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ABSTRACT

The aim of this dissertation is to exploit the useful information present in the rotor harmonic response
to develop new simple and cost effective tools for control and operation and maintenance.
In a nutshell, this means extracting additional valuable information from the measurements already
available on the turbine. By thinking outside the box, this information can then be exploited for a
variety of different applications, as long as the relation between the rotor harmonic response and the
problem at hand is identified.
In this work, this concept was applied to two main research topics, leading to the development of two
new methodologies.
First, a wind sensing technology is formulated to estimate the inflow at the rotor disk starting from
one per revolution (1P) of out and in-plane blade root bending moments. Indeed, nowadays turbines
are not fully aware of the ambient conditions in which they operate. Point-wise measurements of
wind direction and shear can be provided for example by met-mast towers, but rarely a complete
description of the inflow, measured for example by LiDARs (Light Detection And Ranging), is available.
This new wind sensing technology, on the other hand, allows, with no additional hardware costs,
to estimate online both vertical and horizontal shears and misalignments once the blade loads are
measured. This wind-load relationship can be mapped through system identification once a small
training set is available, therefore without the need for a finite element model of the turbine nor
for sensitive turbine information. This so called wind state observer was extensively validated in a
simulation environment, considering a variety of different turbulence intensities and seeds. Moreover,
a successful validation was also performed on wind tunnel data and, within its limitation, also on
field data. The wind observer proved capable of estimating the fast shear fluctuations, while following
the mean trends in wind misalignments. Therefore, the wind observer could represent a useful tool
for wind turbine and wind farm control. For example, it could be used to better realign the rotor
to the wind, to detect the presence of impinging wakes or, more generally, to provide with reliable
information about the inflow within a wind farm.
In addition, a second methodology was developed to first detect and then automatically correct for
rotor imbalances starting from measurements on the fixed frame. Indeed, any imbalance, no matter its
root cause, will generate additional vibrations on the machine, leading in turn to increased loading and
fatigue. Therefore, an imbalance-response model was formulated to relate the 1P fore-aft acceleration
on the main bearing to the gravity of the imbalance and also to its location. As a consequence, this
linear model can be exploited not only to detect an imbalance, but also to remotely correct for it once
access to the machine pitch system is granted. This represents a very important advantage: a remote
correction allows to avoid both downtime and very expensive on-site inspections. Once again, the
model identification does not require any sensitive turbine information, since it can be performed
online just from two measurement points. This rotor rebalancing algorithm was extensively validated
in a simulation environment including different turbulence intensities, turbulence seeds and also
signal to noise ratios. The method proved very robust and capable of significantly reducing the rotor
imbalance within few iterations. As a proof of concept, the algorithm was also tested on a scaled wind
turbine model, confirming the results obtained with synthetic data.
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CHAPTER 1

Introduction

The steady growth in energy demand and the increasing awareness of global warming and its conse-
quences present the world with critical and complex challenges. Indeed, sustaining a technological
and economic growth while meeting the climate goals ratified in 2015 with the Paris Agreement [1]
requires both developed and developing countries to consider CO2 emissions a main design driver in
each aspect of society.
Among others, the power production sector is one of the most relevant in the transition toward sus-
tainability. Looking at the installed capacity in Europe within the last decade, Fig.1.1, more and more
importance is placed on renewable sources such as wind and solar, whereas a decrease in new installa-
tions can be seen for coal and natural gases [2]. In fact, both solar and wind not only have become
more and more cost competitive, but also have the lowest lifecycle CO2 emissions [3] when compared
to other standard and renewable technologies.
Focusing only on wind power, at the end of 2019 there were about 651 GW of installed capacity world-
wide, 10% more than the previous year [4]. Europe could count on 205 GW of installed capacity, 183 GW
onshore and 22 GW offshore, with a 27% increase with respect to the previous year [5].

To keep the increase in temperature below 2°C [1], the International Energy Agency predicts that
by 2040 solar and wind will have to supply half of the world electricity demand [6]. Considering that
nowadays wind covers a relatively small fraction of the energy demand – 4% of the world energy
demand in 2017 [7], while in Europe it supplied about 15% in 2018 and 2019 [2, 5] – wind and solar
energy are expected to grow in the coming years. To meet the proposed goals, wind energy needs
therefore to continue developing, aiming at further increasing the power production while reducing
costs. Moreover, wind energy will also need to address issues that recently became concerns to the
public opinion, such as concerns about noise, impact on wildlife, landscape and mental well-being.
Indeed, these issues already contributed to stricter regulations in a few countries, causing a contraction
in installation in 2019 for example in Germany [5].

Figure 1.1: Annual installed capacity and renewable share (RES) in EU-28 [2].

1



2 Chapter 1. Introduction

1.1 Research topics and innovative content

Within this very complex scenario, this work aims at analysing the rotor harmonic response to develop
new methodologies useful both for control and maintenance applications.

Nowadays, modern turbines are equipped with a wide variety of sensors both in the fixed and in
the rotating frame. Each of these sensors is installed for one or more specific purposes: strain gages are
used to monitor excessive loading, temperature sensors can be used to detect faults, while accelerome-
ters are used for vibration monitoring but also to track the integrity of structural components. Taking a
generic bearing as example, one just needs to analyse the measured acceleration signal in terms of the
bearing characteristic frequencies to monitor its performance. Indeed, different types of bearing faults
– in the inner race, outer race etc. – will occur with different characteristic frequencies, so that one can
detect the presence of a fault and also its root cause [8].
But no matter their specific application, all these sensors are actually continuously measuring the
response of the turbine during operation. Consequently, by thinking outside the box, these measure-
ments could also be analysed in terms of the rotor rotational speed, to extract other useful information
with no additional hardware costs.
Therefore, throughout this dissertation, the generic turbine measurements will be analysed as a func-
tion of the turbine rotational frequency, and the resulting frequency spectra will be referred to in the
text as rotor or turbine harmonic response.

This information could be used for a variety of different applications. For example, considering
a wind turbine as an input-output system, the analysis of the system output in terms of the rotor
rotational frequency could provide information about some of its input, such as the incoming flow.
Additionally, once this harmonic response has been characterized, deviations from the expected
frequency spectrum could signal the presence of faults, like a rotor imbalance. Moreover, as in the
example of a rotating bearing, also in this case different inputs/fault locations could cause different
frequency responses: a pitch misalignment on blade one will generate a different harmonic response
than a pitch misalignment on the other blades. Therefore, if one were to understand the relationship
between the given input/fault and the turbine response, the turbine harmonics could be exploited to
estimate the desired input or detect the desired fault.
Taking all this into account, in this thesis the rotor harmonic response will be exploited to answer two
research questions.

Can the rotor harmonic response be used to estimate the impinging inflow at the rotor disk?
To answer this question, the relation between rotor harmonics and ambient conditions is analysed first,
developing a methodology capable of estimating the incoming inflow starting from measured blade
loads. This so called wind sensing technology could be exploited to improve wind turbine and wind
farm control, thus increasing power production and decreasing fatigue. In addition, by increasing the
power capture per surface area, this methodology could also lead to a decrease in the turbine impact
on landscape and wildlife.

Can the rotor harmonic response be used not only to detect but also correct for a rotor imbalance?
Exploiting accelerometers installed in the fixed frame, a new procedure is developed to both detect a
rotor imbalance – here simulated by a fault in the pitch system – and to remotely correct for it once
access to the turbine pitch system is granted. A remote correction constitutes a significant advantage,
since vibrations and fatigue can be reduced without a long downtime and expensive on-site inspec-
tions.
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While in the past most turbines were not equipped with accelerometers and especially blade load
sensors, nowadays these instrumentation is becoming more common. Indeed, if not already planned
for in the design and manufacturing phase, these sensors can be installed also as a retro-fit on existing
machines. In fact, many companies target their condition monitoring systems directly to operators,
including therefore the installation of additional sensors. Accelerometers are a standard component of
these systems and are usually exploited for vibration monitoring. They are also particularly easy to
install, for example either with glue or magnetic mounting, so that a typical installation could take
from 30 to 60 minutes [9]. But also blade load sensors can be installed as a retro-fit if needed, not only
at the blade root [10, 11] but also at different stations along the blade [12].
Therefore, if these sensors were already installed on a wind turbine for condition or load monitoring
purposes, both methodologies described within this dissertation would only consist in a software
upgrade.

The following sections will provide a brief overview of the state of the art of both research areas,
highlighting the innovative contributions of this work.

1.1.1 Wind sensing

State of the art

Reliable information about the ambient wind conditions impinging the turbine rotor and within a
wind farm can be highly beneficial for both wind turbine and wind farm control, but also for lifetime
assessment and fatigue consumption estimation, as well as for power and wind forecasting.
Being aware of the actual horizontal misalignment of the rotor with respect to the incoming flow (yaw
misalignment angle) can help to correctly realign the rotor to the wind, thus increasing harvested
power and decreasing machine loading, and with it reducing vibrations and fatigue. From the point
of view of a wind farm controller, a reliable measurement of the yaw misalignment is fundamental
for wake redirection strategies [13, 14], where the wake is deflected from the downstream turbines by
purposely yawing the upstream ones. Moreover, the presence of a horizontally sheared flow can be
used as a detection parameter to identify both the presence and the position of an impinging wake,
whereas information about the vertical shear can be used to estimate the stability of the atmosphere,
and with it the wake recovery rate. An estimate of the vertical shear can also be used to better tune
individual pitch control (IPC) strategies and further reduce loading and fatigue, as well as information
about the vertical wind misalignment (upflow angle) becomes especially relevant in complex terrain.

Nowadays, the standard equipment used to measure the incoming inflow consists of cup or sonic
anemometers and wind vanes, measuring wind speed and horizontal wind direction at the specific
point. When installed on the nacelle, the measurements have the advantage of being recorded at
the turbine location but the disadvantage of being affected by several phenomena like blade-passing,
nacelle interference or wake-induced flow deformation. Although ad-hoc filtering and tuned transfer
functions can be used to correct for these effects, these measurements remain point-wise.
Meteorological towers, i.e. met-masts, generally record several point-wise measurements at different
heights (usually up until hub height), providing also a description of the sheared inflow. Nevertheless,
met-masts are usually located diameters away from the turbine, so that the evolution of the flow and
also wind direction-dependent orographic effects could make the inflow at the mast very different
than the one at the turbine.
More complex instrumentation, such as LiDARs and SoDARs [15–17] can be used to obtain a more
complete description of the average inflow at the rotor disk, but this instrumentation is not yet used as
standard equipment but rather for site assessment and for ad-hoc campaigns due to its still relatively
high cost and complexity. Additionally, the performance of such instrumentation is severely dependent
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on weather conditions.

