the system is particularly important in Fog
Architectures and should be addressed as one view of the component and connector
structure as presented by Bass et al. in [13].
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3.4.3 Adjacency Matrix

The following Table 3.2 presents the adjacency matrix for the generalized Fog Ar-
chitecture graph solely using Service Discovery or Service Offering as introduced in
the previous section. The resulting matrix is sparse and symmetrically filled with
values while the signs change. This matrix only reflects whether connections exist
or not, it is not weighted, which results in a 1 if a connection exists from one node
to another and a -1 if the reverse is true. All values highlighted in green indicate
values that are positive for Service Discovery and negative for Service Offering. On
the other side, red cells are negative for Service Discovery and positive for Service
Offering. This results in the pattern as shown in the table in which all nodes of one
layer are connected to all nodes of the lower layer and all of the higher layer con-
nected to all on the lower layer just with different signs along the diagonal. All other
cells to the left and right of those boxes are filled with zeros. Based on the commu-
nication channel used and the technology chosen, depending on the layers, some of
the neighboring nodes might use Service Discovery, others Service Offering, but all
will follow the given pattern.

Table 3.2: Adjacency Matrix for a generic Fog Architecture as shown in Section 3.4.
In case of Service Discovery, the cells colored green have positive signs and the cells
colored red have negative signs (Bottom-Up). In the case of a Service Offer, the green
cells have negative signs and the red cells have positive signs (Top-Down).

X1 X2 ... Xm A1,1 A2,1 ... Am1,1 A1,2 A2,2 ... Am2,2

X1 0 0 0 0 ±1 ±1 ±1 ±1 0 0 0 0
X2 0 0 0 0 ±1 ±1 ±1 ±1 0 0 0 0
... 0 0 0 0 ±1 ±1 ±1 ±1 0 0 0 0
Xm 0 0 0 0 ±1 ±1 ±1 ±1 0 0 0 0
A1,1 ∓1 ∓1 ∓1 ∓1 0 0 0 0 ±1 ±1 ±1 ±1
A2,1 ∓1 ∓1 ∓1 ∓1 0 0 0 0 ±1 ±1 ±1 ±1
... ∓1 ∓1 ∓1 ∓1 0 0 0 0 ±1 ±1 ±1 ±1

Am1,1 ∓1 ∓1 ∓1 ∓1 0 0 0 0 ±1 ±1 ±1 ±1
A1,2 0 0 0 0 ∓1 ∓1 ∓1 ∓1 0 0 0 0
A2,2 0 0 0 0 ∓1 ∓1 ∓1 ∓1 0 0 0 0
... 0 0 0 0 ∓1 ∓1 ∓1 ∓1 0 0 0 0

Am2,2 0 0 0 0 ∓1 ∓1 ∓1 ∓1 0 0 0 0
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Chapter 4

xFogPlus: Dynamic and
scalable Fog Computing

“The state of a fog network is dynamically changing due to the on-off switching
of IoT applications and the mobility of fog nodes, as well as the unreliable access
links of some fog nodes to the network. Fog computing should be autonomous to
tackle the dynamics.”

— YUXUAN JIANG [74]

xFogCore, as defined in Chapter 3, enables dynamics and scalability, but does not
inherently support them. This is addressed by the second part of xFog: xFogPlus.

The first aspect of a Fog Architecture that can be dynamic are the Fog Com-
ponents themselves. For instance, using the infrastructure example shown in the
introduction in Chapter 1, traffic participants, such as cars, can join and leave a Fog
Architecture. It results in dynamic behavior for the set of Fog Components that are
considered part of the Fog Architecture, and therefore all core concepts of xFog in-
troduced in Chapter 3 with xFogCore. This first part is addressed in Section 4.1 and
discusses adding new components to the Fog Architecture as well as adding Fog
Components to the layers of Fog Architectures. Therefore, we fulfill the functional
requirements FR2 and FR4 relating to the Technical Research Goal 2.

Section 4.2 focuses on the second dynamic aspect of Fog Architectures that also
enables scalability: layers. On the one side, new services can be added to existing
layers, but also entire new layers can be established, which is requested by FR5 and
NFR2 relating to the Technical Research Goal 3. Using new definitions for the different
layers of a Fog Architecture, we address how layers can be added. Additionally, we
introduce the idea of different Views for stakeholders within Fog Architectures to
handle complexity and promote the highlighting of different aspects of the architec-
ture which are of current interest.
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4.1 Dynamic Fog Components

Dynamically adding and removing components from a Fog Architecture has two
different aspects to it. On the one side, the concept needs to support the approach
from a theoretical point of view by building on concepts that are inherently dynamic
and provide methods to add and remove components. On the other side, from a
practical point of view, the selected devices and selected techniques for discovery
and integration need to be able to support the proposed theoretical concepts.

We already shortly addressed the communication channels in Section 3.3, which
are the technical basis for the discovery and integration. On top of them, different
discovery mechanisms can be deployed to enable finding devices that were added to
the Fog Architecture or removing those that left it. We select a discovery mechanism
that supports the theoretical ideas without putting an emphasis on the selection
process. The same holds true for the communication channels; they are shown for
the sake of completeness, but need further investigation.

The devices on the other hand also need to be flexible in the mechanisms used to
connect to communication partners, and therefore mainly focus on wireless connec-
tivity and open protocols. Wired components that are directly connected to a single
component on the higher layer are less suited for dynamic Fog Component interac-
tion, as the amount of communication partners is inherently limited. The same is
true for devices that only use one single protocol; in general they are less likely to
work in dynamic settings. As sensors, actuators, and all the devices on the way to
the Cloud get more and more powerful, and therefore general-purpose devices as
stated by Xu et al., Brody et al., and Shi et al. [20, 135, 153], we base our solution on
the assumption that the devices are general-purpose devices free of protocol limita-
tions and able to perform own calculations.

In order to add or remove components to or from a Fog Architecture, we have
to address two separate issues. First, we have to discuss general ways of adding a
component to a Fog Architecture and second, how components are added on spe-
cific layers.
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4.1.1 General Addition of Components

Being able to add new components to a Fog Architecture is simplified based on
the overarching mathematical definitions introduced in Chapter 3. Based on those
definitions, especially Definition 2 and Definition 6, each component that should be
considered part of the Fog Architecture needs to fulfill two requirements. First, the
component needs to be part of the Fog Component Set and second, it needs to be
part of the Fog Set: As all concepts introduced in Chapter 3 are based on the Fog
Component Set, it is a mathematical necessity for all of them, including the Fog Set,
but the Fog Set is only sufficient for the Fog Component Set.

The Fog Component Set itself already poses a problem. Based on the definition
shown in Section 3.2.1, the Fog Component Set consists of all potential Fog Com-
ponents. While Fog Components can be any IoT device on MOF level M0 and M1,
the Fog Component itself is an instance of the Fog Type on M3, which in turn has
the subclasses Edge Device, Fog Node, and Cloud Device. Although this definition
is helpful if different Fog Architectures are available and they should be differen-
tiated between each other, it is the wrong way around if new components should
be added. In order to be considered part of the Fog Component Set, the compo-
nent needs to be a Fog Component, and therefore already part of a Fog Architecture
which is not the case for new components.

Therefore, to be able to add components to the Fog Component Set, an alterna-
tive definition for a Fog Component is required which solely focuses on properties
of the component itself. The first hard requirement is that every Fog Component
is necessarily an IoT device. This means, according to the definition provided in
Section 2.1.1, that a component needs to have the capability:

1. to be interconnected,

2. to have the intention to share information across platforms,

3. to be uniquely addressable, and

4. to have computational capabilities.

Soft requirements are that the components:

1. preferably use wireless communication,

2. have an interest in locality,

3. have general-purpose computational power, and

4. which they offer as services to other components.
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This definition allows us to extend the Fog Component Set by new components
which are not involved in any Fog Architecture, yet.

The second requirement is that the component satisfies the definition of a Fog
Set, and thus can be included in a Fog Architecture. Based on Definition 6, for a Fog
Component x to be included in a Fog Set, the Fog Component needs to be in the transi-
tive closure of the Fog Horizon of a Fog Component within the Fog Architecture that
the Fog Component should be added to. Accordingly, it is mathematically sufficient
for the Fog Component to be able to send and receive direct messages to and from
any single Fog Component in the Fog Architecture.

The only other dependency the Fog Set indirectly depends on, via the Fog Hori-
zon, and thus via the Fog Visibility, is the communication channel which is used to
transmit the required messages for the Fog Visibilities. As we do not have any hard
requirements for the communication channel selection, we do not have to further
adjust our definition.

While this alternative definition of a Fog Component allows the addition of new
components to a given Fog Architecture, from a Fog Computing and architectural
design perspective it is unclear where, respectively, on which layer, the new Fog
Component is added. This is addressed in the following Section.

4.1.2 Specific Addition of Components to Layers

After adding new components to the Fog Component Set and Fog Set, we have
to address the issue on which layer or tier the component is added. While layers
refer to the abstract concept, tiers are instances of those layers which we use when a
Fog Architecture is instantiated to map layers to hardware components. As the core
concept of Fog Computing is the deployment of the different layers closer and closer
to the Edge, every layer is deployed on separate hardware components, introducing
a one to one mapping: Every layer is deployed on one tier and every tier refers to one
single layer. This allows us to use the terms layer and tier interchangeably. Based on
the conceptual nature of xFog, and therefore xFogCore, xFogPlus, and xFogStar, we
decided to use the conceptual term layer in our definitions instead of the term tier,
which relates to concrete instances. Nevertheless, in the validation in Chapter 6, we
address the difference between layers and tiers.

In the view of Fog Computing, components can be assigned to three layers: the
Edge Layer, the Fog Layer, or the Cloud Layer. While the Edge Layer and Cloud
Layer consist of single layers, the Fog Layer can consist of several individual layers.
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Fog Architecture

Edge Layer Fog Layer Set Cloud Layer

1  1 1 

Fog Layer

* 

Figure 4.1: This diagram shows another viewpoint on the Fog Architecture compared
to the definition shown in Chapter 3. It focuses on a higher abstraction level which
is based on layers instead of individual components. The Fog Architecture consists
of one Edge Layer, one Fog Layer Set, which in turn consists of several Fog Layers, and
one Cloud Layer.

The representation shown in Figure 4.1 approaches the definition of Fog Archi-
tectures based on layers instead of components and connectors.

To indicate that the Fog Layer can consist of several layers, we rename the Fog
Layer to Fog Layer Set in compliance with the introduced concept of xFogCore. The
Fog Layer Set can consist of several Fog Layers itself.

We formalize Figure 4.1 as shown in Definition 22 and create a set which includes
the layers of a Fog Architecture.

Definition 22: Layer-based Fog Architecture

FogArchitecture := {EdgeLayer, FogLayerSet, CloudLayer}
|FogArchitecture| = 2 + |FogLayerSet|

Second, we formalize the definition of the Fog Layer Set as shown in Defini-
tion 23. The Fog Layer Set depends on the current Fog Architecture, it should be
evaluated for.

Definition 23: Fog Layer Set

FogLayerSet := {l | l is a Fog Layer}

As we only used the idea of layers in the graph concept in Section 3.4 so far, in the
following, we want to present set definitions for the concept of layers by looking at
their Fog Components. First, we present definitions for the different types of layers,
followed by a generalization of the layer idea.
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Definition 24 shows the properties of a Fog Component to be considered part of
the Edge Layer. Each Fog Component x needs to be part of the Fog Set, thus, part of the
Fog Architecture, and does not provide any services to other Fog Components, which
is represented by not having any service s which makes Fog Component x part of its
provide set.

Definition 24: Edge Layer

EdgeLayer := {x | x ∈ FogSet ∧ @s ∈ ServiceSet : x ∈ Provide(s) }

The Fog Layer is defined as every Fog Component x that is, equal to the Edge Layer,
part of the Fog Set and for which at least two services s1 and s2 exist so that Fog
Component x consumes one of the services and offers the other one, as shown in
Definition 25. This describes the idea that Fog Components in the Fog Layer bring
services of higher layers, e. g., the Cloud Layer, closer to the Edge Layer but also do
their own calculations.

Definition 25: Fog Layer

FogLayer := {x | x ∈ FogSet ∧ ∃s1, s2 ∈ ServiceSet :
x ∈ Consume(s1) ∧ x ∈ Provide(s2) }

The Cloud Layer, as shown in Definition 26, includes every Fog Component that
does not consume any service itself.

Definition 26: Cloud Layer

CloudLayer := {x | x ∈ FogSet ∧ @s ∈ ServiceSet : x ∈ Consume(s) }

Combining these three layers provides us with a definition for the idea of a layer
as shown in Definition 27. The first definition is based on the idea that a layer is
either an Edge Layer, a Fog Layer, or a Cloud Layer; while the second definition takes
a closer look at these layers and extracts the common properties. Therefore, a Layer,
independent of its type, includes all Fog Components that either have a common
consumed service s or a common provided service s. It is important for layers to
look either at Fog Components that provide the same service or consume the same
service, but never both at the same time. Otherwise service providers and service
consumers would be added to the same layer.

Definition 27: Layer

Layer := EdgeLayer ∨ FogLayer ∨ CloudLayer

= {x | x ∈ FogSet ∧ (∃s ∈ ServiceSet : x ∈ Provide(s) ∨
∃s ∈ ServiceSet : x ∈ Consume(s)) }
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As already addressed, the Fog Layer Set consists of several layers. In Defini-
tion 28, we provide a possibility to distinguish between the layers within the Fog
Layer Set based on the involved services. Each Fog Layer in the Fog Layer Set is
defined by a service pair si, sj that is on the one side consumed by the layer and on
the other side provided by the layer. If different layers include the same Fog Com-
ponents although being defined by different service pairs, those layers are fused to
one layer consuming or providing several services.

Definition 28: Service specified Fog Layer

FogLayer(si, sj) := {x | x ∈ FogLayer ∧ i, j ∈ {1, . . . , |ServiceSet|} ∧

x ∈ Consume(si) ∧ x ∈ Provide(sj) }

Using the provided definitions for the different layers, the issue of adding Fog
Components to specific layers can be reduced to these Fog Components providing
or consuming the services that uniquely identify each layer.

We represent the mapping between the provided and consumed services to the
different layers using the Service Set Mapping. The Service Set Mapping consists of a
set of triples. Each triple contains the set of consumed services as the first element,
the layer which is described by the services as the second element, and the provided
services as the third element:

( {ConsumedServices} , Layer , {ProvidedServices} )

As those triples can stretch across multiple lines, for readability, we highlight
the different elements using colors: The consumed services are highlighted in red,
the layer itself in green, and the provided services in blue. The order of the ele-
ments describes the typical Fog Computing layout with the Cloud Layer on top of
the architecture representation and the Edge Layer at the bottom: Accordingly, the
consumed services, which are provided by the layer above are left of the layer and
the provided services are on the right.
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In order to define the Service Set Mapping, we have to introduce a relation that
takes an integer as a parameter and returns the according layer as shown in Defini-
tion 29. The Edge Layer represents the 0-th layer while the Cloud Layer is the m-th
layer with m being the amount of layers in the Fog Architecture minus 1.

Definition 29: Layer Selection Relation

Layer(n) :=


EdgeLayer, if n = 0

CloudLayer, if n = m

FogLayern, if n 6= 0,n 6= m
with:
m = |FogArchitecture|− 1
n 6 m

Using this relation, we can define the Service Set Mapping as shown in Defini-
tion 30.

Definition 30: Service Set Mapping

ServiceSetMapping :=⋃0
i=m( {ConsumedServices} , Layer(i) , {ProvidedServices} )

with:
m = |FogArchitecture|− 1

Figure 4.2 shows an example setup of different Fog Components distributed over
the three layers: Edge Layer, Fog Layer Set, and Cloud Layer. The Fog

Layer Set consists of three layers itself: Fog Layer 1, Fog Layer 2, and Fog

Layer 3.
Although, in this example, all Fog Components in the Edge Layer consume

the same service s1, they could also consume other services as long as they do not
offer any services themselves. The first two Fog Layers are examples for multiple
consumed or provided services (s2, s3). These two layers present an instance of
fused Fog Layers as the service pairs s1, s2 as well as s1, s3 result in the same set
of Fog Components, and therefore are on the same layer. The third Fog Layer

provides service s4 and consumes s5 which is provided by the Cloud Layer.
Additionally, the example shows the case that Fog Component F7 ( 1 ) is added

to the Fog Architecture. Based on the provided and consumed services s2, s3 and s4,
the new Fog Component is added to the second Fog Layer; although no connec-
tions are established, yet.
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Figure 4.2: The graph shows an example for a Fog Architecture which is distributed
over the three layers Edge Layer, Fog Layer Set, and Cloud Layer. While all Fog Com-
ponents in the Edge Layer consume service s1 this does not have to be the case; as
long as they do not offer any services on their own, they are considered part of the
Edge Layer. Fog Layers 1 and 2 provide examples for fused layers with two consumed
and provided services, respectively. Although no connections are established, yet,
the newly added Fog Component F7 ( 1 ) can be assigned to Fog Layer 2 based on the
provided and consumed services s2, s3, and s4.
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4.2 Scalable Fog Architectures

After investigating individual Fog Components and how to add them to a Fog Ar-
chitecture on any layer in the previous section, this section takes a closer look at the
introduced layer definitions and their implications. First, we address how to setup
a Fog Architecture by adding new layers and how to keep the Fog Architecture scal-
able by dynamically adding layers. We then present how different Views can affect
Fog Architectures and how this can be exploited by refining the Fog Computing
idea. Finally, we investigate the resulting implications on individual Fog Compo-
nents.

4.2.1 Adding Layers

Adding new layers to existing architectures is one key aspect for making them dy-
namic and scalable. As most applications nowadays use client-server architectures,
it is also essential for the transition from a centralized approach to a decentralized
approach using Fog Computing. We differentiate between three different types of
layer additions.

Starting from a client-server architecture, as shown in Figure 4.3, the first addi-
tion, highlighted by 1 , is a layer in between the Client Layer and the Server
Layer to bring the power of central instances closer to the consumer [17, 18]. In
order to add this layer, at least one new Fog Component has to be added to the Fog
Architecture, which provides the former service provided by the Server Layer

and consumes an adjusted service from the Server Layer that only includes parts
of the service which need to be executed in a centralized way. From the perspective
of the Client Layer, nothing changes except that a new Fog Component offers the
requested service with a potentially faster response time.

The second addition, as shown in Figure 4.4, focuses on adding a new layer to
an existing Fog Architecture by introducing a new intermediate layer between the
Edge Layer and the first Fog Layer, the last Fog Layer and the Cloud Layer,
or in between two Fog Layers. All three of these approaches are similar in that
sense, that they do not change the conceptual representation of the Fog Architecture.
In each approach, a new Fog Layer is added; either as the new first Fog Layer,
or as a new last Fog Layer, or as a Fog Layer in between. 1 shows the position
where the new layers are added for each subfigure. The required adjustments are the
same as for the first approach: Providing the service that was previously provided
by the higher layer and consuming a new, adjusted service that can only be evalu-
ated on a more central Fog Component. Thus, the first addition is a special case of
the second addition with the difference that the first addition includes a conceptual
change from a 2-layered client server architecture to a 3-layered Fog Architecture.
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Figure 4.3: The example shows the first layer addition approach, which transitions
a 2-layered client-server architecture into 3-layered Fog Architecture. For this addi-
tion, the new layer is inserted in between the Client Layer and the Server Layer ( 1 ).
The exemplary resulting Fog Architecture with two new Fog Components F1 and F2 is
shown on the right. The added Fog Layer provides service s1 which was previously
offered by the Server Layer and the Server Layer adjusts its service to s∗1 addressing
parts of s1 which need a higher level abstraction.

The third addition can be used for both, adding a Fog Layer to a client-server
architecture or introducing new layers in an existing Fog Architecture as shown
in Figure 4.5. It adds a layer by including Fog Components as new Edge Devices
requesting services from the former Edge Layer ( 1 ) or by using additional Fog
Components as a new Cloud Layer ( 2 ). Implementing this change only requires
to add a new service to the Edge Layer which is consumed by the new layer or
by providing a new service which is used by the former Cloud Layer. While it
appears to be the easiest addition, as only one service has to be added and con-
sumed, from a conceptual perspective, it has the biggest implications: A previous
Edge Layer or Cloud Layer is converted into one layer of the Fog Layer Set.
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(a) Adds the new Fog Layer in between the Edge Layer and the initial Fog Layer ( 1 ).

Provide(s2)Consume(s1)

Edge Layer Fog Layer Set Cloud Layer

Provide(s1)
Consume(s2)
Fog Layer

E1

E2

E3

E4

E5

F1

F2

C1

C2

Provide(s2*)Consume(s1)

Edge Layer Fog Layer Set Cloud Layer

Provide(s1)
Consume(s2)
Fog Layer 1

E1

E2

E3

E4

E5

F2

F3

C1

C2

Provide(s2)
Consume(s2*)
Fog Layer 2

F4

F5

F1

1

(b) Adds the new Fog Layer in between the last Fog Layer and the Cloud Layer ( 1 ).
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(c) Adds the new Fog Layer in between two Fog Layers ( 1 ).

Figure 4.4: The example graph presents the three types of layer additions for the
second approach which adds new layers to the Fog Layer Set. In each type, the left
graph shows the previous architecture and the right graph the changed Fog Archi-
tecture. The services marked with a * indicate services that were changed due to the
introduction of an additional layer.
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Figure 4.5: The graph shows the third layer addition which adds a new Edge Layer
( 1 ) or Cloud Layer ( 2 ) to the Fog Architecture. While this approach can also be used
to transform a client-server architecture to a Fog Architecture, the given example
adds a new layer on top of the Cloud Layer or below the Edge Layer. Therefore, the
former Cloud Layer or Edge Layer becomes part of the Fog Layer Set, which is indicated
by the Fog Layer 2*, and the newly added layer becomes the new Cloud Layer or
Edge Layer. In this approach, no services need to be adjusted, but the concept itself
changes.

4.2.2 Stacked Fog Architectures

Adding new layers can result in conceptual changes to the proposed architecture.
The most distinct change can be seen in Figure 4.3 when transitioning from a 2-
layered client-server architecture to a 3-layered Fog Architecture. Although, in the
example only two Fog Components are added and only one service needs to be
changed, the architectural design and idea needs to be reconsidered.

Figure 4.5 shows an interesting case by adding new layers below the Edge Layer

or on top of the Cloud Layer. While the required changes are even minor com-
pared to the addition of a new layer in between the Client Layer and Server Layer as
no changes to the existing services are required, the conceptual implications are big-
ger. The Fog Components that were previously on the Edge Layer or Cloud Layer,
are moved from their layer to a Fog Layer of the Fog Layer Set. Thus, this dynamic
conversion of the layer assignment can occur several times during the lifecycle, and
therefore at runtime, of an application, whenever new services are introduced at the
Fog Architecture’s boundaries. On the other side, when layers are removed using
the same approaches as for the addition, entire layers of the Fog Layer Set can be
converted back to an Edge Layer or Cloud Layer.
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The context, and therefore the layer assignment change, can happen even more
often when different views on the Fog Architecture are considered. A View is a
level of abstraction that is of current interest for the viewer. It can be compared to a
microscope, focusing on different parts depending on the current level of zoom. We
address the level of zoom by the Abstraction Level Pointer and the current focus range
is represented by the View itself. Using the relation that returns the layer based on
the provided integer (Definition 29), we define a View as shown in Definition 31.
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Definition 31: Fog Architecture: View, Viewpoint, and Abstraction Level

A View of a Fog Architecture is a part of a Fog Architecture that consists of a
specified amount of layers, that are of current interest for a stakeholder. The
definition is based on the view concept introduced in SysML which provides a
perspective that spans different abstractions, in our case layers [72]. Each view
in SysML conforms to a viewpoint which specifies the included methods, stake-
holders, and purposes. Based on the SysML view concept, our View is defined
based on a tuple that contains natural numbers which refer to the selected lay-
ers of interest.

View(s) :=
⋃|s|−1

i=0 Layer(si)

with:
s := Tuple containing the numbers referring to the selected layers
|s| = Amount of layers within the View 6 |FogArchitecture|

View ⊆ FogArchitecture

As Fog Computing highlights locality, we additionally introduce a View def-
inition which represents a special case of the first definition. It describes a slid-
ing window of a given size by specifying the amount of adjacent layers and the
Abstraction Level Pointer (ALP). The ALP defines the current point of inter-
est. For the first definition, the ALP is a set of numbers that specify the layers
of interest, for the second definition, it is sufficient for the ALP to point at the
topmost layer of interest, and therefore be a single number.

View(ALP,n) :=
⋃n−1

i=0 Layer(ALP − i)

with:
ALP = AbstractionLevelPointer

n = Amount of layers within the View
ALP − n > 0
View ⊆ FogArchitecture

Each Viewpoint is defined as a triple that defines the list of interested stake-
holders, the ALP including the amount of adjacent layers, and its purpose. Re-
lying on our service-based layer definition, the ALP can be used to evaluate the
included methods, and thus our Viewpoint definition excludes methods.

Viewpoint := ({Stakeholders}, ALP, {Purposes})
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To enable such abstractions, we utilize the composite pattern. Layers which are
too high for the current Abstraction Level are excluded, while lower layers are sum-
marized into their higher level composite: Each Fog Component X that offers at
least one service S, respectively, Fog Nodes and Cloud Devices, is part of a com-
posite pattern. The Fog Component X is therefore the composite while every Fog
Component Y that consumes the service S is a leaf. To enable the View concept
without loosing data, the leaves are combined into the composite establishing one
new Fog Component which is the new leaf of the layer above.

An example for a View on the infrastructure example, which we used to describe
the problems in Chapter 1, is shown in Figure 4.6. It represents the View(2, 3) of
the Fog Architecture. 1 shows the current Abstraction Level of 2 and the according
scale from low (0) to high (5). The values of the Abstraction Level are discrete values
relating to all available layers. The View or sliding window ( 2 ) contains the lowest
three layers, highlighting local Fog Components and their interaction at the Edge
with the Crossings, and their according Streets. Everything on top of the Streets has
an Abstraction Level which is too high as indicated by 1 .

Although this approach can potentially separate the Fog Architecture in several
unconnected subgraphs, it allows to focus on specific aspects of the Fog Architec-
ture. This is especially helpful in Fog Architectures with many Fog Components.

Additionally, Views provide another insight into the Fog Architectures. When
looking at two adjacent layers, it shows the service providers on the higher level
and the service consumers on the lower level. We use this approach in xFogStar in
Chapter 5 to find the best communication partner for Fog Components on adjacent
layers.

Another observation relates to the three adjacent layers as shown with the sliding
window in the example in Figure 4.6. The subgraph describes a Fog Architecture
itself with the lowest layer ( 5 ) being physically closest to the next layer ( 4 ) which
in turn is closest to 3 . This is also indicated with the three red boxes next to 3 , 4 ,
and 5 which show this Cloud, Fog, and Edge structure (CFE-STRUCTURE). The Street
Fog Component, represented by a traffic light, can be seen as the Cloud Layer which
aggregates all data from the individual Crossings, which in turn aggregate data from
the individual traffic participants at the Edge.
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Figure 4.6: The diagram shows a an example for a View on the infrastructure exam-
ple from Chapter 2. 1 shows the Abstraction Level scale and the Abstraction Level
Pointer. The Abstraction Level is a discrete value relating to the available layers.
With the focus on Fog Components at the edge, the View in the red box ( 2 ) highlights
the Edge Layer ( 5 ) and the first two layers of the Fog Layer ( 3 , 4 ). Higher level
layers are abstracted away.
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This idea is further investigated in Figure 4.7, in which we show all different
3-layer views with only a single Fog Layer in the Fog Layer Set. On the lowest lay-
ers ( 1 ), the view highlights the interactions between individual components, the
current Crossing they are at, and the containing Street. Based on the locality, Fog
Components deployed as Crossings are the first point of contact for individual vehi-
cles and can decide which vehicle can pass the Crossing. On the next higher level,
the Streets receive information from all Crossings to represent higher-level aspects,
such as the traffic density.

From the perspective of a Fog Component on the City layer, shown in 2 , individ-
ual vehicles might already be too much detail, if they want to decide which streets
have the most traffic volume and need alternative routes. While the amount of ve-
hicles and the flow is of interest, it is irrelevant whether the vehicle is a car, bus, or
train.

The next higher view ( 3 ), takes the position of Districts. With the information
of Streets and Cities, they can e. g. see the traffic density on roads outside of cities;
again the information of Crossings is too low level at this point.

Finally, the view highlighted by 4 shows the highest level Fog Architecture
which puts its focus on the interaction between Cities and States. For this architec-
ture, individual streets within a city are of no interest, as it would rise the complexity
level.

In general, the more complex the application, the more layers are within a Fog
Architecture. Even in the presented infrastructure example, several layers can be
added. States are by far not the highest instance and the Vehicles can also consist
of individual layers of Fog Components such as sensors. Also in between the pre-
sented layers, other layers could be added, e. g. a Borough layer to gather different
parts of Cities.

Using this concept, we can redefine a Fog Architecture to consist of several 3-
layered Fog Architectures.
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Figure 4.7: Using the View concept, we show all 3-layered Fog Architectures for the
infrastructure example from Figure 1.2. 1 shows the View which focuses on the
Edge Layer and the two adjacent layers above. The View in 2 includes the layer
describing Cities, but abstracts the Edge Layer to reduce complexity and to allow to
focus on other aspects of the Fog Architecture. Moving one layer higher ( 3 ), the
View abstracts from Crossings, but includes Districts. This allows, e. g., to see traffic
density on cross country roads. Finally, in 4 , the View includes States but abstracts
away individual Streets.
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4.2.3 Dynamic Type Change

In this section, we address the implications that the View concept has on the individ-
ual Fog Components of a Fog Architecture on the different layers that we described
in Section 4.1.2. Figure 4.8 consists of three subfigures showing three 3-layer Views
of the infrastructure example. For simplicity, we only show the Abstraction Level
Pointer (ALP) to indicate the Views focus and do not show the Abstraction Level
scale. The first subfigure shows the View that highlights the lowest three layers,
respectively, the Edge Layer, Fog Layer 1, and Fog Layer 2. In the second
subfigure, the View shows Fog Layer 1 and Fog Layer 2, while leaving out the Edge
Layer, but therefore adding the Fog Layer 3. The last View adds one additional
layer on top, but leaves out Fog Layer 1. Each of these Views represents a Fog
Architecture itself as indicated by the Cloud-, Fog-, and Edge-label on the right.

For each subfigure, we take a look at the highlighted Fog Component ( 1 , 2 ,
3 ). This Fog Component is the same Fog Component in the different provided
Views. Depending on the View, it changes its layer assignment. While in 1 , the Fog
Component is assigned to the Cloud Layer, for 2 , it is on the Fog Layer and for
the 3 , the Fog Component is on the Edge Layer. Therefore, this Fog Component
is either considered a Cloud Device, Fog Node, or Edge Device.

To address this issue of dynamic type changes, we use the Fog Component def-
inition shown in Section 3.2.1, which introduced a Fog Type on MoF M3. This def-
inition of the Fog Type on M3 with the three subclasses Edge Device, Fog Node,
and Cloud Devices allows us to use the term Fog Component in our meta models.
Therefore, the Fog Component dynamically switches its type without a need to re-
define our introduced concepts in Chapter 3. Our layer definitions introduced in
Section 4.1.2 still hold true and provide us with the layering for the overarching Fog
Architecture.

The relation between the original layers and the types that Fog Components on
those layers can dynamically adapt to based on different Views is stated in Defini-
tion 32.
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(a) The View in this subfigure is set to Abstraction Level 2. The View contains three layers: The
Edge Layer, Fog Layer 1, and Fog Layer 2.
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(b) The View in this subfigure is set to Abstraction Level 3. The View contains three layers: Fog
Layer 1, Fog Layer 2, and Fog Layer 3.

Edge

Fog

Cloud
States

Districts

Cities

Streets

Crossings

…

…

…

…

…

Fog

Cloud

Edge3

ALP

(c) The View in this subfigure is set to Abstraction Level 4. The View contains the three layers:
Fog Layer 2, Fog Layer 3, and Fog Layer 4.

Figure 4.8: The example shows three 3-layer Views on the infrastructure example
introduced in Figure 1.2. For simplicity, we only show the Abstraction Level Pointer
instead of the entire Abstraction Level scale. It highlights the same Fog Component in
each subfigure ( 1 , 2 , 3 ), while changing the Abstraction Level of the View. Accord-
ing to the current View, this Fog Component changes the layer it is considered to be
on from Cloud Layer in 1 to Fog Layer in 2 , and to Edge Layer in 3 . Thus, depending
on the View, the Fog Component changes its Fog Type.
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Definition 32: Layers and dynamic Types

The following rules describe the relation between the Fog Components of the
original layers of a Fog Architecture and the type that they can dynamically
change to:

1. Fog Components in the Cloud Layer can only be considered Cloud Devices, if
they are included within a View of a Fog Architecture.

2. Fog Components in the Fog Layer Set, respectively in any Fog Layer #, can
dynamically change their type. We start counting Fog Layers on the lowest
level with 1 going up to Fog Layer n which is the layer in direct contact
with the Cloud Layer:

1. Fog Components in Fog Layer n, with n being the total amount of Fog
Layers, can dynamically change their type between Fog Node and
Cloud Device.

2. Fog Components in the layers between 1 and n can dynamically change
between any type.

3. Fog Components in Fog Layer 1 can dynamically change their type be-
tween a Fog Node and Edge Device depending on the View.

3. Fog Components in the Edge Layer can only be considered Edge Devices, if
they are included in a View of the Fog Architecture.

86



Chapter 5

xFogStar: A Workflow for
Service Provider Selection

”The fact that in daily life people are often able to choose their interaction part-
ners can be considered as an endogenous regrouping device, which is also an
effective way to escape exploitation. Indeed, people frequently change or quit
relationships with individuals who are not fulfilling the expected cooperative
standards and look out for better opportunities, even if it involves substantial
costs.”

— GIORGIO CORICELLI [33]

Based on xFog and accordingly xFogCore, and xFogPlus many new concepts
can be established in dynamically, scalable Fog Architecture. In this chapter, we
introduce xFogStar, one such concept that focuses on the relation between service
consumers and service providers, the players suggested by Bonomi et al. [18]. As
already addressed in Section 4.2.2, this relation is highlighted by a 2-layered View
for a service on adjacent layers. Figure 5.1 shows the infrastructure example from
Chapter 1, but uses the View concept with two layers to focus on the Edge Layer
and the first Fog Layer.

This View is particularly interesting if new Edge Devices should be dynamically
added to the Fog Architecture using the concepts of xFogPlus (Chapter 4). As we
want to address the relation between service consumers and service providers, in
this chapter, we do not focus on the requirements for the added component to be
considered a Fog Component or the involved sets, but rather focus on the case that
multiple service providers are in the Fog Component’s Fog Horizon. Figure 5.2
shows a Fog Component Car in the infrastructure setup with four potential service
providers in its Fog Horizon that offer the requested service S. Accordingly, we can
limit the Fog Horizon to that service.
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Figure 5.1: 2-layered View in the infrastructure example from Chapter 1. The View
highlights the Service Provider and Service Consumer relation which is given by adja-
cent layers.
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Figure 5.2: Fog Visibility of a new Fog Component Car which is added to the Fog
Architecture as shown in Figure 5.1. Its Fog Visibility is represented as a green circle
with a dashed border. The Fog Visibilities of the service providers (traffic lights) are
shown as blue circles around their label.
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Figure 5.3: The Workflow for Service Provider Selection (UML Activity Diagram).
Each service provider selection starts with the discovery of the service providers
which answer with a QoS vector containing their QoS parameters. The follow-
ing process is split into six sub-workflows: Unavailability (green), Limits (yellow),
Comparability (orange), Ordering (red), Parameter Importance (blue), and Service
Provider Selection.

