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Abstract—With the advanced development of image
processing technology, visible light positioning (VLP) sys-
tem based on image sensors has attracted more and more
attention. However, as a commonly used light receiver, tra-
ditional CMOS camera has limited dynamic range and high
latency, which is susceptible to various lighting and envi-
ronmental factors. Moreover, high computational cost from
image processing is unavoidable for most of visible light
positioning systems. In our work, a novel VLP system using
an event-based neuromorphic vision sensor (event camera)
as the light receiver is proposed. Due to the low latency and
microsecond-level temporal resolution of the event camera,
our VLP system is able to identify multiple high-frequency

High-fraquency flickering LED

flickering LEDs in asynchronous events simultaneously leaving out the need for data association and traditional image
processing methods. A multi-LED fusion method is applied and a high positioning accuracy of 3cm is achieved when the

height between LEDs and the event camera is within 1m.

Index Terms—Indoor localization, event camera, visible lighting positioning, GM-PHD filter.

|. INTRODUCTION
ITH the development of internet-of-things (IoT)

Wtechnology, connections between all kinds of domes-
tic appliances and wireless devices are getting closer and
closer. In the meantime, there is an increasing demand for
indoor navigation and localization of intelligent devices, such
as sweeping robot in house, service robot in canteen and
automatic parking in underground parking lot. Thus, a great
number of indoor location-based services (LBS) need to
be implemented to improve human life [1], [2]. However,
when applied to some complicated indoor surroundings like
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restaurants, school rooms or airport terminals, it is difficult to
achieve a perfect LBS business that must guarantee a steady
and high accurate positioning. In the past few years, lots of
strategies about indoor localization have been proposed, which
are mainly divided into two aspects: satellite positioning and
indoor marker positioning. As for the satellite positioning,
the agent carrying with satellite positioning system receives
radio wave transmitted from several satellites orbiting around
the earth in real time. Through measuring distances between
the agent and these satellites, the agent’s world coordinate
about longitude and latitude could be computed directly [3],
[4]. Up to now, different technologies of global navigation
satellite system (GNSS) have been applied to many kinds of
mobile devices and military equipment all around the world.
Nonetheless, in the confined indoor space, the positioning
accuracy of GNSS is not enough to satisfy the requirements
for indoor robot’s navigation due to the multi-path effect and
radio disturbance. Hence, some researchers explore to install
some access point (AP) devices inside the buildings, which
could emit radio-frequency (RF) signal and their functions are
the same as satellites [5], [6].

After obtaining the location information about these AP
devices, the agent equipped with multiple signal receivers
receives different RF signals and then its relative world posi-
tion to the room is calculated. Although this method brings
high localization accuracy, it is hard to guarantee information
security due to the public signal protocols such as Wi-Fi,
Bluetooth and Zigbee. Besides, several uncertain factors like
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short transmitting distance, low-frequency capacity and change
of signal intensity may hinder the continuous positioning.