To overcome such problems and provide with reliable rotor-effective information of the incoming
flow, the concept of wind sensing is an attractive alternative. Indeed, by exploiting the rotor response,
one can estimate the average inflow over the rotor disk area, avoiding point-wise measurements and
mapping from different geographical locations. A very famous example of wind sensing consists in
estimating the rotor-effective wind speed from the torque-balance equation [18]. By mapping the
turbine torque/power response over the operating envelope of the machine, the equation is solved for
the unknown wind speed once assuming that pitch, rotor speed and torque/power are measured at
each instant of time.
The concept of the rotor as an anemometer was also introduced by Bottasso et al. [19], who suggested
using multiple dynamic equilibrium equations, including tower and blade degrees of freedom, to
estimate multiple wind states. This very complex approach, which requires knowledge of several wind
turbine states, was later simplified just by mapping the relationship between the out and in-plane
blade bending loads to yaw misalignment and vertical shear [20]. Notwithstanding the very promising
first validation in the field [21], it was also shown that wind parameters not included in the modelling
would negatively affect the results, calling therefore for a richer wind description.
A similar approach was presented by Simley and Pao [22], who related generator speed, fore-aft nacelle
acceleration, pitch angle and the out of-plane moments to wind speed, vertical and horizontal shear.
This approach nevertheless was only tested in synthetic non turbulent wind, and the effect of not
modelled characteristics such as turbulence, yaw or upflow misalignment angles were not considered.
Another application of wind sensing is wake detection for wind farm control, where blade or fixed
frame loads are used to estimate the vertical and horizontal shear, thus detecting the presence and
location of an impinging wake. Some methodologies mirror the torque-balance equation approach:
the out of-plane bending load is mapped over the turbine operating envelope to estimate the wind
speed locally experienced by each blade once pitch angle, rotor speed and moments are measured at
each instant of time [23–25]. This local wind speed information is then used to quantify the vertical
and horizontal shear over the rotor disk. The approach of Cacciola et al. [26], on the other hand, is
more similar to what proposed by Bottasso and Riboldi [20]: here the yawing and nodding moments in
the fixed frame are directly linked to both shears with a linear model and are then used to estimate the
position of the wake. Still, all these approaches do not provide with a comprehensive representation of
the impinging inflow, since they do not model the effect of vertical and horizontal misalignment on
the machine response.

Innovative contribution

In this work, the approach first proposed by Bottasso et al. [19] is expanded and further developed to
relate the machine harmonic response to four wind parameters: vertical and horizontal shears, and
vertical and horizontal wind misalignments. Along with the wind speed, these four states can provide
with a full first order approximation of the wind field.
A simple either linear or non-linear model is used to relate the four wind states to the one per revolution
(1P) of the out and in-plane blade root bending moments (Paper I). Indeed, these four parameters will
mostly affect the 1P blade harmonics. For example, a vertical shear will change the velocity distribution
over the rotor disk such that the blades will experience a minimum velocity in the lower part of the
rotor and a maximum velocity at the rotor top. Similar effects will be caused by the misalignment
angles and by the horizontal shear as well. Since these wind speed gradients are experienced by each
blade once per rotor revolution, it follows that information about these wind parameters can be found
in the 1P of the blade response.
Once a rich enough data set of measured loads and wind states is collected – either from synthetic,
wind tunnel or field data – the model can be easily identified just by solving a least-squares problem
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and then used online to estimate the wind parameters starting from the recorded blade loads. Since
the mapping is identified through system identification, other than to generate the synthetic data if
working in a simulated environment, there is no need for a finite element model of the turbine nor for
sensitive turbine information. In addition, in Paper II the rotational symmetry of the rotor response
is exploited to simplify the identification procedure to better fit field applications. In a nutshell, this
procedure allows one to identify the model starting only from measurements of yaw misalignment
and vertical shear, while still being able to then estimate all four parameters. To account for process
and measurement noise, a non-deterministic estimation is proposed in Paper IV, whereas Paper V
extends the model formulation to IPC controlled turbines.
The performance of the so called wind observer was tested in a simulated environment (Paper I,II,IV,V),
considering a variety of different turbulent seeds and turbulence intensities, in the wind tunnel
(Paper II), and in the field (Paper III). All the performed analysis confirm that this methodology is
capable of estimating the instantaneous value of both shears with considerable accuracy, while the
angle variations can be well followed in their mean value. The wind observer can therefore provide with
reliable rotor-effective information about the incoming flow, real time and with virtually no additional
cost: if load sensors are already installed, it consists in nothing else but a simple software upgrade. In
addition, its computational cost is also considerably small: given one day of data sampled at 10 Hz, to
estimate the inflow one requires about two minutes on a standard desktop computer, making therefore
possible to run the software real time directly on the machine.

1.1.2 Rotor rebalancing

State of the art

The cost of operation and maintenance (O&M) is a significant driver for the cost of energy (CoE),
especially when considering offshore installations, where costly on-site inspections can make up for
30% of the overall expenses [27]. Looking more in details at the specific systems, Wilkinson et al. [28]
show that the power and rotor module account for almost 50% of the overall failure rate, with as
most significant contributors the frequency converter, the generator and, especially, the pitch system,
responsible for about 15% of the faults per year. This turbine system results to be the main contributor
also for hour of downtime, being responsible for 20% of the overall yearly downtime [28]. Indeed, visual
inspections are usually necessary for the detection and the correction of this type of faults, might they
be a generic fault in the pitch system or a not correctly installed blade.
When a pitch offset is present among the blades, the aerodynamic, dynamic and gravitational loading
experienced by the blades is not balanced. This can lead not only to a decrease in harvested power, but
also to additional loading on the machine, significantly increasing rotor speed fluctuations, vibrations
and also fatigue [29, 30]. To quantify which level of rotor asymmetry can constitute a problem, one
should consider that certification guidelines require the verification of the effects of even relatively
small pitch misalignments (typically ±0.3 for two blades; GL Standards, 2010, Sect. 4.3.4.1, pp. 4–20).

To address this issue, several strategies that analyse the turbine fixed frame response have been
implemented. Indeed, if the loading among the blades is not balanced, additional harmonic compo-
nents will appear in the fixed frame spectrum when compared to a balanced configuration. In fact,
a balanced rotor acts like a filter, allowing for a transfer from the rotating to the fixed frame only of
frequencies multiple of the number of blades. For example, the 1P experienced by the blades of a
healthy rotor will not be transferred to the fixed frame: since each blade experiences the same 1P
loading with a ±2π/3 phase shift, when summed up, these contribution perfectly cancel each other
out. On the other hand, if an imbalance is present, one or more blades will experience a different 1P
loading than the others, therefore not allowing for a compensation among blades. Of course, this does
not only hold for 1P harmonics but more in general for frequencies not multiple of the number of
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blades. Nevertheless, since the lower frequencies are generally the most energetic, the 1P component
of a measurement in the fixed frame is the perfect candidate for imbalance detection.

Pierce and Slack [31] and Axelsson et al. [32], for example, very practically suggest to arbitrarily
change the pitch settings to monitor the vibration and loading on the shaft and the yaw system. Since
no mathematical formulation is presented, it is not possible to completely understand these method-
ologies and their limitations. A different approach is presented by Cacciola et al. [33], where system
identification is used to train a simple classification neural network to estimate the pitch misalign-
ment, its location and its root cause starting from fixed frame loads. This presents an innovative and
interesting approach that, nevertheless, has the disadvantage of requiring a rich dataset for training,
which should include different types, locations and magnitudes of faults.
Niebsch et al. [34] and Niebsch and Ramlau [35] proposed a method to simultaneously estimate both
mass and aerodynamic imbalance effects from nacelle vibrational measurements. This methodology
though uses a detailed finite element model of the machine, therefore significantly hindering its
applicability. Another different approach was proposed by Kusnick et al. [36], where the blade misalign-
ment estimation is performed by an ad hoc workflow using multiple measurements, including power
output, blade loads and accelerations. Alternative approaches have also been developed to correct
for rotor imbalances via the action of a turbine controller specifically targeting imbalance-induced
vibrations [37–40]. Possible drawbacks are nevertheless the increase in control activity on the turbine,
with consequent increase in duty cycle of the pitch system.

Innovative contribution

In this work, a new methodology is developed not only to detect a pitch imbalance, but also to remotely
correct for it.
Starting from a measurement in the fixed frame, such as the fore-aft nacelle acceleration (Paper VI),
the imbalance is detected when the one per revolution (1P) signal is higher than a given threshold. If
access to the pitch system is granted, the correction algorithm can then be automatically implemented.
This algorithm is based on a linear model relating the location and magnitude of the pitch offset to
the chosen 1P measurement. In a nutshell, once the first 1P cosine and sine harmonics are recorded,
s(1), the blades are arbitrarily further pitched of known offsets in order to measure a new and different
imbalanced configuration, s(2). When these two data points are available, the model can be identified
through system identification directly online, without the need for a finite element model of the
machine nor a training data set. Once the model has been identified, it can be used to find the pitch
offsets that would minimize the 1P signal and to pitch the blades accordingly, s(3). This method can also
be applied iteratively, re-identifying the liner model from s(2) and s(3) if the desired 1P threshold is not
met. An additional interesting advantage of this methodology is also that, since it aims at minimizing a
generic 1P in the fixed frame, it could be also used to mitigate imbalances not caused by pitch faults.
Comprehensive studies in a simulated environment (Paper VI) show the methodology to be effective
and quite robust, being able to reduce the initial imbalance no matter the changes in wind speed,
mean inflow or turbulence intensity. A first validation in the wind tunnel, presented in chapter 4.2,
also gives a proof of concept of the algorithm.
Since this methodology is based on sensors that might already be installed on most machines, i.e.
accelerometers in the fixed frame, it consists in nothing else but a software upgrade, representing a
cheap and easy-to implement-solution that virtually avoids any downtime. Moreover, it also does not
require any training nor sensitive turbine information, since it is based on online system identification,
and it has a minimal computational cost. Indeed, once the measurements are available, a standard
desktop computer needs about three seconds to both post process a 10-minute long 10 Hz signal and
apply the algorithm.
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1.2 Publications

This publication-based dissertation collects six publications, which are referred to in the text as
(Papers I-VI). The list of publications is presented in § 1.2.1, whereas Fig. 1.2 gives an overview of the
thesis structure in terms of both publications and content.

Figure 1.2: Schematic overview of the thesis structure in terms of publications and content; (·)*: paper in review.

The first set of papers (Paper I-V) presents the formulation and validation of the here developed
wind sensing technology. Paper I introduces the so called wind state observer, discussing first the
relationship between impinging inflow and turbine response, and then formulating both a linear
and a non-linear model. A singular value decomposition (SVD) is performed to investigate the struc-
tural identifiability of the models, and the wind observer is validated in a comprehensive simulated
environment. Paper II defines a new and simpler identification procedure exploiting the rotational
symmetry in the turbine response. This allows to identify the wind observer even if only two of the
four parameters (namely one angle and one shear) are known, while still being able to estimate all
four. This new procedure is tested and successfully validated both in simulations and with wind tunnel
tests. A further validation, based this time on field data, is presented in Paper III. Finally, Paper IV
and Paper V present additional extensions of the method: Paper IV introduces the use of a Kalman
Filter (KF) in the estimation process, to account for process and measurement noise, whereas Paper V
extends the observer to IPC-controlled machines.

