
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Flugsystemdynamik

Safe and Robust Automation
of Aircraft and System Operation

Christoph Krause M.Sc.

Vollständiger Abdruck der von der Fakultät für Luftfahrt, Raumfahrt und Geodäsie der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Manfred Hajek

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Florian Holzapfel
2. Prof. Dr.-Ing. Mirko Hornung

Die Dissertation wurde am 06.07.2020 bei der Technischen Universität München
eingereicht und durch die Fakultät für Luftfahrt, Raumfahrt und Geodäsie
am 15.12.2020 angenommen.

Abstract

This thesis proposes novel methods in the field of safe and robust automation of aircraft
and system operation. It is split into multiple parts covering a generic design, implemen-
tation, and testing methodology, an automation for flight control systems of experimental
aircraft, and a maneuver injection for flight tests.

The created methodology provides the development basis for the applications and
allows for a deterministic design, concise implementation, and comprehensive testing of
state machines within the development environment. It is based on a hierarchical decom-
position strategy, which is used during the design phase of the applications to minimize
complexity and to optimize testing. Modeling guidelines are developed to support the
implementation of the software with minimized opacity and maximized maintainability.
Furthermore, an incremental bottom-up application of formal methods is proposed, which
ensures effective testing and guaranteed system properties.

Administering the flight control loops of experimental aircraft is a crucial part of
the flight control computer. It is performed by the developed flight control automation
and includes various operational modes, which are based on a strategy to enable the
switching between all control authority levels of the flight control system. The operational
management concept is targeted at unmanned aircraft with multiple users, but can be used
for manned aircraft as well and increases the awareness of the operator or pilot concerning
the current operational mode. Automatically executed contingency procedures are used to
mitigate the adverse effects of mission changes and malfunctions. They lower the human
workload and ensure a continuous automatic operation.

Flight tests can be automatically executed by the developed maneuver injection. This
software, which is part of the flight control computer, is used to generate maneuvers that
are used for testing of actuator tracking, determination of controller performance, or for
identifying flight dynamic models. The generic design allows for a free parametrization
of the maneuvers without re-implementation. The dynamic generation of maneuvers
and the flexible choice of injection points on multiple levels of the flight control loops
enable a generic implementation and allow for a safe execution. Advanced features like
automatic trim point capture and verification are integrated to allow for effective flight
test campaigns.

III

To prove the real-life applicability of the developed solutions, they are tested on aerial
demonstration platforms. The general validity is increased even more by testing the
contributions on multiple aircraft with very different specifications. These include an
unmanned demonstrator, two experimental platforms that can be operated manned or
unmanned, with one and four seats respectively, and a 19-seat utility aircraft.

IV

Zusammenfassung

In dieser Arbeit werden neuartige Methoden im Bereich der sicheren und robusten Au-
tomatisierung beim Betrieb von Flugzeugen und deren Systemen vorgestellt. Sie ist in
mehrere Teile gegliedert und behandelt eine generische Entwurfs-, Implementierungs- und
Testmethodik, eine Automatisierung für das Flugsteuerungssystem von Experimentalflug-
zeugen und eine Manöver-Einspeisung für Flugtests.

Die Methodik bildet die Entwicklungsgrundlage für die Anwendungen und ermöglicht
eine deterministische Gestaltung, präzise Implementierung und umfassende Tests von Zu-
standsautomaten innerhalb der Entwicklungsumgebung. Sie basiert auf einer hierarchi-
schen Aufteilung, die während der Entwurfsphase verwendet wird, um die Komplexität
zu senken und das Testen zu optimieren. Richtlinien für die Modellierung werden erstellt,
um die Implementierung der Software mit maximaler Transparenz und Wartbarkeit zu
ermöglichen. Darüber hinaus wird eine inkrementelle Anwendung Formaler Methoden
vorgeschlagen, die effektive Tests gewährleistet und Systemeigenschaften garantiert.

Die Administration von Flugregelschleifen in Versuchsflugzeugen ist ein entscheidender
Teil im Flugsteuerungsrechner. Dieser wird von der entwickelten Flugsteuerungsautoma-
tik übernommen und umfasst verschiedene Betriebsarten, die auf einer Strategie beruhen,
auf alle Kontrollebenen des Flugsteuerungsrechners zugreifen zu können. Das Betriebs-
führungskonzept ist auf unbemannte Flugzeuge mit mehreren Nutzern ausgelegt, kann
aber auch für bemannte Flugzeuge eingesetzt werden und erhöht das Bewusstsein des
Betreibers oder der Piloten über den aktuell Betriebsmodus. Automatisch ausführbare
Notfall-Verfahren werden eingesetzt, um die negativen Auswirkungen von Missionsände-
rungen und Fehlfunktionen zu mildern. Diese senken die menschliche Arbeitsbelastung
und stellen einen kontinuierlichen und automatischen Betrieb sicher.

Flugtests können durch die entwickelte Manöver-Einspeisung automatisch ausgeführt
werden. Diese Software, welche Teil des Flugsteuerungsrechners ist, generiert Manöver,
um das Folgeverhalten der Stellantriebe zu testen, die Leistung der Algorithmen zu ermit-
teln oder um flugdynamische Modelle zu identifizieren. Das generische Design ermöglicht
eine freie Parametrisierung der Manöver ohne Neuimplementierung. Die dynamische Er-
zeugung von Manövern und die flexible Wahl der Einspeise-Punkte auf mehreren Ebenen
des Flugreglers ermöglicht eine generische Implementierung und eine sichere Ausführung.
Erweiterte Funktionen wie die automatische Erreichung und Verifizierung des getrimmten
Flugzustandes wurden integriert, um effektive Flugtestkampagnen zu ermöglichen.

V

Um die Anwendbarkeit der entwickelten Lösungen in der Praxis zu beweisen, werden
diese auf fliegenden Demonstrationsplattformen getestet. Die Allgemeingültigkeit wird
durch den Test auf mehreren Flugzeugen mit sehr unterschiedlichen Spezifikationen noch
weiter erhöht. Diese umfassen einen unbemannten Demonstrator, zwei Experimentalplatt-
formen, die bemannt oder unbemannt betrieben werden können und einen bzw. vier Sitze
haben, und ein 19-sitziges Mehrzweckflugzeug.

VI

Danksagung / Acknowledgment

Der Inhalt dieser Arbeit entstand größtenteils während meiner Zeit als wissenschaftlicher
Mitarbeiter am Lehrstuhl für Flugsystemdynamik der Technischen Universität München,
im Zeitraum von November 2013 bis Dezember 2019.

Daher geht mein Dank zuerst an Prof. Florian Holzapfel, für die Möglichkeit diese Ar-
beit auf Basis meiner Tätigkeit am Lehrstuhl anfertigen zu können. Zusätzlich möchte ich
mich für die Unterstützung und fachliche Betreuung, die vielen Chance bei der Mitwirkung
an neuartigen Projekten und die Möglichkeit für die vielfältige fachliche Weiterbildung
auf internationalen Konferenzen bedanken.

Erkenntlich zeigen möchte ich mich bei Prof. Mirko Hornung, für die Erstellung des
Zweitgutachtens und bei Prof. Manfred Hajek, für die Führung des Prüfungsvorsitzes.

Monica Kleinoth-Gross möchte ich meinen Dank für die freundliche und zuvorkom-
mende Unterstützung bei allen Verwaltungsangelegenheiten aussprechen.

Übergreifend möchte ich mich bei allen Kollegen des Lehrstuhls bedanken. Durch den
Zusammenhalt und eure Hilfsbereitschaft hat die Zeit bei mir einen bleibenden Eindruck
hinterlassen. Besonderer Dank gilt dabei den Teams von SAGITTA, ELIAS , der DA 42
und der Do 228 . Durch die gute Zusammenarbeit haben wir in den Projekten viel erreicht,
worauf wir noch lange stolz sein können. Außerdem geht mein ganz besonderer Dank an
die Bewohner des besten Büros am Lehrstuhl, MW3615. Durch eure effiziente Arbeitsweise
habt ihr zu einer professionellen Atmosphäre beigetragen, die ich nie vergessen werde.

Im speziellen möchte ich mich bei Tuğba Akman, Christopher Blum, Tim Fricke,
Christoph Göttlicher , Markus Hochstrasser , Andreas Kleser , Martin Kügler , David
Seiferth, Philip Spiegel und Chong Wang bedanken. Die fachlichen aber auch besonders
die nicht-fachlichen Diskussionen mit flüssiger Motivation, die Pflege der Auslandsbezie-
hungen und weitere Aktivitäten werden mir für immer in guter Erinnerung bleiben.

Thanks to Mrs. Teri Skipper Carter and Mrs. Cindy Dix Dennis for proofreading this
thesis and providing valuable comments as native speakers. Additionally, I would like to
thank all members of my American family, who have had a great impact on my life and
personal development since 2003.

Abschließend möchte ich mich ganz herzlich bei meiner Familie und im Besonderen
bei meiner Mutter Margrit, meinem Vater Konrad und meinem Bruder Nikolas bedanken.
Ohne eure Unterstützung, Motivation und Hilfe hätte ich meinen Lebensweg nicht gehen
können und diese Arbeit wäre nie entstanden.

VII

As a side note, I would like to thank all contributors of LATEX, TEXstudio, MiKTEX,
and Inkscape for making it possible to not use Microsoft Word.

VIII

Contents

List of Figures XIII

List of Tables XVII

List of Code Listings XXI

Acronyms XXIII

1 Introduction 1
1.1 Motivation . 3

1.1.1 Popularity . 3
1.1.2 Advantages . 4
1.1.3 Regulations . 5
1.1.4 Higher-Level Automation . 6

1.2 Background . 8
1.2.1 Aerospace Industry Terms 8
1.2.2 Automation of UAVs and OPVs 10
1.2.3 Development Context . 12

1.3 State of the Art . 17
1.3.1 Methodology . 18
1.3.2 System Automation . 19
1.3.3 Maneuver Injection . 20

1.4 Objectives . 21
1.4.1 Methodology . 22
1.4.2 System Automation . 23
1.4.3 Maneuver Injection . 24

1.5 Contributions . 25
1.5.1 Methodology . 26
1.5.2 System Automation . 27
1.5.3 Maneuver Injection . 28

1.6 Outline . 29

IX

CONTENTS

2 Aerial Demonstration Platforms 31
2.1 SAGITTA . 32
2.2 DA 42 . 34
2.3 ELIAS . 36
2.4 Do 228 . 38

3 Methodology for System Automation 41
3.1 Theoretical Basics . 44

3.1.1 History of State Machines 45
3.1.2 Automata Theory . 47
3.1.3 State Machine Modeling . 55
3.1.4 Mealy and Moore Finite State Machines 60

3.2 Design . 63
3.2.1 Automation Challenges . 64
3.2.2 Design Steps . 69
3.2.3 Internal Decision Logic . 72
3.2.4 External Decision Logic . 73
3.2.5 Hierarchical Decomposition Structure 77

3.3 Implementation . 80
3.3.1 Toolchain . 80
3.3.2 Stateflow Environment and Chart Elements 83
3.3.3 Level Structure . 91
3.3.4 Modeling Guidelines . 95

3.4 Testing and Verification . 104
3.4.1 Unit Tests . 105
3.4.2 Model Checking . 106
3.4.3 Model in the Loop . 116
3.4.4 Software in the Loop . 116
3.4.5 Hardware in the Loop . 117
3.4.6 Aircraft in the Loop . 117
3.4.7 Ground Tests . 118
3.4.8 Flight Tests . 118

3.5 Summary . 119

4 Flight Control System Automation 121
4.1 System Architecture . 124

4.1.1 Hardware Architecture . 125
4.1.2 FCC System Architecture 128
4.1.3 Software Module Architecture 134

4.2 Operation Modes . 135
4.2.1 Level 1 . 136

X

CONTENTS

4.2.2 Level 2 . 137
4.2.3 Level 3 . 138
4.2.4 Level 4 . 141
4.2.5 Additional and Superposition Options 143

4.3 Transition Conditions and Actions 145
4.3.1 Level 1 . 146
4.3.2 Level 2 . 148
4.3.3 Level 3 . 151
4.3.4 Level 4 . 160

4.4 Loiter Automation . 161
4.4.1 Loiter Modes . 161
4.4.2 Transition Conditions and Actions 164

4.5 Injection Switches . 167
4.5.1 Trajectory Generation - Switch 168
4.5.2 Trajectory Control / Auto Flight Control System - Switch . 168
4.5.3 Inner Loop - Switch . 169
4.5.4 Actuator - Switch . 169

4.6 Flight Tests . 170
4.6.1 SAGITTA . 171
4.6.2 DA 42 . 174

4.7 Summary . 177

5 Flight Test Maneuver Injection 179
5.1 System Architecture . 182

5.1.1 Hardware Architecture . 182
5.1.2 FCC System Architecture 185
5.1.3 Software Module Architecture 186

5.2 Allocation Matrices and Injection Points 190
5.2.1 Auto Flight Control System - Override Switch 191
5.2.2 Inner Loop - Override Switch 192
5.2.3 Inner Loop - Injection Switch 193
5.2.4 Actuator - Injection Switch 195

5.3 Operation Modes . 197
5.4 Transition Conditions and Actions 198
5.5 Maneuvers . 202

5.5.1 Multi-Step . 203
5.5.2 Multi-Ramp . 204
5.5.3 Multi-Sine . 205
5.5.4 Sweep . 206
5.5.5 Spline . 207

5.6 Flight Tests . 208

XI

CONTENTS

5.6.1 ELIAS . 209
5.6.2 Do 228 . 212

5.7 Summary . 215

6 Conclusion 217
6.1 Methodology . 218
6.2 System Automation . 219
6.3 Maneuver Injection . 220
6.4 Outlook . 221

A Automation Levels I

B Edge Detector Code Generation V

C Stateflow Verification Code XIX

D FCSA Transition Conditions / Actions XXXI

E FCSA Unit Tests XLIII

F FTMI Transition Conditions / Actions XLV

XII

List of Figures

1.1 Pictures of Wright and Whitehead 1
1.2 The First Autopilot and its Modern Descendants 2
1.3 Global UAV Market in billion USD 3
1.4 Operational Concept . 10
1.5 Development Context . 12
1.6 Contributions . 25

2.1 SAGITTA . 32
2.2 DA 42 . 34
2.3 ELIAS . 36
2.4 Do 228 . 38

3.1 Automata Theory . 48
3.2 Finite State Machine . 52
3.3 Pushdown Automata . 53
3.4 Turing Machine . 54
3.5 Feedback View . 57
3.6 Edge Detector - State Machine . 59
3.7 Mealy State Machine . 61
3.8 Moore State Machine . 62
3.9 Simulink Decision Logic Blocks . 73
3.10 Intermittent Range Check Top . 74
3.11 Intermittent Range Check . 74
3.12 State Machine with Temporal Logic 75
3.13 Sequence Chart . 76
3.14 Discrete Counter in Simulink . 76
3.15 Hierarchical Decomposition Scheme 78
3.16 Injection Architecture . 79
3.17 Stateflow Chart in Simulink Environment 83
3.18 Other Stateflow Elements in Simulink 83
3.19 State Decomposition in Stateflow 84
3.20 Stateflow Environment . 85

XIII

LIST OF FIGURES

3.21 Stateflow Properties . 85
3.22 Transitions in Stateflow . 86
3.23 Graphical Functions in Stateflow 87
3.24 Subchart Boxes in Stateflow . 88
3.25 Boxes in Stateflow . 88
3.26 Edge Detector in Stateflow . 89
3.27 Simulink Scheme . 91
3.28 Simulink Scheme - Level 1 Subsystem 92
3.29 Simulink Subsystem - Switch Case Action Subsystem - State 2 . . . 93
3.30 Stateflow - Level 1 - State Machine 94
3.31 Testing Overview . 104
3.32 Simulink Design Verifier - Test Model 108
3.33 Design Error Detection - Dead Logic 109
3.34 Design Error Detection - Integer Overflow, Division by Zero 110
3.35 Test Generation . 111
3.36 Property Proving - Overview . 113
3.37 Property Proving - Erroneous Edge Detector - State Machine 114
3.38 Property Proving - Rising Edge Assertion 114
3.39 Model in the Loop Verification . 116

4.1 DA 42 Sensor Overview . 124
4.2 FCC Task Overview . 125
4.3 SAGITTA Hardware Architecture 126
4.4 DA 42 Hardware Architecture . 127
4.5 FCC System Architecture . 129
4.6 Software Module Architecture . 134
4.7 Mode Level Overview . 135
4.8 Homing . 141
4.9 Mission Area . 143
4.10 Loiter Modes - Overview . 144
4.11 Mode Level Overview - Disassembled 145
4.12 Level 1 - State Machine . 146
4.13 Level 2 (OPL) - State Machine . 148
4.14 Level 3 (OPL-EP) - State Machine 151
4.15 Level 3 (OPL-FO) - State Machine 154
4.16 Level 3 (OPL-EPLL) - State Machine 157
4.17 Level 3 (OPL-FOLL) - State Machine 158
4.18 Level 4 (OPL-FO-RTB) - State Machine 160
4.19 Level 3 (OPL-FO) Loiter - State Machine 164
4.20 Inner Loop - Switch . 167
4.21 SAGITTA in Flight . 171

XIV

LIST OF FIGURES

4.22 SAGITTA Second Flight - Flight Trajectory 173
4.23 DA 42 in Flight . 174
4.24 DA 42 Flight Test - Flight Trajectory 176

5.1 Elevator Doublet Comparison . 179
5.2 ELIAS Hardware Architecture . 183
5.3 Do 228 Hardware Architecture . 184
5.4 FCC System Architecture . 185
5.5 Software Module Architecture . 186
5.6 Control Module . 189
5.7 Execution Module . 189
5.8 Injection Architecture . 190
5.9 Auto Flight Control System - Override Switch 191
5.10 Inner Loop - Override Switch . 192
5.11 Load-Factor Selection . 193
5.12 Inner Loop - Injection Switch . 194
5.13 Command Generation . 195
5.14 Actuator - Injection Switch . 196
5.15 State Machine . 199
5.16 Multi-Step Maneuver . 203
5.17 Multi-Ramp Maneuver . 204
5.18 Multi-Sine Maneuver . 205
5.19 Sweep Maneuver . 206
5.20 Spline Maneuver . 207
5.21 ELIAS in Flight . 209
5.22 Elevator Doublet . 210
5.23 Actuator Sweeps . 211
5.24 Do 228 in Flight . 212
5.25 Aileron Ramps . 213
5.26 Bank-Angle Multi-Sine . 214

6.1 Aerial Demonstration Platforms . 217

C.1 Example Simulink Model . XIX

D.1 State Machine Level 1 - Transition Conditions XXXI
D.2 State Machine Level 1 - Transition Actions XXXII
D.3 State Machine Level 2 - Transition Conditions XXXIII
D.4 State Machine Level 2 - Transition Actions XXXIV
D.5 State Machine Level 3 - EP - Transition Conditions XXXIV
D.6 State Machine Level 3 - EP - Transition Actions XXXIV
D.7 State Machine Level 3 - EPLL - Transition Conditions XXXV

XV

LIST OF FIGURES

D.8 State Machine Level 3 - EPLL - Transition Actions XXXV
D.9 State Machine Level 3 - FO - Transition Conditions XXXVI
D.10 State Machine Level 3 - FO - Transition Actions XXXVII
D.11 State Machine Level 3 - FOLL - Transition Conditions XXXVIII
D.12 State Machine Level 3 - FOLL - Transition Actions XXXVIII
D.13 State Machine Level 4 - Transition Conditions XXXIX
D.14 State Machine Level 4 - Transition Actions XXXIX
D.15 State Machine Level 3 - Loiter - Transition Conditions XL
D.16 State Machine Level 3 - Loiter - Transition Actions XLI

F.1 State Machine Level 1 - Transition Conditions XLVI
F.2 State Machine Level 1 - Transition Actions XLVII

XVI

List of Tables

1.1 Levels of Automation . 7

2.1 Platform Overview . 31
2.2 SAGITTA Specifications . 33
2.3 DA 42 Specifications . 35
2.4 ELIAS Specifications . 37
2.5 Do 228 Specifications . 39

3.1 Elementary Logic Gates . 49
3.2 Edge Detector - State-Transition Table 57
3.3 Edge Detector - Transition Matrix 58
3.4 Mealy Transition Table . 61
3.5 Mealy Input-Output Mapping . 61
3.6 Moore Transition Table . 62
3.7 Moore Input-Output Mapping . 62
3.8 Relational and Logical Operators 72
3.9 Modeling Guidelines - Overview . 96
3.10 Guidelines - State Machine Type 97
3.11 Guidelines - Action Language . 97
3.12 Guidelines - Data Scope . 97
3.13 Guidelines - State Chart Interfaces 98
3.14 Guidelines - State Chart Events . 98
3.15 Guidelines - Enumerated State Information 98
3.16 Guidelines - Stateflow Elements . 99
3.17 Guidelines - State Chart Elements 99
3.18 Guidelines - State Chart Containers 99
3.19 Guidelines - State Decomposition 100
3.20 Guidelines - Self-Recurring States 100
3.21 Guidelines - Condition Actions . 100
3.22 Guidelines - Stateflow Objectives 101
3.23 Guidelines - Temporal Logic . 101
3.24 Guidelines - Logical Sequencing . 101

XVII

LIST OF TABLES

3.25 Guidelines - State Arrangement . 102
3.26 Guidelines - Transition Arrangement 102
3.27 Guidelines - Condition and Action Arrangement 102
3.28 Guidelines - Signal Naming . 103
3.29 Guidelines - Signal Routing . 103
3.30 Design Error Detection - Objectives Status 109
3.31 Design Error Detection - Objectives Status 110
3.32 Design Error Detection - Test Cases 110
3.33 Test Generation - Objectives Overview 111
3.34 Test Generation - Objectives (excerpt) 112
3.35 Property Proving - Objectives . 115
3.36 Falling Edge Assertion - Counterexample 1 115
3.37 Rising Edge Assertion - Counterexample 2 115

4.1 Level 1 - Interface . 147
4.2 Level 1 - Transition Matrix . 147
4.3 Level 2 (OPL) - Interface . 149
4.4 Level 2 (OPL) - Transition Matrix 150
4.5 Level 3 (OPL-EP) - Interface . 152
4.6 Level 3 (OPL-EP) - Transition Matrix 152
4.7 Level 3 (OPL-FO) - Interface . 155
4.8 Level 3 (OPL-FO) - Transition Matrix 156
4.9 Level 3 (OPL-EPLL) - Interface . 157
4.10 Level 3 (OPL-EPLL) - Transition Matrix 157
4.11 Level 3 (OPL-FOLL) - Interface . 159
4.12 Level 3 (OPL-FOLL) - Transition Matrix 159
4.13 Level 4 (OPL-FO-RTB) - Interface 160
4.14 Level 4 (OPL-FO-RTB) - Transition Matrix 160
4.15 Level 3 (OPL-FO) Loiter - Interface 165
4.16 Level 3 (OPL-FO) Loiter - Transition Matrix 166
4.17 Trajectory Generation - Switch . 168
4.18 Trajectory Control / Auto Flight Control System - Switch 168
4.19 Inner Loop - Switch . 169
4.20 Actuator - Switch . 169
4.21 SAGITTA Second Flight - Command History 172
4.22 DA 42 Flight Test - Command History 175

5.1 Interface . 200
5.2 Transition Matrix . 201
5.3 ELIAS Maneuvers . 209
5.4 Do 228 Maneuvers . 212

XVIII

LIST OF TABLES

A.1 Automation Levels - Management Modes I
A.2 Automation Levels - Automation Functions II
A.3 Automation Levels - Human Functions III

B.1 Code Generation - Files . V

E.1 FCSA - Unit Tests . XLIII

XIX

List of Code Listings

3.1 Edge Detector - Imperative Program Code 56
3.2 EdgeDetector - EdgeDetector.h . 82
3.3 Edge Detector - EdgeDetector.c . 82
3.4 Edge Detector - C-Code generated from Stateflow 90
3.5 Simulink - Enumeration Definition 94
3.6 MATLAB - Unit Tests . 105

B.1 Edge Detector - EdgeDetector.h . VI
B.2 Edge Detector - EdgeDetector_private.h X
B.3 Edge Detector - EdgeDetector_types.h XI
B.4 Edge Detector - EdgeDetector.c . XII

C.1 Stateflow Verification - TestData.mat XX
C.2 Stateflow Verification - RunSingle.m XX
C.3 Stateflow Verification - RunAll.m XXI
C.4 Stateflow Verification - InitTestRun.m XXII
C.5 Stateflow Verification - InitSLDVTest.m XXIII
C.6 Stateflow Verification - CloseSLDVTest.m XXIII
C.7 Stateflow Verification - DesignErrorDetection_DeadLogic.m XXIV
C.8 Stateflow Verification - DesignErrorDetection_IoDz.m XXV
C.9 Stateflow Verification - PropertyProving.m XXVI
C.10 Stateflow Verification - Coverage.m XXVII
C.11 Stateflow Verification - Coverage_InputString.m XXVIII
C.12 Stateflow Verification - Coverage_PlotData.m XXVIII
C.13 Stateflow Verification - Coverage_CopyFiles.m XXIX

XXI

Acronyms

AC-IJ Actuator - Injection Switch
AC-IM Actuator - Injection Module
AC-SW Actuator - Switch
ACB Actuator Clutch Box
ACE Actuator Control Electronics
ADC Air Data Computer
AF-IM Auto Flight Control System - Injection Module
AF-OR Auto Flight Control System - Override Switch
AFCS Auto Flight Control System
AGL Above Ground Level
AiL Aircraft in the Loop
ARC Air Risk Class
ATHR Autothrottle
ATM Automated Teller Machine
ATOL Automatic Takeoff and Landing
ATP Airline Transport Pilot
BDD Binary Decision Diagram
BDP Boolean Decision Procedure
BDS BeiDou Navigation Satellite System
BLOS Beyond Line of Sight
C2 Command and Control
CMS Control and Monitoring System
ConOps Concept of Operations
CPS Cyber-Physical Systems
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CSAS Control and Stability Augmentation System
DCU Data Concentrator Unit
DLR German Aerospace Center
EASA European Union Aviation Safety Agency
EC European Commission

XXIII

Acronyms

ECU Engine Control Unit
EMC Electromagnetic Clutch
EP External Pilot
EPDL External Pilot Data Link
EU European Union
FBW Fly-by-Wire
FC Friction Clutch
FCC Flight Control Computer
FCCA Flight Control Clutch Automation
FCDL Flight Control Data Link
FCS Flight Control System
FCSA Flight Control System Automation
FDL Flight Data Link
FDM Flight Dynamic Model
FMS Flight Management System
FO Flight Operator
FSD Institute of Flight System Dynamics
FTMI Flight Test Maneuver Injection
GCE Gear Control Electronics
GCS Ground Control Station
GLONASS GLObal NAvigation Satellite System
GNSS Global Navigation Satellite System
GPS Global Positioning System
GRC Ground Risk Class
HiL Hardware in the Loop
IAS Indicated Air Speed
IL Inner Loop
IL-IJ Inner Loop - Injection Switch
IL-IM Inner Loop - Injection Module
IL-OR Inner Loop - Override Switch
IL-SW Inner Loop - Switch
ILS Instrument Landing System
INS Inertial Navigation System
IOC Input/Output Controller
IPM Input Processing and Monitoring
IRS Inertial Reference System
JARUS Joint Authorities for Rulemaking on Unmanned Systems
LA Loiter Automation
LASALT Laser Altimeter
MAAB MathWorks Automotive Advisory Board

XXIV

Acronyms

MAG Magnetometer
MC/DC Modified Condition / Decision Coverage
MCP Mode Control Panel
MDL Mission Data Link
MFD Multi-Function Display
MiL Model in the Loop
MO Mission Operator
MTOM Maximum Take-Off Mass
MTSA Methodology for System Automation
NAA National Aviation Authority
NAV Navigation System
OA Operation Authorization
OP Output Processing
OPV Optionally-Piloted Vehicle
PGA Programmable Logic Array
PIT Periodic Interval Timer
RADALT Radar Altimeter
SA System Automation
SAE Society of Automotive Engineers
SAIL Specific Assurance and Integrity Level
SDL Shared Data Link
SDV Simulink Design Verifier
SiL Software in the Loop
SlCI Simulink Code Inspector
SORA Specific Operation Risk Assessment
SP Safety Pilot
SRB Safety Relay Box
TA-SW Trajectory Control / Auto Flight Control System - Switch
TC Trajectory Control
TC Type Certificate
TDL Termination Data Link
TDR Thrust Director
TG Trajectory Generation
TG-SW Trajectory Generation - Switch
TO/GA Take-Off/Go-Around
TUM Technical University Munich
UAV Unmanned Aerial Vehicle
VLOS Visual Line of Sight
WoW Weight on Wheel

XXV

Chapter 1

Introduction

The history of manned aviation dates back to the very early 20th-century. To this day
it remains controversial who performed the first sustained, controlled, powered heavier-
than-air flight. The most widely recognized first flight was performed by Orville Wright
on December 17, 1903, in North Carolina, with 37 meters [Smi2003]. Later that day his
brother, Wilbur Wright, covered a distance of 260 meters [Wri1903b]. According to other
sources, the first flight was actually performed, more than two years earlier, on August 14,
1901, by Gustave Whitehead in Connecticut [Jac2013]. His second flight on that date was
allegedly over more than 2000 meters, far longer than the flights of the Wright Brothers.

Subfigure 1.1(a) shows a restored photograph of Orville Wright’s famous first flight
in Kitty Hawk, NC on December 17, 1903. A restored photograph of Gustave Whitehead
and his No. 22 aircraft is shown in Subfigure 1.1(b).

Whether the first sustained, controlled, powered heavier-than-air flight was actually
performed by Whitehead or Orville, mankind’s dream of flying became true in the 20th-
century. Only a few years later, aircraft were capable of flying many hours but still
required continuous attention by the pilot. A system was needed to reduce the pilot’s
workload to ensure lower fatigue and safer flights for longer periods.

(a) Orville Wright [Wri1903a] (b) Gustave Whitehead [Ive2015]

Figure 1.1: Pictures of Wright and Whitehead

1

(a) Sperry’s Autopilot [GS2004] (b) Airbus A380 Cockpit [Mas2014]

Figure 1.2: The First Autopilot and its Modern Descendants

An automation of basic aircraft control function was developed by Lawrence Sperry
in 1912, which became known as the first autopilot. It enabled the aircraft to fly straight
and level with no interaction by the pilot [Amb2016]. A restored photograph of Sperry’s
Autopilot, equipped on the Curtiss biplane, is shown in Subfigure 1.2(a).

Modern aircraft have come a long way from those early days in aviation. One example,
an Airbus A380 Cockpit, is shown in Subfigure 1.2(b). They require very little interaction
and are capable to perform most maneuvers automatically. On the one hand, today’s
automation systems are increasingly used to enhance safety and economic performance
[Alb1991]. But on the other hand, flying highly automated aircraft can lead to problems
due to less experience with manual flight. The automation has made it more unlikely to
encounter such problems, but at the same time made it more likely that the pilot will not
be able to cope with them [Lit2019]. This has led to discussions about the advantages
and disadvantages of higher-level automation in manned flight [Bai1983, Str2018].

In the field of Unmanned Aerial Vehicles (UAVs), manual flight is only possible in a
limited range, due to data link latency, and would decrease the operational area. Addition-
ally, operators need to focus on the mission’s objective, not just the flying. Furthermore,
without automation, failures like link loss would lead to the loss of the aircraft.

UAVs can be used in many different applications including precision agriculture, in-
spection of infrastructure, monitoring of wind energy, inspection of pipelines and pow-
erlines, highway and traffic monitoring, monitoring of natural resources, environmental
compliance, atmospheric research, media and entertainment, photos, filming, protection
and research of wildlife, and disaster relief. [EAS2015b]

Performing such tasks only in manual flight would greatly limit the mission’s effec-
tiveness or even make it impossible in some cases. To exploit the advantages of UAVs,
operators need to be able to focus on tasks, other than flying the aircraft. Therefore
higher-level automation is indispensable for most UAVs. In the following, the motivation
and background of this thesis are presented. Afterward, the state of the art, objectives,
and contributions are shown before the remaining chapters are outlined.

2

Chapter 1: Introduction

1.1 Motivation
This section gives a short overview, of why UAVs have become more and more popular in
recent years, what their advantages over manned aircraft are, what the current status of
regulations is, and why a higher level of automation and system management is needed,
compared to manned aircraft.

1.1.1 Popularity

In 1965 Gordon Earle Moore predicted that the component count in microelectronics
will double about every two years, while the cost and size per component will be halved
[Moo1965]. Since the invention of integrated circuits (the basis for modern microelec-
tronics) in the late 1950s, this relationship proved to be correct and became known as
Moore’s Law. While it cannot continue forever and will probably stop working in the
next few years [Cou2015], it shows how microelectronics have become smaller and lighter,
while at the same time being more powerful and cheaper.

This progress is a key factor for the miniaturization and performance increase of digital
flight control systems. The reduction of size and cost made it possible to use higher-level
automation in smaller aircraft. Together with the demand for novel solutions, it has led
to the rise of UAVs. Different configurations like fixed-wing, rotorcraft, multi-copter, or
hybrid configurations like transition or tiltrotor aircraft have been used for various civil
and military missions. Depending on the configuration and the mission, their size can
vary between a few grams and several tons.

The development of the global UAV market from 2015 and the prediction to 2025 can
be seen in Figure 1.3. During the last five years, the market has doubled and is predicted
to continue growing even more in the future.

10

20

30

40

50

11.5

2015

12.8

2016

15.1

2017

17.3

2018

19.6

2019

22.8

2020

25.7

2021

29.5

2022

34.0

2023

39.6

2024

45.2

2025

Figure 1.3: Global UAV Market in billion USD (adapted from [Ame2017, Mar2019])

3

1.1 Motivation

1.1.2 Advantages

Whether or not UAVs have advantages or disadvantages over manned aircraft highly
depends on the mission’s objective, its duration, the environmental conditions, and other
factors. The following list is summarized from [Aus2010, p. 5–7] and gives an overview
of missions that can be more suitable for UAVs and reasons why to prefer an unmanned
over a manned aircraft. The following proposed roles, where using a UAV is beneficial,
are showing civilian examples. However, there are also corresponding military missions.

• Dull missions can be very tedious for the crew. Applications like extended surveil-
lance can lead to decreased mission effectiveness due to loss of concentration. UAVs
with modern ground stations can be more effective in such operations, with the
additional benefit of possible crew changes for even longer missions.

• Hazardous missions like environmental monitoring for nuclear or chemical contami-
nation as well as airborne crop-spraying with chemicals, expose the crew of manned
aircraft to unnecessary risk. Using UAVs for such operations bypasses those prob-
lems with the advantage of easier detoxification of the aircraft afterward.

• Dangerous missions include powerline inspection or forest fire control, which also
exposes the crew of manned aircraft to a high risk, which can be avoided when using
an unmanned alternative.

• Covert missions, where the opposing side shall not be alerted, like following crim-
inals, are very sensitive to low detectable signatures. Achieving this is easier with
small-size UAVs, which produce less noise than their manned counterparts.

• Research projects with UAVs can be quicker, cheaper, and less hazardous than
manned aircraft. Small-scale unmanned prototypes can be used for early testing of
planned larger manned versions. In this stage modifications to the smaller version
can be done more efficiently. Additionally, a novel configuration can be developed,
which would not be able to contain a crew at all.

• Environmental reasons are related predominantly to civil missions. Due to its, most
likely, smaller size and lower mass, a UAV needs less power which results in lower
emissions and lower noise, compared to a manned aircraft performing the same
task. This is especially beneficial for missions close to inhabited areas like powerline
inspection or crop-spraying.

• Economic reasons, including acquisition and operating costs, will be important in
almost any use case. Especially missions with smaller payloads will benefit greatly
when using UAVs. As the payload gets heavier, for example in cargo flights, the
percentage in the mass of the crew (including necessary onboard equipment) gets
smaller and the benefits become less significant.

4

Chapter 1: Introduction

1.1.3 Regulations

In 2015 the European Union Aviation Safety Agency (EASA) acknowledged the diversity
and innovative potential of unmanned aircraft and their associated industry. A regulatory
framework was necessary to incorporate unmanned aircraft into the existing airspace. The
proposed framework needed to be progressive- and operation-centric and follows a risk-
and performance-based approach. [EAS2015a, p. 1]

This regulatory framework establishes three risk-based categories regardless of their
maximum take-off masses (MTOMs), which are summarized in the following list. Ascend-
ing from low to high risk they are called: open, specific, and certified category. [EAS2015c]

• open category - low risk
This category corresponds to "small" unmanned aircraft with an MTOM of 25kg

and operation within Visual Line of Sight (VLOS) which poses a low risk to third
parties on the ground or in the air. It relates most likely to hobbyists and will not
require and authorization by a National Aviation Authority (NAA).

• specific category - medium risk
Exceeding any of the limits of the previous category, requires specific mitigation
of a higher risk, which is addressed in the specific category. This category allows
operation out of VLOS and limited sharing of airspace if the risks are analyzed and
mitigated through a Specific Operation Risk Assessment (SORA) and an Operation
Authorization (OA) is issued by an NAA.

• certified category - high risk
Certification will be required if the risk rises to a level similar to that of manned
aviation like international cargo transport or transport of persons. In this category
a Type Certificate (TC) for the UAV will be necessary, verifying that the design of
the UAV is considered appropriate for different operations.

Due to the rapid development within the open and specific categories, the introduction
of a framework for those was prioritized and resulted in a proposed amendment comple-
mented by an impact assessment in 2017 [EAS2017a, EAS2017b]. In 2018 an opinion was
published to mitigate the risk in the open and specific categories [EAS2018]. Based on
this opinion, a proposal in 2019 was accepted by the EASA Committee and adopted by
the European Commission (EC) [EAS2019]. Operations of unmanned aircraft within the
open and specific categories shall be possible in 2020.

While the open category corresponds to hobbyists, where automatic operation is not
required and the certified category raises requirements comparable to manned aviation,
the novel specific category bridges the gap between the two. Operations beyond low risk
are made possible without requiring certification and therefore opening a wide range of
new possibilities. To exploit those benefits higher-level automation is necessary to extend
the operational range and allowing the operator to focus on the mission’s target.

5

1.1 Motivation

1.1.4 Higher-Level Automation

For medium-sized UAVs, in the specific category, existing flight control systems, which
have been developed for their larger counterparts, are not suitable. They use failure
mitigation strategies that result in duplex or triplex system architectures to ensure con-
tinued operation or at least safe disconnection. This increases both size and weight of
the equipment and makes the integration into smaller vehicles impossible in most cases.
Additionally, the cost for those (certified) flight control systems makes them not feasible
for smaller cost-effective platforms.

When operating a UAV, manual flight might not be desirable or even possible. On
the other side full autonomous operation might also not be desirable, because it requires
a high effort in the design and implementation of functions that will only be necessary for
very specific situations. Table 1.1 shows different levels of automation for manned flight,
as defined by Charles Billings [Bil1991, p. 27]. This table has been slightly modified from
its original version, which is depicted in Appendix A as a comparison.

The table shows different management modes sorted by their level of automation
or involvement by the pilot and the respective human and automation functions. The
different levels range from Direct Manual Control with basically no automation and a
very high level of human involvement all the way up to Autonomous Operation where the
automation replaces the need for any human interaction.

Very low levels of automation like Direct Manual Control and Assisted Manual Con-
trol are only used in General Aviation nowadays. What is referred to as manual control
in commercial aviation is described as Shared Control in Table 1.1. The next two levels
of automation, Management by Delegation and Management by Consent, are the most
commonly used modes of management in commercial aviation. Very high levels of automa-
tion like Management by Exception and Autonomous Operation are not used in today’s
commercial manned aviation.

To exploit the advantages of UAVs, as outlined at the beginning of this section, they
are mostly used in Management by Delegation and Management by Consent modes. In
some parts of missions also Shared Control or Management by Exception might be used. In
those management modes, some functions that would normally be carried out by the flight
crew need to be automated, to ensure safe and continued automation. Typical human
tasks for manned flight that need to be automated for unmanned flight are emphasized
in italics in Table 1.1.

They cannot be executed by the operator on the ground due to limited information,
time constraints, or possible data link loss to the UAV. Additionally, monitoring functions
process a lot of data, which might not be available in real-time to the ground crew.
Therefore, time-critical decisions need to be made onboard because larger latencies make
it impossible for the operator to react fast enough. Furthermore, decisions required as a
consequence of communications failure, inherently cannot be handled by the ground crew
and must be made automatically by the higher-level automation onboard the aircraft.

6

Chapter 1: Introduction

Table 1.1: Levels of Automation (adapted from [Bil1991, p. 27])

Management
Mode

Automation Functions
Human Functions

V
er

y
Lo

w
←

Le
ve

l
of

A
ut

om
at

io
n
→

V
er

y
H

ig
h

Autonomous
Operation

Fully autonomous operation; Pilot not usually informed;
System may or may not be capable of being disabled

V
er

y
H

ig
h
←

Le
ve

l
of

In
vo

lv
em

en
t
→

V
er

y
Lo

w

Pilot generally has no role in operation; Monitoring is
limited to fault detection. Goals are self-defined

Management
by
Exception

Essentially autonomous operation; Automatic reconfigura-
tion; System informs pilot and monitors responses
Pilot informed of system intent; Must consent to critical
decisions; May intervene by reverting to lower-level

Management
by
Consent

Full automatic control of aircraft and flight; Intent,
diagnostic and prompting functions provided
Must consent to state changes, checklist execution,
anomaly resolution; Execution of critical actions

Management
by
Delegation

Autopilot and Autothrottle control of flight path;
Automatic communications and nav following
Commands altitude, heading, speed, Manual or coupled
navigation; System operations and checklists

Shared
Control

Enhanced control and guidance, Smart advisory systems;
Potential flight path and other predictor displays
In control through CWS or envelope-protected system;
May utilize advisory systems; System management

Assisted
Manual
Control

Flight director, FMS, Nav modules; Data link with manual
messages; Monitoring of flight path control and systems
Direct authority over all systems; FMS is available; Manual
control, aided by F/D and enhanced navigation display

Direct
Manual
Control

Normal warnings and alerts; Communication with ATC;
Routine ACARS communications performed automatically
Direct authority over all systems; Manual control with raw
data; Unaided decision-making; Manual communication

Additionally to the flight control algorithms, these novel monitoring, time-critical
and control-level-change functions need to be integrated into smaller and less powerful
hardware. Those functions need to be as safe as possible without relying on duplex or
triplex system architectures. Furthermore, they also need to be robust with respect to
deviations from the design model since modeling, system identification and flight testing
need to be kept at a minimum to allow a cost-effective development.

Therefore, novel automation solutions need to be developed which can be used in
cost-effective system architectures and are as safe and robust as possible.

7

1.2 Background

1.2 Background
The objective of this thesis is to present the implementation and verification of automa-
tion functions. The developed methodology is applied to two functions, which are demon-
strated on different platforms. Often used terms of the aerospace industry are described
in the following subsection and the scope of the thesis is separated with respect to those.
Additionally, the operational concept for demonstrating novel automation functions on
experimental UAVs and Optionally-Piloted Vehicles (OPVs) is outlined. Furthermore, the
development context and working environment, in which the methodology and automa-
tion functions presented in this thesis are developed, are introduced.

1.2.1 Aerospace Industry Terms

Within the aerospace industry, various terms with very distinct meanings are used. There-
fore, the following section introduces the ones that are frequently used in this thesis or
necessary for the overall understanding.

1.2.1.1 Manual Flight, Selected Flight, Managed Flight

In current state-of-the-art commercial airliners, three control levels are available. In
Manual Flight, the pilot is controlling the aircraft using the control stick or yoke. However,
in most cases, a computer is still supporting the pilot. When using Selected Flight,
target values for the autopilot are commanded by the pilot through the Mode Control
Panel (MCP). In Managed Flight commands for the autopilot are generated by the Flight
Management System (FMS).

Others are working on bridging the gap between manual and automatic flight with
an onboard artificial intelligence approach in cooperation with the human operator
[KBS2011]. However, they are not designed for experimental aircraft and therefore not
in the scope of this thesis.

1.2.1.2 GNSS, GPS, Galileo, GLONASS, BeiDou

Global Navigation Satellite System (GNSS) refers to a system that is able to determine
the position of the aircraft. Global Positioning System (GPS) is the GNSS of the United
States of America, which was originally known as NAVSTAR GPS. Galileo is the European
GNSS, while GLObal NAvigation Satellite System (GLONASS) is operated by the Union
of Soviet Socialist Republics and the BeiDou Navigation Satellite System (BDS) was
developed by the People’s Republic of China.

While the systems have their differences, there are all used for a similar reason. Since
GPS has been operated for the longest and serves as a positing service for countless
devices, it is used in this thesis representatively for all GNSS systems.

8

Chapter 1: Introduction

1.2.1.3 Aircraft Types

There are a variety of different self-powered aircraft types. The most commonly known
is a fixed-wing aircraft, which, as the name implies, has a non-movable wing and one or
more engines. Another widely used type is the rotorcraft, most commonly represented
by the helicopter. In recent years multi-rotor aircraft also known as multi-copters have
been designed in various forms and joined the rotorcraft family. Combining fixed-wing
and rotorcraft has led to transition and tiltrotor aircraft, which can takeoff and land
like a helicopter but can also fly efficiently for long times like a fixed-wing aircraft. The
platforms used for demonstration in this thesis are all fixed-wing aircraft. However, the
developed methodology and functions can be applied to other platforms as well.

1.2.1.4 Automatic vs. Autonomous

With the recent development in the automotive industry, the terms automatic and au-
tonomous driving are used on many occasions. For driving automation, the Society of
Automotive Engineers (SAE) has released a six-level standard for automation ranging
from no automation (level 0) to full driving automation (level 5) [Soc2018]. Even though
both autonomous and automatic are used in the aerospace industry as well, there is no
such agreed-upon standard. Nevertheless, the seven Levels of Automation from Charles
Billings can be used as a comparable counterpart.

While the terms autonomous and automatic are often used interchangeably, they are
not. An autonomous aircraft is superior to an automatic one. The goals would be self-
defined and it does not require any human input. To this date, there is no autonomous
aircraft available. Therefore, this thesis is focusing on functions for automatic aircraft.
Some even propose a more correct description of UAVs as uninhabited or remotely piloted
aircraft [KH2005, p. 19].

1.2.1.5 Manned, Unmanned, Optionally-Piloted

Manned aircraft always have a crew onboard to control the aircraft directly or to set
targets for the automatic flight control system and supervise it. In contrast, a UAV,
only has a ground crew to set targets and in some cases supervise the automatic flight
control system. If the aircraft is capable of both manned and unmanned flight, it’s called
OPV. Due to legal restrictions in the last years, it was nearly impossible to operate a
medium- or large-size UAV in Germany, or Europe in general. Meeting required safety
standards for unmanned flight would have resulted in increased cost and more engineering
time, which was not possible in the projects. To bypass those problems, OPVs were used,
which are capable of performing fully automatic unmanned as well as manual manned
flight. However, in the scope of this thesis, OPVs are only used with an onboard safety
pilot, who has the legal responsibility. Nevertheless, the functions developed in this thesis
can be used for both, UAVs and OPVs.

9

1.2 Background

1.2.2 Automation of UAVs and OPVs

The overall scope of this thesis is to present the automation of experimental aircraft based
on the classical paradigm of Supervisory Control. In contrast to automatic control, which
focuses on including all necessary capabilities for a specific task into the automation sys-
tem, Supervisory Control includes the human operator at the highest level of abstraction.
In this scenario, the system and human operator work together somewhere in the spec-
trum between manual and automatic control. This leads to a hierarchical relationship,
in which tasks are separated between the human and the system in different degrees de-
pending on the situation. The operator can focus on monitoring and mission objectives,
while the automation system is controlling the aircraft. [She1992]

In the following, the operational concept of experimental UAVs or OPVs, as used in this
thesis, is presented. Those platforms are used to demonstrate the real-life applicability
of the methodology and automation functions presented in this thesis. The concept is
depicted in Figure 1.4 and includes relevant participants and system boundaries between
humans and the automation.

The operational concept can be divided into three segments, the Ground Segment, Air
Segment, and Space Segment. The Ground Segment, which in some cases is also referred to
as monitor- or supervisory-segment, contains the operator and/or user. The Air Segment
includes the UAV or OPV and the Space Segment contains the GNSS satellites.

In the following, the three segments and the links between them are introduced in
more detail. Depending on the demonstration platform, the operational concept can be
slightly different, which is addressed in Chapter 2.

Ground Segment

Air Segment

GPS Link

UAV / OPV

FCS

Sensors

FCC

GCS

EPFO

SP

Actuators

Control Surfaces

Space Segment

GNSS Satellites

Data Link

Figure 1.4: Operational Concept

10

Chapter 1: Introduction

1.2.2.1 Ground Segment

The operator, who is controlling the aircraft with higher-level functions is called Flight
Operator (FO) and located within the Ground Control Station (GCS) in the Ground Seg-
ment. Possible commands that can be used are autopilot values (like altitude, heading,
and speed) or a selection of different waypoint lists. Additionally, higher-level automa-
tion functions like autoland, return to base, or loiter can be activated. The FO is also
responsible for the monitoring of the automation system on a mission level.

Depending on the demonstration platform one or more additional External Pilots
(EPs) are located in the Ground Segment. In contrast to the FO, the EP can control the
aircraft using low-level functions like attitude or rate commands. The primary reason for
the EP is risk mitigation during the first testing phase of the experimental aircraft.

In a more conventional use case or mission, there is most likely a Mission Operator
(MO), who is controlling the equipment for the specific mission. However, due to the
close relationship of the FO to the aerial platform during experimental flights, this is not
the case, since the flight tests are designed for the aircraft itself.

Due to the spatial separation, one or more data links are used for communication
between the Ground Segment and Air Segment. In the case of the FO, it is a two-way
link, which is used for transferring commands to the aircraft but also for feedback from
the aircraft to the GCS. The data link for the EP is usually a low latency one-way data
link used to control the aircraft within VLOS.

1.2.2.2 Air Segment

The UAV or OPV constitutes the Air Segment. In the case of the OPV demonstration
platforms, a Safety Pilot (SP) is legally responsible for the aircraft and the pilot in com-
mand, while the Flight Control System (FCS) is automatically controlling the aircraft.
An important feature of all OPVs is the ability to disable the FCS at any time, to return
control to the SP. In the case of a UAV, there is obviously no pilot onboard the aircraft.

The FCS includes the sensors, the Flight Control Computer (FCC) as well as actu-
ators to control the surfaces of the aircraft. Additionally, the OPVs are equipped with
clutches between the actuators and components of the mechanical flight control system,
to disconnect the automation in case of manual flight. The methodology and automation
functions presented in this thesis are all part of the FCC.

1.2.2.3 Space Segment

The Space Segment contains only the GNSS satellites. An abstract representation of the
processing of signals from multiple satellites by the GNSS receiver onboard the aircraft
is shown as "GPS Link" in Figure 1.4. If the GNSS is not able to determine the position
of the aircraft, this is referred to as GPS loss. In the thesis at hand, satellite-based
communication is not considered and therefore omitted in Figure 1.4.

11

1.2 Background

1.2.3 Development Context

The development context in which the methodology and automation functions presented
in this thesis have been developed is depicted in Figure 1.5. For a better understanding,
a short overview of this methodology and the developed functions are presented here.

To implement higher-level automation functions a methodology is necessary that
makes the implementation of a multi-level finite state machine possible while retaining
maintainability, reducing complexity, and permitting testing. One of the two main func-
tionalities developed in this thesis, which uses this methodology, is a system automation,
which is capable of administering a cascaded flight control loop with respect to commands
from different operators or automatically due to sensor information and/or hardware in-
tegrity. Additionally, a maneuver injection module is implemented, which is capable of
injecting predefined test sequences to various injection points within the cascaded control
loop.

To demonstrate the real-life applicability of the developed methodology and automa-
tion functions they are tested on four demonstration platforms. Those are a 150kg UAV,
two OPVs, and one manned aircraft. The OPVs consist of a four-seat twin-engine air-
craft and a one-seat fully electric ultralight. The manned aircraft is a twin-turboprop
aircraft with up to 19 seats. More detailed information about those platforms and their
operational profiles, used for demonstration in this thesis, is available in Chapter 2.

Developers,
Operators, and
Project Budget

Different
Platforms

Model-Based
Development

Process

Aviation
Requirements

Development Context
for Methodology and

Automation Functions

Robust Design
and

Rigorous Testing

Specific-Risk
Category

UAV and OPV
Compatibility

Medium-Sized
Aircraft

Figure 1.5: Development Context

12

Chapter 1: Introduction

1.2.3.1 Medium-Sized Aircraft

The target platforms for the developed software range from the smallest having an MTOM
of 150kg up to the largest having almost 6000kg. Even though they have quite a different
mass and size, the architecture is very similar and they are, in this thesis, referred to
as Medium-Sized Aircraft. With regard to hardware redundancy, they all have a simplex
system architecture. Additionally, due to project cost constraints, size, and/or weight
margins, they all have a limited sensor performance, quality, and expected integrity.

Despite the simplex architecture, the lower system performance, and the smaller in-
tegrity, safety is ensured through different measures. In case of a hardware failure in an
OPV, the pilot can take over control in any situation. In the case of a UAV, the flight
is taking place over a specific area and within closed airspace. Therefore, the loss of the
aircraft can be accepted in case of a hardware failure.

Due to the diversity of the automation, cascaded control loops are necessary for the
developed software modules. The automation needs to intervene on different levels, there-
fore the separation of control loops needs to be explicitly visible. The control loops of the
cascaded controller include, among others, a waypoint generation and control module, an
autopilot with autothrottle, and an inner loop for control and stabilization.

1.2.3.2 Specific-Risk Category

All platforms, used for demonstration in this thesis, would probably be assigned to the
Specific-Risk Category representing a medium risk if they were used as UAVs within the
European Union (EU) and without special permits for closed airspaces.

The Joint Authorities for Rulemaking on Unmanned Systems (JARUS) have defined
guidelines on SORA, which support the application of risk assessment for authorization
to operate a UAV within the specific category, which is introduced in Subsection 1.1.3
and further defined in [EAS2018]. The SORA process uses the Concept of Operations
(ConOps) to derive a Ground Risk Class (GRC) and Air Risk Class (ARC). The GRC is
based on the aircraft’s dimension and kinetic energy, while the ARC is based on the used
airspace during the mission. Those risk classes are then consolidated into a Specific As-
surance and Integrity Level (SAIL), which drives the required activities for the authorized
operation of a UAV. [JAR2019]

At the time of writing this thesis, formal requirements for the specific category are
being developed. Therefore, this work is inherently designed to support the proving of
deterministic properties. This includes the execution of test cases, Modified Condition
/ Decision Coverage (MC/DC) analyses, and formal verification of key functionalities.
Demonstration flights, which prove the real-life applicability of the methodology and au-
tomation software developed in this thesis, were performed under "Permit to Fly" or within
closed airspaces. Therefore, a certification with respect to any category or authorization
has not been performed and is not part of this thesis.

13

1.2 Background

1.2.3.3 Aviation Requirements

Additionally to the guidelines in Subsubsection 1.2.3.8, widely accepted Aviation Require-
ments are taken into account. Those requirements are integrated into both, the develop-
ment of the methodology as well as into the implementation of the software functions. A
key requirement of all safety-critical software with human interaction is a deterministic
and unambiguous behavior. Additionally, its functionality must be in accordance with
requirements, so that the described functionality is deterministically available. The au-
tomation must have guaranteed properties in line with the requirements, where the same
input or series of inputs always leads to the same results. This enables the pilot or oper-
ator to be able to anticipate the reaction of the automatic system in a specific condition,
which is the basis for a purposeful utilization of the system. Without this deterministic
predictability, the pilot is not able to use the system in a meaningful way.

It also must be possible for the pilot or operator to intervene at any time. In the case
of an OPV, this is not limited to changing commands but also includes taking over control
and completely deactivating the system. When controlling a UAV, the deactivation of the
system is obviously not desirable. Nevertheless, a smaller lever of intervention must also
be possible. Furthermore, the system must be able to monitor itself and ensure a safe
operation. It should even be capable of performing automatic contingency maneuvers, if
pilot or ground crew reaction time is too long or not possible due to a connection failure.

1.2.3.4 Developers, Operators, and Project Budget

The development context and working environment with respect to the Developers, Op-
erators, and Project Budget is significantly different than in classical aviation projects.
Due to the scope of experimental UAVs and OPVs, the team is significantly smaller.
Nevertheless, their tasks include the same areas of design, implementation, and testing.

The personnel actively involved in flight tests are usually not long-time trained pilots,
like Airline Transport Pilots (ATPs). This includes the FO, EP, and flight test engineers.
The only exception within the operating team of the aircraft is the SP, who is a specially
trained test pilot.

The project budget, with respect to finances, is significantly smaller and the devel-
opment time is much shorter. Due to the experimental nature of the project, their time
frame is usually limited to a couple of years. Classical aviation projects on the other hand
are designed for several decades.

Despite all those differences, the objective of the experimental UAV and OPV projects,
referenced in this thesis, is an equivalent safety level. This means development, implemen-
tation, and testing methods need to be adapted to be suitable for this changed context.
The model-based development process discussed in Subsubsection 1.2.3.8, helps to achieve
those goals.

14

Chapter 1: Introduction

1.2.3.5 Robust Design and Rigorous Testing

The methodology also needs to allow for Robust Design and implementation with respect
to complexity, brittleness, opacity, and literalism.

As software gets more and more versatile it also gets increasingly more complex. This
can have negative effects on design, implementation, and testing as well as interacting
with the software from a functional side like a pilot or operator. The software must
be capable to perform the required task or mission, while at the same time keeping the
complexity at an acceptable level.

Brittleness in software design refers to algorithms that appear to work reliable under
normal circumstances but fail completely in unusual conditions. One goal of the developed
methodology is therefore to avoid brittleness.

Another problem of complex software occurs when the monitoring pilot or operator
does not understand why the algorithm is performing a certain reaction or isn’t sure
about the software’s intention. This lack of transparency is also referred to as opacity.
The implemented software should, therefore, follow easy-to-understand design decisions
to enable the operator or pilot to easily develop an understanding of the behavior.

Robustness also requires avoiding literalism, which defines software that continues nor-
mal operation in unusual conditions. This should be avoided in this thesis by monitoring
sensor integrity and performing automatic contingency procedures if necessary. This also
allows for a reduced workload of the operator in challenging situations.

Rigorous Testing is necessary to ensure the completeness of testing, which in turn
allows for a high confidence level of the correct functionality. This includes two aspects,
which are, the software having the intended functionality while at the same time not hav-
ing unintended functionality. The most basic requirement is, therefore, that the developed
methodology must allow for this kind of testing.

The first step always includes a standalone software test to ensure key functionali-
ties are working as designed. To get repeatable results it is necessary to generate test
cases, which can be executed automatically. This includes using formal methods to find
hidden design errors, analyze test case coverage, and prove certain requirements. Cover-
age analyses, for both statement coverage as well as MC/DC, are used to make sure the
functionality is developed in a proper way.

Software testing also includes Model in the Loop (MiL) and Software in the Loop (SiL)
simulations to check compatibility and functionality with other software modules and the
Flight Dynamic Model (FDM). Testing the developed software on the real hardware is
the next step. This is done in Hardware in the Loop (HiL) and Aircraft in the Loop (AiL)
environments, where as much as possible of the real hardware is taken into account to
verify the correct functionality on the same hardware as used for the flight test.

Ground Tests then prove the applicability of the software in a real-life environment
with all other components, before, finally, Flight Tests are used to verify those results and
to test the complete functionality of the software.

15

1.2 Background

1.2.3.6 Different Platforms

The implemented functions must be applicable to Different Platforms. That means they
need to be transferable and embedded into different software architectures, which requires
a general interface, both on the input and output. Furthermore, the software needs to be
parameterizable without changing it internally.

Additionally, the structure needs to have mode guards or be designed in a specific way
that an unsafe mode for a specific aircraft cannot be activated under any circumstances.
With those requirements, the software implemented in this thesis can be safely used on
various platforms. The four platforms, the software is designed for and tested on, are
described in Chapter 2.

1.2.3.7 UAV and OPV Compatibility

The designed software needs to have UAV and OPV Compatibility. Therefore the im-
plemented modules need to account for different types of control inputs. This can be an
onboard pilot who generates commands using a joystick or MCP. Since those inputs reflect
two completely different levels of involvement, they need to be treated appropriately.

The pilot can also be represented by a human with a remote control or joystick on
the ground. When the aircraft is in sight of the pilot, control modes can be similar to
onboard ones. Due to higher latency when flying Beyond Line of Sight (BLOS) and/or
with video feedback, associated control modes are most likely higher-level ones.

Another user can be the FO in the GCS. In this case, commands to the flight control
system might include mode changes, adjusting command values for the autopilot, or
changing target waypoints.

1.2.3.8 Model-Based Development Process

The methodology developed in this thesis is part of the Model-Based Development Process
developed at the Institute of Flight System Dynamics (FSD). It is based on aerospace
and automotive industry standards which helps to maintain high-quality software models
and also includes formal verification [HHH2016].

Developing software modules as design models is part of this development environment.
The developed methodology and implementation of software functionality described in
this thesis are following guidelines, which are also part of the development process.

MATLAB, Simulink, and Stateflow are used for the design, implementation, and test-
ing of the developed software [TM2020b]. The automation functions, described in this
thesis, are largely based on decision logic and therefore implemented in Stateflow. Part of
this thesis focuses on extending and enhancing those guidelines with respect to the used
software for implementation and the developed module structure. The adhered to and
developed guidelines used in this thesis are explained in more detail in Section 3.3.

16

Chapter 1: Introduction

1.3 State of the Art
While the functions presented in this thesis can all be categorized as automation functions
for UAVs and OPVs, they are still quite different. Therefore, after giving a short intro-
duction to the state of the art of aircraft automation functions in general, this section is
split up with respect to the methodology and each of the two applications.

Even though the first automation functions were introduced shortly after the first
manned flight at the beginning of the 20th-century and have since then increased dra-
matically, up to this day, there is no commercially available manned aircraft capable of
performing higher-level automation functions like fully automatic flight from takeoff to
landing. While those features are not so important for manned flight, because the pilots
can perform those tasks, it is mandatory for unmanned aircraft to take advantage of their
inherent benefits outlined in Section 1.1.

In recent years large military UAVs have been used for various missions. Necessary
functions for those missions also include those, developed in this thesis. However, due to
the military context, detailed information on the used methodology, design, implementa-
tion, and testing of functions is generally not available, but they would probably not be
in the scope of this thesis anyway.

Medium and small-sized, with respect to size, weight, and budget, UAVs and OPVs
gained attention in recent years, as technology has become more affordable and available.
However, integrating higher-level automation functionality requires a modern system ar-
chitecture and a significant amount of development effort. This is due to the complexity
of the larger systems that cannot easily be transferred to a medium or small platform,
because of the lack of space, weight reserves, and redundancy.

As a consequence, only a very limited number of test platforms, even fewer for manned
aircraft, included the demonstration of those higher-level automation functions in real-life
flight tests. Exceptional requirements like fully automatic maiden flight, have so far only
been accomplished with large UAVs and their advanced flight control systems.

The goal of this thesis is to present the design and implementation of different higher-
level automation functions, that utilize existing medium- and low-level control functions.
To support those a methodology for finite state machines is developed, that is utilized
by the two applications which are presented in this thesis. The system automation is
able to administer a cascaded control loop with respect to commands from multiple users.
Additionally, the automatic flight test maneuver module is designed for the accurate
execution of numerous maneuvers that are fed into various injection points.

This section, about the state of the art, the next Section 1.4, containing the derived ob-
jectives, and Section 1.5, introducing the main contributions of this thesis are divided into
three parts each. In this section, Subsection 1.3.1, Subsection 1.3.2, and Subsection 1.3.3
present the current state of the art with respect to the methodology and the two appli-
cations. In those sections and throughout this thesis, colored boxes with increasing color
saturation are used to summarize the motivation, objectives, and contributions.

17

1.3 State of the Art

1.3.1 Methodology for System Automation

Automation of higher-level flight control system functions has been used in large military
UAVs, which include the Northrop Grumman RQ-4 Global Hawk [Nor2001], the Boeing
X-45 [Boe2002], the Dassault Aviation nEUROn [Das2003], and many more. However,
they have MTOMs of several tons, estimated significantly higher budgets, and probably
advanced and redundant system architectures. Therefore, they are not in the scope of this
thesis and their automatic capabilities cannot be compared with those developed here.

Integrating that functionality into smaller UAVs or OPVs requires a significant amount
of development effort and a modern system architecture. The developed methodology pre-
sented in this thesis supports the integration of complex higher-level automation functions,
which are in general only available on those advanced large UAVs.

The implementation of multiple command modes on different authorization levels re-
quires large state machines. Within the scope of this thesis, even more modes for exper-
imental operation need to be addressed by the state machine, making it more complex
than currently available solutions.

The decomposition of finite state machines to accomplish various objectives has been
used for a long time. Especially in the early days of Programmable Logic Arrays (PGAs),
it has been used to increase performance, due to the reduced path between inputs and
outputs [ADN1992]. However, decomposition strategies within flight control software have
not been published.

Formal methods for design, validation, and verification of higher-level automation for
UAVs and OPVs are relatively new [LKN2011]. One example is the Formal Verification of
the FCS 5000 [MAW+2005], where the FCS is modeled in Simulink and the formal veri-
fication is done using the New Symbolic Model Verifier. Application of formal techniques
and model-based safety assessment in the field of state machine-based decision logic for
higher-level flight control system automation using Stateflow has not been reported.

The motivation, resulting from the shortcomings in the current state of the art, with
respect to the Methodology for System Automation, is summarized in the following list.
Derived objectives are presented in Subsection 1.4.1.

Motivation - Methodology for System Automation

• A design and implementation approach for the development environment
is necessary to reduce the complexity of higher-level automation

• Specific constraints must be met to suit the smaller development team,
shorter project duration, future extension, and re-use

• Testing systematic based on formal methods is required to ensure safe and
robust automation during experimental operation of UAVs and OPVs

18

Chapter 1: Introduction

1.3.2 Flight Control System Automation

Human-centered aviation automation has been considered in the classical automation
of aircraft since the 1990s. Problems of accidents and incidents during that time were
mostly attributed to the Loss of State Awareness associated with complexity, the coupling
of functions, autonomy, and inadequate feedback. [Bil1996, p. 5ff]

Despite discovering those problems a long time ago, recent accidents and incidents
still show similar problems caused by Loss of State Awareness, which is also referred to
as Mode Confusion. When operating highly automated UAVs or OPVs, Mode Confusion
is even more likely due to the physical separation of the operator and the aircraft.

As mentioned in the previous subsection, there are three main control levels of com-
mercial airliners. However, their autopilot can only access modes on one control level and
changes to another control level can only be made by the pilot. The only exception is the
occurrence of sensor errors, which can lead to an automatic degradation to Manual Flight.
This behavior is particularly critical because the automation is disabled in circumstances
when it is needed the most by the pilots. This has also lead to several accidents and in-
cidents in the past including Air France Flight 447 [Bur2012]. In contrast to commercial
airlines the software of experimental aircraft, in the scope of this thesis, needs to be able
to automatically switch between all available control levels and modes.

In the field of experimental UAVs and OPVs, manual and fully automatic flight needs
to coexist and be available to the operator or pilot. Due to the novelty of this field, only a
very limited number of publications related to system automation of experimental UAVs
or OPVs are available. Within the FlySmart-FBW23 project, a Diamond DA42 is used to
perform automatic takeoff and landing [PSJF2016, Dri2016, Rei2017]. A Stemme S15 is
used in the LAPAZ project for automatic landing [DLR2013]. However, the automation of
both systems is only designed for one user, has no contingency procedures and publications
provide little information on software architecture, implementation, and testing.