As the visible light communication (VLC) and LED tech-
nology are getting more and more mature [7], [8], some
researchers introduce visible LED light which is flickering at a
high frequency into indoor localization. Without adding extra
signal transmitting devices, visible light positioning (VLP)
system can directly utilize LED luminaires installed in the
room to achieve a high-accuracy positioning [9], [10]. LED
luminaries are usually installed on the fixed region like ceil-
ing, ensuring the stabilization and security for light emit-
ting. Many traditional localization methods, such as Received
Signal Strength (RSS), Time of Arrival (TOA), Angle of
Arrival (AOA) and Time Difference of Arrival (TDOA) have
been proposed to build a VLP system [11]. Focusing on
color-based LEDs, indoor localization approaches by detecting
the simultaneous transmission and subsequent transmission of
RGB pulses are also proposed [12]. However, time synchro-
nization and intensity attenuation require a high precision of
visible light receivers. Besides, various LED luminaires have
different shapes and their light diffusion couldn’t be treated
simply as the point diffusion, so the ranging error in traditional
localization is inevitable. Recently, many researchers begin
to use cameras to avoid the accuracy loss from traditional
light receiver. When LED luminaires are flickering at a high
frequency, it is difficult for ordinary CMOS camera to capture
high-frequency features from images. Rolling shuffle effect
is usually adopted to improve its dynamic range, with which
many black fringe patterns could be recognized and analyzed
through image processing. After that, by calculating average
threshold value of grey-scale image or average linear intensity
from fringe pattern vertically, different frequency number
representing its relevant LED identification (ID) could be
obtained [13], [14]. Nevertheless, flickering mitigation and
dimming support are necessary to get a perfect image of
LEDs. At the same time, when light intensity is strong enough
or the agent moves in a high speed, blooming effect and
motion blur phenomenon would disturb the rolling shuffle
effect significantly. Though in [15], the authors have proposed
a novel space-time RLS algorithm to equalize the motion blur
from the optical channel, there is still a gap between the
equalized results and natural high dynamic scenes due to the
limit of hardware.

In addition, considering the limit of Field-Of-View (FOV)
of camera, the number of LEDs in the image isn’t constant
while some tracking algorithms like particle filter should
pre-determine parameter of targets number. Gaussian mixture
probability hypothesis density (GM-PHD) filter is proposed
to achieve multi-object tracking without knowing the number
of targets [16]. Without the need of data association from
the measurement and tracking, It is a modified recursion that
propagates the first order statistic moment of random finite sets
in time, to achieve objects tracking along with measurement
uncertainty and negative recognition. Otherwise, the initial
prior intensity and the posterior intensity of each random
finite sets in GM-PHD filter are all regarded as Gaussian
mixtures [17]. Because of the ability to solve variable targets
and non-linear problem, it has been widely applied in the

radar image [18], underwater scan [19] and human tracking
[20]. [21] also proposed an improvement of GM-PHD filter
based on weight penalization and multi-feature fusion, which
could accurately track multi-objects with different features
such as cells of different density and surveillance of different
identities.

In this paper, we propose a practical multi-LEDs indoor
localization system based on event camera [22] and GM-PHD
filter tracking algorithm. Unlike CMOS cameras which has a
fixed frame rate and limited dynamic range, the event camera
naturally generates a stream of events with a microsecond
time resolution and a high dynamic range (120dB), which
is originally developed by [22]. Each pixel of an event
camera triggers information independent of each other when
that pixel detects a change of intensity. This information is
called events that encode the precise triggering time, the pixel
positions and sign of the intensity changes [22]-[26]. Without
additional rolling shuffle effect, LEDs light flickering at a high
frequency could be captured by the event camera precisely.
Firstly, we normalize original event stream from event camera
to remove background noise and low-frequency disturbance.
Then, event histogram is established to detect all frequencies
of multiple LEDs and each LED ID is determined referring
to its frequency. A mapping table about LED ID and world
position is made in advance. Thus, the world location of
each LED could be obtained. Furthermore, no matter whether
the agent is static or mobile, the GM-PHD filter module is
adopted to track different LED luminaires in the image plane
and each LED center coordinate could be extracted directly
without complicated image processing, which ensures a stable
and efficient localization. With the world coordinates and
image coordinates of multiple LEDs, localization and median
selection methods are applied to implement a high-accuracy
positioning system after analysing the generalized imaging
model of event camera. Several experiments show that the final
positioning error is less than 3cm when the height between
LED plane and event camera is within 1m.