For each service provider, the blue circles around the label indicate their Fog
Visibilities and the green circle with the dashed border shows the Fog Visibility of
the Fog Component which should be added.

As the name suggests, this chapter focuses on the workflow that describes how
to select the best fitting service provider in the case that multiple service providers
are in the FogHorizonS of the new Fog Component. Thus, addressing functional re-
quirements 7-11 and non-functional requirements 2, 3, and 7. To describe properties
of the service provider and its service, but also the needs of the service consumers,
we use QoS parameters and the according vector as introduced in Section 2.1.3. The
workflow, represented as an UML activity diagram, is shown in Figure 5.3.

The workflow starts with the discovery of the available service providers that
offer a requested service (FogHorizonS). Every service provider which offers this
service Send QoS Vector as a response to the Fog Component that requests the
service. We introduce a non-exhaustive list of potential QoS parameters and their
dependencies in Section 5.1.1. The service consumer gathers the QoS vectors in a
QoS matrix. In case the matrix is not fully populated (shown in green), the ser-
vice consumer has to Select Unavailability Strategy that decides on how
to treat missing parameters which we address in Section 5.2.2. In yellow, it shows
the second step, the Define Parameter Limits activity which we describe in
Section 5.1.4. The remaining steps are described in Section 5.2.2: The third step,
shown in orange, is the Select[ion of a] Comparability Strategy. It de-
fines how different parameters, e. g., costs and times, are compared with each other.
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Fourth, shown in red, the service consumer has to Select Ordering Strategy

that allows to compare parameters that prefer high values with parameters that pre-
fer low values. Shown in blue, we address that service consumers might value
parameters with different importance. Finally, the service consumer receives an
Ordered Service Provider List in which the best fitting service provider is
the first entry.

5.1 Quality of Service Parameters

In this section, we introduce the QoS parameters that are of interest in the Fog Com-
puting context. In Section 5.1.1, we define the used parameters with their according
value types and ranges. In the following Section 5.1.2 and Section 5.1.3, we intro-
duce categories and a level concept to classify the QoS parameters according to their
dependencies. Finally, in Section 5.1.4, we introduce the possibility to assign weights
for each parameter to define their importance for the service consumer in the cur-
rent application’s context and apply limits which define a value range in that the
parameters should be in.

5.1.1 Definition

To find the best fitting partner to communicate with in a given Fog Architecture,
we introduce an extensive list of potentially interesting parameters for service con-
sumers as well as service providers. Figure 5.4 shows the list of parameters in an
UML diagram. While the parameters on the left side are individual parameters,
the parameters on the right side always show up in four different versions. Those
versions are related to Execution, Storage, Memory, and Network as shown in
Figure 5.5. This diagram provides the four versions by defining a new type on MoF
Level 2 of which the different parameters are instantiations. For instance the pa-
rameter Time will occur in the variations ExecutionTime, StorageTime, MemoryTime,
and NetworkTime. This allows a more specific tracing of the individual parameters
values.

Based on this categorization, the following list describes the different parameters
which can be addressed.
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QoS Parameter

Bandwidth

Extensibility

Usability

Fidelity

History

Affiliation

Documentability

ServiceCost

≪Category≫
Time

≪Category≫
Cost

≪Category≫
Energy

≪Category≫
DataAmount

≪Category≫
Sustainability

≪Category≫
Availability

≪Category≫
Maintainability

≪Category≫
Reliability

Figure 5.4: Overview of all introduced parameters as subclasses of the QoS Param-
eter. Each parameter of type �Category� has additional subcategories Execution,
Storage, Memory, and Network.

Category

Execution Storage Memory Network

Figure 5.5: Definition of the Category type with its subclasses Execution, Storage,
Memory, and Network. Providing the type definition allows a representation of the
parameters with less complexity.
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Time (T)

The Time parameter can be separated into four individual parameters: Execution-
Time, StorageTime, MemoryTime, and NetworkTime. Each of them covers a different
aspect of the time that is required to receive an answer from a service provider for
a given service. The ExecutionTime is the time required to execute the requested
service on the service provider. It is linked to the computational power a service
provider is capable of, but relates to a given service. Other sources often refer to
this parameter as the computation time [91], which we adjusted to create a consis-
tent taxonomy. The StorageTime is defined as the time needed to store data for the
requested service on the service providers machine. The MemoryTime is the time
needed to keep the data for the given task in memory of the service provider. While
both of these times have rather limited use for a service consumer, they provide
indirect hints to the execution power of the service providers machine as well as
their connectivity to other components in the network. Finally, the NetworkTime is
comprised of the CommunicationTime and the ForwardingTime. It sums up the total
time needed for the network to transfer the request and the answer from the service
consumer to the service provider and vise versa. Therefore, the CommunicationTime
takes the major part of the needed time, measuring the time it takes to send data
from one communication partner in the network to another one within their Fog
Visibility. The ForwardingTime is the amount of time needed by a hop to forward
the data to the next communication partner. Thus, the ForwardingTime only appears
in the cases of transitive networks, in our case Fog Reachabilities and Fog Sets as
defined in Chapter 3. The Time is measured in milliseconds (ms)→ T ∈ N0.

Cost (C)

Also listed separately in Figure 5.4, the cost consists of 5 parts: ExecutionCost, Stor-
ageCost, MemoryCost, NetworkCost, and ServiceCost. The ExecutionCost, StorageCost,
and MemoryCost define the costs the service providers have to pay to run a service
on their Fog Component. The NetworkCost consists of the costs for using the given
network. Therefore, each Fog Component can raise costs for forwarding requests,
but also the network owner can take its share. Finally, the ServiceCost is the price
the service provider adds to his given costs for offering and running the requested
service. Hassan et al. use the term execution cost as the sum of all costs that are
required for a successful execution of the service [64]. In our case, those costs re-
flect ExecutionCost, StorageCost, MemoryCost, and Service Cost. While the costs are
taken in consideration and are a key parameter for an open market and several ser-
vice providers offering the same service, we do not address payment. The given
concepts do not cover how the service consumer pays the service provider and all
network participants in between. The costs are measured in U.S. dollars→ C ∈ Q+

0 .
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Energy (E)

The Energy parameter is particularly important in the context of mobile or battery
powered devices. From the perspective of a service provider, they intend to maxi-
mize the profit with the limited energy in mind. Service consumers prefer service
providers who can offer a service for less energy which reduces the environmental
impact. The Energy parameter is split in the four categories introduced in Figure 5.5
with their respective energy consumptions. Energy consumption as a noteworthy
parameter was already addressed several times as for instance in the work by Deng
et al. [39] or Faruque et al. [3]. Given the two different perspectives on Energy
by the service consumer and provider, Energy can be defined in two different ways.
While service consumers are interested in the absolute value of energy consumption
compared to other service providers, service providers care about the energy con-
sumption for offering this service in comparison to the available remaining energy.
Thus, Energy is either given in watts W providing absolute values→ E ∈ Q+

0 or as
a percentage value comparing the needed energy against the available remaining
energy→ E ∈ [0, 100]. In this chapter, we use the absolute value.

Sustainability (S)

While the term Sustainability has several aspects and is mostly considered as ”meet-
ing fundamental human needs while preserving the life-support system of planet
Earth” as described by UN Secretary General Kofi Annan in 2000 [7] and picked up
by Kates et al. in ”Sustainability Sciences” [78], in the context of Fog Architectures
and parameters, we base Sustainability on the relation between renewable energy
and non-renewable energy of the energy needed to deliver the given service to the
service consumer. Sustainability can be split up in the four introduced categories
relating to each different energy consumption. The Sustainability is measured in
percentage of renewable energy→ S ∈ [0, 100].

Data Amount (DA)

This parameter is the amount of data which has to be stored or transferred over
the network whenever a service is requested. This DataAmount gives an idea to
which extend the bandwidth between the service consumer and service provider
will be used for a service or how much data is exchanged on the machine itself.
Storage was addressed by Bonomi et al. [17] or by Yi et al. [156]. While they address
storage as the storage amount needed on the computational unit, in our taxonomy,
DataAmount has the previously defined four categories giving it a broader meaning.
The DataAmount is measured in bytes→ DA ∈ N0.
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Availability (A)

The Availability is split up in four categories ExecutionAvailability, StorageAvailability,
MemoryAvailability, and NetworkAvailability. The availabilities for execution, storage,
and memory are based on the hardware of the device the service provider uses as
well as the other services offered by this service provider. Thus, a service provider’s
availability decreases the more services are requested. Depending of the priorities
of the service consumers, this results in a natural balancing of services on service
providers. The Availability is measured in percentage of uptime (%)→ A ∈ [0, 100].

Reliability (R)

Reliability is defined as the mean-time-between-failures. It is split up in the four cat-
egories and allows the service consumer to specify uptimes a service has to provide.
While the service provider ensures the reliabilities of the execution, storage, and
memory, the network reliability consists of the access of the service provider to the
network, the access of the service consumer, and all Fog Components in between
making it difficult to measure. Nevertheless, many service consumers rely on the
provided services making this parameter particularly important. The Reliability is
measured in milliseconds (ms)→ R ∈ N0

Maintainability (M)

The Maintainability is defined as the mean-time until the requested service is back
at an operable state after the occurrence of a failure. Especially in combination with
Reliability, Maintainability allows the service consumer to make the prediction how
often and how long a service offered by a service provider is unavailable. This
parameter is in particular important in the context of software and received a lot of
attention in the last years. Already in 1993, Li and Henry tried to connect several
object-oriented programming metrics to the system’s maintainability [86]. While
their definition focused on the maintenance effort based on different metrics, we
measure Maintainability by the time it takes for a system to be operable after a failure
in milliseconds (ms)→M ∈ N0.
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Bandwidth (B)

The Bandwidth is the first quality of service parameter which is not split up in the
four categories as shown in Figure 5.5. As the name suggests, the Bandwidth is the
maximum capacity of data which can be transferred between the service consumer
and service provider. This metric was already used by Li et al. [156] and is interest-
ing in applications that depend on a specific minimum bandwidth. In the gaming
domain, those applications are quite common as for instance shown in [89, 159].
As shown by Pantel et al. [105] and Jarschel et al. [73] a delay of 100ms, which
can be based on Bandwidth limitations, will already cause issues. This parameter is
measured in MBit/s→ B ∈ Q+

0 .

Affiliation (AFF)

This parameter was used by Lin and Shen [89] to allow users of the same social
group to connect to the same gaming service providers as they will probably interact
with each other within the game. While they called the parameter ”social network
based server assignment”, we refer to it as Affiliation to allow a broader view on con-
nectivity between service provider and consumer on top of the social network use
case. Therefore, the Affiliation indicates the belonging of the service consumer and
service provider to the same social groups. We define the parameter as a boolean
value that indicates if service provider and service consumer belong to the same
group, but the parameter can easily be extended to name group belongings, and
thus allow service consumers of the same group to closely interact using the same
service provider→ Aff ∈ B. This parameter allows service consumers to prioritize
service providers within their own social group, as for instance prioritizing money
exchange within their own company than requesting services from outside.

History (H)

The History describes previous experiences between the service consumer and ser-
vice provider. The better the previous experience of the service consumer with the
offered service of a service provider, the higher the value. This approach was used
by Lin and Shen [89] as well as by Mahmud et al. [91] and mirrors the idea of the Net
Promoter Score as introduced by Reichheld [114]. While the Net Promoter Score, or
NPS for short, is used from a service provider perspective comparing how many
customers or service consumers would recommend the service provider to a friend
or colleague, our definition switches to the service consumer view. It indicates the
likeliness to use the service offered by the service provider in case that other service
providers are available. The History parameter is, same as the NPS, measured in
percentage→ H ∈ [0, 100].
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Locality (L)

Based on the work of Intharawijitr et al. in their analysis on 5G networks [71], one
important aspect of Fog Architectures is the distance of the service providers from
its consumers which is indicated by the amount of hops between them and the delay
that those hops produce. While the delay is already considered by the NetworkTime,
we name the amount of hops Locality. The Locality in combination with the For-
wardingTime and CommunicationTime provides the total communication delay that is
introduced by using the specific Fog Path (Section 3.4.1) to reach the specified ser-
vice of the service provider. If the service is provided on the same Fog Component
as it is used on, the Locality is 0, if the service is provided in the immediate Fog
Horizon of the service consumer, the Locality is 1 and increased by 1 for every hop
in between the consumer and provider. Therefore, Locality is defined as a natural
number→ L ∈ N0.

Extensibility (EX)

The Extensibility focuses on the interaction with humans during the discovery pro-
cess. If a service is extended for other use, such as machine learning models, a
human might prioritize a service with a high value in this area over a highly special-
ized service to reduce the amount of discoveries they have to go through for differ-
ent services. Additionally, this parameter can be defined as the amount of different
services a service provider offers, increasing the chance that the service consumer
does not have to perform another discovery. Depending on the selected definition,
Extensibility is either measured in percentage indicating the scale of specialization
of a given service or as the number of offered services by a service provider → Ex
∈ [0, 100] ∨ Ex ∈ N. In the remaining of this dissertation, we use the services count.

Fidelity (F)

The Fidelity indicates the accuracy of the provided service against its specifications.
In a highly automated system, the accuracy needs to be close to 100%, but in sys-
tems including humans, lower levels might be acceptable. While the Fidelity is an
interesting parameter to take into consideration, it is usually not available during
discovery time, and therefore not applicable in the discovery process. Nevertheless,
we will include it in the diagrams for the sake of completeness. Additionally, Fi-
delity can be used to define the History parameter as introduced before. If a service
consumer is receiving the service from a service provider as specified, and therefore
as expected by the service consumer, the service consumer is more likely to request
a service from this service provider later on. Fidelity is measured in percentage %→
F ∈ [0, 100].
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Usability (U)

The Usability measures the quality of the service based on user-friendliness. There-
fore, it specifies how easy the service and the results could be integrated in a context.
The Usability shows the same issue as the fidelity: While it would be interesting to
know during discovery, only experiences with the service and the according service
provider can state this parameter for a service consumer. Despite that, the Usability
is still listed here, as it provides the second aspect that is needed to define the pre-
vious history with the service provider or the service itself in particular. Sauro and
Kindlund present a method to get a single, standardized, and summated usability
parameter for all usability aspects which can be used as the send parameter [121].
We measure Usability in percentage %→ U ∈ [0, 100].

Documentability (D)

Finally, the last parameter addressed is the Documentability. It is more helpful for
humans developing service consumers and specifies how well the requested ser-
vice is documented. While this parameter is redundant in fully automated architec-
tures, human centric systems and domains highly profit from this parameter. Doc-
umentability addresses two parts: The amount of documentation provided for the
service and the understandability of it. For simplicity, the Documentability is mea-
sured in percentage, but could also be addressed with more elaborate calculations
as done by Sauro and Kindlund for Usability→ D ∈ [0, 100].

5.1.2 Categorization

The parameters can be categorized based on their relation to the four entities that
have a direct impact on some or all of the parameters: Service consumers, service
providers, networks, and services. Using the mathematical definition of depen-
dency, each parameter is either dependent or independent of the given class as
presented in Figure 5.6. Therefore, each of the four presented models comprises
all described parameters from Section 5.1, but they differ in their distribution.

In order to get a more compact representation, we reduce each of those mod-
els to only include the dependent subclasses and fuse those representations into a
single model showing the four dependency classes: service consumer dependent,
service provider dependent, service dependent, and network dependent. Figure 5.7
presents this idea. While this simplification would exclude parameters which are
independent of all four classes, we argue that these four classes comprise all rele-
vant parameters for any Fog Architecture creating a complete set. The mapping of
the parameters introduced in the previous section is shown in the following section
on parameter levels. In the following, the remaining four classes are referred to as
Dependency Classes.
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ServiceProvider 
Dependent

ServiceProvider 
Independent

ServiceConsumer 
Dependent

ServiceConsumer 
Independent

Network
Dependent

Network 
Independent

Service 
Dependent

Service 
Independent

QoS Parameter QoS Parameter

QoS Parameter QoS Parameter

Figure 5.6: Classification of the QoS Parameters based on the mathematical idea of
dependency and independency based on the four classes Service Provider, Service
Consumer, Network, and Service. These dependencies are used to define dependency
classes for the QoS Parameters and categorize them on similarities.

ServiceProvider 
Dependent

ServiceConsumer 
Dependent

Network
Dependent

Service 
Dependent

QoS Parameter

Figure 5.7: Classification of the QoS Parameters from Figure 5.6 reduced to the de-
pendent classes. The independent cases are removed for simplicity, as those classes
do not have any influence on the QoS Parameters.
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Table 5.1: Dependency levels of the quality of service parameters in a comprised
form. It reflects the levels introduced in Figure 5.8.

Level 1 Level 2 Level 3 Level 4
Sustainability History Fidelity
Availability Affiliation Usability
Reliability Time Locality

Maintainability Cost
DataAmount Energy
Extensibility Documentability
Bandwidth Service Cost

5.1.3 Level

Figure 5.8 presents the categorization of each parameter according to its dependency
classes introduced in Figure 5.7. Additionally, it introduces so-called Levels. These
levels represent the complexity of the parameters based on the amount of depen-
dencies they have to the four dependency classes. While parameters on level 1 are
only dependent on one single dependency class, parameters on level 4 depend on
all four dependency classes. In Figure 5.8, this relation is represented using multiple
inheritance.

Additionally, the diagram introduces a color coding for the four parameter cat-
egories as introduced in the beginning of Section 5.1: Execution, storage, memory,
and network. Table 5.1 shows a comprised version of the parameter-level relation.

While we add several parameters in the groups of level 1, 2, and 3, we did not
find any parameters for level 4. As we do not claim our list of parameters to be
exhaustive, additional parameters can be added to the dependencies as well as the
level categories. Application domains might also add or remove parameters based
on their importance.
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Figure 5.8: Dependencies between the entire list of quality of service parameters
and the four entities: Service Provider, Service Consumer, the Service itself & Net-
work. Those dependencies are used to group the parameters into different levels of
complexity based on single, double, triple and quadruple inheritance. Additionally,
a color coding is provided to group parameters that belong together. Parameters
highlighted in red are execution specific, blue parameters are storage specific, yellow
parameters are memory specific, and green parameters network specific.
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5.1.4 Prioritization

Given the extensive list of parameters, service consumers need a way to specify
which parameters are important to them and to which extend. These priorities are
on the one side related to the application domain the service is used in, and on the
other side based on the application itself. An application in the medical domain
might, e. g., rate the overall response time, reliability, and availability higher than
the energy consumption or the consumed storage. Especially in emergency rooms,
having a service available right now is more important than who is providing the
service. An application in an administrative context might look closer on the costs
and availability instead of having the fastest response time. To integrate this idea
into quality of service discovery, we allow service consumers to specify individual
weights for the parameters, scaling their importance, and allowing them to set lim-
its for the parameters that should not be exceeded.

The individual Weights for each quality of service parameter are multipliers scal-
ing the importance of a parameter. Therefore, all weights α,β, ..., ξ are in the range
[0, 1] ∈ Q. Weights allow service consumers to specify their preferences based on the
application they are using and allow the owner of the Fog Architecture to specify
which parameters are considered most important in the given problem domain.

Equation 8: Weights
−→
W = (α,β,γ, δ, ε, ζ,η, θ, ι, κ, ...)T

Table 5.2 shows the assignment of parameters to weights including the param-
eter categories Execution, Storage, Memory, and Network. This allows the service
consumer to specify the priority of each parameter individually.

While individual weights allow the most customization, service consumers are
more likely to state their interest in, e. g., a fast response, the overall costs, or the
used energy in general, ignoring the individual parameter categories. In order to
support this approach, the overarching weight will be used for all individual pa-
rameters unless more specific weights are provided. For instance, if only the weight
α for the Time is specified, the ExecutionTime, StorageTime, MemoryTime, and Net-
workTime will all be scaled by this weight. If an individual weight is specified, e.g.
α4 for the NetworkTime, the remaining parameter categories still use the overarch-
ing α, but the NetworkTime will use α4 instead.
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Table 5.2: This table shows the mapping of the weights to the individual parameters
including the parameter categories as introduced in Figure 5.5 with the first and
third column specifying the parameters and the second and fourth column showing
the corresponding weighted version.

Parameter
Weighted
Parameter Parameter

Weighted
Parameter

Time (T) αT Cost (C) βC
ExecutionTime (ET) α1ET ExecutionCost (EC) β1EC
StorageTime (ST) α2ST StorageCost (SC) β2SC
MemoryTime (MT) α3MT MemoryCost (MC) β3MC
NetworkTime (NT) α4NT NetworkCost (NC) β4NC

ServiceCost (SeC) β5SeC
Energy (E) γE Sustainability (S) δS
ExecutionEnergy (EE) γ1EE ExecutionSustainability (ES) δ1ES
StorageEnergy (SE) γ2SE StorageSustainability (SS) δ2SS
MemoryEnergy (ME) γ3ME MemorySustainability (MS) δ3MS
NetworkEnergy (NE) γ4NE NetworkSustainability (NS) δ4NS
DataAmount (DA) εDA Availability (A) ζA
ExecutionDataAmount (EDA) ε1EDA ExecutionAvailability (EA) ζ1EA
StorageDataAmount (SDA) ε2SDA StorageAvailability (SA) ζ2SA
MemoryDataAmount (MDA) ε3MDA MemoryAvailability (MA) ζ3MA
NetworkDataAmount (NDA) ε4NDA NetworkAvailability (NA) ζ4NA
Reliability (R) ηR Maintainability (M) θM
ExecutionReliability (ER) η1ER ExecutionMaintainability (EM) θ1EM
StorageReliability (SR) η2SR StorageMaintainability (SM) θ3SM
MemoryReliability (MR) η3MR MemoryMaintainability (MM) θ2MM
NetworkReliability (NR) η4NR NetworkMaintainability (NM) θ4NM
Bandwidth (B) ιB Affiliation (Aff) κAff
History (H) λH Locality (L) µL
Extensibility (Ex) νEx Fidelity (F) ξF
Usability (U) πU Documentability (D) ρD
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In addition to the weights, service consumers might have a certain maximum or
minimum value which a parameter should not exceed. We call these values Limits
as addressed in Chapter 2. Each limit can provide one of three different limits as
described in Equation 9. We differentiate between three types of limits: maximum
value limits, minimum value limits, and minimum & maximum value limits.

Equation 9: Limits

X ∈ [0,Lmax]

X ∈ [Lmin, 0]

X ∈ [Lmin,Lmax]

With X being the value of the given parameter and Lmin,Lmax describing the
given limits.

For example, these limits are used if a car manufacturer wants to use a service but
only for a maximum price or in a certain timeframe specifying a maximum time be-
fore which a service has to be executed. Both, weights and limits can be used solely
on the service consumers side, creating their own rankings of service providers or
even ignore service providers not meeting their limits. On the other hand, those pri-
orities and limits might be interesting for service providers to adjust their services if
possible enabling service negotiations.
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5.2 Quality of Service Vector

This section addresses the specifications and calculations for the quality of service
vector based on the parameters introduced in the previous section. After the defi-
nition of the QoS vector itself, we address the five activities that a service consumer
performs to create an ordered service provider list, as shown in the beginning of this
chapter in Figure 5.3, and finally uses to select a service provider that fits the best to
their need. In the end, we provide an example for the entire process.

5.2.1 Definition

In order to further evaluate the presented quality of service parameters which are
spread across different levels of complexity, we use the representation of a quality
of service vector (QOS VECTOR). This approach has been used several times for
different tasks and approaches as discussed in Section 2.1.3. Equation 10 shows
the entire QoS vector as defined by the quality of service parameters introduced in
Section 5.1.

In the remaining of this chapter, we limit the QoS vector parameters to Time,
Cost, Energy, Data Amount, History, Bandwidth, and Locality to explain the remaining
concepts in a compact way. These parameters are representatives for the entire set
of parameters due to their dependencies and levels. As Data Amount has different
categories, as described in Section 5.1.2, we will consider it as a single parameter
due to the fact that all of its categories have the same dependency; as this is not
the case for Time, Cost, and Energy, we will list them separately. Nevertheless, all
concepts also apply to the entire QoS vector with all its parameters.
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5 xFogStar: A Workflow for Service Provider Selection

Equation 10: Quality of Service Vector

−−→
QoS :=



ExecutionTime

StorageTime

MemoryTime

NetworkTime

ExecutionCost

StorageCost

MemoryCost

NetworkCost

ServiceCost

ExecutionEnergy

StorageEnergy

MemoryEnergy

NetworkEnergy

ExecutionSustainability

StorageSustainability

MemorySustainability

NetworkSustainability

ExecutionDataAmount

StorageDataAmount

MemoryDataAmount

NetworkDataAmount

ExecutionAvailability

StorageAvailability

MemoryAvailability

NetworkAvailability

ExecutionReliability

StorageReliability

MemoryReliability

NetworkReliability

ExecutionMaintainability

StorageMaintainability

MemoryMaintainability

NetworkMaintainability

Bandwidth

Affiliation

History

Locality

Extensibility

Fidelity

Usability

Documentability



=



ET

ST

MT

NT

EC

SC

MC

NC

SeC

EE

SE

ME

NE

ES

SS

MS

NS

EDA

SDA

MDA

NDA

EA

SA

MA

NDA

ER

SR

MR

NR

EM

SM

MM

NM

B

Aff

H

L

Ex

F

U

D
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Figure 5.9: Overview of the QoS based xFogStar workflow. The workflow is used to
select the best fitting Service Provider who offers a requested Service for the
Service Consumer.

Figure 5.9 provides a preview of the relations between the different concepts that
are introduced in this chapter.

As introduced in the beginning of this chapter, we mainly focus on the Fog Com-
ponents that relate to the Service Consumer and Service Provider. Based
on the layer definitions provided in Section 4.1.2, Service Providers can ei-
ther be Cloud Devices or Fog Nodes. Service Consumers on the other hand
are Fog Nodes or Edge Devices. Each Service Provider offers and adver-
tises Services which can be discovered by the Service Consumers. To select
the best fitting Service Provider, the Service Consumer uses the Service
Provider Selection Workflow which includes the five parts: Ordering

Strategy, Comparability Strategy, we Parameter Limits, Parameter
Priorities, and Unavailability Strategy. We use a QoS Vector to spec-
ify the properties of the Service as well as the Service Provider and match
them with the needs of the Service Consumer. The different QoS Vectors

are gathered within a QoS Matrix. Every QoS Vector consists of several QoS
Parameters which have different dependencies as introduced in Section 5.1.2.
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5 xFogStar: A Workflow for Service Provider Selection

Definition 33 shows the mathematical description of the QoS vector as described
in Equation 10 for a specified Fog Component X which serves as the service consumer
requesting a service and the Fog Component Y which serves as the service provider
advertising that service. It is read as ”The quality of service vector for a service re-
quested by X and offered & advertised by Y”. While Chapter 3-Chapter 4 highly
focus on the differentiation between Fog Component types, in this chapter we fo-
cus on the Fog Component’s roles as service consumers and providers while the
previous concepts still apply.

Definition 33: QoS(X,Y)
−−→
QoS(X, Y) is defined as the quality of service vector of a service requested by a
Fog Component X provided by a Fog Component Y.

The written out version of the QoS Vector as shown in Definition 33, can be seen
in Equation 11. It specifies how the limitation of the QoS Vector to Fog Components
X and Y is transferred to the single parameters. As already indicated by the depen-
dencies earlier, all parameters except the History and Locality are independent of the
service consumer, and therefore do not need the X parameter. The NetworkTime, Net-
workCost, NetworkEnergy, Data Amount, and Bandwidth are special in that sense that
they also do not need to know about the service provider, and thus Y.

Equation 11: QoS(X,Y)

−−→
QoS(X, Y) :=



ExecutionTime(X, Y)
StorageTime(X, Y)
MemoryTime(X, Y)
NetworkTime(X, Y)
ExecutionCost(X, Y)
StorageCost(X, Y)
MemoryCost(X, Y)
NetworkCost(X, Y)
ServiceCost(X, Y)

ExecutionEnergy(X, Y)
StorageEnergy(X, Y)
MemoryEnergy(X, Y)
NetworkEnergy(X, Y)
DataAmount(X, Y)
Bandwidth(X, Y)
History(X, Y)
Locality(X, Y)



=



ET(X, Y)
ST(X, Y)
MT(X, Y)
NT(X, Y)
EC(X, Y)
SC(X, Y)
MC(X, Y)
NC(X, Y)
SeC(X, Y)
EE(X, Y)
SE(X, Y)
ME(X, Y)
NE(X, Y)
DA(X, Y)
B(X, Y)
H(X, Y)
L(X, Y)



=



ET(Y)

ST(Y)

MT(Y)

NT

EC(Y)

SC(Y)

MC(Y)

NC

SeC(Y)

EE(Y)

SE(Y)

ME(Y)

NE

DA

B

H(X, Y)
L(X, Y)
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5.2 Quality of Service Vector

As shown in Section 3.4.1, the Fog Component X that requests a service from a
Fog Component Y does not necessarily need to have the Locality of 0 or 1. If the
Locality is greater 1, each parameter consists of several partitions. An example
is shown in Equation 12 for the Network Time from service consumer X to service
provider Y over 3 hops A1, A2, and A3.

Equation 12: Locality Example

X A1 A2 A3 Y

NT(X, A1) NT(A1, A2) NT(A2, A3) NT(A3, Y)

In the given example, the Network Time between Fog Component X and Fog
Component Y is partitioned in four Network Times.

NT(X, Y) = NT(X,A1) +NT(A1,A2) +NT(A2,A3) +NT(A3, Y)

Depending on the parameter, the definition how parameter are concatenated
changes. While the Network Time is just added up, other parameters do not behave
in the same way. Table 5.3 shows how the presented parameters can be connected
among several hops from service consumer X (A0) to service provider Y (An+1).

While the limitation of the QoS vector to a specific service consumer and specific
provider reduces the complexity of some parameters, Definition 34 allows even fur-
ther simplification by specifying the involved service s. It is read as ”The quality of
service vector for service S requested by X and offered & advertised by Y”. Based on
the previously introduced sets in Section 3.2.6, both Fog Components X and Y need
to be within the set: Interest(S).

Definition 34: QoSS(X,Y)
−−−→
QoSS(X, Y) is the quality of service vector for a service S requested by a Fog
Component X provided by a Fog Component Y.

109



5 xFogStar: A Workflow for Service Provider Selection

Table 5.3: This table shows how the listed parameters are calculated in dependency
on the Locality, and therefore the amount of hops in between the service consumer
and service provider. If Locality is 0, which means that the service consumer is its
own provider, no calculation is needed. Otherwise, the calculations listed in Hop
Calculation apply.

Parameter Short Form Hop Calculation
Time T(X, Y)

∑n
i=0 T(Ai,Ai + 1)

Cost C(X, Y)
∑n

i=0C(Ai,Ai + 1)
Energy E(X, Y)

∑n
i=0 E(Ai,Ai + 1)

Sustainability S(X, Y)
∑n

i=0(E(Ai,Ai+1)×S(Ai,Ai+1))∑n
i=0 E(Ai,Ai+1)

Data Amount DA(X, Y)
∑n

i=0DA(Ai,Ai + 1)
Availability A(X, Y)

∏n
i=0A(Ai,Ai + 1)

Reliability R(X, Y)
∑n

i=0 R(Ai,Ai + 1)
Maintainability M(X, Y)

∑n
i=0M(Ai,Ai + 1)

Bandwidth B(X, Y) MINn
i=0B(Ai,Ai + 1)

Affiliation Aff(X, Y) Aff(X, Y)
History H(X, Y)

∏n
i=0H(Ai,Ai + 1)

Locality L(X, Y)
∑n

i=0 1
Extensibility Ex(X, Y) MINn

i=0Ex(Ai,Ai + 1)
Fidelity F(X, Y) MINn

i=0F(Ai,Ai + 1)
Usability U(X, Y) MINn

i=0U(Ai,Ai + 1)
Documentability D(X, Y) MINn

i=0D(Ai,Ai + 1)
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5.2 Quality of Service Vector

Equation 13 shows the written out form including the service limitation. As
before, parameters independent of the service are shown without the service speci-
fication. Therefore, parameters without the specification of service S are the History,
Bandwidth, and Locality.

Equation 13: QoSS(X,Y)

−−−→
QoSS(X, Y) :=



ExecutionTimeS(Y)

StorageTimeS(Y)

MemoryTimeS(Y)

NetworkTimeS

ExecutionCostS(Y)

StorageCostS(Y)

MemoryCostS(Y)

NetworkCostS

ServiceCostS(Y)

ExecutionEnergyS(Y)

StorageEnergyS(Y)

MemoryEnergyS(Y)

NetworkEnergyS

DataAmountS

BandwidthS

HistoryS(X, Y)
LocalityS(X, Y)



=



ETS(Y)

STS(Y)

MTS(Y)

NTS

ECS(Y)

SCS(Y)

MCS(Y)

NCS

SeCS(Y)

EES(Y)

SES(Y)

MES(Y)

NES

DAS

BS

HS(X, Y)
LS(X, Y)



=



ETS(Y)

STS(Y)

MTS(Y)

NTS

ECS(Y)

SCS(Y)

MCS(Y)

NCS

SeCS(Y)

EES(Y)

SES(Y)

MES(Y)

NES

DAS

B

H(X, Y)
L(X, Y)
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As the final step, we allow each parameter to be weighted. Based on Table 5.2
and Equation 8, each parameter receives a unique weight in the range of [0, 1] ∈
Q indicating the importance of the parameter as a percentage value. Using the
Hadamard Product, as shown in Definition 35, we can element-wise combine vec-
tors including all weights (

−→
W) and the QoS vector (

−−→
QoS). With one weight per QoS

vector entry, both vectors have the same dimensions. The resulting vector is of the
same dimension as well, multiplying the first value of

−→
W with the first value of

−−→
QoS,

then the second values of each vector and so on.

Definition 35: Quality of Service Prioritization

Using the Hadamard Product [69], individual weights
−→
W can be assigned for

each QoS vector component allowing prioritization.
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5 xFogStar: A Workflow for Service Provider Selection

The written out weighted quality of service vector including the Fog Component
limitation and the service limitation is shown in Equation 14 and represents the final
definition of the QoS vector described within this dissertation.

Equation 14: Weighted, service restricted QoS
−−−−→
QoSWS (X, Y) is the quality of service vector for service S requested by X pro-
vided by Y

−−−−−−−−→
QoSS(X, Y) prioritized by weights

−→
W.

−−−−−−−−→
QoSWS (X, Y) :=

−→
W ◦
−−−−−−−−→
QoSS(X, Y) =



α1

α2

α3

α4

β1

β2

β3

β4

β5

γ1

γ2

γ3

γ4

ε

ι

λ

µ



◦



ETS(Y)

STS(Y)

MTS(Y)

NTS

ECS(Y)

SCS(Y)

MCS(Y)

NCS

SeCS(Y)

EES(Y)

SES(Y)

MES(Y)

NES

DAS

B

H(X, Y)
L(X, Y)



=



α1ETS(Y)

α2STS(Y)

α3MTS(Y)

α4NTS

β1ECS(Y)

β2SCS(Y)

β3MCS(Y)

β4NCS

β5SeCS(Y)

γ1EES(Y)

γ2SES(Y)

γ3MES(Y)

γ4NES

εDAS

ιB

λH(X, Y)
µL(X, Y)


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5.2 Quality of Service Vector

5.2.2 Comparability

While the previous sections described which parameters we use for comparing ser-
vice providers offering a specific service, in the following sections we focus on how
the presented QoS parameters and the resulting quality of service vector can be
compared to create a ranking of which service provider is the best choice.

Equation 15 shows two QoS vectors with concrete values for each parameter that
we use as an example throughout this section. For better readability, the parameter
names and the according units are listed in between. The shown vectors describe
two service providers Y1 and Y2 offering the same service S that have two hops
between the service provider and the service consumer indicated by a Locality of
3. The previous experience of the service consumer with those service providers is
also the same (75%).