The problem of rotor rebalancing is addressed in Paper VI. Once again, the effect of a pitch
imbalance on the turbine response is analysed first. Then, a linear model mapping rotor imbalance
and fixed frame accelerations is identified and then used to automatically rebalance the rotor. This
rebalancing algorithm is validated with a comprehensive analysis accounting for changes in wind
speed, density, mean inflow, turbulence intensity and even noise. Finally, section 4.2 shows, as a first
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proof of concept, the validation of the algorithm with a wind tunnel model.

1.2.1 List of publications

This section lists the publications collected in this dissertation. While most have already been pub-
lished on peer-reviewed journals, Paper III and Paper IV are still in the review process. For each
publication, the corresponding chapter not only includes the published paper, but also its summary
and a description of the contribution of each author.

• Paper I: M. Bertelè, C. L. Bottasso, S. Cacciola, F. Daher Adegas, and S. Delport, “Wind inflow
observation from load harmonics,” Wind Energy Science, vol. 2, no. 2, pp. 615–640, 2017. doi:
10.5194/wes-2-615-2017.

• Paper II: M. Bertelè, C. L. Bottasso, and S. Cacciola, “Brief communication: Wind inflow observa-
tion from load harmonics – wind tunnel validation of the rotationally symmetric formulation”,
Wind Energy Science, vol. 4, no. 1, pp. 89–97, 2019. doi: 10.5194/wes-4-89-2019.

• Paper III (in review): M. Bertelè, C. L. Bottasso and J. Schreiber, J., “Wind inflow observation from
load harmonics: initial steps towards a field validation, Wind Energ. Sci. Discuss. [preprint],2020.
doi: 0.5194/wes-2020-83.

• Paper IV: M. Bertelè, and C. L. Bottasso, “Non-deterministic wind observation from wind
turbine loads,” Journal of Physics: Conference Series, 1618 062022, 2020. doi: 10.1088/1742-
6596/1618/6/062022.

• Paper V: M. Bertelè, C. L. Bottasso, and S. Cacciola, “Simultaneous estimation of wind shears
and misalignments from rotor loads: formulation for ipc-controlled wind turbines”, Journal of
Physics: Conference Series, vol. 1037, p. 032007, 2018. doi: 10.1088/1742-6596/1037/3/032007.

• Paper VI: M. Bertelè, C. L. Bottasso, and S. Cacciola, “Automatic detection and correction of
pitch misalignment in wind turbine rotors,” Wind Energy Science, vol. 3, no. 2, pp. 791–803, 2018.
doi: 10.5194/wes-3-791-2018.

https://doi.org/10.5194/wes-2-615-2017
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https://doi.org/10.1088/1742-6596/1618/6/062022
https://doi.org/10.1088/1742-6596/1037/3/032007
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CHAPTER 2

Methods

The work collected in this thesis comprises a variety of methods that have been developed and
integrated to extract additional valuable information from the machine harmonic response. In this
section, a brief overview of the methodology is summarized, whereas a detailed description can be
found in the respective publications.

2.1 Wind field parametrization

To characterize the spatial dis-homogeneity of the incoming flow, four wind parameters have been
chosen: a linear vertical and horizontal shear, κv and κh respectively, and a vertical (upflow) and
horizontal (yaw) misalignment angle, here named χ and φ. Figure 2.1 gives a graphical overview of
these wind parameters, defined in a nacelle-attached reference frame.

Figure 2.1: Schematic overview of wind parameters.

Although the definition of these so called wind states might slightly vary among the publications,
i.e. in Paper I,Paper V and Paper VI the vertical shear is the exponential coefficient of a power-law
profile, the two angles and shears represent a first approximation of the incoming flow together with
the wind speed. Indeed, the wind speed V can be defined as a function of the vertical and horizontal
coordinates, z and y respectively, as

V (y, z) =Vh

(
1+ z

R
κv + y

R
κh

)
, (2.1)

9
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with Vh the wind speed at hub height and R the rotor radius. The components of the wind speed vector
V = {u, v, w}T are defined as a function of the wind parameters as follows

u(y, z) =V (y, z)cosφcosχ (2.2a)

v(y, z) =V (y, z)sinφcosχ (2.2b)

w(y, z) =V (y, z)sinχ. (2.2c)

Looking at equation Eq. (2.1), one can clearly see the rotational symmetry of the rotor: the effect of
a vertical linear shear on the wind inflow is the same as the effect of an equivalent horizontal shear,
only with a π/2 phase shift. The same rotational symmetry holds for the misalignments, at least as
long as no large nacelle uptilt angle is present. To overcome such issue, a change of variable can be
performed

ṽ(y, z) = v(0,0)

Vh
= sinφcosχ (2.3a)

w̃(y, z) = w(0,0)

Vh
= sinχ, (2.3b)

and the wind field can be expressed as a function of the non-dimensional horizontal and vertical
crossflow at the hub as

u(y, z) =V (y, z)
√

1− ṽ2 − w̃2 (2.4a)

v(y, z) =V (y, z)ṽ (2.4b)

w(y, z) =V (y, z)w̃ . (2.4c)

With this reformulation, one can clearly see that the effect of w̃ on w is the same as the effect of
ṽ on v , only with a π/2 rotation. Finally, inverting Eq. (2.3) both wind misalignments can be easily
derived from the newly defined variables

χ= arcsin(w̃) (2.5a)

φ= arcsin
(
ṽ/cosχ

)
. (2.5b)

2.2 Harmonic extraction

The response of a stable rotating system can, in general, be considered periodic. In the case of wind
turbines, the loading on the machine can be analysed as function of the rotational speedΩ. Indeed,
it is intuitive to visualize that any type of perturbation will be perceived by the turbine components
once, (1P), twice, (2P) etc. per rotor revolution. For example, gravity will mostly affect the constant
(0P) and 1P loading of each blade, while a vertically sheared flow will affect each blade mostly only
once per revolution: each perturbation will leave a specific fingerprint in the harmonic response of the
machine [20, 47].

Therefore, a generic machine load m can be expanded as a Fourier series as follows

m(ψ) = m0 +
∞∑

n=1

(
mnc cos(nψ)+mns sin(nψ)

)
, (2.6)
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with ψ the azimuth angle, subscripts (·)nc and (·)ns the cosine and sine component of the nP harmonic,
and m0 the 0P constant amplitude.

As explained in details in the following sections, by analysing the harmonic response of different
turbine measurements, one can obtain valuable information about the incoming inflow as well as the
balancing of the rotor. Since the frequencies of interest are rotor speed-dependent, when extracting
the harmonic components order tracking techniques [48–50] should be preferred to a simple Fast
Fourier Transform (FFT) [51], where the nP peaks would be smeared over the spectrum if the rotor
speed were not constant. In this work, the harmonic extraction is performed using two different
techniques: a demodulation algorithm applied in the order domain (Paper VI) and the Coleman-
Feingold transformation [52].

2.2.1 Harmonic demodulation

To extract the rotor speed-dependent harmonics, the signal is first transformed into the order domain.
In a nutshell, the measurement points, which were initially evenly spaced in time, are resampled such
that all entries are now equally spaced by shaft rotation: this allows to easily handle variations in
rotational speed.

Sinusoidal nP waves are then fit onto the resampled signal, with a moving window whose length
depends on the frequency range of interest. In the current case, the window was set to cover one
complete rotor revolution. Finally, the nP cosine and sine amplitudes are computed in a least-squares
sense. Considering a window containing N elements, from Eq. (2.6) one can write

mi
...

mN

=

1 cos(nψi ) sin(nψi )
. . .

1 cos(nψN ) sin(nψN )




m0

mnc

mns

=D


m0

mnc

mns

 , (2.7)

and then invert the system to solve for the desired n-harmonic amplitudes


m0

mnc

mns

= (DT D)−1DT


mi

...
mN

 . (2.8)

2.2.2 Coleman-Feingold transformation

Another harmonic analysis technique is the Coleman-Feingold transformation [20,52,53], which allows
to transform the individual blade measurements in a fixed reference frame. This multi-blade transfor-
mation has the advantage to have a small computational cost and to require no signal resampling, but
can be applied only to rotors with 3 or more blades.

In this work, the Coleman transformation is used to extract the desired nP blade harmonics from
the three available blade measurements as follows

m0

mnc

mns

= 2

3

 1 1 1
cos(nψ(1)) cos(nψ(2))) cos(nψ(3)))
sin(nψ(1))) sin(nψ(2)) sin(nψ(3)))


m(1)

m(2)

m(3)

 , (2.9)

m(i ) being the moment on the generic i th blade. This transformation has the effect of turning the
nP harmonics into 0P, while either cancelling out the non-desired contributions or shifting them to a
frequency multiple of the number of blades B . Therefore, the output of the transformation also needs
to be low pass filtered with a cut-off frequency about or below the BP.
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2.3 Wind sensing

In general, wind sensing refers to the possibility of estimating the ambient wind conditions using the
turbine itself as a sensor. In this work, the wind parameters defined in Fig. 2.1 – vertical and horizontal
shears and misalignments – will be estimated starting from the one per revolution harmonics of out
and in-plane blade root bending moments.

2.3.1 Effect of a non-uniform inflow on the rotor harmonic response

To understand the effects of the wind states defined in Fig. 2.1 on the machine harmonic response,
one can start with the analysis of the velocity triangle at the blade.
Figure 2.2 shows the velocity triangle and the angle of attack of a generic wing section: V⊥ and V//

represent the perpendicular and tangential velocity components, and a is the local induction factor.
Let’s now imagine a spatially dis-homogeneous wind field like, for example, a vertically sheared inflow.
The presence of a vertical shear will affect V⊥.
Moreover, whilst rotating, the i th blade will experience different incident wind speeds, with the maxi-
mum V⊥ at the rotor top and a minimum in the lower part of the rotor. This periodic change in wind
speed leads also to a periodic change in angle of attack, which in turn causes a periodic loading on
the blades. Since this change in angle of attack will be mostly perceived by each blade once per rotor
revolution, it follows that the 1P harmonics of the blade loads should carry some information about
the wind states. Similar considerations can be made in the presence of a yaw misalignment, which will
periodically affect the V// as ∆V// =V sin(φ).

In addition to proving that the defined wind states periodically effect the blade loads, this very
simple physical explanation also reveals that the blade loads are more sensitive to variations in wind
shears than misalignments. Indeed, as also shown in the sketch, a variation in V⊥ leads to a higher
change in angle of attack than an equivalent variation in V//. This physical characteristic of the system
is also mirrored by the results of the following chapters, which show that the proposed wind sensing
technology can estimate shears with more accuracy than misalignments.