II. THE PROPOSED VLP SYSTEM

A. System Architecture

As shown in Fig. 1, our proposed novel VLP system con-
sists of a group of high-frequence flickering LEDs and an
event-based neuromorphic vision sensor. Multiple LEDs are
installed individually on the ceiling. The LEDs are flickering
at a high frequency driven by the microcontroller. Each LED
has a unique identification (L;). Different from CMOS camera,
event camera could capture illumination intensity changes at
microsecond level while CMOS camera record the whole
picture at a fixed frame rate (e.g., 20fps). The visualization
of the output data of these two types of sensors is depicted
in Fig. 2. It is clear to see that in a typical VLP system the
event camera is a perfect light receiver that can capture the
flickering of the LED (L;) at a very high frequency, which is
usually more than 200Hz that is far beyond the capability of
traditional CMOS camera.

Considering various types and shapes of LED, it is impor-
tant to represent the pixel coordinate of LED (/;) on image
plane. For traditional CMOS camera, a series of complex
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Fig. 2. (a) The CMOS camera captures all pixel intensities at a fixed
frame rate. (b) The event camera captures intensity changes caused by
the dynamic object. (c) Event stream from the event camera when a
single LED is flickering.

image processing steps are applied to extract LED center,
such as gray scale, blur mask and threshold adjustment, but
this method fails if the agent moves quickly or light intensity
becomes strong. In our work, the LED center (X;,Y;) is
extracted with GM-PHD filter algorithm, which ensures to
achieve a steady localization in contrast with traditional VLP
systems. In addition, the optical center of event camera in the
world coordinate is expressed as O(mw,nw, f.), whose projec-
tion on the image plane is the image center and corresponding
pixel coordinate is O'(m, n). When the agent with event cam-
era moves in different positions, geometry transformation and
localization algorithm are applied to estimate agent’s position.
Finally, a multi-LED fusion strategy is used to calculate the
optimal agent’s location.

B. Event Camera Based LED Identification

In the process of visible light communication (VLC), mod-
ulation frequency of VLC is usually set to be greater than

Multi-LED VLP system architecture based on event camera.
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Fig. 3. Data reading mechanism. (a) CMOS frames. (b) Asynchronous
event stream generated by event-based camera.

200 Hz, it is a critical frequency which enables stable obser-
vation. In most VLP systems, rolling shuffle effect based on
CMOS camera is implemented to detect such a high frequency
flickering. Fig. 3 (a) shows detailed data reading mechanism
of images recorded by CMOS camera, and it has some intrinsic
drawbacks. Firstlyy, CMOS camera reads data row by row,
which means that the activation of next row pixels has to wait
for a full exposure of previous row. Hence, it is obvious that
a time slice called exposure overlapping exists between each
image row pixels. Secondly, when CMOS camera finishes a
data frame, next image frame will be read until a time interval
called read-out time gap ends. This time gap may cause a
phenomenon called image artifact and a loss of communication
data especially when camera moves. In addition, as the rolling
shuffle effect, when light intensity is slightly high, blooming
effect could cause the distortion of dark fringes and change
the contrast ratio between bright fringes and dark fringes
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Fig. 5. Visualization of the event data captured by the event-based cam-

era (a) original event (b) normalized event (c) histogram of frequencies
calculated through intervals.

significantly which has side effects to the detection of certain
LED frequency. Thus, these shortcomings of CMOS camera
make it difficult to achieve a complete VLC and high-accuracy
indoor positioning.

In our multi-LED positioning system, event-based camera is
chosen as visible light receiver, which could generate a series
of asynchronous event stream (See Fig. 3 (b)). The major
difference between CMOS camera and event-based camera is
that each pixel is independent in event-based camera. Each
event consists of pixel coordinates of the event (x, y), polarity
of the event p (positive or negative), and the timestamp z.
In Fig. 3 (b), the upward and downward spikes represent
positive and negative events respectively. By encoding only
illumination changing direction, the bandwidth of transmitting,
processing and storing this event stream is much lower than
that of conventional cameras, which removes image redun-
dancy significantly. Moreover, with a low latency (20xs) and
high dynamic range (120dB), the event camera is able to
differentiate the high-frequency flickering LEDs and get rid of
the distraction caused by the blooming effect and motion blur
as the latency of event sensing pipeline is negligible compared
to the dynamics of the environment.