Equation 15: QoS Vector Comparison

−−−−−−−−→
QoSS(X, Y1) =



4
10
4

89
0.6
1.3
0.2
1.8
4.0

15.0
5.0
4.0

12.0
220
195
75
3



ExecutionTime (ms)

StorageTime (ms)

MemoryTime (ms)

NetworkTime (ms)

ExecutionCost ($)
StorageCost ($)
MemoryCost ($)
NetworkCost ($)
ServiceCost ($)

ExecutionEnergy (W)

StorageEnergy (W)

MemoryEnergy (W)

NetworkEnergy (W)

DataAmount (B)

Bandwidth (MBit/s)

History (%)

Locality



5
9
3

60
0.5
1.2
0.3
2.0
5.0

17.0
4.0
3.0

14.0
200
200
75
3



=
−−−−−−−−→
QoSS(X, Y2)

This raises the following questions:

1. How can we compare parameters of different vectors?

2. What is better for each parameter, higher values or lower values?

3. How can we handle not provided parameters?

4. How can we assign each QoS vector a value to create a ranking?

5. How can the service consumer influence the ranking of service providers?
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5 xFogStar: A Workflow for Service Provider Selection
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Figure 5.10: Hierarchy of different Parameter Comparability Strategies which can be
used to compare individual parameters of quality of service vectors from different
service providers.

Parameter - Comparability

Comparing different parameters of the same QoS vector is a difficult task. For in-
stance, how much more money is it worth to save a couple of milliseconds time;
or how much additional energy is acceptable for a higher transfer rate? In general
these questions can only be answered based on the application domain and the ap-
plication itself, as the values not only differ in their unit but also in their range of
values. As for example, NetworkTime and MemoryTime are both measured in mil-
liseconds, but MemoryTime usually gets dwarfed by the NetworkTime. Therefore,
if we try to create one value to represent a QoS vector by adding up those parame-
ters, the MemoryTime would be almost irrelevant due to the much bigger value of
NetworkTime. This issue only gets worse when comparing parameters which do
not even have the same unit.

We need a strategy that addresses the following attributes when comparing pa-
rameters: all parameters should have the same unit, and therefore be directly com-
parable, their values should be in the same range, and, in best case, the strategy
should be resistant against outliers.

In the following, we present strategies that allow comparability between param-
eters by looking at several QoS vectors at once, reflecting a real-life scenario in which
several service providers exist that offer the same service. These strategies are sim-
ple example strategies to show the occurring issues. Figure 5.10 presents a UML
class diagram providing an overview of the strategies.

Equation 16 shows our example from Equation 15 in which the first two columns
represent QoSS(X, Y1) and QoSS(X, Y2), but five additional service providers with
their QoS vectors are introduced. Each row shows all values of the different QoS
vectors for the same parameter, resulting in a matrix of dimension m × n – with
n representing the amount of service providers and m representing the amount of
parameters that are used to compare the vectors.
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5.2 Quality of Service Vector

Equation 16: QoS Vector Matrix Example

ExecutionTime

StorageTime

MemoryTime

NetworkTime

ExecutionCost

StorageCost

MemoryCost

NetworkCost

ServiceCost

ExecutionEnergy

StorageEnergy

MemoryEnergy

NetworkEnergy

DataAmount

Bandwidth

History

Locality



4 5 9 2 8 4 7
10 9 8 5 14 13 28
4 3 1 5 4 7 4

89 60 70 75 95 111 45
0.6 0.5 0.3 0.7 0.9 1.2 1.8
1.3 1.2 1.5 1.7 2.1 0.8 1.0
0.2 0.3 0.6 0.1 0.2 0.3 0.6
1.8 2.0 2.0 3.0 2.4 2.1 5.1
4.0 5.0 6.6 5.4 7.3 9.1 7.8

15.0 17.0 12.0 19.0 21.0 27.0 36.0
5.0 4.0 3.0 7.0 8.4 7.4 9.1
4.0 3.0 2.0 7.3 2.4 7.9 1.3

12.0 14.0 13.2 14.3 12.2 12.8 17.2
220 200 190 178 198 232 243
195 200 32 64 128 100 120
75 75 90 78 85 60 67
3 3 7 4 3 4 2



The first strategy, called Percentage, creates relative values for each parameter
by comparing each value to all other values of that parameter from different QoS
vectors. Equation 17 shows the transposed Network Time row of the previous exam-
ple. Each value is divided by the summarized value of all values for this parameter
calculating the fraction of each value based on the entirety of Network Time. The re-
sulting percentage values can be used to calculate how the different Network Times
behave in comparison to each other as shown in Equation 18.

Equation 17: QoS Vector Matrix Row

NetworkTime



89
60
70
75
95
111
45



T

−→



89÷ 545
60÷ 545
70÷ 545
75÷ 545
95÷ 545

111÷ 545
45÷ 545



T

=



0.163
0.110
0.128
0.138
0.174
0.204
0.082



T

=



16.3%
11.0%
12.8%
13.8%
17.4%
20.4%
8.2%



T
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5 xFogStar: A Workflow for Service Provider Selection

Using relative percentage values for each parameter has the benefit of all param-
eters having the same unit and the same scale, making them comparable; however,
outliers would still lead to extreme percentage values, and therefore reduce the com-
parability of smaller values. For example, if the Network Time of one service provider
is 3 seconds and the 2 other service providers have Network Times of 20ms and 30ms,
the percentage values would be 98.3%, 0.66% and 0.98%. This would indicate that
service providers two and three do not differ that much, also the second value is
50% bigger than the first value.

Equation 18: QoS Vector Matrix Row Comparability

16.3% 11.0% 12.8% 13.8% 17.4% 20.4% 8.2%

16.3% ± 0% -32.5% -21.5% -15.3% 6.7% 25.2% -49.7%
11.0% 48.2% ± 0% 16.4% 25.5% 58.2% 85.5% -25.5%
12.8% 27.3% -14.1% ± 0% 7.8% 35.9% 59.4% 35.9%
13.8% 18.1% -20.3% -7.2% ± 0% 26.1% 47.8% -40.6%
17.4% -6.3% -36.8% -26.4% -20.7% ± 0% 17.2% -52.9%
20.4% -20.1% -46.1% -37.3% -32.4% -14.7% ± 0% -59.8%
8.2% 98.8% 34.1% 56.1% 68.3% 112.2% 148.8% ± 0%

The second strategy, called Rank, focuses less on the size of the parameters, but
on their order from minimum value to maximum value. The lowest value gets as-
signed a value of 0, the next bigger value a 1 and so on. Definition 36 shows the
definition of the Rank function.

Definition 36: Rank

Rank(X, (Yi)i=1,...,n) := {The position of X in (Yi)i=1,...,n

if (Yi)i=1,...,n is sorted in descending order. }
with:
X ∈ (Yi)i=1,...,n)

min(Rank) = 0

If identical values occur, they are assigned the same value, but the next value is
increased by 1.
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5.2 Quality of Service Vector

The main advantage of this strategy is the same unit and scale and the resistance
of against outliers. While this is a huge benefit, the lack of comparison between the
values might be an issue, as shown in Equation 19. If the Network Time of the first
service provider is 20ms, but the Network Time of the another service provider is 3s,
the rank values are close together, obfuscating the notable gap between them.

Equation 19: Rank Example

NetworkTime


20

3000
30
30
40



T

−→


0
4
1
1
3



T

The Squard Percentage Strategy squares the initial values before calculating the
percentage value. Although this is more receptive against outliers, it allows better
distinguishability between values that are close together, as shown in Equation 20.

Equation 20: Squared Percentage Example

NetworkTime


20
22
25
23
30



T

−→


400
484
625
529
900



T

−→


400÷ 2938
484÷ 2938
625÷ 2938
529÷ 2938
900÷ 2938



T

=


13.6%
16.5%
21.3%
18.0%
30.6%



T

Another strategy, called Rank Offset Strategy, uses the Rank value but multiplies
it with an offset to spread the values further apart. One approach for the offset is to
equally spread the values between 0 and 100, making them comparable to percent-
age values. Thus, the offset is defined as 100

N−1 , where N is defined as the number of
service providers. An example is shown in Equation 21.

Equation 21: Rank Offset Example

NetworkTime


20
22
25
23
30



T

−→


0× 100

4

1× 100
4

3× 100
4

2× 100
4

4× 100
4



T

−→


0
25
75
50

100



T
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5 xFogStar: A Workflow for Service Provider Selection

Another strategy is the Combination Strategy, it combines the Rank Strategy with
the Percentage Strategy. For this strategy, the resulting ranks and percentage values
are multiplied by each other to create the new value. This new value has the benefit
that all values have the same unit while maintaining the difference from the original
values as shown in Equation 22.

Equation 22: Combination Strategy

NetworkTime


20
22
25
23
30



T

−→


0× 16.7
1× 18.3
3× 20.8
2× 19.2
4× 25.0



T

−→


0

18.3
62.4
38.4
100



T

The Zero Norm Strategy uses the Percentage Strategy but sets the minimum value
to zero. Therefore, the best value is highlighted even stronger while maintaining the
benefits of the Percentage Strategy. An example is shown in Equation 23.

Equation 23: Zero Norm Example

NetworkTime


20
22
25
23
30



T

−→


0

22
25
23
30



T

−→


0%

22.0%
25.0%
23.0%
30.0%



T

The last presented strategy is the Percentage Growth Strategy. It selects the min-
imum value as the value against which all other values are calculated in terms of
growth. Therefore, the minimum value itself receives the percentage 0%. In com-
parison to the other strategies, this strategy allows direct comparisons between the
values in the sense that a service consumer can see in how much increase the selec-
tion of a worse service provider would result. Based on the same example as before,
Equation 24 shows the resulting values.

Equation 24: Percentage Growth

NetworkTime


20
22
25
23
30



T

−→


0.0%

10.0%
25.0%
15.0%
50.0%



T
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5.2 Quality of Service Vector

Although we presented several strategies to create comparability between differ-
ent values of the same parameter and also the parameters between each other, this
list presents just the basic comparison strategies and is far from exclusive. Depend-
ing on the goal of the service consumer, many different strategies can be selected,
comparing different aspects and highlighting others.

Parameter - Order

This paragraph addresses the second question that some parameters are considered
”better” if they have bigger values and for some parameters lower values are pre-
ferred. While this does not create an issue per se, it needs to be addressed to create
one value for the entirety of the parameters for each vector. Equation 25 provides an
overview of all introduced parameters—excluding categories—with their unit and
value range. While Time, Cost, Energy, Data Amount, Maintainability, and Locality
should have low values, Sustainability, Availability, Reliability, Bandwidth, Affiliation,
History, Extensibility, Fidelity, Usability, and Documentability should have high values.

Equation 25: Parameter Comparison

Time (ms): T ∈ N0

Cost ($): C ∈ Q+
0

Energy (W): E ∈ Q+
0

Sustainability (%): S ∈ [0, 100]
Data Amount (Bytes): DA ∈ N0

Availability (%): A ∈ [0, 100]
Reliability (ms): R ∈ N0

Maintainability (ms): M ∈ N0

Bandwidth (MBit/s): B ∈ Q+
0

Affiliation (Bool): Aff ∈ B
History (%): H ∈ [0, 100]
Locality: L ∈ N0

Extensibility: Ex ∈ N
Fidelity (%): F ∈ [0, 100]
Usability (%): U ∈ [0, 100]
Documentabiltiy (%): D ∈ [0, 100]

In order to unify the direction, either the first parameters need to be inverted
to prefer higher values or the second parameters need to be adjusted to prefer low
values. Several approaches can be used to achieve this—we will present three pos-
sibilities based on the concepts introduced in Section 5.2.2.

As inverting percentage values is simple by defining each percentage value p as
1 − p, thus creating the complement event, we use this idea as the first approach.
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5 xFogStar: A Workflow for Service Provider Selection

Thus, we measure Unsustainability, Unavailability, redefine History to have lower val-
ues the better the previous experiences with the service provider were. We redefine
Fidelity to measure the deviation of the provided service from its specification, rede-
fine Usability as usability problems that occurred, and Documentability as the amount
of missing documentation. While this approach works for percentage values, it is
not possible for absolute values as no maximum value exists for all parameters from
which we can subtract the current value. Using the comparability strategies from the
previous section, and therefore transferring all parameters into percentage values,
all parameters can be inverted to the opposite event.

Additionally, without creating percentage values, also absolute values can be in-
verted if we compare several QoS vectors at once. Thereby, we have several values
per parameter and a maximum value among those. By subtracting all values from
the maximum value, the ordering for the parameter can be inverted, switching pre-
viously considered ”good” values with ”bad” values. This works in both directions:
If low values are preferred, but the best value is currently high or if high values are
preferred, but the best value is currently low. Definition 37 shows the definition and
an example is presented in Equation 26.

Definition 37: Parameter Ordering

Some parameters inherently prefer low values and some high values. To invert
the scales, the following approach can be used:

x1

x2

x3

x4

x5

x6

x7


−→



xmax − x1

xmax − x2

xmax − x3

xmax − x4

xmax − x5

xmax − x6

xmax − x7



Equation 26: Parameter Ordering Example

89
60
70
75
95

111
45



T

−→



22
51
41
36
16
0

66



T
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5.2 Quality of Service Vector

Parameter - Unavailability

This paragraph addresses the third question that not all parameters might be avail-
able for all service providers. While service providers should always be able to pro-
vide Time, Cost, Bandwidth, History, and Locality, the other parameters might not
be; creating a sparse matrix in comparison to the example provided in Equation 16.
On the one side, service providers might not have the appropriate values available,
and thus are not able to forward them; on the other side, if service providers have
bad values for some parameters, they could intentionally omit those values. While
the second aspect addresses a transparency issue, both aspects result in the same
overarching issue: How can service consumers compare parameter values against
missing values? When focusing on individual QoS vectors, this can easily be ad-
dressed by just removing that parameter entry, but when comparing different QoS
vectors, those values potentially harm the selection process.

The first approach to address this issue is omitting all parameter for which not
every service provider can provide values. While this approach works if just a few
parameters are missing, the benefit of QoS vector discovery is reduced, if too many
parameters are omitted resulting in a comparison of parameters that are indepen-
dent of the service provider which can be collected by the service consumers them-
selves.

Another approach is the idea of providing default values for missing parameters.
While this idea sounds reasonable at first, the selection of default values can have
an impact on the selection of service providers, but also on the meaning of certain
parameter values. If, for instance, the Availability is not provided, default values
could, e. g., be 0 or 100. While 0 would prevent the service provider from ever
being selected by a service consumer, a value of 100 would improve the chances to
be selected, and therefore weaken the trust of service consumers in the discovery
process.

The selection of default values is even harder if the parameter does not have us-
able maximum or minimum values, such as parameters that track time. Although
the minimum value of 0 can be specified, the maximum value would be +∞. A
value of 0 would indicate zero delay, a value of +∞ an infinite delay or in other
words, a service that will never return a result. Another special case is the Reli-
ability. A default value of 0 would indicate a constantly broken service provider
and a value of +∞ would be a perfect service provider that never faces any down
times. On the one hand, a constantly broken service provider would never be se-
lected which is harmful for the service provider itself, on the other side, no down
times would give this service provider an unfair boost compared to others.

121



5 xFogStar: A Workflow for Service Provider Selection

One alternative approach is the assignment of average values. Given the exam-
ple from Equation 17, another service provider which could not provide a value for
the Network Time would receive a value of 78ms. While this value is worse than the
values of the ”best” service providers, it is better than the ”worse” service providers
giving it a chance to be selected by service consumers. But this approach includes
another issue. If service providers know that they have bad values for certain pa-
rameters, not providing the parameter would assign them a better value than they
could report themselves. There should always be an incentive to report as many
parameter values as possible and not an incentive for secrecy.

We defineMax+ orMin− which assign values to missing values that are slightly
worse than the worst parameter value that was provided by another service provider
during this workflow. Although this could result in bad values if there are some neg-
ative outliers within the service providers, a service provider hiding information
will never be first choice. Depending on the order for the parameter in question,
the value will be slightly higher than the maximum value of the other providers or
slightly lower than the minimum value.

Equation 27 shows a comparison between the different approaches using the
Network Time example introduced earlier.

Equation 27: Unavailability

Original
(NetworkTime)

89
60
70
75
−

95
111
45
−



T

Omitted



89
60
70
75
95
111
45



T

Min-Default



89
60
70
75
0

95
111
45
0



T

Average



89
60
70
75
78
95

111
45
78



T

Min-



89
60
70
75
40
95

111
45
40



T

Max+



89
60
70
75

120
95

111
45

120



T

122



5.2 Quality of Service Vector

QoS Vector - Ranking

This paragraph focuses on the idea of creating one value for the entirety of all pa-
rameters within a QoS vector. We use this identifying value to create a ranking for
all service providers to establish a sorted list indicating which service provider is
considered the best fit down to the worst for the service consumer requesting a spe-
cific service. Also we do not present the value creation for each approach, all those
concepts can and should be used in combination with the following concepts.

Definition 38 shows the value for a QoS vector to be defined as the l1 norm,
which means the sum of its absolute values. As all provided parameters are defined
in the positive spectrum, also in different ranges and units, it removes the need for
the modulus, making it the sum of all vector elements.

Definition 38: Quality of Service Vector Value

The value of the QoS vector is defined by its l1 norm.

||
−−→
QoS|| =

∑n
i=1 |xi| with xi being the single vector components.

||
−−→
QoS|| = |ET |+ |ST |+ |MT |+ |NT |+ |EC|+ |SC|+ |MC|+ |NC|+ |SeC| +

|EE|+ |SE|+ |ME|+ |NE|+ |ES|+ |SS|+ |MS|+ |NS|+ |EDA| +

|SDA|+ |MDA|+ |NDA|+ |EA|+ |SA|+ |MA|+ |NA|+ |ER| +

|SR|+ |MR|+ |NR|+ |EM|+ |SM|+ |MM|+ |NM|+ |B|+ |Aff| +

|H|+ |L|+ |Ex|+ |F|+ |U|+ |D|

With:
ET ,ST ,MT ,NT ,EDA,SDA,MDA,NDA ∈ N0

ER,SR,MR,NR,EM,SM,MM,NM,L ∈ N0

EC,SC,MC,NC,SeC,EE,SE,ME,NE,B ∈ Q+
0

ES,SS,MS,NS,EA,SA,MA,NA,H, F,U,D ∈ [0, 100]

Affiliation ∈ B
Ex ∈ N

||
−−→
QoS|| = ET + ST +MT +NT + EC+ SC+MC+NC+ SeC +

EE+ SE+ME+NE+ ES+ SS+MS+NS+ EDA +

SDA+MDA+NDA+ EA+ SA+MA+NA+ ER +

SR+MR+NR+ EM+ SM+MM+NM+ B+Aff +

H+ L+ Ex+ F+U+D
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5 xFogStar: A Workflow for Service Provider Selection

Using this definition, it is obvious why the parameter comparability approaches
are optional, but the parameter ordering (Equation 5.2.2) and the parameter un-
availability (Equation 5.2.2) are not. Having the same order for all parameters also
defines the order for the QoS vector value. If all parameters should be low, the QoS
vector value also needs to be low to be considered good, if the parameters should
be big, the same holds true for the QoS vector value.

The unavailability of some parameters would artificially lower the QoS vector
value which can be good or bad for the corresponding service provider. The dif-
ferent concepts shown in Equation 27 to prevent unavailable parameters can solve
this, but need to be chosen based on the application domain.

We combine the definitions as introduced in Section 5.1 with the QoS vector
value (Definition 38) including the dependencies in the l1 norm.

Corollary 1 uses Definition 33 in combination with Definition 38 to introduce the
limitations to service consumer X and service provider Y into the QoS vector value
calculation and Corollary 2 adds the service limitation using Definition 34.

Corollary 1: Quality of Service Vector Value

Using Definition 33 and Definition 38, the quality of service vector value for a
Fog Component X requesting a service from a Fog Component Y is defined as:

||
−−−−−−−→
QoS(X, Y)|| = ET(Y) + ST(Y) +MT(Y) +NT + EC(Y) + SC(Y) +MC(Y) +

NC+ SeC(Y) + EE(Y) + SE(Y) +ME(Y) +NE+ ES(Y) +

SS(Y) +MS(Y) +NS+ EDA+ SDA+MDA+NDA +

EA(Y) + SA(Y) +MA(Y) +NA+ ER(Y) + SR(Y) +MR(Y) +

NR+ EM(Y) + SM(Y) +MM(Y) +NM+ B+Aff(X) +

H(X, Y) + L(X, Y) + Ex+ F(X, Y) +U(X, Y) +D(Y)

Corollary 2: Quality of Service Vector Value (2)

Using Corollary 1 and Definition 34, the quality of service vector value for a
Fog Component X requesting a service S from a Fog Component Y is defined
as:

||
−−−−−−−−→
QoS(X, Y)S|| = ET(Y) + ST(Y) +MT(Y) +NTS + EC(Y) + SC(Y) +MC(Y) +

NC+ SeC(Y) + EE(Y) + SE(Y) +ME(Y) +NES + ES(Y) +

SS(Y) +MS(Y) +NS+ EDAS + SDAS +MDAS +NDAS +

EA(Y) + SA(Y) +MA(Y) +NA+ ER(Y) + SR(Y) +MR(Y) +

NR+ EM(Y) + SM(Y) +MM(Y) +NM+ B+Aff(X) +

H(X, Y) + L(X, Y) + ExS + F(X, Y) +U(X, Y) +D(Y)
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5.2 Quality of Service Vector

QoS Vector - Prioritization

In this final paragraph, we address how QoS vectors are prioritized and how service
consumers can influence which service providers are their best choice. Therefore,
Corollary 3 uses Definition 38 and Definition 35 to introduce weights into the QoS
vector value calculation.

Corollary 3: Weighted Quality of Service Vector Value

Using Definition 35 and Definition 38, the quality of service vector value using
weightsW is defined as:

||
−−→
QoSW || = α1ET + α2ST + α3MT + α4NT + β1EC+ β2SC+ β3MC+ β4NC +

β5SeC+ γ1EE+ γ2SE+ γ3ME+ γ4NE+ δ1ES+ δ2SS+ δ3MS +

δ4NS+ ε1EDA+ ε2SDA+ ε3MDA+ ε4NDA+ ζ1EA+ ζ2SA +

ζ3MA+ ζ4NA+ η1ER+ η2SR+ η3MR+ η4NR+ θ1EM+ θ2SM +

θ3MM+ θ4NM+ ιB+ κAff+ λH+ µL+ νEx+ ξF+ πU+ ρD

Finally, Corollary 4 combines Corollary 2 and Corollary 3 to create the final equa-
tion that is used to calculate the QoS vector value limited to Fog Components, the
requested service, and weights.

Corollary 4: Weighted, service restricted Quality of Service Vector Value

Using Corollary 2 and Corollary 3, the quality of service vector value for X re-
questing service S from Y using weightsW is defined as:

||
−−−−−−−→
QoS(X, Y)WS || = α1ET(Y) + α2ST(Y) + α3MT(Y) + α4NTS + β1EC(Y) +

β2SC(Y) + β3MC(Y) + β4NC+ β5SeC(Y) + γ1EE(Y) +

γ2SE(Y)γ3ME(Y) + γ4NES + δ1ES(Y) + δ2SS(Y) +

δ3MS(Y) + δ4NS+ ε1EDAS + ε2SDAS + ε3MDAS +

ε4NDAS + ζ1EA(Y) + ζ2SA(Y) + ζ3MA(Y) + ζ4NA +

η1ER(Y) + η2SR(Y) + η3MR(Y) + η4NR+ θ1EM(Y) +

θ2SM(Y) + θ3MM(Y) + θ4NM+ ιB+ κAff(X) +

λH(X, Y) + µL(X, Y) + νExS + ξF(X, Y) + πU(X, Y) +

ρD(Y)

Using Corollary 4 allows service consumers to assign weights, as already intro-
duced in Section 5.1.4, to specify which parameters are of which importance. Based
on those weights, the QoS vector value calculation highly depends on the service
consumer, and therefore the application domain for which the service is requested.
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5 xFogStar: A Workflow for Service Provider Selection

5.2.3 Instantiation

This section shows an example instantiation of the QoS discovery worklow for the
ranking of the service providers based on their QoS vectors from initial values to
the final ranking, as introduced in the dynamic model Figure 5.3. For consistency,
we use the same QoS parameter selection as in the previous sections considering
the different Times, Costs, Energy consumptions, Data Amounts, Bandwidths, Histories,
and Localities. The example QoS matrix for a service consumer requesting a service
is shown in Equation 28 and contains QoS vectors for seven service providers.

Equation 28: QoS Example

ExecutionTime

StorageTime

MemoryTime

NetworkTime

ExecutionCost

StorageCost

MemoryCost

NetworkCost

ServiceCost

ExecutionEnergy

StorageEnergy

MemoryEnergy

NetworkEnergy

DataAmount

Bandwidth

History

Locality



4 5 9 2 8 4 7
10 9 8 5 14 13 28
4 3 1 5 4 7 4

89 60 70 75 95 111 45
0.6 0.5 0.3 0.7 0.9 1.2 1.8
1.3 1.2 1.5 1.7 2.1 0.8 1.0
0.2 0.3 0.6 0.1 0.2 0.3 0.6
1.8 2.0 2.0 3.0 2.4 2.1 5.1
4.0 5.0 6.6 5.4 7.3 9.1 7.8

15.0 17.0 12.0 19.0 21.0 27.0 36.0
5.0 4.0 3.0 7.0 8.4 7.4 9.1
4.0 3.0 2.0 7.3 2.4 7.9 1.3

12.0 14.0 13.2 14.3 12.2 12.8 17.2
220 200 190 178 198 232 243
195 200 32 64 128 100 120
75 75 90 78 85 60 67
3 3 7 4 3 4 2


As this example already shows a fully populated QoS vector matrix, we

do not have to Select [an] Unavailability Strategy or Apply [an]

Unavailability Strategy.
Therefore, the first step is to define the acceptable limits for the service consumer,

which requests the service, for each parameter. We want to consider all service
providers who can offer the requested service for a total cost of less than 13$ and a
total time of maximum 100ms. These limits are shown in Equation 29.

Equation 29: Limit Example

Time ∈ [0, 100]
Cost ∈ [0, 13]
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5.2 Quality of Service Vector

After applying those limits, Service Provider 5 is dropped due to a high total time,
Service Provider 6 based on both, the total time and the total cost, and Service Provider
7 is too expensive. Therefore, the initial seven service providers are reduced to four.
This is shown in Equation 30 with the red font highlighting the values which were
too high and the red background color indicating dropped service providers. The
resulting Limited QoS Vector Matrix is presented on the right.

Equation 30: Limited Matrix Example

T
ET

ST

MT

NT

C
EC

SC

MC

NC

SeC

EE

SE

ME

NE

DA

B

H

L



107 77 88 87 121 135 84
4 5 9 2 8 4 7

10 9 8 5 14 13 28
4 3 1 5 4 7 4

89 60 70 75 95 111 45
7.9 9.0 11.0 10.9 12.9 13.5 16.3
0.6 0.5 0.3 0.7 0.9 1.2 1.8
1.3 1.2 1.5 1.7 2.1 0.8 1.0
0.2 0.3 0.6 0.1 0.2 0.3 0.6
1.8 2.0 2.0 3.0 2.4 2.1 5.1
4.0 5.0 6.6 5.4 7.3 9.1 7.8

15.0 17.0 12.0 19.0 21.0 27.0 36.0
5.0 4.0 3.0 7.0 8.4 7.4 9.1
4.0 3.0 2.0 7.3 2.4 7.9 1.3

12.0 14.0 13.2 14.3 12.2 12.8 17.2
220 200 190 178 198 232 243
195 200 32 64 128 100 120
75 75 90 78 85 60 67
3 3 7 4 3 4 2



−→



107 77 88 87
4 5 9 2

10 9 8 5
4 3 1 5

89 60 70 75
7.9 9.0 11.0 10.9
0.6 0.5 0.3 0.7
1.3 1.2 1.5 1.7
0.2 0.3 0.6 0.1
1.8 2.0 2.0 3.0
4.0 5.0 6.6 5.4
15.0 17.0 12.0 19.0
5.0 4.0 3.0 7.0
4.0 3.0 2.0 7.3
12.0 14.0 13.2 14.3
220 200 190 178
195 200 32 64
75 75 90 78
3 3 7 4



For the second step, we have to Select [a] Comparability Strategy.
We choose the Combination Strategy to get the benefits of using ranks and the ben-
efits of using percentage values as described in Section 5.2.2. The App[lication
of the] Comparability Strategy is shown in Equation 31. Using one inter-
mediate step which shows the percentage values and the corresponding ranks, the
equation shows the Comparable QoS Vector Matrix on the right.
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5 xFogStar: A Workflow for Service Provider Selection

Equation 31: Comparable Matrix Example

ET

ST

MT

NT

EC

SC

MC

NC

SeC

EE

SE

ME

NE

DA

B

H

L



0.20× 1 0.25× 2 0.45× 3 0.1× 0
0.31× 3 0.28× 2 0.25× 1 0.16× 0
0.31× 2 0.23× 1 0.08× 0 0.38× 3
0.30× 3 0.20× 0 0.24× 1 0.26× 2
0.29× 2 0.24× 1 0.14× 0 0.33× 3
0.23× 1 0.21× 0 0.26× 2 0.30× 3
0.17× 1 0.25× 2 0.5× 3 0.08× 0
0.20× 0 0.23× 1 0.23× 1 0.34× 3
0.19× 0 0.24× 1 0.31× 3 0.26× 2
0.24× 1 0.27× 2 0.19× 0 0.30× 3
0.26× 2 0.21× 1 0.16× 0 0.37× 3
0.25× 2 0.18× 1 0.12× 0 0.45× 3
0.22× 0 0.26× 2 0.25× 1 0.27× 3
0.28× 3 0.25× 2 0.24× 1 0.23× 0
0.40× 2 0.41× 3 0.07× 0 0.13× 1
0.24× 0 0.24× 0 0.28× 3 0.25× 2
0.18× 0 0.18× 0 0.41× 3 0.24× 2



=



0.20 0.50 1.35 0.00
0.93 0.56 0.25 0.00
0.62 0.23 0.00 1.14
0.90 0.00 0.24 0.52
0.58 0.24 0.00 0.99
0.23 0.00 0.52 0.90
0.17 0.50 1.50 0.00
0.00 0.23 0.23 1.02
0.00 0.24 0.93 0.52
0.24 0.54 0.00 0.90
0.52 0.21 0.00 1.11
0.50 0.18 0.00 1.35
0.00 0.52 0.25 0.81
0.84 0.50 0.24 0.00
0.80 1.23 0.00 0.13
0.00 0.00 0.84 0.50
0.00 0.00 1.23 0.48



The Bandwidth and the History do not inherently prefer lower values, thus we
have to Select [an] Ordering Strategy. As we applied the Combination Strat-
egy for parameter comparison, the resulting values are not percentage values, but
scaled with their rank. Thus, we take the highest absolute value and subtract each
value from it to invert the ordering. Equation 32 highlights with a red background
the values that need to be inverted. After showing an intermediate step, the Ordered
QoS Vector Matrix is presented.
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5.2 Quality of Service Vector

Equation 32: Ordered Matrix Example

ET

ST

MT

NT

EC

SC

MC

NC

SeC

EE

SE

ME

NE

DA

B

H

L



0.20 0.50 1.35 0.00
0.93 0.56 0.25 0.00
0.62 0.23 0.00 1.14
0.90 0.00 0.24 0.52
0.58 0.24 0.00 0.99
0.23 0.00 0.52 0.90
0.17 0.50 1.50 0.00
0.00 0.23 0.23 1.02
0.00 0.24 0.93 0.52
0.24 0.54 0.00 0.90
0.52 0.21 0.00 1.11
0.50 0.18 0.00 1.35
0.00 0.52 0.25 0.81
0.84 0.50 0.24 0.00
0.80 1.23 0.00 0.13
0.00 0.00 0.84 0.50
0.00 0.00 1.23 0.48



−→



0.20 0.50 1.35 0.00
0.93 0.56 0.25 0.00
0.62 0.23 0.00 1.14
0.90 0.00 0.24 0.52
0.58 0.24 0.00 0.99
0.23 0.00 0.52 0.90
0.17 0.50 1.50 0.00
0.00 0.23 0.23 1.02
0.00 0.24 0.93 0.52
0.24 0.54 0.00 0.90
0.52 0.21 0.00 1.11
0.50 0.18 0.00 1.35
0.00 0.52 0.25 0.81
0.84 0.50 0.24 0.00

1.23 − 0.80 1.23 − 1.23 1.23 − 0.00 1.23 − 0.13
0.84 − 0.00 0.84 − 0.00 0.84 − 0.84 0.84 − 0.50

0.00 0.00 1.23 0.48



=



0.20 0.50 1.35 0.00
0.93 0.56 0.25 0.00
0.62 0.23 0.00 1.14
0.90 0.00 0.24 0.52
0.58 0.24 0.00 0.99
0.23 0.00 0.52 0.90
0.17 0.50 1.50 0.00
0.00 0.23 0.23 1.02
0.00 0.24 0.93 0.52
0.24 0.54 0.00 0.90
0.52 0.21 0.00 1.11
0.50 0.18 0.00 1.35
0.00 0.52 0.25 0.81
0.84 0.50 0.24 0.00
0.43 0.00 1.23 1.10
0.84 0.84 0.00 0.34
0.00 0.00 1.23 0.48


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5 xFogStar: A Workflow for Service Provider Selection

Table 5.4: Weight Example for the Parameter Importance specified by the service
consumer.

Parameter Weight Parameter Weight
Time (T) α = 0.50 Cost (C) β = 0.50

ExecutionTime (ET) α1 = 0.50 ExecutionCost (EC) β1 = 0.50
StorageTime (ST) α2 = 0.50 StorageCost (SC) β2 = 0.50
MemoryTime (MT) α3 = 0.50 MemoryCost (MC) β3 = 0.50
NetworkTime (NT) α4 = 0.50 NetworkCost (NC) β4 = 0.50

ServiceCost (SeC) β5 = 0.50
Energy (E) γ = 1.00 Data Amount (DA) ε = 0.50

ExecutionEnergy (EE) γ1 = 1.00 ExecutionDataAmount (EDA) ε1 = 0.50
StorageEnergy (SE) γ2 = 1.00 StorageDataAmount (SDA) ε2 = 0.50
MemoryEnergy (ME) γ3 = 1.00 MemoryDataAmount (MDA) ε3 = 0.50
NetworkEnergy (NE) γ4 = 1.00 NetworkDataAmount (NDA) ε4 = 0.50

Bandwidth (B) ι = 0.50 History (H) λ = 0.50
Locality (L) µ = 0.50

Before creating the final ordered service provider list, the service consumer has
the chance to Define [the] Parameter Importance by specifying a weight
for each parameter according to Table 5.2. In the selection of the service provider
we want to prioritize saving energy, therefore, lowering the weights for all other
parameters by 50% which makes the consumed energy twice as important. The
according weight-parameter mapping is shown in Table 5.4.