The motivation, resulting from the shortcomings in the current state of the art, with
respect to the Flight Control System Automation, is summarized in the following list.
Derived objectives are presented in Subsection 1.4.2.

Motivation - Flight Control System Automation

• Higher-level flight control system automation is necessary to exploit the
inherent benefits of UAVs and OPVs

• Currently available solutions are not suitable for experimental aircraft with
multiple users

• No integrated contingency procedures are available in existing approaches,
that support the operator in case of a failure

19

1.3 State of the Art

1.3.3 Flight Test Maneuver Injection

Flight tests have been used since the early beginning of aviation to prove the functionality
and performance of aircraft and systems. They have also been used to build and verify
FDMs, evaluate controller performance, and test actuator dynamics.

Normally, test pilots are used to manually conduct those tests on manned or optionally-
piloted aircraft. However, for more complex maneuvers and if high precision is required,
this is not possible. Additionally, the information gained from tests can efficiently be
increased, when they can be automatically executed very precisely and repeated numerous
times. Therefore, automatic flight test maneuver generation is highly favorable even for
simple maneuvers and inevitable for more complex maneuvers.

Maneuver autopilots, that are capable of performing specific maneuvers have been
used for development for a long time. Various publications are available, that discuss
autopilots for flight tests of high-performance aircraft. Despite being not in the scope of
this thesis, those maneuver autopilots have been designed for specific, mostly high angle
of attack, maneuvers only and are not capable of injecting various types of signals to
different parts of the control loop. [DJB1986, DHB+1988, MWD1989, HTA1991]

Others have focused on optimizing inputs to the control surfaces with respect to ex-
citing the aircraft’s response. Only multi-sine maneuvers have been used to control the
surfaces to gain efficient information for aerodynamic analysis of model aircraft, and have
not been used on manned aircraft. [Mor2012a]

In recent years similar approaches have been used for parameter identification of OPVs.
Step- and ramp-maneuvers are used to control the surfaces and to perform aircraft identi-
fication maneuvers. However, various maneuvers, injections to other parts of the control
loop, and demonstration of the software on manned aircraft are not included. [KHT2013]

The motivation, resulting from the shortcomings in the current state of the art, with
respect to the Flight Test Maneuver Injection, is summarized in the following list. Derived
objectives are presented in Subsection 1.4.3.

Motivation - Flight Test Maneuver Injection

• Automatic flight test generation is highly favorable for simple maneuvers
and inevitable for more complex maneuvers

• Numerous highly customizable maneuvers and various injection points are
not supported by current solutions

• Recent developments do not incorporate advanced functions for safe and
efficient flight testing

20

Chapter 1: Introduction

1.4 Objectives
The objectives and challenges for the methodology and two applications are outlined in
this section. They are derived from the current state of the art and resulting motivation,
as presented in Section 1.3.

The overall objective for all parts of this thesis is the real-life applicability. The
developed methodology is applied to the automation functions, which are used on real-
life UAV and OPV demonstration platforms. In contrast to applications that are only
tested in simulated environments, this poses a possible danger to humans. Therefore safe
and robust design has the highest priority. Additionally, the developed applications must
be usable on UAVs and OPVs without re-implementation.

The development environment at FSD is based on products from MathWorks, which
are developing mathematical computing software [TM2020a]. MATLAB is a proprietary
programming language and numerical computing environment, which serves as a basis
for many toolboxes [TM2020c]. The toolbox used for flight controller design and im-
plementation is Simulink, which is a block diagram environment for model-based design
[TM2020d]. Additionally, Stateflow, a modeling environment for decision logic, is used
to design and implement state machines representing operational modes of the aircraft
[TM2020e]. MATLAB, Simulink, and Stateflow are used in combination throughout all
parts of this thesis.

The methodology and applications developed in this thesis must be applicable within
the general conditions at FSD and the development context. This includes effective solu-
tions that can be managed by a small development team with a limited budget, efficient
approaches that are compatible with the shorter project durations, and applications that
can be operated not just by highly trained individuals.

The methodology is the conceptional part of this thesis. It is then used to design and
implement the two applications. Their main features are summarized in the following list.

• The methodology for deterministic design and implementation of advanced finite
state machines in MATLAB, Simulink, and Stateflow with reduced complexity and
increased manageability

• The human-centered flight control system automation for multiple users, adminis-
tering the cascaded control loop of experimental UAV and OPV featuring continued
automatic operation in non-nominal circumstances

• The automatic flight test maneuver injection module for accurate execution of com-
plex sequences supporting numerous maneuvers and various injections points with
advanced features for efficient test campaigns

In this section, Subsection 1.4.1, Subsection 1.4.2, and Subsection 1.4.3 present the
derived objectives of each part. The developed contributions are introduced in the next
section, Section 1.5.

21

1.4 Objectives

1.4.1 Methodology for System Automation

The objectives and challenges of the Methodology for System Automation are outlined in
the following. They are derived from the current state of the art and resulting motivation,
as presented in Subsection 1.3.1.

Higher-level flight control system automation is necessary to exploit the inherent ben-
efits of UAVs and OPVs as explained in Section 1.1. The overall objective of the method-
ology of this thesis is to enable the implementation of complex higher-level automation
state machines in MATLAB, Simulink, and Stateflow. This is necessary to design real-life
applications within the development context described in Subsection 1.2.3.

Another important goal is the manageability of complex systems. This includes the
design process, the implementation as well as the testing, and the operation of the soft-
ware. The design and implementation are based on finite state machines using Stateflow.
Deterministic behavior is very important in aviation and ensures a safe and predictable
behavior of the automation.

Testing flight control software is very important. However, as described in Subsub-
section 1.2.3.4, the smaller team, limited project budget, and reduced time are not able
to support large test series like in commercial aviation. Nevertheless, an adequate safety
level is required to ensure the robust functionality of the software during experimental
flights. This must be supported by the methodology, by creating the basics for complete
testability, even of complex state machines. This guarantees relevant system properties
and requires less effort than classical test methods.

Furthermore, the methodology should promote expandability and transferability. The
expandability of the automation by integrating new features needs to happen rather
quickly due to the shorter project time as explained in the development context. Since
the automation functions are used on multiple platforms, the methodology also needs to
support the transfer to another system without re-implementation and re-testing.

The objectives of the Methodology for System Automation are summarized in the
following list. The developed contributions, which are devised from them are introduced
in Subsection 1.5.1.

Objectives - Methodology for System Automation

• Develop a methodology to implement advanced higher-level automation
finite state machines in MATLAB, Simulink, and Stateflow

• Ensure the manageability of the system during design and implementation,
focusing on future extension and usage on other platforms

• Implement a deterministic system that ensures a safe and predictable be-
havior as well as complete testability for robust and guaranteed properties

22

Chapter 1: Introduction

1.4.2 Flight Control System Automation

The objectives and challenges of the Flight Control System Automation are outlined in
the following. They are derived from the current state of the art and resulting motivation,
as presented in Subsection 1.3.2.

The overall objective of this software module is the automatic administration of con-
trol loops of experimental UAVs and OPVs. In the context of this thesis, the overall
control of the aircraft is split up into multiple cascaded control loops. The administration
module, presented in this thesis, needs to be able to access all of these control modules.
The switching between control modules and modes needs to be transient free and the
operational concept needs to be applicable to both UAV and OPV. This requires the
representation of different use cases within the same system without re-implementation.

Mode confusion is still responsible for many incidents and accidents in recent years. To
counteract the even higher probability of such problems in the context of highly automated
experimental UAVs and OPVs, the developed software module shall be operator-centric.
Because the operators controlling the aircraft in the context of this thesis are not highly
trained, a predictable and easy-to-understand automation is even more important.

As stated in Subsection 1.3.2, current solutions only support one type of operator.
In the context of experimental UAV and OPV operation, multiple users are involved in
the execution of a mission (c.f. Subsection 1.2.2). Therefore, the administration module
needs to provide interfaces for the different types of operators and users.

The execution of missions in the context of experimental aircraft and their limited
system and sensor availability is more unpredictable than in the commercial environment.
Most commercial systems revert to Manual Flight in case of malfunctions and even the
current state of the art systems don’t include contingency procedures. To increase the
robustness of the automation in non-nominal operational circumstances and reduce the
workload for the FO and EP, automatic procedures shall be implemented that support
uninterrupted automatic control, even in presence of sensor or system failures.

The objectives of the Flight Control System Automation are summarized in the fol-
lowing list. The developed contributions are introduced in Subsection 1.5.2.

Objectives - Flight Control System Automation

• Implement a system automation to administer a cascaded flight control
loop of experimental UAVs and OPVs

• Provide a operator-centered automation with interfaces for multiple users,
like operators and pilots

• Develop procedures for robust automation, even in non-nominal opera-
tional circumstances, targeting operator workload reduction

23

1.4 Objectives

1.4.3 Flight Test Maneuver Injection

The objectives and challenges of the Flight Test Maneuver Injection are outlined in the
following. They are derived from the current state of the art and resulting motivation, as
presented in Subsection 1.3.3.

The main objective of the flight test automation, described in this thesis, is the auto-
matic and accurate execution of complex-signal flight test maneuvers. This is especially
useful for maneuvers that cannot be executed by a test pilot with the required precision
and/or repeatability. With multiple automatic replications, the validity of the results can
be proven. At the same time, the workload of the pilot is reduced, who can then focus
on monitoring for improved safety.

Most current solutions don’t offer multiple maneuvers at all and the ones that do, only
have a very limited number of maneuver types. Therefore, the module, presented in this
thesis, shall support the integration of various maneuvers, while keeping complexity to a
minimum. This is especially important when implementation is split up between multiple
developers and is used on different platforms.

Another drawback of available solutions is that the injection is limited to the control
surfaces only. The flight test injection is part of the FCC and its cascaded control loop and
will be used for identifying aircraft and actuator dynamics as well as analyzing controller
and aircraft performance. To unlock this full potential, injection points are not only
needed on the surface level but also on higher controller levels.

Due to the context in which those functions are developed, more specifically the Model-
Based Development Process (Subsubsection 1.2.3.8) and the Developers, Operators, and
Project Budget (Subsubsection 1.2.3.4), efficient and accurate flight testing is especially
important. To support fast and precise flight testing advanced features are necessary to
improve the overall effectiveness of the project.

The objectives of the Flight Test Maneuver Injection are summarized in the following
list. The developed contributions are introduced in Subsection 1.5.2.

Objectives - Flight Test Maneuver Injection

• Provide an automatic and accurate execution of complex-signal flight test
maneuvers and the integration within the FCC

• Support the integration of numerous maneuvers and various injection
points within the cascaded control loop

• Develop advanced features for safe and efficient flight testing, like individual
trim points for each maneuver

24

Chapter 1: Introduction

1.5 Contributions
This section introduces the contributions beyond the current state of the art, which have
been devised to meet the objectives presented in Section 1.4. They are divided into
the generic methodology and the two applications. Those two functions are designed
and implemented before being tested on multiple demonstration platforms to prove their
real-life applicability. The interaction of the contributions is depicted in Figure 1.6.

The developed contributions are introduced in the following subsections. This includes
the individual contributions in each field and a summary of their novel improvements be-
yond the state of the art. A short overview is presented beforehand. All contributions are
verified by testing their functionality in various real-life flight tests on multiple platforms.

The Design, Implementation, and Testing Methodology for System Automation - using
State Machines in Stateflow (MTSA) is a generic methodology for higher-level system
automation that includes design, integration, implementation, testing, and verification.
It enables deterministic, predictable, and robust automation of safety-critical software
with guaranteed properties.

The Operator-Centric Multi-User Flight Control System Automation for experimental
UAVs and OPVs with Contingency Procedures (FCSA) administers a cascaded control
loop consisting of various modules and enables multiple users to switch between control
modes. It also features contingency procedures to reduce the workload of the operator
and to perform automatic maneuvers in case of a malfunction.

The Multi-Maneuver Multi-Control-Level Flight Test Maneuver Injection with auto-
matic Trim Point Capture and Verification (FTMI) is capable of generating various types
of test maneuvers and injecting them into different control levels of the cascaded control
loop. Additionally, it includes individual trim point verification and even automatic trim
point capture enabling effective and reliable flight testing.

Multi-Maneuver Multi-Control-Level
Flight Test Maneuver Injection

Operator-Centric Multi-User
Flight Control System Automation

Flight Tests on Multiple Demonstration Aircraft

Design, Implementation, and Testing
Methodology for System Automation

Figure 1.6: Contributions

25

1.5 Contributions

1.5.1 Methodology for System Automation

The MTSA is devised from the objectives presented in Subsection 1.4.1. The developed
contributions, beyond the current state of the art, are introduced in the following and
explained in more detail in Chapter 3.

1.5.1.1 Hierarchical decomposition design strategy, minimizing complexity
and optimizing testability

A novel hierarchical decomposition strategy is developed and presented in this thesis,
which minimizes the complexity of higher-level automation state machines and optimizes
testability for deterministic behavior. The strategy is based on breaking down the overall
functionality into modular units. This enables separate development, implementation, and
testing. Each unit consists of a state machine and an input- as well as output-conditioning.
A few of those are grouped into one implementation level which is administered by another
unit on the next higher level. This leads to a tree structure with various modes on different
levels, which is implemented in a higher-level automation state machine with minimum
complexity utilizing MATLAB, Simulink, as well as Stateflow.

1.5.1.2 Modeling guidelines for implementation, minimizing opacity and
maximizing software maintainability

The new modeling guidelines for the implementation of automation that are presented in
this thesis are targeted at minimizing opacity and maximizing software maintainability.
The application of those guidelines creates an explicit visibility of action alternatives
within the development environment. Additionally, they minimize the local variable scope
of state machines aiding an easy understanding of individual state machines and their
interactions. Furthermore, they create a generic and parameterized structure, which
supports transferability to platforms without re-implementation.

1.5.1.3 Incremental bottom-up application of formal methods, ensuring
effective testing and guaranteed system characteristics

The methodology developed in this thesis is used to implement software for experimen-
tal aircraft. Therefore, a deterministic automation with guaranteed system properties
is required. An incremental bottom-up approach with formal methods is developed to
archive this objective. At each implementation level, formal methods are used to guaran-
tee certain output conditions under assumed input constraints. This enables the efficient
use of formal methods since the scope is limited to each subsystem. The approach is
then applied incrementally from the lowest to the highest level, which creates a seamless
requirement coverage.

26

Chapter 1: Introduction

1.5.2 Flight Control System Automation

The FCSA is devised from the objectives presented in Subsection 1.4.2. The developed
contributions, beyond the current state of the art, are introduced in the following and
explained in more detail in Chapter 4.

1.5.2.1 Strategy for switchability between various modes on different
authority levels, enabling experimental automation

To create a basis for automatic operation and to enable the overall automation, a strategy
for the switchability between various operating modes on different control authority levels
is developed. The FCSA needs to access all hierarchy levels within the cascaded control
loops, therefore entry points between each adjacent control loop need to be defined. The
position of all switches in those entry points is consistently managed by the automation
to create the required overall system response and to ensure the consistency of the entire
state machine.

1.5.2.2 Operational management concept for multi-user experimental OPVs
and UAVs, increasing mode awareness

To increase the mode awareness and reduce the probability of mode confusion during
the operation of experimental UAVs and OPVs an operator-centric operational concept is
developed, which consists of multiple principles. The operator has the responsibility and
therefore also needs command authority. Additionally, the operator needs to be actively
involved in all major transitions. To support this the automation needs to be deterministic
as well as predictable and provide enough information to the GCS.

To fulfill the objective of multi-user access an operational mode management strategy
is developed granting accessibility to all hierarchical control levels. This includes mode
resource management and mode compatibility management.

1.5.2.3 Automatic operational and malfunction contingency procedures for
continuous operation in non-nominal circumstances

Automatic contingency procedures are integrated within the FCSA to allow for robust au-
tomation and continued fully automatic flight even in non-nominal circumstances. Those
are divided into two groups of procedures. Operational contingency procedures are in-
tended for a quick reaction to changes in the mission objectives, while malfunction contin-
gency procedures allow for continued automatic operation even in case of sensor failures.
Examples include modes that will fly the aircraft back to its home base, letting it hold
at the current position, and modes that degrade to alternatives if necessary resources are
no longer available.

27

1.5 Contributions

1.5.3 Flight Test Maneuver Injection

The FTMI is devised from the objectives presented in Subsection 1.4.3. The developed
contributions, beyond the current state of the art, are introduced in the following and
explained in more detail in Chapter 5.

1.5.3.1 Generic design pattern, providing a free maneuver parametrization
without reimplementation

A generic and maneuver-independent design pattern is developed that provides a free
maneuver parametrization without re-implementation. This modularized systematic leads
to a clear and explicit visibility of action alternatives. Maneuver generation modules are
only implemented in one location, which creates distinct boundaries between multiple
developers and allows for an easy extendibility in the future. This novel approach uses a
generic parametrization and selection of maneuvers for maximum flexibility.

Additionally, a distributed design is developed to allow for the future separation of
the injection onto different computers. This ensures that the contradictory requirements
of large memory space and real-time capabilities can be met simultaneously.

1.5.3.2 Dynamic flexible choice of injection points on multiple control levels,
enabling a generic implementation and safe execution

A flexible choice of injection points on multiple control levels of the cascaded control
loop is created using a dynamic allocation matrix. The matrix assigns the maneuver
signal to the control surfaces or command inputs for the flight control loops, based on a
parameter set. This enables a generic implementation for multiple aerial platforms that
can be tested completely, which results in a safe execution. Additionally, this dynamic
assignment creates the framework to enable multi-axes execution, superposition for trim
offsets as well as additional support functions like wing-leveling.

1.5.3.3 Individual trim point verification and automatic trim point capture
for safe and effective flight testing

Advanced features are developed to support safe and effective flight testing. The indi-
vidual trim point, which is defined for each maneuver, is used to perform an individual
trim point verification before automatically starting the maneuver. This increases safety
because maneuvers can only be executed in intended environmental conditions, while at
the same time increasing effectiveness because the variation of the initial conditions is
reduced. Novel features that further increase the effectiveness, utilize the flight control
system to automatically capture the trim point, while constantly verifying it and auto-
matically activating the respective maneuver if the trim point is confirmed.

28

Chapter 1: Introduction

1.6 Outline
The motivation for this thesis and background is presented at the beginning of this chap-
ter. The current state of the art for each part is discussed in the following in Section 1.3.
The derived objectives are presented in Section 1.4 before the developed contributions are
described in Section 1.5. They show the approach on how to eliminate the shortcomings
of current solutions and additional features developed in this thesis. In the following, the
remaining chapters of this thesis are outlined.

In Chapter 2 of this thesis, the demonstration platforms used to prove the real-life
applicability of the methodology and functions presented in this thesis are described in
detail. Their respective project scope, operational scenario, and the range of demonstrated
functions are illustrated to provide a better understanding of the development context.
However, even more, detailed information about their hardware and software architecture
is given in the respective chapter, where the aircraft is used as a demonstration platform.

The methodology, which is developed to design and implement the automation func-
tions presented in this thesis, is described in Chapter 3. It’s comprised of the theoretical
background of automata and steps to design higher-level automation. Additionally, the
implementation is introduced and various testing and verification methods are discussed.

The Operator-Centric Multi-User Flight Control System Automation for experimental
UAVs and OPVs with Contingency Procedures (FCSA), presented in Chapter 4, is capable
of administering a cascaded control loop with respect to multiple users or automatically
based on sensor information and integrity. In this chapter, the system architecture of
the respective demonstration platforms, the various operating modes, and the transition
conditions and actions from one mode to another are explained. Furthermore, the Loiter
Automation (LA) is presented as one of the examples for contingency maneuvers within
the FCSA, and the command injection points are discussed in detail before flight tests are
presented. Those real-life applications of the developed software, prove the applicability
to multiple platforms before a short summary is concluding the chapter.

In Chapter 5 the design and development of the Multi-Maneuver Multi-Control-Level
Flight Test Maneuver Injection with automatic Trim Point Capture and Verification
(FTMI) are presented. It is able to generate a variety of signals into various parts of
the control loop and also directly to the control surface actuators. The chapter includes
the system architecture as well as the allocation matrix and injection points of the de-
veloped software. Additionally, the operation modes and the transition conditions and
actions of the main state machine are presented. Furthermore, the available maneuvers
are shown before real-life flight tests prove the functionality of the software within the
projects. The chapter is concluded with a short summary of the archived contributions.

Finally, a conclusion of the developed contributions summarizes this thesis with respect
to the Methodology for System Automation, the Flight Control System Automation, and
the Flight Test Maneuver Injection. Additionally, an outline of future works in those
fields is given, which ends this thesis.

29

Chapter 2

Aerial Demonstration Platforms

The methodology and algorithms presented in this thesis are used on various aerial demon-
stration platforms and in different operational scenarios. Since flexibility and portability
is an important design requirement, this chapter provides an overview of the demonstra-
tion platforms. This includes the project objectives and the resulting operational profile
of the aircraft. The profile is comprised of the type of aircraft, number and types of
operators, the number of data links, and a representative mission objective. Additionally,
the role of the developed functions in the overall concept of the aircraft is presented and
project and/or aircraft-specific challenges are highlighted. An overview of these points
and the applicable function of each platform is given in Table 2.1. As mentioned before,
all Optionally-Piloted Vehicles (OPVs) were only used with an onboard Safety Pilot (SP).
Furthermore, a Flight Operator (FO) and/or an External Pilot (EP) can be used.

While the developed functions are not limited to a specific platform, within the scope
of this thesis, there are demonstrated on a subset of the available demonstration platforms.
The Operator-Centric Multi-User Flight Control System Automation for experimental
UAVs and OPVs with Contingency Procedures (FCSA) is developed for use in Unmanned
Aerial Vehicles (UAVs) as well as in OPVs. Consequently, it is tested on SAGITTA (UAV)
and on the DA 42 (OPV). The Multi-Maneuver Multi-Control-Level Flight Test Maneu-
ver Injection with automatic Trim Point Capture and Verification (FTMI) was used on
ELIAS and the Do 228 to improve the quality of the Flight Dynamic Model (FDM) and
to investigate actuator accuracy and increase controller performance.

Table 2.1: Platform Overview

Type
Operator

Data Links
Function

SP FO EP FCSA FTMI

Pl
at

fo
rm

SAGITTA UAV X X 3 X
DA 42 OPV X X X 1 X
ELIAS OPV X X 1 X
Do 228 Manned X 0 X

31

2.1 SAGITTA

2.1 SAGITTA
The SAGITTA Research Demonstrator is part of the "Open Innovation" initiative of the
aircraft manufacturer Airbus [MPH2017]. The aim of the project was to develop new
technologies for UAVs, for which SAGITTA acts as a test platform. Figure 2.1 shows
SAGITTA on the apron during the first flight campaign in 2017.

SAGITTA is an unmanned downscaled demonstrator with a maximum takeoff weight
of 150kg. The aircraft is operated as a research prototype and has a wingspan of 3m

and a length of 3m. It is powered by two integrated turbines, delivering a total thrust
of 600N . The diamond-shaped aircraft features a novel eight-trailing-edge-flap design.
The inboard flaps are used as elevators, the ones in the middle as ailerons, and the outer
split-flaps as yaw controls. Its specifications are summarized in Table 2.2.

During the missions, SAGITTA has three operators, one FO and two EPs. The FO is
located in a Ground Control Station (GCS) and responsible for the overall mission and
switching between higher-level automation modes like automatic takeoff and waypoint-
based flight. The two EPs are located close to the runway and act as a backup for the
FO. They can take over control in case of a failure of one of the higher-level automation
modes of the Flight Control Computer (FCC). In that case, the FCC reverts to a lower
level mode, which requires less sensor information.

Simulations preceding the first flight have shown that recognizing the attitude of the
aircraft, due to its speed, size, and shape was very difficult. Additionally, due to its shape,
complete manual control is nearly impossible for a pilot, which resulted in concerns when
proposing the EPs as a backup.

Figure 2.1: SAGITTA at Air Force Base Overberg (FAOB), South Africa, in 2017

32

Chapter 2: Aerial Demonstration Platforms

Table 2.2: SAGITTA Specifications (adapted from [Air2017])

Wingspan 3m
Maximum Take-Off Mass 150kg
Length 3m
Propulsion 2 x 300N turbines
Demonstrator Scale 1:4
Class Research Prototype

Due to the, above-mentioned, concerns regarding the EPs as a backup, it was decided
to perform a fully automatic maiden flight, which includes automatic takeoff and landing.
The EPs should only intervene if a loss of the aircraft seemed inevitable. Therefore, the
Flight Control System (FCS), including the FCSA, could only be tested in simulation
and had to work without errors, when testing it in flight for the first time. That made
the software of the FCC more critical, which in consequence led to even more testing and
verification of the automation and control loops.

The command and control data link architecture is based on a primary Flight Data
Link (FDL) and an additional Mission Data Link (MDL). The FDL is only used for
sending critical command and control data to the aircraft and return sensor data, which
is important for the FO. The MDL is primarily used for mission-level data, like video and
images, but all data from the FDL is mirrored on the MDL for redundancy. An additional
Termination Data Link (TDL) was used to create an independent possibility to abort the
mission at any time.

Due to the contrasting level of involvement of the FO and the EP, the FCSA has
different modes for both of them. They are separated into ground and airborne modes
since different controllers are used in the two cases. The modes for the FO include
automatic takeoff and landing, GPS-based waypoint control, and flight based on autopilot
commands like altitude, heading, and speed.

Additionally, to those nominal operating modes, there are several contingency modes
for both, operational changes and malfunctions. Because of the unknown reliability of the
data links and the Global Positioning System (GPS) reception, contingency procedures
for them are included within the FCSA. If a fault is detected, specific modes cannot
be activated anymore, lower level modes are automatically activated if necessary or the
FCSA will start automatic procedures that are designed to mitigate the malfunction.

SAGITTA successfully completed its fully automatic maiden flight in July, 2017,
[Zim2017]. During that flight the FCS controlled the aircraft and the FCSA adminis-
tered the cascaded control loop and switched between different modes as commanded by
the FO. The second flight was conducted shortly after the first one and included more
sophisticated modes of the FCSA. Further flight tests had to be canceled due to the time
and budget restrictions of the project.

33

2.2 DA 42

2.2 DA 42
The DA 42 MNG (Multi-Purpose Platform New Generation) by Diamond Aircraft is
owned by the Institute of Flight System Dynamics (FSD) of the Technical University
Munich (TUM). It is the result of the development of a versatile research aircraft in-
corporating Fly-by-Wire (FBW) started in 2008 and also known as DA42 MNG FBW
Research Aircraft. It has been used as an experimental platform in various projects and
campaigns. The aircraft with the call sign OE-FSD is displayed in Figure 2.2.

The optionally-piloted DA 42 is the multi-purpose version of the upgraded DA42,
which is a Part 23 Class II aircraft with a maximum take-off mass (MTOM) below 2000kg.
It was equipped with a versatile flight test instrumentation, a multi-stage safety system,
and an experimental FBW system [Pet2017]. Therefore the FCS can access all axes of
control: elevator, aileron, rudder, and throttle levers. The general size, weight, and power
specifications are summarized in Table 2.3.

The flight crew of the DA 42 consists of three persons. The SP, in the front left
seat, controls the aircraft whenever the FCS is deactivated and can also take over control
in case of a malfunction. The test pilot, in the front right seat, can use a (passive or
active) control stick for the pilot in the loop tests. The third crew member is the flight
test engineer, in the left rear seat. Various control and monitoring equipment for the
flight test instrumentation, safety system, and FBW system is located in the space of the
removed rear right seat, so they are easily accessible for the flight test engineer.

Figure 2.2: DA 42 at Wiener Neustadt East Airport (LOAN), Austria, in 2017

34

Chapter 2: Aerial Demonstration Platforms

Table 2.3: DA 42 Specifications (adapted from [Dia2018])

Wingspan 13.55m
Maximum Take-Off Mass 1999kg
Length 8.56m
Height 2.49m
Propulsion 2 x Austro Engine AE300 (123.5kW)
Class Part 23, Class II

The test pilot can use an experimental Mode Control Panel (MCP) for the higher-level
automation modes. The control sticks and MCP are designed in a way so that they can
be used onboard the aircraft or within the GCS utilizing the data link. Depending on
whether the FO or EP uses them onboard the aircraft or on the ground, the control laws
are adapted to account for the different scenarios.

The DA 42 is equipped with one data link, which is used if control and/or monitoring
from the ground is required. The data link is used to transfer command and control data
as well as necessary sensor information for monitoring purposes. Due to the safety pilot
onboard additional data links are not required.

The structure of the FCSA is designed in a way to support the FO and EP of the
DA 42 . In the case of being used as an OPV both, the FO and EP can be onboard
the aircraft or within the GCS. If the EP is onboard the aircraft, a direct-law (directly
mapping control stick deflections to surface deflections) and other control modes can be
used. If the EP is controlling the aircraft via data link special control laws that account
for larger transmission delays with additional safety features are used.

The contingency procedures for the OPV are focused on dealing with operational
changes while allowing for continuous automatic operation. Those include overriding
altitude and speed commands, while laterally following a GPS-based waypoint trajectory.
They can be used to avoid unexpected obstacles or to adjust the timing of the mission.
Additionally, a loiter pattern can be initiated while flying in trajectory or autopilot control
mode. Depending on the previous mode different loiter maneuvers are activated to allow
for seamless continuation of the mission. Furthermore, modes like return-to-base can
be used to abort the mission and return to the home base. The last two, loiter and
return-to-base, even have sophisticated extensions to deal with GPS loss.

The first flight using the FCS system, including the FCSA, was successfully performed
in January, 2016. Since then the FCS in the DA 42 has been used on various flight tests
and demonstration missions. This even includes fully automatic flight including automatic
takeoff, GPS-based mission segments, and automatic landing without any intervention
from the SP.

35

2.3 ELIAS

2.3 ELIAS
The Elektra One, which flew for the first time in March, 2011, is the first electrically
powered ultralight aircraft in Germany and was developed by PC-Aero [Ele2018a]. The
most recent version, the Elektra One Solar, is equipped with solar cells for improved
flight duration [Ele2018b]. ELIAS (Electrical Aircraft IABG Acentiss) is a modified
version, which has an electrical retractable landing gear for improved performance and
an unobstructed view for cameras and sensors [Sig2016]. The aircraft, with the call sign
D-MELQ, is shown in Figure 2.3 and is used for two projects at the FSD. The aim of project
EUROPAS is to develop and integrate technologies for the first-time demonstration of
using an electrically powered aircraft in the ultralight weight-class as an unmanned sensor
platform [Lud2019b]. The subsequent project AURAIS is targeted at the development
and demonstration of critical technologies concerning certification [Lud2019a].

ELIAS has been modified in several ways to be used as an optionally-piloted test
platform. It has been equipped with actuators, including electromagnetic clutches and
slip-clutches, for the three main control surfaces (aileron, elevator, and rudder). An
additional actuator is used to move the throttle lever to enable automatic thrust control
as well. Additional systems include, but are not limited to, the FCS, a Flight Management
System (FMS), an Actuator Clutch Box (ACB), and a data link. Secondary surfaces and
equipment like flaps, elevator-trim, and the landing gear cannot be controlled directly
by the FCC. Desired positions for those are, besides other information, displayed on a
specially designed mission display in the cockpit. The main specifications of the modified
aircraft are presented in Table 2.4.

Figure 2.3: ELIAS at Landshut Airport (EDML) in 2016

36

Chapter 2: Aerial Demonstration Platforms

Table 2.4: ELIAS Specifications (adapted from [Ace2016])

Wingspan 11m
Maximum Take-Off Mass 320kg
Propulsion Electric Brushless Motor (20kW)
Maximum speed 150km/h
Cruise speed 110km/h
Maximum range >150km
Maximum flight time 1.5h
Seats 1
Class Ultralight

Because there is only one seat, the flight crew of ELIAS consists only of the SP, which
can activate and deactivate the automatic FCS, monitor its performance, and execute
necessary changes of secondary surfaces and equipment. Additional personal is located
on the ground for coordinating the test and commanding and monitoring the FCS. At
least two persons are needed, an SP onboard the aircraft and a FO in the GCS. The
operation, in the class of ultralight aircraft, is performed according to national rules.

The hardware architecture of the research platform ELIAS includes a GCS and one
data link. It is used to change modes of the FCS, upload waypoints, change commands
for the autopilot, and monitor the system’s response.

The aircraft is manually controlled by the pilot during takeoff and landing. Upon
reaching a safe altitude the activation of the FCS can be requested by the operator in the
GCS. If the pilot acknowledges activating the system, it can be confirmed using a button
on the control stick. The Flight Control Clutch Automation (FCCA) [KH2017a], also
developed by the author, within the FCC is activated and checks for further necessary
activation conditions. It then synchronizes the actuators with the current surface positions
and sends a command to the ACB to close the electromagnetic clutches. If the closing of
the clutches is confirmed, within a certain time, the remaining modules of the FCS are
activated and take over control of the aircraft. The most important characteristic of an
experimental FCS within a manned aircraft is the possibility to safely disconnect it at
any time. Within ELIAS there are several circumstances when the system will disengage
itself and furthermore various ways the system can be disengaged by the SP.

The first automatic flight was successfully executed in November, 2016. Even though
the FCS was able to fly the aircraft, analyzing the data revealed performance and accuracy
issues, which were largely founded in the primary actuators and their connection to the
control surfaces. In the following test campaigns the features of the FTMI, presented in
this thesis, were utilized extensively to perform automatic actuator and flight tests. With
the results, from those tests, the accuracy of the FDM and performance of the controller
were improved to allow for satisfying automatic flight.

37

2.4 Do 228

2.4 Do 228
The Do 228-101 by Dornier is a universal platform, which is used by the German
Aerospace Center / Deutsches Zentrum für Luft- und Raumfahrt (DLR) and has been in
use for over 30 years for various research projects [DLR2019]. In a cooperation project
with DLR and FSD this aircraft with the call sign D-CODE, as shown in Figure 2.4, is
used as a development platform for an experimental three-axis autopilot.

This manned test platform, which is operated as a Part 23 Class IV commuter cat-
egory aircraft, has been enhanced to create the possibility for automatic flight. It is
equipped with, among others, a Safety Relay Box (SRB), an FCC, and actuators with
smart Actuator Control Electronics (ACEs) including clutches for the main control sur-
faces. Since the FCS doesn’t have access to the thrust levers, a Thrust Director (TDR) is
used, showing the pilots the desired power setting. The aircraft provides workstations for
research purposes for up to nine engineers, which are located in the back of the aircraft.
Specifications for this uniquely equipped Do 228 are summarized in Table 2.5.

The flight crew consists of at least two pilots. The safety pilot is located in the front
left seat and responsible for the overall mission. The test pilot is located in the front
right and can access a combined MCP and monitoring display. This MCP is the interface
to the FCS, which consists of an autopilot and an inner loop, developed by FSD. The
autopilot can either be used in Selected Flight, where the commands are entered through
the MCP, or in Managed Flight, where the commands are provided through an interface.

Figure 2.4: Do 228 at Oberpfaffenhofen Airport (EDMO) in 2021

38

Chapter 2: Aerial Demonstration Platforms

Table 2.5: Do 228 Specifications (adapted from [DLR2018])

Wingspan 16.97m
Maximum Take-Off Mass 5980kg
Length 15.03m
Height 4.86m
Propulsion 2 x Garret Turbopro TPE 331-5 (529kW)
Seats 15 (nine seats for research purposes)
Class Part 23, Class IV

One or more additional flight test engineers can be placed in the rear. That makes it
possible to analyze data while still in the air and adjust further tests as necessary, therefore
allowing for very efficient testing, especially with the FTMI. Since space onboard the
aircraft is sufficient for multiple flight test engineers, no data link is used in the research
projects with FSD.

Due to the test pilot being onboard the aircraft, functions can be partially tested and
improved before the FCS is fully activated. The FTMI, presented in this thesis, has been
used to a great extent on the Do 228 to perform automatic identification maneuvers and
flight tests. The various maneuvers that can be injected on different levels of the cascaded
control loop can be used for different analyses and applications.

The FCS of the Do 228 has no trajectory generation or trajectory control within the
software developed by FSD. Therefore the FTMI uses all levels of the control loop. At the
lowest level, maneuvers can be used to directly control the actuators. They include aircraft
parameter identification maneuvers like Multi-Step or actuator bandwidth identification
maneuvers like Sweeps. On the next level, the maneuvers are injected as commands for
the inner loop. The commands can be load-factor commands for the vertical motion or
bank-angle commands for the lateral motion. Those maneuvers could be Multi-Sine or
Spline sequences to evaluate controller performance. During those automatic flight tests,
low-level autopilot functions, like yaw damping or holding the wings level, can be used to
stabilize the aircraft, if those axes are not used during the test.

The first automatic flight, using the FCS developed by FSD, was performed in August,
2016. During the following flight tests, problems were discovered which were founded in
the transfer function from the actuator to the control surface, which in turn were founded
in unknown and therefore unaccounted transmission effects like loose fits, backlash, and
hysteresis. To generate an accurate actuator model, which takes those effects into account,
many automatic actuator tests were performed using the FTMI. After solving those prob-
lems the FTMI was used in multiple flight tests starting from October, 2019. During this
campaign, the lateral dynamics of the aircraft could be identified more accurately, which
was used in a gain tuning process to improve the lateral tracking performance of the inner
loop.

39

Chapter 3

Methodology for System Automation

The developed Design, Implementation, and Testing Methodology for System Automation
- using State Machines in Stateflow (MTSA) is presented in this chapter.

The MTSA is a generic methodology for higher-level system automation which includes
design, implementation, testing, and verification. It enables deterministic, predictable,
and robust automation of safety-critical software with guaranteed properties using state
machines, which utilize the functionality of MATLAB, Simulink, and Stateflow.

The methodology approach for automation developed in this thesis differs substan-
tially from the ones used in comparable systems and even from the ones used in large
Unmanned Aerial Vehicles (UAVs) or manned aircraft. It is target at maintainability and
expandability in an experimental context.

Since the methodology is the basis for automation functions used in real-life appli-
cations on experimental UAVs and Optionally-Piloted Vehicles (OPVs), safe and robust
design has the highest priority in this development context. At the Institute of Flight
System Dynamics (FSD) MATLAB, Simulink, and Stateflow are used in a model-based
development process for aviation automation software. Therefore, the methodology must
utilize those tools and must be applicable within the process.

The features of the methodology consist of a decomposition design strategy, modeling
guidelines for implementation, and testing methods utilizing formal methods. Due to the
encapsulation, changes only affect a small part of the model. Together with the modeling
guidelines, this enables an incremental build procedure. The testing methods are very
efficient since one level can be tested at a time and changes on one level don’t influence
already conducted tests on other levels.

In the following, the current state of the art, the resulting motivation from deficits,
the objectives, and developed contributions are summarized. Afterward, the theoretical
basics for this methodology are introduced. Subsequent sections present the developed
methodology with respect to design, implementation, and testing.

41

Motivation - Methodology for System Automation

• A design and implementation approach for the development environment
is necessary to reduce the complexity of higher-level automation

• Specific constraints must be met to suit the smaller development team,
shorter project duration, future extension, and re-use

• Testing systematic based on formal methods is required to ensure safe and
robust automation during experimental operation of UAVs and OPVs

The current state of the art with respect to the methodology part of this thesis is
introduced in Subsection 1.3.1. The resulting motivation, due to the identified deficits, is
recapitulated here. To reduce the complexity of higher-level automation finite state ma-
chines, a customized design and implementation approach is necessary. The development
context, in particular, the smaller development team and shorter project duration require
specific conditions to meet the required safety standard. Furthermore, a systematic test-
ing method based on formal methods is not available with current solutions but is needed
to ensure safe and robust automation during experimental operation of UAVs and OPVs.

The derived objectives, from the deficits in the current state of the art, are presented in
Subsection 1.4.1 and summarized in the following. The overall objective that is presented
in this chapter is the development of a methodology that enables the implementation
of advanced higher-level automation finite state machines in MATLAB, Simulink, and
Stateflow. Additionally, the methodology must ensure the manageability of the system
during design and implementation. This is especially important because of the devel-
opment context and should incorporate future extensions and usage on other platforms.
The implemented system must be deterministic to ensure a safe and predictable behavior.
Furthermore, the complete testability shall support robust automation with guaranteed
properties.

Objectives - Methodology for System Automation

• Develop a methodology to implement advanced higher-level automation
finite state machines in MATLAB, Simulink, and Stateflow

• Ensure the manageability of the system during design and implementation,
focusing on future extension and usage on other platforms

• Implement a deterministic system that ensures a safe and predictable be-
havior as well as complete testability for robust and guaranteed properties

42

Chapter 3: Methodology for System Automation

Contributions - Methodology for System Automation

• C1.1 - Hierarchical decomposition design strategy, minimizing complexity
and optimizing testability

• C1.2 - Modeling guidelines for implementation, minimizing opacity and
maximizing software maintainability

• C1.3 - Incremental bottom-up application of formal methods, ensuring
effective testing and guaranteed system characteristics

The contributions of the methodology, presented in this chapter, are introduced in
Subsection 1.5.1. The assignment of the individual contributions to the sections of this
chapter is presented in the following together with the general outline.

At the beginning of this chapter, Section 3.1 describes the Theoretical Basics, which
includes the background of state machines, fundamental automation theories, principles
of modeling, and the introduction of the two most common state machines used today.

Afterward, Section 3.2 describes the developed Design process used in this method-
ology. It deals with common challenges in automation and how they are approached in
this methodology. Next, the various design steps, that lead to the proposed safe and
robust automation are introduced. Additionally, the decision logic and the hierarchical
decomposition strategy are addressed. This section is associated with contribution C1.1.

In the following, Section 3.3, called Implementation, focuses on the development en-
vironment in terms of utilized software and is associated with contribution C1.2. It
introduces the software used for building the state machines and their basic elements
including an example. Further subsections define the level structure, which is used to
lower the complexity and show how parameterization is used to adapt to different plat-
forms, without changing the internal structure. Furthermore, certain design decisions
and modeling guidelines, which were developed while improving this methodology, are
presented.

The next section of this chapter, Section 3.4, takes a closer look at Testing and Veri-
fication and the testing process used and developed with this methodology. It introduces
the multiple testing methods, and how they are leveraged to test different systems in var-
ious environments. Furthermore, the application of formal methods is presented and how
they are used to design automata with guaranteed properties. This part of the chapter is
associated with contribution C1.3.

The chapter is concluded with a short Summary and recapitulation, in Section 3.5, of
the content and contributions made.

The basic idea for this MTSA and parts of it have been previously published
[KH2018a]. However, this chapter takes a more detailed approach and includes various
undisclosed aspects of the methodology.

43

3.1 Theoretical Basics

3.1 Theoretical Basics
This section introduces the theoretical basics of state machines. This includes the history
of state machines beginning in the early 20th-century, automata theory including various
types that can be separated by their computational or representational power, different
possibilities for modeling which are used in this thesis, and the two most common types
of state machines being Mealy and Moore finite state machines.

The History of state machines, Subsection 3.1.1, provides an overview of the history
and development of state machines. It starts with the studying, analysis, and synthesis
of relay switching circuits in the early 20th-century, through the crucial publications of
George H. Mealy and Edward F. Moore in the 1950s in which the basis for the two most
common state machines of today was developed, all the way to their modern descendants,
where multiple interacting nodes are connected through a network. This overview is given,
to better determine the current state of development in the field of state machines.

Automata Theory, Subsection 3.1.2, introduces different classes of automata, which
are established based on their computational or representational power. On the first
level of separation, they include Combinational Circuits, Sequential Machines, Finite
State Automata, Pushdown Automata, and Turing Machines. Additionally, Finite State
Automata is divided, based on their output, into Acceptors, Classifiers, and Transducers.
Furthermore, Transducers can be divided even further depending on the information used
to determine the output and next state into Sequencers, Moore machines, and Mealy
machines. All of those are presented with an example and compared to each other in
terms of complexity and performance.

State Machine Modeling, Subsection 3.1.3, presents different methods of modeling.
They consist of the Functional View represented as Functional Program Code, the Imper-
ative View represented as Imperative Program Code, and the Feedback View represented
by the Tabular, Matrix, and Graphical Description. With those, a wide range of repre-
sentations is outlined and the most relevant for this methodology are described in more
detail. The Transition Matrix will be used throughout this thesis to give an overview of
possible state transitions in a written form, while the Graphical Description represents
the implementation in Stateflow.

Mealy and Moore finite state machines, Subsection 3.1.4, compares today’s most com-
monly known types of state machines. The Mealy machine, invented by George H. Mealy
in 1955, and the Moore machine, created by Edward F. Moore in 1956. The subsection
presents their renowned publications and a comparison of the two machines. In this com-
parison, an example is used to highlight the differences between the two, including the
respective transition table, input-output mapping of an example input, and the graphical
representation.

44

Chapter 3: Methodology for System Automation

3.1.1 History of State Machines

This subsection gives an overview of the history and origins of state machines but does not
claim to be complete. The references can be used as a basis for more detailed information.

The history of state machines originates from the studying and analysis of switching
circuits. In the early 20th-century, those circuits consisted of relays or vacuum tubes
which were later replaced by transistors.

Today, the most commonly known types of finite state machines are the Mealy machine
and the Moore machine. Those were developed by George H. Mealy and Edward F. Moore
respectively at about the same time in the 1950s. During that time they both worked for
Bell Telephone Laboratories, which was an industrial research and scientific development
company. Their work is strongly related to the work of Claude E. Shannon and David A.
Huffman who were both parts of the Massachusetts Institute of Technology during that
period in time. It is even based on previous analysis and synthesis of relay switching
circuits by Claude E. Shannon, G. A. Montgomerie and David A. Huffman conducted in
the 1930s to 1950s.

In 1938 Claude E. Shannon performed a symbolic analysis of relay and switching
circuits [Sha1938]. Complex electrical systems during that time required intricate in-
terconnections of relay contacts and switches. Examples he stated for such circuits are
automatic telephone exchanges and industrial motor-control equipment. He performed
a mathematical analysis of certain properties of such networks with special attention to
the problem of network synthesis. The requirement was to find a circuit incorporating
certain characteristics and since the solution to such a problem is not unique, a method
of finding the one circuit with the least amount of relay contacts was investigated.

G. A. Montgomerie presented an algebra of relay circuits in 1948 [Mon1948]. He de-
scribed a system of symbols by which the elements of a relay circuit can be represented.
Linking those symbols together then results in an algebraic expression that corresponds
to the given circuit. Rules for these expressions are then developed which link the opera-
tion of the circuit to the behavior of the algebraic expressions. Using those expressions,
methods are described to simplify complex circuits.

The synthesis of sequential switching circuits was developed by David A. Huffman in
1954 [Huf1954]. He established an orderly procedure to transform the requirements of
a sequential switching circuit to the requirements of several combinational switching cir-
cuits. The difference between a sequential and combinational switching circuit is, that the
sequential one has a memory where the combinational one doesn’t have memory. Those
and other classes of automata and their differences are described in Subsection 3.1.2. He
introduced the flow table and the transition index. The flow table is a table that describes
the requirements of a circuit and the transition index is a variable that indicates the sta-
bility of a switching device. He investigated the role of indirectly controlled switching
devices and used the resulting philosophy for synthesis procedures.

45

3.1 Theoretical Basics

The foundation of the Mealy machine known today was presented by George H. Mealy
in his article "A method for synthesizing sequential circuits" in 1955 [Mea1955], which
was part of The Bell System Technical Journal. He developed the theoretical basis of
sequential circuit synthesis, which prefers formal procedures over intuitive ones. During
that time two methods existed for reducing circuit requirements. The merging process
described by Huffman on the flow table and the procedure by Edward F. Moore1. Merging
is easier but does not result in a complete reduction at all times. Hence Edward F. Moore
developed his additional procedure to ensure a full reduction in the remaining cases.
George H. Mealy then found a solution, which is as simple as merging and results in
a complete reduction more often. Additionally, he found a way to extend Huffman’s
method, which was designed for relay circuits, to be also used with switching circuits.

Edward F. Moore presented the foundation of the Moore machine known today in his
article "Gedanken-Experiments on Sequential Machines" in 1956 [Moo1956]. This article
is part of the book "Automata Studies" [SM1956], which presents different challenges and
solutions to the field of automata. The article of Edward F. Moore is part of a chapter
that deals with finite automata, which has a finite number of inputs, outputs, and internal
states. Such "devices" can be described by two functions, one for the next state and one
for the output, which can both be dependent on the current state and the current input.
Many interesting problems arise from this rather simple description and essentially all
physical machines and even a brain can be described like this [SM1956, p. vi]. Edward
F. Moore investigated the abstract properties of sequential circuits by treating them as
black boxes and only by manipulating the inputs and examining the outputs.

The two publications of George H. Mealy and Edward F. Moore created the basis for
the use of state machines in many areas. While they introduced the concept for the two
types of state machines they could not solve all related problems.

In 1971 John H. Conway expanded on Moore’s concept by improving length bounds for
his experiments and included examples like the Enigma machine, bombs, and detonators
[Con1971]. He focused his work on finite and deterministic machines, arguing however
that an input device only accessible to gremlins could be used to include probabilistic
theory and therefore support non-deterministic machines [Con1971, p. 1].

Mike Holcombe examined various applications of the idea of Mealy machines in 1982
[Hol1982]. He developed a way to decompose machines in biology, biochemistry, and
computer science and simulate them by simple ones using fundamental ideas from algebra.
According to him, the mathematical theory of different types of machines has led to
cybernetics, which has been immensely relevant in fundamental research.

The term cybernetics was introduced by Norbert Wiener in 1948 [Wie1948], which
evolved to the modern term Cyber-Physical Systems (CPS) in the early 2000s [LS2017].

1Even though Edward F. Moore’s procedure was officially published only one year after George H.
Mealy’s article, one can assume, and statements in his article confirm, that he had early access to the
work of Edward F. Moore.

46

Chapter 3: Methodology for System Automation

3.1.2 Automata Theory

Based on the computational or representational power of the system, automata theory can
be divided into different types like Combinational Circuits, Sequential Machines, Finite
State Automata, Pushdown Automata, and Turing Machines. Depending on the type
of output the Finite State Automata can be further divided into Acceptors, Classifiers,
and Transducers. The Transducers in turn can then be even further divided, depending
on the information used to determine the output and next state, into Sequencers, Moore
machines, and Mealy machines.

The nested overview of different types of automata is depicted in Figure 3.1, ranging
from low (bottom) to high (top) performance2. A further subdivision of Pushdown Au-
tomata and Turing Machines would be possible but is omitted here since the main focus
is on Finite State Automata. [Sim1999, p. 3]

After discussing some general attributes and definitions of automata, this subsection
is introducing each type, of the ones mentioned above, in more detail.

A common distinction between automata is their determinism. Any actual machine
inherently has some kind of unreliability and therefore non-deterministic behavior. How-
ever, due to the critical development environment of airborne software, only by design
deterministic automata are discussed in this thesis.

Another distinction can be made, depending on whether or not the automata is finite.
However, since all actual machines are somewhat limited and therefore finite, this distinc-
tion will be omitted here as well. Depending on the problem, the concept of non-finite
automata can be useful, but in all real-life applications having automata with a sometimes
(very) large but finite memory is sufficient to solve the problem.

As discussed in the previous subsection, the study of automata originated from the
analyses of switching circuits, composed of logic gates. This resulted in automata theory
and various concepts of state machines. Therefore, in the following, the words circuit,
logic, machine, and automata are treated as basic synonyms and only used individually
to distinguish their origin.

Another two commonly used attributes with automata are Context-Free language
and Regular Expressions. They are often used in the context of finite state automata
and Pushdown Automata and are ways to describe the behavior of state machines in
an abbreviated form. More precisely, one would have to distinguish between Context-
Free languages, which have a Context-Free grammar, and Regular languages, which have
Regular Expressions. While Regular Expressions are recognized by both Pushdown Au-
tomata and Finite State Automata, Context-Free grammar is only accepted by Pushdown
Automata, thus demonstrating, that Regular Expressions are a subset of Context-Free lan-
guage. However, due to the fact that both are not relevant in the context of higher-level
automation, they will not be discussed further.

2The order presented here, which is based on complexity and performance, does not reflect their time
of invention or discovery in history.

47

3.1 Theoretical Basics

In the following, different types of automata, which are relevant to this thesis are
introduced while discussing their differences. This includes two types that are less and
two types that are more powerful than finite state machines, thus providing a better
understanding of the development environment and the allocation of finite state machines
in general.

Turing Machine

Pushdown Automata

Finite State Automata

Sequential Machine

Combinational Circuits

Classifiers

Acceptors

Transducers

Mealy Machine

Moore Machine

Sequencers

Figure 3.1: Automata Theory (adapted and expanded from [Sim1999, p. 3])

48

Chapter 3: Methodology for System Automation

3.1.2.1 Combinational Circuits

Combinational logic is a term used in technical computer science and refers to a network
of logical switching elements. Those elements also referred to as logical gates, can be
represented using graphical symbols, described mathematically using Boolean algebra,
and implemented using ANSI C-Code or Truth Tables. The graphical symbols are defined
in ANSI/IEEE Std 91-1984 [IEE1984] and its supplement Std 91a-1991 [IEE1991, p. 60f].
Boolean algebra was introduced by George Boole in 1847 [Boo1847] and expanded in 1854
[Boo1854], but became only known as such in 1913 [Hun1933, p. 278].

The three elementary gates are the NOT gate, also referred to as the inverter, the AND
gate, and the OR gate. The NOT gate has one input A and one output Q, while the
AND and OR gate have an additional input, B. Their graphical representation, Boolean
expression, ANSI C-Code, and Truth Table are depicted in Table 3.1. Two different
graphical symbols are defined by the IEEE, the distinctive shape (upper image), and the
rectangular shape (lower image). Corresponding Boolean Algebra is shown in the next
row in two different notations and the resulting ANSI C-Code is shown in binary (upper
row) as well as logical form (lower row) below that. The relationship between the input
or inputs and the output is illustrated in the respective Truth Table. A Combinational
Circuit can consist of an arbitrary number of logic gates and connections between those.

Table 3.1: Elementary Logic Gates

NOT AND OR

QA QA
B QA

B

1A Q &A
B Q >=1A

B Q

¬A A ∧B A ∨B

A A ·B A + B

∼ A A & B A | B

! A A && B A || B

A Q
0 1
1 0

A B Q
0 0 0
1 0 0
0 1 0
1 1 1

A B Q
0 0 0
1 0 1
0 1 1
1 1 1

49

3.1 Theoretical Basics

3.1.2.2 Sequential Machine

As discussed in the previous paragraph, combinational circuits are a connection of mul-
tiple elementary logic gates. Additional gates, like NAND, NOR, XOR, and XNOR, are
constructed from the elementary ones and used as encapsulated subcircuits for better clar-
ity and understanding. It is theoretical even possible to only use two elementary gates
(NOT and AND or NOT and OR) to construct all others. However, no matter how many
elements it contains, the Combinational Circuit is by definition time-independent, because
the output values depend only on the present input and not on past values. Therefore, a
certain input will result in an "immediate" output. Depending on the number of elements,
it is obvious, that this description is not sustainable when implementing such a circuit in
hardware, with transistors, due to their inherent output propagation delay.

The advanced property of a Sequential machine is, that the output depends not only
on the current but also on past inputs. To determine the current output of the circuit it
is, therefore, necessary to specify a sequence of inputs, which makes it time-dependent.
To gain this advantage the machine needs to "remember" its past input values. This is
also referred to as the "memory" of the machine. An input sequence leads to a certain
condition of that memory, which is called the "state" of the machine.

The restriction of non-feedback connections in Combinational Circuits is omitted to
create logic circuits with memory. Feedback, in this case, refers to a connection from an
output to an input that is located before, in terms of signal flow, the output (e.g. an
output of a logical gate is also used as one of its inputs). A basic design element to create
a sequential circuit with memory is called "latch". This requires a feedback connection
which forms a closed-loop. To ensure the correct and deterministic behavior of the circuit
it is required to provide a timing signal to the memory elements to define how long to
remain in a certain condition and when to sample new input data. Depending on whether
or not the same signal is used for all elements or separate signals are defined, the machine
is called a synchronous or an asynchronous sequential circuit. The timing signal, more
commonly known as the "clock", is oscillating between two values with constant pulse
lengths and spacing between two pulses. Memory elements that change their output
based on the clock, rather than on a data input, are called "flip-flops". The change in
output or change of state occurs when the clock transitions from zero to one (rising edge)
or from one to zero (falling edge). [RK2004, p. 322ff]

There are various latches and flip-flops, but one of the most commonly known memory
elements is the "S-R Latch" and the "S-R Flip-Flop". The "S-R Latch" has two inputs
and two outputs and consists of two OR and two NOT gates. The inputs consist of S

for setting and R for resetting the output Q. An additional output Q′ is the complement
of Q. The output is held at either true or false, depending on which input was last
true. The "S-R Flip-Flop" consists of two "S-R Latches", four AND gates, and one NOT
gate. It has one additional input for timing, CLK. The functionality remains the same,
but the inputs are only sampled on the rising edge of the clock.

50

Chapter 3: Methodology for System Automation

3.1.2.3 Finite State Automata

The following type of automata are based on the concept of sequential circuits. It is
used to create an abstract representation known as finite state automata [Hen1968, p. 1].
They can be divided into Acceptors, Classifiers, and Transducers. Transducers can then
be further divided into Sequencers, Moore machines, and Mealy machines.

Acceptors have the lowest capabilities, within Finite State Automata and are also
known as recognizers or sequence detectors. They only produce a single binary output,
also known as the accepting or rejecting state, an indication of whether or not the sequence
of input symbols has been "correct". Acceptors can contain multiple transition states,
but only one rejecting and one accepting state and they don’t use actions except when
transitioning to the latter two states. They can e.g. be used to verify if an input is
consistent with a certain passphrase. [Kel2001, p. 480f]

Classifiers enhance the concept of Acceptors and omit the requirement of a binary
output. Therefore, they can have more than two terminal states and return more than
just binary information. However, they still don’t use actions in transitions. An example
is a machine that counts the number of occurrences of a special character in a string.

All types of Transducers use actions between all states to generate a continuous (in
terms of not only terminal) output. The next state and output are based on the current
input and/or current state.

Sequencers, which are also called generators, only have a single-letter input alphabet.
Therefore, they are only able to produce the same output, since the input symbol is not
changing. [HMU2007, p. 28f]

Moore machines drop the requirement of a single-letter input alphabet and use the
current state and current input to determine the next state. The output, however, is only
dependent on the current state.

The Mealy machine is an extended Moore machine, which selects its output based on
the current state and current input. In general, every Moore machine can be converted into
a Mealy machine and vice versa. However, using Mealy machines has several advantages,
like normally fewer necessary internal states and faster reaction to inputs.

The theoretical basics of the last two machines are discussed in more detail in Sub-
section 3.1.4, while Subsubsection 3.3.2.2 will describe differences in implementation and
why only one of them is used for implementing functions in this thesis.

One way to imagine the functionality of a finite state machine is as a black box that is
fed with an input tape from the right and prints out an output tape on the left. The mental
picture was presented by Mike Holcombe [Hol1982, p. 47] and is depicted in Figure 3.2.
In this illustration, both the input and the output tape move from right to left. The state
machine has an internal state S, reads input symbols u, and prints output symbols y.

The Mealy machine is more powerful and therefore a Moore machine can be seen as
a restricted Mealy machine. Consequently, in the following, only the function of a Mealy
machine is described and used as an example.

51

3.1 Theoretical Basics

In the beginning, the state machine is in state S1 and reads the first input symbol u1.
Based on the state transition function F , which depends on S1 and u1, the new state S2

is calculated as S2 = F (S1, u1). At the same time, the first output y1 is determined using
the output function G, which also depends on S1 and u1 (y1 = G(S1, u1)). Therefore, the
state machine has printed out y1, is now in state S2 and will read the next input u2.

Generally speaking, the next state is depending on the current state and current input
(Si+1 = F (Si, ui)). At the same time, the output also depends on the current state and
input (yi = G(Si, ui). While the first statement also applies to Moore machines, the latter
has to be adapted, by omitting the dependency on ui in the output function G.

In this example in Figure 3.2, the input tape contains n input symbols. When all of
them have been read, the state machine has also written n output symbols, up to yn, has
gone through n transitions, and is in the state Sn+1.

...

...

S2

S1 u1 u2 un...

Sn+1

u2 un...

y1 y2 ... yn

y1

InputOutput State

S2 = F(S1, u1)

Si+1 = F(Si, ui)

y1 = G(S1, u1)

yi = G(Si, ui)

Figure 3.2: Finite State Machine (adapted from [Hol1982, p. 47])

52

Chapter 3: Methodology for System Automation

3.1.2.4 Pushdown Automata

Despite the fact that the notion of pushdown tape has been used since 1954, Pushdown
Automata (in this case Pushdown Acceptors) were first formalized in 1962 to 1963 by
N.Chomsky and R.J.Evey [Gin1966, p. 81f].

The concept of Pushdown Automata introduces an enhanced Finite State Automata.
Those machines are equipped with an additional tape, called the "stack". The stack acts
like an additional memory space, where information can be stored and retrieved. An
example is depicted in Figure 3.3.

As part of a transition, the Pushdown Automata can read and/or modify the stack.
However, the scope for reading and modification is limited to the top element. Possible
changes to the stack are: "push", "pop" or ignore. Writing a symbol to the top of the stack
is referred to as "push". By adding another symbol, the rest of the stack can be regarded
as being "pushed down", hence the name Pushdown Automata. Deleting the top element
from the stack is also called "pop". If no modification is required the automation can also
only read the top element or ignore the stack completely.

The stack can be used to determine the new state as well as to determine the output.
Therefore, the dependency on the last stack element cj is added to both, the state tran-
sition function as well as the output function (Si+1 = F (Si, ui, cj) and yi = G(Si, ui, cj)).

Furthermore, the Pushdown Automata includes a stack modification function H. It
can be used to change the order of elements within the stack. However, further discussion
is omitted here, and therefore it is also not shown in the schematic.

Stack

InputOutput

y1 u5 un

State

...

cj

...

c2

c1

y2 ... y4
Si+1 = F(Si, ui, cj)

yi = G(Si, ui, cj)

Figure 3.3: Pushdown Automata

53

3.1 Theoretical Basics

3.1.2.5 Turing Machine

The concept of Turing Machines was developed almost 20 years before George H. Mealy
and Edward F. Moore presented their work on finite state automata.

In his paper, written in 1936, "On Computable Numbers, with an Application to the
Entscheidungsproblem" [Tur1936], Alan M. Turing presents a definition for a class of
abstract machines. The concept of abstract machines, which became known as Turing
Machines, also have a stack, like Pushdown Automata, but have one important advantage.
Unlike Pushdown Automata, they have access to the complete stack making them more
complex, but also more powerful. A visual representation of such a machine is shown in
Figure 3.4.

With this extension, both, the state transition function, as well as the output function,
can be dependent on an arbitrary element of the stack ck leading to Si+1 = F (Si, ai, ck)
and yi = G(Si, ui, ck).

In contrast to Finite State Automata, the stack creates an unlimited and unrestricted
memory for the Turing Machine. This makes the concept a much more accurate model
of a general-purpose computer and enables the Turing Machine to do everything a real
computer can do. [Sip2006, p. 139f]

The methodology and functions developed in this thesis are based on finite state
machines. Nevertheless, due to the design steps presented in Subsection 3.2.2 together
with internal (Subsection 3.2.3) and external (Subsection 3.2.4) decision logic they are
enhanced to even higher-level automata. Depending on the specific functionality and
implemented the complete automation can be considered a Pushdown Automation or
Turing Machine.

Stack

InputOutput State

y1 u5 un...y2 ... y4
Si+1 = F(Si, ui, ck)

yi = G(Si, ui, ck)

cj

...

c2

c1

k

Figure 3.4: Turing Machine

54

Chapter 3: Methodology for System Automation

3.1.3 State Machine Modeling

After introducing different types of automata in Subsection 3.1.2 this subsection gives
an overview of different methods to model and implement automata. Those different
notations are used to describe the behavior of finite state machines at different stages of
the development and implementation process and throughout this thesis.

They include the Functional View represented as Functional Program Code and the
Imperative View represented as Imperative Program Code. Additionally, the Feedback
View includes the Tabular, Graphical, and Matrix Description. The general division of
those notations is adapted from [Kel2001, p. 474ff] and listed in the following.

• Functional View

– Functional Program Code

• Imperative View

– Imperative Program Code

• Feedback View

– Tabular Description

– Matrix Description

– Graphical Description

As an introduction to the different notations of finite state machines the example of
an Edge-Detector is used throughout the following pages. An Edge-Detector is used to
recognize a change (edge) within the input stream and report this with a given output
value. In this case, the input stream consists of a finite number of integer variables that
can either be "0" or "1". If a change is detected the output will be set to "1" for one cycle.
In the following discussion, the output is defined to be "0" for the first cycle.

Depending on the step in the development process or the description within this thesis
different notations are used. An example is modeled in each respective notation and their
usage within this thesis is explained.

3.1.3.1 Functional View

The function of a state machine can be represented as a Functional Program. In this
case, the behavior of the machine is modeled as a function from lists to lists. When
one function has finished the processing of one input symbol it calls another function to
process the remaining input, which is referred to as interrelation by mutual recursion.
[Kel2001, p. 475f]

The Functional View with the Functional Program Code is listed for the sake of
completeness only. It will not be discussed further, because it is not used within the
development process of the methodology or applications presented in this thesis.

55

3.1 Theoretical Basics

3.1.3.2 Imperative View

In the Imperative View, the state machine is represented using Imperative Program Code
and the input and output are viewed as streams of integers. The function processing
the current input and returning the respective output is presented as detectEdge in
Listing 3.1. The wrapping function reading the current input, calling detectEdge, and
writing the resulting output is omitted.

This view represented by the Imperative Program View is used for the notation of
state machines when ANSI C-Code is automatically generated as part of the model-
based development process in MATLAB, Simulink, and Stateflow. However, in this case,
the ANSI C-Code is written by hand and not generated automatically from another
representation within MATLAB.

This example represents the functionality of an edge detector as an imperative pro-
gram. Advanced features like protecting the input from invalid data and saturating vari-
ables are omitted. Furthermore, the code is not optimized to show specific states but
rather for easy understanding and representation of the functionality.

1 int detectEdge(int currentInput)

2 {

3 //local variables

4 static int state = -1;

5 int ret = 0;

6 //first execution, output always zero, save state

7 if (state == -1)

8 {

9 ret = 0;

10 state = currentInput;

11 }

12 //branch after first execution

13 else

14 {

15 //rising edge

16 if ((state == 0) && (currentInput == 1))

17 {

18 ret = 1;

19 }

20 //falling edge

21 if ((state == 1) && (currentInput == 0))

22 {

23 ret = 1;

24 }

25 state = currentInput;

26 }

27 return ret;

28 }

Listing 3.1: Edge Detector - Imperative Program Code

56

Chapter 3: Methodology for System Automation

3.1.3.3 Feedback System View

The functionality of a state machine can be abstracted by using the state transition
function F and output function G as introduced in Subsubsection 3.1.2.3. This is referred
to as Feedback System View and is represented in Figure 3.5.

This notation of signal flow is not used explicitly in this thesis, but it is the basis for
the Tabular, Graphical, and Matrix Descriptions, which are introduced in the following.

Output

C
ur

re
nt

St
at

e

Input

Memory

G
Output Function

F
State Transition Function

Figure 3.5: Feedback View

3.1.3.4 Tabular Description

The notation of the behavior of a state machine in a tabular description is referred to as a
state-transition table. The respective notation for the Edge-Detector example is depicted
in Table 3.2. The state-transition table is slightly different depending on whether the
Mealy or Moore representation is used (c.f. Subsection 3.1.4), here the former is used.