1) LED Flickering Frequency Detection: Event camera, as the
neuromorphic vision sensor, records the relative changes
of light intensity, and each event can be described as
{tn, pn, (xn, yn)} where n is the index of event, f,(us) is the
time stamp of occurrence and (x,, y,) is the pixel coordinates
of event in the field of view. When LED luminaires flicker at
a high frequency, some pixels will appear as a positive event
and a black speckle pattern could be observed in Fig. 5(a).
To display the raw events clearly, we normalized event map
in Fig. 5(b). In the progress of image normalizing, background
motion and noisy data are imposed to a low value comparing
with the events generated by blinking LED, which makes

it obvious that LED is brighter than other pixels on the
normalized event map.

Since the LED is flickering at certain frequency, polarity
of events generated by LED will change in two types of
transition, namely positive-to-negative or negative-to-positive
with a timestamp f#;,qns. Inspired by [27], we calculate the
intervals I;.4,s between the transitions with a same type which
occur at the same pixel, the value of intervals nearly equals
the flickering period of each LED luminaire, thus ;4,5 can
serve as estimators of blinking frequency as f = 1/Iiyans.
Intervals can be described as {45, (x, ¥), t} where (x, y) is
the pixel coordinate of transitions and ¢ equals the timestamp
trrans Of the first transition. As shown in Fig. 5(c), intervals
accurately depict the blinking frequency from certain LED
luminaires, the peak settles at the real blinking frequency of
this luminaire, hence the certain LED can be detected and
recognized, the frequency detection results can be found in
section III. With the recognition of LED, a mapping table
about LED ID and world position mentioned in Fig. 2 is
referred to get the actual position of each LED light.

2) GM-PHD Filter Based Multi-LED Tracking: Most VLP
systems based on CMOS camera use sophisticated image
processing method to extract image center of LED. However,
when light intensity of lights or background changes, it is
necessary to reset threshold value to get target image. This
method is complicated and inefficient especially when the
agent is moving. Moreover, when the agent moves in the
indoor environment, the LED number captured by the camera
may change due to the limit of Filed-Of-View (FOV). Tradi-
tional object tracking methods like particle filter usually have
to determine the number of target objects in advance, which
obviously couldn’t be applied in the VLP environment where
the number of LEDs is not a priori. In this section, we present
our GM-PHD filter based multi-LED tracking approach on the
basis of the LED frequency detection, which is robust to the
limit of FOV and cluttered environment variance.

Flow chart of GM-PHD tracker based on flickering events
could be seen from Fig. 4. Firstly, raw event sequences are
normalized to remove noise data and background disturbance.
Then, normalized event map containing multi-LED frequen-
cies information is input to a GM-PHD filter module. Detailed
description about this tracker, especially designed for the
flickering events, is clarified as follows:
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Algorithm 1 GM-PHD Filter Algorithm With Event-Based
Data
Input: wﬁ: GM components weights; ,uﬁ: GM
components means; Zf: GM components
deviations; C; : {c1, c2,...,cn}: GM components;
t: Update time;
Output: pixel coordinates (x;, y;);
1 Initialize F(s|M;) = ZIL:’I w N (s; pt, =h);
2 for each timestep t do
3 | Feature extraction: event transition intervals I;,qss;
GMPHD_StatePredictionForBirthTargets;
for l € L; do
GMPHD_StatePredictionForExistTargets;
GMPHD_TimeUpdating;
GMPHD_DataUpdating;

9 | PruningAndMerging;

® N A A

(1) When time ¢ = 0, the PHD F;;(s|M;) of whole event
map is initialized with a weighted sum of Gaussian items:
Fi:(s|M;) = ZZL:’I w!N(s; ul, £1). As a Bayes probabilistic
filter, M; means the sets of multi-LED measurements, s means
the corresponding multi-LED states. They are all distributed
across the state space where each Gaussian item consists of
a weight w!, mean value 4! and variance X!. And L, is the
pre-defined number of Gaussian components in the PHD filter.