Figure 2.2: Effects of shear and misalignment changes on sectional angle of attack.

2.3.2 Wind observer formulation

To formulate the mapping between blade loads and wind states, we first need to define a wind turbine
model expressed by a set of non-linear differential equations together with their output relations:

f
(
x,ẋ,u(θ,V ,%)

)=0, (2.10a)

y = g(
x,ẋ,u(θ,V ,%)

)
, (2.10b)
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where x is the state vector, u the input vector, y indicates the output vector (containing, in this case,
the blade bending moments), and θ is the wind state vector, collecting the four wind parameters as
follows

θ = {ṽ ,κv , w̃ ,κh}T . (2.11)

Since the presence of a feedback controller is already modelled by f (·), the input vector u includes
only θ, V and the density ρ, i.e. the exogenous disturbances. As already mentioned in § 2.2, the
response of the system converges to a periodic solution if the input u can be considered steady

x=x0 +
∞∑

n=1

(
xnc cos(nψ)+xns sin(nψ)

)
. (2.12)

Inserting (2.12) into (2.10a) and collecting all terms at the same frequency (a procedure termed
harmonic balance), one can compute xnc and xns. Finally, the harmonics xnc and xns can be inserted
into the output Eq. (2.10b), yielding the desired relationship between load harmonics and wind
parameters:

m=M (θ,V ,ρ). (2.13)

In the following,m will be defined as the vector collecting only the 1P harmonics of blade out and
in-plane bending moments, mOP and mIP respectively, as follows

m= {mOP
1c

,mOP
1s

,mIP
1c

,mIP
1s

}T . (2.14)

Indeed, as shown in Paper I, although higher harmonics still carry some information about the wind
states, the effects of the wind parameters on higher frequencies is equal, if not smaller, than the effect
caused by turbulent fluctuations. Therefore, higher order harmonics are not included in the proposed
formulation.
This generic wind-load mapping will clearly depend on θ, V and ρ, whereas the dependency on
parameters such as rotor speed or blade pitch angle is here not considered, since such parameters
also depend on the ambient and operating conditions, according to the specific regulation strategies.
While θ represents the quantity to be estimated, V and ρ are scheduling parameters, which are known
in a simulation environment and either measured or estimated [18, 22, 23, 54, 55] in the field.

The model of Eq. (2.13) represents a classical white box model, i.e. a model derived from analytical
formulas relating the relevant parameters based on physical principles [56]. Other than the complexity
of the derivation, another disadvantage of this approach is that any mismatch between model and
reality might lead to considerable errors. To compensate for those, one could empirically correct the
coefficients of Eq. (2.10) via system identification [57] starting from real measurements, formulating
a grey box model [56]. In this work, a third approach is proposed: the wind-load mapping will be
identified as a black box [56], relating therefore vectorm and θ bypassing any analytical formulas. The
model identification can be performed starting from simulation data (Paper I, II, IV, V) - here both
CpLambda [58] and TurbSim [59] are used as simulation tools - wind tunnel data (Paper II), or field
data (Paper III). Although the black box model ignores any physics, a physical interpretation of its
formulation and of its parameters will be also provided in the following sections.

Linear model

The mapping between wind states, Eq. (2.11), and 1P harmonic components of the blade root out and
in-plane bending moments, Eq. (2.14), can be considered in first approximation linear. Indeed, as
shown in Paper I, the considered harmonics tend to vary linearly with respect to the wind parameters,
with only small non-linearities. The linear wind-load model can therefore be expressed as
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m=F (V ,ρ)θ+m0(V ,ρ) =T θ̄, (2.15)

withF andm0 the unknown model coefficients and θ̄ = {θT ,1}T . As explained in details in Paper I,
matrix F represents the derivative of the 1P cosine and sine moments with respect to the wind states,
i.e. the effect the wind dis-homogeneity has on the machine response, whereasm0 represents the
constant 1P loading due to gravity, independent from the wind parameters.
Moreover, one can note that the model is scheduled with respect to both V and ρ. While the depen-
dency on ρ is linear and allows one to consider a simple linear correction rather than a real scheduling,
the same does not hold for V since, as seen in Paper I, the machine behaviour considerably changes
with the turbine operating region. Finally, particular attention has to be paid to the termm0. Indeed,
this gravitational contribution can be expressed as

m0(V ,ρ) = q AC(V ,ρ)+g. (2.16)

The first term represents the gravity-induced aerodynamic loading: if the blade bends under the
effect of thrust, this deformation will cause a non-null lever arm of the gravity force with respect to
the blade root, leading to a 1P loading. This term also needs to be scheduled with respect to V and
ρ. Vector g, on the other hand, represents the out and in-plane gravity-induced loads, caused for
example by precone, prebent or uptilt: this term is independent from the inflow conditions. Therefore,
before applying a linear correction for density, the blade loads should be also corrected for g (Paper III).

To identify the model coefficients, one needs to collect a rich enough data set of significant mean
variations of wind parameters while recording the corresponding machine response. Collecting the N
wind and load measurements in

Θ= [
θ̄(1), θ̄(2), ..., θ̄(N )

]
, (2.17a)

M = [
m(1), m(2), ..., m(N )

]
, (2.17b)

one can rewrite the system of Eq. (2.15) as

M =FΘ+m0 =TΘ, (2.18)

and identify the model coefficients in a least-squares sense as

T =MΘT (
ΘΘT )−1

. (2.19)

Of course, the problem is well posed only ifΘΘT is not singular: it is therefore fundamental to guaran-
tee a rich enough identification dataset (Paper I).
Since the model is scheduled with respect to wind speed and density, the identification is performed
for all the desired nodes. This can be done by performing steady simulations at different wind speeds
and densities or, if starting from turbulent simulations/field data, by inserting piecewise shape func-
tions centred in the desired nodes in Eq. (2.15) (Paper III). As already mentioned, given the linear
dependency of the model on ρ, the identification only has to be performed for one chosen reference
density, and a linear correction can then be applied.

Rotationally symmetric linear model

The rotationally symmetric formulation addresses the issue of identifying the model of Eq. (2.15) when
a complete identification data set is not available. Indeed, if in a simulation environment this might not
be a problem, the likelihood of measuring mean significant changes for all parameters when working
with field data is not very high. Indeed, a complete description of the wind field as parametrized in
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§ 2.1 can mostly be provided only by LiDARs or SoDARS [15, 17], which are not standard installed
equipment, while met-mast and nacelle anemometers usually just provide with information about
wind speed, wind direction and vertical shear. In addition, even if all wind states could be accurately
measured within a field campaign, at a given test site the variations of horizontal shear (excluding
possible waked conditions) and especially upflow angle can be considered minimal. Indeed, other
than because of small wind direction-dependent orographic effects, such quantities can be considered
in average constant at a given site.

To overcome this issue, the rotational symmetry of the rotor is exploited to reduce the number
of unknown parameters and, with it, simplify the identification procedure (Paper II). Indeed, from
Eq. (2.1), it is easy to see that the effect a linear vertical shear has on the wind field, and in turn on the
loading, is the same as the effect of an equivalent horizontal shear, only with a π/2 delay. The same
can be said for the vertical and horizontal crossflows, Eq. (2.4), and therefore for the misalignment
angles. From the model perspective, this means that

∂m1c

∂ṽ
= ∂m1s

∂w̃
, (2.20a)

∂m1s

∂ṽ
=−∂m1c

∂w̃
, (2.20b)

∂m1c

∂κh
= ∂m1s

∂κv
, (2.20c)

∂m1s

∂κh
=−∂m1c

∂κv
, (2.20d)

thus reducing the number of unknown coefficients within matrixF from 16 to 8. Additionally, this also
shows that if one were to measure only one angle and one shear, for example the yaw misalignment
and the vertical shear, as it is usually the case within a field campaign, one could still identify the model
of Eq. (2.15). From the identified yaw and vertical shear coefficients, one could then easily derive with
Eq. (2.20) the coefficients for horizontal shear and upflow angle.

Non-linear model

In addition to the previously defined linear wind-load mapping, the possibility of a non-linear formu-
lation was also investigated. Indeed, although Paper I shows that the out and in-plane 1P harmonics
change almost linearly with the wind parameters, small non-linearity are also present.
The model structure remaining the same as Eq. (2.15), the non-linear model is defined as

m=FNL(V ,ρ)θNL +mNL0 (V ,ρ), (2.21)

with FNL andmNL0 the unknown model coefficients and θNL the non-linear wind state vector.
The wind vector contains, in addition to the elements θi of θ, their non-linear combinations θNL j up
to a given order p, where

θNL j =
∏

i
θi
αi s.t.

∑
i
αi ≤ p. (2.22)

In Paper I, non-linear combinations up to p = 2 where considered, leading to a wind state vector of 14
terms:

θN L = {ṽ , κv , w̃ , κh , ṽκv , ṽ w̃ , ṽκh , κv w̃ , κvκh , w̃κh , ṽ2, κ2
v , w̃2, κ2

h}T . (2.23)

Despite the good performance of this formulation in both turbulent and non turbulent conditions
(Paper I), the linear model seems a better alternative for practical applications. Indeed, the higher
the degree of non-linearity considered, the higher the number of unknown coefficients: for p = 2, the
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initial 16 coefficients become 56. In addition, the rotational symmetry cannot be exploited to estimate
cross terms such as ṽ w̃ , so that a complete dataset is necessary for the model identification. Therefore,
Papers II to V will only focus on the linear formulation, whose performance is just slightly less accurate
than the one of the non-linear model.

IPC-controlled machine model

As physically explained in § 2.3.1, the wind state parameters lead to a periodic change in sectional
angle of attack and, with it, in the blade bending moments. This effect can nevertheless be mitigated
by ad hoc control strategies implemented to reduce the loads on the machine.
In the case of Individual Pitch Control (IPC) [60–62], a PID controller computes the optimal pitch
needed to reduce the loading in the fixed frame. Such pitch demand is then transformed to the rotating
frame by the inverse of the Coleman transformation, resulting in a cyclic pitching that is then added to
the desired collective, Fig 2.3. The frequency of the cyclic pitching is limited by the maximum pitch
speed, but is in general further limited to the 1P to reduce duty cycles and because, to generate a 0P
reduction of the loads in the fixed frame, one mainly needs to reduce the 1P moments in the rotating
frame.

Figure 2.3: Schematic overview of the control system of an IPC-controlled machine.