Table 3.2: Edge Detector - State-Transition Table

Current State Current Input Output Next State

init
0 0 S0
1 0 S1

S0
0 0 S0
1 1 S1E

S0E
0 0 S0
1 1 S1E

S1
0 1 S0E
1 0 S1

S1E
0 1 S0E
1 0 S1

57

3.1 Theoretical Basics

This table consists of four columns for the current state, current input, output, and
next state. The initial state of the Edge-Detected is represented in the description as the
current state, "init". However, this is not an actual state and only used to indicate the
very first step. After that, the states S0, S0E, S1, and S1E are used depending on the
last and current input.

Transitions returning to the same state are not necessary for the Edge-Detector. How-
ever, they are included in this representation to highlight both input alternatives. As with
the previous implementation of the Edge-Detector, an edge cannot be detected in the first
step and the output is defined to be "0" after the first transition.

The Tabular Description is used in the following Subsection 3.1.4 to demonstrated
the differences between Mealy machines and Moore machines. Additionally, it creates the
basis for the Matrix Description.

3.1.3.5 Matrix Description

The Matrix Description which is also referred to as a two-dimensional state transition
table is a compact combination of the Tabular and Graphical Description. The illustration
for the example of the Edge-Detector is shown in Table 3.3. It shows departing states,
including the additional "init" state on the left and respective arriving states on the top.

For the simple example of an Edge-Detector, the transition conditions and actions
could be added directly in the matrix. However with the complex state machines, de-
scribed in this thesis, this is not the case, and therefore only the available transitions
themselves, without conditions and actions, are shown in a "from→to" notation.

As mentioned before, transitions returning to the same state are not necessary for
the Edge-Detector and in general have more disadvantages than advantages. Within the
matrix description, they are therefore always marked with a "-". Furthermore, functionally
not available transitions are marked as "n/a" (not available).

This creates a general overview of available and unavailable transitions and will be
used throughout this thesis to provide an easier understanding of currently discussed
transition conditions or actions.

Table 3.3: Edge Detector - Transition Matrix

To
S0 S0E S1 S1E

Fr
om

init init→S0 n/a init→SS1 na
S0 - n/a n/a S0→S1E

S0E S0E→S0 - n/a S0E→S1E
S1 S1→S0 S1→S0E - n/a

S1E n/a S1E→S0E S1E→S1 -

58

Chapter 3: Methodology for System Automation

3.1.3.6 Graphical Description

The Graphical Description uses circles for the states and arrows for transitions. The
circles include the name of the state and the arrows indicate possible transitions from one
state to another in a u/y notation. If the correct input u is read the transition is executed
and the output y is written. The graphical representation for the Edge-Detector is shown
in Figure 3.6.

Self-recurring states are such that have a transition that changes an output but returns
to its originating state. They were included in the tabular description to highlight both
alternatives, marked with a "-" in the matrix description, and are also not used in the
graphical representation. Furthermore, those states or transitions are not used within the
methodology or applications presented in this thesis for reasons of clarity and complexity.
They would lead to a graphical representation with sometimes fewer states but could,
among other problems, lead to confusion on the implemented functionality.

This presented graphical notation of the behavior of finite state machines is the basis
for the representation in Stateflow, where they have a slightly different representation, but
a similar concept. The detailed introduction of state machines within the development
environment is presented in Subsection 3.3.2.

0/1

1/1

1/0

0/0

1/1

0/1

0/0

1/0

S0

S1

S0E S1E

Figure 3.6: Edge Detector - State Machine

59

3.1 Theoretical Basics

3.1.4 Mealy and Moore Finite State Machines

As stated before in Subsubsection 3.1.2.3, the most commonly used state machines are the
Mealy and the Moore machine. Therefore this subsection describes them in more detail.
The next pages include the key statement and an example machine from the original
publications of George H. Mealy and Gordon Earle Moore.

Slightly adapted versions of their originally presented machines are shown in Figure 3.7
and Figure 3.8. In this example, they both have one input and one output, which can
be either 0 or 1. Furthermore, they have four states (circles) in the same position. In
this case, they have been renamed, S1 to S4, for better comparability. In the case of
the Mealy machine, the transitions (arrows) are marked in a u/y notation, u being the
necessary input and y being the resulting output. The Moore machine outputs depend
only on the state and therefore the transitions only consist of the necessary input u, while
the resulting output y is part of the state naming, Si; y. In both cases, multiple conditions
are possible, which in the case of the Mealy machine are written in multiple rows, while
the Moore machine distinguishes them by a comma.

The corresponding transition tables are depicted in Table 3.4 and Table 3.6. Due to
different input-output timing, the columns of the tables are not in the same order and have
different names. Notwithstanding the output timing, it can be seen, that the machines
and their state change reaction to inputs are completely identical.

Actually, a closer look at the state diagrams reveals only one small, but very important,
difference. In the Mealy machine, all transitions leading to S2 will result in an output
of 0, while all transitions to S3 yield an output of 1. In contrast, when using the Moore
machine, states S2 and S3 will issue the complementing output to the Mealy one.

In order to examine this behavior more closely, an arbitrary input with starting state
S1 is defined, which uses all transitions and all conditions, on multi-condition transitions,
at least once. The resulting state transitions and corresponding outputs are depicted in
Table 3.5 and Table 3.7 respectively3. Despite the different outputs in S2 and S3, the
output reaction is identical, just like the before-mentioned state transition reaction.

Both state machines calculate the next state depending on their present state and
input. However, the Mealy machine output depends on both the present state and input
while the output of the Moore machine only depends on the present state. This example
shows when considering a certain input sequence and analyzing the output sequence, that
a Mealy machine can be transferred into a Moore machine and vice versa. However, it is
very important to note, that their reaction time, in terms of input to output propagation
delay is different. Since the Moore concept only sets the output after reaching a certain
state, the Mealy machine, in general, can react faster to a given input. The implementation
of this machine within the development environment is shown in Section 3.3.

3In general, the specification of the initial state, in a Mealy machine, does not lead to an unambiguous
output, since the transition defines the output. However, in this case, the transition to S1 always leads
to an output of 0.

60

Chapter 3: Methodology for System Automation

3.1.4.1 Mealy State Machine

George H. Mealy stated the following for his model of a sequential circuit: "A switching
circuit is a circuit with a finite number of inputs, outputs, and (internal) states. Its
present output combination and next state are determined uniquely by the present input
combination and the present state." [Mea1955]

Table 3.4: Mealy Transition Table (adapted from [Mea1955])

Current State Current Input Output Next State

S1
0

0
S2

1 S4

S2
0

1 S3
1

S3
0

0
S1

1 S4

S4
0

0 S2
1

Table 3.5: Mealy Input-Output Mapping

Input 1 1 0 0 0 1 1 0 -
Mealy State S1 S4 S2 S3 S1 S2 S3 S4 S2
Mealy Output 0 0 1 0 0 1 0 0 -

0/0
1/0

0/1
1/1

0/0

0/0

0/01/0

S2

S1

S4 S3

Figure 3.7: Mealy State Machine (adapted from [Mea1955])

61

3.1 Theoretical Basics

3.1.4.2 Moore State Machine

Edward F. Moore stated the following for his model of a sequential machine: "The state,
that the machine will be in at a given time, depends only on its state at the previous time
and the previous input symbol. The output symbol at a given time depends only on the
current state of the machine." [Moo1956]

Table 3.6: Moore Transition Table (adapted from [Moo1956])

Current State Current Input Next State State Output

S1
0 S2

S1 0
1 S4

S2
0

S3 S2 1
1

S3
0 S1

S3 0
1 S4

S4
0

S2 S4 0
1

Table 3.7: Moore Input-Output Mapping

Input 1 1 0 0 0 1 1 0 -
Moore State S1 S4 S2 S3 S1 S2 S3 S4 S2
Moore Output - 0 0 1 0 0 1 0 0

0

01

1

0,10,1

S2;1

S1;0

S4;0 S3;0

Figure 3.8: Moore State Machine (adapted from [Moo1956])

62

Chapter 3: Methodology for System Automation

3.2 Design
The previous section, Section 3.1, introduced the theoretical basics that this method-
ology is based on. This section presents the design aspects of the methodology, which
include automation challenges in general and in aviation specifically, the design steps of
the software implementation, the decision logic used for the state machines, and the hier-
archical decomposition structure, which is used to reduce complexity and enable complete
testability.

In the beginning, Subsection 3.2.1 presents typical automation challenges in aviation.
According to Charles Billings, complexity, brittleness, opacity, and literalism are the main
challenges, higher-level modern aviation automation has to solve. Those four challenges
are introduced, an aviation example is presented and the mitigation approach used in this
methodology is outlined.

Following the challenges, the design steps of this methodology are presented in Subsec-
tion 3.2.2. This eight-step process is used to design the higher-level automation systems
described in this thesis. It ranges from the basic definition of operating modes and group-
ing into different levels, over selecting necessary command injection points in the cascaded
control loop depending on the control strategy, to testing and verification of the developed
functions, both standalone and fully integrated.

The next two subsections, Subsection 3.2.3 and Subsection 3.2.4 cover the internal
and external decision logic used to develop the automation. Multiple combined state
machines, each containing their own decision logic, are used for the implementation of
complex functions. However, the decision logic does not have to be part of the individual
state chart itself. The state machines are used to perform mode decisions only. Therefore,
the external decision logic is necessary for more complex calculations, which in turn are
necessary to make certain mode decisions. Additionally, one developed submodule for
checking intermittent ranges is presented and an enhanced implementation of temporal
logic is shown.

The last subsection, Subsection 3.2.5, presents contribution C1.1 - Hierarchical decom-
position design strategy, minimizing complexity and optimizing testability. It describes the
generic design of this hierarchical decomposition strategy with its main parts and how it
can be repeated on however many levels are necessary. This includes the conditioning of
the input, the state machine itself, the routing to the next level, and the output allocation.
Additionally, the injection of the generated signals into a generic cascaded control loop is
presented.

Following those different aspects of the design, the next section, Section 3.3, is pre-
senting the specific implementation. For a detailed presentation on the explicit imple-
mentation in MATLAB and Simulink refer to Subsection 3.3.3.

63

3.2 Design

3.2.1 Automation Challenges

The main goals of aviation automation, in general, are increased safety and better eco-
nomics [WC1980, p. 3ff]. Furthermore, automation is necessary for aviation to advance,
but at the same time, the costs (in terms of undesired behavior or deficiencies) of automa-
tion need to be properly addressed as well.

According to Charles Billings, the main challenges, higher-level modern aviation au-
tomation has to solve are complexity, brittleness, opacity, and literalism. Additionally,
training the pilot or flight crew on how to interact with the automation in certain sit-
uations is very important. Furthermore, adequate information or feedback is required
for the pilot to create the possibility to make the right decisions and to understand the
automation. The following list is summarized and adapted from [Bil1996, p. 89ff].

• Complexity - the user of a system is not able to understand the automation and
build a mental model of the operational procedures

• Brittleness - algorithms which appear to work reliable under normal circumstances
but fail completely in unusual conditions

• Opacity - lack of transparency due to insufficient information from the automation
or inadequate announcement to the operator

• Literalism - automation is executing its predefined instructions without checking
the possibility and applicability to the current situation

In general, the control and guidance of a remotely piloted vehicle are more difficult
than normal onboard operation. Those above-mentioned problems are amplified by the
physical separation of the operator or pilot in the use case of unmanned or remotely piloted
vehicles. This separation leads to a reduced amount of information about the aircraft’s
environment. Because data needs to be collected by onboard sensors, transferred via the
data link, and displayed in a Ground Control Station (GCS) to the operator, their rate
and/or amount is greatly reduced. Additionally, their quality is reduced as well due to the
latency of the clocked and delayed signal. This applies in particular to visual, vestibular,
and auditory information, which are severely affected by the physical separation and
resulting sensory isolation. [MW2004, p. 1] [Erp2000, p. 4]

This section introduces the four main challenges as listed above and described by
Charles Billings [Bil1996, p. 89ff]. Additionally, to allow for a better understanding, a few
examples, inspired by Charles Billings [Bil1997, p. 298ff], of those drawbacks of software
functions are given in the context of aviation automation. Furthermore, the solution
approach for the challenges in the developed methodology and automation functions is
presented. It has to be noted, that it is not possible to completely solve those problems
in general or for every application. Nevertheless, it must be ensured that their impact is
as low as possible to provide robust automation functions in the context of experimental
aviation automation.

64

Chapter 3: Methodology for System Automation

3.2.1.1 Complexity

The development of higher-level automation has made aviation functions increasingly
capable and more and more flexible, but at the same time, the level of complexity has
greatly increased as well. Modern flight management automation has numerous modes of
operation for different control axes of the aircraft. In many cases, the pilot is not able to
create a mental model of the system which results in less mode awareness and can even
lead to mode confusion. This is supported by successive and "hidden" mode changes, which
are triggered automatically and paired with an insufficient display or indication method.
Furthermore, many automation systems don’t have integrated contingency procedures,
which leads to less or no assistance at all when it is needed the most.

The Flight Management System (FMS) of a modern aircraft can be considered a highly
complex system with countless operation modes. The reaction of pilots to such complex
automation can unintentionally adversely affect the consequences. This happens if the
system shows an, from the pilot’s viewpoint, undesired behavior. Due to the interaction
with the system and resulting behavior the pilot might revert the system to a lower level
of management or completely disable it. This will happen if the pilot doesn’t have a
mental model and no other way of correcting the situation. Due to the deactivation of
the system certain additional tasks now need to be performed by the pilot, thus increasing
the workload. Furthermore, certain protection features might not be available anymore,
leading to a more critical situation. [Cur1985, p. 30]

There are a lot of aviation incidents and accidents, that can at least partially be
attributed to the complexity of the automatic flight control system. One of them is China
Airlines Flight 140. The Airbus A300 crashed during the approach to Nagoya Airport
on 26 April, 1994, only a few hundred meters away from the runway. The flight crew
inadvertently activated to Take-Off/Go-Around (TO/GA) mode, in which a large amount
of thrust is automatically applied and the aircraft is forced in a nose-up attitude. The
pilots lowered the thrust levers and pushed down on the controls. However, they did not
disconnect the autopilot, which counteracted the pilot’s input with a nose-up movement
of the horizontal stabilizer. This "fight" between the flight crew and the automatic system
resulted in a steep climb with reduced speed, which stalled the aircraft. [Air1996]

To overcome the challenge of highly complex systems and their adverse effects, coun-
termeasures are integrated into the design and implementation steps of this methodology.
The unambiguous mode-breakdown is based on operational objectives rather than control
strategies, which makes it more transparent to the pilot or operator. Grouping the modes
into different levels of involvement is an additional step, that can be used if necessary. It
allows for a fast reaction to critical events without identifying the exact mode.

With that approach, the developed automation functions are capable of performing
the required task, while keeping negative effects from increased complexity in the design,
implementation, and operation to a minimum.

65

3.2 Design

3.2.1.2 Brittleness

As aviation automation becomes more and more complex, the required effort to verify
that the software is working correctly under all circumstances grows excessively. This is
mostly due to almost infinite combinations of input signals or variables. In this context,
brittleness is an attribute of software that works well under nominal conditions but fails
as soon as non-nominal events occur.

Air France Flight 296 is one example where brittleness has at least contributed to
its crash. On the 26 June, 1988, it performed a low pass over the airfield at Mulhouse-
Habsheim Airport as part of an airshow. The A320 descended to an altitude of about
10m (instead of the intended 30m) and could not initiate a climb before hitting trees at
the far end of the runway. [Bur1989]

The High Angle of Attack protection is used to protect the aircraft from stalling.
Whenever a certain angle of attack (α_prot) is exceeded, the control mode for the elevator
is switched to protection mode, in which the angle of attack is proportional to the side
stick deflection until a given maximum (α_max). [Air1987b, p. 22]

Additionally, the auto thrust system normally uses the Alpha Floor protection, which
is applying maximum thrust, TO/GA, whenever a certain angle of attack threshold
(α_floor) is exceeded. This system is available from takeoff until approach when de-
scending below 100feet. [Air1987a, p. 143]

However, due to the very low altitude and extended landing gear, the automation
disabled the Alpha Floor protection. This is necessary to allow the aircraft to land but
would in all other cases have automatically applied full power. The High Angle of Attack
protection prevented the aircraft from stalling during the low speed and low altitude pass
over the airport, however, due to the disabled the Alpha Floor protection the automation
did not apply full thrust, which would have probably prevented the crash.

The methodology developed in this thesis is used to design software that is used
in an experimental environment. In one case it is even used on the maiden flight of
an experimental aircraft. In this context, the possibility of non-nominal events is even
higher than in other aviation applications. Therefore, the design and implementation
must be very robust and avoid brittleness. This is accomplished by using decision logic
based on deterministic finite state machines with robust transition conditions that are
thoroughly tested, using formal methods, to ensure correct behavior even in unexpected
environmental conditions.

Additionally, the above-mentioned level structure supports higher-level automation
functions with reduced complexity, which in turn leads to a clearer design with a lower
error possibility. Furthermore, extensive testing and formal verification methods are used
to ensure a valid design, correct implementation, and guaranteed properties of the au-
tomation under arbitrary operation conditions.

66

Chapter 3: Methodology for System Automation

3.2.1.3 Opacity

Another challenge of higher-level automation, especially in aviation, is transparent be-
havior. In a survey of pilot attitudes toward automation, their frequent responses to
automation systems can be paraphrased with the following questions [Wie1989].

• What is it doing?

• Why is it doing that?

• What is it going to do next?

The software needs to provide answers to these questions and they need to be shown
in an adequate and easily decipherable way. If one or both of these tasks are not fulfilled,
this lack of transparency is also referred to as opacity.

Besides problems directly caused by the pilot, opacity can be explained by two main
contributing factors on the system or software side. One is insufficient or too complex
information from the automation. Then the pilot is not able to build a mental model of the
automation and cannot comprehend the automation actions and motivations. Another
problem is an opaque interface between the pilots and the automation, which makes it
difficult to track its state and activity. [SW1994]

Air Inter Flight 148 crashed on 20 January, 1992, after the pilots missed a small but
very decisive point, in the literal sense of the word. On approach to Strasbourg Airport in
France, the flight crew unintentionally commanded the autopilot to descent at a vertical-
speed of −3300feet/min instead of the correct −3.3◦ flight-path-angle. Although this
being a pilot error, opacity has contributed to the fact that the mistake was not discovered
in time. The display was showing −33 (indicating −3300feet/min) instead of the desired
−3.3 (indicated as −3.3◦). [Fra1993]

A single dot was used to distinguish the sink rate from the flight-path-angle. A sink
rate of 3300feet/min at the approach speed of an Airbus A320 corresponds to about
−14.5◦ flight-path-angle and had catastrophic consequences.

The breakdown to different modes based on operational objectives and grouping into
different levels of involvement helps to prevent the opaqueness of the automation. Ad-
ditionally, the software provides sufficient information on not only the current operation
mode and level of involvement but also respective parent modes or superimposed mode
functions. Furthermore, all platforms use custom displays for the pilot and/or custom
interfaces for the operator in the GCS.

With this set of information, the pilot or operator knows what the system is doing
and can understand why it is doing that. The question of what is it going to do next can
be answered with comparatively little training, which is supported by the mode and level
structure as well as computer simulations.

67

3.2 Design

3.2.1.4 Literalism

In contrast to human problem solving, the automation algorithm is constrained by its
instructions. A Human can draw knowledge from any relevant source to support the
reaction in unusual circumstances. The automation, on the other hand, will only react
according to the programmed functions. In general, it cannot "learn" or find different
solutions and is therefore insensitive to unanticipated events.

This "narrow-mindedness" of software, in general, is also referred to as literalism. It
especially occurs when automation functions are designed to perform a certain task but do
not analyze if the goal of that task is achievable. Therefore, the workload of the human
operator will be low during normal operation, but greatly increase when unexpected
events, with respect to the designer of the software, occur.

On June 6, 1994, an A320 operated by Hong Kong Dragon Airlines was on an approach
to runway 13 at Hong Kong International Airport, Kai Tak. The aircraft was at 800feet

when it encountered a severe gust, which caused the trailing edge flaps to be locked in
the fully down position (40◦) and triggered the pilots to go around.

The second and third approaches were performed with the flaps-lever being in positions
for 20◦ and 10◦ respectively. However, both were abandoned due to lateral oscillations and
roll-angles of up to ±30◦. During the 4th approach, with the flaps-lever at the position for
20◦, the same oscillations occurred, however, due to the critical fuel state of the aircraft,
the pilots continued towards the runway and touched down. The aircraft came to a stop
on a parallel taxiway.

The investigation revealed, that the critical behavior of the aircraft was caused by a
mismatch of the sensitivity of the lateral control law and the actual flap position. The
sensitivity was taken from the position of the flap-lever, rather than the real position of the
flaps because a deviation was presumably not considered during implementation. Besides
other factors, like missing crew coordination and delay of effective directional control after
touchdown, the literalism of the software contributed to this incident. [Acc1997]

In the context of higher-level system automation using finite state machines, this can
occur if a mode has a certain requirement to be entered and continued. If however it is
implemented in a way that the condition is only examined on entry and a falsification of
the condition does not lead to a mode change the automation is creating literalism.

Another problem can occur if concatenated modes with intermediate transfer condi-
tions are used. If the transition does not occur in the anticipated way the entry condition
of the intermediate mode can be false, while the exit condition is true. This leads to a
stuck automation because one, possibly unimportant, transition did not take place as the
designer had expected.

The challenge of literalism is addressed in the system automation by self-monitoring
capabilities, automatic contingency maneuvers, and a design and implementation method-
ology, which requires a comprehensive evaluation of entry and exit conditions as well as
redirections for concatenated modes.

68

Chapter 3: Methodology for System Automation

3.2.2 Design Steps

The design of higher-level system automation developed within this methodology is based
on an eight-step process. Depending on the developed function and complexity of the
system it is not always necessary to complete all of them. Each step is described in the
following paragraphs.

Step 1: The first step is the definition of nominal as well as non-nominal operation
modes. The nominal modes are defined based on their operational objective (e.g. "park-
ing" or "waiting-for-trim-point"). Non-nominal modes can be divided into two groups.
Contingency modes, that are based on mission changes (e.g. "return-to-base" or "loiter")
and contingency modes due to malfunctions (e.g. "link loss" or "Global Positioning System
(GPS) loss").

Step 2: The next step is only necessary if the number of different modes is too high
or they are too dissimilar in another way. In this case, they are grouped into appropriate
parent modes and consequently placed on different levels. Therefore, one mode can have
one parent mode and multiple child modes. This is repeated until the number of modes
on each level is below a suitable threshold, usually around five. Modes can be split
based on the overall status of the system (e.g. "active" or "standby"), based on the
user (e.g. "flight operator" or "external pilot"), based on the existence of a malfunction
(e.g. "normal" or "link loss"), and many more. Additionally, consecutive modes that are
automatically sequentially activated are consolidated within one parent mode and placed
on the respective lower level. Separate mode calculations (e.g. loiter) are implemented in
parallel state machines, so they do not interfere with the main one.

Step 3: Then an appropriate control strategy is specified for each non-parent mode.
Parent modes don’t need a control strategy, because the control strategy is specified in
the child modes (as long as they don’t have child modes of their own at which point
they are parent modes as well). The control strategy consists of a selection of control
variables for each axis or combination of axes (e.g. vertical: altitude and lateral: heading).
Furthermore, the corresponding control module needs to be selected. Depending on the
mode it can be necessary to use different cascaded control loops at the same time (e.g.
superimposing altitude commands from the autopilot while continuing laterally based on
the waypoint module).

Step 4: Depending on the necessary control modules and commands, from the previ-
ous step, injection points to the different control modules are defined. Within the cascaded
control loop, the commands for the respective next (lower) loop are created by the adja-
cent earlier (higher) loop. The injection points are placed between the modules and act
as a signal routing layer or switch. Depending on the required function they need to be
able to switch or modify some or all commands, which are passed to the next module.
The capabilities range from forwarding and/or modifying the original signals to replacing
them with self-generated or externally provided commands.

69

3.2 Design

Step 5: For each mode with a control strategy the respective commands or source of
commands must be defined or selected. The commands can be externally specified (e.g.
commands from a user), generated by another control module or sensor (e.g. flight path
deviations for the trajectory module), or internally generated (e.g. a generated flight
test maneuver for the actuators) by the automation. If the commands are externally
generated and don’t need to be monitored they can be directly connected to the injection
point, otherwise, the monitoring of the command is done within the specific mode and
the monitored command is then forwarded to the respective injection point. The same
principle applies if the command is generated by one of the other control loops. If the
commands are generated within the automation itself, they need to be parameterizable
without changing the internal structure, to support different platforms.

Step 6: In preparation for the next step all possible mode changes need to be iden-
tified. Due to the small number of modes on each level, it is relatively easy to analyze
all possibilities. Following the identification of all mode transitions, the conditions for
each transition need to be formalized. The decision logic used for the transition condition
in the finite state machine is based on boolean algebra. Depending on the complexity,
the condition can either be calculated in the state machine or externally. An external
calculation can be necessary if the conditions consist of numerous logic gates, temporal
logic, or complex calculations requiring a separate state machine or subsystem. Detailed
information about the decision logic used in those transitions is described in the following
subsections (Subsection 3.2.3 and Subsection 3.2.4).

Step 7: Each of the previously defined transition conditions requires a respective
transition action. They need to be derived to execute internal (within the automation) as
well as external (with respect to the control loops) actions. Internal actions can consist of
propagating mode changes to other levels, triggering calculations in certain steps, or per-
forming simple calculations within the state chart. Transition actions needed for external
interaction might consist of defining switch positions of the injection points, commanding
specific values, and activating or deactivating features of other control modules.

Step 8: The last, but very important step is the testing and verification of the
developed higher-level automation function. This testing process is divided into different
levels of testing. Each of which is targeted to a different test environment or system
under test. The tests include Unit Tests and Model Checking. Additionally, Model in
the Loop (MiL), Software in the Loop (SiL), Hardware in the Loop (HiL), and Aircraft
in the Loop (AiL) simulations are used. Ground Tests and Flight Tests prove the real-life
applicability of the software. Depending on the test, they are either standalone tests for
the developed automation functions or integrated software tests using the other control
modules and a Flight Dynamic Model (FDM). Some of the standalone tests use formal
methods to create deterministic state machines with guaranteed properties under arbitrary
conditions. Detailed information about the testing process, the different levels of testing,
and the test environments are given in Section 3.4.

70

Chapter 3: Methodology for System Automation

The eight previously described design steps of the proposed methodology for the
higher-level system automation are summarized in the following.

Step 1 Definition of nominal modes based on their operational
objective and contingency modes based on the aircraft’s
reaction or possible malfunctions

Step 2 If necessary, consolidation of modes into different levels
based on the status of the system, type of operator,
malfunction detection, etc.

Step 3 Specification of an appropriate control strategy and se-
lection of the respective control module or combination
of control modules

Step 4 Definition of necessary command injection points on the
different layers of the cascaded control modules of the
Flight Control Computer (FCC)

Step 5 Selection of required commands for each mode and their
respective injection point and alteration method within
the cascaded control loop

Step 6 Identification of all possible mode changes on all levels
of the automation and formalization of the respective
transition condition

Step 7 Derivation of necessary transition actions, both within
the automation as well as with respect to the commands
for the external control loops

Step 8 Testing and verification of the developed automation
functions as standalone systems as well as fully inte-
grated with the other modules

With this approach, an automation can be designed that utilized various functions
of a cascaded control loop to perform higher-level system procedures. The design steps
create distinguishable modes on different levels. Further steps reduce the complexity of
the system during the design and the implementation as well as during the testing and
using while supporting sophisticated designs with a high number of operating modes. A
thorough testing process ensures robust functionality under all conditions.

71

3.2 Design

3.2.3 Internal Decision Logic

For the applications presented in this thesis, all decision logic is implemented in state ma-
chines and based on Boolean algebra as introduced in Subsubsection 3.1.2.1. The state
machines are used for mode decisions only and not for mathematical computation of com-
mands and the such like. The latter is performed in conditionally executed subsystems,
which are introduced are Subsection 3.2.5.

However, in some cases, even the logic needed to perform mode decisions is not di-
rectly implemented within the state machine. Depending on the complexity, the logic
is implemented within the state machine and therefore using Stateflow or outside of the
actual state machine in Simulink. This subsection is focusing on the internal decision
logic in Stateflow, while the next is focusing on external decision logic in Simulink. For
a better comprehension of Simulink models in the following sections, all block names are
shown. Default block names would normally be hidden during implementation.

Finite state machines are triggered by discrete events, activating a transition that leads
from one state to another. Those events are derived from decision logic that depends on
continuous or discrete signals. However, in all practical applications that are based on a
clocked processor, the decision logic depends on discrete signals. This needs for example
be considered when comparing signals to thresholds.

Relational operators are used for comparing two signals or more precisely two values
(of different signals) at a specific point in time. This can either be a comparison of one
signal to another or to a predefined fixed value, also referred to as threshold. In both cases,
their output is a Boolean expression being either true or false. Relational operators
are listed in the top part of Table 3.8.

Additionally, logical operators can be used to create Combinational Circuits (c.f. Sub-
subsection 3.1.2.1). Even though those operators concatenate two or more relational
comparisons, their result is also a Boolean expression. The respective operators, available
in Stateflow, are listed in the lower part of Table 3.8.

Table 3.8: Relational and Logical Operators

Type Operator Meaning

R
el

at
io

na
l

== Equal to
! = Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

Lo
gi

ca
l && And

|| Or
! Not

72

Chapter 3: Methodology for System Automation

3.2.4 External Decision Logic

In most cases, the decision logic is designed with various relational and logical operators
in Stateflow. However, in some cases, the external calculation in Simulink is easier,
cleaner, and reduces complexity inside the state machine itself. One example might be
the comparison of a signal to a threshold, which is needed in multiple transitions, that
can be replaced by a Simulink implementation, which only forwards the resulting Boolean
expression to the state machine.

In some cases, the relational or logical comparison is also implemented in Simulink
to keep the general validity of the state machine. This can be the case if the same state
machine is used multiple times on signals with different names.

In this subsection, the used Simulink Blocks are introduced and encapsulated imple-
mentations for custom functions are presented. An Overview is listed in the following.

• Simulink Blocks

– Relational Operator, Compare to Constant

– Logical Operator

– Detect Increase, Detect Decrease, Detect Change

• Custom Implementation

– Intermittent Range Check

– Temporal Logic

3.2.4.1 Simulink Blocks

The Simulink equivalent blocks to the previously introduced operators (c.f. Subsec-
tion 3.2.3) are depicted in the top row of Figure 3.9.

In the lower row, specific blocks to detect an increase, decrease, or any change in a
signal are shown. While this condition can also be implemented in Stateflow, its respective
implementation in Simulink is much easier and cleaner. Thus only the result of this
evaluation is forwarded to the state machine.

Figure 3.9: Simulink Decision Logic Blocks

73

3.2 Design

3.2.4.2 Intermittent Range Check

The operational modes used in the applications described in this thesis, make use of
representing modes as enumerated values. Therefore, it is necessary to check for valid
modes in various instances. This results in the necessity to check an enumerated mode
for its valid range, which is not necessarily continuous. Therefore, the Intermittent Range
Check is developed, in which the enumeration is checked against a valid range.

In the following, an example is used, which uses integers instead of enumerations for
easier understanding. In the application, where enumerations are used they need to be
converted to integers beforehand for Simulink to be able to handle them.

In the following example, the input has been sequentially increased from one to six,
which results in the situation shown in Figure 3.10. Within the developed block, shown in
Figure 3.11, the vector, which includes the valid range is compared to the current input.
If the input is valid the comparison leads to a vector with one false element. The
following logic is used to find this one element, which results in the switch being in the
false position. If the input is outside the valid range, all elements of the comparison
are true, the switch is in the true position, and outputs the last valid signal.

Therefore, the Intermittent Range Check will always output a mode command, which
is in the valid range, and an additional signal, which can be used to determine the validity.
Both can be used within the state machine, without directly implementing such logic.

value_in

range

value_out

outOfRange_flg

intermittentRangeCheck

boolean

uint8
6

Constant

uint8

1

Display1

[1 2 3 5 8]

Constant1

uint8

5

Display

Figure 3.10: Intermittent Range Check Top

boolean

Data Type Conversion1

boolean

MinMax

uint8

Relational
Operator

boolean
uint8

Data Type Conversion

uint8

2

range

uint8

2

outOfRange_flg

1

value_in

uint8

1

value_out

T

F

Switch

uint8

Unit Delay

uint8

Data Type
Duplicate

Figure 3.11: Intermittent Range Check

74

Chapter 3: Methodology for System Automation

3.2.4.3 Temporal Logic

The previous relational and logical operators, as well as their combination to Combi-
national Circuits, can only evaluate the inputs at a certain point in time and trigger
transitions accordingly. Additionally, triggering a transition based on past time might be
necessary to accomplish time-based sequential states. Such an implementation is referred
to as temporal logic. [Pnu1977]

Stateflow supports the direct implementation of such temporal logic in state charts.
Available operators for event-based temporal logic are: after, before, at, every, and tem-
poralcount with keywords: tick, sec, msec, or usec [TM2016d]. Those can be used to
implement various time-based sequences and transitions. However, due to guidelines for
model-based code generation, they are not used.

Instead, a discrete implementation of a counter in Simulink is used. In every time
step, the counter is increased by one, and the variable is fed into the state chart. The
counter saturates at the maximum value of the used variable type. Which in this case is
4, 294, 967, 295 (232 − 1) for a uint32 variable. For systems running at 100Hz, this is
equivalent to more than one year with a precision of 10ms, which is sufficient for modeling
sequential state for the applications described in this thesis. A reset can be issued from the
state chart using the Boolean variable reset_cfg. The postfix (_cfg) of the variable,
indicates an action on both rising and falling edge (c.f. Subsubsection 3.3.4.7).

In general, a timer can be used to trigger something after a certain time or to measure
the time difference between two events. Due to the saturating nature of this implemen-
tation, it should only be used for the first example. A usage to measure time difference
could, however unlikely considering the maximum time, result in a, potentially catas-
trophic, failure of the system.

With this simple replacement, all necessary temporal conditions can be implemented
in a clear and simple way. An example chart using this counter is depicted in Figure 3.12.
The counter is connected to the state machine with three inputs and two outputs. The
saturated_flg can be omitted if not necessary.

Figure 3.12: State Machine with Temporal Logic

75

3.2 Design

Figure 3.13: Sequence Chart

An example of the usage of such a counter in Stateflow is depicted in Figure 3.13.
Furthermore, the content of the counter itself is shown in Figure 3.14.

As shown in the state chart the counter can be reset with a single line. Using
reset_cfg = !reset_cfg, which sets the boolean output reset_cfg to its respec-
tive opposite value, resets the counter to zero. After such a transition action the counter
can be used to delay the transition to another state.

In the Simulink implementation the switch, which resets the counter, and the counter
itself becomes apparent. Additionally, the saturation, which prevents an overflow of the
variable, and the generation of the respective flag is shown. In this implementation, the
saturation is set to 4, 294, 967, 294 (232 − 2) to result in the maximum range after the
addition.

Figure 3.14: Discrete Counter in Simulink

76

Chapter 3: Methodology for System Automation

3.2.5 Hierarchical Decomposition Structure

This subsection is introducing contribution C1.1 - Hierarchical decomposition design strat-
egy, minimizing complexity and optimizing testability. Additionally to the generic design
in this subsection, Subsection 3.3.3 describes the specific implementation in Simulink and
Stateflow. An Overview of the schematic is depicted in Figure 3.15.

The main goal of this design and implementation strategy is to minimize the complex-
ity of higher-level automation state machines and optimize their testability. It is based on
decomposing the overall functionality into a hierarchical structure with modular atomic
units on different levels. This reduces the complexity on each level and enables separate
development, implementation, and testing.

Besides the definition of the structure itself, this strategy includes the definition of
two signal buses, which include all necessary signals in all levels of the automation. On
the one hand, the input_bus includes all necessary external inputs. They may consist
of commands from the Flight Operator (FO), measurements from sensors, or calculations
from other flight control modules. On the other hand, the output_bus consists of
calculated values that are used either within the automation itself or externally. The
internal values are typically the states of all state machines, while the external values may
consist of commands for other modules, information for the GCS, or direct commands for
the control surfaces.

Each level consists of four parts: the Input Conditioning, the State Machine, the
Routing, and the Output Allocation. This is depicted in Figure 3.15. The schematic is
reduced to the essential parts of the hierarchical decomposition structure. Additional
computations or secondary state machines are omitted for the sake of clarity.

The Input Conditioning is the extraction of necessary signals from the input_bus
and possible range and validity checks. This is done to create the explicit visibility of
relevant variables on each level. Stateflow is capable of using buses as input and output.
However, the developed guidelines prohibit the use of buses as direct in- or output to
charts to guarantee the visibility of the relevant variables only.

The State Machine is calculating the operating mode with respect to the current level.
On the highest level, those may consist of Operational or Standby. Additional calculations
and even other state machines can be used in parallel to this main state machine, but are
omitted in the schematic.

Information about the current operating mode from the state machine is then for-
warded to the Routing part of this first level. Within this Routing, the respective subsys-
tem, depending on the previously calculated operating mode, is executed. This is done
using conditionally executed structures like "if-else" or "switch-case", which only executes
the necessary parts of the automation.

In the end, the Output Allocation is used to assign calculated values to the
output_bus. This includes values from this level and all lower levels.

77

3.2 Design

State
1

State
2

State
3

Level 1 – Input Conditioning

Level 1 – Output Allocation

Level1
-R

outing

Level1
-State

1

Level1
-State

3

Level1
-State

2

Level 2 – Input Conditioning

Level 2 – Output Allocation

State
1

State
2

State
3

Level2
-R

outing

Level2
-State

1

Level2
-State

2

Level2
-State

3

State
4

Level1
-State

4

Level2
-

State
M

achine

Level1
-

State
M

achine

F
igure

3.15:
H

ierarchicalD
ecom

position
Schem

e

78

Chapter 3: Methodology for System Automation

The hierarchical decomposition structure with three levels is shown in Figure 3.15.
Depending on the complexity of the overall automation, the decomposition can be ex-
panded to as many levels as necessary. Additionally, on each level, the Routing, parallel
computations, or secondary state machines can be grouped into subsystems to generate
encapsulated functions, which can also be tested separately.

Besides this strategy to reduce the individual complexity of the automation, it is
necessary to interact with the rest of the flight control system. The injection architecture
which is used is depicted in Figure 3.16. This simplified example shows a generic control
loop with three cascaded control loops and the administrating automation.

Each control loop has its own control switch subsystem, which is actually part of the
automation. Those systems consist of multiple inputs (marked as lines on the left) and
can also include additional calculations. The automation that is controlling those switches
can, therefore, control the input to every control loop without passing all signals through
the state calculating part of the automation. Each switch can have multiple inputs, which
can be used as commands for the respective control loop. Those can either be commands
from the next higher adjacent control loop, commands generated within the automation,
or commands from the adjacent control loops that have been modified by the automation.
In the latter case, this alteration takes place in the switch subsystem itself. Examples of
this injection architecture are shown in Figure 4.5 and in Figure 5.4.

Command Control

Automation

Control Loop 1

Control Loop 2

Control Loop 3

Figure 3.16: Injection Architecture

79

3.3 Implementation

3.3 Implementation
Following the last section, Section 3.2, which presented the different aspects of the design
process of this methodology, this section provides a detailed description of the imple-
mentation. This includes the toolchain used for the design, implementation, and code
generation, and the necessary Stateflow elements to create the state machines. Addi-
tionally, the implementation of the hierarchical decomposition structure and developed
guidelines, which improve various aspects are presented.

The first subsection, Subsection 3.3.1, introduces the toolchain, which is used for the
design, implementation, and code generation of the developed functions. This includes
MATLAB, Simulink, Stateflow as well as the code generation process.

In the following, Subsection 3.3.2 presents the Stateflow elements, which are used to
create the state machines. In general, various elements and settings can be used in State-
flow. However, many of them have a negative impact on readability, workflow, verification,
or code generation and are therefore prohibited by the developed methodology.

The generic hierarchical decomposition strategy is introduced in Subsection 3.2.5.
In this section, Subsection 3.3.3 presents the explicit implementation of this strategy
using MATLAB, Simulink, and Stateflow. This includes an example highlighting the
major parts of this level structure as well as the presentation of the command injection
implementation into the control loops.

The last subsection of this section, Subsection 3.3.4, is presenting the contribution C1.2
- Modeling guidelines for implementation, minimizing opacity and maximizing software
maintainability. It provides an overview of all developed, state machine-related guidelines
that are part of this methodology and used for the design and implementation of the
automation functions presented in this thesis. Each guideline is presented with a specific
category and rationale, explaining its purpose.

Following the implementation aspects in this section, the next section, Section 3.4, is
presenting the testing and verification process of this methodology.

3.3.1 Toolchain

This subsection introduces Stateflow and the rest of the toolchain used in the model
development process at the Institute of Flight System Dynamics (FSD) [HSN+2017].
This includes MathWorks, MATLAB, Simulink, Stateflow, and the Embedded Coder.

3.3.1.1 The MathWorks

The MathWorks (often abbreviated to MathWorks) is a company that specializes in soft-
ware for mathematical calculations. By their own statement, they are the leading devel-
oper of mathematical computing software for engineers and scientists. Their two major
products, MATLAB and Simulink are targeted at accelerating the pace of engineering
and science. [TM2016a]

80

Chapter 3: Methodology for System Automation

3.3.1.2 MATLAB

MATLAB, one of the major products of MathWorks, is used to design and analyze various
systems. It is, among others, used in automotive, aeronautic, and astronautic applications
for signal processing, control design, robotics, and many more. [TM2016j, p. 1-2ff]

Within the model development process at FSD it is used as the development environ-
ment for the design, implementation, and testing of flight control software. This includes
state machines for automation, as presented in this thesis, as well as flight controller
design, simulations using FDMs, and flight test data analysis.

MATLAB is subject to an update cycle of two per year, resulting in an "a" and "b"
version for each year [TM2016k, TM2016l]. The methodology and application presented
in this thesis were developed for projects with real-life applicability. Consequently, the
MATLAB version used for design, implementation, and testing was fixed during the early
phases of the design and development process. This was done to avoid bugs through soft-
ware updates and increase confidence in the final software used for flight tests. Therefore,
the methodology and application described in this thesis are based on MATLAB 2016b,
even though at the point of writing, newer versions exist.

3.3.1.3 Simulink

Simulink is a graphical development environment for model-based design based on MAT-
LAB. It provides a graphical editor, solvers for modeling and simulating dynamic systems,
and even customization block libraries. [TM2016v, p. 1-2ff]

At FSD it is used for the design and implementation of flight control algorithms. The
different cascaded control loop modules are implemented separately and then combined
and connected in the aircraft-specific integration model. In this setup, Simulink is also
used for testing and the simulation of FDMs.

3.3.1.4 Stateflow

Stateflow is a development environment for modeling and simulating combinational and
sequential circuits, that are introduced in Subsubsection 3.1.2.1 and Subsubsection 3.1.2.2.
It utilizes state machines and flow charts to model and simulate this decision logic. The
designed logic can be used for supervisory control, task scheduling, or fault management
applications. The graphical representation of state transition diagrams and flow charts is
used for animation during simulation and testing. [TM2016x, p. 1-2ff]

Everyday example applications in which Stateflow can be used include Automated
Teller Machines (ATMs), Traffic Lights, or Vending Machines.

At FSD it is used for flight control modules that need to handle various states such
as the Automatic Takeoff and Landing (ATOL), the Trajectory Generation (TG), or the
System Automation (SA) module.

81

3.3 Implementation

3.3.1.5 Embedded Coder

Following the design and implementation using MATLAB, Simulink, and Stateflow, the
Embedded Coder is used to automatically generate ANSI C-Code. In contrast to the
Simulink Coder [TM2016w, p. 1-2], the Embedded Coder [TM2016g, p. 1-2] includes
more settings that can be used to customize the code generation. [TM2016h]

Excerpts from the automatically generated main source and header files for the ex-
ample Edge Detector are shown in Listing 3.2 and Listing 3.3. They include the three
main functions: initialize, step, and terminate. The function initialize is
used in the very first execution step to initialize necessary variables. Following this first
execution, the function step is executed in every subsequent step. The third function
terminate can contain closing actions for the last execution. However, within the flight
control functions, presented in this thesis, this function is never used.

After automatically generating source code from the design models, this code is merged
with a manually written code framework, which is handling the inputs and outputs of the
FCC. This includes the import from the physical interfaces, transferring the information to
specified Simulink input structures, and executing the flight control algorithm. After the
execution, Simulink output structures are used to construct physical interface messages,
which are then transmitted.

1 #include "edgeDetector_types.h"

2 ...

3 /* Model entry point functions */

4 extern void edgeDetector_initialize(void);

5 extern void edgeDetector_step(void);

6 extern void edgeDetector_terminate(void);

7 ...

Listing 3.2: EdgeDetector - EdgeDetector.h

1 #include "edgeDetector.h"

2 #include "edgeDetector_private.h"

3 ...

4 /* Model initialize function */

5 void edgeDetector_initialize(void)

6 ...

7 /* Model step function */

8 void edgeDetector_step(void)

9 ...

10 /* Model terminate function */

11 void edgeDetector_terminate(void)

12 ...

Listing 3.3: Edge Detector - EdgeDetector.c

82

Chapter 3: Methodology for System Automation

3.3.2 Stateflow Environment and Chart Elements

This subsection introduces the elements of Stateflow that are used to design state machines
for the automation functions described in this thesis. After an overview of the Stateflow
environment in Simulink, individual chart elements are presented before the previously
introduced Edge Detector (c.f. Subsection 3.1.3) is used as an example. [TM2016c]

Stateflow has multiple environments that can be utilized to implement state machines
in various forms. However, due to guidelines, presented in Subsection 3.3.4, only a limited
set is used which ensures that various requirements are met.

3.3.2.1 Chart

The Stateflow Chart is one of the environments for finite state machines in Simulink and
the one used for the methodology and applications presented in this thesis. Figure 3.17
depicts a simple integration of such a Chart with one input and output in Simulink.

Other possible Stateflow elements are shown in Figure 3.18. The Truth Table and
Transition Table are other environments to implement state machines, while the Message
Viewer (also called Sequence Viewer in newer releases) can be used to visualize messages
and events between Stateflow and Simulink. However, those are not used in this thesis
and are listed here only for the sake of completeness. In the following only, elements
within the Stateflow Chart are discussed.

1

Constant Display

Mealy

input output

chart

Figure 3.17: Stateflow Chart in Simulink Environment

(a) Truth Table (b) Transition Table (c) Message Viewer

Figure 3.18: Other Stateflow Elements in Simulink

83

3.3 Implementation

3.3.2.2 State

As the names Stateflow and state machines imply, the State is the most important element
in them. In Stateflow, those states are visualized using rounded boxes with their individual
name in the top left corner.

The name of the states must be unique within the Chart. In this case, the states S0
and S1 are arranged in a diagonal pattern from the top left to the bottom right. This
arrangement is used to provide better connectivity between all states, which is especially
useful with three or more states in one Chart.

The decomposition of states in Stateflow can either be exclusive or parallel. As the
name implies, exclusive states can only be active one at a time, while parallel states can
be active simultaneously. Exclusive states (shown in Subfigure 3.19(a)) are indicated by
solid borders, while parallel states (shown in Subfigure 3.19(b)) are indicated by dashed
lines forming their border. Parallel states have a large tendency of complicating state
machines, without proving necessary features, that cannot be replaced. The developed
guidelines therefore only allow the usage of exclusive states.

The two states obviously need some kind of connection. In fact, without suppress-
ing errors for this example, Stateflow would immediately highlight this with a "Default
Transition is missing" error. How to connect both states is explained in the following.

A screenshot of the Stateflow editor is shown in Figure 3.20. The top part is shared
with Simulink, while the left part lists all available elements, that can be dragged and
dropped into the Chart.

The dialog box for possible settings of the Chart is shown in Figure 3.21. Stateflow
supports the use of the two most commonly used types of state machines, Mealy and
Moore. However, it also supports a combination of both, referred to as Classic. In the
methodology and applications described in this thesis, however, only Mealy Charts will
be used. Therefore the "State Machine Type" is set to "Mealy" and further not discussed
options are set to recommended values as well. This includes the "Action Language" being
set to "C" and activating "Enable C-bit operations". The desktop tools, development
environment, and further settings are described in [TM2016i].

(a) Excusive (Or) (b) Parallel (And)

Figure 3.19: State Decomposition in Stateflow

84

Chapter 3: Methodology for System Automation

Figure 3.20: Stateflow Environment

Figure 3.21: Stateflow Properties

85

3.3 Implementation

3.3.2.3 Transition

The Transition from one State to another is depicted in Figure 3.22. In general, each
Transition consists of a Condition, guarding the Transition, and an Action, performing
some kind of assignment. One exception to this is the Default Transition. It initializes
the state machines by leading to the initial State. An action on the Default Transition is
referred to as Default Action and is often used to initialize the output values. The Default
Transition can also include conditions, however, there must be one unconditional path to
ensure deterministic behavior.

In the example, the Default Transition initializes the output to zero and activates State
S0. The Transition from State S0 to State S1 is guarded by the Transition Condition,
which is written in square brackets. Every Transition Condition results in a Boolean
expression. If this evaluates to true, the Transition is carried out and the Transition
Action, in curved brackets, is executed.

Both parts of the Transition are connected using a Junction. This element is normally
used to split a Transition or to merge several transitions. However, it can also be used in
a very simple way to create easy-to-understand orthogonal connections. The developed
guidelines used in the development process at FSD require the Condition to be on the
horizontal part, while the action must be placed next to the vertical part of the Transition.

The Transition Condition can contain more than one Condition, which need to be
connected by using logical operators. The Transition Actions can also contain more than
one assignment, which in this case need to be separated using a semicolon.

Additionally, Stateflow accepts Condition Actions, which are placed with a leading "/"
directly after a condition. In contrast to the Transition Action, which is executed when
the Transition evaluates to true, the Condition Action is executed when the leading
Condition is true. However, the use of those Condition Actions complicates Charts
without providing a big benefit, which is the reason why they are prohibited by the
developed guidelines.

S1

S0

// Transition Condition
[input == 0]

//Transition Action
{output = 0;}

// Transition Condition
[input == 1]

//Default Transition, Default Action
{output = 0;}

//Transition Action
{output = 1;}

Figure 3.22: Transitions in Stateflow

86

Chapter 3: Methodology for System Automation

3.3.2.4 Graphical Function

The Transition Conditions and Transition Actions can be replaced by Graphical Functions
for increased clarity. In Figure 3.23 the conditions and actions on the Transition from S0

to S1 as well as on the Transition from S1 to S0 are replaced with Graphical Functions.
Those are located in separate containers at the bottom of the Chart.

For Transition Conditions, those functions include a unique return value that is
mapped to the respective name of the Graphical Function. Depending on one or more
inputs, this return value can be set within the Graphical Functions and is evaluated on
the Transition in the Chart. For the Transition Actions, a simpler version without return
value can be used, which sets one or more output values.

In this example, the encapsulation is not very useful, because the conditions and
actions only consist of one variable. However, if more complex Transition Conditions
and Transition Actions are used this will improve the readability of the state chart.
Additionally, conditions or actions that are used multiple times can easily be replaced by
the same Graphical Function.

ret_tc_S1_S0 = tc_S1_S0

// Transition Condition
[input == 0]

1

{ret_tc_S1_S0 = true;}{ret_tc_S1_S0 = false;}
2

function

ta_S1_S0

//Transition Action
{output = 0;}

function

ret_tc_S0_S1 = tc_S0_S1

{ret_tc_S0_S1 = true;}{ret_tc_S0_S1 = false;}
2

// Transition Condition
[input == 1]

1

function

S1

S0

ta_S0_S1

//Transition Action
{output = 1;}

function

// Transition Condition
[tc_S1_S0() == true]

//Transition Action
{ta_S1_S0()}

// Transition Condition
[tc_S0_S1() == true]

//Default Transition, Default Action
{output = 0;}

//Transition Action
{ta_S0_S1()}

Figure 3.23: Graphical Functions in Stateflow

87

3.3 Implementation

3.3.2.5 Box

In the next step, those Graphical Functions can be placed inside of a Box , which is an
element to combine multiple functions. Figure 3.24 shows the same state machine as
before, with the only addition of boxes. In this thesis boxes in Stateflow are used with
the "Subchart" option enabled. Therefore, the content is not directly visible in the Chart.
For this explanation, a representation without this option, e.g. with visible content, is
depicted in Figure 3.25 for better understanding.

In both cases, two boxes named "tc", which includes all Transition Conditions, and
"ta", which includes all Transition Actions, are created. In contrast to the Graphical
Functions the "tc" or "ta" part was removed from the name of the functions since the
notation (BoxName.FunctionName) already includes this.

S1

taS0

tc

//Transition Action
{ta.S1_S0()}

// Transition Condition
[tc.S0_S1() == true]

//Default Transition, Default Action
{output = 0;}

//Transition Action
{ta.S0_S1()}

// Transition Condition
[tc.S1_S0() == true]

Figure 3.24: Subchart Boxes in Stateflow

ta

S0_S1

//Transition Action
{output = 1;}

function S1_S0

//Transition Action
{output = 0;}

function

tc

ret_S1_S0 = S1_S0

{ret_S1_S0 = false;}
2

// Transition Condition
[input == 0]

1

{ret_S1_S0 = true;}

functionret_S0_S1 = S0_S1

{ret_S0_S1 = true;}

// Transition Condition
[input == 1]

1

{ret_S0_S1 = false;}
2

function

Figure 3.25: Boxes in Stateflow

88

Chapter 3: Methodology for System Automation

3.3.2.6 Edge Detector

The previously used example of the Edge Detector (c.f. Subsection 3.1.3), implemented
as a Stateflow chart is depicted in Figure 3.26. It is quite similar to the generic graphical
representation in Subsubsection 3.1.3.6. The number of states and transitions are the
same, but they are arranged in a different way for better readability.

The default transition is beginning in the top left corner, for easy readability. The next
state is selected with respect to the current input. In case the input is "1", [input==1],
state S1 is selected. In all other cases, e.g. if the input is "0", state S0 is selected. The
order of execution is marked with small numbers near the Junction. In any case, the
output is set to "0".

If in any state the input changes, the respective opposite edge-state is activated and
the output is set to "1". In the next step, the output is set to "0" again and the non-edge
state is activated. The only exception to this is an immediate additional change of the
input. In this case, the respective opposite state is activated, which keeps the output set
to "1".

Additionally, the automatically generated code is shown in Listing 3.4. However, it
only shows the "step" function (c.f. Subsubsection 3.3.1.5) and automatically generated
annotations are removed as well. The complete code is listed in Appendix B. It can be
seen that this automatically generated code is much longer than the manually written
one in Subsubsection 3.1.3.2. However, optimizations can be applied to the generating
process as well as to the compiling process, to reduce performance differences between the
two.

Figure 3.26: Edge Detector in Stateflow

89

3.3 Implementation

1 /* Model step function */

2 void edgeDetector_step(void)

3 {

4 if (edgeDetector_DW.is_active_c3_edgeDetector == 0U) {

5 edgeDetector_DW.is_active_c3_edgeDetector = 1U;

6 if (edgeDetector_U.edgeDetector_in == 1) {

7 edgeDetector_Y.edgeDetector_out = 0;

8 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_S1;

9 } else {

10 edgeDetector_Y.edgeDetector_out = 0;

11 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_S0;

12 }

13 } else {

14 switch (edgeDetector_DW.is_c3_edgeDetector) {

15 case edgeDetector_IN_S0:

16 if (edgeDetector_U.edgeDetector_in == 1) {

17 edgeDetector_Y.edgeDetector_out = 1;

18 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_S1Edge;

19 }

20 break;

21 case edgeDetector_IN_S0Edge:

22 if (edgeDetector_U.edgeDetector_in == 1) {

23 edgeDetector_Y.edgeDetector_out = 1;

24 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_S1Edge;

25 } else {

26 edgeDetector_Y.edgeDetector_out = 0;

27 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_S0;

28 }

29 break;

30 case edgeDetector_IN_S1:

31 if (edgeDetector_U.edgeDetector_in == 0) {

32 edgeDetector_Y.edgeDetector_out = 1;

33 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_S0Edge;

34 }

35 break;

36 default:

37 if (edgeDetector_U.edgeDetector_in == 0) {

38 edgeDetector_Y.edgeDetector_out = 1;

39 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_S0Edge;

40 } else {

41 edgeDetector_Y.edgeDetector_out = 0;

42 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_S1;

43 }

44 break;

45 }

46 }

47 }

Listing 3.4: Edge Detector - C-Code generated from Stateflow

90

Chapter 3: Methodology for System Automation

3.3.3 Level Structure

The hierarchical decomposition structure is introduced in Subsection 3.2.5. This subsec-
tion will present the explicit implementation using Simulink and Stateflow and is also
associated with contribution C1.1 - Hierarchical decomposition design strategy, minimiz-
ing complexity and optimizing testability. For this example, an automation with one level
and three states is used. For an easier description, additional calculations and encapsu-
lating functions into subsystems are omitted.

Figure 3.27 shows the topmost view of the automation. The input_bus is generated
in the top left part of the image. For demonstration purposes, it is only filled with
constant values, which can be changed during simulation. The output_bus, which is
generated by the automation, is leaving the subsystem on the right side. However, it is
also fed into the subsystem on the lower left part. This is done to generate default values
on the output_bus because depending on the internal states not all variables of the
output_bus are propagated in every time step. The input_bus consists of command
and sensor, while the output_bus consists of level1_lgx and actuator.

Figure 3.28 depicts the inside of the "level1" subsystem shown in Figure 3.27. For
the generic design refer to Figure 3.15. The input_bus is entering the subsystem via
input at input port one and the default values of the output_bus via output_in at
input port two. The output_bus is leaving the system via output at output port one.

The reddish part in the top left includes the Stateflow chart named "level1", which
represents the "Level 1 - State Machine". In this example, it has only one input, command,
and one output, level1_lgx. The command signal is extracted from the input_bus
using a "Bus Selector". Therefore, only relevant signals are fed into the state machine. The
numerical representation of the calculated state is provided by the chart as an enumerated
value. In this case: state1(1), state2(2), or state3(3).

The Input Conditioning and Output Allocation, referenced in Figure 3.15, is rep-
resented by the input, output, and "Bus Assignment" in Simulink. In this example,
additional input verification is omitted.

input

output_in

output

level1

2

Constant

20.05

Constant1

enm_level1.default

Constant2

0

Constant3

state2

Display

19.87

Display1

input

command

sensor

output
<level1_lgx>

<actuator>

output_in

actuator

level1_lgx

Figure 3.27: Simulink Scheme

91

3.3 Implementation

2

output_in

B
us

B
us

:=
 level1_lgx

B
us

A
ssignm

ent

1

output

1

input

M
ealy

com
m

and
level1_lgx

level1

u1

case [state1]:

case [state2]:

case [state3]:

default:

S
w

itch
C

ase

M
erge

input

output_in

output

case: { }

S
w

itch C
ase A

ction
S

ubsystem
 - S

tate 3

input

output_in

output

default: { }

S
w

itch C
ase A

ction
S

ubsystem
 - default

input

output_in

output

case: { }

S
w

itch
C

ase
A

ction
S

ubsystem
 - S

tate 1

input

output_in

output

case: { }

S
w

itch C
ase A

ction
S

ubsystem
-

S
tate

2

<
com

m
and>

<
level1_lgx>

F
igure

3.28:
Sim

ulink
Schem

e
-

Level1
Subsystem

92

Chapter 3: Methodology for System Automation

In the greenish part, the level1_lgx value of the output_bus is assigned to the
previously calculated value by the state machine using a "Bus Assignment". Additional
calculations can be placed in parallel with the main state machine and their result could
also be fed into the output_bus in this part, however, in this example, they are omitted.

In the bluish part, on the right side of Figure 3.28, the "Level 1 - Routing" is depicted.
This part with two inputs, input_bus and output_bus (with updated level1_lgx),
and one output, output_bus, is usually encapsulated in an additional subsystem. The
routing is using the Simulink representation of a "switch-case" construct to create con-
ditionally executed branches. It uses one "Switch Case", multiple "Switch Case Action
Subsystems" and a "Merge" block to replicate this functionality. Those three block types
need to be used in conjunction to replicate the "switch-case" construct. Due to coding
guidelines the "Multiport Switch" block, which has the same functionality, is not used. In
the upper left, level1_lgx is used to activate the respective subsystem. Each of those
uses the same input and output buses as the "Level 1 - Subsystem". The currently active
one is then selected by the "Merge" block and passed to the output port.

Please note, an additional default case is used for error mitigation of the switch case
construct. The output_bus is actually initiated with default(0) (c.f. Figure 3.27),
representing a state, that the state machine itself cannot represent. Zero is always used
as the default state and not used as an enumerated value for the states.

When activating one of those "Switch Case Action Subsystems", which happens in a
transition from one state to another, all internal states are reset to their default values.
This ensures a deterministic behavior, which is independent of any previous activation.
However, if variables from the last execution should be necessary, those need to be stored
in external bus elements. While this creates a dependency on external states, in contrast
to internal states this is explicitly visible in the implementation.

One of the conditionally executed subsystems is shown in Figure 3.29. In this example,
the subsystem only contains a mapping from the sensor input to the actuator output
with an arbitrary gain. In the case of more levels, this subsystem would contain the same
structure as depicted in Figure 3.27 and previously shown in Figure 3.15.

1

output

case: { }

Action Port

1

input

Bus

Bus

:= actuator

Bus
Assignment

-K-

Gain

2

output_in

<sensor>

Figure 3.29: Simulink Subsystem - Switch Case Action Subsystem - State 2

93

3.3 Implementation

The state machine used in the example is depicted in Figure 3.30. Its three states
are named S1, S2, and S3 and arranged in a diagonal pattern from the top left to the
bottom right. As indicated by the default transition, the initial state is S1. Depending
on the command, being "1", "2", or "3", the respective state is activated. In the transition
actions, an enumerated value is assigned to level1_lgx, when entering a state. It can
be one of three values, accessed by enm_level1.state1, .state2, or .state3.

In total four enumerations are used to represent the internal state of the Stateflow
chart. Three actually used values and one default value. A shortened version of their
definition is shown in Listing 3.5.

S3

S2

S1

[command == 2]
2

{level1_lgx = enm_level1.state2;}

{level1_lgx = enm_level1.state3;}

[command == 1]
1

[command == 3]
2

[command == 1]
1

[command == 2]
1

{level1_lgx = enm_level1.state2;}

{level1_lgx = enm_level1.state1;}

[command == 3]
2

{level1_lgx = enm_level1.state1;}

Figure 3.30: Stateflow - Level 1 - State Machine

1 classdef enm_level1 < Simulink.IntEnumType

2 enumeration

3 state_default(0)

4 state1(1)

5 state2(2)

6 state3(3)

7 end

8 methods(Static = true)

9 function retVal = getDefaultValue()

10 retVal = enm_level1.default;

11 end

12 function dScope = getDataScope()

13 dScope = ’Exported’;

14 end

15 end

16 end

Listing 3.5: Simulink - Enumeration Definition

94

Chapter 3: Methodology for System Automation

3.3.4 Modeling Guidelines

This subsection is associated with contribution C1.2 - Modeling guidelines for implementa-
tion, minimizing opacity and maximizing software maintainability. It provides an overview
of developed guidelines that are relevant to the design, implementation, and testing of
state machines. Some have been derived from and are an addition to the Control Algorithm
Modeling Guidelines using MATLAB Simulink, and Stateflow [Mat2012, Mat2016], the
Simulink - Modeling Guidelines for Code Generation [TM2016u], the Simulink - Modeling
Guidelines for High-Integrity Systems [TM2016t], and the Mathworks Model Architecture
Guidelines [TM2016m, TM2016n, TM2016o]. Additionally, the block set and functionality
are restricted to provide full compatibility with the Simulink Code Inspector [TM2016r].

In this context, the developed software modules are used as design models and re-
place the normal software requirements [TM2016f]. This is done in accordance with the
aviation software development guidelines RTCA DO-178B [RTC1992], RTCA DO-178C
[RTC2011a], and RTCA DO-331 [RTC2011b].

Based on MathWorks Automotive Advisory Board (MAAB), the modeling guidelines
are listed with their four main attributes, as shown in the following [Mat2012, p. 7ff].

• Title

• Scope

• Description

• Rationale

– Readability, Workflow, Simulation and Analysis,
Verification, Code Generation

The title is a short unique name, highlighting the main content of the guideline, while
the scope describes the field of application within Simulink, Stateflow, the state machine,
or the state chart. The description of each guideline in the table gives a short overview,
while further explanations are given in the text, where necessary. The rationale describes
the reason why the guideline is recommended.

It can be one or more of the following: readability, workflow, simulation and analy-
sis, verification, or code generation. Readability refers to easy-to-understand algorithms,
uniform model appearance, and clean interfaces. Workflow describes an effective develop-
ment process and workflow, model maintenance, changes, or portability. Simulation and
analysis guidelines target efficient simulation and analysis with respect to speed, memory
use, or model instrumentation. Verification refers to requirement traceability, testing,
and test integration. Code generation targets fast software changes and code generation
robustness. [Mat2012, p. 10]

95

3.3 Implementation

Further recommended guideline fields like an identification number, priority, MATLAB
version, prerequisites, and last change are omitted in the following.

An overview of the developed modeling guidelines, which are discussed in the following,
is given in Table 3.9. Discussion on some guidelines is shortened since their concept has
been introduced previously.

The state chart settings scope refers to general adjustments within the Stateflow chart
itself like the type of state machine, used programming language, and scope of variables.
The state chart interface scope is targeted at the interface between Simulink and Stateflow.
The scope of state machine elements describes which types of Stateflow charts are used
and which elements are used within those, to create the required logic. The general setup
and positioning are described in the state machine structure scope. The state machine
modeling scope consists of general objectives of Stateflow, the replacement of available
features with more advanced solutions, and concatenation of multiple conditions. The
more specific placement of states and transitions in Stateflow itself is included in the
Stateflow arrangement scope. Signal naming and routing are covered in the Simulink
structure scope.

Table 3.9: Modeling Guidelines - Overview

Scope Title

State Chart - Settings
State Machine Type
Action Language
Data Scope

State Chart - Interface
State Chart Interfaces
State Chart Events
Enumerated State Information

State Machine - Elements
Stateflow Elements
State Chart Elements
State Chart Containers

State Machine - Structure
State Decomposition
Self-Recurring States
Condition Actions

State Machine - Modeling
Stateflow Objectives
Temporal Logic
Logical Sequencing

Stateflow - Arrangement
State Arrangement
Transition Arrangement
Conditions and Action Arrangement

Simulink - Structure
Signal Naming
Signale Routing

96

Chapter 3: Methodology for System Automation

3.3.4.1 State Chart - Settings

The guidelines attributed to the settings of the state chart are listed in Table 3.10, Ta-
ble 3.11, and Table 3.12. Various other settings of MATLAB, Simulink, and Stateflow
are omitted here since they are part of the general model development process at FSD.

As introduced in Subsubsection 3.3.2.2, state charts in Stateflow can be set to Mealy,
Moore, or Classic, the latter being a combination of the first two. To generate consistent
state machines, Mealy must be selected. Reasons include faster reaction to inputs and
encapsulation of decision logic into flow charts. Additionally, the Simulink Code Inspector
(SlCI) can be used to support code-review objectives when using Mealy charts.

The action language, expressions used for transitions in state flow, can be set to
MATLAB or "C". For the development process, "C" is chosen since it enforces stronger
data typing, scalar operations, and less inherited properties. [TM2016e, TM2016b]

The data scope in a chart in Stateflow can be set to various types, to define the impact
range of the variables. However, it shall be limited to input, output, and parameter due
to clarity and readability. Additionally, parameter should be avoided wherever possible.