(2) When time ¢ > 1, the predicted PHD after initializ-
ing and time updating is regarded as a Gaussian mixture,
which could be expressed as: Fy;—1(s) = Fg,1jr—1(5) + yx(s).
Among this equation, Fg ;—1(s) represents the existing LEDs
status in the FOV while y,(s) means the status of new-coming
or missing LEDs caused by the variation of FOV, where the
change of Gaussian intensity could be found. Their equations
could also be expressed as follows:

Li—v 1 1
FG 1j-1(s) = Ps zz=1 we N85 16 1-15 6,001
Lk ol sl
7k(s) = zl:l W, NS5 15 Zrp)

Otherwise, as the PHD data updating, a Gaussian mixture
also could approximate the updated PHD measurements:
Fu(s) =31, wﬁ‘t./\/(s; ul, =5, Detailed GM-PHD filter
time updating and data updating algorithm could be seen
in [16].

(3) Due to the change of LEDs number in the FOV, it is
much important to prune and merge updated Gaussian com-
ponents. When the weights of a Gaussian component is below
a pre-defined threshold w, the updated PHD Fy;(s|M;) will
be removed. Similarly, when the mean distance of different
Gaussian components is below a pre-determined merging
threshold w,, then the updated PHD F;|;(s|M;) also will be
merged. The strategy of pruning and merging could eliminate
some disqualified Gaussian components, which could reduce
the computational complexity significantly.

Algorithm 1 specifies the procedure of GM-PHD filter on
the multi-LED event data. It is noted that whole PHD filter
module is updated, pruned, merged and estimated to match
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Fig. 6. System geometry transformation from world to image coordinate.

multi-LED frequencies using transition intervals I;4,5, Which
are obtained from two successive transitions of the same type.
Seen from Fig. 5(c), the reciprocal of transition interval could
be approximated as a Gaussian distribution, where standard
deviation is corresponding with the peak value. The transition
intervals can serve as estimators of multi-LED frequencies and
different intervals at pixel coordinates (x, y) also convey the
probability that an LED which is flickering at a frequency of
1/ Lirans is detected at (x, y), guiding the Gaussian components
of GM-PHD filter to update. The weights wﬁ‘t are calculated
based on 1/1;;4,s according to the closed PHD update algo-
rithm and the mean ,ui‘t and covariance Zf  are updated with
the Kalman filter update algorithm. Finally, after pruning and
merging, pixel coordinates (x;,y;) and their Gaussians G;
could be obtained through calculating weighted filter output.
In our system, due to limited experimental number of LED,
the maximum number of Gaussian mixture components is
set as 30. And the pre-determined threshold of pruning and
merging are set to 10715 and 5 separately.

C. Multi-LED Position Estimation

In our system, 6 LED luminaires are installed on the
ceiling and their status (ON/OFF) are controlled by the LED
driver. And the LED driver outputs different PWM signals
to activated LED at a certain frequency number and duty
cycle. As shown in Fig. 5, system geometry transformation
is described to calculate camera’s position by combining
world positions of LEDs with corresponding pixel coordinates.
Firstly, to reduce model computing complexity, two LED
luminaires L1, L2 are flickering on the ceiling and their
lights are received by the event camera successfully, which
achieves the projection from world coordinate to camera
coordinate. The world position of L1 and L2 are expressed as
(XW, YWy, Zy), (XWa, YW,, Z,,). The value Z,, represents
the distance from ceiling plane to event camera’s optical
center. Secondly, according to the principle of pinhole imaging
and event camera’s optical attribute, L1 and L2’s image
coordinates are projected from the camera coordinate. It is
noted that our system regards the z-direction coordinate value
of image plane as zero. So, two LEDs’ image center and
pixel coordinates are expressed as 11(X1, Y1, 0), (X2, Y2, 0).
Similar to CMOS camera, the focal length f, represents the
vertical distance between optical center and image plane. The
optical center and its projection on image plane are expressed
as O(mw, nw, f.) and O’(m, n). Then, the theory of simi-
lar triangles is applied to solve camera’s world coordinates
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O(mw, nw, f.) based on the pixel coordinates of different
LED lights. Detailed calculation procedure is expressed as
follows: Firstly, the real distance Wo_dist between L1 and
L2 and pixel distance Pi_dist between I1 and /2 could be
acquired:

Wo_dist = V(XWo — XW1)2+(YWa—YW)2 (1)

Pi_dist = V(X2 — X1)2 + (Y2 — Y1)? )
dist

g = Wodist 3)
Pi_dist

Zgiff = kx f; 4

After finishing the calibration of event camera and obtaining
the ratio k from Wo_dist and Pi_dist, vertical distance
Zgirr between the event camera and LED luminaires could be
derived using f, directly. Available from equations (1) — (3)
and image center coordinate O’ (m, n), then the camera’s world
position about xy-axis (mw, nw) could be estimated:

muw XW, XW;
Oxy = (nw) > Lly = (YW:) > L2y = (YWE) (%)

_(X1—m _(X2—m
= (o) 2= (i) ©
Oyy =k xA+Llyy, or Oy =kx B+ L2y @)

where A is the pixel distance between LED lighting image
I1 and image center O’, B is the pixel distance between the
other LED lighting image /2 and image center O’. Oy, is
calculated as the final predicted position of camera.

In practice, the ceiling is not absolute horizontal that
multiple LED luminaires couldn’t be installed so flat, which
leads to an unavoidable location error [28]. Hence, similar
geometric relationship between multi-LED pairs could be
applied to calculate estimated position of event camera sep-
arately. For example, the LED number in the image plane is
N (N > 2), then possible number of camera position value
is Clz\,. A strategy of arithmetic mean is proposed to use
all potential camera position value to solve this misalign-
ment [29]. However, when multiple LEDs are captured in
our image plane, some position outliers may be calculated
once certain LED ID couldn’t be recognized correctly due
to the change of environmental or signal conditions. It is
obvious that arithmetic mean couldn’t solve it properly. Hence,
we propose a median selection method to find the optimal
camera position. After acquiring all potential camera posi-
tions Oyy; (mw;,nw;) (i =1,2... Clz\,), all x-axis and y-axis
coordinate values mw;, nw; are arranged in an ascending order
separately. Final estimated position could be expressed as
Oxyf (mw frnw f) and the median selection method is used:

M2 o +MWe2 o4

mwf = 2 )
nWw -2 2—i—nwcz 21
nwy = —/ . N/t (8)

mwys = mw(C12\l+1)/2, nwy = nw(C12v+1)/2 9)

where Mwe2 and MWC2 1y represents the x-axis coor-

dinate value at the arranged sequence of (CjzV /2)" and
((CjzV +2)/2)th. 1f CjzV is an even number, equation (8) is

used to get final camera position. Otherwise, if CIZv is an
odd number, final camera position could be computed from
equation (9).