Finally, we Create [a] QoS Vector Ranking by multiplying each parame-
ter from the resulting Ordered QoS Vector Matrix in Equation 32 by the weights
specified in Table 5.4 and add up all resulting values for each service provider. This
results in an Orderer Service Provider List as shown in Equation 33. Ac-
cording to the selected strategy for ordering the parameters, higher or lower values
are preferred for the service providers: lower values in our example. In the equa-
tion, the energy values, which use a weight of 1.00, are highlighted with a green
background and the service providers are highlighted in the order green, yellow, or-
ange, and red indicating their fit for the service consumer. Therefore, the first service
provider is selected.
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5.2 Quality of Service Vector

Equation 33: Ordered Service Provider List Example

ET

ST

MT

NT

EC

SC

MC

NC

SeC

EE

SE

ME

NE

DA

B

H

L



0.10 0.25 0.67 0.00
0.47 0.28 0.13 0.00
0.31 0.12 0.00 0.57
0.45 0.00 0.12 0.26
0.29 0.12 0.00 0.50
0.12 0.00 0.26 0.45
0.09 0.25 0.75 0.00
0.00 0.12 0.12 0.51
0.00 0.12 0.46 0.26
0.24 0.54 0.00 0.90
0.52 0.21 0.00 1.11
0.50 0.18 0.00 1.35
0.00 0.52 0.25 0.81
0.42 0.25 0.12 0.00
0.40 0.62 0.00 0.07
0.00 0.00 0.42 0.25
0.00 0.00 0.62 0.24



−→
QoS1 QoS2 QoS3 QoS4(
3.51 3.58 3.92 7.28

)
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Chapter 6

Validation of xFog

”First, theories and models are always simplifications. If they were as complex as
reality, they would not be useful. Indeed, the value of theories is to cut through
idiosyncracies and unearth similarities across cases.”

— NICOLAJ SIGGELKOW [136]

This chapter presents the validation of the xFog framework and xFogStar ad-
dressing Knowledge Goal 2 and Knowledge Goal 3. The validation tries to justify if
stakeholder goals would be met if the treatment is implemented in the problem do-
main’s context. It investigates if the requirements for the treatment are addressed
within a model of the problem domain. As the validation is part of the design cycle,
and thus conducted in a laboratory setting, the implementation of the treatment in
the problem domain is not of interest, yet. This results in the validation being inde-
pendent of the stakeholders, which is the main difference between validation and
evaluation. Therefore, different research approaches are used. For the validation,
we use modeling, simulations, and testing [148].

The validation of xFog is separated into three aspects of the xFog framework
provided by xFogCore, xFogPlus, and xFogStar. For each of those validations, we
relied on the validation approaches modeling and simulation. First, we introduce
the design of the different case studies in Section 6.1. We present the problem do-
main of the case study, the requirements, and which concepts of xFog or xFogStar are
addressed. We selected cases in different domains to support domain-independent
conclusions. In total, we addressed six different domains: Smart Environments, Smart
Cities, Health, Continuous Integration, Metrology, and Gaming. These domains were
used in eight case studies mapped to three validations.
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7. Case Study:

Quasar
2019

1. Case Study:

ARControl
2018/2019

4. Case Study:

DisCoFog
2018

——————
DisCoFog 2

2018/2019

5. Case Study:

eHealth
2019

6. Case Study:

Fog.BOI
2018/2019

3. Case Study:

PdMFrame
2018

2. Case Study:

Lassie
2019

8. Case Study:

FoQsIs
2019/2020

Smart Environment Smart City Health

Metrology GamingContinuous Integration
Domains

xFog

Figure 6.1: An overview of the validation design for the xFog framework. Each
of the three rows represents one validation with Dynamic Fog Components and
Scalable Fog Architectures belonging to concepts related to xFogPlus and the Service
Provider Selection belonging to the xFogStar workflow. The colored borders of the
case studies represent the domains they belong to.
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6.1 Case Study Design

Second, in Section 6.2, we report on the results of the validation for the three
core concepts: Dynamic Fog Components, Scalable Fog Architecture, and Service
Provider Selection. While the formalization of Fog Computing (xFogCore) is used
throughout all three concepts, each of the concepts can be assigned to an addition
to xFog as shown in Figure 6.1. Dynamic Fog Components and Scalable Fog Architec-
tures are covered in xFogPlus as shown in the first two rows of the diagram. The
Service Provider Selection uses the core xFog concepts (xFogCore) and the workflow
introduced by xFogStar.

Third, we discuss the impact of the results for the xFog framework in Section 6.3.
We interpret the results and address threads to the validity of the validation.

6.1 Case Study Design

We introduce the design of eight case studies that we conducted for the three vali-
dations. As shown in Figure 6.1, the first two validations are multiple case studies
with three cases each and the third validation consists of two cases. Each case study
within one validation is based in a different problem domain to support domain-
independent conclusions. We outline the problem domains to establish the back-
ground of the developed systems as well as the stakeholders and their expectations.
We describe the problem to be solved, the goals of each case study with the resulting
requirements to be fulfilled, and the concepts of xFog and xFogStar that were used.
Lastly, we explain the implementation process.

6.1.1 ARControl

The first case study, called ARControl is based within the domain of smart environ-
ments and is presented in ”Fog Horizons–A Theoretical Concept to Enable Dynamic
Fog Architectures” [66]. ARControl is short for ”Augmented Reality Control”.

Context: As defined by Peters, smart environments are subclasses of instrumented
spaces [110]: Instrumented spaces use actuators and sensors as well as rules to inter-
act with users, while smart environments introduce service automation, and learns
and adapts its behavior during use. This flexibility is supported by more complex
reasoning capabilities. This domain was chosen based on its amount of different
actuators and sensors, that need to be supported, the inherent hierarchical structure
of buildings, and their dynamic surrounding with different occupants constantly
entering and leaving the environment. Additionally, with the development of new
actuators and sensors, new devices can be added to the smart environment as well
as old devices maintained and replaced. The target environment for this case study
was the Robert L. Preger Intelligent Workplace at Carnegie Mellon University [63].
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(a) Outdoor (b) Indoor

Figure 6.2: The Intelligent Workplace at Carnegie Mellon University in Pittsburgh,
PA, USA [63].

This lived-in laboratory is home to the researchers of the Center for Building Per-
formance and Diagnostics. It was designed to significantly reduce its energy re-
quirements compared to conventional office environments up to being completely
self-sufficient. Thus, it incorporates a variety of devices, e. g., solar panels on its roof,
ample natural lighting, natural ventilation with controllable windows, water-based
cooling/heating systems, and occupancy sensors. Figure 6.2 gives an impression of
the buildings exterior (a) and interior (b).

Stakeholders: Accordingly, two different classes of stakeholders were present:
those that permanently work in this environment, e. g., the researchers or scientific
staff, and those that temporary join, such as students of the Intelligent Workplace
joining for lectures or student projects. Both classes were occupants in the smart en-
vironment, but with different goals and requirements. The possibilities of involve-
ment also differ substantially: Permanent occupants could configure their environ-
ment to their needs, change the environment’s setup and provide personal data to
help the system learn their preferences. Temporary occupants, on the other hand,
were usually not allowed to change the environment or provide data to support the
adjustments to their needs for long time usage. Additionally, the knowledge of their
surrounding smart environment differed between temporary and permanent occu-
pants. Permanent occupants get used to the names of the devices which they use
regularly, learn more about the environment from other co-workers, and are willing
to adjust their workplace for personal comfort. As the Intelligent Workplace does
not have simple light switches, knowing the names of the devices is crucial to con-
trol them via smartphone apps. Students joining the Intelligent Workplace do not
know the devices name, and therefore, for example, struggle to turn on a light they
want to use.
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Goal: The goal of this case study was to address this difference in knowledge and
involvement as well as to provide an intuitive concept to interact with the smart en-
vironment. This included controlling actuators and accessing data of sensors. With
the emphasis of the Intelligent Workplace set on reducing energy consumption, the
second goal was to visualize energy consumption of occupants to support energy
awareness. These goals should be achieved using the hierarchical structure of smart
environments and the locality provided by Fog Computing. The open space office of
the Intelligent Workplace was structured as follows: Each workplace of the scientific
staff had its own devices, e. g., computer, lights, and power plugs. These individual
workplaces were grouped in compartments of up to four workplaces which related
to rooms in traditional offices. The compartments were grouped in two areas which
are part of the entire smart environment. This structure provided clues on where to
place Fog Nodes and aggregate data of sensors and actuators.

Development: The project was implemented during the iPraktikum at the Tech-
nical University of Munich in the winter semester 2018/2019 with the Intelligent
Workplace researchers as customers6. The iPraktikum is a multi-project practical
course with up to 80 student developers who work in up to twelve project teams
each semester. In each project, the developers create an application for real cus-
tomers from industry and academia to solve a real problem with a mobile context.
Each project team is supported by a coach, who participated in the course before and
helps the students with organizational tasks as well as technical challenges, and a
project lead, who is a doctoral candidate. ”While the mobile context is realized using
Apple’s iOS platform, which results in iPhone and iPad applications, most projects
are not standalone solutions, but include application servers, sensors, actuators, or
wearable devices” [75]. A more detailed description of the iPraktikum can be found
in Bruegge et al. [22] and Xu et al. [152].

Sample Application: The resulting mobile application allowed occupants of smart
environments to control their devices and get information on sensors using aug-
mented reality. This approach addressed the goal to support users with difference
in knowledge and involvement. Occupants did not have to know which devices
could be controlled and did not have to know the devices’ names. The augmented
reality view presented all devices the occupant can interact with and abstracts away
unnecessary names. Thus, even temporary occupants that rarely joined the smart
environment could intuitively interact with the devices. To enable the augmented
reality view, one occupant had to setup the scene by scanning their environment,
placing the virtual objects, and connecting them to the according device.

6https://ase.in.tum.de/lehrstuhl 1/component/content/article/106-teaching/994
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This data was stored in environment models and was updated whenever an oc-
cupant used the augmented reality feature. The stored data contained feature points
to detect the surrounding area as well as anchors for the placed devices. To improve
the accuracy and speed of the environment models and to introduce the possibil-
ity to share them, the environment models were hyper-local and usually only cov-
ered one room. Based on the hyper-locality and the need to share the environment
models, the models were stored on the Fog Node corresponding to the current Fog
Horizon of the occupant. When a new occupant joined the Fog Horizon of that Fog
Node, they requested the current environment model from the Fog Node and could
immediately interact with smart devices without the need to setup everything on
their own. During usage, the environment model was constantly updated on the
occupant’s phone and sent to the Fog Node utilizing the low latency provided by
Fog Computing.

To address the goal to raise energy awareness, the application incorporated an
energy consumption report that showed occupants their energy consumption and
provided the option to compare it with other occupants. Whenever an occupant
turned on a device, the energy consumption of that device was added to the occu-
pant’s total consumption and stored in the cloud, enabling persistency and access
to the energy consumption from outside of the device’s Fog Horizon.

Figure 6.3 showcases the ARControl app. The first screen shows the augmented
reality view which is an overlay on the mobile device’s camera feed. Each box shows
devices the occupant can interact with. By tapping on the box, the device is turned
on or off, swiping allows scaling of the value, e. g., dimming of lights. To support
energy saving, predefined light levels can be activated by tapping on the icons at
the left of the box with the icons describing different use cases. The second and
third screen show the energy consumption feature. The overview allows to change
between personal consumption (Me), the consumption of a group the user belongs
to (My Group), an overview of which of the user’s devices consumes which amount
of energy (Device Consumption), and the last recorded activities (Activity Protocol).
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(a) Augmented Reality (b) Energy Overview (c) Personal Consumption

Figure 6.3: The augmented reality control screen (a) and the energy consumption
feature (b), (c) of the ARControl app. The first screen allows to interact with the
environment using augmented reality, and therefore even supports users that rarely
join the smart environment. The second and third screen enable to track the energy
consumption of the individual user.

6.1.2 Lassie

The second case study is called Lassie. It contains parts from both domains, the
health domain as well as the smart environment domain. The smart environment
domain is particularly fitting for Fog Computing applications and dynamic ap-
proaches due to the constant change of occupants as well as devices.

Context: The health domain is getting more and more related to the smart envi-
ronment domain. Smart watches and fitness trackers allow constant monitoring
of vital parameters of patients, but also sensors within the patient’s home provide
clues on the patient’s health. With more devices being used to track patient’s health
in addition to providing environmental comfort, these domains are interconnected.
Therefore, the health domain in private homes supports the hierarchical structure
of smart environments which can be used to aggregate data for each room, for each
floor etc.
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Figure 6.4: The current process of elderly people receiving help in case of an emer-
gency. First, the patient has to signal an emergency by pressing the button on the
wristband, second the emergency call is received in a call center from which an
emergency worker is sent to acquire the key for the home of the elderly person from
a central key management before driving to the emergency location.

Stakeholders: The stakeholders in this domain were patients that needed to get
help in case of emergencies, but also emergency workers that could get notified
faster and get information on the patients vital parameters before arriving at the
patient’s home. Thus, the emergency workers are better prepared for the case at
hand.

Goal: The goal of this case study was to create a system that enhances the pro-
cess of detecting emergencies for elderly people, sending help, getting access to the
patient’s home, and finally helping the patient. This should be achieved by using
sensors for emergency detection mechanisms, Fog Computing to enable data pre-
processing, and smart locks to provide access for emergency workers.

Development: During the development, we modeled the dynamic addition of
new sensors as well as the elderly person leaving and rejoining the setting. Lassie
was developed during another instance of the iPraktikum in the summer semester
20197.

The previously used process, as depicted in Figure 6.4, involved the patient
wearing a wristband with a red button to call for help, an emergency call center
sending the address to the emergency worker who had to acquire the key for the
particular home from a central key management unit before they could access the
patient’s home.

Sample Application: The developed system consisted of several parts: a mobile
application tracking the elderly person’s behavior using sensor data, a smart watch
detecting heart rate and providing fall detection, and an emergency management
system. The emergency management system consisted of a web view for the emer-
gency call centers from the DRK (German Red Cross) to deploy emergency work-

7https://ase.in.tum.de/lehrstuhl 1/component/content/article/106-teaching/1037
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ers and an anomaly detection system that observed changes in the behavior of the
elderly person. In the web view, the emergency call centers were also able to un-
lock the doors of elderly persons’ homes in case of emergencies to provide access to
emergency workers.

(a) Home Screen with emer-
gency button

(b) Initiated Emergency Call lo-
cating the patient’s position

(c) Watch App for
Fall Detection and
Emergency Calls

Figure 6.5: The home screen (a), the active emergency call screen (b), and the watch
app (c) of the Lassie app. The home screen allows to manually trigger emergency
calls, quickly contact the most important contacts, and answer questions to improve
the accuracy of the anomaly detection. The watch app allows to trigger emergencies,
but also enables fall detection.

Figure 6.5 showcases the resulting mobile applications. The first screen is the
home screen of the application and most importantly allows the user to file emer-
gency requests. Additionally, the user answers questions on a daily basis related
to detected anomalies to improve the accuracy of the anomaly detection and can
quickly access their most important contacts such as siblings, children, doctor etc.
The second screen shows an emergency call in progress. While the emergency call
center is contacted to send help, the user’s location is identified and the shortest
route from the emergency center to the user is calculated. Live updates show the
user the current position of the emergency worker. To better prepare the emergency
worker for the emergency, additional data such as the heart rate is send to the emer-
gency center. The last screen shows the watch app which provides data such as
heart rates, allowing the user to access the emergency call button, and detect falls.
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Figure 6.6: An overview of the different Maintenance types with a short description
for each to support the classification of PdMFrame.

6.1.3 PdMFrame

The third case study is called PdMFrame8 which stands for ”A Predictive Maintenance
Framework” and was placed in the metrology domain.

Context: The difference between smart environments in general and the industrial
domain are the used IoT devices. While in smart environments any smart device can
be integrated, the industrial domain relies on reliability and connectivity [125]. Ac-
cordingly, IoT devices can be distinguished between consumer IoT devices (CIOT)
and industrial IoT devices (IIOT) [125]. IIoT devices bridge the gap between the
physical, industrial world and the digital environment to create a cyber-physical
setting [47]. According to Scheuermann, these devices can be sensors, actuators and
interactive devices [122]. Their main purpose in the industrial domain is to collect
and process data for pattern recognition, prediction and optimization, e. g. main-
tenance [38]. This timely and efficient handling of equipment failures was already
discussed by Liebetrau and Grollmisch in [88] and is essential to the prospect of the
business. Equipment failure can harm the business’s reputation, is expensive, and
time consuming [11, 28].

Stakeholders: The stakeholders were workers interacting with the machine, the
owner of the machine, and the maintenance workers who try to keep the machine
in a working state. The owner’s and worker’s interest overlap as both want to sim-

8Parts of PdMFrame were developed as part of a research project in collaboration with Maximilian
Opbacher [104].
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Figure 6.7: An overview of the PdMFrame system. It shows the Machine under
Test on the left which is connected via an Access Point to the Data Analysis
Server.

plify and optimize the interaction with the industrial machine which is achieved by
automation, keeping the machine in a working state, and improving the human-
machine-interface. The maintenance worker’s interests are on predicting machine
failures and, in case of an error, receive clues on the issue to be able to faster repair
the machine.

Goal: The goal of PdMFrame was to use Fog Computing to gather sensor data,
to aggregate the data, and to predict machine failures. The failures should be used
to further improve the predictions and to predict failures on other machines of the
same type. Figure 6.6 provides an overview of the different maintenance types.
Accordingly, based on its goal, PdMFrame used predictive maintenance.

Development: The project was promoted by the Software Campus9 initiative, a
program by the BMBF (Bundesministerium für Bildung und Forschung). The project
was developed with support of student researches. The developed solution allowed
to upload input data from different sensors, such as audio, pictures, or tempera-
tures. In the setup as shown in Figure 6.7, the machines under test were the Edge
Devices with all connected sensors.

The Fog Nodes were computational units in close proximity to the machine. For
each batch of sample data, they preprocessed and aggregated the collected data to
reduce the network load.

9https://softwarecampus.de
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On the cloud, the collected data was persisted and used to train a predictive
maintenance model. The cloud contained an algorithm repository with different
machine learning techniques. During training, the algorithms were used to create
different models for prediction and they were compared with each other to find the
best fitting model for the data type of the sensor. Finally, the models could be used
to evaluate future values from the data source and predict machine failures.

Sample Application: One instance of this system called AudioForesight10 and is
presented in the paper ”AudioForesight: A Process Model for Audio Predictive
Maintenance in Industrial Environments” [65].

Figure 6.8: The experimental setup for the PdMFrame case study. The image depicts
a directed microphone (on the left) pointing in the direction of one drive of the ZEISS
DuraMax measuring machine.

We created a process model for audio predictive maintenance and tested the sys-
tem for a ZEISS DuraMax measuring machine with a microphone to record audio
samples as shown in Figure 6.8. The process model describes how those audio sam-
ples can be used to detect machine failures and integrate user feedback into the
learning process of the failure detecting models using a five step approach. Fig-
ure 6.9 shows the Audio Anomaly Detection & Classification Process Model.

The first step, called Data Preprocessor encapsulates the preprocessing that can al-
ready be accomplished in a decentralized fashion, ideal for Fog Computing. Second,
the Model Trainer uses the preprocessed data and trains two models: An anomaly
detection model to recognize anomalies within the machines routine, and a classifi-
cation model to provide insights into the failures in case of an anomaly.

10AudioForesight was developed as part of a research project in the context of PdMFrame in col-
laboration with Klaidi Gorishti [56].
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Figure 6.9: The Audio Anomaly Detection & Classification Process Model for AudioFore-
sight adapted from Henze et al. (UML state chart diagram, c© 2019 IEEE) [65]. The
process is divided into five steps highlighted by different colored boxes.

Third, as soon as the models are trained, the Anomaly Detector uses newly incom-
ing sensor data to detect anomalies. In case an anomaly is detected, step four, the
Anomaly Classifier tries to identify the failure at hand to provide the maintenance
worker with hints on what went wrong. These failure classes are specific to the
industrial machine. Finally, in step five, the models are retrained based on the feed-
back the maintenance workers provided on the questions if the detected anomaly
was a true positive and if the failure class was helpful.
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6.1.4 DisCoFog

The fourth case study can be separated into two system instantiations: DisCoFog 1
and DisCoFog 2. Both instances are described as part of the case study in ”Fog Hori-
zons – A Theoretical Concept to Enable Dynamic Fog Architectures” [66]. DisCoFog
is short for ”Discovery and Connectivity Protocol for Fog Environments”.

Although the instances are linked to the two domains smart cities and smart en-
vironments, the concept of DisCoFog itself is domain-independent. For this general
case, the stakeholders are the component developers as well as the software archi-
tects. The component developers are interested in establishing connections to other
components which offer services that the developers want to use for their compo-
nent. Thus, they need to be able to find those components that are in close proximity
and offer specific services. The software architects on the other hand are interested
in the entire architecture, which components are involved and their connectors as
specified by the software architecture definition in Section 3.1.1.

Therefore, the goal of DisCoFog is to create a simple discovery and connectivity
protocol based on multi-casts to find other nearby Fog Components for services
specified by the service consumer. The entirety of the discovery process and the
resulting connections, represent the final Fog Architecture setup.

DisCoFog 1

DisCoFog 111, the first instance of the DisCoFog protocol, is based in the infrastruc-
ture domain; more precise, a smart city with multiple cities and drones traveling
in between them. Although presented using drones, the smart city domain repre-
sentes an ideal target domain for the application of Fog Computing and the scalable
aspects of xFogPlus. First, the diversity of potential Fog Components ranges from,
e. g., cars, bicycles, pedestrians, and traffic lights up to servers as coordinators for
traffic flow. Second, the hierarchical structure of cities describes layers that promote
locality. For example, cars report and get information to/from traffic lights, those
are grouped into streets, streets into city districts, districts into cities, and so on–
grouping parts that belong together within a local proximity while moving up the
hierarchy.

Stakeholders: The smart city domain includes different stakeholders. The traffic
participants want to get from A to B in the least time possible, avoiding traffic, and
accidents. On the other side, we have emergency workers that help in case of ac-
cidents; construction side workers; people regulating traffic, changing traffic lights
signals; politicians approving beltways; and many more.

11DisCoFog 1 was developed as part of a research project in collaboration with Paul Schmiedmayer
[123].
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Their overall interest is to enable fast transportation while keeping the traffic
participants save. Therefor, they need data about the traffic density, the location of
accidents, and construction sites, etc.

Goal: The goal of DisCoFog 1 was to use the simple discovery and connectivity
protocol to propagate the needed information to the corresponding stakeholders.

Development: The first emphasis in DisCoFog 1 was the development of the Dis-
CoFog protocol itself which was user data protocol (UDP)-based [111] and used
internet protocol (IP)-based multicasting to evaluate the Fog Horizon of a Fog Com-
ponent. Therefore, each Fog Component listened on a predefined port on a multicast
address. The dynamic model of the message exchange is displayed in Figure 6.10
and shows Edge Device E, an example service consumer, requesting Service X. Fog
Node A and Fog Node B which offer this service respond with their service infor-
mation, while Fog Node C which only offers Service Y does not. After selecting a
service provider, in this case Fog Node A, based on the fastest response time, the
connection is established using the service information provided and data can be
exchanged. Which service provider answers the fastest is based on several aspects:
The local proximity of the service provider to the service consumer, the workload of
the service provider, as well as the network connection and communication channel
between service consumer and service provider.

Sample Application: The DisCoFog 1 setup described a multi-city approach that
used drones to transport goods between them. The drones, using their sensors and
actuators, flew autonomously from one city to the next city and tried to avoid col-
lisions. The drones were Phantom 412 by DJI13 which can autonomously fly using
a smartphone application that was created during JASS 201814 with adjustments
to GPS. JASS, short for Joint Advanced Student School, is a collaboration between
Saint Petersburg Electrotechnical University and Technical University of Munich
in which students from both universities meet and collaborate for two weeks on a
project with changing subjects. The goal of JASS 2018 was the creation of a multi-
modal transportation use case using drones and self-driving cars.

The drones used the city servers as a Fog Component that offered location data
of all connected drones to each other. Additionally, this location data was gathered
from all cities on a central cloud to calculate 3D heat maps of the drone movement
to find the most common routes and endangered areas.

12https://www.dji.com/de/phantom-4-pro-v2
13https://www.dji.com
14https://ase.in.tum.de/lehrstuhl 1/projects/all-projects/973-jass-2018
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Figure 6.10: A dynamic model describing the message exchange of the DisCoFog
protocol for a potential service consumer (Edge Device E) and three service providers
(Fog Node A, B, C). The requested service is X which is offered by Fog Node A, B (UML
Sequence Diagram, c© 2019 IEEE) [66].

Each drone continuously evaluated its Fog Visibility as well as Fog Horizon us-
ing the DisCoFog protocol to avoid collisions. When leaving a city’s outreach, and
thus loose the connection, they tried to find a new communication partner offering
the same service.

DisCoFog 2

DisCoFog 215 is the second instantiation of the DisCoFog protocol and placed in the
smart environment domain. As previously discussed in Section 6.1.1, this domain is
particularly fitting for Fog Architectures, but also for scalability due to its inherent
hierarchical structure. DisCoFog 2 is placed in the same environment as ARControl.
For both, the Intelligent Workplace [63] was the target domain. While ARControl
focused on the dynamics of occupants and establishing intuitive controls for all oc-
cupants no matter the amount of time they spent in the environment, DisCoFog 2
focused on establishing a scalable Fog Architecture setup, while having the same
occupant dynamics.

15DisCoFog 2 was developed as part of a research project in collaboration with Paul Schmiedmayer
[124].
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Stakeholders: Accordingly, the occupants of the smart environment were stake-
holders interested in interacting with the available devices. Other stakeholder groups
were developers, maintainers, and system administrators of the smart environment.
Besides providing the controls to the occupants, they were interested in the con-
sistency of the overarching architecture of the smart environment, the grouping of
logically connected devices, and the discovery of those devices.

Goal: DisCoFog 2 tried to address these interests with the goal of creating a Fog
Architecture based on discovered services, logically connected devices, e. g., all de-
vices in one office are connected to one Fog Component controlling everything
within the office, and allowed occupants to discover the devices based on their cur-
rent Fog Horizon.

Development: First, we established the architecture: Every device which did not
rely on a centralized control system was connected to decentralized Fog Compo-
nents according to the office layout. In contrast, many devices were not directly ad-
dressable and could only be used with a proprietary communication standard and
a central communication server. The offices could be aggregated to bigger units,
e. g., a Fog Component which controlled several offices or a Fog Component that
controlled an entire floor. Each building contained one central cloud instance that
could be reached from outside of the smart environment which created reports on
power consumptions and the current states of devices. This approach allowed to
investigate the scalable concepts of xFogPlus.

Sample Application: The second part of DisCoFog 2 was a mobile application
which utilizes this decentralized approach. The application is shown in Figure 6.11.
It used the DisCoFog protocol to connect to the Fog Component closest to the oc-
cupant. Afterwards, it displayed all available devices the user could interact with
in the current surrounding which relates to the occupant’s Fog Horizon. Addition-
ally, if no Fog Component was nearby which the occupant’s smartphone could con-
nect to, the app accessed the central cloud instance to interact with all devices. Fig-
ure 6.11 shows three screens of the application while the occupant walks from Paul’s
Office, through the Kitchen, to the Conference Room. Each screen shows the corre-
sponding devices the occupant can interact with in the current Fog Horizon. The
first screen shows a list of all devices the occupant can interact with in Paul’s Office,
the second screen the devices in the Kitchen, and the third screen the devices in the
Conference Room.
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(a) List of the devices acces-
sible in Paul’s Office.

(b) List of the devices acces-
sible in the Kitchen.

(c) List of the devices in the
Conference Room.

Figure 6.11: The DisCoFog 2 mobile control application. The application uses a Fog
Architecture and the DisCoFog protocol to provide access to all nearby devices, as
those are used most often by occupants. While walking through the smart environ-
ment the Nearby Devices tab adjusts to the current Fog Horizon and lists all nearby
devices the occupant can interact with. The All Devices tab shows all devices instead.

During the development of DisCoFog 2, we refactored the existing lightweight
DisCoFog protocol to use established standards. We selected mDNS- and DNS-
based service discoveries [30]. Additionally, we used DNS messages [98], DNS SRV
records [61] and DNS-SD TXT records [98] to encode the service requests.
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6.1.5 eHealth

The fifth case study is called eHealth16 and is one of the case studies for the Scalable
Fog Architectures validation.

Context: The case study was placed in the health domain, in particular in a hos-
pital setting. As already described in Section 6.1.2, the health domain is well suited
for Fog Computing due to the amount of different devices used. Additionally, the
hospital setting with different treatment rooms are also fitted for the scalable as-
pects of xFogPlus. The treatment rooms were filled with medical devices as well
as PCs, which in turn belonged to different departments that could be on different
floors. In this setting, the locality aspect of Fog Computing was not only helpful
to provide computational power closer to the edge to process the massive amounts
of data newer medical device gather, but also prevented the need to send private
patient data throughout the entire hospital network.

Stakeholders: Three stakeholders stand out: The patients who wanted to have op-
timal treatment, while knowing their private information being secured, the system
administrators, who were responsible for the network’s security, and the doctors,
who wanted to access the patient’s information to apply the optimal treatment.

Goal: Thus, the goal of eHealth was to create a system that integrates Fog Com-
puting and especially the scalable aspects of xFogPlus in a hospital setting to ensure
optimal treatment for patients by providing the needed computational power for
modern medical equipment closer to the devices. Additionally, the privacy aspect
should be investigated.

Development: eHealth focus was set on providing a scalable architecture and en-
suring privacy among different layers. The developed platform offered the possibil-
ity to define access policies that specified which user was allowed to access which
data of which patient.

Sample Application: The first application within this system was an image server
that persisted medical images and allowed other services to request them. These
images were stored in the Digital Imaging and Communications in Medicine for-
mat (DICOM), an international standard for storing, transmitting, and displaying
medical information [16, 97, 101]. The second service was the counterpart to the
image server, a DICOM viewer which used WebSockets to request the files.

16eHealth was developed as part of a research project in cooperation with Philipp Diller [42].
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Finally, a third service simulated the mobile devices of doctors that joined the
hospital network on application startup and left the network when the application
was closed. To encrypt the information, we selected the attribute-based message
encryption protocol FAME as introduced by Agrawal et al. [1].

6.1.6 Fog.BOI

The six case study is a scalable Broker Operations and Interaction system for dy-
namic and scalable Fog Computing. Fog.BOI is not domain-specific, but rather a
concept that uses the scalable aspects of xFogPlus.

Stakeholders: Therefore, the stakeholders are identical with the stakeholders or
actors of xFog. First, the software architect is interested in providing higher-level
services to layers that are not adjacent. This enables software architects to tunnel
services to lower layers without using additional computational resources or stor-
age capacities. Second, the component developers can provide services they use
themselves to implement the functionality of the component they are developing
to their own service consumers. Additionally, messages can be aggregated and fil-
tered, as well as propagated through the network.

Goal: The goal of Fog.BOI was to use the scalable concepts of xFogPlus and pro-
vide mechanisms to propagate and broadcast messages up and down a hierarchical
Fog Architecture. In this context, propagating messages referred to the forwarding
of messages up the hierarchy; Broadcasting messages meant to send messages to
every service consumer of the current service provider, and therefore spread infor-
mation down the hierarchy.

Development: Fog.BOI17 was first described in the context of a smart city environ-
ment to propagate traffic information throughout the hierarchical structure. Thus,
Fog.BOI was an instance of the smart city domain, similar to the first DisCoFog in-
stance, as shown in Figure 6.1.

Sample Application: It was a message broker system that used socket-based com-
munication. Each Fog Component represented one message broker that provided
an arbitrary number of channels for other Fog Components on lower layers to sub-
scribe to. The message brokers created message handlers to define custom inter-
actions. Additionally, Fog Components subscribed to channels of parent layers. If
desired by both component developers, services from higher layer Fog Components
could be consumed but also promoted by lower level Fog Components.

17Fog.BOI was developed as part of a research project in cooperation with Sebastian Aigner [2].
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Figure 6.12: An example setup for the infrastructure domain. In this 3-layered Fog
Architecture, all traffic participants are on the Edge Layer and share information
about accidents they are involved in or detect with the traffic light within its Fog
Horizon. This information is broadcasted to the other traffic participants to avoid
congestions. Additionally, the information is aggregated and propagated to the traf-
fic lights parent node, the municipality, which change the traffic lights’ behavior to
guide the traffic around the accidents.

Thus, the number of services might increase the lower the layer of the Fog Com-
ponent was, but only a small fraction of those services were calculated and evalu-
ated in the Fog Component itself.

One use case for this system was the smart city domain. As shown in Figure 6.12,
traffic lights offered an accident warning service. This service collected the location
data of traffic participants in the local surrounding described by the Fog Horizon if
they were involved in or reported an accident. Thus, every traffic participant could
receive the locations of accidents and avoid the respective street. Higher-level Fog
Components provided channels in which traffic lights could propagate this accident
data in an aggregated form to adjust the traffic lights, and therefore guide the traffic
around the accident. To enable this behavior, Fog Components, in form of traffic
participants, joined and left the environment at runtime.
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6.1.7 Quasar

Quasar18 represents the seventh case study. In comparison to the previous case stud-
ies, Quasar focused on the service provider selection introduced by the xFogStar
workflow. While Fog Computing handles the process of finding potential service
providers, not every service provider that offers the requested service fits the ser-
vice consumers demands. Providing a service based on the consumer’s needs is of
crucial importance [9, 25, 26].

Context: Quasar was placed in the domain of online gaming. This domain showed
strict requirements on offered services. For example, Zhang et al. discuss latency
and high bandwidth demands as key requirements for online gaming [159]. Latency
leads to the game ”lagging” behind which can lead to bad gaming experience and
even motion sickness [159]. We already discussed both of these parameters as part
of the QoS vector in Chapter 5. According to Yi et al. also parameters such as
connectivity, reliability, and capacity are of importance [156]. As these parameters
can directly be addressed using the concept of Fog Computing, the domain fits the
case study’s intention.

Stakeholders: Several stakeholders are involved in the gaming domain. First, the
players themselves want to have an optimal gaming experience without being inter-
rupted by undesirable connection interruptions or latency issues. Second, the game
developers want to provide the best gaming experience to the players to ensure
revenue and ideally a growing player base. Third, network providers prefer local
network traffic inside their own infrastructure over routing huge data amounts to
other internet provider’s servers.

Goal: Accordingly, the goal of this case study was to instantiate the workflow for
service provider selection as described by the xFogStar workflow in the gaming
domain to find the best fitting service provider within a given Fog Architecture. In-
troducing the locality of Fog Computing addressed the internet provider’s interests
as well as faster latencies for the players, while the selection workflow addressed
the player’s and game developer’s intentions.

Sample Application: The developed mobile application to validate the service
provider selection was the game as presented in Figure 6.13. The screen of the
smartphone mirrored a gameboy19 and allowed the player to interact with the scene,
shown at the top of the screen, using the displayed buttons. Before the game started,
the player had to choose the server to connect to.

18Quasar was developed as part of a research project in collaboration with Sandra Grujovic [59].
19https://de.wikipedia.org/wiki/Game Boy
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Figure 6.13: A game for testing the service provider selection workflow. On the first
screen, the player can choose which character they want to play. The second screen
shows the engagement with another player or AI and the third screen shows the
end of the game.

Each scene was created remotely and streamed as a video feed to the smart-
phone. Each action needed to be send to the remote server to trigger the next state of
the game, thus requiring a good latency and bandwidth to accomplish an enjoyable
gaming experience. The game also provided multiplayer capabilities. Whenever
two players selected the same game service provider, they were matched against
each other. The server then calculated two scenes for the same game. On one scene,
the first player was visualized as the main player and the second player as the en-
emy, on the second scene, it was the other way around. These scenes were send to
the according player.
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6.1.8 FoQsIs

The second case study for the service provider selection is called FoQsIs20. FoQsIs is
short for Fog Component based Qos discovery for continuous Integrations.

Context: In this case study, xFogCore and xFogPlus handled the service discovery
and dynamic aspects. We focused on the service provider selection by instantiating
the workflow of xFogStar in the domain of continuous integration.

”Continuous Integration is a software development practice where mem-
bers of a team integrate their work frequently [...]. Each integration is
verified by an automated build [...] to detect integration errors as quickly
as possible.”