Table 3.10: Guidelines - State Machine Type

Title State Machine Type
Scope State Chart - Settings
Description Mealy shall be used as state machine type. This can be selected in

Chart/Properties. Moore or Classis must not be used to avoid conflict-
ing implementations.

Rationale Readability, Workflow, Verification

Table 3.11: Guidelines - Action Language

Title Action Language
Scope State Chart - Settings
Description Action language shall be set to C in chart properties.
Rationale Readability, Workflow, Code generation

Table 3.12: Guidelines - Data Scope

Title Data Scope
Scope State Chart - Settings
Description Data scope in Stateflow shall be limited to input, output, and parameter.

Other data scopes: local, constant, and data store memory shall not be
used. Additionally, parameter shall be avoided whenever possible.

Rationale Readability, Workflow

97

3.3 Implementation

3.3.4.2 State Chart - Interface

The guidelines attributed to the interface of the state chart are listed in Table 3.13,
Table 3.14, and Table 3.15. They address the types of variables allowed to go to or from
a state machine.

Only scalar elements are allowed as input and output to a state machine. Therefore,
all other types like vectors, matrices, and buses shall not be used. The main reason being
explicit visibility of all necessary variables and reduced complexity within the state chart.

Stateflow also supports the use of events, which can be used to trigger the next eval-
uation cycle in state charts or to trigger action subsystems in Simulink. However, this
feature is generally not necessary and can easily be replaced.

The developed hierarchical decomposition structure makes extensive use of separat-
ing large and complex state machines into small and less complex ones. This means
state information needs to be passed throughout various levels of the automation. Using
enumerated data types resolves interpretation errors and improves readability.

Table 3.13: Guidelines - State Chart Interfaces

Title State Chart Interfaces
Scope State Chart - Interface
Description Signals traversing borders of a state chart shall be limited to those di-

rectly necessary within this state chart. Signals from or to multi-signal
containers like buses shall be selected outside of the state machine.

Rationale Readability, Workflow, Verification

Table 3.14: Guidelines - State Chart Events

Title State Chart Events
Scope State Chart - Interface
Description Events shall not be used as input or output to Stateflow. Functionality

may be replaced, if absolutely necessary, by triggered subsystems in
Simulink.

Rationale Readability, Workflow

Table 3.15: Guidelines - Enumerated State Information

Title Enumerated State Information
Scope State Chart - Interface
Description Enumerated data types shall be used within one multi-level state ma-

chine to pass active state information through all levels.
Rationale Readability, Workflow

98

Chapter 3: Methodology for System Automation

3.3.4.3 State Machine - Elements

The guidelines attributed to the elements of the state chart are listed in Table 3.16,
Table 3.17, and Table 3.18. They address the available elements in Stateflow.

Stateflow supports multiple base elements that can be used to create state machines.
Besides the Chart, which is a graphical representation of the state machines it also sup-
ports a State Transition Table and a Truth Table. However, the latter two are considered
as different modeling languages and would require additional checks and documentation.

The Stateflow Charts, in turn, support also various elements to design and implement
state machines. Those elements are restricted to State, Junction, (Default) Transition,
Box, Graphical Function, and Annotation. This leads to consistently implemented state
machines with improved readability.

Additionally, enhanced containers like Group, Subchart, and Atomic Subchart shall not
be used. Due to the hierarchical decomposition structure, those elements are no longer
necessary and would lead to complex state machines.

Table 3.16: Guidelines - Stateflow Elements

Title Stateflow Elements
Scope State Machine - Elements
Description The only element from the Stateflow toolbox that shall be used is the

Chart. The State Transition Table and Truth Table shall not be used.
Rationale Readability, Workflow, Verification, Code generation

Table 3.17: Guidelines - State Chart Elements

Title State Chart Elements
Scope State Machine - Elements
Description The following state chart elements can be used: State, Junction, (De-

fault) Transition, Box, Graphical Function, and Annotation. The fol-
lowing state chart element shall not be used: Simulink Function, MAT-
LAB Function, Truth Table, History, Image.

Rationale Readability, Workflow, Verification, Code generation

Table 3.18: Guidelines - State Chart Containers

Title State Chart Containers
Scope State Machine - Elements
Description The following Stateflow containers shall not be used: Group, Subchart,

Atomic Subchart. Subcharts for boxes being the only exception.
Rationale Readability, Workflow, Verification, Code generation

99

3.3 Implementation

3.3.4.4 State Machine - Structure

The guidelines attributed to the structure of the state chart are listed in Table 3.19,
Table 3.20, and Table 3.21. They address the general structure of allowed states and
transitions within a state chart.

Stateflow allows for two types of state decomposition settings, OR (Exclusive) and
AND (Parallel). The setting applies to all states within a chart and within this method-
ology, only exclusive states are used.

Transitions generally connect two states to realize a change if some input requirements
are met. However, transitions can also lead back to the state they were coming from. This
could be done to e.g. count time steps in a given state. However to reduce complexity
transitions leading to the originating state are forbidden.

In Stateflow, actions in a transition can either be executed if a certain condition along
the transition is met or if the complete transition to another state is conducted. The
guidelines, however, prohibit the use of the so-called Conditions Actions.

Table 3.19: Guidelines - State Decomposition

Title State Decomposition
Scope State Machine - Structure
Description Only OR (Exclusive) state decomposition shall be used. AND (Parallel)

decomposition, where more than one state can be active at the same
time, is forbidden.

Rationale Readability, Workflow

Table 3.20: Guidelines - Self-Recurring States

Title Self-Recurring States
Scope State Machine - Structure
Description Self-recurring states shall not be used. Therefore transitions that

change an output but return to the same state are not allowed.
Rationale Readability, Workflow, Verification, Code generation

Table 3.21: Guidelines - Condition Actions

Title Condition Actions
Scope State Machine - Structure
Description Only transition actions, which change an output after a successful tran-

sition, shall be used. Condition Actions, which are actions that can
change an output even if the transition is not completed, are forbidden.

Rationale Readability, Workflow, Code generation

100

Chapter 3: Methodology for System Automation

3.3.4.5 State Machine - Modeling

The guidelines attributed to the modeling of state charts are listed in Table 3.22, Ta-
ble 3.23, and Table 3.24, which address generic modeling characteristics of state machines.

Due to the combination of Stateflow, and Simulink the purpose of the state machines
can be restricted to mode switching only. Any additional mathematical computations
shall be performed outside of the individual state chart. This leads to a clear separation
of assigned tasks with explicit inputs and outputs.

The use of an explicitly implemented external counter is introduced in Subsubsec-
tion 3.2.4.3. Therefore, the temporal logic, integrated into Stateflow, shall not be used.

Logical Sequencing on the state chart level shall be performed using logical operators
to generate one logical expression per transition. However, in encapsulated graphical
functions, graphical sequencing can be used if necessary, for increased readability.

Table 3.22: Guidelines - Stateflow Objectives

Title Stateflow Objectives
Scope State Machine - Modeling
Description The purpose of Stateflow shall be restricted to mode switching. Math-

ematical computations shall be performed in conditionally executed
Simulink subsystems.

Rationale Readability, Workflow, Simulation and Analysis, Verification

Table 3.23: Guidelines - Temporal Logic

Title Temporal Logic
Scope State Machine - Modeling
Description Stateflow temporal logic shall not be used. To replace this functionality

an external timer shall be used that can be, if necessary, reset from the
state chart.

Rationale Readability, Simulation and Analysis, Verification, Code generation

Table 3.24: Guidelines - Logical Sequencing

Title Logical Sequencing
Scope State Machine - Modeling
Description Logical sequencing shall be performed using logical operators in the

state chart. In encapsulated Graphical Functions, graphical sequencing
can be used if favorable for the illustration.

Rationale Readability, Workflow

101

3.3 Implementation

3.3.4.6 Stateflow - Arrangement

The guidelines attributed to the arrangement of elements in the state chart are listed in
Table 3.25, Table 3.26, and Table 3.27.

They address the arrangement of states, transitions, conditions, and actions in the
chart, and all target better readability and easier understanding of the state charts. An
example where all three guidelines are applied is the Edge Detector depicted in Figure 3.26.

Table 3.25: Guidelines - State Arrangement

Title State Arrangement
Scope Stateflow - Arrangement
Description All states within Stateflow shall be arranged diagonally starting from

top left to bottom right. The initial state, if only one exists, shall be
placed in the top left.

Rationale Readability, Workflow

Table 3.26: Guidelines - Transition Arrangement

Title Transition Arrangement
Scope Stateflow - Arrangement
Description The transitions between all states shall be orthogonal by using Junc-

tions. Transitions leading from a higher state to a lower state shall be
placed on the top right half of the state chart with a minimum number
of crossings. Likewise, transitions from lower to higher states shall be
placed on the lower-left half of the state chart.

Rationale Readability, Workflow

Table 3.27: Guidelines - Condition and Action Arrangement

Title Conditions and Action Arrangement
Scope Stateflow - Arrangement
Description Conditions shall be placed above the respective transition on the hori-

zontal part. Actions shall be placed on the inside, with respect to the
state chart, of the transitions on the vertical part. Consolidation of
multiple transitions is allowed if conditions are placed directly at the
output of the individual states.

Rationale Readability, Workflow

102

Chapter 3: Methodology for System Automation

3.3.4.7 Simulink - Structure

The guidelines attributed to the hierarchical decomposition structure using Simulink and
Stateflow are listed in Table 3.28 and Table 3.29. They address naming conventions for
an easier understanding of state machines and their interactions as well as the specific
realization in Simulink.

Table 3.28: Guidelines - Signal Naming

Title Signal Naming
Scope Simulink - Structure
Description The following postfixes for variables shall be used within the automation

modules.
• A _flg means flag, represents a boolean variable and

is used for triggering an event when set to true
• A _cfg means change flag, represents a boolean variable and

is used for triggering an event on both edges
• A _rfg means rising flag, represents a boolean variable and

is used for triggering an event on the rising edge
• A _ffg means falling flag, represents a boolean variable and

is used for triggering an event on the falling edge
• A _idx means index, represents an unsigned integer variable and

is used for generic indices
• A _lgx means logic, represents an unsigned integer variable and

is used for defining enumerated values or states

Rationale Readability, Workflow

Table 3.29: Guidelines - Signal Routing

Title Signal Routing
Scope Simulink - Structure
Description The multi-level state machines shall use one input bus containing all

necessary external information and one output bus containing all gen-
erated information and commands that are relevant for other modules.
The Bus Assignment shall be used for signal consolidation. For select-
ing the next lower active mode a construct of Switch Case, Switch Case
Action Subsystem, and Merge shall be used.

Rationale Readability, Workflow, Simulation and Analysis, Verification

103

3.4 Testing and Verification

3.4 Testing and Verification
After the last two sections, Section 3.2 and Section 3.3, described the design and imple-
mentation aspects of this methodology, this section presents the testing and verification
activities. The different steps or test environments include Unit Tests, Model Checking
using formal methods, MiL, SiL, HiL, AiL, Ground Tests, and Flight Tests. Those verifi-
cation methods target different systems, or parts of the system, under test which are the
software function, design model, C-Code, FCC, actuators, and sensors. An overview of
the testing and verification steps, which are part of this methodology and are applied to
the automation functions presented in this thesis, is depicted in Figure 3.31.

Contribution C1.3 - Incremental bottom-up application of formal methods, ensuring
effective testing and guaranteed system characteristics is presented in Subsection 3.4.2.

Unit Test

Model Checking

MiL

SiL

HiL

AiL

Ground Test

Flight Test

So
ftw

ar
e

Fu
nc

tio
n

So
ftw

ar
e

Fu
nc

tio
n

D
es

ig
n

M
od

el

FC
C

Se
ns

or
s

A
ct

ua
to

rs

Aircraft

C
-C

od
e

System under Test

Te
st

En
vi

ro
nm

en
t

Figure 3.31: Testing Overview

104

Chapter 3: Methodology for System Automation

3.4.1 Unit Tests

The MATLAB Unit Testing Framework is used to define, simulate, and analyze test
cases. Although primarily built for MATLAB, Simulink, as well as Stateflow models, can
be executed and therefore integrated into those tests. [TM2014]

An overview of the MATLAB Unit Tests and their functions is presented in Listing 3.6.
Those include the main function (unitTests), setupOnce, setup, the test itself
(test_unitTest1), teardown, and teardownOnce. The objective of the respective
function is summarized in the comments of Listing 3.6.

The main function, named unitTests, is used to create a suite of one or more tests.
Those tests are defined as local functions and have to start with "test_" in order to
be recognized by the subfunction functiontests. The function setupOnce is only
called once in the beginning. It can be used to initialize the simulation model or to set
other variables that are not dependent on the individual test case. In contrast to that
function, the function setup is called before each individual test and can be used to reset
variables, which might have been used by previous tests to allow for a defined state of
the model. Each test case is wrapped in an individual function, which in this example is
test_unitTest1. Within this function, inputs for the tests are defined and the test is
executed. Similar to the pre-test functions, teardown and teardownOnce are called
after completion of one test or all tests respectively. They are used to extract and save
data from the test case or to perform a generic cleanup after all test cases.

In this methodology Unit Tests are used to perform tests of the individual state ma-
chines, the combination of all state machines into one automation, and even for interaction
tests of the automation with the rest of the flight control algorithm.

1 function tests = unitTests %Main function

2 tests = functiontests(localfunctions); %Create test suite

3 end

4 function setupOnce(testCase)

5 %Initialize model

6 end

7 function setup(testCase)

8 %Reset variables

9 end

10 function test_unitTest1(testCase)

11 %Define test inputs, Run test case

12 end

13 function teardown(testCase)

14 %Extract Data, Save Test Data

15 end

16 function teardownOnce(testCase)

17 %Cleanup

18 end

Listing 3.6: MATLAB - Unit Tests

105

3.4 Testing and Verification

3.4.2 Model Checking

Model Checking is an automatic formal verification technique, in which logic specifications
and a model of the system are used in combination with a search algorithm to determine
whether or not the state machine satisfies the requirements. [Cla1997, p. 54]

Formal methods are used within Model Checking to verify complex software designs.
It is an alternative to other verification approaches like simulation and testing and has
been studied since the emerge of the first computers in the 1960s. [MH2003, Roz2011]

While simulation and testing are most effective in the early stages of development and
debugging, the effectiveness of model checking does not depend on the development stage.
This can be explained by the number of errors in software. While it is comparatively easy
to find them at the beginning of the design and development process it gets increasingly
harder to find the errors using simulation and testing as the development becomes cleaner
and better. The biggest disadvantage of those techniques is the incapability to draw any
conclusion on remaining errors in the software. [CGP1999, p. 1ff]

One example of a major software error, that was not found during simulation and
testing, resulted in the loss of a rocket. On June 4, 1996, the Ariane 5 Flight 501 lasted
less than a minute. The error was located in the software of the Inertial Reference System
(IRS) that calculates the attitude and movement of the rocket. The failure was caused
by an unprotected data conversion from a 64-bit floating-point to a 16-bit signed integer.
This resulted in the abrupt movement, which led to a rupture between the core stage and
the boosters, which in turn correctly triggered the self-destruction. [Lio1996]

The verification of the software using model checking could probably have prevented
this problem. Another advantage of model checking is the ability to generate counterex-
amples when a given property is falsified. This can be used to identify the erroneous part
of the software or to rewrite the test case that had incorrect properties.

However, the state explosion problem is the main challenge in model checking. It
refers to systems with many states and/or input signals with a large range. In this
case, the combinatorial complexity grows "exponentially". Even though solutions, like
replacing Binary Decision Diagrams (BDDs) with Boolean Decision Procedures (BDPs)
[BCCZ1999], can cope with this disadvantage of model checking it is best to avoid the
problem by decreasing the number of states and range of input signals. This methodology
is built around the concept of minimizing the complexity of individual state machines.

Contribution C1.3 - Incremental bottom-up application of formal methods, ensuring
effective testing and guaranteed system characteristics is developed to verify the correct
functionality of the individual state machines as well as the overall operation of the flight
control automation. A propagation of input and output ranges, across all levels, is used
to guarantee that those variables are bounded.

The tool that is extensively used to perform model checking in Simulink and Stateflow,
the Simulink Design Verifier (SDV), is explained in the following. It has various modes
and functions and can even be used to solve mathematical games like Sudoku [Sto2010].

106

Chapter 3: Methodology for System Automation

3.4.2.1 Simulink Design Verifier

The Simulink Design Verifier (SDV) is used to identify and isolate design errors, generate
tests, and prove properties. It applies Model Checking via formal methods to perform
Design Error Detection, Test Generation, and Property Proving. [TM2016s, p. 1-2]

The Design Error Detection can be used to detect flaws like dead logic, integer over-
flow, and division by zero. In case of a detected violation, a test case provoking the
violation is automatically generated for debugging. Additionally, the SDV can be used
for Test Generation to achieve various objectives. This includes coverage requirements
like condition coverage or decision coverage and even Modified Condition / Decision Cov-
erage (MC/DC) [TM2019]. Furthermore, the SDV is used for Property Proving of custom
requirements, meaning that the tool can guarantee that a property holds true under given
input ranges or alternatively provide a counterexample in case of violation.

Contribution C1.3 - Incremental bottom-up application of formal methods, ensuring
effective testing and guaranteed system characteristics, makes extensive use of the SDV.
Due to the smaller scope, ensured by the design principles introduced in Subsection 3.2.2,
the Model Checking process using formal methods can be conducted more efficiently.
Part of the contribution is a Simulink model environment, which is used to automatically
perform design error detection, test case coverage analysis, and property proving of key
functionalities of all state machines. Additionally, a test report is generated for all state
machines and all tests, using the developed MATLAB script. The developed code for
this functionality is available in Appendix C. Furthermore, an incremental bottom-up
application of formal methods is developed.

To create a seamlessly tested system with guaranteed system characteristics the SDV
is used throughout all levels of the developed applications. On each level, starting from
the lowest, assumptions are made about the inputs, which are used to guarantee certain
outputs, that match the requirements. The assumptions are mostly about ranges, but
can also include a possible sequence of inputs or a possible combination of inputs. On
the next level, those assumptions from the lower level are then used as requirements for
the outputs on the higher level. Using formal methods by applying different modes of the
SDV, those are verified with the new assumptions about the inputs on this level. This
procedure can be used all the way to the top level, where the assumptions of the inputs
need to be matched by input requirements for the system.

The SDV verifies or falsifies certain objectives. In the following, they will be listed
in tables and marked either green or red depending on the outcome of the respective
objective. They are numbered in ascending order, however, due to the internal structure
of the SDV, some are not used and therefore also not listed in the tables.

When automatically generating an example, the SDV produces a test case that is
specified in the report in a table format and also used in the following. This table shows
the simulation step, starting from one, and the simulation time, starting from zero. Since
10ms is used as step size for the following examples, step two corresponds to 0.01s.

107

3.4 Testing and Verification

The SDV is used in this methodology to perform model checking and is applied to the
flight control automation functions presented in this thesis. Its three main use cases are
summarized below and presented in more detail in the following.

• Design Error Detection

– Dead Logic, Identify Active Logic

– Integer Overflow, Division by Zero,
(Check specified intermediate minimum and maximum values,
Out of bound array access)

• Test Generation, Model Coverage Objectives: MCDC

• Property Proving

3.4.2.2 Design Error Detection

If the SDV is run in Design Error Detection mode, it can detect the following types of
errors: dead logic, integer or fixed-point data overflow, division by zero, intermediate
signal values that are outside of the specified minimum and maximum values, and out of
bound array access.

However, when in this mode, the SDV can either be used to detect dead logic or
integer overflow and the other objectives, which is also shown in the overview in Sub-
subsection 3.4.2.1. This is due to the fact, that the SDV uses different engines to check
for those errors. Polyspace Code Prover uses semantic analysis and abstract interpreta-
tion based on formal methods to prove the absence of run-time errors [TM2016q], while
Polyspace Bugfinder uses static analysis to identify software bugs [TM2016p].

The test model that is used in the following to demonstrate the functionality of the
SDV is depicted in Figure 3.32. It consists of two inputs and two outputs, however
depending on the test case used in the following, different erroneous implementations,
and therefore not necessarily all interfaces are used.

2

output_uint8

2

input_uint8

Mealy

input_boolean

input_uint8

output_boolean

output_uint8

sdv

1

input_boolean

1

output_boolean

Figure 3.32: Simulink Design Verifier - Test Model

108

Chapter 3: Methodology for System Automation

3.4.2.3 Design Error Detection - Dead Logic

The SDV in Design Error Detection mode with activated settings for dead logic and active
logic will check the current design, in this case, a Stateflow chart, for any states and/or
transitions that cannot be reached. This test incorporates the input signals and identifies
the reachable or unreachable part of the model depending on their range.

In the following example, only one 8-bit unsigned input and three states are used. The
resulting visual representation is shown in Figure 3.33, while a slightly modified objectives
table is shown in Table 3.30. The analysis of the SDV includes nine objectives. One for
each state and two (true and false) for each decision. It can be seen that transition
with execution order two from state S0 will not be used. This turns both the transition
condition, as well as state S1 into dead logic. Additionally, the transition from state S2
to S0 will always result in true, which is also identified as dead logic.

Table 3.30: Design Error Detection - Objectives Status

Model Item Description Logic
1 sldv_ded_dl Chart: Substate executed State "S0" Active
2 sldv_ded_dl Chart: Substate executed State "S1" Dead
3 sldv_ded_dl Chart: Substate executed State "S2" Active
4 [input_uint8 >0] Transition: Transition trigger expression F Active
5 [input_uint8 >0] Transition: Transition trigger expression T Active
6 [input_uint8 >= 0] Transition: Transition trigger expression F Dead
7 [input_uint8 >= 0] Transition: Transition trigger expression T Active
9 [input_uint8 >0] Transition: Transition trigger expression F Active
10 [input_uint8 >0] Transition: Transition trigger expression T Dead

S2

S1

S0

[input_uint8 >= 0]

[input_uint8 > 0]
2

[input_uint8 > 0]
1

Figure 3.33: Design Error Detection - Dead Logic

109

3.4 Testing and Verification

3.4.2.4 Design Error Detection - Integer Overflow, Division by Zero

The SDV in Design Error Detection mode, but settings for integer overflow and division
by zero enabled can be used to identify other types of errors in the model. Figure 3.34
depicts the example Stateflow chart analyzed in this mode, with its implementation errors.

This mode of the SDV focuses only on the outputs, as depicted by the objectives in
Table 3.31. An overflow objective is analyzed for every assignment. However, division by
zero is only analyzed in actions with divisions, for obvious reasons. In case the SDV has
failed to reach the objective a counterexample, listed in Table 3.32, is generated.

Objective five, which is analyzing the overflow by addition of the transition action
leading to state S1, is falsified by test case one. An input greater than zero is necessary
at step two to active the transition leading to state S1. In this case, an input of 255 leads
to an overflow of the output, since the addition of one cannot be represented within an
8-bit variable.

In a similar way, objective three is falsified by test case two, which uses an input of
zero in step two. This activates the transition from state S0 to state S2 and therefore
causes a division by zero.

Table 3.31: Design Error Detection - Objectives Status

Model Item Description Test Case
3 "{output_uint8= 10/input_uint8" Division by zero: / 2
4 "{output_uint8= 10/input_uint8" Overflow: / n/a
5 "{output_uint8= input_uint8+1}" Overflow: + 1

Table 3.32: Design Error Detection - Test Cases

Time 0.00 0.01
Step 1 2
Test Case 1, Input: input_uint8 1 255
Test Case 2, Input: input_uint8 128 0

S2

S1

S0

{output_uint8 = input_uint8+1}

[input_uint8 > 0]
2

{output_uint8 = 10/input_uint8}

[input_uint8 == 0]
1

Figure 3.34: Design Error Detection - Integer Overflow, Division by Zero

110

Chapter 3: Methodology for System Automation

3.4.2.5 Test Generation

The SDV can also be used in test generation mode with model coverage objectives: con-
dition coverage, decision coverage, and MC/DC.

MC/DC is a code coverage requirement, which is used for testing and evaluating of
safety-critical software that requires the criteria listed in the following [HVCR2001, p. 7].

• Every point of entry and exit has been invoked at least once

• Every decision has taken all possible outcomes at least once

• Every condition in a decision has taken all possible outcomes at least once

• Every condition in a decision has been shown to independently affect the outcome

Although model coverage analyses are not required for the methodology and applica-
tions described in this thesis, it is used throughout the design, implementation, and testing
of the software to reduce the error probability. An example model for a test generation
with MC/DC analysis is shown in Figure 3.35. The respective number of objectives and
archived coverage, for this model with intentional errors, is listed in Table 3.33.

Table 3.33: Test Generation - Objectives Overview

Decision Condition MCDC
Objectives 15 8 8
Coverage 87% 88% 75%

S2

S1

S0

[input_boolean == true]
2

{output_uint8 = 2}

[input_boolean == false]
2

{output_uint8 = 1}

[(input_boolean == true) && (input_uint8 == 0)]
1

{output_uint8 = 0}

[(input_boolean == true) && (input_uint8 > 0)]
2

{output_uint8 = 0}

[input_boolean == false]
1

{output_uint8 = 1}

[input_boolean == false]
1

Figure 3.35: Test Generation

111

3.4 Testing and Verification

It can be seen that the second part of the transition leading from state S0 to state
S1 does not have any effect, because the opposing condition to the first one is used. This
results in two failed objectives (25 and 31), which are listed in Table 3.34. Additionally,
the transition from state S1 to state S2 is never executed due to the fact, that the
same statement is already used with a lower execution order and therefore higher priority.
Furthermore, the transition condition leading from state S2 to S1 is redundant and
therefore also marked as non-achievable.

If one or more objectives cannot be reached, there must be a design error or wrong
variable range. For the methodology and applications described in this thesis, automat-
ically generated test cases have only been used to detect errors. For coverage analyses,
manually written test cases for specific maneuvers and situations are used.

In the case of this state machine, those errors could have been found manually as
well. However, as state machines get more and more complex the detection of errors
gets increasingly difficult and resulting coverage analysis cannot be performed manually.
Therefore, the test generation mode with coverage analysis is used extensively throughout
all development steps of the methodology and applications described in this thesis.

Table 3.34: Test Generation - Objectives (excerpt)

Type Description Test Case
1 Decision Chart: Substate executed State "S0" 1
2 Decision Chart: Substate executed State "S1" 1
3 Decision Chart: Substate executed State "S2" 1
4 Condition Transition: Condition 1, "input_boolean == true" T 1
...
17 Decision Transition: Transition trigger expression T 3
18 Decision Transition: Transition trigger expression F 1
19 Decision Transition: Transition trigger expression T n/a
20 Decision Transition: Transition trigger expression F n/a
21 Decision Transition: Transition trigger expression T 1
22 Condition Transition: Condition 1, "input_boolean == true" T 2
23 Condition Transition: Condition 1, "input_boolean == true" F 1
24 Condition Transition: Condition 2, "input_uint8 >0" T 2
25 Condition Transition: Condition 2, "input_uint8 >0" F n/a
26 Decision Transition: Transition trigger expression F 1
27 Decision Transition: Transition trigger expression T 2
28 MCDC Transition: Condition 1, "input_boolean == true" T 2
29 MCDC Transition: Condition 2, "input_uint8 >0" T 2
30 MCDC Transition: Condition 1, "input_boolean == true" F 1
31 MCDC Transition: Condition 2, "input_uint8 >0" F n/a

112

Chapter 3: Methodology for System Automation

3.4.2.6 Property Proving

The SDV can also be used for property proving. In this mode, the inputs with specified
ranges, are used to prove or disprove certain assertions. Those are normally implemented
in a dissimilar way and optimally by another developer or tester.

Figure 3.36 shows a Stateflow chart in a Simulink environment with connected property
proving assertions. In general, those are connected to the input as well as the output and
include a dissimilar implemented function or part of the state machine. In this example,
a slightly adapted version of the Edge Detector, which includes two minor errors (c.f.
Subsubsection 3.3.2.6), is tested. The task of the Edge Detector is to detect a change of
the input signal and reflect that in the output signal as explained in Subsection 3.1.3.

Therefore three assertions are used to guarantee its correct functionality in the sub-
systems risingEdge, fallingEdge, and initialOutput. They are located on the
right side of Figure 3.36, colored in yellow, and consist of an alternative, in this case,
Simulink implementation of one part of the state machine.

This Simulink example also includes buttons for running and opening the options of
the SDV in the bottom part of the model in gray. They are used for convenience only
during manual testing and are not necessary for the functionality itself.

However, due to the erroneous implementation of the Edge Detector in this example,
the SDV can only verify one of the assertions and produces counterexamples for the other
two. The modified state chart of the Edge Detector with two intentional errors is depicted
in Figure 3.37.

1

output_unit8

1

input_uint8

Mealy

input output

edgeDetector

input_uint8

output_uint8

risingEdge

input_uint8

output_uint8

fallingEdge

Run
(double-click)

Run Simulink Design Verifier

View Options
(double-click)

View Simulink Design Verifier Options

input_uint8

output_uint8

initialOutput

Figure 3.36: Property Proving - Overview

113

3.4 Testing and Verification

S1Edge

S1

S0

S0Edge

[input == 1]
1

2

{output = 0;}

{output = 1;}

[input == 1]

[input == 1]
2

2

{output = 0;}

{output = 1;}

1

[input == 0]

[input == 1]
1

{output = 0;}

Figure 3.37: Property Proving - Erroneous Edge Detector - State Machine

The Simulink implementation for the assertion of the rising edge is depicted in Fig-
ure 3.38, where the rising edge is replicated in the reddish part. When the current input is
"1" and the previous input, stored by the memory block, is "0", a rising edge has occurred.

However, due to the design, the model cannot detect those changes until the second
time step, which is implemented in the greenish part with another memory block. There-
fore, if a rising edge is detected in step two or later, this implies an output of "1". The
combination of the "Implies" and the "Assertion" block is used to implement this.

init=255

init=255

A

B

A ==> B

Implies

Assertion

Logical
Operator

== 1

Compare
To Constant3

Memory

== 1

Compare
To Constant

== 0

Compare
To Constant1

< 2

Compare
To Constant2

Memory1

1

input_uint8

2

output_uint8

Figure 3.38: Property Proving - Rising Edge Assertion

114

Chapter 3: Methodology for System Automation

An overview of the verified objectives is listed in Table 3.35. For the two disproved as-
sertions, respective counterexamples are automatically generated and shown in Table 3.36
and Table 3.37 respectively.

The assertion for the falling edge is disproved with counterexample one. An input
series of 0,1 in time steps one to two leads to an active S1Edge state (init → S0

→ S1Edge). Then the input changes to 0, which due to a faulty transition condition
from state S1Edge to S0Edge, leads to state S1 with the output being "0". Therefore
the falling edge from time step two to three has not resulted in the expected output of
"1". Changing the transition from state S1Edge to S0Edge back to its original version
([input==0]) will resolve this problem (c.f. Subsubsection 3.3.2.6).

In a similar way the counterexample two for the rising edge assertion, with the input
sequence 1,0 for time steps one to two leads to an active S0Edge state (init → S1 →
S0Edge). The next input is actually irrelevant because the transition from state S0Edge
to S0 has no condition and the highest priority execution order. Therefore, state S0 will
always be active one time step after S0Edge. Thus, the output will always be "0" even if a
rising edge was used as input. Swapping the execution order of the two transitions leaving
state S0Edge will resolve this problem as well and result in a correct implementation of
the edge detector (c.f. Subsubsection 3.3.2.6).

Table 3.35: Property Proving - Objectives

Type Model Item Counterexample
1 Assert fallingEdge/Assertion 1
2 Assert initialOutput/Assertion n/a
3 Assert risingEdge/Assertion 2

Table 3.36: Falling Edge Assertion - Counterexample 1

Time 0.00 0.01 0.02
Step 1 2 3
input_uint8 0 1 0

Table 3.37: Rising Edge Assertion - Counterexample 2

Time 0.00 0.01 0.02
Step 1 2 3
input_uint8 1 0 1

115

3.4 Testing and Verification

3.4.3 Model in the Loop

Model in the Loop (MiL) simulations are used to connect the flight control modules for the
first time. In this environment, their interaction with each other, as well as their closed-
loop performance as FCC with an FDM, can be tested. The design, implementation, as
well as testing, are all performed in MATLAB, Simulink, and Stateflow. Therefore, this
framework serves as an integrated design environment and test harness at the same time.
An overview of the test architecture, as used by all platforms, is presented in Figure 3.39.

The commands from the FCC, primarily actuator position commands, are sent to the
FDM. The FDM is then calculating the new state of the aircraft and sending respective
measurements back to the FCC. Control inputs for the FCC can be generated with a
joystick, Mode Control Panel (MCP), or a test case. The generated data can be visualized,
monitored, or logged and saved for later analysis.

The FCC includes flight control modules for the inner loop, autopilot, trajectory con-
trol, trajectory generation, automatic takeoff and landing, and system automation. Their
functionality and especially the design, implementation, and testing of the system au-
tomation for experimental aircraft is described in Chapter 4.

The FDM includes an environment model, motion kinematics, the airframe of the spe-
cific aircraft, rigid-body equations of motion, and a model for aircraft systems. The envi-
ronmental model, in turn, includes a ground, gravity, atmosphere (dynamic and static),
and magnetic field model. The airframe part of the FDM includes models for actuation
and flight mechanics, propulsion, aerodynamics, landing gear, and weight and balance.
Additional systems like the actuator control electronics, the air data system, and the
navigation system are modeled in the aircraft system part.

A more detailed example, of how MiL simulations are used as a cost- and time-efficient
development and testing environment for the DA 42 is available in [ZSMH2018].

3.4.4 Software in the Loop

Software in the Loop (SiL) simulations are a special case of MiL simulations. They use
automatically generated C-Code versions of the flight control module or of the complete
FCC. Therefore, the code generation process can be verified if compared to MiL results.

Commands

Measurements

Visualization

Logging

Joystick

MCP

Test Case

MonitoringFCC FDM

Figure 3.39: Model in the Loop Verification

116

Chapter 3: Methodology for System Automation

3.4.5 Hardware in the Loop

The Hardware in the Loop (HiL) simulation is the first test that uses the real FCC with
its flight control software. Before the test, the design models in MATLAB, Simulink, and
Stateflow are used to generate C-Code. This is merged with an FCC-specific framework
and transferred to the target hardware. The two main verification objectives are the FCC
and its physical interfaces to adjacent aircraft systems as well as the code integration,
compiling, linking, and flashing process. Tests comparing HiL to MiL or SiL results can
be used to ensure the correct functionality of the interfaces and code-generation process.

In the HiL environment, the real FCC with genuine flight control software is used. Its
outputs are connected via the physical interfaces to hardware that is capable of capturing
and decoding those signals. The actuators and flight mechanics are modeled in software.
The simulated deflections of the control surfaces are then fed into the FDM. The infor-
mation about the new state of the aircraft from the FDM is then transferred back to the
FCC via the physical interface and as being data from the navigation system.

Extensive HiL simulations have been conducted for SAGITTA, the DA 42 , ELIAS ,
and the Do 228 before proceeding with further tests. In the case of SAGITTA, HiL
simulations were only considered passed, when the difference between HiL and MiL was
small enough, which was used as one of the first flight clearance criteria [Kuc2018].

3.4.6 Aircraft in the Loop

In the next step, the complete aircraft is incorporated into the tests. The Aircraft in the
Loop (AiL) simulations include not only the FCC but also actuators, flight mechanics,
surfaces, engines, and communications. However, due to the fact that the aircraft is not
moving, data concerning the movement, attitude, and position of the aircraft still needs
to be simulated.

The most valuable experience from this AiL simulation is related to the actuators and
the involved mechanical parts of the aircraft. Effects like offsets, biases, non-linearity,
hysteresis, and noise of the involved sensors and components are hard to model, but
the effects can be analyzed relatively easily using such simulations. Additionally, for
optionally-piloted or manned aircraft, the flight crew can gain experience interacting with
the Flight Control System (FCS).

Like the HiL simulations, the AiL tests were used with all four aircraft that are pre-
sented in Chapter 2 and are used as a demonstration platform for the applications pre-
sented in the following chapters of this thesis.

However, due to the missing movement, additional effects like dynamic pressure, wind,
and vibration, and their effect on the surfaces are missing in such simulations. This is one
of the reasons why the maneuver injection, described in Chapter 5, is developed. It can
be used to perform highly accurate and repeatable flight tests to gain more information
about the missing effects of the simulation.

117

3.4 Testing and Verification

3.4.7 Ground Tests

The Ground Tests are the first real-life tests with the complete aircraft, including motion
sensors like the Inertial Navigation System (INS), data links, and a GCS. They are used
to gain experience with the experimental aerial platform in a real-life environment but
without the hazard of actual flight. They are particularly important for unmanned aircraft
but can be used for manned and optionally-piloted aircraft as well.

In the case of the unmanned demonstrator SAGITTA, those ground tests were espe-
cially important because it had to perform its maiden flight fully automatically. Therefore,
three ground test campaigns, in terms of taxi tests, were conducted, which included tests
like single and double lane changes, straight acceleration runs, and back-up control law
tests. However, the performance in terms of centerline tracking and automatic braking
during the takeoff and touchdown phases could only be tested during the first flight.
[SKHH2018, SH2017, SKH2017]

For the DA 42 , a different ground roll centerline tracking controller was developed. It
had to cope with the mechanical link between the rudder and nose wheel steering as well
as the limited control authority of the latter at low speeds. [MZS+2017]

3.4.8 Flight Tests

The most challenging but also most exciting verification activities of aircraft are the Flight
Tests. Especially when it’s the first flight with the automatic flight control system, and
even more so if the first flight has to be performed fully automatic from takeoff to landing.

Various aspects of the flight control systems and their adjacent components are tested
and verified beforehand. However, certain effects cannot be simulated in the scope of
experimental development projects and therefore some degree of uncertainty remains.

All experimental aircraft, described in Chapter 2 and used as demonstration plat-
forms for the methodology and applications described in this thesis, performed their
successful automatic first flight between 2016 and 2017. In the case of SAGITTA the
system automation, described in Chapter 4 was used from the very beginning. Due to
the optionally-piloted capabilities of the DA 42 , the degree of automation was gradually
increased. However, the system automation was part of the flight control software from
the beginning as well, even if not with its full capabilities. With ELIAS and the Do 228 ,
the maneuver injection was used throughout multiple flight campaigns to verify the FDM,
analyze actuator performance and response characteristics, and for advanced development
techniques like the model-based gain tuning of the controller.

Due to the special circumstances of SAGITTA, the planning, implementation, and
execution of the fully automatic maiden flight were more complex, compared to the other
demonstrators. Special precautions had to be taken regarding the real-time monitoring,
ground station setup, and displays that were used to supervise the flight guidance and
control system. [KSHH2018, KHH2018, KH2018]

118

Chapter 3: Methodology for System Automation

3.5 Summary
This chapter presents the Design, Implementation, and Testing Methodology for System
Automation - using State Machines in Stateflow (MTSA).

In the beginning, the theoretical basics of state machines and the background of
the developed methodology are presented. This includes the history from the middle
of the 20th-century to the modern descendants. Additionally, the theory of automata
with Combinational Circuits, Sequential Machines, Finite State Automata, Transducers,
Sequencers, Classifiers, Acceptors, Pushdown Automata, and Turing Machines is intro-
duced. Furthermore, different state machine modeling techniques are presented including
the Functional, Imperative, and Feedback System View as well as the Tabular, Graphical,
and Matrix description. The first section of this chapter ends with an introduction of the
most commonly used types of state machines, Mealy and Moore.

The second section deals with the design of state machines. It introduces the four com-
mon challenges of automation, being complexity, brittleness, opacity, and literalism. In
the following, the eight-step design process of this methodology is explained. Hereinafter,
the state machine internal and external decision logic, which is used for the arguments
of the transition conditions, is presented. The section concludes with the design aspects
of contribution C1.1 - Hierarchical decomposition design strategy, minimizing complexity
and optimizing testability.

After previously presenting the design aspects, the next section is focusing on the im-
plementation of the methodology. It introduces the toolchain, which uses a combination of
MATLAB, Simulink, and Stateflow. Following this overview, the used elements in State-
flow are introduced, and an implementation example is given. After understanding the
development environment the specific implementation of contribution C1.1 is presented.
The section is concluded with contribution C1.2 - Modeling guidelines for implementa-
tion, minimizing opacity and maximizing software maintainability, where all developed
guidelines are presented.

The chapter ends with the presentation of testing and verification activities, which
are also part of the developed methodology. After presenting Unit Tests, Model Checking
and its application in this methodology is explained. In this part, the Simulink Design
Verifier (SDV) and formal methods are introduced and their utilization for contribution
C1.3 - Incremental bottom-up application of formal methods, ensuring effective testing and
guaranteed system characteristics is presented. This includes the three operating modes
of the SDV, being Design Error Detection, Test Generation, and Property Proving. In the
following, other testing activities, which consist of Model in the Loop (MiL), Software in
the Loop (SiL), Hardware in the Loop (HiL), and Aircraft in the Loop (AiL) are described.
The description of Ground Tests and real-life Flight Tests concludes this section and the
overall chapter.

119

Chapter 4

Flight Control System Automation

The developed Operator-Centric Multi-User Flight Control System Automation for ex-
perimental UAVs and OPVs with Contingency Procedures (FCSA) is presented in this
chapter.

The FCSA is administering the cascaded control loop of the Flight Control Computer
(FCC) and provides various operating modes. Those modes are normally controlled by
the users, but can also be switched automatically, by the software, in case of degraded
sensor performance or hardware malfunctions.

Besides the nominal functions, it features contingency procedures for both, operational
as well as malfunction scenarios. It is important, that the switching between control
modules or modes needs to be transient-free because otherwise the operator or pilot
would be surprised by the system’s behavior.

The FCSA was developed for Unmanned Aerial Vehicles (UAVs) and Optionally-
Piloted Vehicles (OPVs). It is therefore tested on a UAV, the SAGITTA Research Demon-
strator, and on an OPV, the DA 42 . Platform type-specific modes, e.g. modes only for
UAV or OPV, or project-specific modes are guarded so they cannot be activated on the
wrong platform. Additionally, this requires that different use cases have to be represented
within the same system and without re-implementation.

The methodology, described in Chapter 3, is applied during the design, implementa-
tion, and testing of the FCSA. During the design of the FCSA, the modes are separated
into different levels. This modular approach makes it possible to enable or disable certain
parts of the automation if not needed for a certain platform and makes future extensions
relatively simple.

The modes are implemented using decomposed deterministic finite state machines
utilizing MATLAB, Simulink, and Stateflow. The FCSA is tested using, among others,
formal methods on software level as well as Aircraft in the Loop (AiL) simulations with
the real aircraft. After passing the rigorous testing the real-life applicability of the FCSA
is proven in flight tests with both demonstration platforms.

121

Motivation - Flight Control System Automation

• Higher-level flight control system automation is necessary to exploit the
inherent benefits of UAVs and OPVs

• Currently available solutions are not suitable for experimental aircraft with
multiple users

• No integrated contingency procedures are available in existing approaches,
that support the operator in case of a failure

The current state of the art with respect to the system automation part of this thesis
is introduced in Subsection 1.3.2. The resulting motivation, due to the identified deficits,
is recapitulated here. Due to the variety of operational scenarios and training levels of the
operators higher-level automation is necessary to exploit the benefits of UAVs and OPVs.
However current solutions cannot cope with multiple users in the field of experimental
aircraft. Additionally, current solutions, even for commercial airliners, mostly revert back
to the human operator in case of failures. The deactivation of the automation increases
the workload for the operator in times where the support by the automation is needed
the most. This is not desirable for OPVs and might not even be possible for UAVs.

The derived objectives, from the deficits in the current state of the art, are presented in
Subsection 1.4.2 and summarized in the following. The overall objective is the automatic
administration of flight control loops of experimental UAVs and OPVs. Due to incidents
and accidents caused by Loss of State Awareness, which is also referred to as Mode Con-
fusion, human-centered automation has been considered for a long time. However, to
this day the problem still exists and is even more problematic for physically separated
operators and pilots. Due to the development context of experimental aircraft, which in-
cludes the integration of multiple users with access to various control levels, the problem
is increased even more. Therefore, additional procedures for robust automation shall be
developed, that support the operator and pilots in case of malfunctions.

Objectives - Flight Control System Automation

• Implement a system automation to administer a cascaded flight control
loop of experimental UAVs and OPVs

• Provide a operator-centered automation with interfaces for multiple users,
like operators and pilots

• Develop procedures for robust automation, even in non-nominal opera-
tional circumstances, targeting operator workload reduction

122

Chapter 4: Flight Control System Automation

Contributions - Flight Control System Automation

• C2.1 - Strategy for switchability between various modes on different
authority levels, enabling experimental automation

• C2.2 - Operational management concept for multi-user experimental OPVs
and UAVs, increasing mode awareness

• C2.3 - Automatic operational and malfunction contingency procedures for
continuous operation in non-nominal circumstances

The contributions of the system automation, presented in this chapter, are introduced
in Subsection 1.5.2. The assignment of the individual contributions to the sections of this
chapter is presented in the following together with the general outline.

At the beginning of this chapter, Section 4.1 describes the hardware and System Archi-
tecture used for the two demonstration platforms. The FCSA is designed for and tested on
the UAV SAGITTA and the OPV DA 42 . Part of the contribution C2.1 is the integration
of the FCSA within the FCC architecture, as described in this section.

The Operation Modes and Transition Conditions and Actions are presented in Sec-
tion 4.2 and Section 4.3. This includes a description of the purpose for each mode as well
as their transition conditions and actions to understand the interactions with surrounding
elements and other modes. Those two aspects constitute contribution C2.2.

Various contingency procedures are integrated into the FCSA. Those consist of opera-
tional, concerning mission changes, as well as malfunction, for sensor failures, procedures
to guarantee continuous automatic operation. The Loiter Automation (LA) is described
in Section 4.4 as an example of contribution C2.3.

The FCSA needs to access all hierarchy levels within the cascaded control loop, from
directly controlling the surface actuators all the way to activating separate modules for
automatic takeoff and landing. Therefore entry points between each adjacent control
loop need to be defined. Those points are command switches that are controlled by the
FCSA and for each entry point, outputs from higher-level control loops, dynamic values
generated by the FCSA, or static values can be used. The second part of contribution
C2.1 is presented in Section 4.5. It builds on contribution C1.1 - Hierarchical decomposi-
tion design strategy, minimizing complexity and optimizing testability and describes those
Injection Switches and their integration within the cascaded flight controller.

Real-life Flight Tests are presented in Section 4.6, which proves the applicability of
the developed software before the chapter is concluded with a Summary, in Section 4.7,
of the archived contributions and resulting possibilities of the FCSA.

The basic idea for this FCSA and parts of it have been previously published [KH2016,
KH2017b, KH2018b]. However, this chapter takes a more detailed approach and includes
various undisclosed aspects of the system automation.

123

4.1 System Architecture

4.1 System Architecture
This section introduces the platform-specific hardware architectures as well as the generic
software architecture of the Operator-Centric Multi-User Flight Control System Automa-
tion for experimental UAVs and OPVs with Contingency Procedures (FCSA).

One main requirement is the platform-independent design and transferable implemen-
tation, without changing the internal structure, so as not to affect prior testing and verifi-
cation. Therefore the FCSA is tested on one 150kg Unmanned Aerial Vehicle (UAV) and
one four-person twin-engine Optionally-Piloted Vehicle (OPV), as described in Chapter 2.
The sensor overview of the latter is depicted in Figure 4.1. The hardware architecture,
including an introduction of all sensors, is presented in Subsection 4.1.1.

In the following, the generic Flight Control Computer (FCC) system architecture and
all flight control modules are introduced (Subsection 4.1.2). Those are used for automatic
takeoff and landing, generating and controlling the trajectory, basic autopilot and au-
tothrottle functions, and low-level control. Additionally, modules for input conditioning
and monitoring as well as output processing are included. They are all controlled by the
FCSA, which constitutes part of contribution C2.1 - Strategy for switchability between
various modes on different authority levels, enabling experimental automation.

In Subsection 4.1.3 the software architecture of the FCSA module is presented as an
example of how all flight control software modules are encapsulated and connected. This
is a crucial design aspect for the usage in various platforms and configurations.

RADALT
Antennas

Air Data
Probe

GNSS
Antenna

INS

ADC

GNSS

MAG

RADALT

LASALT

Figure 4.1: DA 42 Sensor Overview (contour from [Dia2012, p. 38])

124

Chapter 4: Flight Control System Automation

4.1.1 Hardware Architecture

The hardware architecture, in this part, refers to the FCC and the hardware connected to
it. These can be sensors to get information about the aircraft’s state, data links to receive
data from and sent data to the Ground Control Station (GCS), as well as actuators to
control the surfaces of the aircraft, and many more.

Depending on the aircraft and project, different configurations and combinations are
used. The FCSA is designed for UAVs and OPVs. Consequently, it is tested on both
types, which are introduced in Chapter 2. On the one hand, SAGITTA is a 150kg UAV
demonstrator with a wingspan of 3m and two integrated jet turbines.

On the other hand, the DA 42 is a modified four-seater Part 23 Class II aircraft with
a wingspan of about 14m and a maximum take-off mass (MTOM) of 1999kg. Despite
their completely different specifications, a fairly similar, with respect to FCC connections,
hardware architecture is used. The project-specific hardware architectures of SAGITTA
and the DA 42 are presented on the following pages.

Both platforms use a similar implementation of a cyclic execution sequence, within
the FCC to gather information and transmit commands. As an example, an overview of
the different tasks in the FCC of SAGITTA is depicted in Figure 4.2. It uses a Periodic
Interval Timer (PIT) to time each calculation cycle, which in all demonstration platforms
referenced in this thesis is 10ms, which results in an update rate of 100Hz.

At the beginning of each cycle the data, received during the last cycle, is requested
from the Input/Output Controller (IOC). It is packed and sent to the main Central
Processing Unit (CPU). There the data is extracted, stored in input registers, the flight
controller algorithm is executed, the data is copied from the output registers, and packed
and transmitted back to the IOC. The hardware is then monitored, while the data is being
transmitted. All those steps need to be completed well before the 10ms have elapsed in
order for the next cycle to start as planned. [NHH2017, p. 2ff]

Foreground
Task

Background
Task

I/O
Controller

Time

PIT Reset PIT Reset
Wait for

I/O
Data

Pack
Received

Data

Extract
Data

Execute
Controller

Pack and
Transmit

Data

Hardware
Monitoring

Wait
for

PIT
Reset

Transmit on
External I/O

...

...

...

Send
Data

Request
Data

Send
Data

Rx Time

Figure 4.2: FCC Task Overview (adapted from [NHH2017, p. 2])

125

4.1 System Architecture

4.1.1.1 SAGITTA Architecture

SAGITTA, introduced in Section 2.1, is the UAV on which the FCSA is demonstrated.
As a basis for discussion in this chapter, in the following the hardware architecture is
explained in more detail.

A simplified hardware architecture with the FCC and its connections is depicted in
Figure 4.3. Inputs from sensors are shown on the left, available data links above, and
mainly outgoing connections on the right of the FCC.

The main source for aircraft measurements is the Inertial Navigation System (INS),
with integrated Global Navigation Satellite System (GNSS) and (external) Magnetometer
(MAG). They provide information about, among others, the aircraft’s turn rates, attitude,
and position. Additionally, an Air Data Computer (ADC) is used to gather data like
airspeed and barometric altitude. Due to the lack of a commercial-grade landing system
like an Instrument Landing System (ILS), an additional Radar Altimeter (RADALT) is
needed for ground referencing during automatic takeoff and landing.

The aircraft is equipped with three data links. The main Command and Control (C2)
data link for the Flight Operator (FO) is the Flight Data Link (FDL), the Mission Data
Link (MDL) is mostly used for mission data but also includes C2 data as a backup, and
the unidirectional External Pilot Data Link (EPDL) is used by the External Pilot (EP).

The aircraft is controlled using eight trailing-edge-flaps. Those are connected to ac-
tuators, which in turn are controlled by eight Actuator Control Electronics (ACEs). The
two inboard flaps are used as the elevator, the two mid-board flaps as the aileron, and
the two pairs of outboard split-flaps as the rudder. The two turbines are controlled via
the Engine Control Units (ECUs). The nose and two main landing gears are controlled
by the Gear Control Electronics (GCEs), which include commands for the brakes as well.

ADC 8xACE

FDL MDL EPDL

RADALT

3xGCE

2xECU

Flight
Control

Computer

INS,
MAG, GNSS

Figure 4.3: SAGITTA Hardware Architecture

126

Chapter 4: Flight Control System Automation

4.1.1.2 DA 42 Architecture

The DA 42 , introduced in Section 2.2, is the OPV on which the FCSA is demonstrated.
As a basis for discussion in this chapter, in the following the hardware architecture is
explained in more detail.

A simplified hardware architecture with the FCC and its connections is depicted in
Figure 4.4. Inputs from sensors are shown on the left, available data links above, and
mainly outgoing connections on the right of the FCC.

Information about the movement, attitude, and position of the aircraft is sent to the
FCC by the INS and its internal MAG and GNSS. Airspeed and barometric altitude are
measured by the ADC. Additionally, a RADALT and Laser Altimeter (LASALT) are
used to create a ground reference. Complementary data, like control surface positions,
are collected and measured by the Data Concentrator Unit (DCU).

The Shared Data Link (SDL) is used as a C2 data link between the GCS and the
aircraft. It transfers command data to the aircraft and returns monitoring data to the
ground for supervision. Additionally, data can not only be displayed on a Multi-Function
Display (MFD), but it can be also used as additional command input, as a replacement
for, or in addition to the data link.

Computed positions for the control surfaces are converted and sent to the actuators.
The DA 42 uses four actuators for the main control surfaces and two for the throttle
levers of the engines. The Electromagnetic Clutches (EMCs) of the four main actuators
for the elevator, aileron, rudder, and elevator trim are guarded and monitored by the
Control and Monitoring System (CMS). All actuators return position data to the FCC
and CMS for monitoring purposes.

SDL MFD

ADC

DCU

INS,
MAG, GNSS

RADALT
LASALT

4xACE

2xACE

CMS

Flight
Control

Computer

Figure 4.4: DA 42 Hardware Architecture

127

4.1 System Architecture

4.1.2 FCC System Architecture

Following the previously introduced hardware architecture, in this part, the software
architecture within the FCC and all flight control modules are introduced. For SAGITTA
and the DA 42 , slightly different software architectures are used, which is addressed in
the respective description of the modules themselves. An overview of all modules and the
command injection of the FCSA is depicted in Figure 4.5. The switching modules (TG-,
TA-, IL-, and AC-SW), in part, constitute contribution C2.1 - Strategy for switchability
between various modes on different authority levels, enabling experimental automation.

The FCC consists of up to six flight control modules and two additional processing
modules. They are listed here and explained in more detail on the following pages. From
the System Automation (SA) to the Inner Loop (IL) those control modules get more
aircraft-specific and less generic.

• Input Processing and Monitoring (IPM)
Preprocessing of input signals; Compiling of system-specific buses; Monitoring of
input signals based on reasonable ranges, changes over time, or validity indications

• System Automation (SA)
Administration of cascaded control loops; Interface provision for multiple users;
Control of injection switches to perform various maneuvers

• Automatic Takeoff and Landing (ATOL)
Utilization of lower-level control loops to perform automatic takeoff and landing;
Contingency procedures for close ground proximity scenarios

• Trajectory Generation (TG)
Generation of three-dimensional trajectories; Generates distances and deviations
from flight plans for lower-level control loops

• Trajectory Control (TC)
Aircraft control based on high-level control like distances generated by TG; Gener-
ates angular and load-factor commands for Inner Loop

• Auto Flight Control System (AFCS)
Aircraft control based on medium-level controls like altitude, heading, and speed;
Generates angular and load-factor commands; Includes Autothrottle (ATHR)

• Inner Loop (IL)
Basic control and stabilization of the aircraft; Includes control surface allocation;
Generates angular deflections for the control surfaces

• Output Processing (OP)
Computing of additional data and performing interface scheduling; Generation of
system-specific and physical interface dependent output buses

128

Chapter 4: Flight Control System Automation

FCC

Command Control Information

Input Processing and Monitoring

System Automation

Automatic Takeoff and Landing

Trajectory Generation

Inner Loop

Trajectory Control

Auto Flight Control System

Output Processing

TG

SW
-

TA

SW
-

IL

SW
-

AC

SW
-

Figure 4.5: FCC System Architecture

129

4.1 System Architecture

4.1.2.1 Input Processing and Monitoring

The Input Processing and Monitoring (IPM) is not a flight control module, but the first
part of the flight control algorithm of the FCC, where all data, that is received from the
physical interfaces is processed. This data includes commands from FO in the GCS or
the EP, sensor data from the INS, MAG, ADC, or others, and information from other
aircraft systems like control surface positions.

Objectives of the IPM include integrity evaluation, sensor filtering, signal selection
for redundant information, as well as compiling of system-specific buses. The integrity is
evaluated by Cyclic Redundancy Checks (CRCs), signal ranges, and analyzing the data
over time. Depending on the signal, the data is only forwarded to the other modules if
the tests are passed or validity indications are added to the signal buses.

Depending on the type and source of the signal, some sensor data is also filtered or
altered in other ways. High-frequency noise is removed from low-quality signals, while
coordinate system transformations are applied to others to provide coherent data. Addi-
tionally, an "age counter" is added to various signals. Many signals are not updated every
10ms, the cycle time of the FCC, therefore a counter is added that indicates the elapsed
cycles since the last update.

In the case of SAGITTA, where multiple data links are used, the IPM is also selecting
the available or most recent available source, for redundantly available data. All data is
then grouped and transformed from physical interface-driven sensor definitions to flight
control-driven generic buses. Additionally, a monitoring, fault detection, and diagnosis
module is used to provide integrity information [KH2015]. Those are then forwarded to
the six flight control modules, which are introduced in the following.

4.1.2.2 System Automation

The System Automation (SA), is administering other flight control modules, with respect
to commands from the users, based on sensor availability or data integrity. In the fol-
lowing, SA, instead of FCSA, will be used to denote the specific flight control module.
Figure 4.5 shows a simplified version (feedback and advanced flow information is omitted)
of the interaction between the SA and the other flight control modules of the FCC. Com-
mands are indicated by solid lines, switch controls by dashed lines, and other information
by dotted lines. In part, this constitutes contribution C2.1 - Strategy for switchability
between various modes on different authority levels, enabling experimental automation.

The SA is controlling the command flow throughout the FCC using injection switches.
The Trajectory Generation - Switch (TG-SW), Trajectory Control / Auto Flight Control
System - Switch (TA-SW), Inner Loop - Switch (IL-SW), and Actuator - Switch (AC-SW)
are used to change the inputs and redirect the output of flight control modules. Since the
SA has a command and a control input to those switches, the alternative input can also
be generated by the SA itself. Those switches are explained in more detail in Section 4.5.

130

Chapter 4: Flight Control System Automation

4.1.2.3 Automatic Takeoff and Landing

The Automatic Takeoff and Landing (ATOL) module is performing the first and last part
of an automatic mission. It is responsible for controlling the aircraft during the transition
from ground to air and vice versa, as well as while in close ground proximity. The module
is split into two parts handling the takeoff and landing separately.

The ATOL module of SAGITTA and its parts for takeoff and landing are based on a
phase-breakdown of both maneuvers. They use a state machine-based approach, which in
turn utilizes the existing guidance and control modules to perform fully automatic takeoff
and landing. The module and its phases include various aspects of the methodology
presented in Chapter 3 of this thesis. For all connecting phases, that is the beginning and
end of both the takeoff and landing, there are respective modes within the SA, which allow
for continuous automatic operation. [KH2016b, KH2016a, KH2017b, KH2017c, KH2017a]

The ATOL module of the DA 42 and their takeoff and landing implementation is
also based on a phase breakdown. However, the phases, transitions, and utilized flight
control loops differ slightly. Due to the fact that flight test data was available from
previously conducted manual takeoffs and landings the controller could be designed close
to the behavior of the pilot. Additionally, based on various manual flight tests, decrab
phases are integrated into the landing controller to allow for non-ideal landing situations.
[MH2017, MKHS2017, MSH2017, ZMW+2017]

The ATOL module is the only flight control module, besides the SA, which has a
connection to all other modules. Due to this special case, there is no injection switch for
ATOL but a close collaboration of both modules during takeoff and landing to cover a
variety of cases. This is described in the respective parts of Section 4.2 and Section 4.3.

4.1.2.4 Trajectory Generation

The Trajectory Generation (TG) module is an online three-dimensional trajectory genera-
tion system. It is based on the Global Positioning System (GPS) and has two main tasks.
On the one hand, it needs to determine a flight path that is attainable by the aircraft
and at the same time fulfills constraints like desired altitude, course angle, and speed.
On the other hand, it needs to compute the error dynamics between the aircraft and the
trajectory using relative kinematics. The calculations are based on flight plans, which
consist of various waypoints. Besides their GPS position, those points include additional
parameters like altitude and speed, different ARINC 424 leg types [AEC2011] which
are oriented on a subset of RTCA DO-236C [RTC2014], different transitions between
those like fly-by and fly-over, end of flight plan indications, as well as loiter definitions.
[MSH2015, SMH2015, SPS+2016, SH2017, GSL+2018]

The TG switch is used to switch between three basic types of inputs. Those consist
of commands from the SA, commands from the ATOL module, and default inputs for
deactivating the TG. The switch is described in more detail in Subsection 4.5.1.

131

4.1 System Architecture

4.1.2.5 Trajectory Control

The Trajectory Control (TC) module is tightly connected to the previously introduced
TG. The controller is derived based on the nonlinear dynamic inversion of second-order
nonlinear error dynamics between a specified trajectory and the path of the aircraft.

The TC module is designed to drive the deviations in the lateral and vertical plane to
zero and therefore can be used by multiple higher-level modules like TG and ATOL.

It uses various inputs from its adjacent module, which include the deviations be-
tween the aircraft and the desired trajectory, the corresponding time derivatives of these
deviations, desired trajectory angles, angular rates, angular accelerations, and desired
kinematic acceleration at the trajectory reference point.

The TC and also the AFCS module provide normalized specific force commands in
the kinematic frame with respect to unaccelerated flight, i.e. curvature commands in each
axis, to the next lower module.

Even though the controller is able to control the kinematic velocity as well, the function
is not utilized because the airspeed is controlled by the next loop. [SGGH2018, SH2017,
SSK+2016, SH2014]

4.1.2.6 Auto Flight Control System

The Auto Flight Control System (AFCS) has basically two operational modes. On the
one hand, it can utilize the force commands from the TG and on the other hand, it uses
the desired altitude, heading, and speed commands to provide basic autopilot functions.
When the aircraft is following a three-dimensional trajectory the AFCS calculates a body-
fixed load-factor and roll-angle command from the specific-force commands of the TG.
When in "autopilot mode" the AFCS performs a dynamic inversion of the flight path
dynamics and uses reference models to compute the commands for the IL. Commands
are separated into vertical, lateral, and energy. Vertical commands include pitch-angle,
vertical-speed, flight-path-angle, and altitude, while lateral commands include roll-angle,
heading, and track.

Additionally, an Autothrottle (ATHR) is incorporated, which is used to control the
airspeed. The ATHR loop uses kinematic measurements and an engine model to control
the airspeed. However, the "autopilot mode" as well as the ATHR control loop require
GPS to work properly. For increased robustness, a backup law is also implemented that
drops this requirement, albeit with reduced performance. The ATHR module is able to
control different speeds like Indicated Air Speed (IAS) commands from the FO, speeds
that are set via the waypoints, specific throttle percentages, or even the speed with respect
to the ground, i.e. ground speed. [KSH+2017, KHB+2017, KGSH2016, KSB+2016]

The TA switch is used to control the input of both, the TC and AFCS simultaneously.
It has five different switch positions, which are described in more detail in Subsection 4.5.2.

132

Chapter 4: Flight Control System Automation

4.1.2.7 Inner Loop

The Inner Loop (IL) is the most aircraft-specific flight control module because it includes
the control allocation and delivers direct commands to the actuators.

In the case of SAGITTA, the IL is a Control and Stability Augmentation System
(CSAS) because the aircraft requires stability-enhancing feedback. It consists of three
parts which are the longitudinal and lateral controller as well as the control allocation
module. Depending on the control modes it follows commands from the control loops
or from the EP. The longitudinal controller has two different command inputs, a load-
factor command, and a pitch-angle command. The outer flight control loops utilize the
load-factor command while the EP can directly command the pitch-angle. The lateral
controller provides a bank-angle command, which is used in all modes. The assignment
of the elevator, aileron, and rudder commands to the eight control surfaces of SAGITTA
is performed within the control allocation. [BWB+2012, GH2012, BGHH2014]

In the DA 42 , due to the inherent stability of the aircraft, a different IL is used to
mainly archive consistent command following over the entire flight envelope. It uses the
same load-factor and roll-angle command but includes an additional lateral load-factor
as input. The latter is normally set to zero but can be utilized in situations like cross-
wind landings, where a decrab maneuver is necessary. Additionally, the internal feedback
structure of the DA 42 IL is completely different from the one in SAGITTA. [GHSM2021]

The IL is highly dependable on the aircraft’s configuration. This is founded in the
aircraft dynamics as well as surface architectures and corresponding allocation. However,
this also means that all other loops are not at all or much less dependent on the aircraft.
This increases the general validity of the overall concept and is one of the strengths of
this modular and cascaded flight control loop approach.

The injection switch for the IL, which is controlled by the SA, utilizes eight different
sets of commands which are explained in Subsection 4.5.3.

4.1.2.8 Output Processing

The Output Processing (OP) module is used to generate the hardware-specific interface
buses for the ACEs, ECUs, and others. Additionally, it calculates complementary data
like CRCs, which is not required within the cascaded control loop, but necessary before
sending data on the physical interface. Furthermore, it can be used for scheduling or
splitting messages over different time slots. That is necessary if the physical interface is
not capable of transferring all data within one cycle. This lowers the data rate, e.g. from
100Hz to 50Hz, but allows for twice as many variables to be transmitted.

Its inputs are controlled by the SA via the AC-SW. It can be used to prevent the
flight control loops from accessing the actuators in special cases, which are explained in
Subsection 4.5.4.

133

4.1 System Architecture

4.1.3 Software Module Architecture

After previously introducing the FCC system architecture and all flight control modules,
in the following, an explanation of the software architecture of the module itself is given.
An overview of how each flight control module is integrated within the FCC software is
depicted in Figure 4.6.

They all consist of an Input Handling and Output Handling part as well as the Core
Module itself. This architecture is used to enable the use of modules in various projects
and system architectures. Each project has aircraft-specific sensors, as introduced in
Subsection 4.1.1, and therefore also aircraft-specific buses with signals that might not
exist in other projects.

Therefore, project-specific buses are translated into module-specific buses in the Input
Handling block. This part of the software module needs to be designed and adapted for
each system architecture. Additionally, to translating from aircraft to module-specific
buses, all signals that are irrelevant for the specific module are not copied, thus reducing
the number of variables within each module. On the other side, the module-specific buses
are translated back to the aircraft-specific buses. This enables generic modules, that can
be used in various projects, without adapting the module itself.

The SA and other modules as well, use enumerations for various modes and variables
within the module itself. As described in Subsection 3.3.4, they are used to pass state
information through all levels of the multi-level state machine. However, due to compat-
ibility issues, they are not used outside of the respective software module. To be able
to pass the information from one module to another, they are therefore converted from
integers to enumerations in the Input Handling and from enumerations to integers in the
Output Handling.