I1l. EXPERIMENT SETUP AND RESULTS

In order to evaluate the effects of different multi-LED
combinations, six LED luminaires are respectively installed
at (200, 100), (500, 100), (200, 500), (350, 500), (500, 500),
(350,300), where the coordinate unit is mm. We use Arduino
Nano V3.0 micro-controller boards to control their on-off
status. Different PWM signals are transmitted to the specific
port of the controller, which ensures that each LED is
flickering at a high frequency and assigned with a unique
ID. For instance, L1, L2, and L3 could be regarded as a
multi-LED combination and they are given the frequencies
of 500 Hz, 400 Hz, and 300 Hz with a same duty ratio
of 50%. As stated in Section 2, frequency number, the unique
ID and corresponding world coordinate of each LED
luminaires are also pre-stored in a mapping table. In addition,
we adopt Davis 346Red as the event camera module in all
experiments. As the most advanced event camera, it has
a resolution of 340 x 246 pixel, a dynamic range up to
120dB and its minimum delay could be as low as 20us.
It also could be directly connected to the computer through
USB 3.0 terminal and then dynamic events are observed and
recorded through the open source software jJAER. To evaluate
the proposed VLP system, we set 15 test points (7 Py)
where event camera could capture and detect all multi-LED
combinations. These test points are divided into 3 rows and
5 columns and each row distance is 50mm, each column
distance is 100mm. The coordinate of first test point 7 Py is
determined at (250,200). Other test points could be calculated
using module operation, whose coordinates are represented
as TP; = (200 +50( — 1), 1002 4+ i %5)),i = 2,3,4,5 and
TP; = (2004 50 %5 — 1), 1002 + i%5)),i = 6,7, ...,15.

A. Frequency Detection Results

Accurate frequency detection is vital to affect our system
localization performance, especially there exists multiple LED
luminaires in the image plane. Once a LED’s frequency isn’t
recognized correctly, whose localization information from the
mapping table will be recognized wrong obviously. In this part,
L6 is activated by the PWM signal in a series of frequencies
from 300Hz to 1500Hz and duty cycles from 10% to 90%.
Besides, the height between LED luminaries and event camera
varies from 400mm to 2000mm.

As Fig. 7(a) shows, the event camera could detect the flick-
ering frequency stably when duty cycle is set at 50% and orig-
inal height is fixed at 1000mm. With the flickering frequency
increasing, accurate frequency detection demonstrates that a
wide dynamic range from the event camera is practical without
rolling shuffle effect. Otherwise, when flickering frequency is
constant, Fig. 7(b)(c) shows the impact of potential factors on
frequency detection, such as duty cycle and limited distance
between the camera and LEDs. As we can see, when duty
cycle is higher or limited distance is farther, the event camera
is still able to accurately identify different frequencies. Hence,
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Fig. 7. The difference between original frequency and detected frequency. (a) shows a range of frequencies from 300Hz to 1500Hz detected from
a fixed distance of 1m (b) shows two different frequencies, 500Hz and 1000Hz, detected through the transition of duty cycle from 10% to 90%
(c) shows two frequencies, 500Hz and 800Hz, detected by changing the distance from 400mm to 2000mm.

(a)
(b)

Fig. 8. Visualized tracking process for LED events: LEDs flickering in 300Hz, 400Hz, 500Hz and 600Hz (green), different tracking targets (yellow,

red, violet, blue) and (a) GM-PHD filter tracker (b) particle filter tracker.

it effectively improves the shortcomings of traditional CMOS
camera that is susceptible to extra environmental factors [13].

B. Tracking and Extraction Results

To achieve continuous VLC and indoor positioning, it is
also important to track and extract multi-LED image centers
when the agent is at a motion. And it is much difficult and
costly for traditional image processing method to extract pixel
center. In this part, GM-PHD filter algorithm is adopted to
calculate multi-LED pixel coordinates successfully without
pre-determining the number of LEDs. Three LED luminaries,
L1, L2, L4 are firstly selected to flicker in a certain frequency
such as 300Hz, 400Hz, 500Hz. To simulate the newborn and
missing targets from the FOV, two processes are conducted
successively: L2 is firstly removed from the system then L2,
L3 and L5, flickering at 400Hz, 5S00Hz and 600HZ, are added
to the system. With these different frequency data as target
values, the GM-PHD filter is used for tracking multi-LED
event centers. Fig. 8 shows the tracking process and compar-
ison results for these LED events from the GM-PHD filter
tracker and traditional particle filter tracker.