— MARTIN FOWLER [49]

The quote by Fowler describes the main idea of continuous integration. Thus,
continuous integration requires at least one remote server to perform builds and
tests. Further techniques, e. g., continuous delivery, are directly linked to continuous
integration and often used simultaneously, as shown by Krusche et al. [83, 84] or
Klepper et al. [79].

Stakeholders: The stakeholders of the continuous integration domain are devel-
opers working in the same team and the project leaders. The developers want to re-
duce the effort of integrating their changes by pushing small changes to the server.
The project leaders’ interest is the reduced time it takes to solve small integration
problems and the reduced amount of errors that occur.

Goal: The goal of this case study was to combine Fog Computing and continuous
integration. We used Fog Computing to find available integration servers in close
proximity and evaluated the performed builds of all servers on a cloud instance.
Thus, we allowed decentralized builds for developers supporting the idea of con-
tinuous integration, and provided an overview of the different integration servers
on the cloud.

Sample Application: The developed application, called FoQsIs Client, could be de-
ployed on a smartphone or a macOS21 device. It used mDNS- and DNS-based ser-
vice discoveries to find the best fitting integration server based on the user’s needs
and followed the xFogStar workflow.

20FoQsIs was developed as part of a research project in collaboration with Philipp Eichstetter [45].
21https://www.apple.com/de/macos/what-is/
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6.2 Results

In this section, we present the results of the case studies. Also having real appli-
cations for the concepts of xFogCore and xFogPlus which are of theoretical, mod-
eling nature, we mainly address how the concepts translate into the models of the
case studies and which benefits they provide. To show a more detailed overview
on the different Fog Architectures compared to those used to introduce the con-
cepts in Chapter 3-Chapter 4, we present a simplified hardware / software mapping
(HW/SW mapping) for each case study. In this simplified HW/SW mapping, for
readability, we include the components themselves, but exclude the environments
the components are executed on and the according operating systems. This allows
us to present even larger architectures with manageable complexity and without
unnecessary overhead which is not of interest for the concepts. Fog Components on
the Fog Layer are for convenience executed on Raspberry Pis22 if not stated differ-
ently.

In the results for xFogStar, we use a HW/SW mapping to provide an overview of
the involved components. We present the instantiated workflow and the resulting
selection possibilities in the respective domain.

6.2.1 Dynamic Fog Components

The first results are from the Dynamic Fog Components validation. In this validation,
we addressed the dynamic behavior of Fog Components. Accordingly, we present
the changes to the models, respectively the architectures, when new Fog Compo-
nents are added to the Fog Architectures. We show the properties of the added Fog
Components in accordance to Section 4.1.1 and their placement within the archi-
tecture as described in Section 4.1.2. Therefore, we evaluate the Fog Set and Com-
munication Set of the Fog Architecture for each case study, the service set and the
resulting layer definitions, and the placement of new Fog Components within those.
Finally, we elaborate on the updated Fog Architectures.

22https://www.raspberrypi.org

157

https://www.raspberrypi.org
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ARControl

The case study ARControl, as introduced in Section 6.1.1, used a 3-layered Fog Ar-
chitecture approach as shown in Figure 6.14. As mentioned in Section 4.1.2, in Fog
Architectures this is equivalent to tiers.

First, on the Cloud Layer, a central OpenHABServer enabled the usage of the
smart environment. OpenHAB23 stands for Open Home Automation Bus and is an
open source project for smart environment controls. It allows to integrate more than
2000 devices from different providers into a single solution, including other home
automation systems. Thus, it provides a single uniform user interface for smart
environment occupants to interact with and a common way of defining automation
and creating rules. OpenHAB being an open source project enables customizations
and the integration of decentralized control concepts, which is why we selected it as
the central smart environment instance.

On the second layer, the Fog Layer, we introduced three Fog Nodes that control a
portion of the smart environment each. The ARControl setup involved three offices
which gave the Fog Nodes their names: Paul’s Office, the Kitchen, and the
Conference Room. For simplicity, each Fog Component on the Fog Layer was de-
ployed on a Raspberry Pi24. Raspberry Pis are particularly suited for decentralized
architectures because they provide a large amount of computational power for an
affordable price and offer a multitude of communication channels. As most of the
infrastructure in the Intelligent Workplace (Introduced in Section 6.1.1) was set up
before WIFI was commonly used in IoT devices, we also connected the Raspberry
Pis via ethernet.

Finally, the Edge Layer contained all available IoT devices that the occupant could
interact with. Those sensors and actuators were assigned to one of the Fog Nodes
on the Fog Layer representing the offices. Paul’s Office included a ceiling light,
a desk light, an occupancy sensor, a desk heater, and a temperature sensor. The
Kitchen provided access to its ceiling light, an occupancy sensor, and a tempera-
ture sensor. The Conference Room included controls for the ceiling light, a contact
sensor for each window, an occupancy sensor, and a temperature sensor.

The presented HW/SW mapping provides an insight into the smart environ-
ment concept, but for readability does not include every IoT device the occupant
can interact with. For example, the Ceiling Lights in all offices of the Intelligent
Workplace consisted of four lights which could be controlled individually or as one
unit. In the Conference Room even more individual lights made up Ceiling 3.
Additionally, Conference Room contained more windows which could not only
be asked for the current status but opened and closed. In front of each window was
a reflector that directed sunlight into the office or blocks it if it is too bright.

23https://www.openhab.org
24https://www.raspberrypi.org
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Figure 6.14: The HW/SW mapping of the ARControl setup (UML Deployment Di-
agram). For readability, we only show components and the used communication
channels, but leave out operating systems etc. ARControl is a 3-layered Fog Archi-
tecture containing a Cloud Layer, a Fog Layer, and Edge Layer, which are all deployed
on different hardware components, thus, also representing tiers.
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Equation 34: ARControl: Fog Set

FogSet = {OpenHABServer,Paul ′sOffice,Kitchen,ConferenceRoom,

CeilingLight1,DeskLight1,Occupancy1,DeskHeater1,

Temperature1,CeilingLight2,Occupancy2, Temperature2,

Ceiling3,Window1,Occupancy3,Window2, Temperature3,

Window3}

All of the presented IoT devices represented Fog Components based on the defi-
nition in Chapter 3 and are included in the Fog Set, as shown in Equation 34. Equa-
tion 35 shows the corresponding Communication Set of this Fog Architecture. For
readability, we do not include every single Communication Component but use
two simplifications to present the Communication Set: All connections between
the Fog Components are bidirectional which is why, instead of listing them twice
with switched Fog Components, we list them with the left-right-arrow that is used
to indicate reflexivity. Second, as all Edge Devices use ethernet as their commu-
nication channel, we only list one Communication Component for each office to a
pseudo Edge Device. The entire, unabbreviated Communication Set is shown in the
appendix in Equation 87.

Equation 35: ARControl: Communication Set

CommunicationSet = {(OpenHABServer,Etherent,Paul ′sOffice)↔,

(OpenHABServer,Ethernet,Kitchen)↔,

(OpenHABServer,Ethernet,ConferenceRoom)↔,

(Paul ′sOffice,Ethernet,EdgeDevice)↔,

(Kitchen,Ethernet,EdgeDevice)↔,

(ConferenceRoom,Ethernet,EdgeDevice)↔}

The Service Set for our case study, as shown in Equation 36, contains six services.
Of those services, the OpenHABServer offered three: getGlobalDeviceList,
getGlobalDeviceValue, and getGlobalDeviceValue.
getGlobalDeviceList returned a list of all available devices within the entire
smart environment. The services getGlobalDeviceValue and
setGlobalDeviceValue provided the occupant the possibility to interact with
the smart environment by reading the current value of any device or setting the state
of an actuator, e. g., a ceiling light. Fog Components on the Fog Layer offered three
services as well: getDeviceList, getDeviceValue, and setDeviceValue.
getDeviceList was the local equivalent of getGlobalDeviceList which re-
turned a list of all available devices within the current office enabling locality.
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The services getDeviceValue and setDeviceValue were the equivalents
and were used by their global counterparts. This mapping is shown in the Service
Set Mapping. It consists of several triples describing how the service sets are mapped
to the different layers of the Fog Architecture:

( {ConsumedServices} , Layer , {ProvidedServices} )
For readability, we introduce colors that highlight the different parts of this triple:
red for consumed services, green for the current layer, and blue for the provided ser-
vices.

Equation 36: ARControl: Service Set and Service Set Mapping

ServiceSet = {getGlobalDeviceList,getGlobalDeviceValue,

setGlobalDeviceValue,getDeviceList,

getDeviceValue, setDeviceValue}
ServiceSetMapping = {( {} , CloudLayer , {getGlobalDeviceList,

getGlobalDeviceValue, setGlobalDeviceValue} ),

( {getGlobalDeviceList,getGlobalDeviceValue,

setGlobalDeviceValue} , FogLayer ,

{getDeviceList,getDeviceValue, setDeviceValue} ),

( {getDeviceList,getDeviceValue, setDeviceValue} ,

EdgeLayer , {} }

Accordingly, the layers are defined as shown in Equation 37 with the Cloud
Layer being defined by the three services: getGlobalDeviceList,
getGlobalDeviceValue, and setGlobalDeviceValue. The Fog Layer is de-
fined by consuming the services offered by the Cloud Layer and providing the ser-
vices: getDeviceList, getDeviceValue, and setDeviceValue. Lastly, the
Edge Layer consumes the services provided by the Fog Layer.

Equation 37: ARControl: Layer Definitions

CloudLayer = {OpenHABServer}

FogLayer = {Paul ′sOffice,Kitchen,ConferenceRoom}

EdgeLayer = {CeilingLight1,DeskLight1,Occupancy1,DeskHeater1,

Temperature1,CeilingLight2,Occupancy2, Temperature3,

CeilingLight3,Window1,Occupancy3,Window2,

Temperature3,Window3}
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Table 6.1: Hard and soft requirements of Fog Components according to Section 4.1
for the dynamic Fog Component: Occupant:Smartphone. Hard requirements are
highlighted in red, soft requirements in orange.

Occupant:Smartphone

1. Interconnectivity X
2. Information Sharing X
3. Uniquely Addressable X
4. Computational Capabilities X
5. Wireless communication X
6. Locality X
7. General-purpose Computational Capabilities X
8. Offers Capabilities as Service X

Using the introduced components and services, we investigated the
Occupant:Smartphone which represented the dynamic components of this case
study. It is highlighted with 1 in Figure 6.15.

According to Section 4.1.1, to add a component to the Fog Architecture, we have
to check whether the component fits the hard and soft requirements of a Fog Com-
ponent. Table 6.1 lists the eight properties for a Fog Component. As shown, the
Occupant:Smartphone fulfilled all hard requirements, but did not offer any of its
computational capabilities as a service in the smart environment setup of ARCon-
trol. Nevertheless, it can be considered a Fog Component as this is true for any Edge
Device according to the Edge Layer definition (Section 4.1). This already provides a
first hint on which layer the Occupant:Smartphone is placed.

The second requirement for adding a new component to a Fog Architecture is to
check whether a bidirectional connection can be established between the component
and any existing Fog Component of the Fog Architecture. Thus, adding the compo-
nent to the Fog Horizon of the Fog Component, and therefore transitively to the Fog
Set of the Fog Architecture. In the ARControl setup, in addition to the Ethernet
connections to the sensors, actuators, and the OpenHABServer, every Fog Compo-
nent on the Fog Layer established a WIFI network for Fog Components to connect
to. This functionality was supported by Raspberry Pis and enabled a connection of
the smartphone to any of the Fog Nodes.
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Figure 6.15: The ARControl setup as shown in Figure 6.14. Additionally, a dynamic
Fog Component Occupant:Smartphone, which is highlighted by 1 , is added to
the Fog Architecture.
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As shown in Equation 38, this allows us to add the Occupant:Smartphone as
a new Fog Component to the existing sets. As described in Section 6.1.1, the use
case for the smartphone in the ARControl case study was to connect the physical
and virtual world by creating an AR scene on top of the camera footage to provide
information and enable controls. Therefore, the Occupant:Smartphone used the
services of the Fog Layer and was placed on the Edge Layer.

Equation 38: ARControl: New Fog Component

FogSetnew = FogSetold ∪ {Occupant}

EdgeLayernew = EdgeLayerold ∪ {Occupant}

To update the Communication Set, we have to determine which Fog Node the
Occupant:Smartphone connected to. Figure 6.16 shows the three Fog Nodes
physically placed in the Intelligent Workplace. The Fog Visibility of Paul’s Office

is shown as a red circle, the Fog Visibility of the Kitchen is the green circle, and the
Conference Room’s Fog Visibility is represented as the blue circle. For readability,
we do not show the Occupant:Smartphone’s Fog Visibility but imply an overlap
with the Fog Nodes. The dashed line from Paul’s Office through the Kitchen
into the Conference Room represented the path of the occupant. 1 , 2 , and 3

highlight the positions at which the Occupant:Smartphone connected to the dif-
ferent Fog Nodes. At each of those positions, the Communication Set was updated
as shown in Equation 39.

Equation 39: ARControl: IWPath

1 : CommunicationSetnew = CommunicationSetold ∪
{(Paul ′sOffice,WIFI,Occupant)↔}

2 : CommunicationSetnew = CommunicationSetold \

{(Paul ′sOffice,WIFI,Occupant)↔}

∪ {(Kitchen,WIFI,Occupant)↔}

3 : CommunicationSetnew = CommunicationSetold \

{(Kitchen,WIFI,Occupant)↔ }

∪ {(ConferenceRoom,WIFI,Occupant)↔}
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Conference Room

Kitchen

Paul’s Office

Office 1

Office 2

Office 3

Office 4

Office 5

Office 6

1

2

3

IWPath

Figure 6.16: Overview of the Fog Node placement in the Intelligent Workplace. The
three different circles indicate the Fog Visibilities of the three Fog Nodes: Paul’s
Office, Kitchen, and Conference Room. The dashed line shows the path of an occupant,
and thus the Occupant:Smartphone’s position. 1 , 2 , and 3 highlight position at
which the Communication Set is updated.
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Figure 6.17: The HW/SW mapping of the Lassie setup (UML Deployment Dia-
gram). For readability, we only show components and the used communication
channels. Lassie is a 3-layered Fog Architecture containing a Cloud Layer, a Fog
Layer, and Edge Layer, which are all deployed on different hardware components,
thus, also representing tiers.

Lassie

The second case study within the dynamic Fog Components validation is called
Lassie. As described in Section 6.1.2, Lassie is located in the smart environment and
health domain and as such has a few similarities to the first case study. Lassie used
a 3-layered Fog Architecture setup which is shown in Figure 6.17.

On the Cloud Layer, the DRKServer was the central instance from the Deutsches
Rotes Kreuz (German Red Cross). This server stored and evaluated data from dif-
ferent elderly persons, referred to as ”patient” in the following. The stored data was
used to find anomalies and critical events in the patients daily life. On the one side,
rules defined specific events such as ”Patient did not leave the bedroom until noon”
or ”Patient did not open the fridge to get breakfast” which could be accomplished
by using motion sensors and occupancy sensors, respectively. On the other side, the
data was used to train a personalized machine learning model which tried to learn
the daily behavior of the patient, and thus detect unusual behavior of the patient on
a daily basis. Additionally, in case of an emergency, a webpage on this server was
used to deploy an emergency worker to the patient.

The Fog Layer contained the unit within the patient’s home which established
the connection to the DRKServer. This Fog Node aggregated data, and therefore
optimized the connection to the DRKServer, but also evaluated simple rules. Addi-
tionally, it provided WIFI access to which patients connect their smartphones which
in turn served as a sensory device or as an interaction device similar to the ARCon-
trol application. For simplicity, the Fog Nodes were IoT-Gateways25 from Q-loud26.

25https://www.q-loud.de/hardware-katalog/iot-gateway
26https://www.q-loud.de
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6.2 Results

Also they did not provide a WIFI access point or the computational power of a Rasp-
berry Pi27, as most sensors were from the same hardware provider, it simplified the
setup of the system in the patient’s home. The Lassie setup was described for two
homes: Patient 1 Home and Patient 2 Home.

The Edge Layer involved all the sensors used to detect the patients behavior. All
devices on this layer were connected to the Fog Layer using WIFI. Motion sensors
were used to detect movement patterns of the patient and provided valuable hints
to the patients condition also not always being an emergency. Occupancy sensors
provided an approximation of the patients location and allowed conclusions on pa-
tients leaving their homes. Heart rate sensors and fall detection devices provided
data closer linked to individual patients. Those devices were for instance smart
watches or fitness trackers. Meanwhile, smart locks, while being able to provide
information about opened and closed doors, were mainly used to grant emergency
workers access to the patient’s home in case of an emergency. Lassie provided the
possibility to include additional sensors and add more patients’ homes.

All Fog Components within this setup are included in the Fog Set of the Fog
Architecture shown in Equation 40.

Equation 40: Lassie: Fog Set

FogSet = {DRKServer,Patient1Home,Patient2Home,Door1,

Motion1,Occupancy1,Heartrate1, FallDetection1,

Door2,Motion2,Occupancy2,Heartrate2, FallDetection2}

Equation 41 shows the Communication Set describing the different communica-
tion channels used between the Fog Components. For readability, same as in Sec-
tion 6.2.1, we do not list every single Fog Component on the Edge Layer as all of
those Edge Devices were connected via WIFI, but rather simplify it with one con-
nection to a pseudo Edge Device. Additionally, we use the abbreviated form for
symmetrical connections. The entire Communication Set with every Fog Compo-
nent can be found in the appendix in Equation 88.

Equation 41: Lassie: Communication Set

CommunicationSet = {(DRKServer,Ethernet,Patient1Home)↔,

(DRKServer,Ethernet,Patient2Home)↔,

(Patient1Home,WIFI,EdgeDevice)↔,

(Patient2Home,WIFI,EdgeDevice)↔}

27https://www.raspberrypi.org
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Equation 42 shows the Service Set for Lassie. Same as for ARControl, it con-
tains the same six services: getGlobalDeviceList, getGlobalDeviceValue,
setGlobalDeviceValue, getDeviceList, getDeviceValue, and
setDeviceValue. This is based on their similar domain which both focus on the
collection and evaluation of sensor data. Thus, the services were used for the same
use cases. In comparison to the smart environment in which the cloud allowed
occupants to control the smart environment even when they ere not in the smart
environment, in Lassie, the cloud service setGlobalDeviceValue allowed emer-
gency workers to open the doors of patients in case of an emergency and request
additional data of the patient using getGlobalDeviceValue.

Equation 42: Lassie: Service Set

ServiceSet = {getGlobalDeviceList,getGlobalDeviceValue,

setGlobalDeviceValue,getDeviceList,

getDeviceValue, setDeviceValue}
ServiceSetMapping = {( {} , CloudLayer , {getGlobalDeviceList,

getGlobalDeviceValue, setGlobalDeviceValue} ),

( {getGlobalDeviceList,getGlobalDeviceValue,

setGlobalDeviceValue} , FogLayer ,

{getDeviceList,getDeviceValue, setDeviceValue} ),

( {getDeviceList,getDeviceValue, setDeviceValue} ,

EdgeLayer , {} )}

The according layers are shown in Equation 43. All ”global” services were of-
fered by the cloud, alias the DRKServer as indicated by the Service Set Mapping.
Those services were used by the Fog Nodes which in turn offered related services to
the sensors for collecting data and to the patient’s smartphone to control actuators
such as Door 1.

Equation 43: Lassie: Layer Definitions

CloudLayer = {DRKServer}

FogLayer = {Patient1Home,Patient2Home}

EdgeLayer = {Door1,Motion1,Occupancy1,Heartrate1, FallDetection1,

Door2,Motion2,Occupancy2,Heartrate2, FallDetection2}

The dynamically added and removed component is shown in Figure 6.18 with
1 which represented the Patient 2:Smartphone.
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Figure 6.18: The Lassie setup as shown in Figure 6.17. 1 highlights the Patient
2:Smartphone which dynamically moves in and out of the Fog Architecture according
to the patient’s location.
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Table 6.2: Hard and soft requirements of Fog Components according to Section 4.1
for the dynamic Fog Component: Patient 2:Smartphone. Hard requirements
are highlighted in red, soft requirements in orange.

Patient 2:Smartphone

1. Interconnectivity X
2. Information Sharing X
3. Uniquely Addressable X
4. Computational Capabilities X
5. Wireless communication X
6. Locality X
7. General-purpose Computational Capabilities X
8. Offers Capabilities as Service X

First, we check if the component complies to the hard and soft requirements
of a Fog Component as shown in Table 6.2. As for every smartphone, the hard
requirements for a Fog Component were met. But, depending on the setup, the soft
requirements might change. For example, if we would have used a smart watch as
a heart rate or fall detection device that relied on a connection to the smartphone
to provide the data to the patient’s home Fog Node, the smartphone would have
offered services, and thus Offer[s] Capabilities as Service. As this was not the case in
our setup, it is the only requirement which is not checked.

After ensuring that the Patient 2:Smartphone was a Fog Component, it can
be added to the Fog Set as shown in Equation 44. Additionally, as already described
by the role that the smartphone plays in the Lassie setup, it was added to the Edge
Layer.

Equation 44: Lassie: New Fog Component

FogSetnew = FogSetold ∪ {Patient2 : Smartphone}

EdgeLayernew = EdgeLayerold ∪ {Patient2 : Smartphone}

The Communication Set needs to be updated as shown in Equation 45 whenever
patients entered or left their home.

Equation 45: Lassie: Entering or Leaving Home

CommunicationSetnew = CommunicationSetold ∪
{(Patient2Home,WIFI,Patient2 : Smartphone)↔}

CommunicationSetnew = CommunicationSetold \

{(Patient2Home,WIFI,Patient2 : Smartphone)↔}

170



6.2 Results

Cloud 
Layer

Fog 
Layer

Edge 
Layer

«Edge Device»
Microphone 1:

Microphone

«Cloud Device»
:DataAnalysis

Server

«Fog Node»
Access Point 1:

AccessPoint

«Edge Device»
Temperature 1:

TemperatureSensor

«Edge Device»
DuraMax 1:

DuraMax

«Edge Device»
Motion 1:

MotionSensor

Ethernet Ethernet

Ethernet

«Edge Device»
Microphone 2:

Microphone

«Fog Node»
Access Point 2:

AccessPoint

«Edge Device»
Temperature 2:

TemperatureSensor

«Edge Device»
DuraMax 2:

DuraMax

«Edge Device»
Motion 2:

MotionSensor

Ethernet Ethernet

Ethernet

Figure 6.19: The HW/SW mapping of the PdMFrame setup (UML Deployment Di-
agram). For readability, we only show components and the used communication
channels. PdMFrame is a 3-layered Fog Architecture containing a Cloud Layer, a Fog
Layer, and Edge Layer, which are all deployed on different hardware components,
thus, also representing tiers.

PdMFrame

The third case study for the dynamic Fog Component validation is PdMFrame in-
troduced in Section 6.1.3. The setup, as shown in Figure 6.19, was a 3-layered Fog
Architecture and accordingly, a 3-tiered Fog Architecture.

The Cloud Layer contained the Data Analysis Server which was the central
server instance of the predictive maintenance framework. It was used to store sen-
sor data, store a variety of machine learning algorithms, and train machine learning
models to predict machine failures. Those machine learning models were compared
based on the data provided by the sensors. The best performing model was selected
and provided to be used for future incoming sensor data. Based on the users’ feed-
back, the models could constantly be retrained to incorporate new data based on the
process shown and described in Section 6.1.3.

The Fog Layer contained the access points to the machine under test. These ac-
cess points provided the connection to the Cloud Layer and aggregated sensor data
from the machine as well as external sensors. Additionally, they performed a pre-
processing of the sensor data to utilize the computational power of the access point.
The sensor data was transformed from the format that the sensors provide to the
format that was expected by the Data Analysis Server. In the setup at hand,
the access point was represented by a laptop which was directly connected to the
machine under test and the external sensors, in our case a directed microphone as
shown in Figure 6.8.
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The Edge Layer contained the sensors and the machines under test. The tested
machines were DuraMax28 machines by ZEISS29. Those machines use a coordinate
systems and a VAST XXT scanning sensor30 to check manufactured parts against
their specification. While doing so, the scanning sensor is moved by three motors
coordinating each axis. Among other sounds, the sound of these moving axis was
recorded by a directed microphone and used to predict machine failures. Within the
DuraMax machines, a temperature sensor and a motion sensor monitored the inter-
nal machines behavior. Also they are displayed separately in Figure 6.19 to provide
an overview of available sensors, they were build in the machine and could only
be accessed via the machine itself. Thus, we consider the DuraMax, temperature
sensor, and motion sensor as one Fog Component on the Edge Layer.

All Fog Components of this Fog Architecture are contained in the Fog Set which
is shown in Equation 46.

Equation 46: PdMFrame: Fog Set

FogSet = {DataAnalysisServer,AccessPoint1,AccessPoint2,

DuraMax1,Microphone1, Temperature1,Motion1,

DuraMax2,Microphone2, Temperature2,Motion2}

Equation 47 presents the Communication Set for PdMFrame. We use the same
simplification as for ARControl and Lassie: The reflexive indicator means that the
connection is bidirectional and the Edge Devices are combined in a single pseudo
Edge Device. As all communication channels are ethernet, we do not lose any infor-
mation by doing so. For the sake of completeness, we included the entire Commu-
nication Set for PdMFrame in the appendix in Section B.3.

Equation 47: PdMFrame: Communication Set

CommunicationSet = {(DataAnalysisServer,Ethernet,AccessPoint1)↔,

(DataAnalysisServer,Ethernet,AccessPoint2)↔,

(AccessPoint1,Ethernet,EdgeDevices)↔,

(AccessPoint2,Ethernet,EdgeDevices)↔}

28https://www.zeiss.de/messtechnik/produkte/systeme/koordinatenmessgeraete/
fertigungsmessgeraete/duramax.html

29https://www.zeiss.de
30https://www.zeiss.de/messtechnik/produkte/sensoren/am-kmg/taktile-sensoren/vast-

xxt.html
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The Service Set, as shown in Equation 48, consisted of three services:
globalDataAccessPoint, retrainModel, and dataAccessPoint. These ser-
vices were mapped to the different layers according to the Service Set Mapping: The
dataAccessPoint was the service provided by the Access Points. It offered
an endpoint to send sensor data, which was aggregated and preprocessed after-
wards. The according globalDataAccessPoint was the data endpoint of the
Cloud Layer. It accepted the preprocessed data and evaluated, persisted, or created
a machine learning model for predictive maintenance. The last service retrainModel
could be used to retrain the stored machine learning model with the data that was
stored until the given point in time.

Equation 48: PdMFrame: Service Set

ServiceSet = {globalDataAccessPoint, retrainModel,dataAccessPoint}
ServiceSetMapping = {( {} , CloudLayer ,

{globalDataAccessPoint, retrainModel} ),

( {globalDataAccessPoint, retrainModel} ,

FogLayer , {dataAccessPoint} ),

( {dataAccessPoint} , EdgeLayer , {} )}

According to the requested and offered services, Equation 49 shows the Fog
Components’ affiliation to the different layers. The Data Analysis Server of-
fering the two services globalDataAccessPoint and retrainModel did not
use any service itself and was therefore placed on the Cloud Layer. The access points
used the globalDataAccessPoint and provided a local dataAccessPoint ser-
vice for the locally connected machines und sensors. They were on the Fog Layer.
Finally, on the Edge Layer, we placed all the sensors that were used to track the
status of the machines under test which used this local dataAccessPoint but did
not offer any services themselves.

Equation 49: PdMFrame: Layer Definitions

CloudLayer = {DataAnalysisServer}

FogLayer = {AccessPoint1,AccessPoint2}

EdgeLayer = {DuraMax1,Microphone1, Temperature1,Motion1,

DuraMax2,Microphone2, Temperature2,Motion2}

The component that we wanted to add to the Fog Architecture is shown in Fig-
ure 6.20 highlighted by 1 . It represented a new Access Point 3 with another
DuraMax 3 machine and the corresponding sensors connected to it.
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Figure 6.20: The PdMFrame setup as shown in Figure 6.19. 1 highlights an ad-
ditional Access Point 3 which is dynamically added to the Fog Architecture.
Using transitive connections, it adds four Edge Devices.
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Table 6.3: Hard and soft requirements of Fog Components according to Section 4.1
for the added Fog Component: Access Point 3. Due to the transitive closure
of the added component, it also shows the additionally added Edge Devices. Hard
requirements are highlighted in red, soft requirements in orange.

Access
Point 3

DuraMax
3

Micro-
phone
3

Temp-
erature
3

Motion
3

1. Interconnectivity X X X X X
2. Information Sharing X X X X X
3. Uniquely Addressable X X X X X
4. Computational Capa-

bilities
X X X X X

5. Wireless communica-
tion

X X X X X

6. Locality X X X X X
7. General-purpose Com-

putational Capabilities
X X X X X

8. Offers Capabilities as
Service

X X X X X

As for the case studies before, we first check if the Access Point 3 conforms
to the requirements imposed by the Fog Component definition.
As adding Access Point 3 transitively adds Microphone 3, the DuraMax 3

machine, Temperature 3, and Motion 3, we have to check the Fog Component
conformance for each of those components as well.

Table 6.3 shows the mapping of the components to the hard and soft require-
ments. As all hard requirements are checked, the devices comply to the Fog Com-
ponent definition also they are limited as shown by the soft requirements which
are only partly checked. Non of the components integrated wireless communica-
tion, most did not have general-purpose computational capabilities, and only the
Access Point 3 provided a service to other components.
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After adding the Access Point 3 to the Fog Set and the Fog Layer, as shown
in Equation 50, we have to recursively evaluate which other Fog Components will
be transitively included in the Fog Architecture. Thus, we added the DuraMax 3,
the Microphone 3, the Temperature 3, and the Motion 3 to the Fog Set
(FogSetnew2). Additionally, we had to add those Fog Components on their respec-
tive layers, in this case the Edge Layer.

Equation 50: PdMFrame: New Fog Component

FogSetnew = FogSetold ∪ {AccessPoint3}

FogLayernew = FogLayerold ∪ {AccessPoint3}

FogSetnew2 = FogSetnew ∪ {DuraMax3,Microphone3,

Temperature3,Motion3}

EdgeLayernew = EdgeLayerold ∪ {DuraMax3,Microphone3,

Temperature3,Motion3}

For the Communication Set, as shown in Equation 51, we do the same.
First, we add the Communication Component for the connection between
the Data Analysis Server and the Access Point 3. Second, we add
the transitive Communication Components for the machine and the sensors
(CommunicationSetnew2).

Equation 51: PdMFrame: Adding a new Access Point

CommunicationSetnew = CommunicationSetold ∪
{(DataAnalysisServer,Ethernet,AccessPoint3)↔}

CommunicationSetnew2 = CommunicationSetnew ∪
{(AccessPoint3,Ethernet,Microphone3)↔,

(AccessPoint3,Ethernet,DuraMax3)↔,

(AccessPoint3,Ethernet, Temperature3)↔,

(AccessPoint3,Ethernet,Motion3)↔}
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Figure 6.21: Excerpt of the validation design overview shown in Figure 6.1 for Scal-
able Fog Architectures.

6.2.2 Scalable Fog Architectures

The results of the second validation address the concept of scalable Fog Architec-
tures. We use the three case studies as shown in Figure 6.21: DisCoFog, which con-
sists of DisCoFog 1 and DisCoFog 2, eHealth, and Fog.BOI.

These include the scalable aspects of Fog Architectures, and thus the addition of
multiple layers. First, we present an overview of the architecture using the same
simplified HW/SW mapping already used for the dynamic Fog Component vali-
dation. We use this model to describe the sets that define the Fog Architecture and
which need to change in order to add new layers. Second, we set different Ab-
straction Levels to establish Views on the Fog Architecture and present the resulting
point of focus. Finally, we highlight some of the resulting dynamic type changes
that occur due to the View concept.

DisCoFog

The first case study in the validation of scalable Fog Architectures is DisCoFog. Dis-
CoFog is split into two implementations: DisCoFog 1 and DisCoFog 2. As already
described in Section 6.1.4, they differ in the application domain with DisCoFog 1 be-
ing placed in a smart city domain using drones and DisCoFog 2 being in the smart
environment domain similar to ARControl (Section 6.1.1).

DisCoFog 1: As shown in Figure 6.22, the initial Fog Architecture that we estab-
lished for DisCoFog 1 consisted of three layers which also related to tiers: the Cloud
Layer, a single Fog Layer, and the Edge Layer.
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Figure 6.22: The HW/SW mapping of the DisCoFog setup (UML Deployment Di-
agram). For readability, we only show components and the used communication
channels. DisCoFog is a 3-layered Fog Architecture containing a Cloud Layer, a Fog
Layer, and Edge Layer, which are all deployed on different hardware components,
thus, also representing tiers.
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On the Cloud Layer, we had one single Fog Component, the Data
Visualization Server. It was used to render three-dimensional heat maps
from the movement of drones which is a computational heavy task. Therefore, it
collected drone movement data.

The movement data was gathered on the Fog Layer which contained the Fog
Nodes: City 1 and City 2. They were used to provide local access points for
the Edge Devices to connect using WIFI, a local area network. The locality was
used to provide fast updates for other drones to avoid collisions within the cities’
reach. Additionally, they established a connection to the Data Visualization

Server to post the drone movements of their area. In the test setup, the Fog Nodes
were represented by smartphones that offered hotspots for the drones to connect
while maintaining their connection to the cloud using 3G / 4G.

Finally, on the Edge Layer, we placed the drones. To show the practicality of
additional layers, we modeled the system for a total of eight drones.

Equation 52 shows the Fog Architecture set which contains the three layers. Ac-
cording to the definition provided in Section 4.2, its cardinality is three with only a
single Fog Layer in the Fog Layer Set.

Equation 52: DisCoFog 1: Fog Architecture

FogArchitecture := {EdgeLayer, FogLayer, CloudLayer}
|FogArchitecture| = 2 + |FogLayerSet| = 3

These layers contained Fog Components which comprise the Fog Set. As the dy-
namic addition of Fog Components was not the focus in this validation, we show
the Fog Set and the layers before and after adding the new layer in appendix Sec-
tion B.4.

The Service Set of the initial Fog Architecture is shown in Equation 53 with the
mapping between the services and the layers which consumed and offered them. In
total the Fog Architecture contained three services: uploadMovementData,
getDronePositions, and uploadGlobalMovementData. To describe the map-
ping between the offered and consumed services, we use a triple with the three
parts:

( {ConsumedServices} , Layer , {ProvidedServices} )

Thus, it is a mapping from two sets of services on a layer, which is a set of Fog
Components.
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Equation 53: DisCoFog 1: Service Set and Mapping

ServiceSet = {uploadMovementData,getDronePositions,

uploadGlobalMovementData}

ServiceSetMapping = {

( {} , CloudLayer , {uploadGlobalMovementData} ),

( {uploadGlobalMovementData} , FogLayer ,

{uploadMovementData,getDronePositions} ),

( {uploadMovementData,getDronePositions} , EdgeLayer , {} )
}

When adding a new layer to a Fog Architecture, several Communication Compo-
nents have to be removed and newly added to the Communication Set. Therefore,
Equation 54 describes the Communication Set of the initial Fog Architecture. For
readability, we stick to the abbreviated representation introduced in the dynamic
Fog Component validation (Section 6.2.1).

Equation 54: DisCoFog 1: Communication Set

CommunicationSet = {(DataVisualizationServer, 3G/4G,City1)↔,

(DataVisualizationServer, 3G/4G,City2)↔,

(City1,WIFI,EdgeDevice)↔,

(City2,WIFI,EdgeDevice)↔}

After introducing the most important sets which are needed to add a new layer
to the Fog Architecture, Figure 6.23 shows the Fog Architecture setup including
the newly added layer indicated by 1 . The new layer contained three new Fog
Components: City 1 Access 1, City 1 Access 2, and City 2 Access 1.
Each access point spread the communication load of the city Fog Components and
extended the area that could be covered.