Software Module

Input
Handling

Core
Module

Output
Handling

internalexternal

Figure 4.6: Software Module Architecture

134

Chapter 4: Flight Control System Automation

4.2 Operation Modes
This section describes the different modes that are available within the SA. This includes
the operation mode itself, their respective level, and possible superposition options. Fig-
ure 4.7 depicts a hierarchical overview of them. In total, this includes 15 operation modes,
distributed across four levels and four superposition options. This constitutes the first
part of contribution C2.2 - Operational management concept for multi-user experimental
OPVs and UAVs, increasing mode awareness.

Operational

Flight Operator

External Pilot External Pilot Link Loss

Parking

Flight Operator Link Loss

Automatic Takeoff and Landing

TO AbortTakeoff Go AroundLanding

Standby

GroundBankHeadingGPS1

1List Option

Ground AirborneGround Airborne

2Altitude Superposition 4Loiter

Level 1 Level 2 Level 3 Level 4

Experimental Build in Test

Return to Base

Heading

3Speed Superposition

Medium-Level
Control4

High-Level
Control2,3,4

GPS1,2,3

Figure 4.7: Mode Level Overview

135

4.2 Operation Modes

4.2.1 Level 1

Level 1 of the SA includes three basic modes of operation: Standby (STB), Experimental
Build-in-Test (XBIT), and Operational (OPL).

4.2.1.1 Standby

Standby (STB) is used, whenever the aircraft is not controlled automatically. Depending
on the use case, this can happen in different scenarios.

In the case of a UAV, this can only happen during the preparation of the aircraft on
the ground. This basic statement leads to a high effort for design and implementation. It
has to be assured that the mode cannot be activated, while the UAV is airborne or during
takeoff and landing on the ground, as this would lead to the loss of the aircraft.

When using the SA in an OPV, STB can be active when being on the ground as well as
when being airborne. While in the air, it covers the time when the pilot is controlling the
aircraft. In this case, the Flight Control System (FCS) is powered, but not controlling the
aircraft and the pilot is using the classical mechanical control system, with the clutches
being open.

4.2.1.2 Experimental Build-in-Test

The Experimental Build-in-Test (XBIT) is used for integration tests, hardware tests,
and other non-operational tests. Direct-law refers to a control method, where the stick
deflection of the pilot is directly mapped to the deflection command of the surface. For
the UAV demonstrator SAGITTA, a control in direct-law is not possible, due to the shape
of the aircraft. Nevertheless, a direct-law is implemented, which can be used in XBIT .
This allows for pre-flight tests of the complete transmission from pilot input and sending
the data to the aircraft over calculating surface positions within the FCC and sending
them to the actuators to the correct operation of the actuators and the movement of the
respective control surfaces.

Due to the experimental nature of this test mode, it has to be assured, just like with
STB, that it is not inadvertently activated during normal operation.

4.2.1.3 Operational

The default mode on Level 1 is Operational (OPL). It is the parent mode for all other
modes when the FCS is active. When used in a UAV environment this mode is automat-
ically activated after power on, if no other command, for either STB or XBIT , is present.
This is done to mitigate the effects of in-flight power resets and to return to normal op-
eration as soon as possible. In an OPV use case, such effects are not that critical. The
following subsections describe the child modes of OPL.

Handling of the aircraft on the ground, which requires either STB or XBIT , is not
influenced since both modes can be activated via the respective command.

136

Chapter 4: Flight Control System Automation

4.2.2 Level 2

Level 2 of the SA deals with the distinction between the two basic types of operators,
EP and FO, and their respective malfunction strategies for link loss. The four modes on
Level 2 are introduced in the following.

In either case, the contingency mode is automatically activated if a link loss is detected.
However, the normal mode is not automatically reactivated if the link is restored. Such
an reactivation has to be triggered by the respective pilot.

4.2.2.1 Operational - EP

OPL_External-Pilot (OPL_EP) is the normal operation mode for the EP, which is active
when the EP is controlling the aircraft and no link loss is detected. The EP can take over
control of the aircraft by using a switch on the remote control or by pressing a button on
a joystick, depending on the use case.

4.2.2.2 Operational - EP Link Loss

OPL_External-Pilot Link Loss (OPL_EPLL) is automatically activated by the SA if a
link loss is detected while the EP is controlling the aircraft. Depending on the configura-
tion this decision is based on different data links and information about their integrity and
availability. In the case of SAGITTA, the EP has a separate data link, therefore OPL_
EPLL is activated if this link fails. In the case of the DA 42 , the EP can either be onboard
the aircraft, thus not using a data link, or in the GCS using the SDL. Depending on the
circumstances this mode is activated based on the integrity of the data link or inhibited
if an onboard EP is controlling the aircraft. Furthermore, it can also be suppressed, by
overwriting data link integrity information, if the onboard pilot takes over in case of an
EP link loss.

4.2.2.3 Operational - FO

Similar to OPL_EP, OPL_Flight-Operator (OPL_FO) is the normal operating mode for
the FO, which is active when the FO is controlling the aircraft and no link loss is detected.
The FO can take over control, by pressing a button in the GCS. Whoever, EP or FO,
presses the button last is in control of the aircraft. In the rare event of a simultaneous
activation, the EP is given priority.

4.2.2.4 Operational - FO Link Loss

Just like OPL_EPLL, OPL_Flight-Operator Link Loss (OPL_FOLL) is automatically
activated if the FO is controlling the aircraft and a link loss is detected. In the case of
SAGITTA, this decision is based on two data links, FDL and MDL. Therefore, this mode
is only entered if both data links fail. Within the DA 42 , it is only based on the SDL.

137

4.2 Operation Modes

4.2.3 Level 3

Level 3 of the SA is used throughout all Level 2 modes. On this level, the modes are
mainly divided based on the flight phase or operational objective. Due to the high number
of modes on this level (not in one state machine), they are introduced based on their Level
2 parent mode.

4.2.3.1 Operational - EP

The Level 2 mode OPL_EP contains two Level 3 modes, OPL_EP_Ground (OPL_
EP_GND) and OPL_EP_Air (OPL_EP_AIR). Depending on the airborne status of
the aircraft, one or the other is automatically selected. This state can be calculated in
different ways. The SA has an internal calculation, based on Weight on Wheel (WoW)
sensors. It can also use an external signal, which can be calculated by another control
module within the FCC or by an external system like a navigation system.

Ground The OPL_EP_GND mode is designed for the EP to control the aircraft during
takeoff or landing roll. In the case of SAGITTA, a specific direct-law-like control mode
with rate damping is used. When used in an OPV like the DA 42 different control laws
are used depending on the location of the EP. If the EP is onboard the aircraft a direct-
law is used for control, while a higher-level control law is used when the EP is in the GCS
to account for the higher latency introduced by the data link.

Airborne OPL_EP_AIR is used when the EP is controlling the aircraft while airborne.
Similar to the OPL_EP_GND mode, different control strategies are used depending
on the platform. While SAGITTA uses a rate-command-attitude-hold control law with
separated thrust command, the DA 42 uses direct-law or rate-command-attitude-hold
when the EP is onboard the aircraft and a curvature-law when the EP is in the GCS.

4.2.3.2 Operational - EP Link Loss

Just like OPL_EP, OPL_EPLL contains two child modes, OPL_EPLL_Ground (OPL_
EPLL_GND) and OPL_EPLL_Air (OPL_EPLL_AIR), which depend on the same
airborne status of the aircraft.

Ground If a link loss occurs during takeoff or landing, while the aircraft is still on the
ground, OPL_EPLL_GND is automatically activated. In this mode the control surfaces
are centered, thrust is set to idle, and brakes are applied.

Airborne OPL_EPLL_AIR will be automatically activated if a link loss takes place in
the air while the EP is controlling the aircraft. In this case, the SA will store the current
heading and use it as a command alongside a predefined (safe) altitude and speed.

138

Chapter 4: Flight Control System Automation

4.2.3.3 Operational - FO

The Level 2 mode OPL_FO contains five Level 3 modes, OPL_FO_Parking (OPL_
FO_PARK), OPL_FO_Medium-Level-Control (OPL_FO_MLC), OPL_FO_High-
Level-Control (OPL_FO_HLC), OPL_FO_Return-to-Base (OPL_FO_RTB), and
OPL_FO_Automatic Takeoff and Landing (OPL_FO_ATOL). Those can be selected
by the FO but are checked for availability and can be automatically reverted in case of
certain malfunctions.

Another mode, which is used by the automation but not visible to the operator
is OPL_FO_ATOL-Unconfirmed (OPL_FO_ATUC). It is explained in Subsubsec-
tion 4.3.3.2.

Parking OPL_FO_PARK is used either before takeoff or after landing. While prepar-
ing for takeoff or waiting for clearance this mode can be used to wait. Similarly, it can be
used after landing, to shut down the aircraft from a defined mode. OPL_FO_PARK is
similar to OPL_EPLL_GND because the surfaces are set to zero deflection, the thrust
is set to idle and the brakes are applied.

Medium-Level-Control If the FO wants to control the aircraft while airborne with
respect to autopilot commands, OPL_FO_MLC can be activated. A commonly used set
of commands for all axes is altitude, heading, and speed. Other sets are also possible,
which are described in the relevant sections.

High-Level-Control The mode OPL_FO_HLC provides GPS-based waypoint flight.
It can be selected by the FO if GPS is available. Consequently, it will automatically
be disabled if a GPS loss occurs. In this case, OPL_FO_MLC will be activated again.
During OPL_FO_HLC the GCS is required to use the currently measured altitude,
heading, and speed of the aircraft and forward them as commands. Therefore the aircraft
will continue in a straight and level flight if an automatic downgrade to OPL_FO_MLC
is necessary, with the benefit of synchronized commands.

Return-to-Base One of the operational contingency modes is OPL_FO_RTB. It can
be used for a quick return of the aircraft to the base without manually changing the
heading or selecting an appropriate waypoint list. The automatically determined child
modes are described in Subsubsection 4.2.4.1.

Automatic Takeoff and Landing If takeoff or landing should be executed by the
FCS, OPL_FO_ATOL must be active on Level 3 . The aircraft will then perform an
automatic takeoff or landing, based on the selected child mode. Those are explained in
Subsubsection 4.2.4.2.

139

4.2 Operation Modes

4.2.3.4 Operational - FO Link Loss

The Level 2 mode OPL_FOLL contains four contingency Level 3 modes, OPL_FOLL_
GPS (OPL_FOLL_GPS), OPL_FOLL_Heading (OPL_FOLL_HDG), OPL_FOLL_
Bank Angle (OPL_FOLL_BANK), and OPL_FOLL_Ground (OPL_FOLL_GND).

GPS If a link loss happens while the FO is controlling the aircraft, the SA automatically
switches to OPL_FOLL_GPS . In this mode, the aircraft flies along a predefined GPS-
based link loss waypoint list, which leads it to its home base.

This is done from all modes regardless of control level, e.g. OPL_FO_MLC or OPL_
FO_HLC , due to the better performance in this mode.

Heading If a GPS loss occurs, while the aircraft is in OPL_FOLL_GPS , it automati-
cally switches to OPL_FOLL_HDG. Since waypoint-based flight is no longer possible, a
heading towards to home base is used. While in OPL_FOLL_GPS , the SA continuously
calculates the heading based on the current position. When switching to OPL_FOLL_
HDG, the last calculated heading is used, alongside predefined values for altitude and
speed. Without disturbances, this will lead the aircraft to the home base as well and in
the event of interference, it at least results in reducing the distance and thus increasing
the probability of reestablishing a connection to the aircraft.

Resolving the GPS loss does not lead to a re-activation of OPL_FOLL_GPS , due to
the fact that the used waypoint lists can only be started at the first point. Therefore, this
could lead to an endless switching between those two modes which in turn would not bring
the aircraft any closer to the home base. Nevertheless, if the GPS loss can be resolved
during OPL_FOLL_HDG, the heading to the home base is updated, which mitigates the
effects of disturbances and is described in more detail in Subsubsection 4.2.4.1.

Bank If a link loss occurs after a GPS loss, OPL_FOLL_BANK is automatically ac-
tivated, because OPL_FOLL_HDG cannot be used since the position of the aircraft is
unknown. In this mode, a predefined altitude, bank-angle, and speed are used to force
the aircraft into a slow upward spiral, thus increasing the possibility of the link being
reestablished. Eventually, this leads to a circular pattern at the defined altitude as an
upper limit. If the GPS loss is resolved an automatic transition to OPL_FOLL_GPS is
executed.

Ground If a link loss occurs, while the FO is in command and the aircraft is on the
ground, OPL_FOLL_GND is automatically activated. The only possible situation, where
this can happen, is during OPL_FO_PARK . Nevertheless, it is necessary to have this
mode, because there is no other suitable OPL_FOLL child mode. Similar to OPL_
EPLL_GND, the control surfaces are centered, the thrust is set to idle and the brakes
are applied.

140

Chapter 4: Flight Control System Automation

4.2.4 Level 4

The only modes that are directly controlled by the SA on Level 4 are child modes of
OPL_FO_RTB. The other modes are part of ATOL but are also described here to give
a better overview of the functionality and close interaction of the SA and ATOL.

4.2.4.1 Operational - FO - RTB

OPL_FO_RTB is one of the operational contingency modes, which can be used by the
FO to return the aircraft to its home base, without manual intervention, thus reducing
workload in abnormal situations. It has two Level 4 child modes: OPL_FO_RTB_GPS
(OPL_FO_RTB_GPS) and OPL_FO_RTB_Heading (OPL_FO_RTB_HDG).

GPS OPL_FO_RTB_GPS is activated if GPS is available when the FO activates
OPL_FO_RTB. This mode is similar to OPL_FOLL_GPS and also uses a GPS-based
waypoint list to guide the aircraft to its home base.

If GPS is not available OPL_FO_RTB is rejected by the SA because neither waypoints
can be used nor can a valid heading be calculated. This can only be the case if the
automation is in OPL_FO_MLC and in this case, it will stay in this mode.

Heading A GPS loss is tolerated during OPL_FO_RTB_GPS , resulting in an auto-
matic transition to OPL_FO_RTB_HDG. Just like OPL_FOLL_HDG, it uses a calcu-
lated heading towards the home base and a predefined altitude and speed. Consequently,
a re-activation of OPL_FO_RTB_GPS is also not possible due to the same reasons dis-
cussed in Subsubsection 4.2.3.4. However, here as well as in the other contingency modes,
the heading is updated if GPS becomes available again.

In Figure 4.8 three different scenarios, with the influence of wind, are shown. Pointing
the aircraft’s nose towards the destination is also referred to as homing in aerial navigation.

Wind

GPS HDG with Updates HDG

Wind WindWind

Figure 4.8: Homing

141

4.2 Operation Modes

4.2.4.2 Operational - FO - ATOL

Due to the inherent special environmental conditions, the functionality for automatic
takeoff and landing is integrated into a separate flight control module. It has its own
state machine and different modes, which also utilize the underlying control modules.
[KH2016a, KH2017a]

The SA and ATOL module are separate systems but are tightly interconnected. Due
to this fact, the SA mirrors the modes to provide a uniform interface to the operator.
The modes are self-explanatory and therefore only briefly introduced here to provide the
necessary background to understand the reaction from the SA.

Takeoff OPL_FO_ATOL_Takeoff (OPL_FO_ATOL_TO) can be activated by the
FO if the aircraft is on the ground, on the runway, within certain heading limits, and
inside a few other restrictions. The aircraft then performs a fully automatic takeoff,
without any necessary intervention from the pilot up to a defined waypoint.

Takeoff-Abort If a malfunction is detected during OPL_FO_ATOL_TO the respec-
tive contingency mode, OPL_FO_ATOL_Takeoff-Abort (OPL_FO_ATOL_TOABRT)
is automatically activated. This mode can also be triggered directly by the FO, in case
of an event that cannot be detected by the automatic system. In this mode, the aircraft
is stopped as fast as possible on the runway.

If the aircraft has exceeded the takeoff decision speed or is already airborne, the acti-
vation of OPL_FO_ATOL_TO is inhibited. In this case, the FO has to use alternative
modes to return to the airport as soon as possible.

Landing Towards the end of a mission, OPL_FO_ATOL_Landing (OPL_FO_
ATOL_LAND) can be activated by the FO, if the aircraft is in a certain corridor and
flying towards the runway. The alignment with the runway, capturing of the glide slope
towards the ground, and landing itself are then performed fully automatically.

Go-Around OPL_FO_ATOL_Go-Around (OPL_FO_ATOL_GOARND) is auto-
matically triggered by the system or can be alternatively activated by the FO in the
GCS. In this mode, the landing attempt is aborted and a climb towards a safety altitude
is initialized.

During OPL_FO_ATOL the automatic link loss procedure of the SA is inhibited.
This makes the automatic activation of OPL_FO_ATOL_TO and OPL_FO_ATOL_
GOARND possible in the first place because otherwise, the SA would overwrite those
settings as soon as a link loss occurs. At the end of either of those OPL_FO_ATOL
specific contingency modes, the SA and its general contingency maneuvers automatically
take back control of the aircraft.

142

Chapter 4: Flight Control System Automation

4.2.5 Additional and Superposition Options

Depending on the currently active mode, special options can be used, which are explained
in the following and marked in superscripts in Figure 4.7. They are part of OPL_FO_
MLC , OPL_FO_HLC , OPL_FO_RTB_GPS and OPL_FOLL_GPS .

4.2.5.1 List Option

Depending on the shape of the operational area it can be beneficial to use more than one
list for a quick return of the aircraft. Therefore, the List Option can be used in OPL_
FO_RTB_GPS and OPL_FOLL_GPS . During normal operation, the FO can choose
between two different lists as required by the area and/or position of the aircraft. In case
one of the modes gets activated the currently chosen list is used to guide the aircraft to
its home base.

An example, where different lists are useful is shown in Figure 4.9. It depicts the
runway to the left of a keep-out area, like a city, and the mission’s objective to the right.
In this case, one list starts in the middle of the left area, while the other starts on the right
side. By switching to the correct list, depending on the current position of the aircraft,
it can be assured, that the keep-out area is not violated in case of a link loss.

4.2.5.2 Altitude Superposition

When OPL_FO_HLC or OPL_FO_RTB_GPS is active, Altitude Superposition can be
enabled. In this case, the vertical guidance is switched from waypoint-based to altitude-
based. Therefore, the altitude command, as used in OPL_FO_MLC , is applied for
vertical control of the aircraft.

4.2.5.3 Speed Superposition

Similar to Altitude Superposition, Speed Superposition is also possible in OPL_FO_HLC
or OPL_FO_RTB_GPS . Both options can be used separately or together, the latter
leaving waypoint-based guidance only active for the lateral motion of the aircraft. In this
case, the speed command, as used in OPL_FO_MLC , is applied to the ATHR.

O
1

2

Figure 4.9: Mission Area

143

4.2 Operation Modes

4.2.5.4 Loiter

If the FO wants to "pause" the mission, a holding pattern can be used in OPL_FO_MLC
and OPL_FO_HLC at any time during the mission, by activating Loiter . An overview
of the six modes within the Loiter Automation (LA) and their allocation to the Level 3
modes is depicted in Figure 4.10.

Since those two modes use different control levels, autopilot commands for the former
and GPS-based waypoints for the latter, depending on the active mode, different child
modes of Loiter are activated.

Loiter_Bank (LTR_BANK) is activated when requiring a holding pattern within
OPL_FO_MLC . In this case, the loiter pattern is based on a predefined bank-angle.
Other command values, e.g. altitude and speed, are not modified and can be adjusted by
the FO. An exit from this mode is executed immediately.

On the other hand, Loiter_GPS (LTR_GPS) is activated, when currently in OPL_
FO_HLC . This mode uses a GPS-based holding pattern. Since both, Altitude Superposi-
tion and Speed Superposition are available in OPL_FO_HLC , they are also available in
addition to LTR_GPS . The entry and exit to this mode are done in a deterministic way
using Loiter_Unconfirmed (LTR_UNCO), Loiter_Will Exit (LTR_WIEX), and Loiter_
End-of-Flight-Plan (LTR_EoFP).

This functionality was developed as an encapsulated automation within the SA. It
reflects part of contribution C2.3 - Automatic operational and malfunction contingency
procedures for continuous operation in non-nominal circumstances and is described in
more detail in Section 4.4.

Off

Bank GPS

Unconfirmed

Will-Exit

End-of-Flight-Plan

MLC HLC

Figure 4.10: Loiter Modes - Overview

144

Chapter 4: Flight Control System Automation

4.3 Transition Conditions and Actions
This section describes the transition conditions and actions between all operational modes
on the different levels as introduced in Section 4.2. It is associated with the second part
of the contribution C2.2 - Operational management concept for multi-user experimental
OPVs and UAVs, increasing mode awareness.

All parts of this section include the state machine of the respective level, the interface
table, and the transition matrix. In the state machine, the conditions and actions are
encapsulated within Stateflow boxes and therefore not visible. They are explicitly listed
in Appendix D. The interface tables present an overview of all input and output variables
used by the state machine. This includes their name, direction, datatype, and range. The
transition matrix shows which transitions in the state machine are possible.

A disassembled level view, where each line represents one state machine with its re-
spective modes is depicted in Figure 4.11.

Flight Operator

Operational

External Pilot

External Pilot Link Loss

Flight Operator Link Loss

Return-to-Base

OperationalStandby Experimental Build-in-Test

Flight OperatorExternal Pilot Flight OperatorExternal Pilot
Link LossLink Loss

Ground Airborne

Ground Airborne

Parking Medium-Level-
Control

High-Level-
Control

Automatic Takeoff
and Landing

Return-
to-Base

GroundBankHeadingGPS

HeadingGPS

Figure 4.11: Mode Level Overview - Disassembled

145

4.3 Transition Conditions and Actions

Since a direct assignment from parent to child modes is not possible in this represen-
tation (c.f. Figure 4.7), the respective parent mode is shown above each line for better
comprehension of the respective operation modes.

The transition conditions and actions between those modes on each level are described
in this section. Due to the decomposition, enabled by the generic design, implementation,
and testing methodology described in Chapter 3, significantly fewer conditions and actions
have to be defined. This is also evident by the fact, that there are seven state machines,
but with fewer (a maximum of five) modes.

In the following, all transitions are denoted in a "from→to" notation. If a transition
is used multiple times, with multiple "from" or "to" states that part is denoted as "x".

4.3.1 Level 1

The Level 1 of the SA includes Standby (STB), Experimental Build-in-Test (XBIT),
and Operational (OPL), which are the three basic operational modes of the aircraft.
As explained in Subsection 4.2.1, OPL is used for normal operation, XBIT for special
procedures, and STB in all other cases.

The Stateflow state machine is depicted in Figure 4.12. It shows the three modes
and possible transitions. The used input and output variables are listed in Table 4.1.
Additionally, the possible transition and their respective names are shown in Table 4.2.

ta

tc XBIT

STB

OPL

[tc.xbit_stb()]

{ta.stb_xbit();}

[tc.stb_xbit()]
2

{ta.stb_opl();}

[tc.x_stb()]
1

{ta.x_stb();}

 {ta.init_opl();}

2

[tc.stb_opl()]
1

[tc.x_stb()]

{ta.x_stb();}

Figure 4.12: Level 1 - State Machine

146

Chapter 4: Flight Control System Automation

Table 4.1: Level 1 - Interface

Name Direction Datatype Range
stb_flg input boolean 0, 1
xbit_flg input boolean 0, 1
level1_lgx output enum 0, 1, 2, 3
recovery_flg output boolean 0, 1

At initialization, two transitions, init→stb and init→opl are possible. The transition
to STB is taken if stb_flg is true. Otherwise, OPL will be active. This is a very
critical transition, which is most relevant to UAV operation. During the startup proce-
dure, a device is used, which is able to send a specific message that only includes this
signal. Therefore, it is ensured, that it is never received in flight. This is important
for being robust against an in-flight power reset, where the FCC automatically needs
to get to its operational state. Since this does not reflect a normal startup procedure,
the recovery_flg is set to true if the transition to OPL is taken. Additionally, the
level1_lgx is set to its respective values of one for STB and three for OPL, depending
on the active state.

Assuming STB is active, the normal startup procedure would continue with stb→opl.
This transition is activated if stb_flg is set to false. In this case, OPL is activated,
the level1_lgx is set accordingly and the recovery_flg is set to false. The latter
is done to revert changes in case it was set to true beforehand, due to an abnormal
initialization sequence.

From OPL the transition to STB, opl→stb, is taken if the stb_flg is set to true

again. This does not have any effect on the recovery_flg.
For testing purposes, it is possible to activate XBIT from STB. However, this is not

directly possible from OPL due to safety concerns. To activate XBIT , transition stb→xbit
needs to be satisfied. This can be done by setting xbit_flg to true. In this case, XBIT
is activated and the corresponding level1_lgx value of two is set.

A return to STB is possible by satisfying xbit→stb. When xbit_flg is set to false,
the transition to STB is executed. Due to the same reasons as above a direct change from
XBIT to OPL is not possible.

Table 4.2: Level 1 - Transition Matrix

To
OPL STB XBIT

Fr
om

init init→opl init→stb n/a
OPL - opl→stb n/a
STB stb→opl - stb→xbit
XBIT n/a xbit→stb -

147

4.3 Transition Conditions and Actions

4.3.2 Level 2

The Level 2 of the SA includes the child modes of OPL. They consist of a mode for the
EP and the FO, OPL_External-Pilot (OPL_EP) and OPL_Flight-Operator (OPL_FO),
as well as their respective link loss modes, OPL_External-Pilot Link Loss (OPL_EPLL)
and OPL_Flight-Operator Link Loss (OPL_FOLL).

The Stateflow state chart, with those four modes, is depicted in Figure 4.13 and the
necessary inputs are listed in Table 4.3. It can be seen, that only one output is calculated
in this state machine, which reflects the current state in enumerations from one to four.
This output is set to the respective enumeration on entering the state, by the transition
actions located before the states. An overview of all possible transitions is shown in the
transition matrix in Table 4.4. Those are also visible in Figure 4.13 and will be discussed
in the following.

OPL_FOLL

OPL_EPLL

OPL_EP

ta

tc

OPL_FO

{ta.fo_foll();}

[tc.fo_foll()]
2

[tc.x_ep()]

1

[tc.x_fo()]
2

{ta.x_fo();}

[tc.x_fo()]
1

[tc.x_ep()]
1

2

[tc.x_fo()]
1

{ta.x_fo();}

{ta.x_ep();}

2

[tc.x_fo()]
2

[tc.x_ep()]
1

[tc.ep_epll()]
2

{ta.x_ep();} {ta.ep_epll();}

[tc.x_ep()]
1

Figure 4.13: Level 2 (OPL) - State Machine

148

Chapter 4: Flight Control System Automation

Table 4.3: Level 2 (OPL) - Interface

Name Direction Datatype Range
fo_rfg input boolean 0, 1
ep_rfg input boolean 0, 1
foll_flg input boolean 0, 1
epll_flg input boolean 0, 1
atol_mode_lgx input enum 40, 41, 42, 43, 44
atol_takeoff_compl_flg input boolean 0, 1
atol_toabort_compl_flg input boolean 0, 1
atol_landing_compl_flg input boolean 0, 1
atol_goaround_compl_flg input boolean 0, 1
level2_lgx output enum 0, 1, 2, 3, 4

This chart will be active, whenever the Level 1 mode OPL is activated. This also means
the initialization, e.g. default transition, is performed again and the state machine doesn’t
continue from its last known state. When entering any mode the value for level2_lgx
is set within the respective transition action.

Throughout the state chart, consistent prioritization is used. Whenever link loss
modes are considered, their priority is the lowest. This is due to the unlikely event of a
simultaneous link loss and control takeover by either EP or FO. In this case, the human
input is prioritized. An example situation would be if the aircraft is controlled by the EP
and a link loss occurs. If at this exact moment the FO wants to take over control as well,
the state machine will go to OPL_FO instead of OPL_EPLL.

Additionally, the EP always has a higher priority than the FO, solving another unlikely
event of a simultaneous command request from both users from a link loss mode. This
could be the case if a link loss has occurred and the aircraft is flying in OPL_FOLL
and returning to the base. When the EP and FO want to take over control at the same
moment, the state machine will go to OPL_EP instead of OPL_FO. The main reason
for this being, the inability of the EP to monitor the current mode of the FCC. Since this
is displayed to the FO, a second command request can be made if necessary, which will
finally trigger the automation to change to OPL_FO.

The default transition has three possible mode outcomes, namely OPL_EP, OPL_
FO, or OPL_EPLL. This decision depends only on ep_rfg and fo_rfg. Both flags
originate from a switch on the remote control of the EP or buttons in the GCS of the
FO. The state of the button or switch is sent to the aircraft, and the SA uses external
decision logic to detect a rising edge. If the rising edge occurs at the moment the state
chart becomes active, init→ep or init→fo is executed. However, in most cases, the rising
edge does not occur in the same time step as the initialization and therefore OPL_EPLL
is activated by init→epll.

149

4.3 Transition Conditions and Actions

Table 4.4: Level 2 (OPL) - Transition Matrix

To
EP EPLL FO FOLL

Fr
om

init init→ep init→epll init→fo n/a
EP - ep→epll ep→fo n/a

EPLL epll→ep - epll→fo n/a
FO fo→ep n/a - fo→foll

FOLL foll→ep n/a foll→fo -

During the startup of the aircraft, OPL_EPLL is used as a transition state to normal
operation since the link cannot be established beforehand, even though no "real" link loss
has occurred. This mode is used since its ground behavior (control surfaces centered,
thrust idle, brakes applied) is required.

From OPL_EPLL the same transition conditions are used to either activate OPL_
EP or OPL_FO via epll→ep or epll→fo respectively. This means the EP or FO has to
actively request command authority and therefore cannot get into an unprepared control
situation.

If OPL_EP is active the FO can request control via ep→fo, which is only restricted by
the fo_rfg. However, if a link loss takes place OPL_EPLL is automatically activated via
ep→epll. This transition is guarded by the epll_flg. Depending on the airborne status
of the aircraft different timeouts are used for the data links. However, this consolidation is
moved to external logic combining integrity information of the data link with the airborne
status of the aircraft, which helps to reduce complexity within the state machine.

Assuming the FO requested control by activating the button in the GCS, ep→fo is
executed and OPL_FO is active. From this state, the EP can gain control by the same
means as discussed above and utilizing fo→ep. However, if a link loss is detected fo→foll
is taken and OPL_FOLL is automatically activated. In a similar way, as with OPL_
EPLL, this decision is based on foll_flg, which in turn is calculated by external logic
using integrity information of the data link and the airborne status of the aircraft.

There is, however, one exception, where OPL_FOLL is not automatically activated.
This is the case when the child mode OPL_FO_ATOL of OPL_FO is active. OPL_
FOLL is inhibited during this phase of the flight because OPL_FO_ATOL has its own
specialized link loss modes that are specifically designed to deal with the close proximity
to the ground. This decision is based on the enumerated atol_mode_lgx in combina-
tion with the four flags atol_takeoff_compl_flg, atol_toabort_compl_flg,
atol_landing_compl_flg and atol_goaround_compl_flg.

As with OPL_EPLL, an active command from either the EP or FO is required for
a transition. Depending on ep_rfg and fo_rfg the respective transition, foll→ep or
foll→fo is taken to either OPL_EP or OPL_FO.

150

Chapter 4: Flight Control System Automation

4.3.3 Level 3

The four modes on Level 2 all have child modes on Level 3 . Those parent modes on Level
2 are listed with their respective child modes in the following.

• Operational - EP - GND/AIR

• Operational - FO - PARK/MLC/HLC/RTB/ATOL

• Operational - EP Link Loss - GND/AIR

• Operational - FO Link Loss - GND/BANK/HDG/GPS

The following transition conditions and action of modes on Level 3 are divided with
respect to their Level 2 parent mode to give a better understanding.

4.3.3.1 Operational - EP - Ground/Airborne

The Level 2 mode OPL_EP is a parent to two child modes on Level 3 . They are OPL_
EP_Air (OPL_EP_AIR) and OPL_EP_Ground (OPL_EP_GND). Their transition
conditions and actions are described in the following.

The state chart is depicted in Figure 4.14, the interface is listed in Table 4.5 and the
transition matrix is shown in Table 4.6.

OPL_EP_GND

ta

tc

OPL_EP_AIR

{ta.x_air();}

[tc.gnd_air()]

{ta.x_gnd();}

2

[tc.gnd_air()]
1

[tc.air_gnd()]

{ta.x_gnd();}

Figure 4.14: Level 3 (OPL-EP) - State Machine

151

4.3 Transition Conditions and Actions

Table 4.5: Level 3 (OPL-EP) - Interface

Name Direction Datatype Range
airborne_lgx input enum 0, 1, 2, 3
level3_lgx output enum 20, 21

All transitions of this state machine are based on airborne_lgx, which describes
the airborne status of the aircraft in four increments. The definition of the enumerated
values of airborne_lgx are listed in the following.

• 0 - Ground (nose wheel and main wheels on the ground)

• 1 - Ground to air transition (nose wheel airborne, main wheels still on the ground)

• 2 - Air to ground transition (main wheels on the ground, nose wheel still airborne)

• 3 - Airborne (nose wheel and main wheels airborne)

The transition states (from ground to air and vice versa) are necessary for some con-
trollers, which need to switch to another control law before the aircraft is completely
airborne (or on the ground respectively). A simplified example implementation is given
in brackets. While the transition states basically have the same definition, the differenti-
ation arises from their source state.

During the initialization of the state chart, the transition init→air is checked first.
If the aircraft is completely airborne OPL_EP_AIR is activated and the respective
level3_lgx is set. Otherwise, OPL_EP_GND is active. The transition from gnd→air
is guarded by the same statement as OPL_EP_AIR. However, the opposite transition
from OPL_EP_AIR to OPL_EP_GND, air→gnd, is executed if airborne_lgx is
"ground" or "ground to air transition". In the example implementation, that means that
air→gnd is activated as soon as the two main wheels touch the ground.

The transitions used in the link loss case, which are presented in Subsubsection 4.3.3.3,
are very similar. They only differ in the fact, that the transition to OPL_EPLL_AIR,
is executed in the "airborne" as well as "ground to air transition" state. This is due to
the different control loops and strategies used in both modes, which are explained in
Subsection 4.2.2 and Subsection 4.2.3.

Table 4.6: Level 3 (OPL-EP) - Transition Matrix

To
GND AIR

Fr
om

init init→gnd init→air
GND - gnd→air
AIR air→gnd -

152

Chapter 4: Flight Control System Automation

4.3.3.2 Operational - FO - PARK/MLC/HLC/RTB/ATOL

The Level 3 child modes of OPL_FO consist of OPL_FO_Parking (OPL_FO_
PARK), OPL_FO_Medium-Level-Control (OPL_FO_MLC), OPL_FO_High-Level-
Control (OPL_FO_HLC), OPL_FO_Return-to-Base (OPL_FO_RTB), and OPL_
FO_Automatic Takeoff and Landing (OPL_FO_ATOL), which is explained in the
following. Those are the main operating modes for the FO and combined with the
hidden mode (OPL_FO_ATOL-Unconfirmed (OPL_FO_ATUC)) this leads to the
most complex state chart of the SA.

The state chart, which is handling those operating modes is depicted in Figure 4.15. Its
necessary interface is listed in Table 4.7 and the possible transitions between the modes are
shown in Table 4.8. It mostly uses opl_mode_lgx, which is the command for a specific
operating mode by the FO. The operating mode in the previous time step is preserved and
also used as input via last_mode_lgx. Additionally, integrity information about the
position of the aircraft, nav_posOK_flg, and its airborne status airborne_lgx are
utilized. This level is tightly connected to ATOL and therefore also needs information from
that flight control module. Those consist of the current mode, atol_mode_lgx, and
availability information for automatic takeoff and landing, atol_takeoff_avbl_flg
and atol_landing_avbl_flg. The outputs consist of the Level 3 operation mode
representation, level3_lgx, and a communication request for ATOL, atuc_flg.

The chart will be active when the FO is in control. As with the other state charts, it
is also re-initialized via the default transition whenever the FO takes over the command.

At the initialization of the state chart, e.g. whenever the FO starts to control the
aircraft, four of the six states are possible. Firstly, the airborne status of the aircraft is
checked using airborne_lgx. When the aircraft is still on the ground, init→park is
executed and OPL_FO_PARK is activated. This will be the case for a normal mission,
where the FO takes over control before takeoff. If the aircraft is airborne, one of the
other default transitions is used. If the FO commands OPL_FO_RTB, while requesting
control of the aircraft, init→rtb is utilized to activate this mode. However, this is only
executed if a valid position of the aircraft is available. In a similar way, OPL_FO_
HLC is activated via init→hlc if requested by the FO and a position is available. Those
guards are implemented by checking nav_posOK_flg, which is necessary because the
activation of both OPL_FO_RTB and OPL_FO_HLC requires a valid position of the
aircraft as explained in Subsubsection 4.2.3.3. If none of these conditions can be satisfied
the transition init→mlc is executed and OPL_FO_MLC is activated. This mode can be
viewed as the default activation mode of the FO since it is activated if it is specifically
requested, if no mode command is received or if another mode, which is commanded by
the FO, cannot be activated due to malfunctions.

153

4.3 Transition Conditions and Actions

O
P

L
_

F
O

_
A

T
O

L

O
P

L_
F

O
_R

T
B

O
P

L
_

F
O

_
A

T
U

C

O
P

L_F
O

_H
LC

O
P

L_F
O

_M
LC

ta

O
P

L
_

F
O

_
P

A
R

K

tc

[tc.atol_park()] 1

[tc.atol_x() &
&

tc.x_hlc()] 3
[tc.atol_x() &

&
tc.x_rtb

()] 2

5

{ta.atuc_atol();}

[tc.atuc_atol()]
1

{ta.x_rtb
();

ta.atuc_x();}
[tc.rtb_x() &

&
tc.x_m

lc()] 3
[tc.rtb_x() &

&
tc.x_hlc()] 2

{ta.x_atuc();}

[tc.hlc_x() &
&

tc.x_m
lc()]

2

[tc.rtb_x() &
&

tc.x_atuc()]
1

{ta.x_rtb
();}

[tc.m
lc_x() &

&
tc.x_hlc()]

2

[tc.m
lc_x() &

&
tc.x_rtb

()]
3

{ta.x_rtb
();

ta.atuc_x();}

[tc.m
lc_x() &

&
tc.x_atuc()]

1

[tc.park_atuc()]

{ta.x_m
lc();}

2
[tc.x_hlc()]

1

[tc.x_rtb
()]

1

[tc.atol_x() &
&

tc.x_m
lc()] 4

{ta.x_park();}

2

[tc.x_park()]
1

[tc.x_park()] 2

{ta.x_park();
ta.atuc_x();}

[tc.hlc_x() &
&

tc.x_rtb
()]

3

[tc.atuc_rtb
()] 3

[tc.m
lc_x() &

&
tc.x_park()] 4

[tc.hlc_x() &
&

tc.x_atuc()]
1

[tc.atuc_hlc()] 4

2

{ta.x_hlc();}

{ta.x_m
lc();

ta.atuc_x();}

F
igure

4.15:
Level3

(O
PL-FO

)
-

State
M

achine

154

Chapter 4: Flight Control System Automation

Table 4.7: Level 3 (OPL-FO) - Interface

Name Direction Datatype Range
opl_mode_lgx input enum 20, 21, 22, 26, 40, 42
nav_posOK_flg input boolean 0, 1
airborne_lgx input enum 0, 1, 2, 3
atol_takeoff_avbl_flg input boolean 0, 1
atol_landing_avbl_flg input boolean 0, 1
atol_mode_lgx input enum 40, 41, 42, 43, 44
last_mode_lgx input enum 0, 1
level3_lgx output enum 0, 1, 2, 3, 4, 5
atuc_flg output boolean 0, 1

During a normal activation by the FO, when the aircraft is on the ground, OPL_FO_
PARK is activated. While this mode has various entry conditions, it has only one exit
transition. This is park→atuc to OPL_FO_ATUC , which is executed when automatic
takeoff is commanded by the FO via opl_mode_lgx and ATOL reports it as available via
atol_takeoff_avbl_flg. This results in a setting of atuc_flg but in no change
of level3_lgx. Therefore this state is hidden to the operator and only used as an
intermediate step.

OPL_FO_ATUC is a hidden mode, with respect to the FO and therefore was not
explained in the previous section. Due to the structure of the flight control modules, it is
necessary to create a verified transition to automatic takeoff, as well as to landing.

The atuc_flg is used by the SA to permit ATOL to switch into the respective mode,
commanded by the FO. Due to the FCC internal execution order of the different flight
control modules, ATOL receives this command in the same time step SA transitioned
into OPL_FO_ATUC . The ATOL module then transitions into the takeoff mode and
reports this to the SA via atol_mode_lgx in the next time step. This is then used in
atuc→atol to switch to OPL_FO_ATOL. Depending on the reported mode, in this case,
automatic takeoff, the level3_lgx is set accordingly. If this mode information is not
received in the next time step the transition atuc→park is executed, if the aircraft is still
on the ground, and OPL_FO_PARK is activated again.

If positive feedback is received from ATOL, the aircraft performs a fully automatic
takeoff and initial climb. When the aircraft is airborne three transitions are possible. If
OPL_FO_HLC is commanded by the FO (opl_mode_lgx) and the GPS position is
available (nav_posOK_flg) the transition atol→hlc is executed and OPL_FO_HLC is
activated. In the same way, atol→rtb can be used and OPL_FO_RTB is activated. The
transition atol→mlc is not guarded by the position availability because OPL_FO_MLC
doesn’t need a valid position of the aircraft. This mode is also activated if OPL_FO_
HLC or OPL_FO_RTB is requested by the pilot, but a valid position is not available.

155

4.3 Transition Conditions and Actions

Table 4.8: Level 3 (OPL-FO) - Transition Matrix

To
PARK MLC HLC RTB ATUC ATOL

Fr
om

init init→park init→mlc init→hlc init→rtb n/a n/a
PARK - n/a n/a n/a park→atuc n/a
MLC mlc→park - mlc→hlc mlc→rtb mlc→atuc n/a
HLC n/a hlc→mlc - hlc→rtb hlc→atuc n/a
RTB n/a rtb→mlc rtb→hlc - rtb→atuc n/a

ATUC atuc→park atuc→mlc atuc→hlc atuc→rtb - atuc→atol
ATOL atol→park atol→mlc atol→hlc atol→rtb n/a -

The three operating modes that are used by the FO during non-terminal flight phases
are OPL_FO_MLC , OPL_FO_HLC , and OPL_FO_RTB. The state machine will use
one of the six transitions mlc→hlc, mlc→rtb, hlc→mlc, hlc→rtb, rtb→mlc, or rtb→hlc to
switch between those modes if commanded by the FO. In the case of activating either
OPL_FO_HLC or OPL_FO_RTB, this requires a valid GPS position. A special case
applies to the transition hlc→mlc. It is triggered automatically if the position information
is lost during OPL_FO_HLC . This does not apply to rtb→mlc, due to the available Level
4 modes of OPL_FO_RTB.

From all three non-terminal operating modes, OPL_FO_MLC , OPL_FO_HLC ,
and OPL_FO_RTB, a fully automatic landing can be commanded by the FO.
If commanded via opl_mode_lgx and reported as available by the ATOL via
atol_landing_avbl_flg one of the transitions is executed. Depending on the
previously active mode mlc→atuc, hlc→atuc, or rtb→atuc is executed and OPL_FO_
ATUC is activated. This is reported to ATOL via atuc_flg and fed back to the SA
via atol_mode_lgx in the next time step.

If the feedback is received from ATOL in the next time step the transition atuc→atol is
executed and OPL_FO_ATOL is activated. Within this transition, level3_lgx is set
to the respective value for automatic landing. In case that the correct feedback is not re-
ceived, the transition to the previous mode is executed. Depending on last_mode_lgx,
which preserves this information, either atuc→mlc, atuc→hlc, or atuc→rtb is executed
and the respective mode is activated.

After the automatic landing, the transition atol→park can be used by the FO to
activate OPL_FO_PARK . This is guarded by the opl_mode_lgx command and the
airborne status of the aircraft, airborne_lgx.

For an emergency landing by the FO without ATOL, a possible direct transition from
OPL_FO_MLC to OPL_FO_PARK is available. The transition mlc→park is executed
if commanded by the FO via opl_mode_lgx, and the aircraft is on the ground, which
is analyzed using airborne_lgx.

156

Chapter 4: Flight Control System Automation

4.3.3.3 Operational - EP Link Loss - Ground/Airborne

The OPL_EPLL child modes are very similar to the nominal ones of OPL_EP (c.f.
Subsubsection 4.3.3.1). Therefore, further explanation is omitted here, and only the
respective chart is depicted in Figure 4.16, the interface table is listed in Table 4.9, and
the transition matrix is shown in Table 4.10.

OPL_EPLL_AIR

OPL_EPLL_GND

ta

tc

[tc.air_gnd()]

{ta.x_gnd();}

2

{ta.x_air();}

[tc.gnd_air()]
1

[tc.gnd_air()]

{ta.x_gnd();}

Figure 4.16: Level 3 (OPL-EPLL) - State Machine

Table 4.9: Level 3 (OPL-EPLL) - Interface

Name Direction Datatype Range
airborne_lgx input enum 0, 1, 2, 3
level3_lgx output enum 30, 31

Table 4.10: Level 3 (OPL-EPLL) - Transition Matrix

To
GND AIR

Fr
om

init init→gnd init→air
GND - gnd→air
AIR air→gnd -

157

4.3 Transition Conditions and Actions

4.3.3.4 Operational - FO Link Loss - GND/BANK/HDG/GPS

There are four Level 3 child modes of OPL_FOLL, which are used to distinguish between
different FO link loss situations. Those are OPL_FOLL_Ground (OPL_FOLL_GND),
OPL_FOLL_Bank Angle (OPL_FOLL_BANK), OPL_FOLL_Heading (OPL_FOLL_
HDG), and OPL_FOLL_GPS (OPL_FOLL_GPS).

The Stateflow state machine, with its four states for handling the link loss, is depicted
in Figure 4.17. From the interface table, Table 4.11, it can be seen that all transition
conditions can only rely on the validity of the position of the aircraft, nav_posOK_flg,
and the airborne status, airborne_lgx. Additionally, all available transitions are shown
in the transition matrix, Table 4.12. However, due to the limited interactions during a link
loss, only a very small number of transitions are available and the majority of transitions
are inhibited. Whenever a state is entered, the respective value for level3_lgx is set.

ta

OPL_FOLL_GPS

OPL_FOLL_HDG

tc

OPL_FOLL_BANK

OPL_FOLL_GND

[tc.gps_hdg()]

{ta.gps_hdg();}

[tc.x_gps()]

[tc.x_gps()]

1

{ta.init_gnd();}

2

[tc.init_gnd()]
1

2

{ta.init_bank();}

{ta.x_gps();}

Figure 4.17: Level 3 (OPL-FOLL) - State Machine

158

Chapter 4: Flight Control System Automation

Table 4.11: Level 3 (OPL-FOLL) - Interface

Name Direction Datatype Range
nav_posOK_flg input boolean 0, 1
airborne_lgx input enum 0, 1, 2, 3
level3_lgx output enum 10, 11, 12, 13

There are three possible transitions during initialization. The highest priority one is
init→gnd, which leads to OPL_FOLL_GND. It is guarded by airborne_lgx and only
executed if the aircraft is still on the ground. This state is not used during "normal"
operation but exists only for the case of a link loss during OPL_FO_PARK . It has no
exit condition and is, therefore, a terminal state.

A link loss, while being on the ground can otherwise only occur during takeoff and
landing and is in this case handled by ATOL. If the aircraft is airborne when the link
loss occurs and a valid position can be calculated (nav_posOK_flg is true), init→gps
is executed and OPL_FOLL_GPS is activated. Otherwise, init→bank, which has no
condition, is executed and OPL_FOLL_BANK is activated.

As discussed previously, if the link loss occurs, without a valid position of the aircraft,
OPL_FOLL_BANK is activated. From this mode, there is only one transition to OPL_
FOLL_GPS via bank→gps. It is executed in case the GPS reception can be restored.
The slow upward spiral during OPL_FOLL_BANK increases the probability of a valid
GPS signal and therefore also the chance of the transition to OPL_FOLL_GPS .

Once in OPL_FOLL_GPS , there is a possible transition to OPL_FOLL_HDG. The
transition gps→hdg is executed if an (additional) GPS loss occurs. The state OPL_
FOLL_HDG is also a terminal state, which has no exit conditions. The reasons for
this behavior are explained in Subsubsection 4.2.3.4. However, if the GPS position can
be obtained again the heading used in this mode is updated and leads to the homing
behavior depicted in Figure 4.8 as "HDG with updates".

Table 4.12: Level 3 (OPL-FOLL) - Transition Matrix

To
GND BANK HDG GPS

Fr
om

init init→gnd init→bank n/a init→gps
GND - n/a n/a n/a

BANK n/a - n/a bank→gps
HDG n/a n/a - n/a
GPS n/a n/a gps→hdg -

159

4.3 Transition Conditions and Actions

4.3.4 Level 4

There are only a few modes on Level 4 , which are child modes of OPL_FO_RTB and
therefore belong to the SA. The others are part of ATOL and are omitted here.

4.3.4.1 Operational - FO - RTB - GPS/HDG

The Level 4 state machine is depicted in Figure 4.18, its in- and outputs are listed in
Table 4.13 and the transition matrix is shown in Table 4.14.

The activation of the Level 3 parent mode OPL_FO_RTB is only possible with
a valid GPS signal. Therefore the only transition during initialization on this level is
init→gps. This leads to OPL_FO_RTB_GPS (OPL_FO_RTB_GPS) being active and
the respective setting of level4_lgx.

If a GPS loss occurs (nav_posOK_flg is false), the transition gps→hdg is executed
and OPL_FO_RTB_Heading (OPL_FO_RTB_HDG) is activated.

tatc

OPL_FO_RTB_HDG

OPL_FO_RTB_GPS

[tc.gps_hdg()]

{ta.init_gps();}

{ta.gps_hdg();}

Figure 4.18: Level 4 (OPL-FO-RTB) - State Machine

Table 4.13: Level 4 (OPL-FO-RTB) - Interface

Name Direction Datatype Range
nav_posOK_flg input enum 0, 1
level4_lgx output enum 0, 1

Table 4.14: Level 4 (OPL-FO-RTB) - Transition Matrix

To
HDG GPS

Fr
om

init n/a init→gps
HDG - n/a
GPS gps→hdg -

160

Chapter 4: Flight Control System Automation

4.4 Loiter Automation
Multiple modes in the SA are designed as contingency procedures to mitigate the effects of
mission changes and/or malfunctions and to guarantee a continuous automatic operation.
The Loiter Automation (LA) is, due to its complexity, implemented in an encapsulated
submodule. Together with the other contingency modes, it represents contribution C2.3
- Automatic operational and malfunction contingency procedures for continuous operation
in non-nominal circumstances.

It is implemented in parallel to the Level 3 state machine of OPL_FO, which is
described in Subsubsection 4.2.3.3. The loiter modes are therefore generally available in
all FO-controlled modes of the SA. However, depending on the Level 3 mode, some loiter
modes or entering a holding pattern in general, might be inhibited by the LA.

The ability to "pause" the mission is necessary for both, UAV and OPV. Loiter defines
a flight phase in which the aircraft "holds" its current position. The maneuver is normally
conducted in a circular or racetrack-pattern. In civil aviation, it normally occurs shortly
before landing, while the aircraft waits for the landing clearance. In military missions,
loiter can be used during a reconnaissance mission in which the aircraft flies over its target
in circles. The interface for the FO in the GCS is designed to be very easy but versatile.
It uses only a boolean command and an integer-represented mode response.

4.4.1 Loiter Modes

For SAGITTA and the DA 42 , which are used as demonstration platforms for the FCSA,
loiter can be commanded by the FO or it is automatically activated in certain situations.
Loiter can be entered in three different ways, which are listed in the following.

• Loiter can be triggered by the FO

• Loiter is automatically activated when a loiter waypoint is passed

• Loiter is automatically activated when the end of the flight plan is reached

The six modes, used in the main state machine of the LA, are listed below. How they
are used to create the loiter functionality is explained in the following.

• Off

• Bank

• GPS

• Unconfirmed

• Will Exit

• End of Flight Plan

However, beforehand a short overview of the interface, of the LA, is presented, to get
a better comprehension of the environment in which the modes are used.

161

4.4 Loiter Automation

The interface of the LA consists only of one switch or button in the GCS of the FO
and a response variable of the currently active mode. Whenever the FO wants to start a
loiter maneuver the switch needs to be activated. This is sent to the aircraft via the data
link and used by the LA to start the respective maneuver. This is generally independent
of the currently active mode of the SA. However, in certain modes, like automatic takeoff
or landing, loitering is not permitted.

To deactivate the loiter pattern, the switch needs to be turned off. However, depending
on the currently active mode of the LA, the flight is not immediately resumed. This
behavior and the necessary reaction of the FO are explained in the following.

4.4.1.1 Off

The default mode for the state machine is Loiter_OFF (LTR_OFF). It is used for all
non-loiter flight phases or modes in which loiter cannot be activated.

4.4.1.2 Bank

One of the immediate loiter patterns that can be triggered by the FO is Loiter_Bank
(LTR_BANK). As the name suggest the loiter pattern in this mode is based on a constant
and predefined bank-angle (e.g. 30◦). This is used as a loiter pattern if the Level 3 mode
is OPL_FO_MLC . In perfect conditions, this leads to a circular pattern that passes the
point of activation on every round. However, due to wind or other disturbances, the path
of the aircraft with respect to the ground can change. Since this is comparable to the
normal OPL_FO_MLC mode and is expected by the FO, it is not mitigated by the SA.

If commanded by the FO, the same control loops that are used for OPL_FO_MLC ,
are utilized with a fixed lateral command. Other command values like altitude and speed
are not modified and can be controlled by the FO. An exit from this holding pattern
is executed immediately if commanded by the FO and the command for the AFCS is
switched back from bank-angle to e.g. heading mode.

4.4.1.3 GPS

The mode Loiter_GPS (LTR_GPS) is the second possibility for the FO to trigger an
immediate loiter. It is based on the GPS position of the aircraft and used if OPL_FO_
HLC is active. It utilizes a special mode of the TG module, in which a loiter circle
is calculated based on a predefined turn rate (e.g. 3◦/s). With the current speed of the
aircraft, the TG and TC are able to track the loiter circle even in presence of disturbances
like the wind.

Superposition modes like Altitude Superposition and Speed Superposition are part of
OPL_FO_HLC and can still be used by the FO during LTR_GPS . This mode is also
eventually used at a loiter waypoint. The process of entering and exiting such a holding
pattern automatically at a loiter waypoint is explained in the following.

162

Chapter 4: Flight Control System Automation

4.4.1.4 Unconfirmed

A loiter pattern can also be entered at a specific waypoint, if the parameter for loitering,
of that point, is enabled. In this case, the holding pattern is automatically entered and
the mode Loiter_Unconfirmed (LTR_UNCO) is activated. This, however, results in an
inconsistency between the aircraft and the GCS, because the aircraft entered the loiter
pattern without command, as indicated by the mode name.

Since this is planned beforehand, this is in accordance with the flight plan and expected
by the FO. In this situation, the aircraft is loitering, while the FO switch, which is
commanding loiter, is still off. However, this mismatch can easily be identified in the GCS
and can even be resolved automatically if soft buttons are used. The mode is maintained
until the command is adjusted by the FO, which is then confirmed by switching to the
normal GPS-based loiter mode, LTR_GPS .

4.4.1.5 Will Exit

When the aircraft is loitering in LTR_GPS this can be either due to a direct command
from the FO or because of a loiter waypoint. In this situation, the exit from LTR_GPS
needs to be executed in a predictable and deterministic way so that the planned route
can be continued. It can be commanded by the FO by deactivating the command switch
for loitering, however, the loiter pattern is not immediately exited.

In this case, Loiter_Will Exit (LTR_WIEX) is used until the aircraft reaches the entry
point of the loiter pattern. By making sure holding rounds are completed, the correct
and possible continuation of the flight plan is ensured. When passing the entry/exit point
the mode is automatically disabled and LTR_OFF is activated, thus exiting the loiter
pattern and continuing the normal flight plan.

4.4.1.6 End of Flight Plan

The flight plan of the aircraft can consist of many individual waypoints. However, this
number has to be finite, and therefore a possibility of reaching the last waypoint exists.
In this situation, the aircraft automatically enters a loiter pattern, because no other
reasonable alternative exists. This special mode for a GPS-based loiter is indicated by
activating Loiter_End-of-Flight-Plan (LTR_EoFP).

The mode is activated immediately, without acknowledgment by the FO in the GCS,
because there is no possible continuation of a flight plan afterward. Since no consequent
waypoints exist, no exit procedure, like during LTR_GPS , exists either. Therefore the
loiter pattern and the mode are exited immediately if another control mode or flight plan
is selected by the FO.

163

4.4 Loiter Automation

4.4.2 Transition Conditions and Actions

The LA, which is implemented on Level 3 of the SA uses the six modes Loiter_
OFF (LTR_OFF), Loiter_Bank (LTR_BANK), Loiter_GPS (LTR_GPS), Loiter_
Unconfirmed (LTR_UNCO), Loiter_Will Exit (LTR_WIEX), and Loiter_End-of-Flight-
Plan (LTR_EoFP) to realize the loiter functionality as described in Subsection 4.4.1.

The Stateflow state machine is depicted in Figure 4.19. An overview of the possible
transitions is given in Table 4.16. The relevant interface variables are listed in Table 4.15.
Those include the mode of the OPL_FO main state machine, level3_lgx, and an
externally calculated change, level3_lgx_cfg, which are used together with the com-
mand of the FO, loiter_cmd_flg, to distinguish between different modes and trigger
automatic changes. Furthermore, loiter_flg is used to command the start of the loiter
to the TG module and loiter_lgx is used as feedback.

LOITER_WIEX

LOITER_GPS

LOITER_BANK

LOITER_OFF

LOITER_EOFP

LOITER_UNCO

ta

tc

[tc.wiex_off()]
2

{ta.x_gps();}

[tc.gps_wiex()]
2[tc.x_off()]

1

[tc.x_off()]
1

{ta.x_gps();}

[tc.x_gps()]
2

{ta.x_off();}
{ta.x_bank();}

{ta.off_eofp();}

[tc.x_gps()]
1

[tc.x_gps()]
1

[tc.x_bank()]
1

2

{ta.x_off();}
2

{ta.gps_wiex();}

[tc.x_off()]

[tc.off_unco()]
4

[tc.x_gps()]
1

[tc.bank_off()]

[tc.x_bank()]
2

{ta.off_unco();}

[tc.off_eofp()]
3

Figure 4.19: Level 3 (OPL-FO) Loiter - State Machine

164

Chapter 4: Flight Control System Automation

Table 4.15: Level 3 (OPL-FO) Loiter - Interface

Name Direction Datatype Range
level3_lgx input enum 0, 1, 2, 3, 4, 5
level3_lgx_cfg input boolean 0, 1
loiter_cmd_flg input boolean 0, 1
trajgen_loiter_flg input boolean 0, 1
trajgen_loiter_rfg input boolean 0, 1
trajgen_eof_flg input boolean 0, 1
enroute_list_cfg input boolean 0, 1
loiter_lgx output enum 0, 1, 2, 3, 4, 5
loiter_flg output boolean 0, 1

Additionally, information from the TG module is used to coordinate GPS-dependent
mode changes. Those variables are trajgen_loiter_flg, trajgen_loiter_rfg,
and trajgen_eof_flg.

During the initialization of the state chart, three transitions and therefore three ini-
tial modes are possible. Those are LTR_GPS , LTR_BANK , and LTR_OFF with the
latter being the default one without any condition. Therefore, the transition init→off is
executed if no previous condition is met during the first time step of execution. This will
most likely be the case since otherwise loiter_cmd_flg had to be set by the FO before
requesting control at all.

So normally, the default transition activates LTR_OFF which sets the respective
value for loiter_lgx and additionally sets the loiter_flg to false, which is used
as a command interface to the TG module. However unlikely, the transition init→gps is
executed if loiter_cmd_flg is set during initialization and OPL_FO_HLC is active.
Similarly, init→bank is executed if loiter_cmd_flg is set to true and OPL_FO_
MLC is active.

In normal operation, LTR_OFF is active after a control-takeover by the FO.
From there, an immediate bank-angle-based loiter can be commanded by setting
loiter_cmd_flg, if the corresponding Level 3 operating mode is OPL_FO_MLC .
In this case, off→bank is executed, LTR_BANK is activated, and the respective
loiter_lgx is set.

The deactivation of LTR_BANK , via bank→off , is commenced if either the loiter
command by the FO is set to false or if the Level 3 operating mode is changed.

From LTR_OFF , LTR_GPS can be activated in a similar way to LTR_BANK . The
transition off→gps is executed if loiter_cmd_flg is set by the FO while being in OPL_
FO_HLC . In addition to setting the respective loiter_lgx, this also sets loiter_flg
to true, which commands the TG module to activate the GPS-based loiter pattern.

165

4.4 Loiter Automation

Table 4.16: Level 3 (OPL-FO) Loiter - Transition Matrix

To
OFF BANK UNCO GPS WIEX EOFP

Fr
om

init init→off init→bank n/a init→gps n/a n/a
OFF - off→bank off→unco off→gps n/a off→eofp

BANK bank→off - n/a n/a n/a n/a
UNCO unco→off n/a - unco→gps n/a n/a
GPS gps→off n/a n/a - gps→wiex n/a

WIEX wiex→off n/a n/a wiex→gps - n/a
EOFP eofp→off n/a n/a n/a n/a -

The deactivation via transition gps→off is, in contrast to off→bank, not executed if
the loiter_cmd_flg is withdrawn. Due to the different requirements for LTR_GPS ,
the direct change to LTR_OFF is only executed if the Level 3 operating mode changes
(level3_lgx_cfg) or a different waypoint list is selected (enroute_list_cfg).

As said, the transition from LTR_GPS to LTR_OFF cannot be directly commanded
by the FO. If however, the exit of LTR_GPS is requested from the FO, by setting
loiter_cmd_flg to false, the transition gps→wiex , which activates LTR_WIEX ,
is executed. This sets loiter_flg to false, which instructs the TG to leave the loiter
pattern and continue with the next waypoint when the entry point is passed again.

In LTR_WIEX the LA waits for the confirmation of the TG module, that the loiter
pattern has been completed. If that is reported by setting trajgen_loiter_flg to
false, the transition wiex→off is executed. However, it is also executed if the Level
3 mode is changed (level3_lgx_cfg) or another waypoint list is selected by the FO.
The request to leave the holding pattern can also be canceled by the FO, by setting
loiter_cmd_flg to true, which triggers wiex→gps and activates LTR_GPS again.

If the loiter pattern has been completed LTR_OFF is activated again and the aircraft
follows the waypoint list. If a waypoint is passed that is parameterized to be a loiter
point. The transition off→unco is executed and LTR_UNCO is activated. This transition
is triggered by trajgen_loiter_rfg, which indicates the independent activation of
loitering by the TG, which is reported to the GCS by setting the respective loiter_lgx.

The loiter can be confirmed from the FO in the GCS by setting loiter_cmd_flg. In
this case, unco→gps is executed, LTR_GPS is activated, indicating a synchronized status
of the aircraft and GCS. If however, the Level 3 mode is changed or another waypoint
list is selected, the transition unco→off is executed, which activates LTR_OFF again.

The mode LTR_EoFP is automatically activated if a loiter pattern is entered at the
end of a flight plan. This transition off→eofp is guarded by trajgen_loiter_rfg

and trajgen_eof_flg, which indicate this situation. The transition eofp→off , and
therefore the deactivation of LTR_EoFP, is executed in a similar way to others if
level3_lgx_cfg or enroute_list_cfg is true.

166

Chapter 4: Flight Control System Automation

4.5 Injection Switches
The injection switches, that are controlled by the SA and used within the FCSA to
control the cascaded control loop are the second part of contribution C2.1 - Strategy for
switchability between various modes on different authority levels, enabling experimental
automation. As depicted in Figure 4.5 there are injection switches prior to each of the
major flight control loops and an additional one before the OP.

As an example, the implementation of the Inner Loop - Switch (IL-SW) with eight
different inputs for various operating modes is shown in Figure 4.20.

3

afcs_ll_cmd

standby, xbit

fo_parking...

fo_mlc, fo_hlc, fo_rtb...

ep_ll_airborne

ep_ll_onground

fo_atol_takeoff, fo_atol_takeoff_abort...

ep_llc_onground

*, ep_llc_airborne

2

sysauto_cmd

ep_cmd ll_cmd

ep_lowlevel_airborne

systems_cmd

afcs_ll_cmd

sysauto_cmd

ll_cmd

afcs_allocation

ll_cmd_default

ep_cmd

ll_cmd

ep_linkloss_onground_allocation

1

ll_cmd

4

atol_ll_cmd

ll_cmd_default

sysauto_cmd

systems_cmd

ll_cmd_out

fo_parking_allocation

ll_cmd

ll_cmd_default

ll_cmd_default

ep_cmd

ll_cmd

ep_lowlevel_onground

1

data_link_info

afcs_ll_cmd

sysauto_cmd

ep_cmd

ll_cmd

ep_linkloss_airborne_allocation

<ep_cmd>

<ep_cmd>

<ep_cmd>

<systems_cmd>

<mode_lgx>

ll_cmd

<ll_cmd>

Figure 4.20: Inner Loop - Switch

167

4.5 Injection Switches

4.5.1 Trajectory Generation - Switch

An overview of the different switch positions of the Trajectory Generation - Switch (TG-
SW) is shown in Table 4.17. Its used positions are based on the mode_lgx calculated by
the SA. The first position is used for various modes that do not need the TG module. The
input is therefore overwritten with default values, which deactivate the TG. The second
position is used for all automatic takeoff- and landing-related operating modes, in which
the TG is controlled by the ATOL module. The third position is used for all modes that
are controlled by the SA and utilize the TG module.

Table 4.17: Trajectory Generation - Switch

Position TG - Switch based on mode_lgx

1

STB, XBIT ,
OPL_EP_GND, OPL_EP_AIR,
OPL_EPLL_GND, OPL_EPLL_AIR,
OPL_FO_PARK , OPL_FO_MLC , OPL_FO_RTB_HDG,
OPL_FOLL_BANK , OPL_FOLL_HDG

2
OPL_FO_ATOL_TO, OPL_FO_ATOL_TOABRT ,
OPL_FO_ATOL_LAND, OPL_FO_ATOL_GOARND

3 OPL_FO_HLC , OPL_FO_RTB_GPS , OPL_FOLL_GPS

4.5.2 Trajectory Control / Auto Flight Control System - Switch

The Trajectory Control / Auto Flight Control System - Switch (TA-SW) is controlling the
input for the TC as well as the AFCS module. Its positions and flight control modes are
listed in Table 4.18. The positions are used in the same way as TG-SW. The first position
has a deactivating default input, while positions two and three are positions for ATOL-
and SA-controlled modes respectively.

Table 4.18: Trajectory Control / Auto Flight Control System - Switch

Position TC / AFCS - Switch based on mode_lgx

1
STB, XBIT , OPL_FO_PARK ,
OPL_EP_GND, OPL_EP_AIR, OPL_EPLL_GND

2
OPL_FO_ATOL_TO, OPL_FO_ATOL_TOABRT ,
OPL_FO_ATOL_LAND, OPL_FO_ATOL_GOARND

3

OPL_FO_MLC , OPL_FO_HLC ,
OPL_FO_RTB_HDG, OPL_FO_RTB_GPS ,
OPL_FOLL_BANK , OPL_FOLL_HDG,
OPL_FOLL_GPS , OPL_EPLL_AIR

168

Chapter 4: Flight Control System Automation

4.5.3 Inner Loop - Switch

As shown in Figure 4.20, the Inner Loop - Switch (IL-SW) is the most complex, with
eight sources. An overview of its positions and flight control modes is given in Table 4.19.