Therefore, it follows that an IPC controller will flatten the effect wind perturbations have on the
out of-plane moment, leading the wind observer of Eq. (2.15) to lose valuable information about the
incoming flow. To overcome such problem, a new wind-load mapping was formulated taking into
account also the machine pitch response (Paper V). Indeed, if the controller cyclically pitches the
blades in response to wind perturbations, the information lost in the flattened load measurements can
be found in the machine cyclic pitching.
The wind observer is therefore defined as

m=F (V ,ρ)θ+G(V ,ρ)β+m0(V ,ρ), (2.24)
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with β the vector collecting the 1P cosine and sine pitch harmonics andG representing the controller
action. To identify this new model, one has to collect a rich data set in which the IPC controller is
turned on. Once the measurements are available, the identification procedure follows the previously
described steps. Also in this case the rotational symmetry can be exploited to simplify the identification
of the model coefficients collected in bothF andG.
Finally, one should also note that this wind observer can be installed on any turbine, no matter if the
IPC controller is present, switched on or switched off. Indeed, once the IPC strategy has been identified
with matrixG, information on the controller status will be automatically provided by β.

2.3.3 Wind estimation

The problem of computing an estimate θE of the wind state vector during operation given a measured
load harmonic vectormM and, if needed, a measured pitch harmonic vector βM, is considered next.

Deterministic estimation

Once the wind observer, in its different formulations, has been identified, it can be used to estimate
the incoming flow from available turbine measurements.

Given the input-output model (2.13), a measured loadmM can be expressed as

mM =M
(
θ,V ,ρ

)+r, (2.25)

where r is the measurement error with covarianceR=E [
rrT

]
. The residual is assumed to be zero-

mean, white and Gaussian. The residual is due not only to measurement noise, but also to all effects
not captured by the model, such as sampling and discretization errors, not modelled non-linearities
and turbulence-induced loads. This implies that the assumption of a zero-mean, white and gaussian
noise can be far from real.

The generalized least-squares estimate of θ givenmM is

θE = argmin
θ

((
mM −M

(
θ,V ,%

))T
R−1(mM −M

(
θ,V ,%

)))
. (2.26)

Consider now the linear model (2.15) and assume V and ρ to be known. The solution of problem (2.26)
can be worked out analytically as

θE = (
F (V ,ρ)TR−1F (V ,ρ)

)−1
F (V ,ρ)TR−1(mM −m0(V ,ρ)). (2.27)

Vector θE is structurally identifiable (or observable) if matrixF (V ,ρ)TR−1F (V ,ρ) is non singular. The
analysis of the structural identifiability of the proposed wind observer, performed through a SVD
(Paper I), reveals the model to be identifiable; further details can be found also in § 2.3.4.
Similarly, if the IPC-formulation (2.24) were to be used, the analytical solution would be

θE = (
F (V ,ρ)TR−1F (V ,ρ)

)−1
F (V ,ρ)TR−1(mM −m0(V ,ρ)−G(V ,ρ)). (2.28)

For the non-linear model (2.21), the solution of problem (2.26) involves a non-linear unconstrained
minimization, which was solved here starting from a suitable initial guess by the Levenberg-Marquardt
method [63]. As multiple local solutions may characterize the non-linear problem, a global search
algorithm or multiple starting points should be used for finding the optimum.
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Non-deterministic estimation

The estimation procedure described so far is nevertheless completely deterministic: from given
measured inputs, the model will output a determined solution. To account for both process and mostly
measurement noise, Paper IV proposes to couple a Kalman Filter [64, 65] to the estimation procedure.
Briefly, this implies that, at any time k, the estimated wind state vector will be

θEk = θEk−1 +ŵk−1, (2.29)

with ŵ the process noise with covarianceQ, whereas the output equation of the filter writes

yk =mM −mobs + v̂ k . (2.30)

Matrix v̂k represents the measurement noise, with covariance P , whereasmobs represents the ob-
served machine response, defined either with Eq. (2.15, 2.24) or Eq. (2.21). Note that the filter output
yk is set to zero to enforce Eq. (2.15, 2.21, 2.24).

2.3.4 Singular value decomposition analysis

As discussed in § 2.3.3, the estimation problem is structurally identifiable if matrixF (V ,ρ)TR−1F (V ,ρ)
is non singular. To investigate this issue further, a Singular Value Decomposition (SVD) [66] analysis
was performed on the wind observer of Eq (2.15) (Paper I).

Assuming a linear model, the real (unknown) wind state vector θR is related to the measured load
vectormM as

mM =FθR +m0 +r. (2.31)

Inserting (2.31) into (2.27), the estimation error εθ is readily derived as

εθ = θE −θR = (
F TR−1F

)−1
F TR−1r. (2.32)

The estimate is unbiased, as in fact the expected value of the errorE [εθ] is equal to zero when the
residual is zero-mean. Additionally, the covariance of the estimation error Cov[εθ] = E

[
εθε

T
θ

]
F [67]

writes
Cov[εθ] = (

F TR−1F
)−1

. (2.33)

This expression shows the interplay between noise r and sensitivity F , captured by the termR− 1
2F :

the higher the variance and/or the lower the sensitivity of the measurements with respect to the wind
states, the worst the accuracy of the estimates.

The covariance Cov[εθ] expressed by Eq. (2.33) is typically fully populated, as the errors of the
estimates are correlated. To ease the understanding of the estimation problem, the SVD [66] can be
used to decouple the estimates. In fact, matrixR− 1

2F can be factored as

R− 1
2F =UΣV T , (2.34)

whereU ∈Rm×m , Σ ∈Rm×n and V ∈Rn×n , being m the number of measurements and n the number
of wind state variables. Matrices U and V are orthonormal, i.e. UTU = UUT = I and V TV =
V V T = I , whereas Σ= diag(. . . ,1/σi , . . .) is a diagonal matrix and σi the standard deviation. Inserting
Eq. (2.34) into Eq. (2.33), the covariance of the estimation error can be expressed as

Cov
[
V T εθ

]=E [(
V T (θE −θR)

)(
V T (θE −θR)

)T
]
= (
ΣTΣ

)−1 = diag(. . . ,σ2
i , . . .). (2.35)

This way, the problem is reformulated by the change of variables ξ =V Tθ, where ξ are statistically
independent variables with diagonal covariance. This reformulation simplifies the interpretation of
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the structural observability of the problem. In fact, the i th column of matrix V linearly combines the
wind parameters, mapping them into a new parameter ξi with variance σ2

i . Clearly, a high variance
indicates a low level of identifiability of the associated linear combination of wind parameters.
Anticipating some of the results reported in Paper I, the SVD analysis revealed that both vertical and
horizontal shears can be identified as independent parameters, whereas a coupling is present between
the two misalignment angles: this means that an error in the estimation of one angle will propagate in
the estimation of the other. Moreover, it was also shown that estimates of both shears have a smaller
standard deviation than the estimates of the angles. These trends identified by the SVD analysis
highlight, from a mathematical point of view, what was physically described in Fig. 2.2.

Exploiting the properties of the derived matrices even further, one can note that the analysis ofU
reveals on which linear combination of inflow parameters each load depends the most

∂m

∂ξ
=R 1

2UΣ. (2.36)

A vertical shear predominately affects the cosine components of out and in-plane moments, whereas
a horizontal shear affects mostly the sine components of these loads. The two misalignments, on
the other hand, do not seem to have a predominant effect on any load components: all loads are
affected by yaw and upflow angle, with a slightly higher sensitivity for the in-plane sine and cosine
components, respectively. The results of this analysis show once again the π/2 symmetry between
shears and between misalignments, further validating the hypothesis of rotational symmetry of § 2.3.2.

The SVD was here applied for simplicity to the linear model, but of course the same analysis can
also be applied to the non-linear case, by linearizing Eq. (2.21) around a specific operating and wind
condition and using F = ∂(FNLθNL)/∂θ =FNL∂θNL/∂θ.
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2.4 Rotor rebalancing

In this work, the rotor response is used to develop a methodology to address and correct for the
problem of rotor imbalance, specifically caused by faults in the pitch system.
In details, the 1P harmonic components of accelerations measured in the fixed frame are used as
detection parameter. Indeed, knowing that a balanced rotor acts as a filter, i.e. it allows for a transfer
to the fixed frame only of frequencies multiple of the number of blades B , the presence of additional
harmonics, such as a 1P, is a symptom of an imbalanced configuration.
Once the imbalance has been detected, a linear model relating machine response and pitch misalign-
ment allows for an automatic correction of the imbalance, provided that access to the turbine pitch
system is granted.

2.4.1 Effect of a rotor imbalance on the turbine harmonic response

As described in § 2.2, the wind turbine response is periodic and can be expanded in a Fourier series,
Eq. (2.6). The generic shear force on the i th blade, for example, can be written as

t (i ) = t0
(i ) +

∞∑
n=1

(
tnc

(i ) cos(nψ(i ))+ tns
(i ) sin(nψ(i ))

)
. (2.37)

Although any loading on the turbine can be expanded as a Fourier series, here the blade shear force is
considered because the results reported in Paper VI are based on fore-aft accelerations measured on
the main bearing, which derive from fluctuations of the thrust t,F in the fixed frame. Of course other
measurements in the fixed frame, like for example yawing or nodding moments, could be considered
as input for the rebalancing algorithm, but installing accelerometers is easier and more cost-effective
than installing strain gages, especially if the installation has to be performed a posteriori.

If the rotor is balanced, the amplitude of the harmonic components will be the same on each blade

t0 = t0
(i ) = t0

( j ), (2.38a)

tnc = tnc
(i ) = tnc

( j ), (2.38b)

tns = tns
(i ) = tns

( j ). (2.38c)

On the other hand, in the presence of an imbalance the harmonic amplitudes of the kth (unbalanced)
blade will differ from the other ones, and can be expressed as

t0
(k) = t0 +δt0, (2.39a)

tnc
(k) = tnc +δtnc, (2.39b)

tns
(k) = tns +δtns. (2.39c)

If now one were to compute the thrust force for a generic rotor by summing up the individual shear
forces, Fig. 2.4, exploiting the properties of trigonometric functions one would obtain

t,F =
B∑

i=1
t (i ), (2.40a)

= B t0 +B
∞∑

n=1

(
tnBc cos(nBψ(1))+ tnBs sin(nBψ(1))

)+δt0 +
∞∑

n=1

(
δtnc cos(nψ(k))+δtns sin(nψ(k))

)
.

(2.40b)
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For simplicity, the Fourier series can be cropped to the lower frequencies and, grouping together the
different harmonics (harmonic balance), the final expression for t,F is

t,F = (B t0 +δt0)0P +
(
δt1c cosψ(k) +δt1s sinψk)

)
1P

+B
(
tBc cos(Bψ(1))+ tBs sin(Bψ(1))

)
BP . (2.41)

If the rotor were balanced (δt0 = δtnc = δtns = 0), only harmonics multiple of the number of blades BP
would be present. On the other hand, an imbalance generates additional harmonics that pollute the
spectrum, and their phase is symptomatic of the imbalance location. Therefore, it follows that the 1P
fixed frame harmonic, being one of the most energetic, is a perfect candidate to detect not only the
presence of a rotor imbalance but also its location.

Figure 2.4: Thrust force t,F computed in terms of the shear forces t (i ) of the B blades. One single blade is shown
for clarity.