In accordance to the added layer, we have to adjust the previously described sets
to include the Fog Components, services, as well as Communication Components.
Equation 55 shows the resulting Fog Architecture definition, the Service Set, the
Service Set Mapping, and the Communication Set.
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Figure 6.23: The HW/SW mapping of the DisCoFog setup after adding a new layer
(UML Deployment Diagram). For readability, we only show components and the
used communication channels. After adding the new layer, DisCoFog is a 4-layered
Fog Architecture containing a Cloud Layer, Fog Layer2, Fog Layer 1, and the Edge Layer,
which are all deployed on different hardware components, thus, also representing
tiers. 1 highlights the added layer and all the contained Fog Components.
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Equation 55: DisCoFog 1: Layer Addition

FogArchitecturenew = FogArchitectureold \ {FogLayer} ∪
{FogLayer1, FogLayer2}

|FogArchitecture| = 2 + |FogLayerSet| = 4

ServiceSetnew = ServiceSetold ∪
{uploadMovementData∗,getDronePositions∗}

ServiceSetMappingnew =

ServiceSetMappingold \ {( {uploadGlobalMovementData} ,

FogLayer , {uploadMovementData,getDronePositions} )}

∪

{( {uploadMovementData∗,getDronePositions∗} , FogLayer1 ,

{uploadMovementData,getDronePositions} ),

( {uploadGlobalMovementData} , FogLayer2 ,

{uploadMovementData∗,getDronePositions∗} )}

CommunicationSet = CommunicationSetold \

{(City1,WIFI,EdgeDevice)↔,

(City2,WIFI,EdgeDevice)↔}

∪
{(City1,WIFI,City1AccessPoint1)↔,

(City1,WIFI,City1Access2)↔,

(City2,WIFI,City2Access1)↔,

(City1Access1,WIFI,EdgeDevice)↔,

(City1Access2,WIFI,EdgeDevice)↔,

(City2Access1,WIFI,EdgeDevice)↔}

For the Fog Architecture definition, we have to remove the previous Fog Layer
which needs to be updated to reflect the number. Thus, the new Fog Layer is called
Fog Layer 1 and the already existing layer is Fog Layer 2 based on the definition from
Section 4.2 which defines to count starting from the lowest layer. In the Service
Set, we add the two new services which are offered by Fog Layer 2 in the new setup:
uploadMovementData∗ and getDronePosition∗. The Service Set Mapping shows
this new service mapping by assigning the respective services to Fog Layer 1 and Fog
Layer 2.
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(a) View1: The first 3-layered View of the Fog Architecture. The Abstraction Level is set to
the third layer which relates to the Fog Layer 2.
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(b) View2The second 3-layered View of the Fog Architecture. The Abstraction Level is set to
the fourth layer which relates to the Cloud Layer.

Figure 6.24: The HW/SW mapping of the DisCoFog showing the different 3-layered
Views (UML Deployment Diagram). For readability, we only show components
and the used communication channels. It represents a 4-layered Fog Architecture
containing a Cloud Layer, Fog Layer2, Fog Layer 1, and the Edge Layer, which are all
deployed on different hardware components, thus, also representing tiers. 1 high-
lights one example Fog Component which dynamically changes its Fog Type based
on the View it is part of.

Finally, in the Communication Set, we remove the Communication Components
that established the connection between the cities and the drones and add the Com-
munication Components for the connection between the cities and their added ac-
cess points, and the access points and the drones.

With the four layered Fog Architecture, we can differentiate between two 3-
layered Views as shown in Figure 6.24. Accordingly, the Abstraction Levels are set
to the third layer (Fog Layer 2) and the fourth layer (Cloud Layer). Based on the View
definition introduced in Section 4.2.2, Equation 56 shows the two Views.
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Equation 56: DisCoFog: Views

View(ALP,n) :=
⋃n−1

i=0 Layer(ALP − i)

View1(2, 3) : =
n−1⋃
i=0

Layer(ALP − i) = Layer(2) ∪ Layer(1) ∪ Layer(0)

= {FogLayer2, FogLayer1,EdgeLayer}

View2(3, 3) : =
n−1⋃
i=0

Layer(ALP − i) = Layer(3) ∪ Layer(2) ∪ Layer(1)

= {CloudLayer, FogLayer2, FogLayer1}

View1 includes the Fog Layer 2, Fog Layer 1, and Edge Layer. Its focus is set to
individual devices and how their data is used to support their movement through-
out the environment. This View is of particular interest for the drones themselves
which can avoid collisions, and for the city officials who get an overview of the
drone movement in their city.
View2 includes the Cloud Layer, Fog Layer 2, and Fog Layer 1 while the Edge Layer,

and thus the Edge Devices are abstracted away. Using this View, the aggregated
movement and movement patterns can be described without focusing on individual
devices.

The two Views in Figure 6.24 highlight one Fog Component ( 1 ), which changes
its Fog Type based on the selected View. While the first View assumes the Fog Com-
ponent which is a city access point to be a Fog Node, and therefore provide services
to the connected drones, the second View abstracts away the individual drones and
comprises them into the access points. Therefore, this View assumes that the access
points behave as if they were on the Edge Layer only providing data.

DisCoFog 2: The second part of this case study are the results for DisCoFog 2. Dis-
CoFog 2 was placed within the smart environment domain, but looked at the scal-
able aspect which was not covered by ARControl. The initial Fog Architecture setup
of DisCoFog 2 is shown in Figure 6.25. It started from the same setup as used for
ARControl, as both were placed within the Intelligent Workplace31, except without
the Occupant Smartphone which was dynamically added for the ARControl case
study. For the sake of completeness and the independence of the ARControl case
study, we briefly describe the setup as done for each case study.

31https://www.cmu.edu/homepage/innovation/2007/spring/intelligent-workplace.shtml

184

https://www.cmu.edu/homepage/innovation/2007/spring/intelligent-workplace.shtml


6.2 Results

C
lo

ud
 

La
ye

r

Fo
g 

La
ye

r

Ed
ge

 
La

ye
r

«E
dg

e 
D

ev
ic

e»
Ce

ili
ng

 L
ig

ht
 1

:
Li

gh
t

«C
lo

ud
 D

ev
ic

e»
:O

pe
nH

AB
Se

rv
er

«F
og

 N
od

e»
Pa

ul
’s

 O
ffi

ce
:

O
ffi

ce

«F
og

 N
od

e»
Ki

tc
he

n:
O

ffi
ce

«F
og

 N
od

e»
Co

nf
er

en
ce

 R
oo

m
:

O
ffi

ce

«E
dg

e 
D

ev
ic

e»
De

sk
 L

ig
ht

 1
:

Li
gh

t

«E
dg

e 
D

ev
ic

e»
O

cc
up

an
cy

 1
:

O
cc

up
an

cy
Se

ns
or

«E
dg

e 
D

ev
ic

e»
Te

m
pe

ra
tu

re
 1

:
Te

m
pe

ra
tu

re
Se

ns
or

«E
dg

e 
D

ev
ic

e»
De

sk
 H

ea
te

r 1
:

De
sk

 H
ea

te
r

«E
dg

e 
D

ev
ic

e»
O

cc
up

an
cy

 2
:

O
cc

up
an

cy
Se

ns
or

«E
dg

e 
D

ev
ic

e»
Ce

ili
ng

 L
ig

ht
 2

:
Li

gh
t

«E
dg

e 
D

ev
ic

e»
Te

m
pe

ra
tu

re
 2

:
Te

m
pe

ra
tu

re
Se

ns
or

«E
dg

e 
D

ev
ic

e»
W

in
do

w
 1

:
Co

nt
ac

tS
en

so
r

«E
dg

e 
D

ev
ic

e»
W

in
do

w
 2

:
Co

nt
ac

tS
en

so
r

«E
dg

e 
D

ev
ic

e»
W

in
do

w
 3

:
Co

nt
ac

tS
en

so
r

«E
dg

e 
D

ev
ic

e»
Ce

ili
ng

 L
ig

ht
 3

:
Li

gh
t

«E
dg

e 
D

ev
ic

e»
O

cc
up

an
cy

 3
:

O
cc

up
an

cy
Se

ns
or

«E
dg

e 
D

ev
ic

e»
Te

m
pe

ra
tu

re
 3

:
Te

m
pe

ra
tu

re
Se

ns
or

Et
he

rn
et

Et
he

rn
et

Et
he

rn
et

Et
he

rn
et

Et
he

rn
et

Et
he

rn
et

Et
he

rn
et

Et
he

rn
et

Et
he

rn
et

Et
he

rn
et

Et
he

rn
et

Et
he

rn
et

Et
he

rn
et

Et
he

rn
et

Et
he

rn
et

Et
he

rn
et

Figure 6.25: The HW/SW mapping of the DisCoFog 2 setup (UML Deployment
Diagram). For readability, we only show components and the used communication
channels. DisCoFog 2 is a 3-layered Fog Architecture containing a Cloud Layer, Fog
Layer, and the Edge Layer, which are all deployed on different hardware components,
thus, also representing tiers.
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The Fog Architecture in Figure 6.25 contained three layers, three tiers, respec-
tively. On the Cloud Layer, one single Fog Component was responsible for the co-
ordination and control of the smart environment. This Fog Component was an in-
stance of the OpenHAB32 project, an open source project that tries to integrate all
devices which are used within smart environments. The OpenHABServer was es-
tablished as the central control unit in the Intelligent Workplace in an iPraktikum33

project as part of a cooperation between Carnegie Mellon University and Technical
University of Munich in the year 2014.

The Fog Layer contained three Fog Components that represented the connected
offices: Paul’s Office, Kitchen, and Conference Room. Each Fog Compo-
nent was a Raspberry Pi34 that allowed to establish a wired or wireless connection
which was used to connect different types of sensors and actuators as well as inter-
action devices such as the Occupant Smartphone as shown in Section 6.2.1.

The Edge Layer included these sensors and actuators. Each room Fog Node
shown on the Fog Layer contained different connected devices based on the rooms
usage. In Paul’s Office more personalized devices such as a Desk Light 1

could be found than in the Kitchen or Conference Room. Those rooms, that
were designed for a broad spectrum of occupants, were reduced to include more
generic devices.

Equation 57 shows the definition for this Fog Architecture as a set of layers: The
Edge Layer, Fog Layer, and Cloud Layer. As the Fog Layer Set only included a single
Fog Layer, the cardinality of the Fog Architecture is equal to three. a

Equation 57: DisCoFog 2: Fog Architecture

FogArchitecture := {EdgeLayer, FogLayer, CloudLayer}
|FogArchitecture| = 2 + |FogLayerSet| = 3

The Service Set is shown in Equation 58 and contains six services. Three global
services that were offered by the OpenHABServer, and thus the cloud which was
reachable even from outside of the smart environment: getGlobalDeviceList,
getGlobalDeviceValue, and setGlobalDeviceValue. The Fog Layer, on the
other hand, included services that were available for more localized uses and only
provided access to the devices within the connected room: getDeviceList,
getDeviceValue, and setDeviceValue.

32https://www.openhab.org
33https://ase.in.tum.de/lehrstuhl 1/component/content/article/42-projects/current-

projects/555-ios-praktikum-2014?Itemid=115
34https://www.raspberrypi.org
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This Service Set Mapping is also shown in Equation 58 with the Cloud Layer not
requesting any services, the Fog Layer being the connection between Cloud Layer
and Edge Layer, providing and using the according services, and the Edge Layer
only using local services provided by the Fog Layer. These relations are shown as a
set of triples:

( {ConsumedServices} , Layer , {ProvidedServices} )

Equation 58: DisCoFog 2: Service Set and Mapping

ServiceSet = {getGlobalDeviceList,getGlobalDeviceValue,

setGlobalDeviceValue,getDeviceList,

getDeviceValue, setDeviceValue}
ServiceSetMapping = {

( {} , CloudLayer , {getGlobalDeviceList,

getGlobalDeviceValue, setGlobalDeviceValue} ),

( {getGlobalDeviceList,getGlobalDeviceValue, setGlobalDeviceValue} ,

FogLayer , {getDeviceList,getDeviceValue, setDeviceValue} ),

( {getDeviceList,getDeviceValue, setDeviceValue} , EdgeLayer , {} )
}

The Service Set Mapping is also represented in the Communication Set shown
in Equation 59. The Cloud Layer was connected to the Raspberry Pis that were
placed within each room by Ethernet. While the Raspberry Pis would have also
allowed WIFI connections for sensors and actuators, they were all connected via
ethernet which is why we reduced the Communication Set for readability to aggre-
gate the connections to all sensors and actuators to a pseudo Edge Device. The
entire Communication Set can be found in the appendix Section B.5 together with
the Fog Set and Fog Component to Layer mapping.

Equation 59: DisCoFog 2: Communication Set

CommunicationSet = {(OpenHABServer,Etherent,Paul ′sOffice)↔,

(OpenHABServer,Etherent,Kitchen)↔,

(OpenHABServer,Etherent,ConferenceRoom)↔,

(Paul ′sOffice,Etherent,EdgeDevice)↔,

(Kitchen,Etherent,EdgeDevice)↔,

(ConferenceRoom,Etherent,EdgeDevice)↔}
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After describing the initial Fog Architecture setup and the most important sets
for scalable Fog Architectures for the DisCoFog 2 case study, Figure 6.26 shows the
DisCoFog 2 setup after the addition of the new Fog Layer ( 1 ). This new layer (Fog
Layer 2) was placed between the Cloud Layer and the former Fog Layer which is re-
ferred to as Fog Layer 1 after the addition of the new Fog Layer. Fog Layer 2 included
one new Fog Component called Floor 1 which aggregated the data of the con-
nected rooms. Introducing this layer allowed an improved scalability of the pre-
vious setup to be extensible to other departments on other floors within the same
building.

To incorporate these changes to the Fog Architecture, we have to adjust the Fog
Architecture definition which in turn results in a change of its cardinality, the Service
Set to mirror the newly offered services of Fog Layer 2, and the Service Set Mapping
as shown in Section 4.2.2. Finally, the Communication Set changes based on the new
connections between the rooms and the Floor 1 Fog Node.

The changes are shown in Equation 60. For the Fog Architecture, we remove the
previous Fog Layer which is not a unique description of the layer any more and add
the new descriptor Fog Layer 1 as well as the new Fog Layer 2.

The cardinality of the Fog Architecture changed to four with an additional layer
within the Fog Layer Set. To mimic a new Cloud Layer from the perspective of
Fog Layer 1, the new Fog Layer 2 had to offer the services previously offered by the
Cloud Layer. Thus, from the perspective of the service consumers of the previous
Cloud Layer, nothing had changed except the communication partner. Meanwhile,
the services offered by the Cloud Layer were adjusted to reflect these changes. This
change was reflected by the three new services: getGlobalDeviceList∗,
getGlobalDeviceValue∗, and setGlobalDeviceList∗. These services were used by
the new Fog Layer 2 to propagate the information that they gathered from the rooms.

Accordingly, in the Service Set Mapping, we remove the mapping that relates
to the Cloud Layer and the previous Fog Layer, update the new mappings for the
Cloud Layer and Fog Layer 1, and add the mapping for Fog Layer 2. In the Com-
munication Set we remove the Communication Components that describe the con-
nections between the OpenHABServer instance and the room Fog Nodes as the
OpenHABServer was not offering the services requested by those Fog Nodes any
more. Additionally, we have to add the new Communication Components between
the OpenHABServer and the rooms to the new Fog Component: Floor.

The changes to the Fog Set while not being the focus in this validation are in the
appendix Section B.5 as well as the written out version of the Communication Set
without the introduced abbreviations.

After the layer addition and the adjustments to the sets which describe the Fog
Architecture, we had a 4-layered Fog Architecture which allows us to highlight two
different Abstraction Levels for 3-layered Views.
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Figure 6.26: The HW/SW mapping of the DisCoFog 2 setup after adding a new
layer (UML Deployment Diagram). For readability, we only show components and
the used communication channels. It shows a 4-layered Fog Architecture containing
a Cloud Layer, Fog Layer 2, Fog Layer 1, and the Edge Layer, which are all deployed
on different hardware components, thus, also representing tiers. 1 highlights the
added layer and the Floor 1 Fog Node.
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6 Validation of xFog

These Views are shown in Figure 6.27 in which 1 highlights a Fog Component
which dynamically changes its type from a Cloud Device in the first View and a Fog
Node in the second View.

Equation 60: DisCoFog 2: Layer Addition

FogArchitecturenew = FogArchitectureold \ {FogLayer} ∪
{FogLayer1, FogLayer2}

|FogArchitecture| = 2 + |FogLayerSet| = 4

ServiceSetnew = ServiceSetold ∪ {getGlobalDeviceList∗,

getGlobalDeviceValue∗, setGlobalDeviceValue∗}

ServiceSetMappingnew =

ServiceSetMappingold \ {( {} , CloudLayer ,

{getGlobalDeviceList,getGlobalDeviceValue, setGlobalDeviceValue} ),

( {getGlobalDeviceList,getGlobalDeviceValue, setGlobalDeviceValue} ,

FogLayer , {getDeviceList,getDeviceValue, setDeviceValue} )}

∪

{( {} , CloudLayer , {getGlobalDeviceList∗,getGlobalDeviceValue∗,

setGlobalDeviceValue∗} ),

( {getGlobalDeviceList∗,getGlobalDeviceValue∗,

setGlobalDeviceValue∗} , FogLayer2 ,

{getGlobalDeviceList,getGlobalDeviceValue, setGlobalDeviceValue} ),

( {getGlobalDeviceList,getGlobalDeviceValue, setGlobalDeviceValue} ,

FogLayer1 , {getDeviceList,getDeviceValue, setDeviceValue} )}

CommunicationSet = CommunicationSetold \

{(OpenHABServer,Ethernet,Paul ′sOffice)↔,

(OpenHABServer,Ethernet,Kitchen)↔,

(OpenHABServer,Ethernet,ConferenceRoom)↔}

∪
{(OpenHABServer,Ethernet, Floor1)↔,

(Floor1,WIFI,Paul ′sOffice)↔,

(Floor1,WIFI,Kitchen)↔,

(Floor1,WIFI,ConferenceRoom)↔}
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(a) View1: The first 3-layered View of the Fog Architecture. The Abstraction Level is set to
the third layer which relates to the Fog Layer 2.
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(b) View2: The second 3-layered View of the Fog Architecture. The Abstraction Level is set
to the fourth layer which relates to the Cloud Layer.

Figure 6.27: The HW/SW mapping of the DisCoFog 2 showing the different 3-
layered Views (UML Deployment Diagram). For readability, we only show compo-
nents and the used communication channels. It shows a 4-layered Fog Architecture
containing a Cloud Layer, Fog Layer 2, Fog Layer 1, and the Edge Layer, which are all
deployed on different hardware components, thus, also representing tiers. 1 high-
lights one example Fog Component which dynamically changes its Fog Type based
on the View it is part of.
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The definition of the Views is shown in Equation 61.

Equation 61: DisCoFog 2: Views

View(ALP,n) :=
⋃n−1

i=0 Layer(ALP − i)

View1(2, 3) : =
n−1⋃
i=0

Layer(ALP − i) = Layer(2) ∪ Layer(1) ∪ Layer(0)

= {FogLayer2, FogLayer1,EdgeLayer}

View2(3, 3) : =
n−1⋃
i=0

Layer(ALP − i) = Layer(2) ∪ Layer(1) ∪ Layer(0)

= {CloudLayer, FogLayer2, FogLayer1}

The View1 is established by setting the Abstraction Level to Fog Layer 2, and
therefore contains Fog Layer 2, Fog Layer 1, and the Edge Layer. This View shows
the individual devices the occupant can interact with using their locally closest Fog
Nodes. Additionally, with representing the Floor 1 on the Cloud Layer, it high-
lights device usage within one floor, e. g., one department of the Intelligent Work-
place.

In contrast, View2 emphasizes the interconnectivity between the departments
and allows comparisons between them, e. g., referring to the energy consumption
and the usage of specific device types without going in too much detail about sin-
gular sensors or actuators. The second View includes the Cloud Layer, Fog Layer 2,
and Fog Layer 1.

192



6.2 Results

«Fog Component»
Room 2:

Room

«Edge Device»
:Microscope

«Cloud Device»
:HospitalServer

Cloud 
Layer

Fog 
Layer 2

Edge 
Layer

Fog 
Layer 1

«Edge Device»
:RoboticArm

«Edge Device»
:RadiologyDevice

«Edge Device»
:DiagnosticDevice

«Fog Component»
Room 1:

Room

«Fog Component»
Room 3:

Room

«Fog Component»
Floor 1:

Floor

«Fog Component»
Floor 2:

Floor

WIFI WIFI WIFI WIFI

Ethernet Ethernet Ethernet

EthernetEthernet

Figure 6.28: The HW/SW mapping of the eHealth setup (UML Deployment Dia-
gram). For readability, we only show components and the used communication
channels. It shows a 4-layered Fog Architecture containing a Cloud Layer, Fog Layer
2, Fog Layer 1, and the Edge Layer, which are all deployed on different hardware
components, thus, also representing tiers.

eHealth

The second validation of the scalable Fog Architecture validation is eHealth. eHealth
is placed within the health domain. The goal of the case study was to include the
scalable Fog Architecture concept in a hospital setting. As before, we focus on the
most important concepts and sets, but for completeness provide the Fog Set and its
layers, the unabbreviated Communication Set, and the changes to the sets after the
layer addition in the appendix in Section B.6. The Fog Architecture setup for eHealth
is shown in Figure 6.28. It was a 4-layered Fog Architecture with two Fog Layers
which were all deployed on different hardware components, and thus related to
tiers.

The Cloud Layer contained the central Hospital Server. The Hospital
Server was used to persist data about patients that was, e. g., used across several
floors by different departments.

Each department, represented by a floor node on Fog Layer 2, used its own local
software which was adjusted to the department’s use cases and contained more
specific data than the central instance. These floor nodes are typically servers by
themselves due to computational power needed to run the medical software.
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Fog Layer 1 contained three Fog Nodes: Room 1, Room 2, and Room 3. Each
room node described one treatment room containing specialized medical equip-
ment. They were used to preprocess and encrypt the gathered data and made it
accessible for doctors who dynamically entered and left the Fog Architecture with
their mobile devices. As the dynamic addition of Fog Components was not the fo-
cus of this case study, we are not going in too much detail about that process. Due
to hospital restrictions, the connections between the Fog Components down to this
level were all wired as indicated by Ethernet.

Finally, the Edge Layer contained the medical equipment needed in the treatment
room. This equipment could either be connected wired or wireless depending on
the equipment’s specifications. The equipment could range from Microscopes,
Radiology Devices, and Diagnostic Devices, to Robotic Arms and more.

The resulting Fog Architecture definition based on the included layers is shown
in Equation 62. With two layers in the Fog Layer Set, the cardinality of the Fog
Architecture was equal to four, according to the number of layers.

Equation 62: eHealth: Fog Architecture

FogArchitecture := {EdgeLayer, FogLayer1, FogLayer2, CloudLayer}
|FogArchitecture| = 2 + |FogLayerSet| = 4

Equation 63 shows the Service Set and the respective Service Set Mapping.

Equation 63: eHealth: Service Set and Mapping

ServiceSet = {getGlobalPatientList,getGlobalPatientData,

setGlobalPatientData,getDepartmentPatientList,

getDepartmentPatientData, setDepartmentPatientData,

getRoomData, setRoomData}
ServiceSetMapping = {

( {} , CloudLayer ,

{getGlobalPatientList,getGlobalPatientData, setGlobalPatientData} ),

( {getGlobalPatientList,getGlobalPatientData, setGlobalPatientData ,

FogLayer2 , {getDepartmentPatientList,getDepartmentPatientData,

setDepartmentPatientData} ),

( {getDepartmentPatientList,getDepartmentPatientData,

setDepartmentPatientData} , FogLayer1 ,

{getRoomData, setRoomData} ),

( {getRoomData, setRoomData} , EdgeLayer , {} )}
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6.2 Results

The Service Set consists of eight services. Three of them were offered by the
Hospital Server: getGlobalPatientList, getGlobalPatientData, and
setGlobalPatientData. These services were used to access and manipulate the
information the entire hospital had about a patient. In contrast, the services
getDepartmentPatientList, getDepartmentPatientValue, and
setDepartmentPatientValue accessed and changed the data which was stored
in the system of the local department. The information stored and received from this
system did not have to match the information provided by the Hospital Server.
The last two services getRoomData and setRoomData provided access to the local
data currently aggregated and used in a treatment room.

Accordingly, the Service Set Mapping shows the offered services by the Cloud
Layer, the offered and consumed services of Fog Layer 2 and Fog Layer 1, and the
consumed services of the Edge Layer. The strict hierarchical mapping is also reflected
into the Communication Set which is shown in Equation 64.

Equation 64: eHealth: Communication Set

CommunicationSet = {(HospitalServer,Ethernet, Floor1)↔,

(HospitalServer,Ethernet, Floor2)↔,

(Floor1,Ethernet,Room1)↔,

(Floor2,Ethernet,Room2)↔,

(Floor2,Ethernet,Room3)↔,

(Room1,WIFI,Microscope)↔,

(Room2,WIFI,RoboticArm)↔,

(Room2,WIFI,RadiologyDevice)↔,

(Room3,WIFI,DiagnosticDevice)↔}

The Hospital Server was connected to both floor nodes via ethernet. Floor
1 was connected by ethernet to the two room nodes: Room 1 and Room Node 2,
Floor 2 was connected to Room 3. Each room had individual equipment which
was connected via WIFI. According to constraints set by the hospital, only the room
nodes provided WIFI access.
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While the previous sets describe the initial eHealth setup, Figure 6.29 shows the
setup which should be established after adding a layer.
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Figure 6.29: The HW/SW mapping of the eHealth setup after adding a new layer
(UML Deployment Diagram). For readability, we only show components and the
used communication channels. It shows a 5-layered Fog Architecture containing
a Cloud Layer, Fog Layer 3, Fog Layer 2, Fog Layer 1, and the Edge Layer, which are
all deployed on different hardware components, thus, also representing tiers. 1
highlights the added layer and the contained Department 1.

As highlighted by 1 , this setup contains an additional layer with a Fog Compo-
nent called Department 1. The new layer was placed between the Cloud Layer and
the topmost Fog Layer (Fog Layer 2). In the previous setup, the floor nodes described
the department level. We wanted to add the Department 1 as some departments
in the hospital were spread across multiple floors which represented different parts
of the department with different required information which was requested from
the same information system.

The needed adjustments to the existing setup are shown in Equation 65. The Fog
Architecture was extended by one additional layer: Fog Layer 3, which raised its
cardinality to five. The new services that described the new layer are shown in the
updated Service Set. In contrast to the DisCoFog use case, we do not take over the
services offered by the layer which is on top of the newly added layer, but provide
new services which are based on the services provided by the layer below.
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6.2 Results

As the required functionality, and thus service description is closely linked to
the services already provided by the layer below, this layer which aggregates in-
formation should reflect this. For the Service Set Mapping, we have to remove the
mapping for Fog Layer 2 which no longer accesses the services provided by the Cloud
Layer. These services are used by the new Fog Layer 3 which in turn offers a new ser-
vice to Fog Layer 2. Finally, the Communication Set needs to be adjusted. We remove
the Communication Components that reflect the connection between Cloud Layer
and Fog Layer 2 but introduce a Communication Component which uses Ethernet
to connect the Hospital Server with Department 1 and two Communication
Components that connect Department 1 to the floor nodes.

Equation 65: eHealth: Layer Addition

FogArchitecturenew = FogArchitectureold ∪ {FogLayer3}
|FogArchitecture| = 2 + |FogLayerSet| = 5
ServiceSetnew = ServiceSetold ∪ {getDepartmentPatientList∗,

getDepartmentPatientData∗,

setDepartmentPatientData∗}

ServiceSetMappingnew = ServiceSetMappingold \

( {getGlobalPatientList,getGlobalPatientData, setGlobalPatientData} ,

FogLayer2 , {getDepartmentPatientList,

getDepartmentPatientData, setDepartmentPatientData} ) ∪

{( {getGlobalPatientList,getGlobalPatientData,

setGlobalPatientData} , FogLayer3 , {getDepartmentPatientList∗,

getDepartmentPatientData∗, setDepartmentPatientData∗} ),

( {getDepartmentPatientList∗,getDepartmentPatientData∗,

setDepartmentPatientData∗} , FogLayer2 ,

{getDepartmentPatientList,getDepartmentPatientData,

setDepartmentPatientData} )}

CommunicationSet = CommunicationSetold \

{(HospitalServer,Ethernet, Floor1)↔,

(HospitalServer,Ethernet, Floor2)↔}

∪
{(HospitalServer,Ethernet,Department1)↔,

(Department1,Ethernet, Floor1)↔,

(Department1,Ethernet, Floor2)↔}
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Based on this additional layer, Figure 6.30 shows the three 3-layered Views which
are contained within the new Fog Architecture. Each example contains the layers:
Cloud Layer, Fog Layer 3, Fog Layer 2, Fog Layer 1, and the Edge Layer. Additionally,
one Fog Component that dynamically changes its Fog Type based on the View layer
assignment is shown with 1 . Each View describes a different aspect of the Fog
Architecture set by the Abstraction Level which can be further investigated.

The definitions of each of the three Views is given in Equation 66. View1 contains
the Edge Layer, and therefore describes the lowest possible 3-layered View. Its point
of interest is the individual medical equipment which is spread across the different
treatment rooms. It describes how the equipment can store information and how
this information can be accessed by doctors. Additionally, it describes how this
information is persisted in the information system provided on each floor node.
View2 focuses on the information flow between the treatment rooms up to the

department level. It describes which information is persisted in the local floor node,
and thus accessible for the current part of the department and which information
needs to be published within the entire department.

Finally, View3 highlights the transition from the department level to the Cloud
Layer. It describes which information is persisted in what way to be accessible by
the entire hospital information system. Depending on the compliance of the infor-
mation systems, the information might change quite significantly.

Equation 66: eHealth: Views

View(ALP,n) :=
⋃n−1

i=0 Layer(ALP − i)

View1(2, 3) : =
n−1⋃
i=0

Layer(ALP − i) = Layer(2) ∪ Layer(1) ∪ Layer(0)

= {FogLayer2, FogLayer1,EdgeLayer}

View2(3, 3) : =
n−1⋃
i=0

Layer(ALP − i) = Layer(3) ∪ Layer(2) ∪ Layer(1)

= {FogLayer3, FogLayer2, FogLayer1}

View3(4, 3) : =
n−1⋃
i=0

Layer(ALP − i) = Layer(4) ∪ Layer(3) ∪ Layer(2)

= {CloudLayer, FogLayer3, FogLayer2}
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(a) View1: The first 3-layered View of the Fog Architecture. The Abstraction Level is set to
the third layer which relates to the Fog Layer 2.
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(b) View2: The second 3-layered View of the Fog Architecture. The Abstraction Level is set
to the fourth layer which relates to the Fog Layer 3.
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(c) View3: The third 3-layered View of the Fog Architecture. The Abstraction Level is set to
the fifth layer which relates to the Cloud Layer.

Figure 6.30: The HW/SW mapping of the eHealth showing the different 3-layered
Views (UML Deployment Diagram). For readability, we only show components and
the used communication channels. It shows a 5-layered Fog Architecture containing
a Cloud Layer, Fog Layer 3, Fog Layer 2, Fog Layer 1, and the Edge Layer, which are
all deployed on different hardware components, thus, also representing tiers. 1
highlights one example Fog Component which dynamically changes its Fog Type
based on the View it is part of.
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6 Validation of xFog

6 highlights the same Fog Component in every View. Based on the 3-layered
View concept which describes a Fog Architecture on its own, the Fog Component
dynamically changes its Fog Type based on the current View. In the Fog Archi-
tecture, the floor nodes are particularly interesting for the dynamic change as they
change from a Cloud Device in View1 to a Fog Node in View2 and finally to an Edge
Device in View3.
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Figure 6.31: The HW/SW mapping of the Fog.BOI setup (UML Deployment Di-
agram). For readability, we only show components and the used communication
channels. It shows a 3-layered Fog Architecture containing a Cloud Layer, Fog Layer,
and the Edge Layer, which are all deployed on different hardware components, thus,
also representing tiers.

Fog.BOI

The last case study for the scalable Fog Architecture validation is Fog.BOI as in-
troduced in Section 6.1.6. Similar to the DisCoFog 1 case study, it was also placed
within the smart city context. The HW/SW mapping of Fog.BOI is shown in Fig-
ure 6.31. It describes a 3-layered Fog Architecture which emphasizes the locality to
the vehicles in road traffic. The Fog Set and the layer definitions as well as the writ-
ten out Communication Set before and after the addition of a new layer is shown in
appendix Section B.7.

In the initial setup, the Cloud Layer contained one Fog Component, the
Municipality Server which gathers the positions of different vehicles to create
a traffic heat map to find traffic congestions and propagate those to the connected
vehicles.

The Fog Layer contained two Fog Components: Traffic Light 1 and
Traffic Light 2. These Fog Components are small computational units that
opened up a local WIFI which other Fog Components could use to get traffic up-
dates as well as information about other connected devices and decide which vehi-
cle went through the crossing first.

The Edge Layer contained the vehicles that wanted to use the traffic updates pro-
vided by the traffic lights. These vehicles could be any traffic participant that could
connect to the traffic lights, and thus provided their own position information to
other traffic participants.
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6 Validation of xFog

Equation 67 shows the according Fog Architecture definition with three layers
which is its cardinality.

Equation 67: Fog.BOI: Fog Architecture

FogArchitecture := {EdgeLayer, FogLayer, CloudLayer}
|FogArchitecture| = 2 + |FogLayerSet| = 3

Based on the position updates, many additional services are imagin-
able. As we want to describe the scalable concepts, we focus on three ser-
vices as shown in Equation 68: getVehiclePositions, setPosition, and
uploadVehiclePositions.

getVehiclePositions allowed traffic participants to continuously request
the positions of every other traffic participant in the local surrounding of the traffic
light they were currently connected to. While this service was beneficial to human
drivers by noticing them when another vehicle was approaching the same crossing,
it was essential for autonomous cars to negotiate which vehicle passes the crossing
first.

The second service setPosition was the related counterpart to the first ser-
vice which allowed vehicles to report their current position to the local instance in
exchange for the positions of the other vehicles.

Finally, the uploadVehiclePositions service allowed the municipality to
create heat maps of all streets covered by traffic lights, and therefore Fog Nodes.

Equation 68: Fog.BOI: Service Set and Mapping

ServiceSet = {getVehiclePositions, setPosition,uploadVehiclePositions}
ServiceSetMapping = {

( {} , CloudLayer , {uploadVehiclePositions} ),

( {uploadVehiclePositions} , FogLayer ,

{getVehiclePositions, setPosition} ),

( {getVehiclePositions, setPosition} , EdgeLayer , {} )
}

Accordingly, the Service Set Mapping shows that the Cloud Layer offered the
uploadVehiclePositions service to generate the computational intense heat
maps. This service was used by the Fog Layer which in turn offered the other two
services to the Fog Components on the Edge Layer.
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The Communication Set, shown in Equation 69, highlights the Communication
Components that create the connections between the layers. The complete Com-
munication Set is shown in appendix Section B.7. To create a network of nearby
vehicles, the traffic lights established a WIFI hotspot which could be accessed by the
vehicles. The traffic lights themselves were hard wired to the municipality.