The first position is used for operating modes that do not utilize the IL. Position six is
used for all modes controlled by ATOL. The rest of the positions use various combinations
of control allocations to enable the behavior described in Section 4.2. Those range from
very restricted access in OPL_FO_PARK and OPL_FOLL_GND over partial direct-
law in OPL_EPLL_GND to feed through from the TC and AFCS modules for the fully
automatic modes covered by position three.

Table 4.19: Inner Loop - Switch

Position IL - Switch based on mode_lgx

1 STB, XBIT
2 OPL_FO_PARK , OPL_FOLL_GND

3
OPL_FO_MLC , OPL_FO_HLC ,
OPL_FO_RTB_GPS , OPL_FO_RTB_HDG,
OPL_FOLL_GPS , OPL_FOLL_HDG, OPL_FOLL_BANK

4 OPL_EP_AIR
5 OPL_EP_GND

6
OPL_FO_ATOL_TO, OPL_FO_ATOL_TOABRT ,
OPL_FO_ATOL_LAND, OPL_FO_ATOL_GOARND

7 OPL_EPLL_GND
8 OPL_EPLL_AIR

4.5.4 Actuator - Switch

The last injection switch, just before the OP is the Actuator - Switch (AC-SW). It used
source is, in contrast to all other switches, depending on level1_lgx. This simplifies
the implementation, as shown in Table 4.20. In the first position, the default output is
used, which disables the access for the flight control modules. In the second position, a
special direct-law allocation or similar is used for defined experimental test cases. The
third and default position is used for all operational modes.

Table 4.20: Actuator - Switch

Position AC - Switch based on level1_lgx

1 STB
2 XBIT
3 OPL

169

4.6 Flight Tests

4.6 Flight Tests
The FCSA is developed for use in both, UAVs and OPVs. Consequently, it is also tested
on both types of aircraft. The UAV SAGITTA has an MTOM of 150kg, a wingspan of
3m, eight flight control surfaces, and two internal turbines. By contrast, the OPV DA 42
has an MTOM of almost 2000kg, a wingspan of about 14m, and is a modified four-seater
Part 23 Class II aircraft.

Before executing the first real-life flight tests, various testing and verification actions,
as introduced in Section 3.4, were performed. Those tests included Unit Tests, Model
Checking, Model in the Loop (MiL), Software in the Loop (SiL), Hardware in the Loop
(HiL), and Aircraft in the Loop (AiL) simulations.

In the beginning, Unit Tests are used to define, simulate, and analyze test cases. For
the FCSA, 13 Unit Tests were defined, which range from normal flight segments over
takeoff abort scenarios to link loss simulations. Those have been used to frequently test
the functional interaction of all FCSA state machines, without other external modules. A
complete list with their test number and name is available in Appendix E. This is followed
by Model Checking, which is built on formal methods, to detect design errors, generate
or compliment test cases, analyze the model coverage, and prove key properties of the
automation. The Simulink Design Verifier (SDV) is utilized in a bottom-up approach to
guarantee continuous testing throughout the model. Additionally, the Modified Condition
/ Decision Coverage (MC/DC) coverage of all FCSA models is analyzed. Although it was
not required by any third party, it was used to lower the possibility of errors during
flight and to increase the confidence in the automation. This was especially important
for SAGITTA since the first flight was already performed fully automatic.

Additionally, numerous MiL, SiL, HiL, and AiL simulations were performed and ana-
lyzed to eliminate even more errors. For SAGITTA, this was followed by multiple Ground
Test campaigns, to increase the test scope as much as possible before the first flight. In
the case of the DA 42 partial functions of the FCS could be tested in flight, before moving
to more critical flight phases like automatic takeoff and landing.

In the following, one flight test of each aircraft is presented as proof for the real-life
applicability of the FCSA. The table of command history shows the sequential order of
commands during the flight and the elapsed time. To guide comprehension, the name of
the command and its new value is listed.

Furthermore, a numerical marker is listed in the table for a better allocation between
the table and the figure. In this graphic, flight phases of automatic takeoff are drawn in
red, while automatic landing ones are drawn in magenta. Additionally, the High-Level-
Control mode is drawn in blue, while the Medium-Level-Control mode and superposition
modes are drawn in cyan. Furthermore, ground tracks are drawn in green, the runway in
yellow, and the projected flight trajectory to the ground in black.

In both depictions, the altitude is shown as Above Ground Level (AGL) and the x-axis
is rotated to match the runway heading for better orientation.

170

Chapter 4: Flight Control System Automation

4.6.1 SAGITTA

The validation of the intended full-scale flight mission was the goal of the SAGITTA
project. The aircraft, introduced in Section 2.1, was therefore used for a real-life demon-
stration. Even though both, the FO and the EP, can control the aircraft, simulations
had shown difficulties while manually controlling the aircraft. It was therefore decided to
perform the maiden flight fully automatically. The EP was used as a backup in case of a
major malfunction of the automatic system and to control the taxi of the aircraft.

After the design, implementation, and testing of the FCSA and other flight control
modules, the UAV SAGITTA performed its maiden flight fully automatically on July 5,
2017. A picture of SAGITTA on the final approach of this flight is shown in Figure 4.21.
Only a few days later the second flight from Runway 17 at Overberg Airport (FAOB) in
South Africa, concluded the flight campaign. In both fully automatic flights, the FCSA
administered the flight control modules and executed the commands of the EP and FO.
The first flight consisted of a simple airfield traffic pattern but the mission already included
over 40 commands from both pilots. The second flight extended this pattern and included
an even greater variety of operational modes and commands to the FCSA.

An overview of the mode-related command history from both, the FO and the EP for
the second flight is listed in Table 4.21. Even though the EP did not control the aircraft
in the air, the taxi on the apron before and after the flight was performed manually. It
can be seen, that over 60 commands from the pilots were used during this mission. Some
of them are omitted from the list to increase the clarity. The resulting flight path, of this
second and last flight of SAGITTA, is depicted in Figure 4.22.

Figure 4.21: SAGITTA in Flight at Air Force Base Overberg (FAOB) in 2017 [Air2017]

171

4.6 Flight Tests

In the following, the history of commands and the resulting flight path are explained.
The numerical markers in the command history, Table 4.21, and flight trajectory, Fig-
ure 4.22, are referenced in brackets in the text.

The EP was used in the beginning to taxi the aircraft from its startup location (1) to
the takeoff position on the runway. Then the FO took over control. After performing some
checks in parking mode, the takeoff was command by the FO (2). SAGITTA performed
a fully automatic takeoff before the mode was changed to High-Level-Control (3). While
in this mode various superpositioning modes of the FCSA were tested. At first, various
altitude commands were used to alter the flight path height (3a-3b). Following those a
loiter was initiated by the FO (3c), and performed by the aircraft. While in this loiter
the command was retracted (3d) and the maneuver was finished as planned until reaching
the entry point. After this circle, various speed superposition commands were tested by
the FO (3e-3f). Then the link loss list was adjusted due to various constraints of the
operational area (3g). When turning towards the runway, the automatic landing was
activated (4) and the aircraft completed its second fully automatic mission. In the end,
the mode Parking was activated (5), before the EP took over control again.

Table 4.21: SAGITTA Second Flight - Command History

Number Time [s] Command Value Marker
21 2940.767 ep_inLoop_cmd_flg 1 1
22 2940.837 ep_inLoop_cmd_flg 0 -
33 3364.393 fo_inLoop_cmd_flg 1 -
34 3365.279 fo_inLoop_cmd_flg 0 -
39 3968.883 opl_mode_lgx 40 2
40 4042.639 opl_mode_lgx 22 3
41 4120.818 vertical_byFO_flg 1 3a
46 4170.469 vertical_byFO_flg 0 3b
47 4177.496 loiter_flg 1 3c
48 4230.247 loiter_flg 0 3d
49 4286.748 speed_byFO_flg 1 3e
58 4317.205 speed_byFO_flg 0 3f
59 4322.217 linkLossList_idx 1 3g
60 4375.303 opl_mode_lgx 42 4
61 4491.694 opl_mode_lgx 20 5
62 4687.910 ep_inLoop_cmd_flg 1 -
63 4687.980 ep_inLoop_cmd_flg 0 -
65 5177.248 fo_inLoop_cmd_flg 0 -

172

Chapter 4: Flight Control System Automation

0

20
00

-3
00

0

AGL[m]

-2
00

0

10
0

-1
00

0
10

00 [m
]

[m
]

0
10

00
0

20
00

30
00

40
00

←3g ←3f

←3e

←3c
←3b

←4

←2

←5

←3a

←1←3d

←3

F
ig

ur
e

4.
22

:
SA

G
IT

TA
Se

co
nd

Fl
ig

ht
-

Fl
ig

ht
Tr

aj
ec

to
ry

173

4.6 Flight Tests

4.6.2 DA 42

After its first automatic flight in January, 2016, the DA 42 , introduced in Section 2.2,
has been used in various projects at the Institute of Flight System Dynamics (FSD). In
contrast to SAGITTA, the level of automation could be gradually increased, since pilots
onboard the aircraft could be used for unsupported parts of the flight and for backup.

In the following, a flight test from January, 2017, will be used to prove the real-life
applicability of the FCSA, within an OPV. In this flight, the EP has not been utilized
and all phases are performed by the FO. However, over 30 commands have been used,
some of which are only available within the OPV version of the FCSA. A picture of a final
approach of the DA 42 during such a flight test is shown in Figure 4.23. Additionally,
the command history of the FO is listed in Table 4.22. Since only the FO is controlling
the aircraft during this flight, initial control takeover signals and some others are omitted
from the list. Furthermore, the trajectory of this flight test is depicted in Figure 4.24.

Within the OPV-enabled version of the FCSA for the DA 42 , there is a special control
mode for a pilot in the GCS with a control stick. Due to the modular implementation of
the FCSA this additional feature and requirement could be implemented fairly easily. This
mode uses a combination of bank-angle and load-factor command of the IL together with
the ATHR of the AFCS to create a gamma-dot and chi-dot command control law that
is usable in a higher latency scenario. In the following explanation, this is referred to as
curvature-law. Since it uses the same control loops as the FO modes and to allow sharing
of aircraft control, this is not activated by using the EP modes but rather by settings
specific values for the lateral_byFO_lgx and vertical_byFO_lgx variables.

Figure 4.23: DA 42 in Flight at Wiener Neustadt East Airport (LOAN) in 2017

174

Chapter 4: Flight Control System Automation

However, to make this possible at all, the limitation of values for those two control
variables is extended by parameters, in the OPV version of the FCSA. This is one case
in which the developed Intermittent Range Check (c.f. Subsubsection 3.2.4.2) is used to
guarantee, that only valid modes, with respect to the project, are used.

At the beginning of the flight test, Parking is activated and followed by takeoff shortly
afterward (1). After the fully automatic takeoff was performed the mode is switched
to High-Level-Control (2), but quickly changed again to Medium-Level-Control (3), in
which the FO is able to command altitude, heading, and speed. Following the climb
and first turn in the direction of the testing area, various different commands are tested.
Firstly heading command is changed to flight-track (3a) and then the altitude is changed
to vertical-speed (3b). In the following the special command law for the EP, curvature-
law, is tested (3c). In this case, the control stick provides flight path rate and curvature
commands. This mode is deactivated when changing back to altitude- and track-based
commands (3d). In the following, High-Level-Control mode is activated (4) and a loiter
pattern is initialized (4a). When reverting this command (4b), while still being in the
loiter patter, the aircraft finishes the current round and resumes to the next waypoint,
when crossing the entry point. The aircraft is then guided back towards the airport
using Medium-Level-Control (5), before activating automatic landing (6). After finishing
this fully automatic mission, the FCSA is set to standby (7), which deactivates all flight
control modules.

Table 4.22: DA 42 Flight Test - Command History

Number Time [s] Command Value Marker
08 1306.351 opl_mode_lgx 20 -
09 1317.991 opl_mode_lgx 40 1
12 1380.469 opl_mode_lgx 22 2
15 1402.870 opl_mode_lgx 21 3
17 1656.550 lateral_byFO_lgx 3 3a
18 2162.887 vertical_byFO_lgx 2 3b
20 2307.847 vertical_byFO_lgx 20 3c
21 2307.847 lateral_byFO_lgx 20 -
24 2460.447 lateral_byFO_lgx 3 3d
25 2461.027 vertical_byFO_lgx 4 -
26 2488.387 opl_mode_lgx 22 4
28 2789.115 loiter_flg 1 4a
29 2930.967 loiter_flg 0 4b
31 3742.505 opl_mode_lgx 21 5
33 3868.483 opl_mode_lgx 42 6
36 4059.804 opl_mode_lgx 1 7

175

4.6 Flight Tests

0

200

400

600

AGL [m]

80006000[m
] 4000

12000
10000

[m
]

2000
8000

6000
4000

0
2000

0

←4b←4a

←3a
←3b

←5

←3d

←4
←3c

←6

←3

←7

←2

←1F
igure

4.24:
D

A
42

FlightTest-
FlightTrajectory

176

Chapter 4: Flight Control System Automation

4.7 Summary
This chapter presents the Operator-Centric Multi-User Flight Control System Automation
for experimental UAVs and OPVs with Contingency Procedures (FCSA).

In the beginning, the system architecture with respect to hardware, the Flight Control
Computer (FCC), and the modules themselves is presented. This includes both aerial
testbeds, SAGITTA and the DA 42 , and the introduction of each flight control loop.
These include Input Processing and Monitoring (IPM), the System Automation (SA), the
Automatic Takeoff and Landing (ATOL), the Trajectory Generation (TG) and Trajectory
Control (TC), the Auto Flight Control System (AFCS) including Autothrottle (ATHR),
the Inner Loop (IL), and Output Processing (OP) module. The integration of the FCSA
within this cascaded control loop and the placement of the injection points is the first
part of contribution C2.1 - Strategy for switchability between various modes on different
authority levels, enabling experimental automation. Additionally, the module architecture
describes the integration of the generic modules into project-specific frameworks.

This is followed by a detailed description of all operational modes and their transition
conditions and actions. It consists of over 15 operational modes on four levels and over
50 transition conditions and actions, which enable the behavior of the FCSA. Important
modes include the basic differentiation between standby and operational as well as ground
and airborne modes for the pilot. Additionally, various operator modes from parking, over
autopilot and waypoint-based flight modes, to fully automatic takeoff and landing modes
are discussed. This constitutes the contribution C2.2 - Operational management concept
for multi-user experimental OPVs and UAVs, increasing mode awareness.

Those sections also include automatic contingency modes, which are divided into op-
erational and malfunction contingency procedures. This allows for continued automatic
flight and reduced workload for the pilot or operator. In the next section, the Loiter
Automation (LA), which is an encapsulated contingency module is introduced. Together
with the other contingency procedures and modes, it reflects contribution C2.3 - Au-
tomatic operational and malfunction contingency procedures for continuous operation in
non-nominal circumstances.

In the following, the injection switches are presented, which enable the injection and
routing of commands within the cascaded control loop. They are controlled by the FCSA
and placed between each adjacent control loop, to allow for access to all levels and com-
plete contribution C2.1.

The chapter concludes with real-life flight test data from both demonstration plat-
forms. The Unmanned Aerial Vehicle (UAV) SAGITTA performed its maiden flight fully
automatic from takeoff to touchdown with the help of the FCSA. Furthermore, flight test
data from the Optionally-Piloted Vehicle (OPV) DA 42 is presented. Both prove the
real-life applicability of the methodology, presented in Chapter 3, and the FCSA, which
was used during countless flight tests of both demonstration platforms to administer the
flight control modules and perform various missions.

177

Chapter 5

Flight Test Maneuver Injection

The developed Multi-Maneuver Multi-Control-Level Flight Test Maneuver Injection with
automatic Trim Point Capture and Verification (FTMI) is presented in this chapter.

A comparison between a test pilot and the FTMI is shown in Figure 5.1. The specified
maneuver, for both real-life flight tests, is an elevator doublet with an amplitude of 0.5◦, a
step time of 5s, and a hold time of 20s. While the maneuver can hardly be identified, when
reviewing the data from the test pilot, the specified signal is clearly visible, when being
executed automatically by the FTMI. The remaining offset and high-frequency noise are
founded in low actuator and sensor performance as well as inadequate linking between
the actuator and surface.

The author would like to thank Christoph Göttlicher for the collaborative work during
the development of the FTMI. With his development of the maneuvers and the discussions,
he has made a large contribution to the success of the FTMI.

0 5 10 15 20 25 30 35
Time [s]

-0.5

0

0.5

1

et
a

[d
eg

]

Pilot (manual)
FTMI (automatic)

Figure 5.1: Elevator Doublet Comparison

179

Motivation - Flight Test Maneuver Injection

• Automatic flight test generation is highly favorable for simple maneuvers
and inevitable for more complex maneuvers

• Numerous highly customizable maneuvers and various injection points are
not supported by current solutions

• Recent developments do not incorporate advanced functions for safe and
efficient flight testing

The current state of the art with respect to the flight test maneuver injection part
of this thesis is introduced in Subsection 1.3.3. The resulting motivation, due to the
identified deficits, is recapitulated here. It is related to the favorability of automated
flight tests, customizable maneuvers, and advanced functions. Due to the increased pre-
cision, automated flight test generation is highly favorable even for simple maneuvers.
For complex command patterns in flight tests, automation is inevitable due to the lack
of human controllability. Additionally, current solutions don’t offer multiple highly cus-
tomizable maneuvers and various injection points throughout a cascaded control loop.
Furthermore, advanced functions are not incorporated currently and can be integrated to
increase flight test efficiency.

The derived objectives, from the deficits in the current state of the art, are presented in
Subsection 1.4.3 and summarized in the following. The main objective of the FTMI is to
provide automatic execution of flight test maneuvers within the Flight Control Computer
(FCC). The software module needs to support complex-signal maneuvers and accurate
execution of those. To increase the scope of application, the integration of numerous
maneuvers and various injection points within the cascaded control loop is necessary.
The FTMI is used in various short-term development projects and therefore shall support
advanced features for efficient flight testing with increased safety to support rapid devel-
opment and enable in-flight verification of Flight Dynamic Models (FDMs) and controller
performance.

Objectives - Flight Test Maneuver Injection

• Provide an automatic and accurate execution of complex-signal flight test
maneuvers and the integration within the FCC

• Support the integration of numerous maneuvers and various injection
points within the cascaded control loop

• Develop advanced features for safe and efficient flight testing, like individual
trim points for each maneuver

180

Chapter 5: Flight Test Maneuver Injection

Contributions - Flight Test Maneuver Injection

• C3.1 - Generic design pattern, providing a free maneuver parametrization
without reimplementation

• C3.2 - Dynamic flexible choice of injection points on multiple control levels,
enabling a generic implementation and safe execution

• C3.3 - Individual trim point verification and automatic trim point capture
for safe and effective flight testing

The contributions of the maneuver injection, presented in this chapter, are introduced
in Subsection 1.5.3. The assignment of the individual contributions to the sections of this
chapter is presented in the following together with the general outline.

At the beginning of this chapter, Section 5.1 describes the hardware architecture of
both demonstration platforms used and the FCC System Architecture in combination
with the integration of the FTMI in the cascaded control loop. Additionally, the software
module architecture, which is associated with contribution C3.1, is presented.

In the following, the dynamic Allocations Matrices and Injection Points, which rep-
resent contribution C3.2, are described in Section 5.2. They enable a generic one-time
implementation of the maneuvers in a centralized location, to allow for easy extendability
and manageability among multiple developers as well as simplified testing.

Contribution C3.3 is associated with the description of the Operation Modes and their
Transition Conditions and Actions, which are presented in Section 5.3 and Section 5.4.
The state machine-based approach enables the use of advanced features in certain modes,
which are based on trim points for each maneuver. These include individual trim point
verification for each maneuver and the possibility to delay the execution until this point
is reached. Additionally, they utilize the outer control loops to provide automatic trim
point capture for increased safety and efficiency.

The five currently implemented Maneuvers are Multi-Step, Multi-Ramp, Multi-Sine,
Sweep, and Spline. Those maneuvers, which are used during the flight tests of the demon-
stration aircraft, are presented in Section 5.5.

Hereafter, example data from multiple Flight Tests of both demonstration platforms,
ELIAS and the Do 228 , is presented to prove the real-life applicability of the software.

The chapter is concluded with the Summary in Section 5.7, of the archived contribu-
tions and resulting applications of the FTMI.

The basic idea for this FTMI and parts of it have been previously published
[KGH2018]. However, this chapter takes a more detailed approach and includes various
undisclosed aspects of the maneuver injection.

181

5.1 System Architecture

5.1 System Architecture
This section introduces the overall system architecture of the Multi-Maneuver Multi-
Control-Level Flight Test Maneuver Injection with automatic Trim Point Capture and Ver-
ification (FTMI), which includes the platform-specific hardware architecture, the Flight
Control Computer (FCC) system architecture as well as the software module architecture.

One main requirement is the platform-independent design and transferable implemen-
tation, without changing the internal structure, so as not to affect previous testing and
verification. Therefore, the FTMI is tested on an ultralight Optionally-Piloted Vehicle
(OPV) and a 19-seat twin-engine manned aircraft as introduced in Chapter 2. The hard-
ware architecture of both is presented in Subsection 5.1.1.

In the following, the generic FCC system architecture is introduced in Subsection 5.1.2.
This includes an overview of the relevant flight control modules and the integration of the
FTMI as well as the dynamic allocation matrices and injection points within the cascaded
control loop.

In Subsection 5.1.3 the software architecture of the FTMI is presented. This includes
the modular design of the functional modules, used parameter structures for input and
output, as well as the hardware requirement-based separation into two computational enti-
ties. This represents contribution C3.1 Generic design pattern, providing a free maneuver
parametrization without reimplementation.

5.1.1 Hardware Architecture

The hardware architecture, in this part, refers to the FCC and the hardware connected to
it. These can be sensors to get information about the aircraft’s state, data links to receive
data from and sent data to the Ground Control Station (GCS), as well as actuators to
control the deflection of the surfaces of the aircraft.

Depending on the aircraft and project, different configurations and combinations are
used. The FTMI is designed to be applicable to different types of aircraft and to support
quick integration. Consequently, it is tested on two completely different aircraft, which
are introduced in Chapter 2.

On the one hand, ELIAS is an ultralight OPV, which is treated according to national
rules. As introduced in Section 2.3, the aircraft is a modified electric aircraft with a
wingspan of 11m. Its hardware architecture is described in Subsubsection 5.1.1.1.

On the other hand, the Do 228 is a modified 19-seat Part 23 Class IV aircraft. This
twin-engine commuter category aircraft with a maximum take-off mass (MTOM) of about
6000kg is introduced in Section 2.4. Its hardware architecture is described in Subsubsec-
tion 5.1.1.2.

182

Chapter 5: Flight Test Maneuver Injection

5.1.1.1 ELIAS Architecture

ELIAS , introduced in Section 2.3, is used as an OPV demonstration platform for the
FTMI. Figure 5.2 depicts a simplified overview of its hardware architecture. The overall
hardware architecture is more complex and incorporates more devices and connections.
However, this figure shows all relevant devices and connections for the FCC in the context
of the FTMI in this thesis, which are sensors on the left, available data link connections
on the top, and actuators and other mainly outgoing connections on the right.

The FCC receives most of its sensor information from the Navigation System (NAV).
This not only includes data from the Inertial Navigation System (INS), but also data
from an Air Data Computer (ADC), Magnetometer (MAG), and the Global Navigation
Satellite System (GNSS). Information about the height above ground level is provided by
the Radar Altimeter (RADALT). Additionally, the surface deflections are measured by
the Data Concentrator Unit (DCU) and also provided to the FCC.

The aircraft is connected to a GCS via the Flight Control Data Link (FCDL). It is
used to sent commands to the aircraft, as well as for receiving status and sensor data for
monitoring purposes in the GCS.

Commands from the FCC are primarily sent to the three Actuator Control Electronics
(ACEs), which are connected via Friction Clutches (FCs) and Electromagnetic Clutches
(EMCs) to the surfaces, the latter of which is controlled by the Actuator Clutch Box
(ACB). Additionally, a connection to another ACE is established to control the thrust
lever. The connection to the ACB and ACEs is bi-directional, which allows the FCC to
receive important information about e.g. their position or current consumption. Further-
more, a connection to the Multi-Function Display (MFD) is used to show information to
the pilot, but cannot be used as an input to the FCC.

FCDL

RADALT

INS, ADC,
MAG, GNSS

DCU

3xACE

MFD

ACE

ACB

Flight
Control

Computer

Figure 5.2: ELIAS Hardware Architecture

183

5.1 System Architecture

5.1.1.2 Do 228 Architecture

The Do 228 , introduced in Section 2.4, is the only manned, in a classical sense, demonstra-
tion aircraft, referenced in this thesis. It is also equipped with the FTMI and therefore,
in the following, more detailed information concerning the hardware architecture is pre-
sented. Figure 5.3 depicts a simplified overview as a basis for discussion in the following
paragraphs and the rest of this chapter. The schematic uses the same distinction of inputs
on the left, mainly outputs on the right, and bidirectional interfaces on the top.

As inputs, the Do 228 uses a similar setup as the other demonstration platforms. The
NAV includes an INS, a MAG, and a GNSS. It provides measurements of the aircraft’s
movement and orientation. Additionally, an ADC is used to gather data with respect
to the surrounding air. Furthermore, a DCU is used to collect complementary data like
control surface positions.

Since the Do 228 is only used as a manned aircraft, not as an Unmanned Aerial
Vehicle (UAV) or OPV, it is not equipped with any data link. However, a Mode Control
Panel (MCP) is used to display information to the pilots and as an input interface for
higher-level modes at the same time.

The calculated surface positions are sent to the three ACEs. They control the elevator,
aileron, and rudder and are supervised by the Safety Relay Box (SRB). The SRB can
also be directly controlled by the pilots, bypassing the FCC, to create an independent
possibility to disconnect the EMCs and disengage the Flight Control System (FCS). Since
the two throttle levers are not accessible by the FCC, the Thrust Director (TDR) is used
to display the desired power setting to the pilots.

MCP

ADC

DCU

INS,
MAG, GNSS

3xACE

SRB

TDR

Flight
Control

Computer

Figure 5.3: Do 228 Hardware Architecture

184

Chapter 5: Flight Test Maneuver Injection

5.1.2 FCC System Architecture

In the following, the software architecture of the FCC and the integration of the FTMI
are introduced. An overview is depicted in Figure 5.4. This includes the FTMI and its
three injection modules: Auto Flight Control System - Injection Module (AF-IM), Inner
Loop - Injection Module (IL-IM), and Actuator - Injection Module (AC-IM). In contrast
to Figure 4.5, fewer flight control loops are depicted since they are not relevant for the
FTMI. Since the information about them can be found in Subsection 4.1.2, a further
discussion is omitted here.

FCC

Command Control Information

Input Processing

Flight Test Maneuver Injection

Trajectory Generation

Inner Loop

Trajectory Control

Auto Flight Control System

Output Processing

AF

IM
-

IL

IM
-

AC

IM
-

Figure 5.4: FCC System Architecture

185

5.1 System Architecture

5.1.3 Software Module Architecture

In the following, the software module architecture of the FTMI is described. The indepen-
dent design pattern provides free maneuver parameterization without re-implementation
and reflects contribution C3.1 Generic design pattern, providing a free maneuver
parametrization without reimplementation.

An overview of this FTMI software module architecture is depicted in Figure 5.5.
Besides the aircraft-specific Input Processing and Output Processing, it is split into two
major sections. The Control section includes Data Processing, Trim Point Calculation,
and the State Machine and is responsible for the overall control and planning of the
maneuver, while the Execution section includes State Execution, Maneuver Generation,
and Protections and is handling the real-time safety-critical execution.

This computational requirement-based separation is done to support future execution
on two physically separated FCCs. The modules in the Control section need a larger
amount of storage, due to the Data Processing module, which includes the saved maneu-
vers. However, this module does not need to be real-time capable. On the other hand,
the modules in the Execution section need to be calculated in real-time but don’t need a
lot of storage. This is enabled by the developed asynchronous interface between the two,
which only transfers data of the currently active maneuver and some additional status
information. A detailed description of all modules is given in the following and the im-
plementation of the Control and Execution module in Simulink and Stateflow is shown in
Figure 5.6 and Figure 5.7.

The FTMI is designed to be used by a Flight Operator (FO) within a GCS. How-
ever, it can also be commanded by a flight test pilot or engineer onboard the aircraft.
The following description within this chapter refers to the FO but can be replaced with
alternative users.

Control

Data Processing

State Machine

Trim Point
Calculation

Execution

Protections

State Execution

Maneuver
Generation

In
pu

t
Pr

oc
es

sin
g

O
ut

pu
t

Pr
oc

es
sin

g

Figure 5.5: Software Module Architecture

186

Chapter 5: Flight Test Maneuver Injection

5.1.3.1 Input Processing

The Input Processing module is used to convert aircraft-specific buses or structures to
the generic bus structure of the FTMI. This includes the selection of relevant sensor
information and the mapping of commands from the FO or onboard user. If certain
functions shall be disabled for the respective platforms, parameters can be overwritten
at this point as well. The Input Processing enables the usage of the FTMI in different
projects without changing the internal structure.

5.1.3.2 Data Processing

The Data Processing module is part of the Control section and responsible for storing all
maneuvers, selecting the currently necessary one, and processing and forwarding the data
to the other modules within the Control section. It corresponds to the reddish part in
Figure 5.6. Each maneuver consists of four fields, which structurally group the maneuver
data. Those are options, signalConfig, trimPoint, and data.

The options part includes general information like the maneuver index, type of
maneuver, and trim point configuration.

The signalConfig field includes the signal configuration and allocation data. Each
maneuver consists of up to five signals, which can be mapped to arbitrary control sur-
faces. Additional data includes the configuration of the control surface, which includes
the possible use of the currently active deflection as an offset. This can be used to keep
the aircraft closer to the trim point and is explained in the relevant parts of Section 5.2.

The trimPoint field includes the target values for the trim point, e.g altitude, head-
ing, speed, and more.

Specific parameters for the maneuver itself are located in the data field, which consists
of 50 generic parameters, that have a different function for each maneuver type. This
enables structured storage of the maneuvers, simpler implementation, and reflects part of
contribution C3.1. After selecting the currently active maneuver, this data is mapped to
Simulink buses and forwarded to the next modules.

5.1.3.3 Trim Point Calculation

The Trim Point Calculation module calculates if the individual trim point of the currently
selected maneuver has been reached or captured. This is done by the greenish part of
Figure 5.6. Each trim point consists of freely selectable values for altitude, heading, and
speed of the aircraft, which can be activated individually. Additionally, a target value for
the three turn rates of the aircraft can be selected. The latter ones are normally set to
zero. If the error between the measured values of the sensors and the specified values of
the trim point of the maneuver is below a predefined threshold for a certain amount of
time, the trim point is considered reached. This result is forwarded to the State Machine.

187

5.1 System Architecture

5.1.3.4 State Machine

The State Machine is administering the FTMI and controlling the flight control loops
during the capture of a trim point and execution of a maneuver. It is shown, with its
surrounding parts, in the blueish area of Figure 5.6.

Six control modes are used to implement the required behavior, which are Standby
(STB), Wait-for-Trim-Point (WTP), Wait-for-Auto-Trim-Point (WATP), Execute-
Maneuver (EMA), Wait (WAIT), and Index-Error (IDER). Those six modes and their
respective transition conditions and actions are described in more detail in Section 5.3
and Section 5.4.

5.1.3.5 State Execution

The State Execution is part of the Execution section. It is responsible for signal rout-
ing within the Execution section with respect to the currently active mode of the State
Machine. This is done by the reddish part of Figure 5.7.

5.1.3.6 Maneuver Generation

The Maneuver Generation module is generating the flight test signals. It’s implemented
within the greenish area of Figure 5.7. Depending on the currently selected maneuver
type the corresponding conditionally executed subsystem is activated. The author did
not implement those maneuvers but provided the infrastructure to integrated numerous
types of maneuvers without re-implementation.

5.1.3.7 Protections

Within the Protections module, different methods are implemented to keep the aircraft
within the accepted flight envelope and as close to the trim point as possible. It’s rep-
resented by the blueish part in Figure 5.7. Those protections include step commands,
relative step commands, and low bandwidth control. Such protections need to be un-
correlated to the injected signal to retain the informational value of the maneuver. The
development of suitable protections is not in the scope of this thesis and further informa-
tion is, therefore, omitted here.

5.1.3.8 Output Processing

Similar to the Input Processing, the Output Processing is responsible for mapping in-
ternal status information to aircraft-specific interfaces and structures. Additionally, the
command structures for the three injection modules, AF-IM, IL-IM, and AC-IM, are
generated.

188

Chapter 5: Flight Test Maneuver Injection

1

inject_mosi

3

inject_miso

Mealy

activate_flg

useAutoTrim_flg

waitForTrimpoint_flg

listIdxValid_flg

listIdx_cfg

mangen_lgx

trimPointOK_flg

level1_lgx

resetTP_flg

level1

2

inject_sensors

mangen_data

mangen_trimpoint

inject_sensors

selectedManeuver

inject_trimpoint

reset_trimpoint

trimpoint_ok_flg

calcTrimpoint

list_idx

inject_in

mangen_opt

mangen_sigconfig

mangen_trimpoint

mangen_data

inject_protect_raw

selectedManeuver

controlConfig

trimpoint

mangen_params

inject_protect

dataHandling

mangen_opt

mangen_sigconf

Z-1

Delay

uint8

Data Type Conversion1

inject_data.protect_raw

1

inject_in

list_idx

list_idx_valid_flg

listIdx_cfg

list_idx_out

saveLastValidIDX

Convert

Data Type Conversion

mangen_param

selectedManeuver

inject_trimpoint

<mangen_status>

level1_lgx

inject_protect

controlConfig

<waitForTrimpoint_flg>

<useAutoTrim_flg>

<activate_flg>

<list_idx>

Figure 5.6: Control Module

1

inject_cmd

1

inject_mosi

inject_controlConfig

active_flg
inject_controlConfig_out

activateControlConfig

inject_sensors

inject_protect

active_flg

inject_controlDelta

protections

2

inject_sensors

inject_controlConfig

reset_flg

il_config

il_cmd

afcs_config

afcs_cmd

il_config_out

il_cmd_out

afcs_config_out

afcs_cmd_out

resetControlLoops

active_flg

maneuver_idx

mangen_params

mangen_signal

mangen_status

mangen_duration

maneuverGeneration

level1_lgx_uint8

selectedManeuver

level1_lgx

active_flg

active_maneuver_idx

inputMapping

level1_lgx

selectedManeuver

inject_trimpoint

inject_sensors

reset_flg

il_config_out

il_cmd_out

afcs_config_out

afcs_cmd_out

setControlLoops

3

tncp_flg

<controlConfig>

<level1_lgx>

<inject_protect>

<mangen_param>

<selectedManeuver>

<inject_trimpoint>

il_config

controlConfig

mangen_signal

il_cmd

afcs_config

afcs_cmd

delta_cmd

mangen_status

mangen_duration

tncp_flg

Figure 5.7: Execution Module

189

5.2 Allocation Matrices and Injection Points

5.2 Allocation Matrices and Injection Points
This section takes a detailed look at the dynamic allocation matrices and injection points
of the FTMI, which represent contribution C3.2 Dynamic flexible choice of injection points
on multiple control levels, enabling a generic implementation and safe execution. The
overall integration within the FCC has been introduced in Subsection 5.1.2. However,
this section describes the specific implementation of all injection modules in more detail.

A schematic of the injection architecture, which is part of the FTMI, is depicted in
Figure 5.8. In contrast to Figure 5.4, it can be seen that in general each Injection Module
(IM) actually consists of an Override Switch (OR) and/or an Injection Switch (IJ). Even
though not both of them are used on each level, the others could be added in the future.

The Auto Flight Control System - Injection Module (AF-IM) consists of the Auto Flight
Control System - Override Switch (AF-OR). Therefore, the Auto Flight Control System
(AFCS) can be utilized to perform advanced features like automatic trim point capture.

The Inner Loop - Injection Module (IL-IM) consists of the Inner Loop - Override
Switch (IL-OR) and Inner Loop - Injection Switch (IL-IJ). Accordingly, the Inner Loop
(IL) can be used for support functions but maneuvers can also be injected to test the
control and tracking performance of the IL. Supporting functions can be used additionally
to the maneuver to stabilize the aircraft in the not-excited axis.

The Actuator - Injection Module (AC-IM) consists only of the Actuator - Injection
Switch (AC-IJ), which allows for injection of maneuvers to the actuators of the aircraft.

AC-IM

IL-IM

AF-IM

AF

OR
-

Trajectory Control

Auto Flight Control System

IL

OR
- Inner Loop

AC

IJ
-

IL

IJ
-

Figure 5.8: Injection Architecture

190

Chapter 5: Flight Test Maneuver Injection

5.2.1 Auto Flight Control System - Override Switch

The AF-OR is used to feed alternative inputs to the AFCS. Those are used to enable the
advanced functions of the FTMI, like automatic trim point capture. An overview of the
implementation is depicted in Figure 5.9.

Relevant parts of the command interface to the AFCS, that can be changed by
the FTMI, are selected in the Bus Assignment. The first three, lnav_fms_cmd,
vnav_fms_cmd, and engy_fms_cmd, are enumerated mode selection commands.
Those control the active mode in the respective axis. The following five variables,
ias_fms_cmd_mDs, psi_fms_cmd_rad, h_fms_cmd_m, phi_fms_cmd_rad and
theta_fms_cmd_rad, are the actual command values. Those are set to the specific
trim point values if the AFCS is used for automatic trim point capture or to other
predefined values for high-level support functions like altitude hold.

1

sysauto_afcs_cmd_out

1

sysauto_afcs_cmd

2

inject_cmd

Bus

Bus

:= lnav_fms_cmd

:= vnav_fms_cmd

:= engy_fms_cmd

:= ias_fms_cmd_mDs

:= psi_fms_cmd_rad

:= h_fms_cmd_m

:= phi_fms_cmd_rad

:= theta_fms_cmd_rad

Bus
Assignment

 > 0

Switch

 > 0

Switch1

 > 0

Switch2

 > 0

Switch3

 > 0

Switch4

 > 0

Switch5

 > 0

Switch6

 > 0

Switch7

<lnav_cmd>

<ias_cmd_mDs>

<ias_config>

<ias_fms_cmd_mDs>

<psi_fms_cmd_rad>

<h_fms_cmd_m>

<psi_cmd_rad>

<h_config>

<h_cmd_m>

<phi_fms_cmd_rad>

<phi_cmd_rad>

<phi_cmd_rad>

<theta_fms_cmd_rad>

<theta_config>

<theta_cmd_rad>

<lnav_config>

<vnav_cmd>

<vnav_config>

<engy_cmd>

<engy_config>

<lnav_fms_cmd>

<vnav_fms_cmd>

<engy_fms_cmd>

<psi_config>

Figure 5.9: Auto Flight Control System - Override Switch

191

5.2 Allocation Matrices and Injection Points

5.2.2 Inner Loop - Override Switch

The Inner Loop - Override Switch (IL-OR) is used if alternative commands need
to be sent to the IL. Similar to AF-OR, the first three variables in the top of Fig-
ure 5.10, il_yaw_axis_engaged_flg, il_roll_axis_engaged_flg, and
il_pitch_axis_engaged_flg are used to activate or deactivate the respective axis.
The last three, phi_cmd_rad, fDg_z_R_B_cmd, and fDg_y_R_B_cmd are used to
forward the specific command value to the IL.

Those variables are also used to realize low-level support functions. They include but
are not limited to a wing-leveler, which can be used during vertical maneuvers, and a
constant load-factor, which can be used during lateral maneuvers.

1

afcs_il_cmd_out

Bus

Bus

:= phi_cmd_rad

:= fDg_z_R_B_cmd

:= fDg_y_R_B_cmd

Bus
Assignment

3

inject_cmd

1

afcs_il_cmd

2

il_moding_flgs

2

il_moding_flgs_out

 > 0

Switch

 > 0

Switch1

 > 0

Switch2

 > 0

Switch3

 > 0

Switch4

 > 0

Switch5

<il_cmd> <yaw_axis_engaged>

<phi_cmd_rad>

<yaw_axis_config><il_config>

<il_cmd>

<il_config> <yaw_axis_config>

<roll_axis_engaged>

<il_cmd>

<il_config>

<pitch_axis_engaged>

<pitch_axis_config>

<il_yaw_axis_engaged_flg>

<il_roll_axis_engaged_flg>

<il_pitch_axis_engaged_flg>

<il_cmd>

<il_config> <phi_config>

<phi_cmd_rad>

<il_cmd>

<il_config> <fDg_z_config>

<fDg_z_R_B_cmd>

<il_cmd>

<il_config> <fDg_y_config>

<fDg_y_R_B_cmd>

<afcs_il_tracking_cmd>

<fDg_z_R_B_cmd>

<fDg_y_R_B_cmd>

il_yaw_axis_engaged_flg

il_pitch_axis_engaged_flg

il_roll_axis_engaged_flg

Figure 5.10: Inner Loop - Override Switch

192

Chapter 5: Flight Test Maneuver Injection

5.2.3 Inner Loop - Injection Switch

The Inner Loop - Injection Switch (IL-IJ) is used to inject the generated maneuvers into
the IL. Use cases could be performance testing or tracking analysis. An overview of the
IL-IJ is depicted in Figure 5.12.

In the greenish area, it can be seen, that injection is possible to all three command
values. Those are phi_cmd_rad, fDg_z_R_B_cmd and fDg_y_R_B_cmd. Each axis
uses a similar structure with library blocks for the signal merging.

An exception is the generation of the default_value for fDg_z_R_B_cmd. Within
this subsystem, located in the reddish area of Figure 5.12, either the externally provided
value is selected or an internally calculated load-factor with turn compensation is for-
warded. Such a calculation is only necessary for the load-factor because its default value
is the only non-zero one.

This subsystem is shown in Figure 5.11. In the reddish part, the compensated trim
load-factor is calculated. If both the pitch-angle (theta) and the roll-angle (phi) are
zero, the necessary load-factor would be one or more correctly negative one. However,
even in a straight and level flight, theta is most likely not zero, which results in a change of
the load-factor. Depending on the situation, this can be used as an offset to the maneuver,
which is even more relevant in real-life flight tests, since disturbances will slightly change
the pitch and roll-angle throughout any test.

The subsystems, which consist of the dynamic signal allocation use some generic inputs
as well as axis-specific parts. Depending on the active_flg, which can be different
for each axis but only active during the execution of a maneuver, a switch is used to
select between the original command from the adjacent control loop and the generated
maneuver. A detailed explanation of those subsystems is given in Subsection 5.2.4.

1

cmd_out

3

default_value

1

sensors

T

F

Switch

Saturation1

cos

cos1

cos

cosSaturation single(-1)

Gain

Divide

2

tncp_flg

cos_Phi

cos_Theta

<theta_rad>

<phi_rad>

fDg_z_G_B_trim

Figure 5.11: Load-Factor Selection

193

5.2 Allocation Matrices and Injection Points

1

afcs_il_cm
d_out

B
us

B
us

:=
 phi_cm

d_rad

:=
 fD

g_z_R
_B

_cm
d

:=
 fD

g_y_R
_B

_cm
d

B
us

A
ssignm

ent

3

inject_cm
d

TF

S
w

itch

cm
d

config

inject_cm
d

delta_cm
d

default_value

cm
d_out

genInjectC
M

D
_phi

TF

S
w

itch1

TF

S
w

itch2

cm
d

config

inject_cm
d

delta_cm
d

default_value

cm
d_out

genInjectC
M

D
_fD

g_y

2

afcs_il_cm
d

cm
d

config

inject_cm
d

delta_cm
d

default_value

cm
d_out

genInjectC
M

D
_fD

g_z

1

sensors

sensors

tncp_flg

default_value

cm
d_out

fz_selection

inject_data.default_value.fD
g_z

C
onstant1

inject_data.default_value.phi

C
onstant

inject_data.default_value.fD
g_y

C
onstant2

<
delta_cm

d>
<

value>
<

fD
g_y_R

_B
_delta>

<
value>

<
fD

g_z_R
_B

_delta>
<

delta_cm
d>

<
value>

<
active_flg>

<
active_flg>

<
active_flg>

<
phi_delta>

<
delta_cm

d>

<
fD

g_y_config>

<
fD

g_y_R
_B

_cm
d>

<
fD

g_z_config>

<
fD

g_z_R
_B

_cm
d>

<
phi_config>

<
phi_cm

d_rad>

<
controlC

onfig>

<
controlC

onfig>

<
controlC

onfig>

<
tncp_flg>F

igure
5.12:

Inner
Loop

-
Injection

Switch

194

Chapter 5: Flight Test Maneuver Injection

5.2.4 Actuator - Injection Switch

On the lowest level, the Actuator - Injection Switch (AC-IJ) is used to inject flight test
maneuvers directly to the actuators. An overview is shown in Figure 5.14. Except for the
fact, that other signals are used, the structure and implementation are similar to IL-IJ.

The merging and dynamic signal allocation subsystem, located in the greenish area
of Figure 5.14, is shown in Figure 5.13. In the reddish part, the selection between a
predefined default value and the trim value of the command is performed. If the current
value of the command shall be used as an offset, its value at the beginning of the maneuver
is saved within the "holdValue" block and added to the signal. Otherwise, a predefined
default value (normally zero) is used, with the exception of the vertical load-factor as
explained in Subsection 5.2.3.

In the greenish part, the relevant signal for the specific command is selected. Based
on the individual configuration of the maneuver, one or more of the five source signals are
selected to contribute to the output to the surface, or control loop input.

In the blueish part, all signals are added together. Additionally, the command from
the protection algorithm is added if activated. The saturation of the signal, in the end,
is omitted here since it is performed further down in the control allocation or interface
mapping part anyway.

1

cmd_out

1

cmd

3

inject_cmd

T

F

Switch

Product4

2

config

in

active_flg

out

holdValue

4

delta_cmd

5

default_value

<signal5>

<signal4>

<signal3>

<signal2>

<use_trim_flg>

<active_flg>

<signal1>

<mangen_signal>

<signal1_flg>

<signal5_flg>

<signal4_flg>

<signal3_flg>

<signal2_flg>

Figure 5.13: Command Generation

195

5.2 Allocation Matrices and Injection Points

1

act_cm
d_sel_out_out

1

act_cm
d_sel_out

2

inject_cm
d

TF

cm
d

config

inject_cm
d

delta_cm
d

default_value

cm
d_out

genInjectC
M
D
_xi

TFTFTFTF

S
w
itch5

cm
d

config

inject_cm
d

delta_cm
d

default_value

cm
d_out

genInjectC
M
D
_eta

cm
d

config

inject_cm
d

delta_cm
d

default_value

cm
d_out

genInjectC
M
D
_zeta

cm
d

config

inject_cm
d

delta_cm
d

default_value

cm
d_out

genInjectC
M
D
_delta_T

_lh

cm
d

config

inject_cm
d

delta_cm
d

default_value

cm
d_out

genInjectC
M
D
_delta_T

_rh

inject_data.default_value.xi

inject_data.default_value.eta

inject_data.default_value.zeta

inject_data.default_value.delta_T
_lh

inject_data.default_value.delta_T
_rh

<
active_flg>

<
delta_T

_rh_config>

<
delta_T

_rh_cm
d>

<
delta_T

_lh_config>

<
delta_T

_lh_cm
d>

<
zeta_config>

<
zeta_cm

d_rad>

<
eta_config>

<
eta_cm

d_rad>

<
controlC

onfig>

<
xi_cm

d_rad>

<
xi_config>

<
controlC

onfig>

<
controlC

onfig>

<
controlC

onfig>

<
controlC

onfig>

<
delta_cm

d>
<
zeta_delta>

<
active_flg>

<
active_flg>

<
active_flg>

<
active_flg>

<
value>

<
eta_delta>

<
value>

<
delta_cm

d>

<
xi_delta>

<
value>

<
delta_cm

d>

<
value>

<
delta_cm

d>

<
delta_T

_rh_delta>
<
value>

<
delta_cm

d>

<
delta_T

_lh_delta>

il_act_cm
d

F
igure

5.14:
Actuator

-
Injection

Switch

196

Chapter 5: Flight Test Maneuver Injection

5.3 Operation Modes
The main state machine of the FTMI consists of six modes, which are used to realize the
overall functionality of the developed software module. They are listed below, described
in the following, and represent contribution C3.3 Individual trim point verification and
automatic trim point capture for safe and effective flight testing.

• Standby (STB)

• Index-Error (IDER)

• Wait-for-Trim-Point (WTP)

• Wait-for-Auto-Trim-Point (WATP)

• Execute-Maneuver (EMA)

• Wait (WAIT)

The initial mode and the default mode of the FTMI, when not active, is Standby
(STB). It can be active during both, manual flight and automatic flight.

Each maneuver has its own unique identifier, which is used during the definition of
the maneuver as well as during the flight test to select the respective maneuver. If the
selected index is not available the state machine will enter the Index-Error (IDER) mode.

Additional to the signal data, each maneuver also consists of an individual trim point,
which includes a specific altitude, heading, and speed as well as maximum turn rates. If
the maneuver has been activated, but the respective trim point has not been reached by
the pilot, the FTMI remains in Wait-for-Trim-Point (WTP). The individual trim point
elements can only be chosen during maneuver definition, the option to wait with the
execution until the trim point is reached can be selected while airborne.

If the FTMI is used in a more advanced FCS, that already includes a working inner-
loop and autopilot, the mode Wait-for-Auto-Trim-Point (WATP) can be used. During
this mode, the necessary control loops are automatically activated and used to capture
the trim point without any intervention by the pilot.

When the trim point is reached during WTP, WATP, or if the trim point was de-
activated, the mode Execute-Maneuver (EMA) is activated and the maneuver itself is
executed. The FTMI remains in this mode until the maneuver is complete.

If the maneuver was executed successfully or aborted due to an error, the mode Wait
(WAIT) is entered. It is used to synchronize the FCC and the GCS. The maneuver
execution is started using a boolean variable, which is normally controlled by a switch in
the GCS. If the variable does not remain true, the maneuver is immediately aborted.
Therefore, this switch will be active after the maneuver has been completed and can then
be deactivated, using the mode information from the FTMI, thus synchronizing both
devices, re-activating STB, and enabling the start of the next maneuver.

197

5.4 Transition Conditions and Actions

5.4 Transition Conditions and Actions
After previously describing the operation modes of the FTMI, this section focuses on
the transition conditions and actions between those modes. It, therefore, represents the
second part of contribution C3.3 Individual trim point verification and automatic trim
point capture for safe and effective flight testing.

The Stateflow state chart, with the six previously introduced modes, STB, IDER,
WTP, WATP, EMA, and WAIT and the possible transition paths between those six
modes, is depicted in Figure 5.15. The necessary in- and outputs of this state machine,
that are used by the transition conditions and actions, are listed in Table 5.1.

They include variables like the activate_flg, the useAutoTrim_flg, and the
waitforTrimpoint_flg, which are sent from the FO in the GCS. They can be used
online to modify the behavior of the FTMI depending on the next maneuver, its re-
quirements, or the current situation. Additionally, an index is transmitted from the
GCS, indicating the current maneuver. This is used to generate listIdx_cfg and
listIdxValid_flg, which are used to determine a change and the validity of the
index. Furthermore, the status from the maneuver generation (manGen_lgx) of the sec-
ondary module is used within the state machine as well as the evaluation of the current
trim point (trimPointOK_flg).

The state machine generates two outputs. The currently active state is represented in
level1_lgx, while resetTP_flg is used to reset the trim point evaluation. Further-
more, the transition matrix with all possible paths between the different modes is shown
in Table 5.2. All transition conditions and actions are explained in the following. Their
implementation is listed in Appendix F.

During the initialization of the state machine, the unconditional transition init→stb
to STB is executed. This sets the respective level1_lgx and also sets resetTP_flg
to true. In this state, the trim point evaluation is held in a reset state until needed.

From STB various other modes can be reached. For a simple activation of a ma-
neuver without any trim point functionality, the transition stb→ema to EMA can be
used. It is executed if the activation is requested, activate_flg is set to true, and
waitforTrimpoint_flg is set to false.

Under normal circumstances, the activation of EMA triggers the execution of the se-
lected maneuver. The end of the maneuver is indicated from the Maneuver Generation
to the State Machine module with the respective value in manGen_lgx. This triggers
the transition ema→wait and activates WAIT . However, this transition is also executed
if the index for the flight maneuver is changed during execution. This would be recog-
nized via listIdx_cfg and also activates ema→wait. The transition ema→wait sets
level1_lgx to the respective value when entering WAIT .

198

Chapter 5: Flight Test Maneuver Injection

em
a

w
tp

w
ai
t

id
er

w
at
p

ta

st
b

tc

[tc
.x
_s
tb
()
]

[tc
.e
m
a_
w
ai
t(
)]

2

[tc
.x
_s
tb
()
]1

[tc
.w
at
p_
em
a
()
]

2

[tc
.w
tp
_e
m
a
()
]

2

[tc
.id
er
_w
ai
t(
)]

2
[tc
.id
er
_s
tb
()
]1

{t
a.
x_
st
b(
);
}

[tc
.s
tb
_w
tp
()
]

4

{t
a.
x_
w
ai
t(
);
}

{t
a.
st
b_
id
er
()
;}

[tc
.s
tb
_e
m
a
()
]

2

{t
a.
x_
st
b(
);
}

[tc
.x
_s
tb
()
]1

[tc
.s
tb
_i
de
r(
)]

1

{t
a.
st
b_
w
tp
()
;} [tc
.x
_s
tb
()
]1

{t
a.
x_
em
a
()
;}

{t
a.
st
b_
w
at
p
()
;}

[tc
.s
tb
_w
at
p
()
]

3

F
ig

ur
e

5.
15

:
St

at
e

M
ac

hi
ne

199

5.4 Transition Conditions and Actions

Table 5.1: Interface

Name Direction Datatype Range
activate_flg input boolean 0, 1
useAutoTrim_flg input boolean 0, 1
waitforTrimpoint_flg input boolean 0, 1
listIdx_cfg input boolean 0, 1
listIdxValid_flg input boolean 0, 1
manGen_lgx input enum 0, 1, 2, 3, 99
trimPointOK_flg input boolean 0, 1
level1_lgx output enum 0, 1, 2, 3, 4, 5, 6
resetTP_flg output boolean 0, 1

The execution of a maneuver can be aborted by setting activate_flg to false.
In this case, the transition ema→stb is executed and STB is activated. This immediately
stops the execution of the maneuver by setting level1_lgx to the respective value.

If the maneuver is completed and WAIT is activated there is only one exiting path.
This transition, wait→stb to STB, is executed as soon as the inconsistency between the
aircraft and GCS is resolved. The activate_flg is set by the FO via a latching
switch or something similar. Therefore the activate_flg is still set to true when the
maneuver is completed. This inconsistency is resolved via WAIT , which is active as long
as activate_flg is set to true. When it is set to false the transition wait→stb
is executed, the respective value for level1_lgx is set, and STB is activated again.
Therefore, the mode WAIT is basically used here to debounce the input signal from the
FO in the GCS.

After the execution of the maneuver and resolving the inconsistency, the state ma-
chine is in STB again. If an invalid maneuver index is selected, which is indicated by
listIdxValid_flg being false, the transition stb→ider is executed and IDER is
activated. This sets level1_lgx to the respective value and enables the FO to take
appropriate action.

If this error is resolved, the transition ider→stb is executed. For this to take place, a
valid index must be selected. Additionally, however, the activate_flg must also still
be false. If both conditions are met, STB is activated again, which is reported to the
FO by setting level1_lgx to the respective value.

Another exiting transition from IDER is possible, which is executed if the index error
is resolved, but the activate_flg has been set to true beforehand. In this case,
ider→wait is triggered and WAIT is activated. From there, the already known transition
can be activated to reach STB and to resolve the inconsistency.

200

Chapter 5: Flight Test Maneuver Injection

Table 5.2: Transition Matrix

To
STB IDER WTP WATP EMA WAIT

Fr
om

init init→stb n/a n/a n/a n/a n/a
STB - stb→ider stb→wtp stb→watp stb→ema n/a
IDER ider→stb - n/a n/a n/a ider→wait
WTP wtp→stb n/a - n/a wtp→ema n/a
WATP watp→stb n/a n/a - watp→ema n/a
EMA ema→stb n/a n/a n/a - ema→wait
WAIT wait→stb n/a n/a n/a n/a -

The advanced modes, which examine the individual trim point of the maneu-
ver can also be triggered from STB. The transition stb→wtp is executed when the
activate_flg is set to true, while waitforTrimpoint_flg is true as well. In
this case, WTP is activated, which leads to the respective level1_lgx, but also to the
deactivation of resetTP_flg.

Since the trim point evaluation module is no longer reset it uses the trim point in-
formation of the currently active maneuver to calculate trimPointOK_flg. If the al-
titude, heading, and speed of the aircraft match the respective trim point, the transition
wtp→ema is executed, which activates EMA and starts the maneuver.

While in WTP the planned maneuver can be aborted. The transition wtp→stb, to
STB, is executed if the activate_flg is set to false. Therefore, STB is activated
again either directly or via EMA with already known transitions. When activating STB,
resetTP_flg is set to true again, which disables the trim point calculation.

The most advanced mode of the FTMI uses not only the individual trim point data of
the maneuver, but also utilizes flight control modules to automatically capture this point.
If all commands from the FO in the GCS, activate_flg, waitforTrimpoint_flg,
and useAutoTrim_flg are set to true, the transition stb→watp is executed. This
sets level1_lgx to the respective value, enables the trim point detection by setting
resetTP_flg to true, and activates WATP. The state execution module of the Exe-
cution part then enables the AFCS and IL. The trim point values of the maneuver are
forwarded as commands to those modules, which lead the aircraft to the desired point.

Reaching the desired trim point is indicated by trimPointOK_flg, which triggers
watp→ema. In this case, EMA is activated, which represents the last step in the automatic
capture and evaluation of the trim point with successive maneuver execution.

The capture of the trim point can be aborted at any time by setting activate_flg
to false. This triggers watp→stb and activates STB, which returns the FTMI to its
default state from where the next maneuver can be selected and activated again.

201

5.5 Maneuvers

5.5 Maneuvers
This section introduces the currently implemented maneuvers, that can be used for various
tasks like identifying Flight Dynamic Models (FDMs), evaluate controller performance,
and analyzing actuator tracking. Those maneuvers are used within the FTMI but are not
designed or implemented by the author. They are shown here to create a better under-
standing of the overall concept. A list of the available maneuvers, which are implemented
within the Maneuver Generation (c.f. Subsection 5.1.3), is provided in the following.

• Blank

• Multi-Step

• Multi-Ramp

• Multi-Sine

• Sweep

• Spline

The maneuver Blank is, as the name suggests, not a real maneuver. However, it is
necessary for two reasons. On the one hand, it can be used to better organize the list of
maneuvers, e.g. a new group of specific maneuvers can start with a multiple of ten or a
hundred. On the other hand, it can be used to test the engagement and disengagement
of the module without generating a non-zero output. While Multi-Step or Multi-Ramp
maneuvers can at least theoretically be performed by test pilots, the Multi-Sine, Sweep,
and Spline maneuvers are constructed of complex signals, that cannot be replicated by
human test pilots.

The other five, non-blank, maneuvers will be described in the following in more detail,
including example plots. Besides the signal shapes, the figures also show the signal traces
for the active_flg and status_lgx. While the active_flg is the command from
the state machine that corresponds to EMA, status_lgx is the internal status logic of
the Maneuver Generation module, which is also sent to the FO in the GCS. The signals
are normalized to the maximum surface deflection and therefore have no unit.

For each maneuver, up to five internal signals can be defined by the user and mapped
to the respective outputs. This allows the user to use support functions with secondary
signals. If one signal is used to e.g. generate a maneuver on the elevator, another signal can
be used to specify the target bank-angle for this maneuver. With such a generic mapping,
support functions like holding the wings level or flying with a specified load-factor can
easily be activated by the user. The online scaling of amplitudes is implemented for
simulation and testing but deactivated during flight tests for safety reasons. Additionally,
for most maneuvers, a repetition count can be used to generate highly customizable
maneuvers.

202

Chapter 5: Flight Test Maneuver Injection

5.5.1 Multi-Step

The Multi-Step maneuver is a classical approach that is used to collect data for parameter
estimation. It excites the system using step inputs with varying times. [KM2006, Jat2006]

Commonly used variations are 3-2-1-1, 1-2-1, 2-1-1, and doublet maneuvers.
The numbers in the naming schemes describe the relation of step times with respect to a
base step width. A 1-2-1 maneuver together with a time-skewed doublet, both of which
are executed in the lateral plane, is shown as an example in Figure 5.16. In this case, the
1-2-1 is commanded to the aileron (xi), while the doublet is commanded to the rudder
(zeta). Such a maneuver can be used to excite the roll mode and dutch roll motion.

Adjustable parameters for this maneuver include the base step width, step sequence
with a multiplier, and amplitude. Additionally, a repetition count can be used to auto-
matically repeat the maneuver.

0

1

2

[-]

active
status

0 5 10 15 20 25
Time [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

[-]

xi
zeta

Figure 5.16: Multi-Step Maneuver

203

5.5 Maneuvers

5.5.2 Multi-Ramp

If the slope of the rising or falling edge of the signal needs to be gradual, the Multi-Ramp
maneuver can be utilized. Figure 5.17 shows an example where a signal is mapped to both
throttle levers (delta_t) simultaneously. Such a maneuver can be, if assisted by other
control loops that keep the altitude constant and wings level, used for a level acceleration
maneuver. The generated data can then be used to evaluate engine performance or to
investigate drag and lift characteristics over a range of velocities.

Adjustable parameters for this type of maneuver include the slope and time of the
ramp, which can be utilized to generate various shapes. Similar to the previous maneuver
a repetition count can be used to generate highly customizable saw-tooth sequences.

0

1

2

[-]

active
status

0 10 20 30 40
Time [s]

0

0.2

0.4

0.6

0.8

1

1.2

[-]

delta_tl
delta_tr

Figure 5.17: Multi-Ramp Maneuver

204

Chapter 5: Flight Test Maneuver Injection

5.5.3 Multi-Sine

The Multi-Sine is a maneuver that is applied in the frequency domain parameter estima-
tion. This approach is using phase-optimized multi-sine signals as illustrated by Eugene A.
Morelli. Additionally, the optimization of phase angles in order to minimize the relative
peak factor is used to generated uncorrelated signals. [Mor2012b]

Adjustable parameters include the frequency range, the number of excited harmonics,
and the amplitude. Those are then optimized to avoid large peaks due to interference
while keeping the desired frequency spectrum constant.

Figure 5.18 depicts an example time-series, where 16 frequencies from 0.5Hz to 2.0Hz

are mapped to the aileron (xi) and rudder (zeta). It is used to excite the complete
lateral dynamics of the aircraft simultaneously, but with perfectly uncorrelated signals.

Configurable parameters include the minimum and maximum frequency, as well as the
number of used frequencies, duration of the maneuver, and type of optimization.

0

1

2

[-]

active
status

0 5 10 15 20
Time [s]

-0.4

-0.2

0

0.2

0.4

[-]

xi
zeta

Figure 5.18: Multi-Sine Maneuver

205

5.5 Maneuvers

5.5.4 Sweep

The Sweep maneuver is another approach to exited a wide range of frequencies and uses
a sine wave with exponentially increasing frequency. This method, also known as loga-
rithmic sweep, avoids the problems of linear sweeps where comparatively a large amount
of time is spent at high frequencies. [TR2012]

An example of such a maneuver is depicted in Figure 5.19. In this case, only one
surface, the elevator (eta), is used for injection. It can be seen, that the exponential
increase leads to more time at longer oscillation periods. This advantage ensures that the
lower frequencies are exited properly before moving to higher ones.

Configurable parameters for this maneuver include the frequency range, duration, and
amplitude. Those can be used to create customized sequences for each application.

0

1

2

[-]

active
status

0 10 20 30 40 50
Time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

[-]

eta

Figure 5.19: Sweep Maneuver

206

Chapter 5: Flight Test Maneuver Injection

5.5.5 Spline

The Spline maneuver is the most customizable signal shape currently implemented. This
maneuver is defined using knots, spline coefficients, and the spline order. This leads to
generic and arbitrary signal shapes, that can be used if previous maneuver types are not
sufficient. An example is shown in Figure 5.20.

Another use case for the Spline maneuver is the interface to other maneuver defini-
tions. It can represent signals that were designed specifically to maximize the information
content of the recorded data. Eugene A. Morelli illustrates such an approach where dy-
namic programming is used to maximize information [Mor1990, MK1990]. This leads to
input signals that can only attain discrete values, which is not possible with the previous
maneuver types. However, they can be represented by zero-order splines.

0

1

2

[-]

active
status

0 5 10 15 20
Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

[-]

fDg_z

Figure 5.20: Spline Maneuver

207

5.6 Flight Tests

5.6 Flight Tests
The FTMI has been used in various flight tests. Not so much to prove the functionality
itself, but more to support the development of FDMs and flight control loops in multiple
projects. This was especially true for ELIAS and the Do 228 .

As introduced in Chapter 2, ELIAS is an ultralight OPV with a wingspan of 11m, an
MTOM of 320kg, and a fully electric propulsion system. On the other hand, the Do 228
is Part 23 Class IV aircraft. It is placed within the commuter category, has a wingspan
of over 16m and an MTOM of almost 6000kg. Examples for the real-life application of
maneuver injection during flight tests are presented in the following subsections and prove
the functionality of the FTMI.

The FTMI is designed with the contrary requirements of both main modules in mind.
However, in the above-mentioned projects, it was used on a single computer.

However, before performing real-life flight tests, numerous testing steps have been
fulfilled to gain the required confidence in the correct execution of the flight tests. As
introduced in Section 3.4, those tests included Unit Tests, Model Checking, Model in the
Loop (MiL), Software in the Loop (SiL), Hardware in the Loop (HiL), and Aircraft in the
Loop (AiL) simulations. Additionally, various ground tests have been conducted, before
moving to real-life flight tests.

Model Checking, which utilizes formal methods has been used to detect design errors,
generated test case coverage reports, and prove key functionalities of the injection. This
was especially useful in the state machine and logic parts of the software module. To
guarantee the generation of valid maneuvers numerous SiL and HiL simulations have
been executed, which especially focused on the maneuver storage within the generated
code and FCC itself. In the following, maneuvers have been injected in the AiL tests
before moving to Ground Tests as well as Flight Tests.

The current implementation of the FTMI supports five maneuvers, as introduced in
Section 5.5. In the two above-mentioned projects, numerous Multi-Step, Multi-Ramp,
Multi-Sine, and Sweep maneuvers have been used to support the development or to assist
during troubleshooting.

Multi-Step maneuvers have been used with ELIAS to validate the FDM. Since both
projects had problems with actuator performance, a Sweep maneuver is presented for
ELIAS and a Multi-Ramp maneuver is shown for the Do 228 . Additionally, a Multi-Sine
maneuver with the Do 228 is provided as an example of controller performance analysis.

The Spline maneuver is integrated as the most adjustable version of a signal. However,
during those projects, it was not necessary since the other maneuvers included enough
customization. To prove the real-life applicability of the FTMI the above-mentioned two
example maneuvers of each project are presented in the following.

208

Chapter 5: Flight Test Maneuver Injection

5.6.1 ELIAS

The ultralight aircraft ELIAS , introduced in Section 2.3, was the demonstration platform
for the project EUROPAS and is also used in the subsequent project AURAIS. During
those projects the FTMI has been extensively used for, among others, validating the
FDM, identifying actuator tracking, and analyzing control loop performance. In 2019
alone, over 900 maneuvers have been executed with the FTMI, creating a total maneuver
duration time of almost seven hours. In total over 300 maneuvers are defined for ELIAS
and an assignment to the different types of maneuvers is listed in Table 5.3.