2.4.2 Linear imbalance model

In this work, the mapping between 1P fixed frame response and pitch misalignment, i.e. the difference
between the desired collective and the actual pitch angle of the blade, is considered to be approxima-
tively linear.
Indeed, computing the shear of the i th blade from a very simple one degree of freedom rigid body
model of a flapping blade [68], one can see, in first approximation, the effects of a pitch misalignment
on the 0P and 1P harmonics:

t (i )
0 =−t̄

(
Λ

2
− β(i )

3

)
, (2.42a)

t1c
(i ) = t̄

(
(Λ−β(i ))V̄ + κv

3
Ū

)
, (2.42b)

where t̄ = γJΩ2/(2R), γ = ρcCL,αR4/J is the Lock number, ρ the air density, c the blade chord, CL,α

the lift slope, R the rotor radius, J the flapping moment of inertia, while Λ = (1− a)V /(ΩR) is the
non-dimensional flow velocity at the rotor disk, a being the axial induction and Ω being the rotor
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angular velocity. The terms V̄0 =V0/(ΩR) represent the non-dimensional cross-flow, Ū =V /(ΩR) the
non-dimensional wind speed, κv the linear vertical wind shear, while β represents the blade pitch
angle.

Assuming a pitch misalignment δβ, the resulting imbalanced 0P and 1P harmonic amplitudes are:

δt0 = t̄

3
δβ, (2.43a)

δt1c =−t̄ V̄ δβ. (2.43b)

Although this analysis contemplates only the effects of cross-flow and vertical shear on the 1P
harmonics, and although the model is based on one single degree of freedom and includes various
simplifications [68], this derivation is useful to visualize that there is in principle a linear dependency
between pitch misalignment and 1P harmonics of the blade shear forces, and, in turn, of the nacelle
fore-aft accelerations. This linear approximation is also verified by the results of the following chapters,
and holds also for fixed frame moments, such as yawing or nodding moments.

Model formulation

Based on the previous considerations, the 1P fixed frame response is related to the pitch misalignment
via the following linear model

s=C (b−bm) , (2.44a)

=C+sm , (2.44b)

with s the 1P fixed frame response, collecting the cosine and sine harmonics as follows: s= {s1c, s1s}T .
Vector s is also scaled with respect to the dynamic pressure q = 1/2ρV 2, in order to reduce the model
dependency on the operating conditions.
Vector b, defined as b= {b(1),b(2),b(3)}T , represents the pitch adjustment that can be applied to each
blade in order to correct for the individual pitch misalignments bm . Indeed, if one were able to apply a
perfect pitch adjustment such that b= bm , then no 1P harmonic would be measured in the fixed frame
and s= 0. On the other hand, before applying the rebalancing algorithm, b= 0 and in the fixed frame
one would measure a 1P equal to s= sm =−Cbm .
Finally,C represents the matrix correlating pitch misalignment and machine response, and is defined
as

C =
[

cc
(1) cc

(2) cc
(3)

cs
(1) cs

(2) cs
(3)

]
. (2.45)

Since the rotor is radially symmetric, i.e. the effects of a pitch misalignment on the second blade will
be the same as the those caused by an equivalent misalignment on the first blade, only with a 2π/3
phase shift, one can write{

cc
(2)

cs
(2)

}
=

[
cos(2π/3) sin(2π/3)
−sin(2π/3) cos(2π/3)

]{
cc

(1)

cs
(1)

}
= R̄c. (2.46)

Clearly, the same argument holds for the relationship between the response of blades two and three.
Therefore, matrixC only depends on the two coefficients of vector c, and can be written as

C = [
c R̄c R̄2c

]
. (2.47)

While s can be measured and b can be arbitrarily set or derived,C and sm represent the unknown
coefficient of the model that need to be identified.
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Model identification

To identify the unknown model coefficients, one can conveniently rewrite the system of Eq. (2.44) as

s=Cb+sm , (2.48a)

=Bc+sm . (2.48b)

so that the newly defined matrixB is a sole function of the pitch adjustment b

B =
[

B11 B12

−B12 B11

]
, (2.49)

where

B11 = b(1) +cos(2π/3)b(2) + (cos(2π/3)2 − sin(2π/3)2)b(3), (2.50a)

B12 = sin(2π/3)b(2) +2sin(2π/3)cos(2π/3)b(3). (2.50b)

With this reformulation, one can perform the model identification as follows:

• measure the initial 1P signal s(1), before any pitch adjustment has been applied and therefore
b(1) = 0;

• arbitrarily further pitch the blades, in order to create a second imbalanced configuration s(2),
with b(2) 6= 0.
Note that to create a second configuration different from the initial one,

∑3
i=1b

(i ) = 0: this also
guarantees no change in collective and that s(1) and s(2) are measured at the same operative
point.

Once the two measurements are available, one can finally invert the following system and solve for the
model coefficients c and sm . {

s(1)

s(2)

}
=

[
B(1) I
B(2) I

]{
c
sm

}
. (2.51)

2.4.3 Rotor rebalancing algorithm

Before applying the rebalancing algorithm, one should understand that the following methodology
will have to suggest a pitch adjustment b so that

∑3
i=1 b(i ) = 0. Indeed, this zero collective constraint not

only guarantees to be operating at a constant operative point, making the comparison between 1P
amplitudes reasonable, but it also ensures that no collective rotation will be applied on the blades. A
collective blade rotation, in fact, does not generate a 1P in the fixed frame: only misalignments among
the blades do.
Therefore, the zero collective constraint is attached to the linear model of Eq. (2.44) as follows{

s
0

}
=

[
C
1

]
b+

{
sm

0

}
, (2.52)

where 1= (1,1,1).
Since the goal of the algorithm is to minimize the measured 1P, to find the pitch adjustments that

rebalances the rotor one has to solve the system for b after setting s= 0

b=−
[
C
1T

]−1 {
sm

0

}
. (2.53)

Once the pitch adjustment b has been computed, one can measure the residual 1P. If the vibrations are
still too large, the method can be iteratively applied until the desired threshold is met. Figure 2.5 gives
an overview of the algorithm logic, consisting of the following steps:
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• first, the initial 1P s(1) is measured;

• then, the blades are arbitrarily pitched of b(2), so that a new s(2) can be measured;

• the model is identified online with the measured s(1) and s(2);

• the identified model is used to compute the pitch adjustment b(3) that minimizes the fixed frame
1P;

• the 1P in the rebalanced configuration, s(3), is measured. If the desired threshold is not met, the
model can be re-identified from s(2) and s(3), and then used to compute the new rebalancing
pitch adjustment b(4);

• the process is repeated until the desired 1P threshold is met.

This iterative procedure makes the algorithm very robust to disturbances. Indeed, it helps com-
pensating for significant changes in operative conditions between steps, due for instance to changes
in the incoming flow, as well as for possible non-linearities which cannot be modelled by the proposed
formulation. Finally, as shown in the following chapters, the method tends to converge within two to
three complete iterations of the algorithm, therefore not requiring a significant extra controller activity.

Figure 2.5: Graphical representation of the rotor rebalancing algorithm.
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2.4.4 Rebalancing performance on different types of rotor imbalance

The methodology described so far was developed to detect and correct for rotor imbalances caused
by a fault in the pitch system. A pitch misalignment angle bm , i.e. the difference between the desired
collective and the actual blade pitch angle, was introduced to simulate different possible faults: an
offset in the zero-pitch angle due to an imprecise blade installation, a faulty sensor, a fault in the pitch
actuator etc.

Nevertheless, since the method just aims at minimizing the 1P in the fixed frame, it will actually be
able to reduce the fixed frame vibrations independently from their root cause. Indeed, no matter if the
imbalance is due to ice accretion, soiling, mass variations or a combination of the above: the algorithm
will compensate for the current imbalance with an ad hoc generated aerodynamic imbalance.
If the root cause for the imbalance does not strongly depend on the operative point, as in the case
of a fault in the pitch system, the final pitch adjustment suggested by the algorithm will be able to
constantly minimize the fixed frame vibrations.
On the other hand, if the imbalance strongly depends on the operative point, the algorithm will
be able to minimize the 1P harmonics for the present configuration, but might have to be applied
again, if needed, if the set point changes significantly. This might be the case if a significant mass
imbalance were present, since a mass variation among the blades will lead to different gravitational
and centrifugal forces, and the latter strongly depend on the rotor speed [34, 35].





CHAPTER 3

Wind sensing

3.1 Wind inflow observation from load harmonics (Paper I)

3.1.1 Summary

In this work, an already proposed wind sensing technology capable of estimating wind shears and
misalignments from machine measured loads is further analysed and validated in a simulated environ-
ment.

Expanding on already published work [69], in this paper the spatial non-uniformity in the wind,
parametrized with exponential vertical shear, linear horizontal shear and vertical and horizontal wind
misalignments, is related to the cosine and sine harmonics of out and in-plane blade root bending
moments via a linear and a non-linear model. Indeed, such a dis-homogeneous inflow causes a
periodic loading on the machine: mapping this wind-load relationship will allow to estimate the wind
parameters in a least-squares sense once the loads on the machine are measured.
Specifically, the one per revolution (1P) component was chosen as input for the mapping, since the
effect the parametrized wind states have on higher harmonics is of the same order of magnitude as the
effect of turbulent fluctuations. As a result, in realistic inflow conditions including higher harmonics
would lead to significant errors.
In addition, a singular value decomposition analysis (SVD) [66] was performed to understand the
correlation between parameters and to evaluate the theoretical performance of such observer. It was
found that the effect of a vertically or horizontally sheared flow is mostly to be seen in the cosine
or sine harmonics of the out of-plane moment, respectively. On the other hand, the misalignments
mainly affect the in-plane loading and have a less significant effect on the blade moments than the
shears. This can be intuitively visualized just by thinking about the velocity triangle: since a yaw angle
would affect the tangential velocity component while a vertical shear the perpendicular one, to obtain
the same change in angle of attack one would need a higher variation in misalignment than in shear.
Based on these considerations, one could expect the observer to be more accurate in estimating shears
than misalignments: this is also another finding of the SVD analysis.

The observer performance was tested simulating the behaviour of a 3 MW machine using a FEM
aeroservoelastic simulator, CpLambda [58], and wind grids generated by TurbSim [59]. Both a linear
and a non-linear model were identified from steady tests. Given the dependency of the loads on the
operating condition, the models were scheduled with respect to the wind speed, whereas only a linear
correction was suggested in case of density variations. A comprehensive analysis, considering wind
speeds from 4 to 19 ms−1, turbulence intensities (TI) from 0 to 20% and several turbulent seeds, shows
that both the linear and non-linear observer follow the instantaneous values of the shears, while the
misalignments can be estimated in their mean values. The standard deviation and mean absolute
error in the estimation tend to increase with wind speed and TI, showing a slightly higher accuracy for
the non-linear model. It was also proven that changes in the mean yaw misalignment can be followed.