Equation 69: Fog.BOI: Communication Set

CommunicationSet = {(MunicipalityServer,Ethernet, TrafficLight1)↔,

(MunicipalityServer,Ethernet, TrafficLight2)↔,

(TrafficLight1,WIFI,Vehicle1)↔,

(TrafficLight1,WIFI,Vehicle2)↔,

(TrafficLight1,WIFI,Vehicle3)↔,

(TrafficLight2,WIFI,Vehicle4)↔,

(TrafficLight2,WIFI,Vehicle5)↔,

(TrafficLight2,WIFI,Vehicle6)↔}

Figure 6.32 shows an additional layer between the Cloud Layer and the Fog Layer.
This additional layer ( 1 ) was used to structure bigger municipalities into smaller
districts which could already locally analyze the traffic situation in their commuting
area. Accordingly, the added Fog Component was called City District.

Equation 70 shows the changes that need to be made to the sets after the new
layer was added to the Fog Architecture. As the new layer is above the exist-
ing Fog Layer, the new Fog Layer is called Fog Layer 2 and added to the Fog Ar-
chitecture. This layer should already locally analyze the traffic that was previ-
ously only analyzed on the Cloud Layer. Thus, a new service is added to the Ser-
vice Set: uploadVehiclePositions∗. As shown by the updated Service Set Map-
ping, this new service is now offered by the Cloud Layer which no longer offers
uploadVehiclePositions. This service is moved to Fog Layer 2. Finally, the
previously called Fog Layer is renamed to Fog Layer 1 to create a unique naming. In
the Communication Set, every Communication Component is removed which de-
scribed the connection between Fog Layer 1 and the Cloud Layer. Those connections
are replaced by the connections between the Cloud Layer and Fog Layer 2, and Fog
Layer 2 and Fog Layer 1 which both use Ethernet.
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Figure 6.32: The HW/SW mapping of the Fog.BOI setup after adding a new layer
(UML Deployment Diagram). For readability, we only show components and the
used communication channels. It shows a 4-layered Fog Architecture containing a
Cloud Layer, Fog Layer 2, Fog Layer 1, and the Edge Layer, which are all deployed on
different hardware components, thus, also representing tiers.

Equation 70: Fog.BOI: Layer Addition

FogArchitecturenew = FogArchitectureold ∪ {FogLayer2}
|FogArchitecture| = 2 + |FogLayerSet| = 4
ServiceSetnew = ServiceSetold ∪ {uploadVehiclePositions∗}

ServiceSetMappingnew = ServiceSetMappingold \

{( {} , CloudLayer , {uploadVehiclePositions} ),

( {uploadVehiclePositions} , FogLayer ,

{getVehiclePositions, setPosition} )} ∪

{( {} , CloudLayer , {uploadVehiclePositions∗} ),

( {uploadVehiclePositions∗} , FogLayer2 , {uploadVehiclePositions} ),

( {uploadVehiclePositions} , FogLayer1 ,

{getVehiclePositions, setPosition} )}

CommunicationSet = CommunicationSetold \

{(MunicipalityServer,Ethernet, TrafficLight1)↔,

(MunicipalityServer,Ethernet, TrafficLight2)↔} ∪
{(MunicipalityServer, 3G,CityDistrict)↔,

(CityDistrict,Ethernet, TrafficLight1)↔,

(CityDistrict,Ethernet, TrafficLight2)↔}
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(a) View1: The first 3-layered View of the Fog Architecture. The Abstraction Level is set to
the third layer which relates to the Fog Layer 2.
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(b) View2: The second 3-layered View of the Fog Architecture. The Abstraction Level is set
to the fourth layer which relates to the Fog Layer 3.

Figure 6.33: The HW/SW mapping of the Fog.BOI showing the different 3-layered
Views (UML Deployment Diagram). For readability, we only show components and
the used communication channels. It shows a 4-layered Fog Architecture containing
a Cloud Layer, Fog Layer 2, Fog Layer 1, and the Edge Layer, which are all deployed on
different hardware components, thus, also representing tiers.

The resulting 4-layered Fog Architecture can be separated in two 3-layered Views
as shown in Figure 6.33. These Views are defined by Equation 71. View1 is set
to Abstraction Level 2 which refers to Fog Layer 2 and includes three layers: Fog
Layer 2, Fog Layer 1, and the Edge Layer. It describes the functionality which was
encompassed by the initial setup before an additional layer was added.

The second View, View2, focuses on Abstraction Level 3 which refers to the Cloud
Layer. It includes the Cloud Layer, Fog Layer 2, and Fog Layer 1. This View addresses
the functionality which is based on the aggregated data gathered by the introduced
city districts. Thus, it can show differences between the districts in terms of traffic.
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6 Validation of xFog

Equation 71: Fog.BOI: Views

View(ALP,n) :=
⋃n−1

i=0 Layer(ALP − i)

View1(2, 3) : =
n−1⋃
i=0

Layer(ALP − i) = Layer(2) ∪ Layer(1) ∪ Layer(0)

= {FogLayer2, FogLayer1,EdgeLayer}

View2(3, 3) : =
n−1⋃
i=0

Layer(ALP − i) = Layer(3) ∪ Layer(2) ∪ Layer(1)

= {CloudLayer, FogLayer2, FogLayer1}
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Figure 6.34: Excerpt of the validation design overview shown in Figure 6.1 for the
Service Provider Selection.

6.2.3 Service Provider Selection

In this section, we look at the results of the validation for the Service Provider Se-
lection highlighted by Figure 6.34. We use the case studies Quasar and FoQsIs, and
show how the xFogStar workflow, as introduced in Chapter 5, was instantiated and
how service providers are selected in the respective domains.

Thus, we present which unavailability strategies are selected, which limits are
set, which comparability strategy we decided to use, which ordering strategy we
applied, and which importance was assigned for the QoS parameters. This ulti-
mately resulted in an ordered list of service providers from which we selected the
first one in the list, respectively, the best fitting one.

Quasar

The first case study in the service provider selection validation is Quasar. Quasar
used the Fog Architecture setup as shown in Figure 6.35.

It represented a 3-layered Fog Architecture with a Game Server on the Cloud
Layer, two Game Streaming Services on the Fog Layer, and four Game Clients

on the Edge Layer. As described in Section 6.1.7, the Game Server ran the game in-
stance that was used by the remote Game Clients. To optimize connectivity, Game
Streaming Services on the Fog Layer buffered game states that the client might
request.
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Figure 6.35: The HW/SW mapping of the Quasar setup (UML Deployment Dia-
gram). For readability, we only show components and the used communication
channels. It shows a 3-layered Fog Architecture containing a Cloud Layer, Fog Layer,
and the Edge Layer, which are all deployed on different hardware components, thus,
also representing tiers. For the service provider selection, we use a 2-layered View
with the ALP set to 1.

In this case study, we focus on the selection of the best fitting Game Streaming

Service. Thus, according to the View concept introduced in Section 4.2.2, we used
a 2-layered View which highlights the service provider and service consumer rela-
tion. The View is defined in Equation 72.

Equation 72: Quasar: View

View(ALP,n) :=
⋃n−1

i=0 Layer(ALP − i)

View(1, 2) =
n−1⋃
i=0

Layer(ALP − i) = Layer(1) ∪ Layer(0)

= {FogLayer,EdgeLayer}

As the presented Fog Components are part of the Fog Architecture, we take a
look at a new Game Client 5 that searches for a Game Streaming Service to
connect to. Although this component describes a dynamic addition, we focus on the
instantiation of the xFogStar workflow, and thus we do not include the correspond-
ing sets in this section. The sets can be found in the appendix in Section B.8.
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The difference between Game Client 5 and the other Game Clients was its
Fog Visibility as shown in Figure 6.36.

While the other Game Clients’ Fog Visibilities only included one
Game Streaming Service each, Game Client 5’s Fog Visibility included both
Game Streaming Services. Its Fog Visibility is highlighted in green including
a dashed border. The Fog Visibilities of Game Client 1-4 are shown as partly
transparent blue circles around their labels. The red circles represent the Fog Visibil-
ities of the game streaming services, while the yellow circle shows the Fog Visibility
of the Game Server itself. According to those Fog Visibilities, Game Client 5

could select between both game streaming services.
To select the best fitting service according to the service consumers needs, we

instantiated xFogStar as introduced in Chapter 5. Equation 73 shows the QoS pa-
rameters we chose for the service provider comparison.

Equation 73: Quasar: Parameter Selection

−−→
QoS =



ExecutionTime(ET)

Cost(C)

Energy(E)

Storage(S)

Availability(A)

CommunicationTime(CT)

Bandwidth(B)



In the Quasar app, Figure 6.37 shows the Service Discovery screen on the left
which allowed to discover game services and to access its details as shown on the
right screen. The details included all requested QoS parameters and the possibility
to select this service provider.

As shown by Figure 6.35 and Figure 6.36, our Quasar setup included two game
streaming services. Table 6.4 shows the QoS parameters for both. The game stream-
ing services were similar, but mainly differed in the execution time, communication
time, and their costs.
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Figure 6.36: The Fog Visibilities of the different Fog Components included within
the Quasar Fog Architecture. The blue blue circles represent Game Clients that are
already connected to the Fog Architecture with only one Fog Component of the
Fog Layer within their Fog Visibility. The red circles represent the corresponding
Fog Nodes and the yellow circle the Game Server. The green circle shows a Fog
Component which wants to connect to the Fog Architecture, but has two potential
Fog Nodes within its Fog Visibility.

Table 6.4: Quasar: Parameter Values.

QoS Parameter Game Streaming Service 1 Game Streaming Service 2
Execution Time (ET) 10ms 15ms

Cost (C) $10 $1
Energy (E) 0.01 0.01
Storage (S) 0.01 0.01

Availability (A) 99.0 99.0
Communication Time (CT) 10ms 15ms

Bandwidth (B) 10 Mbit/s 8 Mbit/s
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Figure 6.37: Quasar App in the Service Discovery Tab. The screen on the left shows
the screen to start and stop the discovery process and the resulting list of found
service providers. The second screen shows a detailed overview of the currently
selected service provider.

Equation 74 simplifies the values of Table 6.4 to a QoS matrix, which is needed
for the next steps, with the QoS vector of Game Streaming Service 1 in the
first column and the QoS Vector of Game Streaming Service 2 in the second
column. For readability, we keep the abbreviated QoS parameters on the left of the
matrix.

Equation 74: Quasar: QoS Matrix

ET

C

E

S

A

CT

B



10 15
10 1

0.01 0.01
0.01 0.01
99.0 99.0
10 15
10 8


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According to the xFogStar workflow, the first step is the selection of an unavail-
ability strategy. As the QoS matrix is already fully populated with values, we can
skip this step and proceed to the definition of parameter limits. We do not set any
limits, because we only have two service providers, but we will show how limits are
defined and displayed in the Quasar app at the end of this section. For the third step
of the workflow, the selection of the comparability strategy, we select the percentage
comparability as shown in Equation 75. Thus, for every row, we sum up the values
and divide each individual value by this sum to receive its share.

Equation 75: Quasar: Percentage Comparability

ET

C

E

S

A

CT

B



10 15
10 1

0.01 0.01
0.01 0.01
99.0 99.0
10 15
10 8


→



10/25 15/25
10/11 1/11

0.01/0.02 0.01/0.02
0.01/0.02 0.01/0.02
99.0/198 99.0/198

10/25 15/25
10/18 8/18


→



0.40 0.60
0.91 0.09
0.50 0.50
0.50 0.50
0.50 0.50
0.40 0.60
0.56 0.44


After applying the comparability strategy, we have to address the order of the

parameters. Most of the selected QoS parameters require lower values, but the
Availability and Bandwidth are the better the higher they are. Based on the percent-
age values we created during the comparability strategy, we can invert these QoS
parameters as shown in Equation 76.

Equation 76: Quasar: Ordering

ET

C

E

S

A

CT

B



0.40 0.60
0.91 0.09
0.50 0.50
0.50 0.50
0.50 0.50
0.40 0.60
0.56 0.44


→



0.40 0.60
0.91 0.09
0.50 0.50
0.50 0.50

1 - 0.50 1 - 0.50
0.40 0.60

1 - 0.56 1 - 0.44


→



0.40 0.60
0.91 0.09
0.50 0.50
0.50 0.50
0.50 0.50
0.40 0.60
0.44 0.56


Finally, we can define the importance of each QoS parameter. We set every pa-

rameter to the same importance, and thus skip this step. Figure 6.38 shows how
the ranking process is represented in the Quasar app. On the left screen, the service
consumer can define the parameter importance at the top of the screen and select
the comparability strategy at the bottom of the screen. Afterwards, the resulting
ordered list of service providers with their respective value is shown as depicted on
the right screen.
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Figure 6.38: Quasar App in the Ranking Tab. The first screen shows the different
implemented comparability strategies which can be selected. The second screen
shows the ordered list for the available service providers with their according value
based on the selected strategy.

The values are calculated based on Definition 38. The values for our Quasar case
study are shown in Equation 77. Accordingly, Game Streaming Service 2 is
selected as the streaming service for Fog Component Game Client 5.

Equation 77: Quasar: Ordered Service Provider List

ET

C

E

S

A

CT

B



0.40 0.60
0.91 0.09
0.50 0.50
0.50 0.50
0.50 0.50
0.40 0.60
0.44 0.56


→

QoS1 QoS2(
3.65 3.35

)

Figure 6.39 shows how limits for QoS parameters could be set within the Quasar
app. These limits include maximum and minimum values. If we set the maximum
costs to 2.0, every service provider that exceeds this limit is highlighted in red in the
final ranking. In the details, service consumers can see which limits were exceeded
and decide if they want to use this service provider anyways or if they want to select
a worse fit.
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Figure 6.39: Limit definition in the Quasar App. On the first screen, the service
consumer can define different max and min values for the given QoS parameters.
The second screen shows the ranking after a comparability was selected. The red
highlighting shows service providers that exceeded one parameter limit. On the
third screen, a detailed overview, the corresponding parameter is highlighted.
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FoQsIs

The second case study for the validation of the Service Provider Selection is FoQsIs
with Figure 6.40 showing its HW/SW mapping.

It shows a 3-layered Fog Architecture: On the Cloud Layer it contained one Fog
Component called StatsServerwhich gathered the statistics of the Integration
Services, of which five were placed on the Fog Layer. They were used to provide
continuous integration services to the FoQsIs Clients which were placed on the
Edge Layer.

In accordance to the Quasar case study, FoQsIs focuses on the selection of the
best fitting integration service provider. As shown in Chapter 5, this required the
introduction of a 2-layered View highlighting service consumers and possible service
providers as defined in Equation 78.

Equation 78: FoQsIs: View

View(ALP,n) :=
⋃n−1

i=0 Layer(ALP − i)

View(1, 2) =
n−1⋃
i=0

Layer(ALP − i) = Layer(1) ∪ Layer(0) =

{FogLayer,EdgeLayer}

Since Figure 6.40 shows the current setup with already connected FoQsIs

Clients, in the following, we investigate FoQsIs Client 3 which wanted to
use the services provided by the integration service providers. The Fog Visibilities
of the Integration Services and the Fog Visibility of the FoQsIs Client 3

are shown in Figure 6.41. Based on its Fog Horizon, FoQsIs Client 3 could se-
lect between all five Integration Services.

We instantiated xFogStar to select the best fitting service provider in accordance
to the needs of FoQsIs Client 3. Equation 79 shows the parameter selection
for the FoQsIs case study among which the Delay can be mapped to the Time as
introduced in Section 5.1.1.

Equation 79: FoQsIs: Parameter Selection

−−→
QoS =


Delay(D)

Cost(C)

Bandwidth(B)

Availability(A)


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Figure 6.40: The HW/SW mapping of the FoQsIs setup (UML Deployment Dia-
gram). For readability, we only show components and the used communication
channels. It shows a 3-layered Fog Architecture containing a Cloud Layer, Fog Layer,
and the Edge Layer, which are all deployed on different hardware components, thus,
also representing tiers. For the service provider selection, we use a 2-layered View
with the ALP set to 1.
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FoQsIs 
Client 3

Integration
Service 1

Integration 
Service 2

Stats 
Server

Integration 
Service 3

Integration 
Service 4

Integration 
Service 5

Figure 6.41: The Fog Visibilities of the different Fog Components included within
the FoQsIs Fog Architecture. For readability, we exclude both FoQsIs Clients
that are already connected. The red circles represent the Integration Services
and the blue circle the Stats Server. The green circle shows a Fog Component
which wants to connect to the Fog Architecture, but has five potential Fog Nodes
within its Fog Visibility.
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Table 6.5: FoQsIs: Parameter Values.

QoS Parameter Integration
Service 1

Integration
Service 2

Integration
Service 3

Integration
Service 4

Integration
Service 5

Delay (D) 1.5s 0.9s 4.8s 0.2s 2.8s
Cost (C) $5 $1 $1 $19 $9

Bandwidth (B) 175 Mbit/s 375 Mbit/s 25 Mbit/s 975 Mbit/s 102 Mbit/s
Availability (A) 99.5% 95.3% 91.5% 99.7% 97.5%

The parameter values for the five Integration Services are presented in
Table 6.5. In comparison to the Quasar case study, for these service providers, it is
not inherently obvious which is the best fitting one. It is highly dependent on the
priorities given by the service consumer FoQsIs Client 3.

We transform the table to a matrix representation as shown in Equation 80 to
make it easier to work with. Each service provider’s QoS parameters are listed in
one column ordered by the service provider’s number.

Equation 80: FoQsIs: QoS Matrix

D

C

B

A


1.5 0.9 4.8 0.2 2.8
5 1 1 19 9

175 375 25 975 102
99.5 95.3 91.5 99.7 97.5



As the QoS matrix for this example of the FoQsIs case study was fully populated,
we could skip the first step of the xFogStar workflow which required the selection
of an unavailability strategy.

Equation 81 shows the defined limits: We did not set any limits for the Delay,
Costs, or Bandwidth, but required an Availability of at least 95%.

Equation 81: FoQsIs: Limits

D

C

B

A


[0;∞]

[0;∞]

[0;∞]

[95; 100]



Only one service provider, Integration Service 3 could not ensure this
Availability and was therefore removed from the further calculations and would not
be considered as a suitable service provider.
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For the comparability strategy, we selected a strategy that we call piecewise lin-
ear comparability. For each parameter, it defines a piecewise function consisting of
four parts as shown in Definition 39. For parameters that prefer high values, this re-
lates to a continuous increasing function and for parameters that prefer low values,
this relates to a continuous decreasing function.

Definition 39: Piecewise Linear Comparability

For parameters preferring high values :

f(x) :=


0 x 6 0

1
base

x 0 6 x 6 base

− 1
base−max

x+ 2 + max
base−max

base 6 x 6 max

2 max 6 x

For parameters preferring low values :

f(x) :=


2 x 6 0

− 1
base

x+ 2 0 6 x 6 base

− 1
max−base

x+ 1 + base
max−base

base 6 x 6 max

0 max 6 x

To create the according functions, we had to define two values: base and max.
Base relates to the expected value for the parameter and max relates to the value
above which no improvement (in case of parameters that prefer high values) and
no worsening (in case of parameters that prefer low values) should occur. The base
value always gets assigned a value of 1. For the increasing function, the lowest value
is set to 0 at 0 and the highest value is set to 2 at max. In contrast, for the decreasing
function, the lowest value is set to 2 at 0 and the highest value is set to 0 at max. The
resulting three points are then linear connected.
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We defined the base and max values for our parameters as shown in Equation 82.

Equation 82: FoQsIs: Base and Max Values

baseDelay = 2
baseCost = 1
baseBandwidth = 20
baseAvailability = 99

maxDelay = 100
maxCost = 25
maxBandwidth = 500
maxAvailability = 100

Using these base and max values, Equation 83 shows the according functions.

Equation 83: FoQsIs: Piecewise Linear Comparability

Delay :

f(x) :=


2 x 6 0

−1
2 x+ 2 0 6 x 6 2

− 1
98 x+ 1 + 1

49 2 6 x 6 100

0 100 6 x

Cost :

f(x) :=


2 x 6 0

−x+ 2 0 6 x 6 1

− 1
24 x+

25
24 1 6 x 6 25

0 25 6 x

Bandwidth :

f(x) :=


0 x 6 0
1

20 x 0 6 x 6 20
1

480 x+
23
24 20 6 x 6 500

2 500 6 x

Availability :

f(x) :=


0 x 6 0
1

99 x 0 6 x 6 99

x− 98 99 6 x 6 100

2 100 6 x
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Equation 84 shows the resulting values for our quality of service vector based on
the functions.

Equation 84: FoQsIs: QoS Matrix

D

C

B

A


1.5 0.9 4.8 0.2 2.8
5 1 1 19 9

175 375 25 975 102
99.5 95.3 91.5 99.7 97.5

 −→


1.25 1.55 1.90 0.99
0.83 1.00 0.25 0.67
1.32 1.74 2.00 1.17
1.50 0.96 1.70 0.98


The next step of the xFogStar workflow is the selection of the ordering strategy.

This ordering was addressed using different definitions of continuous, piecewise
functions depending on the ordering of parameters.

Before we could compare the service providers, we had to set the parameters
importance by defining weights. These are shown in Equation 85 with the highest
importance assigned to the Availability.

Equation 85: FoQsIs: Weights

D

C

B

A


30%
15%
60%
100%


Finally, we could add up the values for each service provider to evaluate the best

fit for our service consumer FoQsIs Client 3.

Equation 86: FoQsIs: Ordered Service Provider List

D

C

B

A


1.25 1.55 1.90 0.99
0.83 1.00 0.25 0.67
1.32 1.74 2.00 1.17
1.50 0.96 1.70 0.98

 →
QoS1 QoS2 QoS4 QoS5(
2.79 2.62 3.51 2.08

)

The representation of the xFogStar workflow in the FoQsIs application is
shown in Figure 6.42. On the first screen, the discovery process found the five
Integration Services which are represented in the HW/SW mapping in Fig-
ure 6.40. They were called fogAgent01, fogAgent02, fogAgent04, fogAgent05, and fo-
gAgent06. The second screen shows the step of setting limits and defining weights
for the parameters importance. After saving the given limits and weights, the third
screen shows the ordered list of fogAgents with the best fitting service provider on
top, excluding fogAgent04 which did not ensure the required Availability.

After the xFogStar workflow, the application user can select one of the service
providers and establish a connection.
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(a) Service Discovery (1) (b) Limits & Weights (2) (c) Service Provider List (3)

Figure 6.42: An overview of the FoQsIs Client implementation. The application pro-
vides the possibility to discover service providers for a given service (1), assign lim-
its and weights (2), and finally returns an ordered list of service providers with the
best fit on top and excluding providers that did not match the limits (3).
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6.3 Discussion

6.3 Discussion

In this section, we provide interpretations for the results of the three validations in
form of multiple case studies as shown in Section 6.2. In Section 6.3.2, we investigate
threats to the validity of the validations. For the interpretations, we distinguish
between the individual validations, while for the threats to validity, we combine the
first two validations, because they rely on the same validation technique.

6.3.1 Interpretation

The interpretation of each validation addresses at least two aspects: the Expected Re-
sults versus Provided Results and the Ease of Applicability. The first aspect describes the
differences in the results between the definitions based on Fog Computing and the
definitions introduced by the xFog framework. In Ease of Applicability, we address
the effort it takes to apply the concepts and issues that arose during the implemen-
tation of the case studies.

Independent of the individual validations, all case studies are based on the basic
concepts of xFog (xFogCore) which describe the component set and the communi-
cation set of the Fog Architecture. As we could provide results for all of the case
studies and the related concepts, it supports the assumption that the foundations of
xFog provide the needed basis for the investigated Fog Architectures for the more
advanced concepts: Dynamic Fog Components, Scalable Fog Architectures, and Service
Provider Selection.

Further investigations for the foundations of xFog could include simulations of
Fog Architectures in particular if algorithms are developed that automate the pro-
cess of the evaluation.

Dynamic Fog Components

The interpretation of the results of the Dynamic Fog Components includes three as-
pects: Expected Results versus Provided Results, Overhead, and Security. While the first
two match the overall aspects, during implementation of the case studies, the secu-
rity aspect came up several times.

Expected Results versus Provided Results In order to differentiate between the
results provided by xFogCore and xFogPlus, each cases study in the Dynamic Fog
Components validation describes the initial setup of the case study as a HW/SW
mapping based on a simplified UML component diagram. This allows us to put
the results provided by the mathematical definitions of xFogCore and xFogPlus in
relation to the findings we would expect based on the model approach used by a
software architect.
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The shown setups also include the component which should dynamically be
added to the Fog Architecture and the placement within the architecture that is ex-
pected based on the components’ context. While for the xFogPlus definitions the
component needs to conform to certain criteria to be considered a Fog Component,
the placement of the Fog Component based on the mathematical sets conforms to
the expected placement within the Fog Architecture for all three case studies. This
supports the idea that the xFog foundations describe the dynamic addition of a Fog
Component to a Fog Architecture.

Overhead Due to the amount of mathematical concepts needed to create a consis-
tent definition for a Fog Architecture and the dynamic addition of new components
to the Fog Architecture, there is an overhead which is needed to apply the defini-
tions to a Fog Architecture and to represent the addition of a new component. First,
the process of adding a new component to an existing Fog Architecture requires
the proof that the component complies to the Fog Component requirements. Addi-
tionally, the Fog Set, Communication Set, Service Set, Service Set Mapping, and the
Layer Definitions need to be evaluated to address the impact of the new Fog Com-
ponent on the existing Fog Architecture. As we defined the concepts but do not
provide any algorithms for automation, yet, the overhead to evaluate those mathe-
matical sets in comparison to the model based approach using component diagrams
which is common in Software Engineering is not neglectable. For comparison, in the
model based approach, it is sufficient to describe the new component in relation to
the other components of the Fog Architecture.

Security To create the mathematical sets required for the addition of a new compo-
nent and particularly the placement of the new component on the according layer,
the Fog Architecture needs to be fully understood and accessible by the system ar-
chitect. For example, to define the different layers of the Fog Architecture, all pro-
vided services need to be discoverable and documented. This means that even al-
most independent components that are only connected to the Cloud Device, e. g.,
shown by the PdMFrame case study, need to disclose their provided services and
connected components.

Scalable Fog Architectures

This section presents the interpretation of the scalable Fog Architecture validation.
We describe the Expected Results versus Provided Results and address the Overhead.
Additionally, we investigate the benefits the View concept includes and the impact of
the dynamic type change of Fog Components.
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Expected Results versus Provided Results In accordance to the first validation,
every case study in the scalable Fog Architectures validation first describes the ini-
tial setup using a HW/SW mapping described as a UML component diagram. As
the goal of the case studies is the addition of a new layer, the description of the
initial setup using xFogCore and xFogPlus focuses on the contained layers in this
setup, the services, which describe them, as well as the connections between the
layers. The second presented setup for each case study shows the UML compo-
nent diagram displaying the expected result after the new layer was integrated. To
achieve this using the introduced concepts, several sets need to be adjusted. These
adjustments can be translated back to a Fog Architecture which represents the setup
which described the expected results. This supports the assumption that the scalable
concept of xFogPlus works as intended.

Overhead The scalable Fog Architecture concept contains an overhead. Also not
presented in Section 6.2.2 due to a different point of focus, the full description of the
initial setup contains the same overhead as for the dynamic Fog Components. If the
setup is described using the presented concepts, the actual addition of a new layer
is straightforward with each set only requiring minor adjustments.

Benefits of the View concept As part of the scalable Fog Architecture concept, we
tested the applicability of the View concept as introduced in Section 4.2.2. As shown,
the View definition allows an easy usage, only requiring a single set to be evaluated
which is described by the Abstraction Level and the amount of requested layers.
Also the benefits of these Views is rather limited in the presented case studies, as the
complexity of the Fog Architecture is not high enough, the benefits already increase
in the eHealth setup (Equation 6.2.2) with a total of five layers. Describing different
Abstraction Levels is even more interesting if different stakeholders are involved in
a setup which has a sufficient scale and extend.

Impact of Dynamic Type Changes The final point which is addressed in the case
studies for scalable Fog Architectures is the dynamic type change that several Fog
Components go through based on the different described Views. While this change
might not have any immediate influence, it describes a fundamental problem in the
concept of Fog Computing. Depending on the stakeholders’ definitions of compo-
nents, different component are considered Edge Devices, Fog Nodes, and Cloud
Devices. Thus, a definition which uniquely defines those three types of components
needs to be introduced, e. g., the description of these components based on the of-
fered and consumed services as described by xFogPlus.
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Service Provider Selection

This section presents the interpretation of the validation for the Service Provider
Selection. We describe Expected Results versus Provided Results, Ease of Applicability,
and the Strategy Selections.

Expected Results versus Provided Results Due to the difference in the case study
design for the Service Provider Selection validation in terms of instantiations of the
xFogStar workflow in contrast to the modeling approach of the first two valida-
tions, the description of the initial setup differs in the sense that we only describe
a 2-layered View and the Fog Components’ Fog Visibilities before adding a new
component to the setup. Accordingly, we cannot base our expected results on these
descriptions. The result that is expected is that the service consumer finds the best
fitting service provider for a given service. In the case of Quasar with only two avail-
able service providers, this is rather easy as the second service provider is better in
almost every parameter and that’s the result that we get by using the xFogStar work-
flow. But the more QoS parameters are included and the more service providers, the
harder it is to define which service provider is the ”best fitting” service provider for
a service consumer. Even worse, the service provider selection is closely linked to
the selected strategies for the different parts of the workflow. For example, a compa-
rability strategy which uses absolute values might rate a service provider unusable
based on one single bad QoS parameter, also it might be the better service provider
over all. Thus, we focused on the instantiation of the workflow and that the work-
flow provides the expected results for examples that are understandable instead of
including all the different strategies.

Ease of Applicability As shown by both case studies, implementing the strategies
and exposing them to the users which can select the strategies as well as preferences
is more a topic for UI design than the ease of applicability of the workflow itself.
The workflow implementation can be made as complex as desired using different
strategies, but the approach itself is designed to be rather simplistic and result ori-
ented.

Strategy Selections One of the most difficult decisions for the xFogStar workflow
is the selection of the strategies for the different parts of the workflow, as the strate-
gies heavily influence the selection process of the service provider. While our fo-
cus is the applicability of the workflow itself, we suggest additional laboratory ex-
periments to evaluate which strategy performs the best and which other strategies
should be investigated for the unavailability strategies, the comparability strategies,
and the ordering strategies.
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6.3.2 Threats to Validity

In this section we want to address the threats to validity that exist for the three pre-
sented validations. As the first two validations are based on the introduction of
the concepts using modeling and the third validation being based on instantiating
the xFogStar workflow, we distinguish the threats dependent on those two differ-
ent types of validation. We focus on the four dimensions of validity as introduced
by Runeson et al. [117]: construct validity, internal validity, external validity, and
reliability.

Modeling Validations

First, we want to address the threats to validity for both validations that mainly
relied on modeling, as both are based on the same validation method, and therefore
pose similar threats.

Construct Validation The goal of both validations is to show that the introduced
foundations of xFog can be applied to the selected architectures in the different do-
mains. Based on the assumption that xFog is a generalized concept which can be
applied to any architecture that is based on Fog Computing, the probability of the
case study not meeting the results the researcher wants to study can be considered
low as long as the described cases represent a Fog Architecture. As the case studies
are designed to proof the applicability by evaluating the mathematical definitions,
they also do not provide a wide variety of interpretability.

Internal Validation Due to the fact, that the researcher was involved in the devel-
opment of the case studies, also mainly as an advisor, raises the chance that the case
studies were tailored to the definitions of xFog, and thus the presented case studies
do not reflect Fog Architectures which are representative for a wide variety of Fog
Architectures. We tried to mediate this threat to the internal validity by selecting
different domains and address different needs introduced by these domains with
respect to Fog Computing. Additionally, we involved, depending on the case study,
up to ten developers in the modeling and development of the systems as well as
other researchers that guided the research process.

External Validation We report on three case studies each for both validations, the
degree of generalizability is considered low. We tried to select different domains
to ensure the applicability of the introduced concepts across independent domains
but both, ARControl and Lassie, as well as DisCoFog 1 and Fog.BOI introduce an
overlap of application domains. ARControl and Lassie are both placed within the
smart environment domain with Lassie being additionally in the health domain.
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As the health domain relies on similar concepts as the smart environment do-
main, this overlap could not be avoided with this selection of case studies. Never-
theless, we argue that the health domain exhibits unique requirements which dis-
tance it from the smart environment domain.

In comparison, DisCoFog 1 and Fog.BOI are both placed within the smart city
domain which tries to better integrate smart vehicles in traffic guidance and opti-
mization. While the case studies differed in the vehicle selection, the domains do
not differ enough to be considered different domains.

To increase the degree of generalizability, additional case studies in different do-
mains need to be conducted for both validations.

Reliability Due to the foundation of xFog being based on mathematical defini-
tions, the reliability of both validations can be considered high. After implementing
the systems in the different domains, the case studies applied the mathematical defi-
nitions as introduced in xFogCore and xFogPlus. These mathematical definitions do
not offer any room for interpretations, and thus lead to the same results independent
of the researcher analyzing the case studies results.

Instantiation Validation

In this section, we address the threats to validity for the instantiations of the xFogStar
workflow validation.

Construct Validation We particularly selected the validation and implemented the
case studies with the xFogStar workflow in mind. Thus, the risk of the case studies
not representing the intended goals, can be considered low. Also the case studies
were selected by the researcher, the implementations were created by students dur-
ing the conduction of their theses. Thus, the risk is higher that the understanding
of the workflow differed between the researchers intentions and the students’ inter-
pretations. We tried to address this issue by scheduling weekly meetings to discuss
the students progress and answer any upcoming question. Additionally, they could
get in contact with us at any time.

Internal Validation While conducting the case studies, there is a risk that third
factors influenced the results of the validation of the workflow. Especially, the selec-
tion of the strategies for each step of the workflow poses such a threat. To mediate
the threats to the internal validity, we selected different strategies for each step and
implemented several strategies instead of focusing on a single one. Additionally, we
tried to select simple strategies to reduce the impact of each strategy on the work-
flow.
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External Validation As we could only conduct two case studies, and therefore cre-
ate two instances of the xFogStar workflow, the degree of generalizability is low.
Also the usage of the workflow resulted in the selection of the better fitting service
provider based on the service consumers needs, the selection of the strategies for the
different workflow parts might have influenced the results. We think that the work-
flow itself represents the needed steps to select the best fitting service provider and
can therefore help to improve the setup of Fog Architecture. To be able to report on
more generalizable results, the amount of instantiations of the xFogStar workflow
has to be increased in different domains and with different strategies for each step.

Reliability The instantiations were created by students, only one single researcher
analyzed the results of the case studies in relation to the workflow. We tried to
mediate this threat by letting the students describe their findings in their theses
while answering questions that might have come up during the conduction of the
case study.
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Chapter 7

Conclusion

“Good design is a renaissance attitude that combines technology, cognitive sci-
ence, human need, and beauty to produce something that the world didn’t know
it was missing.”

— PAOLA ANTONELLI

This chapter concludes the dissertation. In Section 7.1, we summarize the contribu-
tions, revisiting the concepts introduced in Chapter 3, Chapter 4, and Chapter 5. We
address topics that require further investigation as well as opportunities to improve
the presented xFog framework in Section 7.2.

7.1 Contributions

The main goal of this dissertation was to create a framework that establishes a for-
malization for Fog Computing, integrates support for mobile applications and dy-
namic reconfigurability of Fog Architectures. We used the design science methodol-
ogy to investigate this goal using software engineering techniques followed by the
creation of treatment designs and treatment validations. In the following, we revisit
these phases of the design cycle.