In the following, two maneuvers executed during ground trials and flight tests with
ELIAS are shown, to prove the real-life applicability of the FTMI in an OPV. Figure 5.21
shows ELIAS during flight tests in May, 2017. The second maneuver is part of ground
trials in 2018, in which the reconstruction of the flight mechanical system is tested and
the actuator performance is validated.

Table 5.3: ELIAS Maneuvers

Maneuver Type Number of defined Maneuvers
Multi-Step 185
Multi-Ramp 31
Multi-Sine 82
Sweep 7

Figure 5.21: ELIAS in Flight at Landshut Airport (EDML) in 2017

209

5.6 Flight Tests

In Figure 5.22 a doublet, one of the Multi-Step maneuvers, executed by the FTMI is
shown. The top part of the figure distinguishes between the command, the actuator, and
the surface, which all are converted with respect to the surface. The maneuver starts
shortly after the 1905s mark with five seconds in which the command reflects the trim
value. In the following, the doublet with an amplitude of 0.7◦ is executed. This is followed
by a 20s hold time of the trim value to observe the aircraft’s response.

It can be seen that there is a difference between the command and the actuator, which
is caused by insufficient power of the actuator. Additionally, the difference between the
actuator and the surface is caused by mechanical backlash.

The maneuver is designed to stimulate the phugoid motion of the aircraft. The re-
sponse of the aircraft in speed and altitude is shown in the lower part of Figure 5.22,
where the expected phase-shifted response in altitude and airspeed is visible. Those are
shown as the deviation (delta) from the trim point.

-0.5

0

0.5

et
a

[d
eg

]

command
actuator
surface

-5.0

0.0

5.0

de
lta

_
IA

S
[m

/s
]

1900 1905 1910 1915 1920 1925 1930 1935 1940 1945
Time [s]

-20

0

20

de
lta

_
h

[m
]

Figure 5.22: Elevator Doublet

210

Chapter 5: Flight Test Maneuver Injection

A Sweep maneuver, used in ground trials of ELIAS , is shown in Figure 5.23. It shows
the same maneuver being injected by the FTMI into the actuators controlling the three
main control surfaces. This was part of ground trials in 2018, to measure the actuator
performance in combination with the mechanical linkage to the surface.

It can be seen, that all three actuators and surfaces show similar but slightly different
behavior. In the top part of Figure 5.23, the actuator of the elevator surface (eta)
overshoots the command on positive commands but undershoots it on the opposite side.
The surface is lagging behind and shows an offset as well as saturation issues. In the
middle of Figure 5.23, the aileron surface (xi) follows its actuator more closely. However,
the actuator itself creates a bigger difference to the command. In the lower part of
Figure 5.23, the actuator for the rudder surface (zeta) lags behind the command, and
the surface is following closely on negative commands but shows larger offsets during
positive commands.

700 720 740 760 780 800

-1

0

1

et
a

[d
eg

]

command
actuator
surface

1920 1940 1960 1980 2000 2020

-1

0

1

xi
[d

eg
]

command
actuator
surface

2860 2880 2900 2920 2940 2960
Time [s]

-1

0

1

ze
ta

[d
eg

]

command
actuator
surface

Figure 5.23: Actuator Sweeps

211

5.6 Flight Tests

5.6.2 Do 228

The Do 228 is the largest demonstration platform used for testing of the software modules
described in this thesis. It has a wingspan of nearly 17m, an MTOM of almost 6000kg,
and is a Part 23 Class IV, commuter category, aircraft. It is introduced and described in
more detail in Section 2.4.

Over the last years, numerous ground and airborne maneuvers have been executed
utilizing the FTMI. In total over 600 maneuvers have been defined for the Do 228 . An
overview of the allocation between the number of defined maneuvers and the different
types is listed in Table 5.4.

Figure 5.24 shows the aircraft in flight in 2021. The following maneuvers were part of
the airborne flight test campaign in 2019. They demonstrate the real-life applicability of
the FTMI in a manned aircraft.

Table 5.4: Do 228 Maneuvers

Maneuver Type Number of defined Maneuvers
Multi-Step 116
Multi-Ramp 164
Multi-Sine 293
Sweep 40

Figure 5.24: Do 228 in Flight at Oberpfaffenhofen Airport (EDMO) in 2021

212

Chapter 5: Flight Test Maneuver Injection

Three Multi-Ramp maneuvers, generated by the FTMI are shown in Figure 5.25.
Those maneuvers are injected into the aileron surface (xi) of the Do 228 during one
flight test, to analyze the behavior of the respective actuator and control surface linkage.
All maneuvers use the current deflection of the aileron as a trim offset.

In the upper part of Figure 5.25, a ramp with an edge time of 2s, a hold time of 1s,
and an amplitude of 0.5◦ is injected. However, basically, no reaction of the control surface
can be observed.

In the next subplot, the amplitude of the ramp is doubled to 1◦. In contrast to the
first subplot, it can be seen, that the surface is following the command. However, when
moving from one side to the other, a lag can be identified.

The last subplot, in the bottom part of Figure 5.25, shows a ramp with a much quicker
rise and fall time. It is eight times faster (0.25s) compared to the previous ramps. The
surface is able to follow the command, at least on this accuracy and time scale.

852 854 856 858 860 862 864
-1.5

-1
-0.5

0
0.5

xi
[d

eg
]

command
surface

1030 1032 1034 1036 1038 1040 1042
-1.5

-1
-0.5

0
0.5

xi
[d

eg
]

command
surface

1092 1093 1094 1095 1096 1097 1098
Time [s]

-1.5
-1

-0.5
0

0.5

xi
[d

eg
]

command
surface

Figure 5.25: Aileron Ramps

213

5.6 Flight Tests

A Multi-Sine maneuver, used with the Do 228 , is shown in Figure 5.26. This more
complex maneuver is used to investigate the performance of the IL.

The complete maneuver is actually made up of a smaller part that is repeated mul-
tiple times to increase the consistency of the information. In Figure 5.26 three of eight
replications used for this maneuver are shown.

The Multi-Sine maneuver is injected into the lateral control part of the inner loop.
The upper part, of Figure 5.26, shows status information, which can be used to locate
the exact start of the maneuver. The bank-angle command (phi) and the response of
the aircraft are shown in the bottom part. It can be seen that the maneuver starts with
a zero-command time of 3s, before actually beginning with the sine signal. Also, no
trim value is used as an offset in this case. In general, the measurement is following the
command with some delay and scaling issues, that were resolved afterward.

0

1

2

st
at

us
[]

2560 2570 2580 2590 2600 2610 2620 2630 2640
Time [s]

-3

-2

-1

0

1

2

3

ph
i[

de
g]

command
measurement

Figure 5.26: Bank-Angle Multi-Sine

214

Chapter 5: Flight Test Maneuver Injection

5.7 Summary
This chapter presents the Multi-Maneuver Multi-Control-Level Flight Test Maneuver
Injection with automatic Trim Point Capture and Verification (FTMI).

In the beginning, the hardware architecture, Flight Control Computer (FCC) sys-
tem architecture, and software module architecture are presented. A differentiation is
made between the two aerial platforms, ELIAS and the Do 228 , used as demonstra-
tion aircraft for the FTMI. While one is an ultralight electric platform, the other is a
19-seater commuter aircraft. While the system architecture describes the integration of
the FTMI with the other FCC flight control loops, the next part describes the different
software modules within the FTMI. They include the Input Processing, Data Processing,
Trim Point Calculation, State Machine, State Execution, Maneuver Generation, Protec-
tions, and the Output Processing module. This detailed description of the architecture
is associated with contribution C3.1 - Generic design pattern, providing a free maneuver
parametrization without reimplementation.

In the following, the three injection modules, which are used to feed maneuvers into
the different flight control loops are introduced. They consist of an override and/or an
injection part. This is based on the necessary functionality as they are placed prior to
the Auto Flight Control System (AFCS), the Inner Loop (IL), and the actuators to access
all necessary control levels. Their functionality and integration within the FCC represent
contribution C3.2 - Dynamic flexible choice of injection points on multiple control levels,
enabling a generic implementation and safe execution.

In the next two sections, the operation modes, as well as the transition conditions and
transition actions of the main state machine, are presented. The available operation modes
are Standby (STB), Index-Error (IDER), Wait-for-Trim-Point (WTP), Wait-for-Auto-
Trim-Point (WATP), Execute-Maneuver (EMA), and Wait (WAIT). This state machine
and its connections to the other flight control modules enable the advanced features of the
FTMI and constitutes contribution C3.3 - Individual trim point verification and automatic
trim point capture for safe and effective flight testing.

Additionally, the available maneuvers are presented. While those are not developed by
the author, they are included in this thesis to provide a better understanding of the overall
functionality of the FTMI. Those five maneuvers are Multi-Step, Multi-Ramp, Multi-Sine,
Sweep, and Spline.

This is followed by a section with real-life flight test data. Both aerial test platforms,
the Optionally-Piloted Vehicle (OPV) ELIAS and the manned Do 228 have performed
numerous flight tests. During those flights, from which a few are presented, the functions
of the FTMI have been used to validate Flight Dynamic Model (FDM), investigate IL
performance, or analyze actuator tracking. This proofs the real-life applicability of the
contributions and the FTMI in general. Additionally, it proves the applicability of the
methodology, presented in Chapter 3, since it was used to design, implement, and test
this software module.

215

Chapter 6

Conclusion

In this thesis, a methodology to design, implement, and test higher-level system automa-
tion functions is proposed. Additionally, two applications based on this methodology are
introduced. Those are a flight control system automation for experimental aircraft and a
flight test maneuver injection. The conclusion for all three is presented in the following
sections: Section 6.1, Section 6.2, and Section 6.3.

A key requirement for the developed algorithms is the real-life applicability to various
types of aircraft. These include Unmanned Aerial Vehicles (UAVs), Optionally-Piloted
Vehicles (OPVs), and manned aircraft. To verify this requirement, the applications pre-
sented in this thesis are tested on multiple demonstration platforms. An overview of all
aircraft is given in Figure 6.1.

(a) SAGITTA - UAV [Air2017] (b) DA 42 - OPV

(c) ELIAS - OPV (d) Do 228 - manned

Figure 6.1: Aerial Demonstration Platforms, referenced in this thesis

217

6.1 Methodology

6.1 Methodology for System Automation
A generic methodology for higher-level system automation and its formal verification,
called Design, Implementation, and Testing Methodology for System Automation - using
State Machines in Stateflow (MTSA), is developed to create the basis for designing and
implementing higher-level automation functions. It is based on dividing functions into dif-
ferent modes of operation and assigning those to their respective level of automation. The
connection to other systems is purely handled in external interaction points and switches.
To prove the correct functionality of the design and the implemented automation, the
methodology also includes formal testing and verification.

The function to be automated is divided into different modes with respect to commonly
used modules or parts of the existing flight control loops. Depending on the number of
modes and different levels of control involvement they can be grouped into common levels
of automation. Changes from one mode to another are restricted by transition conditions.
Those can be inputs from the user, conditions for an automatic sequence of modes, or
guard conditions to restrict usage of specific modes in certain aircraft or environments.
Afterward, if the transition condition is met, the respective transition action is executed
and the new mode is activated.

The connection to other modules is not designed to pass through the main automa-
tion module, but instead, the commands are induced via external interaction points and
switches. This modular approach allows for a generic implementation that is flexible with
respect to future extension or modification. The higher-level automation proposed as
targets for this methodology are advanced finite state machines.

Testing the design and implementation of the function is a fundamental development
step for safety-critical software. Therefore, this methodology includes a process for formal
testing and verification. This covers not only closed-loop tests but also independent
tests using formal methods. Consequently, this methodology leads to deterministic and
predictable robust automation with formally guaranteed properties.

The contributions related to the Methodology for System Automation, which are pre-
sented in Chapter 3, are summarized in the following.

Contributions - Methodology for System Automation

• C1.1 - Hierarchical decomposition design strategy, minimizing complexity
and optimizing testability

• C1.2 - Modeling guidelines for implementation, minimizing opacity and
maximizing software maintainability

• C1.3 - Incremental bottom-up application of formal methods, ensuring
effective testing and guaranteed system characteristics

218

Chapter 6: Conclusion

6.2 Flight Control System Automation
The Operator-Centric Multi-User Flight Control System Automation for experimental
UAVs and OPVs with Contingency Procedures (FCSA), developed in this thesis, is a
software module that is part of the Flight Control Computer (FCC). It provides an inter-
face for multiple users, like a Flight Operator (FO) in a Ground Control Station (GCS)
and an External Pilot (EP). Additionally, the FCSA administers a cascaded control loop
consisting of various flight control modules to create numerous dedicated flight modes.

Overall, 15 control modes and four superposition options are spread over five levels.
For the FO those include, among others, fully automatic takeoff and landing, trajec-
tory modes like GPS-based waypoint flight, common autopilot-based modes, like altitude,
heading, and speed command, and very basic modes like parking and standby. Example
control modes for the EP are dedicated ground and airborne modes, like direct-law or
rate-command-attitude-hold, which are switched automatically based on the state of the
aircraft. The design makes it possible to use them on a UAV as well as on an OPV, with-
out changing the internal structure. Furthermore, the FO and EP, can both be either
onboard the aircraft or in a remote location, and superposition options can be used.

Besides the nominal functions, it features contingency procedures, both for opera-
tional as well as malfunction scenarios. If the user wants to "cancel" or "pause" the mis-
sion, modes guiding the aircraft back to the home base, or performing automatic holding
patterns can be activated. If the system detects a malfunction it will automatically acti-
vate corresponding contingency modes, to mitigate the effects. Possible faults include a
disconnected control link or a loss of the Global Positioning System (GPS) signal.

The FCSA was developed for and tested on a UAV, the SAGITTA Research Demon-
strator, and on an OPV, the DA 42 . Platform type-specific modes, e.g. modes only for a
UAV or OPV, are guarded so they cannot be activated on the wrong platform. Numerous
flight tests on both platforms have proven the real-life applicability of the FCSA on both
platforms in various conditions.

The contributions related to the Flight Control System Automation, which are pre-
sented in Chapter 4, are summarized in the following.

Contributions - Flight Control System Automation

• C2.1 - Strategy for switchability between various modes on different
authority levels, enabling experimental automation

• C2.2 - Operational management concept for multi-user experimental OPVs
and UAVs, increasing mode awareness

• C2.3 - Automatic operational and malfunction contingency procedures for
continuous operation in non-nominal circumstances

219

6.3 Maneuver Injection

6.3 Flight Test Maneuver Injection
The Multi-Maneuver Multi-Control-Level Flight Test Maneuver Injection with automatic
Trim Point Capture and Verification (FTMI), developed in this thesis, is a software mod-
ule that is capable of injecting various maneuvers into different points of the cascaded
control loop for fully automatic flight test execution.

This automation is designed in a modular fashion, separating parts based on their
individual requirements. Therefore, the FTMI is split into two main parts. While one
of them relies on storage capacity, the other requires real-time capabilities. Both are
connected over an asynchronous interface to support execution on different systems.

Besides the main data that defines the maneuver itself, each of them also includes a
trim point, which in turn consists of up to six parameters. Depending on the configura-
tion of each maneuver the FTMI can either ignore this trim point, which results in the
immediate execution of the maneuver after activation, or it analyses the current state
of the aircraft and holds the execution until the trim point is reached. Furthermore, it
can even use existing parts of the control loop to automatically capture the trim point,
without any intervention by the pilot, and start the maneuver accordingly.

The FTMI can be used to generate five different types of maneuvers. These include
a Multi-Step, Multi-Ramp, Multi-Sine, Sweep, and Spline maneuver that are highly cus-
tomizable to support various demands.

Each maneuver can be mapped to one or more of eight injection points. Those include
direct actuator commands for aileron, elevator, rudder, thrust commands for up to two
engines, as well as low-level inner loop commands like bank-angle, vertical load-factor,
and lateral load-factor. In combination with the five maneuvers, this allows for a very
large variety of different, fully automatic, flight tests.

The FTMI has been used extensively on two of the aerial demonstration platforms.
With those precise and automated tests, the FTMI has proven its real-life applicability
and has contributed to the success of the respective project.

The contributions related to the Flight Test Maneuver Injection, which are presented
in Chapter 5, are summarized in the following.

Contributions - Flight Test Maneuver Injection

• C3.1 - Generic design pattern, providing a free maneuver parametrization
without reimplementation

• C3.2 - Dynamic flexible choice of injection points on multiple control levels,
enabling a generic implementation and safe execution

• C3.3 - Individual trim point verification and automatic trim point capture
for safe and effective flight testing

220

Chapter 6: Conclusion

6.4 Outlook
In this thesis, the following methodology and two applications were presented, which are
verified by real-life flight tests on multiple aerial demonstration platforms.

• Design, Implementation, and Testing Methodology for System Automation - using
State Machines in Stateflow (MTSA)

• Operator-Centric Multi-User Flight Control System Automation for experimental
UAVs and OPVs with Contingency Procedures (FCSA)

• Multi-Maneuver Multi-Control-Level Flight Test Maneuver Injection with automatic
Trim Point Capture and Verification (FTMI)

Future updates of the MTSA might include a change in the way values are assigned
to the output bus. The current implementation focuses on maintainability and expand-
ability. However, with the currently used method, values can generally be overwritten in
multiple places, which can lead to problems. Future releases of MATLAB and Simulink
might include other ways of assigning values to data collecting structures, or even entirely
different structures, that can then be utilized to avoid this problem.

The FCSA can easily be extended due to its modular structure. Future projects
might include other operations modes that can be added to the current implementation.
Additionally, the FCSA could be extended to be used in different types of aircraft, like
transition or tiltrotor aircraft, which also depend on various mode changes during the
different phases of flight.

For the FTMI, a few aspects are currently under discussion and could be integrated
into future releases. For aircraft with additional control sticks, that are not mechanically
connected to the surfaces, an additional input to the currently generated maneuver out-
put could be implemented to allow for low bandwidth correction by the pilot during a
maneuver. In the current version of the FTMI, there is no possibility to inject maneuvers
on the autopilot level because such a function was not required in any project. How-
ever, if necessary, such an injection could be added relatively easy, due to the modular
implementation of the FTMI. Concerning the implementation of the injection points, a
transformation of project-specific buses to generic FTMI ones, and vice versa, might be
necessary, to support completely different bus structures in other projects.

Due to the rise of UAVs and OPVs in numerous applications, the developed method-
ology and applications can be used in various forms. This might be by enabling the
implementation of complex state machines, development of multi-user automation for ex-
perimental aircraft, or supporting efficient verification and validation with automatically
executed flight tests.

221

Appendix A

Automation Levels

Table A.1, Table A.2, and Table A.3 depict the original version of different levels of
automation for manned flight, as defined by Charles Billings [Bil1991, p. 27]. Due to size
and format issues, the original table is split up into three separate ones.

Table A.1: Automation Levels - Management Modes

Management Mode

Ve
ry

Lo
w
←

Le
ve

lo
fA

ut
om

at
io

n
→

Ve
ry

H
ig

h

Ve
ry

H
ig

h
←

Le
ve

lo
fI

nv
ol

ve
m

en
t
→

Ve
ry

Lo
w

Autonomous Operation

Management by Exception

Management by Consent

Management by Delegation

Shared Control

Assisted Manual Control

Direct Manual Control

I

Table A.2: Automation Levels - Automation Functions

Management
Mode

Automation
Functions

Autonomous
Operation

Fully autonomous operation
Pilot not usually informed
System may or may not be capable of being disabled

Management
by Exception

Essentially autonomous operation
Automatic reconfiguration
System informs pilot and monitors responses

Management
by Consent

Full automatic control of aircraft and flight
Intent, diagnostic and prompting functions provided

Management
by Delegation

Autopilot and Autothrottle control of flight path
Automatic communications and nav following

Shared
Control

Enhanced control and guidance
Smart advisory systems
Potential flight path and other predictor displays

Assisted
Manual
Control

Flight director, FMS, Nav modules
Data link with manual messages
Monitoring of flight path control and aircraft systems

Direct
Manual
Control

Normal warnings and alerts
Voice communication with ATC
Routine ACARS communications performed automatically

II

Chapter A: Automation Levels

Table A.3: Automation Levels - Human Functions

Human
Functions

Management
Mode

Pilot generally has no role in operation
Monitoring is limited to fault detection
Goals are self-defined, pilot normally has no reason to intervene

Autonomous
Operation

Pilot informed of system intent
Must consent to critical decisions
May intervene by reverting to lower level of management

Management
by Exception

Pilot must consent to state changes, checklist execution, anomaly
resolution

Manual execution of critical actions

Management
by Consent

Pilot commands altitude, heading, speed
Manual or coupled navigation
Commands system operations, checklists, communications

Management
by Delegation

Pilot in control through CWS or envelope-protected system
May utilize advisory systems
System management is manual

Shared
Control

Direct authority over all systems
Manual control, aided by F/D and enhanced navigation display
FMS is available, trend info on request

Assisted
Manual
Control

Direct authority over all systems
Manual control utilizing raw data
Unaided decision-making; Manual communications

Direct
Manual
Control

III

Appendix B

Edge Detector Code Generation

In Table B.1 all automatically generated files (except "*.txt" and "*.bat") are listed. The
most important ones are emphasized in italics and are shown in the following.

Table B.1: Code Generation - Files

Group Name Size

C Source

edgeDetector.c 9 KB
rt_nonfinite.c 2 KB
rtGetInf.h 4 KB
rtGetNaN.c 3 KB

DMR-File codedescriptor.dmr 179 KB

C/C++ Header

builtin_typeid_types.h 2 KB
edgeDetector.h 5 KB
edgeDetector_private.h 2 KB
edgeDetector_types.h 1 KB
multiword_types.h 18 KB
rt_nonfinite.h 2 KB
rtGetInf.c 2 KB
rtGetNaN.h 1 KB
rtmodel.h 1 KB
rtwtypes.h 2 KB

MAT-file
buildInfo.mat 13 KB
codeInfo.mat 4 KB
rtwtypeschksum.mat 2 KB

Makefile edgeDetector.mk 14 KB
RSP-File edgeDetector_ref.rsp 0 KB
TMW-File rtw_proj.tmw 1 KB

V

1 /*
2 * edgeDetector.h

3 *
4 * Academic License - for use in teaching, academic research, and

meeting

5 * course requirements at degree granting institutions only. Not for

6 * government, commercial, or other organizational use.

7 *
8 * Code generation for model "edgeDetector".

9 *
10 * Model version : 1.26

11 * Simulink Coder version : 8.11 (R2016b) 25-Aug-2016

12 * C source code generated on : Sun Jun 07 16:27:25 2020

13 *
14 * Target selection: grt.tlc

15 * Note: GRT includes extra infrastructure and instrumentation for

prototyping

16 * Embedded hardware selection: Intel->x86-64 (Windows64)

17 * Code generation objective: Debugging

18 * Validation result: Not run

19 */

20

21 #ifndef RTW_HEADER_edgeDetector_h_

22 #define RTW_HEADER_edgeDetector_h_

23 #include <float.h>

24 #include <string.h>

25 #include <stddef.h>

26 #ifndef edgeDetector_COMMON_INCLUDES_

27 # define edgeDetector_COMMON_INCLUDES_

28 #include "rtwtypes.h"

29 #include "rtw_continuous.h"

30 #include "rtw_solver.h"

31 #include "rt_logging.h"

32 #endif /* edgeDetector_COMMON_INCLUDES_

*/

33

34 #include "edgeDetector_types.h"

35

36 /* Shared type includes */

37 #include "multiword_types.h"

38 #include "rt_nonfinite.h"

39

40 /* Macros for accessing real-time model data structure */

41 #ifndef rtmGetFinalTime

42 # define rtmGetFinalTime(rtm) ((rtm)->Timing.tFinal)

43 #endif

44

45 #ifndef rtmGetRTWLogInfo

VI

Chapter B: Edge Detector Code Generation

46 # define rtmGetRTWLogInfo(rtm) ((rtm)->rtwLogInfo)

47 #endif

48

49 #ifndef rtmGetErrorStatus

50 # define rtmGetErrorStatus(rtm) ((rtm)->errorStatus)

51 #endif

52

53 #ifndef rtmSetErrorStatus

54 # define rtmSetErrorStatus(rtm, val) ((rtm)->errorStatus = (val))

55 #endif

56

57 #ifndef rtmGetStopRequested

58 # define rtmGetStopRequested(rtm) ((rtm)->Timing.stopRequestedFlag)

59 #endif

60

61 #ifndef rtmSetStopRequested

62 # define rtmSetStopRequested(rtm, val) ((rtm)->Timing.stopRequestedFlag

= (val))

63 #endif

64

65 #ifndef rtmGetStopRequestedPtr

66 # define rtmGetStopRequestedPtr(rtm) (&((rtm)->Timing.

stopRequestedFlag))

67 #endif

68

69 #ifndef rtmGetT

70 # define rtmGetT(rtm) ((rtm)->Timing.taskTime0)

71 #endif

72

73 #ifndef rtmGetTFinal

74 # define rtmGetTFinal(rtm) ((rtm)->Timing.tFinal)

75 #endif

76

77 /* Block states (auto storage) for system ’<Root>’ */

78 typedef struct {

79 uint8_T is_active_c3_edgeDetector; /* ’<Root>/edgeDetector’ */

80 uint8_T is_c3_edgeDetector; /* ’<Root>/edgeDetector’ */

81 } DW_edgeDetector_T;

82

83 /* External inputs (root inport signals with auto storage) */

84 typedef struct {

85 int8_T edgeDetector_in; /* ’<Root>/edgeDetector_in’ */

86 } ExtU_edgeDetector_T;

87

88 /* External outputs (root outports fed by signals with auto storage) */

89 typedef struct {

90 int8_T edgeDetector_out; /* ’<Root>/edgeDetector_out’ */

91 } ExtY_edgeDetector_T;

VII

92

93 /* Real-time Model Data Structure */

94 struct tag_RTM_edgeDetector_T {

95 const char_T *errorStatus;

96 RTWLogInfo *rtwLogInfo;

97

98 /*
99 * Timing:

100 * The following substructure contains information regarding

101 * the timing information for the model.

102 */

103 struct {

104 time_T taskTime0;

105 uint32_T clockTick0;

106 uint32_T clockTickH0;

107 time_T stepSize0;

108 time_T tFinal;

109 boolean_T stopRequestedFlag;

110 } Timing;

111 };

112

113 /* Block states (auto storage) */

114 extern DW_edgeDetector_T edgeDetector_DW;

115

116 /* External inputs (root inport signals with auto storage) */

117 extern ExtU_edgeDetector_T edgeDetector_U;

118

119 /* External outputs (root outports fed by signals with auto storage) */

120 extern ExtY_edgeDetector_T edgeDetector_Y;

121

122 /* Model entry point functions */

123 extern void edgeDetector_initialize(void);

124 extern void edgeDetector_step(void);

125 extern void edgeDetector_terminate(void);

126

127 /* Real-time Model object */

128 extern RT_MODEL_edgeDetector_T *const edgeDetector_M;

129

130 /*-

131 * The generated code includes comments that allow you to trace directly

132 * back to the appropriate location in the model. The basic format

133 * is <system>/block_name, where system is the system number (uniquely

134 * assigned by Simulink) and block_name is the name of the block.

135 *
136 * Use the MATLAB hilite_system command to trace the generated code back

137 * to the model. For example,

138 *
139 * hilite_system(’<S3>’) - opens system 3

VIII

Chapter B: Edge Detector Code Generation

140 * hilite_system(’<S3>/Kp’) - opens and selects block Kp which resides

in S3

141 *
142 * Here is the system hierarchy for this model

143 *
144 * ’<Root>’ : ’edgeDetector’

145 * ’<S1>’ : ’edgeDetector/edgeDetector’

146 */

147 #endif /* RTW_HEADER_edgeDetector_h_ */

Listing B.1: Edge Detector - EdgeDetector.h

IX

1 /*
2 * edgeDetector_private.h

3 *
4 * Academic License - for use in teaching, academic research, and

meeting

5 * course requirements at degree granting institutions only. Not for

6 * government, commercial, or other organizational use.

7 *
8 * Code generation for model "edgeDetector".

9 *
10 * Model version : 1.26

11 * Simulink Coder version : 8.11 (R2016b) 25-Aug-2016

12 * C source code generated on : Sun Jun 07 16:27:25 2020

13 *
14 * Target selection: grt.tlc

15 * Note: GRT includes extra infrastructure and instrumentation for

prototyping

16 * Embedded hardware selection: Intel->x86-64 (Windows64)

17 * Code generation objective: Debugging

18 * Validation result: Not run

19 */

20

21 #ifndef RTW_HEADER_edgeDetector_private_h_

22 #define RTW_HEADER_edgeDetector_private_h_

23 #include "rtwtypes.h"

24 #include "builtin_typeid_types.h"

25 #include "multiword_types.h"

26

27 /* Private macros used by the generated code to access rtModel */

28 #ifndef rtmSetTFinal

29 # define rtmSetTFinal(rtm, val) ((rtm)->Timing.tFinal = (val))

30 #endif

31

32 #ifndef rtmGetTPtr

33 # define rtmGetTPtr(rtm) (&(rtm)->Timing.taskTime0)

34 #endif

35 #endif /*
RTW_HEADER_edgeDetector_private_h_ */

Listing B.2: Edge Detector - EdgeDetector_private.h

X

Chapter B: Edge Detector Code Generation

1 /*
2 * edgeDetector_types.h

3 *
4 * Academic License - for use in teaching, academic research, and

meeting

5 * course requirements at degree granting institutions only. Not for

6 * government, commercial, or other organizational use.

7 *
8 * Code generation for model "edgeDetector".

9 *
10 * Model version : 1.26

11 * Simulink Coder version : 8.11 (R2016b) 25-Aug-2016

12 * C source code generated on : Sun Jun 07 16:27:25 2020

13 *
14 * Target selection: grt.tlc

15 * Note: GRT includes extra infrastructure and instrumentation for

prototyping

16 * Embedded hardware selection: Intel->x86-64 (Windows64)

17 * Code generation objective: Debugging

18 * Validation result: Not run

19 */

20

21 #ifndef RTW_HEADER_edgeDetector_types_h_

22 #define RTW_HEADER_edgeDetector_types_h_

23

24 /* Forward declaration for rtModel */

25 typedef struct tag_RTM_edgeDetector_T RT_MODEL_edgeDetector_T;

26

27 #endif /*
RTW_HEADER_edgeDetector_types_h_ */

Listing B.3: Edge Detector - EdgeDetector_types.h

XI

1 /*
2 * edgeDetector.c

3 *
4 * Academic License - for use in teaching, academic research, and

meeting

5 * course requirements at degree granting institutions only. Not for

6 * government, commercial, or other organizational use.

7 *
8 * Code generation for model "edgeDetector".

9 *
10 * Model version : 1.26

11 * Simulink Coder version : 8.11 (R2016b) 25-Aug-2016

12 * C source code generated on : Sun Jun 07 16:27:25 2020

13 *
14 * Target selection: grt.tlc

15 * Note: GRT includes extra infrastructure and instrumentation for

prototyping

16 * Embedded hardware selection: Intel->x86-64 (Windows64)

17 * Code generation objective: Debugging

18 * Validation result: Not run

19 */

20

21 #include "edgeDetector.h"

22 #include "edgeDetector_private.h"

23

24 /* Named constants for Chart: ’<Root>/edgeDetector’ */

25 #define edgeDetector_IN_NO_ACTIVE_CHILD ((uint8_T)0U)

26 #define edgeDetector_IN_S0 ((uint8_T)1U)

27 #define edgeDetector_IN_S0Edge ((uint8_T)2U)

28 #define edgeDetector_IN_S1 ((uint8_T)3U)

29 #define edgeDetector_IN_S1Edge ((uint8_T)4U)

30

31 /* Block states (auto storage) */

32 DW_edgeDetector_T edgeDetector_DW;

33

34 /* External inputs (root inport signals with auto storage) */

35 ExtU_edgeDetector_T edgeDetector_U;

36

37 /* External outputs (root outports fed by signals with auto storage) */

38 ExtY_edgeDetector_T edgeDetector_Y;

39

40 /* Real-time model */

41 RT_MODEL_edgeDetector_T edgeDetector_M_;

42 RT_MODEL_edgeDetector_T *const edgeDetector_M = &edgeDetector_M_;

43

44 /* Model step function */

45 void edgeDetector_step(void)

46 {

XII

Chapter B: Edge Detector Code Generation

47 /* Chart: ’<Root>/edgeDetector’ incorporates:

48 * Inport: ’<Root>/edgeDetector_in’

49 */

50 /* Gateway: edgeDetector */

51 /* During: edgeDetector */

52 if (edgeDetector_DW.is_active_c3_edgeDetector == 0U) {

53 /* Entry: edgeDetector */

54 edgeDetector_DW.is_active_c3_edgeDetector = 1U;

55

56 /* Entry Internal: edgeDetector */

57 /* Transition: ’<S1>:37’ */

58 /* Transition: ’<S1>:38’ */

59 if (edgeDetector_U.edgeDetector_in == 1) {

60 /* Outport: ’<Root>/edgeDetector_out’ */

61 /* Transition: ’<S1>:9’ */

62 /* Transition: ’<S1>:10’ */

63 edgeDetector_Y.edgeDetector_out = 0;

64 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_S1;

65 } else {

66 /* Outport: ’<Root>/edgeDetector_out’ */

67 /* Transition: ’<S1>:7’ */

68 /* Transition: ’<S1>:23’ */

69 edgeDetector_Y.edgeDetector_out = 0;

70 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_S0;

71 }

72 } else {

73 switch (edgeDetector_DW.is_c3_edgeDetector) {

74 case edgeDetector_IN_S0:

75 /* During ’S0’: ’<S1>:20’ */

76 if (edgeDetector_U.edgeDetector_in == 1) {

77 /* Outport: ’<Root>/edgeDetector_out’ */

78 /* Transition: ’<S1>:26’ */

79 /* Transition: ’<S1>:16’ */

80 edgeDetector_Y.edgeDetector_out = 1;

81 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_S1Edge;

82 }

83 break;

84

85 case edgeDetector_IN_S0Edge:

86 /* During ’S0Edge’: ’<S1>:3’ */

87 if (edgeDetector_U.edgeDetector_in == 1) {

88 /* Outport: ’<Root>/edgeDetector_out’ */

89 /* Transition: ’<S1>:15’ */

90 /* Transition: ’<S1>:25’ */

91 /* Transition: ’<S1>:16’ */

92 edgeDetector_Y.edgeDetector_out = 1;

93 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_S1Edge;

94 } else {

XIII

95 /* Outport: ’<Root>/edgeDetector_out’ */

96 /* Transition: ’<S1>:22’ */

97 /* Transition: ’<S1>:23’ */

98 edgeDetector_Y.edgeDetector_out = 0;

99 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_S0;

100 }

101 break;

102

103 case edgeDetector_IN_S1:

104 /* During ’S1’: ’<S1>:27’ */

105 if (edgeDetector_U.edgeDetector_in == 0) {

106 /* Outport: ’<Root>/edgeDetector_out’ */

107 /* Transition: ’<S1>:33’ */

108 /* Transition: ’<S1>:13’ */

109 edgeDetector_Y.edgeDetector_out = 1;

110 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_S0Edge;

111 }

112 break;

113

114 default:

115 /* During ’S1Edge’: ’<S1>:4’ */

116 if (edgeDetector_U.edgeDetector_in == 0) {

117 /* Outport: ’<Root>/edgeDetector_out’ */

118 /* Transition: ’<S1>:12’ */

119 /* Transition: ’<S1>:32’ */

120 /* Transition: ’<S1>:13’ */

121 edgeDetector_Y.edgeDetector_out = 1;

122 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_S0Edge;

123 } else {

124 /* Outport: ’<Root>/edgeDetector_out’ */

125 /* Transition: ’<S1>:29’ */

126 /* Transition: ’<S1>:30’ */

127 edgeDetector_Y.edgeDetector_out = 0;

128 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_S1;

129 }

130 break;

131 }

132 }

133

134 /* End of Chart: ’<Root>/edgeDetector’ */

135

136 /* Matfile logging */

137 rt_UpdateTXYLogVars(edgeDetector_M->rtwLogInfo,

138 (&edgeDetector_M->Timing.taskTime0));

139

140 /* signal main to stop simulation */

141 { /* Sample time: [0.01s, 0.0s] */

142 if ((rtmGetTFinal(edgeDetector_M)!=-1) &&

XIV

Chapter B: Edge Detector Code Generation

143 !((rtmGetTFinal(edgeDetector_M)-edgeDetector_M->Timing.taskTime0

) >

144 edgeDetector_M->Timing.taskTime0 * (DBL_EPSILON))) {

145 rtmSetErrorStatus(edgeDetector_M, "Simulation finished");

146 }

147 }

148

149 /* Update absolute time for base rate */

150 /* The "clockTick0" counts the number of times the code of this task

has

151 * been executed. The absolute time is the multiplication of "

clockTick0"

152 * and "Timing.stepSize0". Size of "clockTick0" ensures timer will not

153 * overflow during the application lifespan selected.

154 * Timer of this task consists of two 32 bit unsigned integers.

155 * The two integers represent the low bits Timing.clockTick0 and the

high bits

156 * Timing.clockTickH0. When the low bit overflows to 0, the high bits

increment.

157 */

158 if (!(++edgeDetector_M->Timing.clockTick0)) {

159 ++edgeDetector_M->Timing.clockTickH0;

160 }

161

162 edgeDetector_M->Timing.taskTime0 = edgeDetector_M->Timing.clockTick0 *
163 edgeDetector_M->Timing.stepSize0 + edgeDetector_M->Timing.

clockTickH0 *
164 edgeDetector_M->Timing.stepSize0 * 4294967296.0;

165 }

166

167 /* Model initialize function */

168 void edgeDetector_initialize(void)

169 {

170 /* Registration code */

171

172 /* initialize non-finites */

173 rt_InitInfAndNaN(sizeof(real_T));

174

175 /* initialize real-time model */

176 (void) memset((void *)edgeDetector_M, 0,

177 sizeof(RT_MODEL_edgeDetector_T));

178 rtmSetTFinal(edgeDetector_M, -1);

179 edgeDetector_M->Timing.stepSize0 = 0.01;

180

181 /* Setup for data logging */

182 {

183 static RTWLogInfo rt_DataLoggingInfo;

184 rt_DataLoggingInfo.loggingInterval = NULL;

XV

185 edgeDetector_M->rtwLogInfo = &rt_DataLoggingInfo;

186 }

187

188 /* Setup for data logging */

189 {

190 rtliSetLogXSignalInfo(edgeDetector_M->rtwLogInfo, (NULL));

191 rtliSetLogXSignalPtrs(edgeDetector_M->rtwLogInfo, (NULL));

192 rtliSetLogT(edgeDetector_M->rtwLogInfo, "tout");

193 rtliSetLogX(edgeDetector_M->rtwLogInfo, "");

194 rtliSetLogXFinal(edgeDetector_M->rtwLogInfo, "");

195 rtliSetLogVarNameModifier(edgeDetector_M->rtwLogInfo, "rt_");

196 rtliSetLogFormat(edgeDetector_M->rtwLogInfo, 4);

197 rtliSetLogMaxRows(edgeDetector_M->rtwLogInfo, 0);

198 rtliSetLogDecimation(edgeDetector_M->rtwLogInfo, 1);

199 rtliSetLogY(edgeDetector_M->rtwLogInfo, "");

200 rtliSetLogYSignalInfo(edgeDetector_M->rtwLogInfo, (NULL));

201 rtliSetLogYSignalPtrs(edgeDetector_M->rtwLogInfo, (NULL));

202 }

203

204 /* states (dwork) */

205 (void) memset((void *)&edgeDetector_DW, 0,

206 sizeof(DW_edgeDetector_T));

207

208 /* external inputs */

209 edgeDetector_U.edgeDetector_in = 0;

210

211 /* external outputs */

212 edgeDetector_Y.edgeDetector_out = 0;

213

214 /* Matfile logging */

215 rt_StartDataLoggingWithStartTime(edgeDetector_M->rtwLogInfo, 0.0,

rtmGetTFinal

216 (edgeDetector_M), edgeDetector_M->Timing.stepSize0, (&

rtmGetErrorStatus

217 (edgeDetector_M)));

218

219 /* SystemInitialize for Chart: ’<Root>/edgeDetector’ */

220 edgeDetector_DW.is_active_c3_edgeDetector = 0U;

221 edgeDetector_DW.is_c3_edgeDetector = edgeDetector_IN_NO_ACTIVE_CHILD;

222

223 /* SystemInitialize for Outport: ’<Root>/edgeDetector_out’

incorporates:

224 * SystemInitialize for Chart: ’<Root>/edgeDetector’

225 */

226 edgeDetector_Y.edgeDetector_out = 0;

227 }

228

229 /* Model terminate function */

XVI

Chapter B: Edge Detector Code Generation

230 void edgeDetector_terminate(void)

231 {

232 /* (no terminate code required) */

233 }

Listing B.4: Edge Detector - EdgeDetector.c

XVII

Appendix C

Stateflow Verification Code

In this part, the complete code to run the Stateflow verification is shown. An example
model is shown in Figure C.1. The coverage part of the test requires a "testData" file,
which is structured as depicted in Listing C.1. Afterward the code for all necessary files
is listed.

1

standby_flg

2

xbit_flg

IO

PropertyProving

Mealy

stb_flg

xbit_flg

level1_lgx

recovery_flg

level1

Input

Input

Input

Output

standby_flg

xbit_flg

<xbit_flg>

level1_lgx<standby_flg>

recovery_flg

Figure C.1: Example Simulink Model

XIX

1 testData

2 1x3 struct array with fields:

3 name

4 input

5

6 testData(1).name

7 ’Zero Input’

8

9 testData(1).input

10 struct with fields:

11 standby_flg: [1x timeseries]

12 xbit_flg: [1x timeseries]

Listing C.1: Stateflow Verification - TestData.mat

1 close all;

2 clear all;

3 clc;

4

5 addpath(pwd);

6 run(’InitModel.m’); % Call all functions necessary to run models

7

8 % Single Run

9 modelName = ’level1’;

10

11 InitTestRun; % Init test run and save temporary workspace file

12 DesignErrorDetection_DeadLogic;

13 DesignErrorDetection_IoDz;

14 PropertyProving;

15 Coverage;

16

17 delete(’tempWorkspace.mat’) % Clear workspace file

Listing C.2: Stateflow Verification - RunSingle.m

XX

Chapter C: Stateflow Verification Code

1 close all;

2 clear all;

3 clc;

4

5 addpath(pwd);

6 run(’InitTest.m’);

7

8 model_names = { ’level1’,

9 ’level2_opl’,

10 ’level3_opl_ep’,

11 ’level3_opl_epll’,

12 ’level3_opl_fo’,

13 ’level3_opl_foll’,

14 ’level4_opl_fo_rtb’,

15 ’level3_opl_fo_loiter’,

16 };

17

18 modelNameI = 0;

19 save(’tempWorkspace.mat’);

20

21 while modelNameI < length(model_names)

22 modelNameI = modelNameI + 1;

23 modelName = char(model_names(modelNameI));

24 save(’tempWorkspace.mat’);

25

26 InitTestRun;

27 DesignErrorDetection_DeadLogic;

28 DesignErrorDetection_IoDz;

29 PropertyProving;

30 Coverage;

31 load(’tempWorkspace.mat’);

32 end

33

34 delete(’tempWorkspace.mat’)

Listing C.3: Stateflow Verification - RunAll.m

XXI

1 fprintf(’Initializing Coverage, Design Error Detection, Property Proving

\n’);

2 fprintf(’\tModel Name: %s\n’, modelName);

3 save(’tempWorkspace.mat’)

4

5 if isfolder(modelName)

6 rmdir(modelName,’s’)

7 end

8 mkdir(modelName);

9 cd(modelName);

10 open(modelName);

11

12 sflow=sfroot;

13 myCharts = sflow.find(’-isa’, ’Stateflow.Chart’, ’-and’, ’Name’,

modelName);

14 if myCharts.length == 1

15 sfprint(myCharts, ’pdf’, ’stateflow’);

16 else

17 warning(’Wrong Number of Stateflow Charts’);

18 end

19

20 myBoxes = sflow.find(’-isa’, ’Stateflow.Box’, ’-and’, ’Name’, ’tc’);

21 if myBoxes.length >= 1

22 for i=1:length(myBoxes)

23 if strcmp(extractAfter(myBoxes(i).Path, ’/’), modelName)

24 sfprint(myBoxes(i), ’pdf’, ’tc’);

25 end

26 end

27 else

28 warning(’No Stateflow Box named tc’);

29 end

30

31 myBoxes = sflow.find(’-isa’, ’Stateflow.Box’, ’-and’, ’Name’, ’ta’);

32 if myBoxes.length >= 1

33 for i=1:length(myBoxes)

34 if strcmp(extractAfter(myBoxes(i).Path, ’/’), modelName)

35 sfprint(myBoxes(i), ’pdf’, ’ta’);

36 end

37 end

38 else

39 warning(’No Stateflow Box named ta’)

40 end

41

42 fprintf(’\t\tFinished\n’);

43 bdclose(modelName);

44 cd ..

Listing C.4: Stateflow Verification - InitTestRun.m

XXII

Chapter C: Stateflow Verification Code

1 function InitSLDVTest(modelName, folderName)

2 if isfile(’tempWorkspace.mat’)

3 clearvars -except modelName folderName

4 load(’tempWorkspace.mat’)

5 end

6 folderName=[’temp_’ modelName folderName];

7 if isfolder(folderName)

8 rmdir(folderName,’s’)

9 end

10 mkdir(folderName);

11 cd(folderName);

12 open(modelName);

13 end

Listing C.5: Stateflow Verification - InitSLDVTest.m

1 function CloseSLDVTest(modelName, folderName)

2 folderName=[’temp_’ modelName folderName];

3 fprintf(’\t\tFinished\n’);

4 bdclose(modelName);

5 bdclose(’all’);

6 cd ..

7 rmdir(folderName, ’s’);

8 if isfile(’tempWorkspace.mat’)

9 clear all;

10 end

11 end

Listing C.6: Stateflow Verification - CloseSLDVTest.m

XXIII

1 fprintf(’\tRunning Design Error Detection - Dead Logic Test\n’);

2 InitSLDVTest(modelName, ’_designErrorDetection_deadLogic’);

3 % -

4

5 opts = sldvoptions;

6 opts.DetectDeadLogic = ’on’;

7 opts.DetectDivisionByZero = ’off’;

8 opts.DetectIntegerOverflow = ’off’;

9 opts.DetectOutOfBounds = ’off’;

10 opts.DisplayReport = ’off’;

11 opts.Mode = ’DesignErrorDetection’;

12 %opts.ModelCoverageObjectives = ’MCDC’;

13 opts.outputDir = ’sldv_output/’; %opts.outputDir = ’sldv_output/

$ModelName$’;

14 opts.ReportFileName = ’$ModelName$_ded_dl’;

15 opts.ReportIncludeGraphics = ’on’;

16 opts.ReportPDFFormat = ’on’;

17 opts.SaveHarnessModel = ’on’;

18 opts.SaveReport = ’on’;

19

20 [status, fileNames] = sldvrun(modelName, opts, true);

21

22 % -

23 copyfile([’sldv_output/’ modelName ’_ded_dl.pdf’], [’../’ modelName ’/

ded_dl.pdf’])

24 CloseSLDVTest(modelName, ’_designErrorDetection_deadLogic’);

Listing C.7: Stateflow Verification - DesignErrorDetection_DeadLogic.m

XXIV

Chapter C: Stateflow Verification Code

1 fprintf(’\tRunning Design Error Detection - Interger Overflow, Devision

by Zero Test\n’);

2 InitSLDVTest(modelName, ’_designErrorDetection_IoDz’);

3 % -

4

5 opts = sldvoptions;

6 opts.DetectDeadLogic = ’off’;

7 opts.DetectDivisionByZero = ’on’;

8 opts.DetectIntegerOverflow = ’on’;

9 opts.DetectOutOfBounds = ’on’;

10 opts.DisplayReport = ’off’;

11 opts.Mode = ’DesignErrorDetection’;

12 %opts.ModelCoverageObjectives = ’MCDC’;

13 opts.outputDir = ’sldv_output/’; %opts.outputDir = ’sldv_output/

$ModelName$’;

14 opts.ReportFileName = ’$ModelName$_ded_iodz’;

15 opts.ReportIncludeGraphics = ’on’;

16 opts.ReportPDFFormat = ’on’;

17 opts.SaveHarnessModel = ’on’;

18 opts.SaveReport = ’on’;

19

20 [status, fileNames] = sldvrun(modelName, opts, true);

21

22 % -

23 copyfile([’sldv_output/’ modelName ’_ded_iodz.pdf’], [’../’ modelName ’/

ded_iodz.pdf’])

24 CloseSLDVTest(modelName, ’_designErrorDetection_IoDz’);

Listing C.8: Stateflow Verification - DesignErrorDetection_IoDz.m

XXV

1 fprintf(’\tRunning Property Proving Test\n’);

2 InitSLDVTest(modelName, ’_propertyProving’);

3 % -

4

5 propertyProvingExists = 1;

6

7 try

8 set_param([modelName ’/PropertyProving’],’commented’,’off’);

9 catch exception

10 propertyProvingExists = 0;

11 fprintf(’\t\tNo Property Proving\n’);

12 warning(’Property Proving does not exist’);

13 end

14

15 if propertyProvingExists

16

17 opts = sldvoptions;

18 %opts.DetectDeadLogic = ’off’;

19 %opts.DetectDivisionByZero = ’on’;

20 %opts.DetectIntegerOverflow = ’on’;

21 %opts.DetectOutOfBounds = ’on’;

22 opts.DisplayReport = ’off’;

23 opts.Mode = ’PropertyProving’;

24 %opts.ModelCoverageObjectives = ’MCDC’;

25 opts.outputDir = ’sldv_output/’; %opts.outputDir = ’sldv_output/

$ModelName$’;

26 opts.ReportFileName = ’$ModelName$_pp’;

27 opts.ReportIncludeGraphics = ’on’;

28 opts.ReportPDFFormat = ’on’;

29 opts.SaveHarnessModel = ’on’;

30 opts.SaveReport = ’on’;

31

32 [status, fileNames] = sldvrun(modelName, opts, true);

33 %set_param([modelName ’/PropertyProving’],’commented’,’on’);

34 end

35

36 % -

37 if propertyProvingExists

38 copyfile([’sldv_output/’ modelName ’_pp.pdf’], [’../’ modelName ’/

pp.pdf’])

39 end

40 CloseSLDVTest(modelName, ’_propertyProving’);

Listing C.9: Stateflow Verification - PropertyProving.m

XXVI

Chapter C: Stateflow Verification Code

1 fprintf(’\tRunning Covarage Test\n’);

2 InitSLDVTest(modelName, ’_coverage’);

3 % -

4 load([’testData_’ modelName ’.mat’]);

5 numberOfTests = length(testData);

6

7 % Set model parameter

8 set_param(modelName, ’RecordCoverage’, ’on’, ’CovModelRefEnable’, ’all’,

’CovMetricSettings’, ’dcmtrzoidwe’);

9 set_param(modelName, ’LoadExternalInput’, ’on’, ’ExternalInput’,

Coverage_InputString(testData(1).input));

10

11 fprintf(’\t\tTotal Coverage Tests: %d\n’, numberOfTests);

12 for i=1:1:numberOfTests

13 fprintf(’\t\t\tRunning Test %d/%d - %s\n’, i, numberOfTests,

testData(i).name);

14 input = testData(i).input; % Load input data

15

16 % Choosing normal sim run to be compatible with design verifier

17 fields = fieldnames(input);

18 %Readout end time from one input field and set stop time in Simulink

19 set_param(modelName,’StopTime’, num2str(input.(fields{1})

.TimeInfo.End));

20 sim(modelName);

21 cvdos{i} = covdata;

22

23 Coverage_plotData(modelName, testData(i).name, i, ’input’, input);

24 Coverage_plotData(modelName, testData(i).name, i, ’output’, output);

25 end

26 % Create cumulative report for all tests

27 cvhtml(modelName, cvdos{:}, ’-sRT=0’);

28

29 % -

30 Coverage_copyFiles(modelName);

31 CloseSLDVTest(modelName, ’_coverage’);

Listing C.10: Stateflow Verification - Coverage.m

XXVII

1 function stTemp = Coverage_InputString(input)

2

3 fields = fieldnames(input);

4

5 % Generate string of input variables

6 stTemp = ’’;

7 for i=1:1:length(fields)

8 stTemp = [stTemp ’input.’ fields{i}];

9

10 if (i< length(fields))

11 stTemp = [stTemp ’, ’];

12 end

13 end

14

15 end

Listing C.11: Stateflow Verification - Coverage_InputString.m

1 function Coverage_plotData(modelName, testName, numTest, stDir, data)

2

3 st_Name = [modelName ’ - Test’ sprintf(’%02d’, numTest) ’ - ’ stDir

’ - ’ testName];

4 h = figure(’NumberTitle’, ’off’, ’Name’, st_Name);

5 number_of_inputs = size(fieldnames(data));

6 number_of_inputs = number_of_inputs(1);

7

8 in_fields = fieldnames(data);

9

10 for k=1:1:number_of_inputs

11 subplot(number_of_inputs, 1, k);

12 plot(data.(in_fields{k}))

13 grid on;

14 title(’’);

15

16 if (k < number_of_inputs)

17 xlabel(’’);

18 end

19 end

20 savefig(h, st_Name);

21 close(h);

22

23 end

Listing C.12: Stateflow Verification - Coverage_PlotData.m

XXVIII

Chapter C: Stateflow Verification Code

1 function Coverage_copyFiles(modelName)

2

3 filenames=dir(’*.html’);

4 for i=1:length(filenames)

5 copyfile(filenames(i).name, [’../’ modelName ’/’ filenames(i)

.name])

6 end

7

8 filenames=dir(’*.fig’);

9 for i=1:length(filenames)

10 copyfile(filenames(i).name, [’../’ modelName ’/’ filenames(i)

.name])

11 end

12

13 filenames=dir(’scv_images/*.*’);

14 filenames = filenames(~ismember({filenames.name}, {’.’, ’..’})); %

remove ’.’ and ’..’

15 mkdir([’../’ modelName ’/scv_images/’]);

16 for i=1:length(filenames)

17 copyfile([’scv_images\’ filenames(i).name], [’../’ modelName ’/

scv_images/’ filenames(i).name]);

18 end

19

20 end

Listing C.13: Stateflow Verification - Coverage_CopyFiles.m

XXIX

Appendix D

FCSA Transition Conditions/Actions

In the following, all transition condition and transition action subsystems of the Operator-
Centric Multi-User Flight Control System Automation for experimental UAVs and OPVs
with Contingency Procedures (FCSA) are depicted.

tc

result_xbit_stb = xbit_stb

{result_xbit_stb = true;}

[xbit_flg == false]

functionresult_stb_xbit = stb_xbit

{result_stb_xbit = true;}

[xbit_flg == true]

function

result_stb_opl =stb_opl

[stb_flg == false]

{result_stb_opl = true;}

functionresult_x_stb = x_stb

[stb_flg == true]

{result_x_stb = true;}

function

Figure D.1: State Machine Level 1 - Transition Conditions

XXXI

ta

stb_opl

{recovery_flg = false;
level1_lgx = ENUM_sysauto_level1.operational;}

function

stb_xbit

{level1_lgx = ENUM_sysauto_level1.xbit;}

function

x_stb

{level1_lgx = ENUM_sysauto_level1.standby;}

function

init_opl

{recovery_flg = true;
level1_lgx = ENUM_sysauto_level1.operational;}

function

Figure D.2: State Machine Level 1 - Transition Actions

XXXII

Chapter D: FCSA Transition Conditions / Actions

tc

result_x_fo = x_fo

{result_x_fo = false;}

2

[(fo_rfg == true)&&...
(ep_rfg == false)]

1

{result_x_fo = true;}

function result_x_ep = x_ep

{result_x_ep = true;}{result_x_ep = false;}

2

[ep_rfg == true]
1

function

result_ep_epll =ep_epll

{result_ep_epll = true;}

[((epll_air_flg == true)&&((airborne_lgx == ENUM_airborne_lgx.airborne)||(airborne_lgx == ENUM_airborne_lgx.air2gnd)))||...
((epll_gnd_flg == true)&&((airborne_lgx == ENUM_airborne_lgx.ground)||(airborne_lgx == ENUM_airborne_lgx.gnd2air)))]

function

result_fo_foll = fo_foll

{result_fo_foll = true;}

2

2

[(((foll_air_flg == true)&&((airborne_lgx == ENUM_airborne_lgx.airborne)...
||(airborne_lgx == ENUM_airborne_lgx.air2gnd)))||...
((foll_gnd_flg == true)&&((airborne_lgx == ENUM_airborne_lgx.ground)...
||(airborne_lgx == ENUM_airborne_lgx.gnd2air))))]

1

[((atol_mode_lgx == ENUM_sysauto_modes.fo_atol_landing)&&...
(atol_landing_comp_flg == false))||...
((atol_mode_lgx == ENUM_sysauto_modes.fo_atol_goaround)&&...
(atol_goaround_comp_flg == false))]

1

2

{result_fo_foll = false;}

[((atol_mode_lgx == ENUM_sysauto_modes.fo_atol_takeoff)&&...
(atol_takeoff_comp_flg == false))||...
((atol_mode_lgx == ENUM_sysauto_modes.fo_atol_takeoff_abort)&&...
(atol_toabort_comp_flg == false))]

1

function

Figure D.3: State Machine Level 2 - Transition Conditions

XXXIII

ta

ep_epll

{level2_lgx = ENUM_sysauto_level2.ep_linkloss;}

function x_ep

{level2_lgx = ENUM_sysauto_level2.ep;}

function

x_fo

{level2_lgx = ENUM_sysauto_level2.fo;}

functionfo_foll

{level2_lgx = ENUM_sysauto_level2.fo_linkloss;}

function

Figure D.4: State Machine Level 2 - Transition Actions

tc

result_air_gnd =air_gnd

[(airborne_lgx == ENUM_airborne_lgx.ground)||...
(airborne_lgx == ENUM_airborne_lgx.air2gnd)]

{result_air_gnd = true;}

function

result_gnd_air =gnd_air

{result_gnd_air = true;}

[airborne_lgx == ENUM_airborne_lgx.airborne]

function

Figure D.5: State Machine Level 3 - EP - Transition Conditions

ta

x_air

{level3_lgx = ENUM_sysauto_level3.ep_airborne;}

function

x_gnd

{level3_lgx = ENUM_sysauto_level3.ep_ground;}

function

Figure D.6: State Machine Level 3 - EP - Transition Actions

XXXIV

Chapter D: FCSA Transition Conditions / Actions

tc

result_air_gnd =air_gnd

{result_air_gnd = true;}

[(airborne_lgx == ENUM_airborne_lgx.ground)||...
(airborne_lgx == ENUM_airborne_lgx.gnd2air)]

function

result_gnd_air =gnd_air

[(airborne_lgx == ENUM_airborne_lgx.airborne)||...
(airborne_lgx == ENUM_airborne_lgx.air2gnd)]

{result_gnd_air = true;}

function

Figure D.7: State Machine Level 3 - EPLL - Transition Conditions

ta

x_air

{level3_lgx = ENUM_sysauto_level3.ep_linkloss_airborne;}

function

x_gnd

{level3_lgx = ENUM_sysauto_level3.ep_linkloss_ground;}

function

Figure D.8: State Machine Level 3 - EPLL - Transition Actions

XXXV

tc

result = atuc_rtb

{result = true;}

[(last_mode_lgx == ENUM_sysauto_modes.fo_rtb)&&...
(nav_posOK_flg == true)]

function

result = atol_park

[(opl_mode_lgx == ENUM_sysauto_modes.fo_parking)&&...
(airborne_lgx == ENUM_airborne_lgx.ground)]

{result = true;}

functionresult = atuc_hlc

{result = true;}

[(last_mode_lgx == ENUM_sysauto_modes.fo_hlc)&&...
(nav_posOK_flg == true)]

function

result = atol_x

{result = true;}

[((opl_mode_lgx == ENUM_sysauto_modes.fo_mlc)||...
(opl_mode_lgx == ENUM_sysauto_modes.fo_hlc)||...
(opl_mode_lgx == ENUM_sysauto_modes.fo_rtb))&&...
(airborne_lgx == ENUM_airborne_lgx.airborne)]

function

result = hlc_x

{result = true;}

[(opl_mode_lgx <> ENUM_sysauto_modes.fo_hlc)||...
(nav_posOK_flg == false)]

functionresult = x_hlc

[(opl_mode_lgx == ENUM_sysauto_modes.fo_hlc)&&...
(nav_posOK_flg == true)]

{result = true;}

function

result = rtb_x

[(opl_mode_lgx <> ENUM_sysauto_modes.fo_rtb)]

{result = true;}

functionresult = x_rtb

{result = true;}

[(opl_mode_lgx == ENUM_sysauto_modes.fo_rtb)&&...
(nav_posOK_flg == true)]

function

result = mlc_x

{result = true;}

[(opl_mode_lgx <> ENUM_sysauto_modes.fo_mlc)]

functionresult = x_mlc

{result = true;}

[(opl_mode_lgx == ENUM_sysauto_modes.fo_mlc)||...
(nav_posOK_flg == false)]

function

result = x_atuc

[(opl_mode_lgx == ENUM_sysauto_modes.fo_atol_landing)&&...
(atol_landing_avbl_flg == true)]

{result = true;}

function

result = park_atuc

{result = true;}

[(opl_mode_lgx == ENUM_sysauto_modes.fo_atol_takeoff)&&...
(atol_takeoff_avbl_flg == true)]

function

result = atuc_atol

{result = true;}

[(atol_mode_lgx == ENUM_sysauto_modes.fo_atol_landing)||...
(atol_mode_lgx == ENUM_sysauto_modes.fo_atol_takeoff)]

function

result = x_park

{result= true;}

[airborne_lgx == ENUM_airborne_lgx.ground]

function

Figure D.9: State Machine Level 3 - FO - Transition Conditions

XXXVI

Chapter D: FCSA Transition Conditions / Actions

ta

atuc_x

{atuc_flg = false;}

function

x_park

{level3_lgx = ENUM_sysauto_level3.parking;}

function

atuc_atol

{level3_lgx = ENUM_sysauto_level3.atol;
atuc_flg = false;}

function

x_mlc

{level3_lgx = ENUM_sysauto_level3.mlc;}

function

x_rtb

{level3_lgx = ENUM_sysauto_level3.rtb;}

function

x_atuc

{atuc_flg = true;}

function

x_hlc

{level3_lgx = ENUM_sysauto_level3.hlc;}

function

Figure D.10: State Machine Level 3 - FO - Transition Actions

XXXVII

tc

result = init_gnd

{result = true;}

[airborne_lgx == ENUM_airborne_lgx.ground]

function

result = x_gps

{result = true;}

[nav_posOK_flg == true]

function

result = gps_hdg

{result = true;}

[nav_posOK_flg == false]

function

Figure D.11: State Machine Level 3 - FOLL - Transition Conditions

ta

init_gnd

{level3_lgx = ENUM_sysauto_level3.fo_linkloss_ground;}

function

x_gps

{level3_lgx = ENUM_sysauto_level3.fo_linkloss_gps;}

function

gps_hdg

{level3_lgx = ENUM_sysauto_level3.fo_linkloss_hdg;}

function

init_bank

{level3_lgx = ENUM_sysauto_level3.fo_linkloss_bank;}

function

Figure D.12: State Machine Level 3 - FOLL - Transition Actions

XXXVIII

Chapter D: FCSA Transition Conditions / Actions

tc

result_gps_hdg =gps_hdg

{result_gps_hdg = true;}

[nav_posOK_flg == false]

function

Figure D.13: State Machine Level 4 - Transition Conditions

ta

init_gps

{level4_lgx = ENUM_sysauto_level4.rtb_gps;}

function

gps_hdg

{level4_lgx = ENUM_sysauto_level4.rtb_hdg;}

function

Figure D.14: State Machine Level 4 - Transition Actions

XXXIX

tc

result = bank_off

[(level3_lgx != ENUM_sysauto_level3.mlc)||...
(loiter_cmd_flg == false)]

{result = true;}

function

result = x_bank

[(loiter_cmd_flg == true)&&...
(level3_lgx == ENUM_sysauto_level3.mlc)]

{result = true;}

function

result = x_off

{result = true;}

[(level3_lgx_cfg == true)||...
((level3_lgx == ENUM_sysauto_level3.hlc)&&(enroute_list_cfg == true))||...
((level3_lgx == ENUM_sysauto_level3.rtb)&&(linkloss_list_cfg == true))||...
(wp_number_cfg == true)]

functionresult = off_unco

{result = true;}

[trajgen_loiter_rfg == true]

function

result = gps_wiex

{result = true;}

[(trajgen_loiter_flg == true)&&...
(loiter_cmd_flg == false)]

function

result = off_eofp

{result = true;}

[(trajgen_loiter_rfg == true)&&...
(trajgen_eof_flg == true)]

function

result = wiex_off

{result = true;}

[(level3_lgx_cfg == true)||...
(trajgen_loiter_flg == false)||...
((level3_lgx == ENUM_sysauto_level3.hlc)&&(enroute_list_cfg == true))||...
((level3_lgx == ENUM_sysauto_level3.rtb)&&(linkloss_list_cfg == true))||...
(wp_number_cfg == true)]

functionresult = x_gps

{result = true;}

[(loiter_cmd_flg == true)&&...
((level3_lgx == ENUM_sysauto_level3.hlc)||...
(level3_lgx == ENUM_sysauto_level3.rtb))]

function

Figure D.15: State Machine Level 3 - Loiter - Transition Conditions

XL

Chapter D: FCSA Transition Conditions / Actions

ta

gps_wiex

{loiter_flg = false;
loiter_lgx = ENUM_sysauto_loiter_lgx.will_exit;}

function

off_unco

{loiter_flg = true;
loiter_lgx = ENUM_sysauto_loiter_lgx.unconfirmed;}

function

off_eofp

{loiter_flg = true;
loiter_lgx = ENUM_sysauto_loiter_lgx.eof;}

function

x_gps

{loiter_flg = true;
loiter_lgx = ENUM_sysauto_loiter_lgx.gps;}

function

x_bank

{loiter_flg = false;
loiter_lgx = ENUM_sysauto_loiter_lgx.bank;}

function

x_off

{loiter_flg = false;
loiter_lgx = ENUM_sysauto_loiter_lgx.off;}

function

Figure D.16: State Machine Level 3 - Loiter - Transition Actions

XLI

Appendix E

FCSA Unit Tests

In Table E.1, all unit tests of the Operator-Centric Multi-User Flight Control System
Automation for experimental UAVs and OPVs with Contingency Procedures (FCSA) are
listed with their test number and name.

Table E.1: FCSA - Unit Tests

Number Name
3001 Zero
3002 Normal Flight
3003 Takeoff Abort
3004 EP Link Loss Ground
3005 FO/EP in Loop combinations
3006 Standby/Experimental Build-in-Test combinations
3007 EP Takeoff
3008 EP Link Loss Airborne
3009 FO Link Loss Airborne
3010 MLC HLC Superposition combinations
3011 FO HLC Loiter WP
3012 HLC immediate Loiter
3013 FO RTB

XLIII

Appendix F

FTMI Transition Conditions/Actions

In the following, all transition condition and transition action subsystems of the Multi-
Maneuver Multi-Control-Level Flight Test Maneuver Injection with automatic Trim Point
Capture and Verification (FTMI) are depicted.