27
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Finally, a lifetime performance assessment of the wind observer was performed using the wind speed
and TI distribution measured on the offshore test site FINO1 [70]. Based on 4 years of data, the results
show that the observer is expected to estimate the yaw misalignment with an error of 2 deg 95% of the
times, and a vertical shear with an error of 0.022. Such results prove very promising both for turbine and
wind farm control, also considering that the described wind sensing technology exploits measurements
already available on the machine and therefore consists in nothing more than a software upgrade.

3.1.2 Contribution

This paper is the result of the common effort of more authors. In details, Bertelè implemented the
proposed observer, while taking care of the simulation pre and post-processing, while Cacciola worked
on the lifetime performance assessment. Bottasso and Cacciola guided and supervised the whole work.
Finally, all authors further developed the concept and contributed to the writing of this paper.

3.1.3 Reference

M. Bertelè, C. L. Bottasso, S. Cacciola, F. Daher Adegas, and S. Delport, “Wind inflow observation from
load harmonics,” Wind Energy Science, vol. 2, no. 2, pp. 615–640, 2017. doi: 10.5194/wes-2-615-2017.

https://doi.org/10.5194/wes-2-615-2017
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3.2 Wind inflow observation from load harmonics – wind tunnel valida-
tion of the rotationally symmetric formulation (Paper II)

3.2.1 Summary

In this work, the wind sensing technology capable of estimating wind shears and misalignments from
the machine response was further developed and simplified to address field tests requirements. This
new formulation was thoroughly validated both with simulations and wind tunnel experiments.

Starting from already published work [41, 69], in this paper the spatial non-uniformity in the
wind, here parametrized with a linear vertical and horizontal shear and a vertical and horizontal wind
misalignment, was related via a linear model to the one per revolution (1P) cosine and sine harmonics
of the out of and in-plane blade root bending moments. Indeed, since a spatially non uniform wind
leads to periodic loading, a linear mapping can be identified between wind parameters and 1P blade
moments so that, once the turbine loads are measured, the wind states can be estimated from the
machine response in a least-squares sense.
To identify a model depending on four parameters, i.e. the four wind states, one requires a compre-
hensive set of tests in which all parameters experience sensitive variations in their mean value. This
might not often be the case if field data are used: the vertical misalignment, for example, tends to be
constant for a given test site. To overcome such problem, a new identification procedure that exploits
the rotational symmetry of the rotor is presented. Indeed, it is intuitive to visualize that the effect
a vertically sheared flow has on the blade loads is the same as the effect of a horizontally sheared
one, only with a π/2 phase shift; the same holding for the wind misalignments. Therefore, as long
as the training data set includes sensitive changes in one angle and one shear the identification can
be performed: the coefficients related to the missing parameters can be easily derived through rotor
symmetry.

To validate this new identification procedure, the performance of the so called rotationally sym-
metric observer was compared to the one of the already validated linear model. Several tests were run
simulating the behaviour of a 3 MW horizontal axis machine with the aeroservoelastic FEM simulator
CpLambda [58] starting from inflows provided by TurbSim [59]. Steady tests were used to identify both
models and to schedule them with respect to the wind speed, in order to account for the dependency of
the loads on the operating condition. Comparing both the standard deviation and mean absolute error
in the parameter observations for wind speeds between 4 to 15 ms−1, turbulence intensities (TI) from
2 to 16% and more turbulent seeds, no significant difference can be noted between the two models.
The estimation accuracy tends to decrease with wind speed and TI, and the maximum expected error
in yaw and vertical shear estimation is, for both models, smaller than 2.5 deg and 14e-03 respectively.
Finally, this wind observer, and with it its rotor symmetric formulation, was also tested for the first
time in the wind tunnel. An aeroelastically scaled wind turbine model, with 2 m rotor diameter, 1.8 m
hub height and strain gages at the root of each blade, was placed in the test section of the Politecnico
di Milano [71]. Two different vertical shears and turbulent intensities, 3.8 and 8.5 % TI, were simulated
and measured with hot wire probes. The rotationally symmetric observer was identified starting from
30% of the available tests, including wind speeds in both regions II and III, and only changes in vertical
shear and yaw misalignment: the coefficients of the remaining parameters were derived through
rotor symmetry. Changes in horizontal misalignment were also performed and were included only in
the validation set. Given the accuracy in the inflow estimation, these wind tunnel experiments not
only validate the proposed technology, but also this more field test-friendly identification procedure.
Moreover, the performance accuracy is in accordance with the synthetic data, leading to a maximum
mean error, for 8.5 % TI, of 1 deg and 7e-3 in the estimation of angles and shears, respectively.
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3.2.2 Contribution

This paper is the result of the common effort of more authors. In details, Bertelè implemented
the proposed observer, while taking care of the simulation pre and post-processing. Bottasso and
Cacciola guided and supervised the whole work. Finally, all authors further developed the concept and
contributed to the writing of this paper.

3.2.3 Reference

M. Bertelè, C. L. Bottasso, and S. Cacciola, “Brief communication: Wind inflow observation from load
harmonics – wind tunnel validation of the rotationally symmetric formulation”, Wind Energy Science,
vol. 4, no. 1, pp. 89–97, 2019. doi: 10.5194/wes-4-89-2019.

https://doi.org/10.5194/wes-4-89-2019
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3.3 Wind inflow observation from load harmonics: initial steps towards a
field validation (Paper III)

3.3.1 Summary

In this paper, a first field validation of the already described wind sensing technology capable of
estimating wind shears and misalignments from the rotor loads was performed.

The one per revolution (1P) out and in-plane blade root bending loads of a 3.5 MW machine,
with 92 m hub height and 114.9 m rotor diameter, were related to the wind inflow via a linear model.
Indeed, given that any spatial dis-homogeneity in the wind, here parametrized with linear vertical
and horizontal shears and misalignments, causes a periodic loading on the machine, by mapping
this wind-load response one might estimate in a least-squares sense the wind states starting from
measured loads [41, 42, 69].

Information about the impinging inflow was provided by a nearby met-mast, measuring wind
speed and wind direction, and by another wind observer [25], capable of estimating vertical and hori-
zontal shears also starting from rotor loads. Indeed, while the met-mast can provide with a reference
for the turbine yaw misalignment, which is nevertheless still point-wise and not rotor-effective, the
met-mast derived vertical shear might not be representative of the full rotor shear, since the met-mast
reaches only up to hub height. Therefore, the observer described in [25], whose successful validation
was performed within the same test campaign, is here used as reference for both shears. No informa-
tion about the vertical misalignment was provided: the rotational symmetry of the rotor was exploited
to derive the upflow coefficients [42]. The linear model, identified from 15% of the available data,
was also scheduled with respect to the wind speed, computed via the torque balance equation, and
a density correction was also implemented to account for the model dependency on the operating
conditions.

The results obtained over about 40 days of data show that the observer can very well follow the
instantaneous variation in shears and the mean values of yaw misalignment. Indeed, with respect to
the met-mast reference, the maximum mean absolute error is about 0.06 and 3 deg respectively. The
performance does not seem to be significantly affected by turbulence or density variations, whereas
the incoming wind direction plays a role in the vertical shear estimation. The fact that the minimum
estimation error is obtained when turbine and mast are aligned proves once again that the met-mast,
not co-located with the turbine and providing only point-wise measurement of the lower half the rotor,
might not be an exact ground truth. Nevertheless, despite the not exact reference provided by the mast,
the very convincing performance of the observer suggests that its implementation is possible even in a
standard turbine-mast set up.

3.3.2 Contribution

This paper is the result of the common effort of more authors. In details, Bertelè implemented the
proposed observer, while taking care of the simulation pre and post-processing. Schreiber also took
part in the post-processing, while Bottasso guided and supervised the whole work. Finally, all authors
further developed the concept and contributed to the writing of this paper.

3.3.3 Reference

M. Bertelè, C. L. Bottasso and J. Schreiber, J., “Wind inflow observation from load harmonics: initial
steps towards a field validation, Wind Energ. Sci. Discuss. [preprint],2020. doi: 0.5194/wes-2020-83.
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3.4 Non-deterministic wind observation from wind turbine loads (Paper
IV)

3.4.1 Summary

In this work, the already proposed wind sensing technology capable of estimating wind shears and
misalignments from the turbine response is further developed into a non-deterministic formulation.

Building on already published work [41,42,69], the wind spatial dis-homogeneity, here parametrized
as linear vertical and horizontal shears, as well as vertical and horizontal misalignments, is linked to the
one per revolution (1P) out and in-plane blade root bending moments through a linear model. Indeed,
such a non-uniform wind field will cause a periodic loading in the machine response: by mapping
this wind-load relation one can then estimate in a least-squares sense the wind parameters once
the blade loads are measured. So far, this wind observer model was deterministically formulated: in
this work, a Kalman Filter (KF) [64,65] is employed to account for both process and measurement noise.

To evaluate the increase in performance of this new non-deterministic formulation with respect to
the deterministic one, the behaviour of a 3 MW machine was simulated with a FEM aeroservoelastic
tool, CpLambda [58], under uniform and turbulent inflows provided by TurbSim [59]. Both a linear
and rotationally symmetric linear model were identified and then scheduled with respect to the wind
speed, in order to account for the load dependency on the operating condition. In a nutshell, the
rotationally symmetric model differs from the linear one only in the identification procedure [42].
While the linear model is identified from measurements of all four parameters, the symmetric model
assumes only two, for example vertical shear and yaw misalignment, to be measurable: the coefficients
of the missing wind states can then be mathematically derived after identification exploiting the rotor
symmetry. This can be particularly important when working with field data, where variations in upflow
angle are not very likely to occur at a given test site.
Several tests performed with wind speeds ranging from 7 to 17 ms−1, turbulence intensities from 5
to 12% and different turbulent seeds prove the the non-deterministic formulation can significantly
increase the accuracy of angle estimations, while no significant improvement can be noted for the
shears. Indeed, applying a KF to both the linear and rotationally symmetric model, for higher wind
speeds and turbulence the mean absolute error can decrease from 4 to about 2 deg. Moreover, one
can once again note that there is no difference in performance between linear and symmetric model,
suggesting that the identification procedure can indeed be simplified for field test applications without
worsening the estimation accuracy.

3.4.2 Contribution

This paper is the result of the common effort of more authors. In details, Bertelè implemented the
proposed observer, while taking care of the simulation pre and post-processing. Bottasso guided and
supervised the whole work. Finally, both authors further developed the concept and contributed to
the writing of this paper.

3.4.3 Reference

M. Bertelè, and C. L. Bottasso, “Non-deterministic wind observation from wind turbine loads,” Journal
of Physics: Conference Series, 1618 062022, 2020. doi: 10.1088/1742-6596/1618/6/062022.
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3.5 Simultaneous estimation of wind shears and misalignments from ro-
tor loads: formulation for IPC-controlled wind turbines (Paper V)

3.5.1 Summary

In this work, the already proposed wind sensing technology capable of estimating wind shears and
misalignments from the turbine response is extended to IPC-controlled machines.