When the number of LEDs captured by event camera
decreases at a specific FOV, the phenomenon of particles
overlapping and identification error emerges in the particle
filter tracker. More importantly, a fixed particle number of
the tracker obviously couldn’t recognize and track newborn
LEDs. As our GM-PHD filter tracker, it can be seen that

L1, L2, L3, L4 and L5 are all tracked successfully. After
finishing the tracking, all pixel coordinates of multiple LEDs
are extracted through calculating the weighted filter output.
In our experiment, when L1, L2, L4 are flickering, the event
camera moves laterally from 7 Pg to T P19 and then error
analysis is done by comparing our extracting results with
ground truth of manual annotation at each T P. The Root Mean
Square Error (ex,ey) and Standard Deviation (o) statistics are
shown in Table I. Furthermore, inspired by the work of [30],
[31] in the LED-camera VLP system, the Cramer-Rao lower
Bound (CRLB) results of pixel accuracy in the visualized
event image are also computed as a benchmark to evaluate
our estimation performance. Due to the unknown measurement
noise and signal noise from event-based camera [32], each
LED is adapted to a point spread function (PSF) to approx-
imate its intensity distribution roughly and the LED image

model is expressed as: I , = Aexp(—%) + B,
where A, ¢ and B represent the peak intensity, PSF width
and background intensity, xo and yo are the ground truth of
image center. If not considering the experimental equipment
jitter and measurement error, we find that our method using

GM-PHD filter to extract image center is practical.

C. Event Camera Based Positioning Performance

After completing the experiments in the above two parts,
the world position of event camera could be estimated using
proposed multi-LED positioning method. Considering the
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Fig. 9. Localization performance of the proposed multi-LED positioning system (a) shows a stable positioning error within 3cm at all test points
(b) shows an accurate track under different multi-LED combinations (c) describes the height estimation from event camera to LED luminaires.

TABLE |

RMSE (PixEL), SD (PIXEL) AND CRLB (PIXEL) OF PIXEL POSITION
ESTIMATE AT DIFFERENT FLICKERING FREQUENCIES

identify LED flickering frequency and positions. After the
fusion of multi-LED position estimations, final localization
results reveal that a high positioning accuracy of 3cm could
be achieved when the height between LED plane and event

Flickering frequency (Hz) ez ey oy CRLB
300 0975 2316 0.159 0.156
400 3269 3547  0.688 0.518
500 4.196 4328  0.464 0.561

difference of agent’s position and multi-LED combinations,
three experiments are done to validate final positioning accu-
racy in all dimensions. In the first experiment, fixed at a
vertical distance of 1000mm, L1, L2 and L4 are activated
at a duty cycle of 50% and frequency of 300Hz, 400Hz and
500Hz.

Fig. 9(a) shows a stable positioning error within 3cm
between the test points (green marker) and estimated coordi-
nates (red marker). In the second experiment, the agent moves
from T Ps to T Pigp and LED luminaires with different flick-
ering frequencies are fixed at two combinations—triangular
(L1, L2, L3) and rectangular (L1, L2, L3, L5). Same to
the first experiment, the distance between event camera and
multi-LED plane is set at 1000mm. It can be seen in Fig. 9(b)
that different LED combinations does not change much as the
localization accuracy is always maintained. In the last experi-
ment, the focus length of event camera is applied to calculate
vertical distance from event camera to LED luminaires. With
original height increasing from 780mm to 930mm, estimated
heights at different T Py(T P3, T P, T P13) are depicted in
Fig. 9(c). It could be seen that the measurement errors are
also limited in 3 cm at different heights.

[V. CONCLUSION

This work implements a novel indoor localization system
by integrating a new LED light receiver, the event-based
neuromorphic vision sensor (event camera), into a VLP sys-
tem. Conventional VLP system often uses the CMOS camera
as the receiver that relies on traditional image processing
methods, which consume too much computational resource.
In contrast, due to the low latency and microsecond-level
temporal resolution of the event camera, our VLP system is
able to track multiple high-frequency flickering LED simul-
taneously without a need of data association and traditional
image processing methods. The GM-PHD filter is applied to

camera is within 1m.
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