XLV

tc

result_wtp_ema =wtp_ema

[trimPointOK_flg == true]

{result_wtp_ema = true;}

function

result_exma_wait =ema_wait

[(mangen_lgx == ENUM_mangen_status.inactive) ||...
(listIdx_cfg == true)]

{result_exma_wait = true;}

function

result_ider_wait =ider_wait

{result_ider_wait = true;}

[listIdxValid_flg == true]

function

result_x_stb = x_stb

[activate_flg == false]

{result_x_stb = true;}

function

result_stb_ema = stb_ema

{result_stb_ema = true;}

[(activate_flg == true) &&...
(waitForTrimpoint_flg == false)]

function

result_stb_wfatp = stb_watp

[(activate_flg == true) && (useAutoTrim_flg == true)]

{result_stb_wfatp = true;}

function

result_ider_stb = ider_stb

[(listIdxValid_flg == true)&&(activate_flg == false)]

{result_ider_stb = true;}

function

result_watp_ema =watp_ema

{result_watp_ema = true;}

[trimPointOK_flg == true]

function

result_stb_wtp = stb_wtp

{result_stb_wtp = true;}

[activate_flg == true]

function

result_stb_ider =stb_ider

{result_stb_ider = true;}

[listIdxValid_flg == false]

function

Figure F.1: State Machine Level 1 - Transition Conditions

XLVI

Chapter F: FTMI Transition Conditions / Actions

ta

x_ema

{level1_lgx = ENUM_injection_level1_lgx.executeManeuver;
resetTP_flg = true;}

function

stb_watp

{level1_lgx = ENUM_injection_level1_lgx.waitForAutoTrimpoint;
resetTP_flg = false;}

function

x_wait

{level1_lgx = ENUM_injection_level1_lgx.wait;}

function

stb_wtp

{level1_lgx = ENUM_injection_level1_lgx.waitForTrimpoint;
resetTP_flg = false;}

function

stb_ider

{level1_lgx = ENUM_injection_level1_lgx.idx_error;}

function

x_stb

{level1_lgx = ENUM_injection_level1_lgx.standby;
resetTP_flg = true;}

function

Figure F.2: State Machine Level 1 - Transition Actions

XLVII

Bibliography

[Acc1997] Accident Investigation Division - Civil Aviation Department
- Hong Kong: Aircraft Accident Report - Report on the Incident
to Airbus A320-231 VR-HYU at Hong Kong International Airport on
6 June 1994. (1997). https://aviation-safety.net/reports

/1994/19940606_A320_VR-HYU.pdf. [Accessed: 21.02.2020]

[Ace2016] Acentiss: elias - The future of electrically-powered flight.
(2016). http://www.acentiss.de/system/files_force/downloa

ds/folder_acentiss_elias_1.pdf. [Accessed: 04.04.2019]

[AEC2011] AECC: ARINC Specification 424-20 — Navigation System Database. 2011

[Air1987a] Airbus: Airbus A320 - Flight Crew Operating Manual - Auto Flight.
(1987). https://www.smartcockpit.com/aircraft-ressources

/A320-Autoflight.html. [Accessed: 21.02.2020]

[Air1987b] Airbus: Airbus A320 - Flight Crew Operating Manual - Flight Controls.
(1987). https://www.smartcockpit.com/aircraft-ressources

/A320-Flight_Controls.html. [Accessed: 21.02.2020]

[Air2017] Airbus: Successful first flight for UAV demonstrator SAGITTA.
(2017). https://www.airbus.com/newsroom/press-releases/e

n/2017/07/successful-first-flight-for-uav-demonstrato

r-sagitta.html. [Accessed: 09.04.2019]

[Air1996] Aircraft Accident Investigation Commission - Ministry of
Transport: Aircraft Accident Investigation Report - China Airlines
- Airbus Industrie A300B4-622R, B1816 - Nagoya Airport - April 26,
1994. (1996). https://ocw.mit.edu/ans7870/16/16.63j/f12/MIT

16_63JF12_A300.pdf. [Accessed: 21.02.2020]

[Alb1991] Albers, James A.: Aviation Safety and Automation Technology for Sub-
sonic Transports. In: NASA Technical Memorandum 103831, 1991, p. 1–54

XLIX

https://aviation-safety.net/reports/1994/19940606_A320_VR-HYU.pdf
https://aviation-safety.net/reports/1994/19940606_A320_VR-HYU.pdf
http://www.acentiss.de/system/files_force/downloads/folder_acentiss_elias_1.pdf
http://www.acentiss.de/system/files_force/downloads/folder_acentiss_elias_1.pdf
https://www.smartcockpit.com/aircraft-ressources/A320-Autoflight.html
https://www.smartcockpit.com/aircraft-ressources/A320-Autoflight.html
https://www.smartcockpit.com/aircraft-ressources/A320-Flight_Controls.html
https://www.smartcockpit.com/aircraft-ressources/A320-Flight_Controls.html
https://www.airbus.com/newsroom/press-releases/en/2017/07/successful-first-flight-for-uav-demonstrator-sagitta.html
https://www.airbus.com/newsroom/press-releases/en/2017/07/successful-first-flight-for-uav-demonstrator-sagitta.html
https://www.airbus.com/newsroom/press-releases/en/2017/07/successful-first-flight-for-uav-demonstrator-sagitta.html
https://ocw.mit.edu/ans7870/16/16.63j/f12/MIT16_63JF12_A300.pdf
https://ocw.mit.edu/ans7870/16/16.63j/f12/MIT16_63JF12_A300.pdf

BIBLIOGRAPHY

[Amb2016] Ambrose, Kevin: Reflecting Pool takeoff, buzzing the Capitol and the
100th anniversary of the ‘mile-high club’. (2016). https://www.washing

tonpost.com/news/capital-weather-gang/wp/2016/08/30/r

eflecting-pool-takeoff-buzzing-the-capitol-and-the

-100th-anniversary-of-the-mile-high-club/. [Accessed:
11.09.2019]

[Ame2017] Ameri Research Inc.: Global Unmanned Aerial Vehicle (UAV) Market
To 2024. (2017). https://www.ameriresearch.com/product/unm

anned-aerial-vehicle-uav-market/. [Accessed: 31.05.2020]

[ADN1992] Ashar, Pranav; Devadas, Srinivas; Newton, A. R.: Finite State Ma-
chine Decomposition. In: Sequential Logic Synthesis, 1992, p. 117–168

[Aus2010] Austin, Reg: Introduction to Unmanned Aircraft Systems (UAS). John
Wiley & Sons, Ltd, 2010. – ISBN 9780470664797

[Bai1983] Bainbridge, Lisanne: Ironies of automation. In: Automatica, 1983, p.
775–779

[BCCZ1999] Biere, Armin; Cimatti, Alessandro; Clarke, Edmund; Zhu, Yunshan:
Symbolic Model Checking without BDDs. In: Proc. of Fifth Int. Conf. on
Tools for Construction and Analysis of Systems, TACAS ’99, 1999, p. 1–15

[Bil1991] Billings, Charles E.: Human-centered aircraft automation: A concept
and guidelines. In: NASA Technical Memorandum 103885, 1991, p. 3–120

[Bil1996] Billings, Charles E.: Human-Centered Aviation Automation: Principles
and Guidelines. In: NASA Technical Memorandum 110381, 1996, p. 3–219

[Bil1997] Billings, Charles E.: Aviation Automation: The Search for a Human-
Centered Approach. CRC Press LLC, 1997. – ISBN 9781351464932

[Boe2002] Boeing: X-45 Joint Unmanned Combat Air System. (2002).
https://www.boeing.com/history/products/x-45-joint-

unmanned-combat-air-system.page. [Accessed: 10.02.2020]

[Boo1847] Boole, George: The Mathematical Analysis of Logic – Being an Essay
Towards a Calculus of Deductive Reasoning. 1847

[Boo1854] Boole, George: An Investigation of The Laws of Thought on Which are
Founded the Mathematical Theories of Logic and Probabilities. 1854

L

https://www.washingtonpost.com/news/capital-weather-gang/wp/2016/08/30/reflecting-pool-takeoff-buzzing-the-capitol-and-the-100th-anniversary-of-the-mile-high-club/
https://www.washingtonpost.com/news/capital-weather-gang/wp/2016/08/30/reflecting-pool-takeoff-buzzing-the-capitol-and-the-100th-anniversary-of-the-mile-high-club/
https://www.washingtonpost.com/news/capital-weather-gang/wp/2016/08/30/reflecting-pool-takeoff-buzzing-the-capitol-and-the-100th-anniversary-of-the-mile-high-club/
https://www.washingtonpost.com/news/capital-weather-gang/wp/2016/08/30/reflecting-pool-takeoff-buzzing-the-capitol-and-the-100th-anniversary-of-the-mile-high-club/
https://www.ameriresearch.com/product/unmanned-aerial-vehicle-uav-market/
https://www.ameriresearch.com/product/unmanned-aerial-vehicle-uav-market/
https://www.boeing.com/history/products/x-45-joint-unmanned-combat-air-system.page
https://www.boeing.com/history/products/x-45-joint-unmanned-combat-air-system.page

BIBLIOGRAPHY

[BGHH2014] Braun, Stanislav; Geiser, Markus; Heller, Matthias; Holzapfel, Flo-
rian: Configuration Assessment and Preliminary Control Law Design for a
Novel Diamond-Shaped UAV. In: International Conference on Unmanned
Aircraft Systems (ICUAS), 2014, p. 1009–1020

[BWB+2012] Braun, Stanislav; Wolze, Philip; Braun, Benjamin; Geiser, Markus;
Holzapfel, Florian: Hardware-in-the-Loop Simulation in the Context
of the Development of Automatic Flight Control Systems for UAV. In:
AIRTEC UAV World, 2012, p. 1–8

[Bur1989] Bureau of Enquiry and Analysis for Civil Aviation Safety:
Final Report concerning the accident which occurred on June
26th 1988 at Mulhouse-Habsheim to the Airbus A320, registered
F-GFKC. (1989). https://reports.aviation-safety.net

/1988/19880626-0_A320_F-GFKC.pdf. [Accessed: 21.02.2020]

[Bur2012] Bureau of Enquiry and Analysis for Civil Aviation Safety:
Final Report on the accident on 1st June 2009 to the Airbus A330-203
registered F-GZCP operated by Air France flight AF 447 Rio de Jane-
rio - Paris. (2012). https://www.smartcockpit.com/docs/airbus-

a330-air-france-aerodynamics-stall--crash.pdf. [Accessed:
21.02.2020]

[CGP1999] Clarke, Edmund; Grumberg, Orna; Peled, Doron: Model Checking.
MIT Press, 1999. – ISBN 9780262032704

[Cla1997] Clarke, Edmund. M.: Model Checking. In: Foundations of Software
Technology and Theoretical Computer Science, 1997, p. 54–56

[Con1971] Conway, John H.: Regular Algebra and Finite Machines. Dover Publica-
tions, Inc., 1971. – ISBN 0412106205

[Cou2015] Courtland, Rachel: Gordon Moore: The Man Whose Name Means
Progress. (2015). https://spectrum.ieee.org/computing/har

dware/gordon-moore-the-man-whose-name-means-progress.
[Accessed: 19.09.2019]

[Cur1985] Curry, Renwick E.: The Introduction of New Cockpit Technology: A
Human Factors Study. In: NASA Technical Memorandum 86659, 1985, p.
1–68

[DLR2013] Dalldorff, Lothar; Luckner, Robert; Reichel, Reinhard: A Full-
Authority Automatic Flight Control System for the Civil Airborne Utility
Aircraft S 15 – LAPAZ. In: CEAS EuroGNC, 2013, p. 1–20

LI

https://reports.aviation-safety.net/1988/19880626-0_A320_F-GFKC.pdf
https://reports.aviation-safety.net/1988/19880626-0_A320_F-GFKC.pdf
https://www.smartcockpit.com/docs/airbus-a330-air-france-aerodynamics-stall--crash.pdf
https://www.smartcockpit.com/docs/airbus-a330-air-france-aerodynamics-stall--crash.pdf
https://spectrum.ieee.org/computing/hardware/gordon-moore-the-man-whose-name-means-progress
https://spectrum.ieee.org/computing/hardware/gordon-moore-the-man-whose-name-means-progress

BIBLIOGRAPHY

[Das2003] Dassault Aviation: Dassault nEUROn - Introduction. (2003).
https://www.dassault-aviation.com/en/defense/neuron/int

roduction/. [Accessed: 10.02.2020]

[Dia2012] Diamond Aircraft: Airplane Flight Manual - DA 42 NG. (2012).
http://support.diamond-air.at/fileadmin/uploads/files/a

fter_sales_support/DA42_New_Generation/Airplane_Fligh

t_Manual_with_MAM42-600_DA42-VI/Basic_Manual/70116e-r

4-complete.pdf. [Accessed: 11.02.2021]

[Dia2018] Diamond Aircraft: DA42-VI THE DEFINITION OF PERFEC-
TION. (2018). https://www.diamondaircraft.com/fileadmin

/diamondaircraft/documents/da42/DA42-VI_Product_Folde

r_20192503_SCREEN.pdf. [Accessed: 09.04.2019]

[DLR2018] DLR: Dornier Do 228-101 D-CODE. (2018). https://www.dlr.de/c

ontent/en/articles/aeronautics/research-fleet-infras

tructure/dlr-research-aircraft/dornier-do-228-101-d-

code.html. [Accessed: 30.10.2019]

[DLR2019] DLR: Dornier 228-101 (D-CODE). (2019). https://www.dlr.de/c

ontent/de/grossforschungsanlagen/dornier-228-101.html.
[Accessed: 30.10.2019]

[Dri2016] Dries, C.: Automatischer Start und Landung einer Diamond DA42, Tech-
nologien der Universität Stuttgart. (2016). http://www.dglr.de/publi

kationen/2016/010002.pdf. [Accessed: 30.11.2019]

[DHB+1988] Duke, Eugene L.; Hewett, Marle; Brumbaugh, Randal W.; Tartt,
David; Antoniewicz, Robert F.; Agarwal, Arvind K.: The use of an
automated flight test management system in the development of a rapid-
prototyping flight research facility. In: NASA Technical Memorandum
100435, 1988, p. 1–21

[DJB1986] Duke, Eugene L.; Jones, Frank P.; Boncoli, Ralph B.: Development
and Flight Test of an Experimental Maneuver Autopilot for a Highly Ma-
neuverable Aircraft. In: NASA Technical Paper 2618, 1986, p. 1–61

[EAS2015a] EASA: A-NPA 2015-10 - Introduction of a regulatory framework for the
operation of drones. (2015). https://www.easa.europa.eu/documen

t-library/notices-of-proposed-amendment/npa-2015-10.
[Accessed: 11.09.2019]

LII

https://www.dassault-aviation.com/en/defense/neuron/introduction/
https://www.dassault-aviation.com/en/defense/neuron/introduction/
http://support.diamond-air.at/fileadmin/uploads/files/after_sales_support/DA42_New_Generation/Airplane_Flight_Manual_with_MAM42-600_DA42-VI/Basic_Manual/70116e-r4-complete.pdf
http://support.diamond-air.at/fileadmin/uploads/files/after_sales_support/DA42_New_Generation/Airplane_Flight_Manual_with_MAM42-600_DA42-VI/Basic_Manual/70116e-r4-complete.pdf
http://support.diamond-air.at/fileadmin/uploads/files/after_sales_support/DA42_New_Generation/Airplane_Flight_Manual_with_MAM42-600_DA42-VI/Basic_Manual/70116e-r4-complete.pdf
http://support.diamond-air.at/fileadmin/uploads/files/after_sales_support/DA42_New_Generation/Airplane_Flight_Manual_with_MAM42-600_DA42-VI/Basic_Manual/70116e-r4-complete.pdf
https://www.diamondaircraft.com/fileadmin/diamondaircraft/documents/da42/DA42-VI_Product_Folder_20192503_SCREEN.pdf
https://www.diamondaircraft.com/fileadmin/diamondaircraft/documents/da42/DA42-VI_Product_Folder_20192503_SCREEN.pdf
https://www.diamondaircraft.com/fileadmin/diamondaircraft/documents/da42/DA42-VI_Product_Folder_20192503_SCREEN.pdf
https://www.dlr.de/content/en/articles/aeronautics/research-fleet-infrastructure/dlr-research-aircraft/dornier-do-228-101-d-code.html
https://www.dlr.de/content/en/articles/aeronautics/research-fleet-infrastructure/dlr-research-aircraft/dornier-do-228-101-d-code.html
https://www.dlr.de/content/en/articles/aeronautics/research-fleet-infrastructure/dlr-research-aircraft/dornier-do-228-101-d-code.html
https://www.dlr.de/content/en/articles/aeronautics/research-fleet-infrastructure/dlr-research-aircraft/dornier-do-228-101-d-code.html
https://www.dlr.de/content/de/grossforschungsanlagen/dornier-228-101.html
https://www.dlr.de/content/de/grossforschungsanlagen/dornier-228-101.html
http://www.dglr.de/publikationen/2016/010002.pdf
http://www.dglr.de/publikationen/2016/010002.pdf
https://www.easa.europa.eu/document-library/notices-of-proposed-amendment/npa-2015-10
https://www.easa.europa.eu/document-library/notices-of-proposed-amendment/npa-2015-10

BIBLIOGRAPHY

[EAS2015b] EASA: Concept of Operations for Drones. (2015). https:

//www.easa.europa.eu/document-library/general-publi

cations/concept-operations-drones. [Accessed: 11.09.2019]

[EAS2015c] EASA: Opinion of a technical nature - Introduction of a regu-
latory framework for the operation of unmanned aircraft. (2015).
https://www.easa.europa.eu/document-library/opinions/o

pinion-technical-nature. [Accessed: 11.09.2019]

[EAS2017a] EASA: NPA 2017-05 A - Introduction of a regulatory framework for the
operation of drones — Unmanned aircraft system operations in the open
and specific category. (2017). https://www.easa.europa.eu/documen

t-library/notices-of-proposed-amendment/npa-2017-05.
[Accessed: 11.09.2019]

[EAS2017b] EASA: NPA 2017-05 B - Introduction of a regulatory framework for the
operation of drones — Unmanned aircraft system operations in the open
and specific category. (2017). https://www.easa.europa.eu/documen

t-library/notices-of-proposed-amendment/npa-2017-05.
[Accessed: 11.09.2019]

[EAS2018] EASA: Opinion 01/2018 - Unmanned aircraft system (UAS) operations in
the ‘open’ and ‘specific’ categories. (2018). https://www.easa.europ

a.eu/document-library/opinions/opinion-012018. [Accessed:
11.09.2019]

[EAS2019] EASA: Civil drones (Unmanned aircraft). (2019). https://www

.easa.europa.eu/easa-and-you/civil-drones-rpas. [Accessed:
14.09.2019]

[Ele2018a] Elektra Solar: Elektra one Solar. (2018). https://www.elektra-s

olar.com/about. [Accessed: 02.07.2019]

[Ele2018b] Elektra Solar: Elektra one Solar. (2018). https://www.elektra-s

olar.com/products/elektra-one-solar. [Accessed: 02.07.2019]

[Erp2000] Erp, Jan B.: Controlling Unmanned Vehicles: the Human Factors Solu-
tion. In: RTO SCI Symposium on "Warfare Automation Procedures and
Techniques for Unmanned Vehicles, 2000, p. 1–13

[Fra1993] France Ministry of Transport and Tourism: Offi-
cial Report into the accident on 20 January 1992 near Mont
Sainte-Odile of the Airbus A320 registered F-GGED operated by
Air Inter. (1993). https://reports.aviation-safety.net

/1992/19920120-0_A320_F-GGED.pdf. [Accessed: 21.02.2020]

LIII

https://www.easa.europa.eu/document-library/general-publications/concept-operations-drones
https://www.easa.europa.eu/document-library/general-publications/concept-operations-drones
https://www.easa.europa.eu/document-library/general-publications/concept-operations-drones
https://www.easa.europa.eu/document-library/opinions/opinion-technical-nature
https://www.easa.europa.eu/document-library/opinions/opinion-technical-nature
https://www.easa.europa.eu/document-library/notices-of-proposed-amendment/npa-2017-05
https://www.easa.europa.eu/document-library/notices-of-proposed-amendment/npa-2017-05
https://www.easa.europa.eu/document-library/notices-of-proposed-amendment/npa-2017-05
https://www.easa.europa.eu/document-library/notices-of-proposed-amendment/npa-2017-05
https://www.easa.europa.eu/document-library/opinions/opinion-012018
https://www.easa.europa.eu/document-library/opinions/opinion-012018
https://www.easa.europa.eu/easa-and-you/civil-drones-rpas
https://www.easa.europa.eu/easa-and-you/civil-drones-rpas
https://www.elektra-solar.com/about
https://www.elektra-solar.com/about
https://www.elektra-solar.com/products/elektra-one-solar
https://www.elektra-solar.com/products/elektra-one-solar
https://reports.aviation-safety.net/1992/19920120-0_A320_F-GGED.pdf
https://reports.aviation-safety.net/1992/19920120-0_A320_F-GGED.pdf

BIBLIOGRAPHY

[GHSM2021] Gabrys, Agnes; Holzapfel, Florian; Steffensen, Rasmus; Merkl,
Christian: Flight Test Based Gain Tuning using non-parametric Frequency
Domain Methods. In: Scitech Forum 2021, 2021, p. 1–15

[GH2012] Geiser, Markus; Heller, Matthias: Flight Dynamics Analysis and Basic
Stabilization Study in Early Design Stages of the SAGITTA Demonstrator
UAV. In: DGLR, Deutscher Luft- und Raumfahrtkongress, 2012, p. 1–8

[GSL+2018] Gierszewski, Daniel; Schneider, Volker; Lauffs, Patrick J.; Peter,
Lars; Holzapfel, Florian: Clothoid-Augmented Online Trajectory Gen-
eration for Radius to Fix Turns. In: 15th IFAC Symposium on Control in
Transportation Systems, 2018, p. 174–179

[Gin1966] Ginsburg, Seymour: The Mathematical Theory of Context-Free Lan-
guages. 1966

[GS2004] Glenn H. Curtiss Museum; Scheck, Lieutenant Colonel W.:
Lawrence Sperry: Genius on Autopilot. (2004). https:

//www.historynet.com/lawrence-sperry-autopilot-inv

entor-and-aviation-innovator.htm. [Accessed: 08.09.2019]

[HVCR2001] Hayhurst, Kelly J.; Veerhusen, Dan S.; Chilenski, John J.; Rierson,
Leanna K.: A Practical Tutorial on Modified Condition/Decision Coverage.
In: NASA Technical Memorandum 210876, 2001, p. 1–82

[Hen1968] Hennie, Frederick C.: Finite-State Models for Logical Machines. 1968

[HTA1991] Hewett, Marle; Tartt, David; Agarwal, Arvind K.: Automated flight
test management system. In: NASA Contractor Report 186011, 1991, p.
1–44

[HHH2016] Hochstrasser, Markus; Hornauer, Markus; Holzapfel, Florian:
Formal Verification of Flight Control Applications along a Model-Based
Development Process: A Case Study. In: Workshop Software Safety, 2016,
p. 1–41

[HSN+2017] Hochstrasser, Markus; Schatz, Simon P.; Nürnberger, Katejan;
Hornauer, Markus; Myschik, Stephan; Holzapfel, Florian: Aspects
of a Consistent Modeling Environment for DO-331 Design Model Develop-
ment of Flight Control Algorithms. In: CEAS EuroGNC, 2017, p. 69–86

[Hol1982] Holcombe, Mike: Algebraic automata theory. Cambridge University
Press, 1982. – ISBN 0521231965

LIV

https://www.historynet.com/lawrence-sperry-autopilot-inventor-and-aviation-innovator.htm
https://www.historynet.com/lawrence-sperry-autopilot-inventor-and-aviation-innovator.htm
https://www.historynet.com/lawrence-sperry-autopilot-inventor-and-aviation-innovator.htm

BIBLIOGRAPHY

[HMU2007] Hopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D.: Introduc-
tion to Automata Theory, Languages, and Computation. Gradiance Corp.,
2007. – ISBN 0321455363

[Huf1954] Huffman, David A.: The synthesis of sequential switching circuits. In:
Journal of the Franklin Institute, 1954, p. 161–190

[Hun1933] Huntington, Edward V.: A New Set of Independent Postulates for the
Algebra of Logic with Special Reference to Whitehead and Russell’s Prin-
cipia Mathematica. In: Transactions of the American Mathematical Soci-
ety, 1933, p. 274–304

[IEE1984] IEEE: IEEE Std 91-1984. 1984

[IEE1991] IEEE: IEEE Standard Graphic Symbols for Logic Functions (Including and
incorporating IEEE Std 91a-1991, Supplement to IEEE Standard Graphic
Symbols for Logic Functions). In: IEEE Std 91a-1991, 1991, p. 1–160

[Ive2015] Ives, Tucker: Ohio "Repudiates" Connecticut Over First-in-Flight Claims.
(2015). https://www.wnpr.org/post/ohio-repudiates-connect

icut-over-first-flight-claims. [Accessed: 31.05.2020]

[Jac2013] Jackson, Paul: Executive Overview: Jane’s All the World’s Aircraft:
Development & Production. (2013). http://www.gustav-weisskop

f.de/mediapool/93/932814/data/Artikel_Paul_Jackson.pdf.
[Accessed: 15.03.2013]

[JAR2019] JARUS: JARUS guidelines on Specific Operations Risk Assessment
(SORA). (2019). http://jarus-rpas.org/sites/jarus-rpas.org

/files/jar_doc_06_jarus_sora_v2.0.pdf. [Accessed: 08.02.2020]

[Jat2006] Jategaonkar, Ravindra V.: Flight vehicle system identification: A time
domain methodology. American Institute of Aeronautics and Astronautics,
2006. – ISBN 1563478366

[KH2005] Karim, Samin; Heinze, Clinton: Experiences with the design and im-
plementation of an agent-based autonomous UAV controller. In: AA-
MAS 2005, Proceedings of the fourth international joint conference on Au-
tonomous agents and multiagent systems, 2005, p. 19–26

[KGSH2016] Karlsson, Erik; Gabrys, Agnes C.; Schatz, Simon P.; Holzapfel,
Florian: Dynamic Flight Path Control Coupling for Energy and Maneuver-
ing Integrity. In: 14th International Conference on Control, Automation,
Robotics & Vision (ICARCV), 2016, p. 1–6

LV

https://www.wnpr.org/post/ohio-repudiates-connecticut-over-first-flight-claims
https://www.wnpr.org/post/ohio-repudiates-connecticut-over-first-flight-claims
http://www.gustav-weisskopf.de/mediapool/93/932814/data/Artikel_Paul_Jackson.pdf
http://www.gustav-weisskopf.de/mediapool/93/932814/data/Artikel_Paul_Jackson.pdf
http://jarus-rpas.org/sites/jarus-rpas.org/files/jar_doc_06_jarus_sora_v2.0.pdf
http://jarus-rpas.org/sites/jarus-rpas.org/files/jar_doc_06_jarus_sora_v2.0.pdf

BIBLIOGRAPHY

[KHB+2017] Karlsson, Erik; Holzapfel, Florian; Baier, Thaddäus; Dörhöfer,
Christoph; Gabrys, Agnes C.; Hochstrasser, Markus; Krause,
Christoph; Lauffs, Patrick J.; Mumm, Nils C.; Nürnberger, Katejan;
Peter, Lars; Schatz, Simon P.; Schneider, Volker; Spiegel, Philip;
Steinert, Lukas; Zollitsch, Alexander W.: Active Control Objec-
tive Prioritization for High-Bandwidth Automatic Flight Path Control. In:
CEAS EuroGNC, 2017, p. 141–161

[KSB+2016] Karlsson, Erik; Schatz, Simon P.; Baier, Thaddäus; Dörhöfer,
Christoph; Gabrys, Agnes C.; Hochstrasser, Markus; Krause,
Christoph; Lauffs, Patrick J.; Mumm, Nils C.; Nürnberger, Katejan;
Peter, Lars; Schneider, Volker; Spiegel, Philip; Steinert, Lukas;
Zollitsch, Alexander W.; Holzapfel, Florian: Automatic Flight
Path Control of an Experimental DA42 General Aviation Aircraft. In:
14th International Conference on Control, Automation, Robotics & Vision
(ICARCV), 2016, p. 1–6

[KSH+2017] Karlsson, Erik; Schatz, Simon P.; Holzapfel, Florian; Baier,
Thaddäus; Dörhöfer, Christoph; Gabrys, Agnes C.; Hochstrasser,
Markus; Krause, Christoph; Lauffs, Patrick J.; Mumm, Nils C.; Nürn-
berger, Katejan; Peter, Lars; Schneider, Volker; Spiegel, Philip;
Steinert, Lukas; Zollitsch, Alexander W.: Development of an Auto-
matic Flight Path Controller for a DA42 General Aviation Aircraft. In:
CEAS EuroGNC, 2017, p. 121–139

[Kel2001] Keller, Robert M.: Computer Science: Abstraction to Implementation.
2001

[KM2006] Klein, Vladislav; Morelli, Eugene A.: Aircraft system identification:
Theory and practice. American Institute of Aeronautics and Astronautics,
2006. – ISBN 9781563478321

[KGH2018] Krause, Christoph; Göttlicher, Christoph; Holzapfel, Florian: De-
velopment of a generic Flight Test Maneuver Injection Module. In: ICAS
31st Congress of the International Council of the Aeronautical Sciences
(ICAS2018), 2018, p. 1–10

[KH2016] Krause, Christoph; Holzapfel, Florian: Designing a System Automa-
tion for a novel UAV Demonstrator. In: 14th International Conference on
Control, Automation, Robotics & Vision (ICARCV), 2016, p. 1–6

LVI

BIBLIOGRAPHY

[KH2017a] Krause, Christoph; Holzapfel, Florian: Designing and Implementing
a Clutch Automation for a fully electric Fixed-Wing OPV. In: 2nd Inter-
national Conference in Aerospace for Young Scientists (2nd ICAYS), 2017,
p. 1–8

[KH2017b] Krause, Christoph; Holzapfel, Florian: Development of a generic Loiter
Automation for a fixed wing UAV/OPV. In: The 2017 Asian Control
Conference - ASCC 2017, 2017, p. 365–370

[KH2018a] Krause, Christoph; Holzapfel, Florian: Implementing a multi-level
finite state machine with MATLAB Simulink and Stateflow in the environ-
ment of high-integrity aircraft controller software. In: 2018 4th Interna-
tional Conference on Control, Automation and Robotics (ICCAR), 2018, p.
147–151

[KH2018b] Krause, Christoph; Holzapfel, Florian: System Automation of a DA42
General Aviation Aircraft. In: 2018 Aviation Technology, Integration, and
Operations Conference, AIAA AVIATION Forum, 2018, p. 1–9

[KBS2011] Kriegel, Michael; Brueggenwirth, Stefan; Schulte, Axel: Knowl-
edge Configured Vehicle - A layered artificial cognition based approach
to decoupling high-level UAV mission tasking from vehicle implementation
properties. In: AIAA Guidance, Navigation, and Control Conference, 2011,
p. 1–19

[KHT2013] Krings, Matthias; Henning, Karsten; Thielecke, Frank: Flight Test
Oriented Autopilot Design for Improved Aerodynamic Parameter Identifi-
cation. In: Advances in Aerospace Guidance, Navigation and Control, 2013,
p. 265–276

[Kuc2018] Kuchar, Richard O.: A versatile Simulation environment for Design
Verification, System Integration Testing and Pilot Training of a diamond-
shaped Unmanned Aerial Vehicle. In: 2018 AIAA Modeling and Simulation
Technologies Conference, 2018, p. 1–23

[KHH2018] Kügler, Martin E.; Heller, Matthias; Holzapfel, Florian: Automatic
Take-off and Landing on the Maiden Flight of a Novel Fixed-Wing UAV.
In: 2018 AIAA Flight Testing Conference, 2018, p. 1–12

[KH2015] Kügler, Martin E.; Holzapfel, Florian: Enhancing the Auto Flight Sys-
tem of the SAGITTA Demonstrator UAV by Fault Detection and Diagno-
sis. In: Aerospace Electronics and Remote Sensing Technology (ICARES),
2015 IEEE International, 2015, p. 1–7

LVII

BIBLIOGRAPHY

[KH2016a] Kügler, Martin E.; Holzapfel, Florian: Designing a Safe and Robust
Automatic Take-off Maneuver for a Fixed-Wing UAV. In: 14th Interna-
tional Conference on Control, Automation, Robotics & Vision (ICARCV),
2016, p. 1–6

[KH2016b] Kügler, Martin E.; Holzapfel, Florian: Developing Automated Con-
tingency Procedures for the ATOL System of a Fixed-Wing UAV through
Online FDD. In: AIAA Modeling and Simulation Technologies Conference,
2016, p. 1–10

[KH2017a] Kügler, Martin E.; Holzapfel, Florian: Autoland for a Novel UAV as a
State-Machine-based Extension to a Modular Automatic Flight Guidance
and Control System. In: The 2017 American Control Conference (ACC),
2017, p. 2231–2236

[KH2017b] Kügler, Martin E.; Holzapfel, Florian: Online Self-Monitoring of Au-
tomatic Take-off and Landing Control of a Fixed-Wing UAV. In: IEEE
Conference on Control Technology and Applications (CCTA), 2017, p.
2108–2113

[KH2017c] Kügler, Martin E.; Holzapfel, Florian: Parameterization and Com-
putation of Automatic Take-off and Landing Trajectories for Fixed-Wing
UAV. In: 17th AIAA Aviation Technology, Integration, and Operations
Conference, 2017, p. 1–11

[KH2018] Kügler, Martin E.; Holzapfel, Florian: Planning, Implementation, and
Execution of an Automatic First Flight of a UAV. In: ICAS 31st Congress
of the International Council of the Aeronautical Science, 2018, p. 1–8

[KSHH2018] Kügler, Martin E.; Seiferth, David; Heller, Matthias; Holzapfel,
Florian: Real-Time Monitoring of Flight Tests with a Novel Fixed-Wing
UAV by Automatic Flight Guidance and Control System Engineers. In:
2018 4th International Conference on Control, Automation and Robotics
(ICCAR), 2018, p. 141–146

[LS2017] Lee, Edward A.; Seshia, Sanjit A.: Introduction to Embedded Systems, A
Cyber-Physical Systems Approach. MIT Press, 2017. – ISBN 9780262533812

[Lio1996] Lions, Prof. Jacques-Louis: ARIANE 5 - Flight 501 Failure.
(1996). http://sunnyday.mit.edu/nasa-class/Ariane5-report

.html. [Accessed: 29.03.2020]

LVIII

http://sunnyday.mit.edu/nasa-class/Ariane5-report.html
http://sunnyday.mit.edu/nasa-class/Ariane5-report.html

BIBLIOGRAPHY

[LKN2011] Lisagor, Oleg; Kelly, Tim; Niu, Ru: Model-based safety assessment:
Review of the discipline and its challenges. In: The Proceedings of 2011 9th
International Conference on Reliability, Maintainability and Safety, 2011,
p. 625–632

[Lit2019] Little, Becky: Automation of Planes Began 9 Years After the
Wright Bros Took Flight — But It Still Leads to Baffling Disasters.
(2019). https://www.history.com/news/plane-automation-au

topilot-flight-302-610. [Accessed: 08.09.2019]

[Lud2019a] Ludwig Bölkow Campus: AURAIS. (2019). https://lb-campus.c

om/research/aurais. [Accessed: 03.07.2019]

[Lud2019b] Ludwig Bölkow Campus: EUROPAS. (2019). https://lb-campus

.com/research/europas. [Accessed: 03.07.2019]

[Mar2019] MarketsAndMarkets: Unmanned Aerial Vehicle (UAV) Market -
Global Forecast to 2025. (2019). https://www.marketsandmarkets

.com/Market-Reports/unmanned-aerial-vehicles-uav-mark

et-662.html. [Accessed: 12.02.2020]

[Mas2014] Master Films: A380 cockpit virtual visit. (2014). https://ccntser

vice.airbus.com/apps/cockpits/a380/. [Accessed: 25.09.2019]

[Mat2012] MathWorks Automotive Advisory Board: Control Algorithm Mod-
eling Guidelines using MATLAB Simulink, and Stateflow. 2012

[Mat2016] MathWorks Automotive Advisory Board: Simulink - Automotive
Advisory Board Control Algorithm Modeling Guidelines Using MATLAB,
Simulink, and Stateflow. (2016). https://de.mathworks.com/help/r

eleases/R2016b/pdf_doc/simulink/maab_guidelines.pdf.
[Accessed: 10.04.2019]

[MW2004] McCarley, Jason S.; Wickens, Christopher D.: Human Factors Con-
cerns in UAV Flight. 2004

[Mea1955] Mealy, George H.: A method for synthesizing sequential circuits. In: The
Bell System Technical Journal, 1955, p. 1045–1079

[MPH2017] Meinecke, Verena; Prof. Hornung, Mirko: Unmanned flying wing
successfully tested - Innovative technologies on board the unmanned
aircraft Sagitta. (2017). https://www.tum.de/nc/en/studinews

/issue-022018/show/article/detail/News/34147/. [Accessed:
03.07.2019]

LIX

https://www.history.com/news/plane-automation-autopilot-flight-302-610
https://www.history.com/news/plane-automation-autopilot-flight-302-610
https://lb-campus.com/research/aurais
https://lb-campus.com/research/aurais
https://lb-campus.com/research/europas
https://lb-campus.com/research/europas
https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html
https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html
https://www.marketsandmarkets.com/Market-Reports/unmanned-aerial-vehicles-uav-market-662.html
https://ccntservice.airbus.com/apps/cockpits/a380/
https://ccntservice.airbus.com/apps/cockpits/a380/
https://de.mathworks.com/help/releases/R2016b/pdf_doc/simulink/maab_guidelines.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/simulink/maab_guidelines.pdf
https://www.tum.de/nc/en/studinews/issue-022018/show/article/detail/News/34147/
https://www.tum.de/nc/en/studinews/issue-022018/show/article/detail/News/34147/

BIBLIOGRAPHY

[MWD1989] Menon, P. K. A.; Walker, R. A.; Duke, E. L.: Flight-test maneuver
modeling and control. In: Journal of Guidance, Control, and Dynamics,
1989, p. 195–200

[MAW+2005] Miller, Steven; Anderson, Elise; Wagner, Lucas; Whalen, Michael;
Heimdahl, Matts: Formal Verification of Flight Critical Software. In:
AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005, p.
1–16

[MH2003] Monin, Jean-François; Hinchey, Michael: Understanding Formal Meth-
ods. Springer, 2003. – ISBN 9781852332471

[Mon1948] Montgomerie, G. A.: Sketch for an algebra of relay and contactor cir-
cuits. In: Journal of the Institution of Electrical Engineers - Part III: Radio
and Communication Engineering, 1948, p. 303–312

[Moo1956] Moore, Edward F.: Gedanken-Experiments on Sequential Machines. In:
Automata Studies, 1956, p. 129–153

[Moo1965] Moore, Gordon E.: Cramming more components onto integrated circuits.
In: Electronics of the IEEE, 1965, p. 1–4

[Mor1990] Morelli, Eugene A.: Practical Input Optimization for Aircraft Parameter
Estimation Experiments, The George Washington University, Diss., 1990

[Mor2012a] Morelli, Eugene A.: Flight Test Maneuvers for Efficient Aerodynamic
Modeling. In: Journal of Aircraft, 2012, p. 1857–1867

[Mor2012b] Morelli, Eugene A.: Real-Time Aerodynamic Parameter Estimation
Without Air Flow Angle Measurements. In: Journal of Aircraft, 2012,
p. 1064–1074

[MK1990] Morelli, Eugene A.; Klein, Vladislav: Optimal Input Design for Aircraft
Parameter Estimation Using Dynamic Programming Principles. In: 17th
Atmospheric Flight Mechanics Conference, 1990, p. 1–11

[MH2017] Mumm, Nils C.; Holzapfel, Florian: Development of an Automatic
Landing System for Diamond DA 42 aircraft utilizing a Load Factor Inner
Loop Command System. In: CEAS EuroGNC, 2017, p. 86–91

[MKHS2017] Mumm, Nils C.; Kügler, Martin E.; Holzapfel, Florian; Schwithal,
Alexander: C2LAND – Increasing Safety of Automatic Landing Systems
for General Aviation Aircraft by Optical Runway Detection. In: Interna-
tional Symposium on Precision Approach and Performance Based Naviga-
tion (ISPA), 2017, p. 1–6

LX

BIBLIOGRAPHY

[MSH2017] Mumm, Nils C.; Schatz, Simon P.; Holzapfel, Florian: Evaluation
of the Flight Technical Error of a Trajectory Controller During Final Ap-
proach. In: International Symposium on Precision Approach and Perfor-
mance Based Navigation (ISPA), 2017, p. 1–6

[MSH2015] Mumm, Nils C.; Schneider, Volker; Holzapfel, Florian: Nonlin-
ear continuous and differentiable 3D trajectory command generation. In:
Aerospace Electronics and Remote Sensing Technology (ICARES), 2015
IEEE International, 2015, p. 1–9

[MZS+2017] Mumm, Nils C.; Zollitsch, Alexander W.; Schatz, Simon P.; Wulf,
Simona; Holzapfel, Florian; Lauffs, Patrick J.; Peter, Lars: Design
and Testing of a Ground Roll Runway Centerline Tracking Controller for a
General Aviation Research Aircraft. In: The 2017 Asian Control Confer-
ence - ASCC 2017, 2017, p. 1689–1694

[Nor2001] Northrop Grumman: Globalhawk RQ-4 - Unmanned Aircraft Sys-
tem. (2001). https://www.northropgrumman.com/what-we-do/a

ir/globalhawk-rq-4-unmanned-aircraft-system/. [Accessed:
10.02.2020]

[NHH2017] Nürnberger, Katejan; Hochstrasser, Markus; Holzapfel, Florian:
Execution time analysis and optimisation techniques in the model-based
development of a flight control software. In: IET Cyber-Physical Systems:
Theory & Applications, 2017, p. 1–8

[Pet2017] Peter, Lars: DA42 MNG FBW Research Aircraft (Since 2008). In:
In-Flight Simulators and Fly-by-Wire/Light Demonstrators: A Historical
Account of International Aeronautical Research, 2017, p. 146–148

[PSJF2016] Pinchetti, Federico; Stephan, Johannes; Joos, Alexander; Fichter,
Walter: FlySmart - Automatic Take-Off and Landing of an EASA CS-23
Aircraft. In: Deutscher Luft- und Raumfahrtkongress 2016, 2016, p. 1–9

[Pnu1977] Pnueli, Amir: The temporal logic of programs. In: 18th Annual Sympo-
sium on Foundations of Computer Science, 1977, p. 46–57

[Rei2017] Reichel, Reinhard: DIAMOND DA42—FlySmart-FBW23 (2012–2015).
In: In-Flight Simulators and Fly-by-Wire/Light Demonstrators: A Histor-
ical Account of International Aeronautical Research, 2017, p. 148–150

[RK2004] Roth, Charles H.; Kinney, Larry L.: Fundamentals of Logic Design.
Cengage Learning, 2004. – ISBN 0495668044

LXI

https://www.northropgrumman.com/what-we-do/air/globalhawk-rq-4-unmanned-aircraft-system/
https://www.northropgrumman.com/what-we-do/air/globalhawk-rq-4-unmanned-aircraft-system/

BIBLIOGRAPHY

[Roz2011] Rozier, Kristin: Linear Temporal Logic Symbolic Model Checking. In:
Computer Science Review, 2011, p. 163–203

[RTC1992] RTCA: RTCA DO-178 - Software Aspects and Considerations in Airborne
Related Equipment. 1992

[RTC2011a] RTCA: RTCA DO-178 - Software Considerations in Airborne Systems
and Equipment Certification. 2011

[RTC2011b] RTCA: RTCA DO-331 - Model-Based Development and Verification Sup-
plement to DO-178C and DO-278A. 2011

[RTC2014] RTCA: RTCA-DO 236C Minimum Aviation System Performance Stan-
dards: Required Navigation Performance for Area Navigation. 2014

[SW1994] Sarter, Nadine; Woods, David: Pilot Interaction With Cockpit Au-
tomation II: An Experimental Study of Pilots’ Model and Awareness of the
Flight Management System. In: International Journal of Aviation Psy-
chology, 1994, p. 1–28

[SGGH2018] Schatz, S. P.; Gabrys, A. C.; Gierszewski, D. M.; Holzapfel, F.: In-
ner Loop Command Interface in a Modular Flight Control Architecture for
Trajectory Flights of General Aviation Aircraft. In: 2018 5th International
Conference on Control, Decision and Information Technologies (CoDIT),
2018, p. 86–91

[SH2014] Schatz, Simon P.; Holzapfel, Florian: Modular trajectory / path fol-
lowing controller using nonlinear error dynamics. In: Aerospace Electron-
ics and Remote Sensing Technology (ICARES), 2014 IEEE International,
2014, p. 157–163

[SH2017] Schatz, Simon P.; Holzapfel, Florian: Nonlinear Modular 3D Trajec-
tory Control of a General Aviation Aircraft. In: CEAS EuroGNC, 2017, p.
163–183

[SSK+2016] Schatz, Simon P.; Schneider, Volker; Karlsson, Erik; Holzapfel,
Florian; Baier, Thaddäus; Dörhöfer, Christoph; Hochstrasser,
Markus; Gabrys, Agnes C.; Krause, Christoph; Lauffs, Patrick J.;
Mumm, Nils C.; Nürnberger, Katejan; Peter, Lars; Spiegel, Philip;
Steinert, Lukas; Zollitsch, Alexander W.: Flightplan Flight Tests of
an Experimental DA42 General Aviation Aircraft. In: 14th International
Conference on Control, Automation, Robotics & Vision (ICARCV), 2016,
p. 1–6

LXII

BIBLIOGRAPHY

[SH2017] Schneider, Volker; Holzapfel, Florian: Modular Trajectory Generation
Test Platform for Real Flight Systems. In: CEAS EuroGNC, 2017, p. 185–
202

[SMH2015] Schneider, Volker; Mumm, Nils C.; Holzapfel, Florian: Trajectory
generation for an integrated mission management system. In: Aerospace
Electronics and Remote Sensing Technology (ICARES), 2015 IEEE Inter-
national, 2015, p. 1–7

[SPS+2016] Schneider, Volker; Piprek, Patrick; Schatz, Simon P.; Baier,
Thaddäus; Dörhöfer, Christoph; Hochstrasser, Markus; Gabrys,
Agnes C.; Karlsson, Erik; Krause, Christoph; Lauffs, Patrick J.;
Mumm, Nils C.; Nürnberger, Katejan; Peter, Lars; Spiegel, Philip;
Steinert, Lukas; Zollitsch, Alexander W.; Holzapfel, Florian: On-
line Trajectory Generation Using Clothoid Segments. In: 14th International
Conference on Control, Automation, Robotics & Vision (ICARCV), 2016,
p. 1–6

[SKH2017] Seiferth, D.; Kuchar, R.; Heller, M.: Model-based design and real
live on-runway testing of a ground controller for a novel diamond-shaped
Unmanned Air Vehicle (UAV). In: 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), 2017, p. 3934–3941

[SH2017] Seiferth, David; Heller, Matthias: Testing and performance enhance-
ment of a model-based designed ground controller for a diamond-shaped
unmanned air vehicle (UAV). In: IEEE Conference on Control Technology
and Applications (CCTA), 2017, p. 1988–1994

[SKHH2018] Seiferth, David; Kügler, Martin E.; Heller, Matthias; Holzapfel,
Florian: In-Flight Verification of a model-based designed Ground Con-
troller for an innovative Unmanned Air Vehicle (UAV). In: 2018 AIAA
Flight Testing Conference, 2018, p. 1–12

[Sha1938] Shannon, Claude E.: A symbolic analysis of relay and switching circuits.
In: Electrical Engineering, 1938, p. 713–723

[SM1956] Shannon, Claude E.; McCarthy, John: Automata Studies - Preface.
1956

[She1992] Sheridan, Thomas B.: Telerobotics, Automation, and Human Supervisory
Control. M.I.T. Press, 1992. – ISBN 9780262193160

[Sig2016] Sigler, Dean: Acentiss Electric Dual-Rotor Aviation Motor.
(2016). http://sustainableskies.org/acentiss-electric-d

ual-rotor-aviation-motor/. [Accessed: 02.07.2019]

LXIII

http://sustainableskies.org/acentiss-electric-dual-rotor-aviation-motor/
http://sustainableskies.org/acentiss-electric-dual-rotor-aviation-motor/

BIBLIOGRAPHY

[Sim1999] Simon, Matthew: Automata Theory. World Scientific Publishing Co. Pte.
Ltd., 1999. – ISBN 9810237537

[Sip2006] Sipser, Michael: Introduction to the Theory of Computation. Thomson
Course Technology, 2006. – ISBN 0534950973

[Smi2003] Smithsonian: The Wright Brothers - The Invention of the Aerial Age.
(2003). https://airandspace.si.edu/exhibitions/wright-br

others/online/. [Accessed: 08.09.2019]

[Soc2018] Society of Automotive Engineers: Taxonomy and Definitions
for Terms Related to Driving Automation Systems for On-Road Mo-
tor Vehicles. (2018). https://www.sae.org/standards/content/j

3016_201806/. [Accessed: 19.10.2019]

[Sto2010] Storm, Walter: Solving Sudoku using Simulink Design Verifier-A Model
Checking Example. In: AIAA Infotech at Aerospace 2010, 2010, p. 1–4

[Str2018] Strauch, Barry: Ironies of Automation: Still Unresolved After All These
Years. In: IEEE Transactions on Human-Machine Systems, 2018, p. 419–
433

[TM2014] The MathWorks, Inc.: Unit Testing Framework. (2014).
https://de.mathworks.com/help/releases/R2014a/matla

b/matlab-unit-test-framework.html. [Accessed: 09.03.2020]

[TM2016a] The MathWorks, Inc.: All Products. (2016). https://de.mathwor

ks.com/help/releases/R2016b/. [Accessed: 09.03.2020]

[TM2016b] The MathWorks, Inc.: Call C Functions in C Charts.
(2016). https://de.mathworks.com/help/releases/R2016b/sta

teflow/ug/calling-c-functions-in-actions.html. [Accessed:
16.03.2020]

[TM2016c] The MathWorks, Inc.: Chart Programming Basics - Guidelines for
building Stateflow charts. (2016). https://de.mathworks.com/hel

p/releases/R2016b/stateflow/state-chart-programming-b

asics.html. [Accessed: 10.04.2019]

[TM2016d] The MathWorks, Inc.: Control Chart Execution Using Temporal Logic.
(2016). https://www.mathworks.com/help/releases/R2016b/s

tateflow/ug/using-temporal-logic-in-state-actions-a

nd-transitions.html. [Accessed: 10.04.2019]

LXIV

https://airandspace.si.edu/exhibitions/wright-brothers/online/
https://airandspace.si.edu/exhibitions/wright-brothers/online/
https://www.sae.org/standards/content/j3016_201806/
https://www.sae.org/standards/content/j3016_201806/
https://de.mathworks.com/help/releases/R2014a/matlab/matlab-unit-test-framework.html
https://de.mathworks.com/help/releases/R2014a/matlab/matlab-unit-test-framework.html
https://de.mathworks.com/help/releases/R2016b/
https://de.mathworks.com/help/releases/R2016b/
https://de.mathworks.com/help/releases/R2016b/stateflow/ug/calling-c-functions-in-actions.html
https://de.mathworks.com/help/releases/R2016b/stateflow/ug/calling-c-functions-in-actions.html
https://de.mathworks.com/help/releases/R2016b/stateflow/state-chart-programming-basics.html
https://de.mathworks.com/help/releases/R2016b/stateflow/state-chart-programming-basics.html
https://de.mathworks.com/help/releases/R2016b/stateflow/state-chart-programming-basics.html
https://www.mathworks.com/help/releases/R2016b/stateflow/ug/using-temporal-logic-in-state-actions-and-transitions.html
https://www.mathworks.com/help/releases/R2016b/stateflow/ug/using-temporal-logic-in-state-actions-and-transitions.html
https://www.mathworks.com/help/releases/R2016b/stateflow/ug/using-temporal-logic-in-state-actions-and-transitions.html

BIBLIOGRAPHY

[TM2016e] The MathWorks, Inc.: Differences Between MATLAB and C as Action
Language Syntax. (2016). https://de.mathworks.com/help/relea

ses/R2016b/stateflow/ug/differences-between-matlab-an

d-stateflow-action-language.html. [Accessed: 16.03.2020]

[TM2016f] The MathWorks, Inc.: DO-178 Qualification Kit: - Model-Based Design
Workflow for DO-178C. (2016). https://de.mathworks.com/product

s/do-178/features.html. [Accessed: 10.04.2019]

[TM2016g] The MathWorks, Inc.: Embedded Coder - Getting Started Guide.
(2016). https://de.mathworks.com/help/releases/R2016b/pdf

_doc/ecoder/ecoder_gs.pdf. [Accessed: 17.08.2019]

[TM2016h] The MathWorks, Inc.: Embedded Coder - User’s Guide.
(2016). https://de.mathworks.com/help/releases/R2016b/pdf

_doc/ecoder/ecoder_ug.pdf. [Accessed: 17.08.2019]

[TM2016i] The MathWorks, Inc.: MATLAB - Desktop Tools and Development En-
vironment. (2016). https://de.mathworks.com/help/releases/R

2016b/pdf_doc/matlab/matlab_env.pdf. [Accessed: 09.03.2020]

[TM2016j] The MathWorks, Inc.: MATLAB - Primer. (2016). https:

//de.mathworks.com/help/releases/R2016b/pdf_doc/matla

b/getstart.pdf. [Accessed: 09.03.2020]

[TM2016k] The MathWorks, Inc.: MATLAB - Release Notes. (2016).
https://de.mathworks.com/help/releases/R2016a/pdf_d

oc/matlab/rn.pdf. [Accessed: 09.03.2020]

[TM2016l] The MathWorks, Inc.: MATLAB - Release Notes. (2016).
https://de.mathworks.com/help/releases/R2016b/pdf_d

oc/matlab/rn.pdf. [Accessed: 09.03.2020]

[TM2016m] The MathWorks, Inc.: Model Architecture Guidelines. (2016).
https://de.mathworks.com/help/releases/R2016b/simulin

k/model-architecture.html. [Accessed: 10.04.2019]

[TM2016n] The MathWorks, Inc.: Model Architecture Guidelines Stateflow.
(2016). https://www.mathworks.com/help/releases/R2016b/s

imulink/simulink.html. [Accessed: 09.03.2020]

[TM2016o] The MathWorks, Inc.: Model Architecture Guidelines Stateflow.
(2016). https://de.mathworks.com/help/releases/R2016b/sim

ulink/stateflow.html. [Accessed: 09.03.2020]

LXV

https://de.mathworks.com/help/releases/R2016b/stateflow/ug/differences-between-matlab-and-stateflow-action-language.html
https://de.mathworks.com/help/releases/R2016b/stateflow/ug/differences-between-matlab-and-stateflow-action-language.html
https://de.mathworks.com/help/releases/R2016b/stateflow/ug/differences-between-matlab-and-stateflow-action-language.html
https://de.mathworks.com/products/do-178/features.html
https://de.mathworks.com/products/do-178/features.html
https://de.mathworks.com/help/releases/R2016b/pdf_doc/ecoder/ecoder_gs.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/ecoder/ecoder_gs.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/ecoder/ecoder_ug.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/ecoder/ecoder_ug.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/matlab/matlab_env.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/matlab/matlab_env.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/matlab/getstart.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/matlab/getstart.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/matlab/getstart.pdf
https://de.mathworks.com/help/releases/R2016a/pdf_doc/matlab/rn.pdf
https://de.mathworks.com/help/releases/R2016a/pdf_doc/matlab/rn.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/matlab/rn.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/matlab/rn.pdf
https://de.mathworks.com/help/releases/R2016b/simulink/model-architecture.html
https://de.mathworks.com/help/releases/R2016b/simulink/model-architecture.html
https://www.mathworks.com/help/releases/R2016b/simulink/simulink.html
https://www.mathworks.com/help/releases/R2016b/simulink/simulink.html
https://de.mathworks.com/help/releases/R2016b/simulink/stateflow.html
https://de.mathworks.com/help/releases/R2016b/simulink/stateflow.html

BIBLIOGRAPHY

[TM2016p] The MathWorks, Inc.: Polyspace Bug Finder. (2016). https://www.m

athworks.com/help/releases/R2016b/bugfinder/index.html.
[Accessed: 09.03.2020]

[TM2016q] The MathWorks, Inc.: Polyspace Code Prover. (2016).
https://www.mathworks.com/help/releases/R2016b/codep

rover/index.html. [Accessed: 09.03.2020]

[TM2016r] The MathWorks, Inc.: Simulink - Code Inspector - User’s Guide.
(2016). https://de.mathworks.com/help/releases/R2016b/pdf

_doc/slci/slci_ug.pdf. [Accessed: 10.04.2019]

[TM2016s] The MathWorks, Inc.: Simulink - Design Verifier - User’s Guide.
(2016). https://de.mathworks.com/help/releases/R2016b/pdf

_doc/sldv/sldv_ug.pdf. [Accessed: 17.08.2019]

[TM2016t] The MathWorks, Inc.: Simulink - Modeling Guidelines for Code Gener-
ation. (2016). https://de.mathworks.com/help/releases/R2016b

/pdf_doc/simulink/cg_guidelines.pdf. [Accessed: 10.04.2019]

[TM2016u] The MathWorks, Inc.: Simulink - Modeling Guidelines for High-
Integrity Systems. (2016). https://de.mathworks.com/help/relea

ses/R2016b/pdf_doc/simulink/hi_guidelines.pdf. [Accessed:
10.04.2019]

[TM2016v] The MathWorks, Inc.: Simulink - User’s Guide. (2016).
https://de.mathworks.com/help/releases/R2016b/pdf_d

oc/simulink/sl_using.pdf. [Accessed: 17.08.2019]

[TM2016w] The MathWorks, Inc.: Simulink Coder - Getting Started Guide.
(2016). https://de.mathworks.com/help/releases/R2016b/pdf

_doc/rtw/rtw_gs.pdf. [Accessed: 09.03.2020]

[TM2016x] The MathWorks, Inc.: Stateflow - User’s Guide. (2016).
https://de.mathworks.com/help/releases/R2016b/pdf_d

oc/stateflow/sf_ug.pdf. [Accessed: 17.08.2019]

[TM2019] The MathWorks, Inc.: Types of Model Coverage. (2019).
https://de.mathworks.com/help/slcoverage/ug/types-o

f-model-coverage.html. [Accessed: 07.03.2020]

[TM2020a] The MathWorks, Inc.: MathWorks - Accelerating the pace of engi-
neering and science. (2020). https://www.mathworks.com/. [Accessed:
21.03.2020]

LXVI

https://www.mathworks.com/help/releases/R2016b/bugfinder/index.html
https://www.mathworks.com/help/releases/R2016b/bugfinder/index.html
https://www.mathworks.com/help/releases/R2016b/codeprover/index.html
https://www.mathworks.com/help/releases/R2016b/codeprover/index.html
https://de.mathworks.com/help/releases/R2016b/pdf_doc/slci/slci_ug.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/slci/slci_ug.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/sldv/sldv_ug.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/sldv/sldv_ug.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/simulink/cg_guidelines.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/simulink/cg_guidelines.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/simulink/hi_guidelines.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/simulink/hi_guidelines.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/simulink/sl_using.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/simulink/sl_using.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/rtw/rtw_gs.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/rtw/rtw_gs.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/stateflow/sf_ug.pdf
https://de.mathworks.com/help/releases/R2016b/pdf_doc/stateflow/sf_ug.pdf
https://de.mathworks.com/help/slcoverage/ug/types-of-model-coverage.html
https://de.mathworks.com/help/slcoverage/ug/types-of-model-coverage.html
https://www.mathworks.com/

BIBLIOGRAPHY

[TM2020b] The MathWorks, Inc.: MATLAB. (2020). https://www.mathwor

ks.com/help/releases/R2020b/matlab/index.html. [Accessed:
22.09.2020]

[TM2020c] The MathWorks, Inc.: MATLAB - Getting Started Guide. (2020).
https://www.mathworks.com/help/releases/R2020b/matlab/g

etting-started-with-matlab.html. [Accessed: 22.09.2020]

[TM2020d] The MathWorks, Inc.: Simulink - Getting Started Guide.
(2020). https://www.mathworks.com/help/releases/R2020b/p

df_doc/simulink/simulink_gs.pdf. [Accessed: 22.09.2020]

[TM2020e] The MathWorks, Inc.: Stateflow - Getting Started Guide.
(2020). https://www.mathworks.com/help/releases/R2020b/p

df_doc/stateflow/stateflow_gs.pdf. [Accessed: 22.09.2020]

[TR2012] Tischler, Mark B.; Remple, Robert K.: Aircraft and rotorcraft system
identification: Engineering methods with flight test examples. American
Institute of Aeronautics and Astronautics, 2012. – ISBN 1600868207

[Tur1936] Turing, Alan M.: On Computable Numbers, with an Application to
the Entscheidungsproblem. In: Proceedings of the London Mathematical
Society, 1936, p. 230–265

[Wie1989] Wiener, Earl L.: Human factors of advanced technology (glass cockpit)
transport aircraft. In: NASA Contractor Report 177528, 1989, p. 1–220

[WC1980] Wiener, Earl L.; Curry, Renwick E.: Flight-Deck Automation: Promises
and Problems. In: NASA Technical Memorandum 81206, 1980, p. 1–24

[Wie1948] Wiener, Norbert: Cybernetics or Control and Communication in the
Animal and the Machine. 1948

[Wri1903a] Wright: Photos of the Wright brothers first airplane flight.
(1903). http://www.wright-house.com/wright-brothers/wrigh

ts/wright-flyer.html. [Accessed: 11.09.2019]

[Wri1903b] Wright, Orville: Success four flights. (1903). https://www.wdl.org/e

n/item/11372/. [Accessed: 08.09.2019]

[Zim2017] Zimmermann: Erfolgreicher Erstflug von Sagitta. (2017).
https://www.flugrevue.de/militaer/airbus-uav-demons

trator-erfolgreicher-erstflug-von-sagitta/. [Accessed:
03.07.2019]

LXVII

https://www.mathworks.com/help/releases/R2020b/matlab/index.html
https://www.mathworks.com/help/releases/R2020b/matlab/index.html
https://www.mathworks.com/help/releases/R2020b/matlab/getting-started-with-matlab.html
https://www.mathworks.com/help/releases/R2020b/matlab/getting-started-with-matlab.html
https://www.mathworks.com/help/releases/R2020b/pdf_doc/simulink/simulink_gs.pdf
https://www.mathworks.com/help/releases/R2020b/pdf_doc/simulink/simulink_gs.pdf
https://www.mathworks.com/help/releases/R2020b/pdf_doc/stateflow/stateflow_gs.pdf
https://www.mathworks.com/help/releases/R2020b/pdf_doc/stateflow/stateflow_gs.pdf
http://www.wright-house.com/wright-brothers/wrights/wright-flyer.html
http://www.wright-house.com/wright-brothers/wrights/wright-flyer.html
https://www.wdl.org/en/item/11372/
https://www.wdl.org/en/item/11372/
https://www.flugrevue.de/militaer/airbus-uav-demonstrator-erfolgreicher-erstflug-von-sagitta/
https://www.flugrevue.de/militaer/airbus-uav-demonstrator-erfolgreicher-erstflug-von-sagitta/

BIBLIOGRAPHY

[ZMW+2017] Zollitsch, Alexander W.; Mumm, Nils C.; Wulf, Simona; Holzapfel,
Florian; Hochstrasser, Markus; Lauffs, Patrick J.; Peter, Lars: Au-
tomatic Takeoff of a General Aviation Research Aircraft. In: The 2017
Asian Control Conference - ASCC 2017, 2017, p. 1683–1688

[ZSMH2018] Zollitsch, Alexander W.; Schatz, Simon P.; Mumm, Nils C.;
Holzapfel, Florian: Model-in-the-Loop Simulation of Experimental
Flight Control Software. In: 2018 AIAA Modeling and Simulation Tech-
nologies Conference, 2018, p. 1–18

LXVIII

	List of Figures
	List of Tables
	List of Code Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.1.1 Popularity
	1.1.2 Advantages
	1.1.3 Regulations
	1.1.4 Higher-Level Automation

	1.2 Background
	1.2.1 Aerospace Industry Terms
	1.2.2 Automation of UAVs and OPVs
	1.2.3 Development Context

	1.3 State of the Art
	1.3.1 Methodology
	1.3.2 System Automation
	1.3.3 Maneuver Injection

	1.4 Objectives
	1.4.1 Methodology
	1.4.2 System Automation
	1.4.3 Maneuver Injection

	1.5 Contributions
	1.5.1 Methodology
	1.5.2 System Automation
	1.5.3 Maneuver Injection

	1.6 Outline

	2 Aerial Demonstration Platforms
	2.1 SAGITTA
	2.2 DA 42
	2.3 ELIAS
	2.4 Do 228

	3 Methodology for System Automation
	3.1 Theoretical Basics
	3.1.1 History of State Machines
	3.1.2 Automata Theory
	3.1.3 State Machine Modeling
	3.1.4 Mealy and Moore Finite State Machines

	3.2 Design
	3.2.1 Automation Challenges
	3.2.2 Design Steps
	3.2.3 Internal Decision Logic
	3.2.4 External Decision Logic
	3.2.5 Hierarchical Decomposition Structure

	3.3 Implementation
	3.3.1 Toolchain
	3.3.2 Stateflow Environment and Chart Elements
	3.3.3 Level Structure
	3.3.4 Modeling Guidelines

	3.4 Testing and Verification
	3.4.1 Unit Tests
	3.4.2 Model Checking
	3.4.3 Model in the Loop
	3.4.4 Software in the Loop
	3.4.5 Hardware in the Loop
	3.4.6 Aircraft in the Loop
	3.4.7 Ground Tests
	3.4.8 Flight Tests

	3.5 Summary

	4 Flight Control System Automation
	4.1 System Architecture
	4.1.1 Hardware Architecture
	4.1.2 FCC System Architecture
	4.1.3 Software Module Architecture

	4.2 Operation Modes
	4.2.1 Level 1
	4.2.2 Level 2
	4.2.3 Level 3
	4.2.4 Level 4
	4.2.5 Additional and Superposition Options

	4.3 Transition Conditions and Actions
	4.3.1 Level 1
	4.3.2 Level 2
	4.3.3 Level 3
	4.3.4 Level 4

	4.4 Loiter Automation
	4.4.1 Loiter Modes
	4.4.2 Transition Conditions and Actions

	4.5 Injection Switches
	4.5.1 Trajectory Generation - Switch
	4.5.2 Trajectory Control / Auto Flight Control System - Switch
	4.5.3 Inner Loop - Switch
	4.5.4 Actuator - Switch

	4.6 Flight Tests
	4.6.1 SAGITTA
	4.6.2 DA 42

	4.7 Summary

	5 Flight Test Maneuver Injection
	5.1 System Architecture
	5.1.1 Hardware Architecture
	5.1.2 FCC System Architecture
	5.1.3 Software Module Architecture

	5.2 Allocation Matrices and Injection Points
	5.2.1 Auto Flight Control System - Override Switch
	5.2.2 Inner Loop - Override Switch
	5.2.3 Inner Loop - Injection Switch
	5.2.4 Actuator - Injection Switch

	5.3 Operation Modes
	5.4 Transition Conditions and Actions
	5.5 Maneuvers
	5.5.1 Multi-Step
	5.5.2 Multi-Ramp
	5.5.3 Multi-Sine
	5.5.4 Sweep
	5.5.5 Spline

	5.6 Flight Tests
	5.6.1 ELIAS
	5.6.2 Do 228

	5.7 Summary

	6 Conclusion
	6.1 Methodology
	6.2 System Automation
	6.3 Maneuver Injection
	6.4 Outlook

	A Automation Levels
	B Edge Detector Code Generation
	C Stateflow Verification Code
	D FCSA Transition Conditions / Actions
	E FCSA Unit Tests
	F FTMI Transition Conditions / Actions