Problem Investigation

In the introduction, we presented the problems that Fog Computing faces and its du-
ality between a concept and a software architecture, as well as its missing support
for dynamics and scalability. These problems resulted in three knowledge goals to
address software architectures and to investigate the implications of the developed
framework. Five technical research goals formed the technical objective for this dis-
sertation. We provided summaries into the concepts related to Fog Computing and
xFog, an extension for Fog Computing, to define corresponding terms.
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We summarized the presented problems and technical research goals in use cases
for the involved actors and formalized the use cases into functional and non-functional
requirements which represent design problems. These have to be fulfilled by xFog
to be considered an extension for Fog Computing that complies to software architec-
tures and supports dynamic and scalable behavior of Fog Components and layers.

xFog Framework

To address the gap between Fog Computing as a concept and Fog Computing as a
software architecture, we presented a historical overview of the evolution of soft-
ware architecture and compared definitions from different authors. After identi-
fying the similarities between the definitions, we introduced the xFog framework
which is an extension to formalize Fog Computing and settle it as a software ar-
chitecture. We achieved the first Knowledge Goal as well as the first three Technical
Research Goals as described in Section 1.2 with xFog, xFogCore, and xFogPlus. Tech-
nical Research Goal 4 could be achieved by creating xFogStar.

xFogCore defined the Component Set represented by the Fog Set and the Commu-
nication Set which relate to the components and connectors of a software architec-
ture. To define the Fog Set, xFogCore introduced the Fog Component Set, Fog Visi-
bility, Fog Horizon, and Fog Reachability. These concepts describe the components of
a Fog Architecture based on mathematical definitions. We showed how the com-
ponent sets can be constrained to specific services that are offered or consumed, or
that are of interest for a Fog Component, which allows the identification of layers
within Fog Architectures. We defined the Communication Set as a set of Communica-
tion Components which are defined by the involved Fog Components and the used
communication channel. The sets were put into context by a meta model on MOF
level M2 including the basic building blocks of software architectures which allowed
the interpretation of the sets as graphs.

xFogPlus introduced support for the dynamic addition of Fog Components to
the Fog Architecture at runtime by redefining the idea of Fog Components and by
providing definitions for the three layers: Edge Layer, Fog Layer, and Cloud Layer.
Second, new layers can be described and added to the Fog Architecture enabling
scalability. As the scalability increased the complexity of the Fog Architecture, we
established the concept of different Views on the Fog Architecture to set a focus
on different layers depending on the stakeholder’s current interest which is rep-
resented as the Abstraction Level Pointer.

xFogStar defined a workflow for the service provider selection in dynamically
scalable Fog Architectures which are described by the concepts of xFogCore and
xFogPlus. The workflow is used to select the best fitting service provider for the
service consumer’s needs.
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These needs are represented as a vector of QoS parameters which we defined and
categorized according to their dependencies. We investigated the different steps of
the xFogStar workflow to outline arising problems.

Validation of xFog

We validated three aspects that use the foundations and formalization of xFog to
investigate Knowledge Goal 2 and Knowledge Goal 3: Dynamic Fog Components, Scal-
able Fog Architectures, and the Service Provider Selection. For each aspect, we used a
multiple case study to gather quantitative data on the feasibility of xFog, and thus
xFogCore, xFogPlus, and xFogStar. Dynamic Fog Components and Scalable Fog Ar-
chitectures related to xFogCore and xFogPlus, while the Service Provider Selection ad-
dressed the xFogStar workflow.

Each validation compared the expected results represented by the models of
the Fog Architectures for each case study with the results provided by xFog. The
first multiple case study investigated three cases from different domains to support
generalizable conclusions. It demonstrated the feasibility of xFog and in particular
xFogPlus by examining the addition of components at runtime. The second vali-
dation included three cases and showed the feasibility of the scalable concepts of
xFogPlus by adding new layers to existing Fog Architectures. The resulting Fog
Architectures were used to highlight the applicability of the View-concept which ad-
dresses complexity depending on the stakeholder’s current point of interest. Finally,
the validation of the Service Provider Selection highlighted the feasibility of xFogStar
with two instantiations of the workflow.
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7.2 Future Work

Based on the development of xFog, and respectively xFogCore, xFogPlus, and
xFogStar, we opened up further research opportunities that could be investigated.

7.2.1 Automation of xFog

xFog formalizes Fog Computing by providing equivalents to the component and
connectors that define software architectures. Using set theory, different properties
of the included relations, and the locality of Fog Computing, Fog Architectures can
be described and analyzed. In its current state, xFog is applied as a manual process
evaluating the relations that form the involved sets of xFogCore and the extensions
provided by xFogPlus.

Based on the graph definitions introduced in Section 3.4, we imaging that the sets
and relations could be evaluated at runtime in a semi-automated way. While eval-
uating which components conform to the Fog Component definition, introduced in
Section 4.1.1, most likely remains a manual process, the evaluation of the Fog Vis-
ibility, and therefore the related sets up to the Fog Set, could be automated using
algorithms to travers graphs such as breadth-first (BFS) or depth-first search (DFS).

To develop such algorithms, two challenges have to be investigated: First, Fog
Architectures tend to use a wide variety of communication channels as described in
Section 3.3. Accordingly, to identify all Fog Components that are integrated in a Fog
Architecture, the used communication channels have be known at any time during
runtime or the algorithms have to be implemented for all potential communication
channels that are supported by any Fog Component. In particular in the area of IoT
with its huge amount of different devices, communication channels, and protocols,
this is an interesting topic for further research.

Second, based on the selected communication channels, the algorithms need to
be able to identify circles within the graphs as every bidirectional communication
channel can be seen as such. Circles can exist that use one communication channel to
get to a Fog Component and another communication channel to get back, requiring
the algorithms to be communication channel independent.
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7.2 Future Work

7.2.2 Service Migration

During the development of xFogPlus, we introduced definitions for the layers of
Fog Architectures. These definitions are based on the provided services that are
consumed and provided on each layer. Using this service-based layer definition al-
lowed us to describe the process of adding new layers within a Fog Architecture,
even describing the process of creating a new Fog Architecture from a client-server
architecture. We addressed the corresponding implications of the new layers in re-
lation to the described sets and concepts: Starting with the Service Set, we added the
new services provided by the new layer. We updated the Service Set Mapping to re-
flect these changes, but we did not describe how services are moved from one layer
to another layer. This problem is better known under the term ”Process Migration”
and well-described in literature. Nevertheless, it would be interesting to investigate
the effects of the process migration workflows in the context of xFogPlus, to see if
their definitions can be applied in Fog Architectures described by xFog.

7.2.3 Further research for xFogStar

Not only service consumers, but also service providers can have an interest in se-
lecting the best fitting communication partner: Service providers might not have the
capacities to provide the offered service to each potential service consumer which
requests the offered services. In case of dynamic Fog Components, such a limited
capacity is often the available energy. To address this issue, the xFogStar workflow
could be extended to introduce a service negotiation between service consumers
and service providers based on the xFog framework.

Second, based on the definitions of xFogStar, service providers guarantee for the
provided parameters. This is an issue for parameters that are not solely depending
on service providers. For instance, the bandwidth highly depends on the network
setup, and therefore all hops in between the service consumer and service provider
with the minimum bandwidth between those resulting in the overall bandwidth
as described in Section 5.2.1. Accordingly, service providers often do not have an
influence on these parameters.

If service providers know that they have bad QoS parameters, they could inten-
tionally provide no or wrong values to get more requests from service consumers.
In Section 5.2.2, we presented techniques to handle parameters that were not pro-
vided at all. This addresses the issue when service providers assume their values to
be worse than the values from other service providers, and thus not sending theirs.
One possible solution could be to establish a trusted instance in the Fog Architecture
that stores the service consumers’ ratings of the services. This idea is used in online
markets, as for instance with the D-T scale [146].
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7 Conclusion

The main drawback of this solution is that it is difficult for new service providers
to establish themselves in the market and that before a rating can be created, some
service consumers might have bad experiences with service providers. The second
case, when service providers send wrong values is even worse, as the service con-
sumers could loose trust in the xFogStar workflow and stop using it. Therefore,
further research is required.

Finally, the xFogStar workflow requires additional time to establish a connection
between a service consumer and service provider. This overhead in startup time
poses another issue for xFogStar in particular in real-time applications that depend
on fast discoveries and response times. While the response time can be specified
to be low using QoS parameters, the discovery time is increased by using xFogStar.
One possible solution is to limit the investigated QoS parameters, but further re-
search is required.
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Appendix A

Licenses

In the following, we list the licenses for the used material from previous publica-
tions.

A.1 ACM

Content of the paper [66] is used in this dissertation which is published under the
ACM Author Rights agreement35. The following excerpt shows the relevant part for
this dissertation:

REUSE
Authors can reuse any portion of their own work in a new work of their own

(and no fee is expected) as long as a citation and DOI pointer to the Version of
Record in the ACM Digital Library are included.

• Authors can include partial or complete papers of their own (and no fee
is expected) in a dissertation as long as citations and DOI pointers to the
Versions of Record in the ACM Digital Library are included. Authors can
use any portion of their own work in presentations and in the classroom
(and no fee is expected).

35https://authors.acm.org/author-resources/author-rights
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Appendix B

Additional Equations for Validation

This appendix provides additional equations for the results of the validation as
shown in Chapter 6. For the validation of the dynamic Fog Components, we show
the Communication Sets which were abbreviated for readability. For the scalable
Fog Architectures validation we include the Fog Set and layer definitions, the writ-
ten out form of the Communication Set, the adjustments to the Fog Set and layers
after the new layer was added, and the unabbreviated Communication Set after the
layer was added. For the validation of the service provider selection, we show the
Fog Set, the Communication Set, the Service Set and Service Set Mapping, the layers,
and the equations needed for the addition of a new component.

• ARControl is extended in Section B.1.

• Lassie is extended in Section B.2.

• PdMFrame is extended in Section B.3.

• DisCoFog 1 is extended in Section B.4.

• DisCoFog 2 is extended in Section B.5.

• eHealth is extended in Section B.6.

• Fog.BOI is extended in Section B.7.

• Quasar is extended in Section B.8.

• FoQsIs is extended in Section B.9.
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B Additional Equations for Validation

B.1 ARControl

Equation 87 shows the written out form of the Communication Set for ARControl
which was abbreviated for readability in Section 6.2.1.

Equation 87: ARControl: Communication Set

CommunicationSet = {

(OpenHABServer,Ethernet,Paul ′sOffice),

(Paul ′sOffice,Ethernet,OpenHABServer),

(OpenHABServer,Ethernet,Kitchen),

(Kitchen,Ethernet,OpenHABServer),

(OpenHABServer,Ethernet,ConferenceRoom),

(ConferenceRoom,Ethernet,OpenHABServer),

(Paul ′sOffice,Ethernet,CeilingLight1),

(CeilingLight1,Ethernet,Paul ′sOffice),

(Paul ′sOffice,Ethernet,DeskLight1),

(DeskLight1,Ethernet,Paul ′sOffice),

(Paul ′sOffice,Ethernet,Occupancy1),

(Occupancy1,Ethernet,Paul ′sOffice),

(Paul ′sOffice,Ethernet,DeskHeater1),

(DeskHeater1,Ethernet,Paul ′sOffice),

(Paul ′sOffice,Ethernet,Temperature1),

(Temperature1,Ethernet,Paul ′sOffice),

(Kitchen,Ethernet,CeilingLight2),

(CeilingLight2,Ethernet,Kitchen),

(Kitchen,Ethernet,Occupancy2),

(Occupancy2,Ethernet,Kitchen),

(Kitchen,Ethernet,Temperature2),

(Temperature2,Ethernet,Kitchen),

(ConferenceRoom,Ethernet,CeilingLight3),

(CeilingLight3,Ethernet,ConferenceRoom),

(ConferenceRoom,Ethernet,Window1),

(Window1,Ethernet,ConferenceRoom),

(ConferenceRoom,Ethernet,Occupancy3),

(Occupancy3,Ethernet,ConferenceRoom),

(ConferenceRoom,Ethernet,Window2),

(Window2,Ethernet,ConferenceRoom),

(ConferenceRoom,Ethernet,Temperature3),

(Temperature3,Ethernet,ConferenceRoom),

(ConferenceRoom,Ethernet,Window3),

(Window3,Ethernet,ConferenceRoom)

}
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B.3 Lassie

B.2 Lassie

Equation 88 shows the written out form of the Communication Set for the Lassie case
study.

Equation 88: Lassie: Communication Set

CommunicationSet = {

(DRKServer,Ethernet,Patient1Home)

(Patient1Home,Ethernet,DRKServer)

(DRKServer,Ethernet,Patient2Home),

(Patient2Home,Ethernet,DRKServer),

(Patient1Home,WIFI,Door1),

(Door1,WIFI,Patient1Home),

(Patient1Home,WIFI,Motion1),

(Motion1,WIFI,Patient1Home),

(Patient1Home,WIFI,Occupancy1),

(Occupancy1,WIFI,Patient1Home),

(Patient1Home,WIFI,Heartrate1),

(Heartrate1,WIFI,Patient1Home),

(Patient1Home,WIFI, FallDetection1),

(FallDetection1,WIFI,Patient1Home),

(Patient2Home,WIFI,Door2),

(Door2,WIFI,Patient2Home),

(Patient2Home,WIFI,Motion2),

(Motion2,WIFI,Patient2Home),

(Patient2Home,WIFI,Occupancy2),

(Occupancy2,WIFI,Patient2Home),

(Patient2Home,WIFI,Heartrate2),

(Heartrate2,WIFI,Patient2Home),

(Patient2Home,WIFI, FallDetection2),

(FallDetection2,WIFI,Patient2Home)
}
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B Additional Equations for Validation

B.3 PdMFrame

The unabbreviated form of the Communication Set for PdMFrame is presented in
Equation 89.

Equation 89: PdMFrame: Communication Set

CommunicationSet = {

(DataAnalysisServer,Ethernet,AccessPoint1),

(AccessPoint1,Ethernet,DataAnalysisServer),

(DataAnalysisServer,Ethernet,AccessPoint2),

(AccessPoint2,Ethernet,DataAnalysisServer),

(AccessPoint1,Ethernet,DuraMax1),

(DuraMax1,Ethernet,AccessPoint1),

(AccessPoint1,Ethernet,Microphone1),

(Microphone1,Ethernet,AccessPoint1),

(AccessPoint1,Ethernet, Temperature1),

(Temperature1,Ethernet,AccessPoint1),

(AccessPoint1,Ethernet,Motion1),

(Motion1,Ethernet,AccessPoint1),

(AccessPoint2,Ethernet,DuraMax2),

(DuraMax2,Ethernet,AccessPoint2),

(AccessPoint2,Ethernet,Microphone2),

(Microphone2,Ethernet,AccessPoint2),

(AccessPoint2,Ethernet, Temperature2),

(Temperature2,Ethernet,AccessPoint2),

(AccessPoint2,Ethernet,Motion2),

(Motion2,Ethernet,AccessPoint2)
}
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B.4 DisCoFog

B.4 DisCoFog

This section adds the equations to the DisCoFog 1 case study results which were not
the focus of the case study itself but are required as foundations for xFog.

• Equation 90 shows the Fog Set and the mapping of the Fog Components to
their according layer.

• Equation 91 shows the unabbreviated Communication Set.

• Equation 92 shows the Fog Set and layer adjustments after a new layer was
added to the Fog Architecture.

• Equation 93 shows the extended Communication Set after the addition of the
new layer.

Equation 90: DisCoFog: Fog Set and Layers

FogSet = {DataVisualizationServer,City1,City2,Drone1,Drone2,

Drone3,Drone4,Drone5,Drone6,Drone7,Drone8}

CloudLayer = {DataVisualizationServer}

FogLayer = {City1,City2}
EdgeLayer = {Drone1,Drone2,Drone3,Drone4,

Drone5,Drone6,Drone7,Drone8}

Equation 91: DisCoFog: Communication Set

CommunicationSet = {(DataVisualizationServer, 3G/4G,City1),

(City1, 3G/4G,DataVisualizationServer),

(DataVisualizationServer, 3G/4G,City2),

(City2, 3G/4G,DataVisualizationServer),

(City1,WIFI,Drone1), (Drone1,WIFI,City1),

(City1,WIFI,Drone2), (Drone2,WIFI,City1),

(City1,WIFI,Drone3), (Drone3,WIFI,City1),

(City1,WIFI,Drone4), (Drone4,WIFI,City1),

(City1,WIFI,Drone5), (Drone5,WIFI,City1),

(City1,WIFI,Drone6), (Drone6,WIFI,City1),

(City2,WIFI,Drone7), (Drone7,WIFI,City2),

(City2,WIFI,Drone8), (Drone8,WIFI,City2)}

245



B Additional Equations for Validation

Equation 92: DisCoFog: Fog Set and Layers after Layer Addition

FogSetnew = FogSetold ∪ {City1Access1,City1Access2,City2Access1}

CloudLayernew = CloudLayerold
EdgeLayernew = EdgeLayerold
FogLayer2 = FogLayerold
FogLayer1 = {City1Access1,City1Access2,City2Access1}
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B.4 DisCoFog

Equation 93: DisCoFog: Communication Set after Layer Addition

CommunicationSet = {(DataVisualizationServer, 3G/4G,City1),

(City1, 3G/4G,DataVisualizationServer),

(DataVisualizationServer, 3G/4G,City2),

(City2, 3G/4G,DataVisualizationServer),

(City1,WIFI,City1Access1)

(City1Access1,WIFI,City1)

(City1,WIFI,City1Access2)

(City1Access2,WIFI,City1)

(City2,WIFI,City2Access1)

(City2Access1,WIFI,City2)

(City1Access1,WIFI,Drone1),

(Drone1,WIFI,City1Access1),

(City1Access1,WIFI,Drone2),

(Drone2,WIFI,City1Access1),

(City1Access1,WIFI,Drone3),

(Drone3,WIFI,City1Access1),

(City1Access2,WIFI,Drone4),

(Drone4,WIFI,City1Access2),

(City1Access2,WIFI,Drone5),

(Drone5,WIFI,City1Access2),

(City1Access2,WIFI,Drone6),

(Drone6,WIFI,City1Access2),

(City2Access1,WIFI,Drone7),

(Drone7,WIFI,City2Access1),

(City2Access1,WIFI,Drone8),

(Drone8,WIFI,City2Access1)}

247



B Additional Equations for Validation

B.5 DisCoFog 2

This section adds those equations to the DisCoFog 2 case study results that are re-
quired for the foundations of xFog, but are not emphasized by the case study itself.

• Equation 94 shows the Fog Set and its layers.

• Equation 95 shows the Communication Set.

• Equation 96 shows the redefined Fog Set and its layers after the layer addition.

• Equation 97 shows the updated Communication Set after the layer addition.

Equation 94: DisCoFog 2: Fog Set and Layers

FogSet = {OpenHABServer,Paul ′sOffice,Kitchen,ConferenceRoom,

CeilingLight1,DeskLight1,Occupancy1,DeskHeater1,

Temperature1,CeilingLight2,Occupancy2,

Temperature2,CeilingLight3,Window1,

Occupancy3,Window2, Temperature3,

Window3}

CloudLayer = {OpenHABServer}

FogLayer = {Paul ′sOffice,Kitchen,ConferenceRoom}

EdgeLayer = {CeilingLight1,DeskLight1,Occupancy1,DeskHeater1,

Temperature1,CeilingLight2,Occupancy2,

Temperature2,CeilingLight3,Window1,

Occupancy3,Window2,

Temperature3,Window3}
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B.5 DisCoFog 2

Equation 95: DisCoFog 2: Communication Set

CommunicationSet = {

(OpenHABServer,Ethernet,Paul ′sOffice),

(Paul ′sOffice,Ethernet,OpenHABServer),

(OpenHABServer,Ethernet,Kitchen),

(Kitchen,Ethernet,OpenHABServer),

(OpenHABServer,Ethernet,ConferenceRoom),

(ConferenceRoom,Ethernet,OpenHABServer),

(Paul ′sOffice,Ethernet,CeilingLight1),

(CeilingLight1,Ethernet,Paul ′sOffice),

(Paul ′sOffice,Ethernet,DeskLight1),

(DeskLight1,Ethernet,Paul ′sOffice),

(Paul ′sOffice,Ethernet,Occupancy1),

(Occupancy1,Ethernet,Paul ′sOffice),

(Paul ′sOffice,Ethernet,DeskHeater1),

(DeskHeater1,Ethernet,Paul ′sOffice),

(Paul ′sOffice,Ethernet, Temperature1),

(Temperature1,Ethernet,Paul ′sOffice),

(Kitchen,Ethernet,CeilingLight2),

(CeilingLight2,Ethernet,Kitchen),

(Kitchen,Ethernet,Occupancy2),

(Occupancy2,Ethernet,Kitchen),

(Kitchen,Ethernet, Temperature2),

(Temperature2,Ethernet,Kitchen),

(ConferenceRoom,Ethernet,CeilingLight3),

(CeilingLight3,Ethernet,ConferenceRoom),

(ConferenceRoom,Ethernet,Window1),

(Window1,Ethernet,ConferenceRoom),

(ConferenceRoom,Ethernet,Occupancy3),

(Occupancy3,Ethernet,ConferenceRoom),

(ConferenceRoom,Ethernet,Window2),

(Window2,Ethernet,ConferenceRoom),

(ConferenceRoom,Ethernet, Temperature3),

(Temperature3,Ethernet,ConferenceRoom),

(ConferenceRoom,Ethernet,Window3),

(Window3,Ethernet,ConferenceRoom)

}
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B Additional Equations for Validation

Equation 96: DisCoFog 2: Fog Set and Layers after Layer Addition

FogSetnew = FogSetold ∪ {Floor1}

CloudLayernew = CloudLayerold
EdgeLayernew = EdgeLayerold
FogLayer1 = FogLayerold
FogLayer2 = {Floor1}
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B.5 DisCoFog 2

Equation 97: DisCoFog 2: Communication Set after Layer Addition

CommunicationSet = {

(OpenHABServer,LAN, Floor1),

(Floor1,LAN,OpenHABServer),

(Floor1,WIFI,Paul ′sOffice),

(Paul ′sOffice,WIFI, Floor1),

(Floor1,WIFI,Kitchen),

(Kitchen,WIFI, Floor1),

(Floor1,WIFI,ConferenceRoom),

(ConferenceRoom,WIFI, Floor1),

(Paul ′sOffice,LAN,CeilingLight1),

(CeilingLight1,LAN,Paul ′sOffice),

(Paul ′sOffice,LAN,DeskLight1),

(DeskLight1,LAN,Paul ′sOffice),

(Paul ′sOffice,LAN,Occupancy1),

(Occupancy1,LAN,Paul ′sOffice),

(Paul ′sOffice,LAN,DeskHeater1),

(DeskHeater1,LAN,Paul ′sOffice),

(Paul ′sOffice,LAN, Temperature1),

(Temperature1,LAN,Paul ′sOffice),

(Kitchen,LAN,CeilingLight2),

(CeilingLight2,LAN,Kitchen),

(Kitchen,LAN,Occupancy2),

(Occupancy2,LAN,Kitchen),

(Kitchen,LAN, Temperature2),

(Temperature2,LAN,Kitchen),

(ConferenceRoom,LAN,CeilingLight3),

(CeilingLight3,LAN,ConferenceRoom),

(ConferenceRoom,LAN,Window1),

(Window1,LAN,ConferenceRoom),

(ConferenceRoom,LAN,Occupancy3),

(Occupancy3,LAN,ConferenceRoom),

(ConferenceRoom,LAN,Window2),

(Window2,LAN,ConferenceRoom),

(ConferenceRoom,LAN, Temperature3),

(Temperature3,LAN,ConferenceRoom),

(ConferenceRoom,LAN,Window3),

(Window3,LAN,ConferenceRoom)

}
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B Additional Equations for Validation

B.6 eHealth

This section adds the fundamental equations to the eHealth case study results.

• Equation 98 shows the Fog Set and the according layers.

• Equation 99 shows the unabbreviated Communication Set.

• Equation 100 shows the updated Fog Set and its layer after the layer addition.

• Equation 101 shows the updated Communication Set after the layer addition.

Equation 98: eHealth: Fog Set and Layers

FogSet = {HospitalServer, Floor1, Floor2,Room1,

Room2,Room3,Microscope,RoboticArm,

RadiologyDevice,DiagnosticDevice}

CloudLayer = {HospitalServer}

FogLayer2 = {Floor1, Floor2}
FogLayer1 = {Room1,Room2,Room3}
EdgeLayer = {Microscope,RoboticArm,RadiologyDevice,

DiagnosticDevice}
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B.6 eHealth

Equation 99: eHealth: Communication Set

CommunicationSet = {

(HospitalServer,Ethernet, Floor1),

(Floor1,Ethernet,HospitalServer),

(HospitalServer,Ethernet, Floor2),

(Floor2,Ethernet,HospitalServer),

(Floor1,Ethernet,Room1),

(Room1,Ethernet, Floor1),

(Floor1,Ethernet,Room2),

(Room2,Ethernet, Floor1),

(Floor2,Ethernet,Room3),

(Room3,Ethernet, Floor2),

(Room1,WIFI,Microscope),

(Microscope,WIFI,Room1),

(Room2,WIFI,RoboticArm),

(RoboticArm,WIFI,Room2),

(Room2,WIFI,RadiologyDevice),

(RadiologyDevice,WIFI,Room2),

(Room3,WIFI,DiagnosticDevice),

(DiagnosticDevice,WIFI,Room3)
}

Equation 100: eHealth: Fog Set and Layers after Layer Addition

FogSetnew = FogSetold ∪ {Department1}

CloudLayernew = CloudLayerold
EdgeLayernew = EdgeLayerold
FogLayer1 = FogLayer1old

FogLayer2 = FogLayer2old

FogLayer3 = {Department1}
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B Additional Equations for Validation

Equation 101: eHealth: Communication Set after Layer Addition

CommunicationSet = {

(HospitalServer,LAN,Department1),

(Department1,LAN,HospitalServer),

(Department1,LAN, Floor1),

(Floor1,LAN,Department1),

(Department1,LAN, Floor2),

(Floor2,LAN,Department1),

(Floor1,LAN,Room1),

(Room1,LAN, Floor1),

(Floor1,LAN,Room2),

(Room2,LAN, Floor1),

(Floor2,LAN,Room3),

(Room3,LAN, Floor2),

(Room1,WIFI,Microscope),

(Microscope,WIFI,Room1),

(Room2,WIFI,RoboticArm),

(RoboticArm,WIFI,Room2),

(Room2,WIFI,RadiologyDevice),

(RadiologyDevice,WIFI,Room2),

(Room3,WIFI,DiagnosticDevice),

(DiagnosticDevice,WIFI,Room3)
}
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B.7 Fog.BOI

B.7 Fog.BOI

This section adds the equations for the foundations of xFog to the Fog.BOI case study
results.

• Equation 102 shows the Fog Set and the according layers.
• Equation 103 shows the unabbreviated Communication Set.
• Equation 104 shows the updated Fog Set and its layer after the layer addition.
• Equation 105 shows the updated Communication Set after the layer addition.

Equation 102: Fog.BOI: Fog Set and Layers

FogSet = {MunicipalityServer, TrafficLight1, TrafficLight2,

Vehicle1,Vehicle2,Vehicle3,Vehicle4,Vehicle5,Vehicle6}

CloudLayer = {MunicipalityServer}

FogLayer = {TrafficLight1, TrafficLight2}
EdgeLayer = {Vehicle1,Vehicle2,Vehicle3,Vehicle4,Vehicle5,Vehicle6}

Equation 103: Fog.BOI: Communication Set

CommunicationSet = {

(MunicipalityServer,Ethernet, TrafficLight1),

(TrafficLight1,Ethernet,MunicipalityServer),

(MunicipalityServer,Ethernet, TrafficLight2),

(TrafficLight2,Ethernet,MunicipalityServer),

(TrafficLight1,WIFI,Vehicle1),

(Vehicle1,WIFI, TrafficLight1),

(TrafficLight1,WIFI,Vehicle2),

(Vehicle2,WIFI, TrafficLight1),

(TrafficLight1,WIFI,Vehicle3),

(Vehicle3,WIFI, TrafficLight1),

(TrafficLight2,WIFI,Vehicle4),

(Vehicle4,WIFI, TrafficLight2),

(TrafficLight2,WIFI,Vehicle5),

(Vehicle5,WIFI, TrafficLight2),

(TrafficLight2,WIFI,Vehicle6),

(Vehicle6,WIFI, TrafficLight2)
}
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B Additional Equations for Validation

Equation 104: Fog.BOI: Fog Set and Layers after Layer Addition

FogSetnew = FogSetold ∪ {CityDistrict}

CloudLayernew = CloudLayerold
EdgeLayernew = EdgeLayerold
FogLayer1 = FogLayerold
FogLayer2 = {CityDistrict}

Equation 105: Fog.BOI: Communication Set after Layer Addition

CommunicationSet = {

(MunicipalityServer,Ethernet,CityDistrict),

(CityDistrict,Ethernet,MunicipalityServer),

(CityDistrict,Ethernet, TrafficLight2),

(TrafficLight2,Ethernet,CityDistrict),

(CityDistrict,Ethernet, TrafficLight2),

(TrafficLight2,Ethernet,CityDistrict),

(TrafficLight1,WIFI,Vehicle1),

(Vehicle1,WIFI, TrafficLight1),

(TrafficLight1,WIFI,Vehicle2),

(Vehicle2,WIFI, TrafficLight1),

(TrafficLight1,WIFI,Vehicle3),

(Vehicle3,WIFI, TrafficLight1),

(TrafficLight2,WIFI,Vehicle4),

(Vehicle4,WIFI, TrafficLight2),

(TrafficLight2,WIFI,Vehicle5),

(Vehicle5,WIFI, TrafficLight2),

(TrafficLight2,WIFI,Vehicle6),

(Vehicle6,WIFI, TrafficLight2)
}
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B.8 Quasar

This section adds the equations for the foundations of xFog to the Quasar case study
results. Additionally, the equations and the table required for the addition of a new
Fog Component to a Fog Architecture are given in the same way as for the dynamic
Fog Components validation.

• Equation 106 shows the Fog Set and the according layers.
• Equation 107 shows the unabbreviated Communication Set.
• Equation 108 shows the involved services as well as their mapping to the lay-

ers.
• Table B.1 checks the properties required for a component to comply with the

Fog Component definition.
• Equation 109 shows the changes to the respective sets after a new Fog Compo-

nent is added to the Fog Architecture.

Equation 106: Quasar: Fog Set

FogSet = {GameServer,GameStreamingService1,GameStreamingService2,

GameClient1,GameClient2,GameClient3,GameClient4}

CloudLayer = {GameServer}

FogLayer = {GameStreamingService1,GameStreamingService2}
EdgeLayer = {GameClient1,GameClient2,GameClient3,GameClient4}

Equation 107: Quasar: Communication Set

CommunicationSet = {(GameServer,Ethernet,GameStreamingService1),

(GameStreamingService1,Ethernet,GameServer),

(GameServer,Ethernet,GameStreamingService2),

(GameStreamingService2,Ethernet,GameServer),

(GameStreamingService1,Ethernet,GameClient1),

(GameClient1,Ethernet,GameStreamingService1),

(GameStreamingService1,Ethernet,GameClient2),

(GameClient2,Ethernet,GameStreamingService1),

(GameStreamingService2,Ethernet,GameClient3),

(GameClient3,Ethernet,GameStreamingService2),

(GameStreamingService2,Ethernet,GameClient4),

(GameClient4,Ethernet,GameStreamingService2)}
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Table B.1: Hard and soft requirements of Fog Components according to Section 4.1
for the dynamic Fog Component: Game Client 5. Hard requirements are high-
lighted in red, soft requirements in orange.

Game Client 5

1. Interconnectivity X
2. Information Sharing X
3. Uniquely Addressable X
4. Computational Capabilities X
5. Wireless communication X
6. Locality X
7. General-purpose Computational Capabilities X
8. Offers Capabilities as Service X

Equation 108: Quasar: Service Set and Service Set Mapping

ServiceSet = {getGlobalGameInstance, setGlobalGameState,

getGameInstance, setGameState}
ServiceSetMapping = {( {} , CloudLayer ,

{getGlobalGameInstance, setGlobalGameState} ),

( {getGlobalGameInstance, setGlobalGameState} ,

FogLayer , {getGameInstance, setGameState} ),

( {getGameInstance, setGameState} , EdgeLayer ,

{} )}

Equation 109: Quasar: New Fog Component

FogSetnew = FogSetold ∪ {GameClient5}
CloudLayernew = CloudLayerold
FogLayernew = FogLayerold
EdgeLayernew = EdgeLayerold ∪ {GameClient5}
CommunicationSetnew = CommunicationSetold ∪

{(GameStreamingService2,WIFI,GameClient5),

(GameClient5,WIFI,GameStreamingService2)}
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B.9 FoQsIs

This section adds the equations for the foundations of xFog to the FoQsIs case study
results. Additionally, the equations and the table required for the addition of a new
Fog Component to a Fog Architecture are given in the same way as for the dynamic
Fog Components validation.

• Equation 110 shows the Fog Set and the according layers.

• Equation 111 shows the unabbreviated Communication Set.

• Equation 112 shows the involved services as well as their mapping to the lay-
ers.

• Table B.2 checks the properties required for a component to comply with the
Fog Component definition.

• Equation 113 shows the changes to the respective sets after a new Fog Compo-
nent is added to the Fog Architecture.

Equation 110: FoQsIs: Fog Set

FogSet = {StatsServer, IntegrationService1, IntegrationService2,

IntegrationService3, IntegrationService4, IntegrationService5,

FoQsIsClient1, FoQsIsClient2}

CloudLayer = {StatsServer}

FogLayer = {IntegrationService1, IntegrationService2, IntegrationService3,

IntegrationService4, IntegrationService5}
EdgeLayer = {FoQsIsClient1, FoQsIsClient2}
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Equation 111: FoQsIs: Communication Set

CommunicationSet = {(StatsServer,Ethernet, IntegrationService1),

(IntegrationService1,Ethernet,StatsServer),

(StatsServer,Ethernet, IntegrationService2),

(IntegrationService2,Ethernet,StatsServer),

(StatsServer,Ethernet, IntegrationService3),

(IntegrationService3,Ethernet,StatsServer),

(StatsServer,Ethernet, IntegrationService4),

(IntegrationService4,Ethernet,StatsServer),

(StatsServer,Ethernet, IntegrationService5),

(IntegrationService5,Ethernet,StatsServer),

(StatsServer,WIFI, FoQsIsClient1),

(FoQsIsClient1,WIFI,StatsServer),

(StatsServer,WIFI, FoQsIsClient2),

(FoQsIsClient2,WIFI,StatsServer)}

Equation 112: FoQsIs: Service Set and Service Set Mapping

ServiceSet = {getIntegrationServiceStats, setIntegrationServiceStats,

performBuild}

ServiceSetMapping = {( {} , CloudLayer ,

{getIntegrationServiceStats,

setIntegrationServiceStats} ),

{getIntegrationServiceStats,

setIntegrationServiceStats} ),

FogLayer , {performBuild} ),

( {performBuild} , EdgeLayer , {} )}
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Table B.2: Hard and soft requirements of Fog Components according to Section 4.1
for the dynamic Fog Component: FoQsIs Client 3. Hard requirements are high-
lighted in red, soft requirements in orange.

FoQsIs Client 3

1. Interconnectivity X
2. Information Sharing X
3. Uniquely Addressable X
4. Computational Capabilities X
5. Wireless communication X
6. Locality X
7. General-purpose Computational Capabilities X
8. Offers Capabilities as Service X

Equation 113: FoQsIs: New Fog Component

FogSetnew = FogSetold ∪ {FoQsIsClient3}
CloudLayernew = CloudLayerold
FogLayernew = FogLayerold
EdgeLayernew = EdgeLayerold ∪ {FoQsIsClient3}
CommunicationSetnew = CommunicationSetold ∪

{(IntegrationService4,WIFI, FoQsIsClient3),

(FoQsIsClient3,WIFI, IntegrationService4)}
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