Following previously published work [41, 69], in this paper the spatial non-uniformity in the wind,
here parametrized with vertical exponential shear, linear horizontal shear, vertical and horizontal
misalignments, is related via a linear model to the one per revolution (1P) cosine and sine harmonics
of the pitch angle and of the out and in-plane blade root bending moments. Indeed, a non-uniform
wind will cause a periodic loading on the blades which, in the case of an IPC-controlled machine, will
be counteracted by a sinusoidal pitching. An IPC-controller aims, in fact, at minimizing the loading
on the turbine by periodically changing the angle of attack of each blade depending on its individual
azimuthal position [60–62]. It follows therefore that, although the controller will tend to flatten the
effect a wind dis-homogeneity has on the blade loads, information about the impinging inflow can be
derived by the action of the controller itself.

This newly developed formulation was tested on a 3 MW machine simulated with a FEM aeroser-
voelastic tool, CpLambda [58], using turbulent and non turbulent grids provided by TurbSim [59]. The
linear wind-turbine response mapping was identified from steady simulations with and without IPC-
controller, scheduled with respect to the wind speed to consider the dependency on the operating
condition and then finally used to estimate the wind parameters in a least-squares sense. Several
turbulent tests in region II 1/2 and III, with wind speeds ranging from 11 to 15 ms−1 and turbulence in-
tensities (TI) from 5 to 10%, were run with and IPC-controller to assess the observer performance. The
accuracy of the estimates is in line with the results of previous publications, showing a maximum mean
absolute error at 11 ms−1 of about 2.5 deg and 5e-2 in the estimates of angles and shears, respectively.
Similar tests were also run with a simple collective controller to simulate operating conditions were
the IPC-controller is switched off: accurate estimates of both shears and angles could still be obtained.
This newly proposed formulation is therefore fit to be installed both on IPC and collective-controlled
machines and, since it exploits sensors that might already be installed on the turbine, it consists in
nothing more than a software upgrade.

3.5.2 Contribution

This paper is the result of the common effort of more authors. In details, Bertelè implemented
the proposed observer, while taking care of the simulation pre and post-processing. Bottasso and
Cacciola guided and supervised the whole work. Finally, all authors further developed the concept and
contributed to the writing of this paper.

3.5.3 Reference

M. Bertelè, C. L. Bottasso, and S. Cacciola, “Simultaneous estimation of wind shears and misalignments
from rotor loads: formulation for ipc-controlled wind turbines”, Journal of Physics: Conference Series,
vol. 1037, p. 032007, 2018. doi: 10.1088/1742-6596/1037/3/032007.
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CHAPTER 4

Rotor rebalancing

4.1 Automatic detection and correction of pitch misalignment in wind
turbine rotors (Paper VI)

4.1.1 Summary

In this work, a novel algorithm to first detect and then correct for pitch imbalances is developed. The
advantage of such methodology consists in relying only on load/acceleration sensors installed on the
machine fixed frame, and in the fact that the detected imbalance can be automatically corrected for
during operation if access to the control system is granted, avoiding therefore any machine downtime.

The algorithm is based on a linear model relating the one per revolution (1P) of a fixed frame
measurement, in this case fore-aft accelerations of the main bearing, to a pitch misalignment. This
model can be easily identified in the field. First, the current 1P measurement is recorded, s(1). Then,
after intentionally applying an additional misalignment by pitching two or more blades, a second 1P
signal is recorded, s(2). With these two signals, the model can be easily identified and immediately
used to derived the pitch offsets that need to be applied in order to minimize the 1P measured on the
fixed frame, i.e. to rebalance the rotor. The new 1P measured after rebalancing, s(3), can be used along
with s(2) to re-identify the model and further reduce the 1P, if needed. Indeed, the iterative application
of the algorithm can compensate for possible non-linearities. Finally, to account for changes in the
inflow within the algorithm steps, the recorded 1P is scaled with the dynamic pressure.

To evaluate the performance of the algorithm, the behaviour of a 3 MW machine was simulated
with CpLambda [58] using turbulent wind grids computed by TurbSim [59]. First, the linearity of the
imbalance-machine response was proven, showing also that the imbalance leaves a specific fingerprint
in the 1P according to its location. Moreover, the algorithm itself proved to be very robust: although
run while varying wind speed, density, turbulence intensity, crossflow and vertical shear within the
steps, the methodology was always able to minimize if not perfectly correct for the pitch imbalance
within a few iterations. The effect of signal noise or error in the wind speed measurement was also
considered, showing that even for very low signal to noise ratio the method is still capable of reducing
the rotor imbalance.

4.1.2 Contribution

This paper is the result of the common effort of more authors. In details, Bertelè implemented the
algorithm, while taking care of the simulation pre and post-processing. Bottasso and Cacciola guided
and supervised the whole work. Finally, all authors further developed the concept and contributed to
the writing of this paper.
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4.1.3 Reference

M. Bertelè, C. L. Bottasso, and S. Cacciola, “Automatic detection and correction of pitch misalignment
in wind turbine rotors,” Wind Energy Science, vol. 3, no. 2, pp. 791–803, 2018. doi: 10.5194/wes-3-791-
2018.
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4.2 Validation on a scaled wind turbine model

As a proof of concept, the rebalancing algorithm was tested on a scaled wind turbine model, named in
the following G1 [72].

4.2.1 Scaled wind turbine model

The G1 [72] is a three-bladed horizontal axis machine, with a 1.1 m rotor diameter and rated rotor
speed of 850 rpm. Each blade, composed by a layer of unidirectional carbon fiber, is equipped with
its own pitch encoder and motor, allowing therefore for individual blade pitching. Four strain gages,
installed on small bridges connected to the shaft, measure the shaft torsional and bending loads, while
their power supply and conditioning is provided by three miniaturized electronic boards on the hub.
The conversion of the electrical signal from the rotating to the fixed frame and vice versa is given by a
through-bore 12-channels slip ring. A torque meter is also present to measure the torque, along with
an optical encoder to measure the rotor azimuth. Additional strain gages are placed at the tower base.
The motor, located in the rear part of the nacelle, is operated as a generator thanks to a servocontroller.
A yaw motor and a yaw brake are also present, granting the possibility of yawing the machine with
respect to the wind during the experiments.
Given its small dimensions, low-Reynolds airfoils are used to compensate for low-Reynolds effects.
Overall, the maximum power coefficient of this machine is approximately 0.42 at a tip speed ratio
λ ∈ [7,8] and a pitch angle β ∈ [−2,0] deg.

4.2.2 Linearity

To verify also outside of a simulated environment the linearity of the imbalance-turbine response
model, the G1 was used in motor mode at 400 rpm. Specifically, the blades were individually pitched
one at a time to add a pitch misalignment angle bm ∈ [−3,3] deg, and the signal harmonics were
extracted as described in §2.2.1. Figure 4.1 shows the 1P cosine and sine harmonics of the nodding
moment on the shaft as a function of the added pitch misalignment on each blade.

Figure 4.1: Cosine (squares) and sine (circles) 1P components of the shaft nodding moment as functions of
pitch misalignment.
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One can clearly note that the results mirror those obtained in a simulated environment (Paper VI):
both cosine and sine harmonics appear to be linearly dependent on the degree of misalignment, with
their minima very close to the origin. Moreover, one can also note that the slope of the sine and
cosine components differ from plot to plot. This proves that the location of the imbalance leaves a
unique fingerprint in the machine response, allowing one to estimate not only the magnitude of the
imbalance but also the faulty blade/blades. Additional tests were also performed at different rotational
speeds. The results, not reported here for the sake of brevity, prove to be consistent with the linear
approximation.

4.2.3 Rotor rebalancing

The algorithm presented in Paper VI was also applied to the G1 model. Indeed, after noticing unusual
vibrations, the imbalance-turbine response was once more characterized at 400 rpm, leading to the
results shown in Fig 4.2

Figure 4.2: Cosine (squares) and sine (circles) 1P components of the shaft nodding moment as functions of
pitch misalignment.

While the linear approximation still holds, one can also note that the crossing between sine and
cosine harmonics is not placed at the origin, meaning that even when no apparent pitch misalignment
is present, a 1P is still present in the fixed frame: this suggests a mass and/or pitch imbalances. Indeed,
the G1 was disassembled and reassembled between this experiment and the one presented in § 4.1, so
that the tests were actually run on two virtually different machines.

To reduce the vibrations, the rebalancing algorithm was applied on the G1 running in motor mode,
using the 1P nodding moment as detection parameter. Figure 4.3 shows the 1P variation from the
initial imbalanced configuration for each step. In addition, the pitch misalignment applied to each
blade is also reported, along with the absolute residual pitch misalignment ε, defined as

ε= max(bm −b)−mi n(bm −b). (4.1)

The method is capable of rebalancing the rotor after only three blade movements, i.e. two complete
iterations of the algorithm. Specifically, blade two and blade three were further pitched of 0.7 and -0.7
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Figure 4.3: Reduction of the 1P nodding moment with respect to the initial configuration.

deg respectively, achieving an overall reduction of 70% in the 1P of the nodding moment.

Although the complete rebalancing procedure was performed only once on the scaled turbine,
this test can serve as proof of concept of the algorithm. Indeed, the results mirror what extensively
observed in a simulated environment (Paper VI): they validate the linearity of the imbalance-response
model and the ability of the algorithm to reduce the 1P loads in the fixed frame.





CHAPTER 5

Discussion and conclusions

Within this dissertation, the turbine harmonic response was analysed and successfully exploited to
develop new methodologies aiming at correcting for rotor imbalances but also at estimating the inflow
impinging on the rotor disk.
Nowadays, turbines are equipped with a wide variety of sensors, such as strain gages, accelerometers
etc. Even though they are thought of and installed to perform a very specific task (load monitoring,
component monitoring etc.), the measurements they collect could carry additional valuable informa-
tion also for other applications. Indeed, no matter the type, sensors just measure the turbine response
during operation: if one is able to identify the relation between harmonic response and problem at
hand, this already available information can be exploited for numerous different applications, with no
additional hardware cost.

Among all the possible applications, this dissertation focused on two main research topics: wind
sensing and rotor rebalancing. As a result, two new methodologies were developed. The first is capable
of estimating the incoming inflow, parametrized with both vertical and horizontal shears and misalign-
ments, starting from the one per revolution (1P) measured blade bending loads. The second can first
detect and then remotely correct for a rotor imbalance, here simulated as a fault in the pitch system,
starting from the 1P harmonics of accelerations in the fixed frame.
Both technologies exploit already available turbine measurements, meaning that they consist of noth-
ing else than a software upgrade, with also a minimal computational cost. In fact, even if blade load
sensors and accelerometers are not already planned for during manufacturing, they can be installed a
posteriori as part of standard condition monitoring systems [9–12].
Moreover, both methods were validated with extensive simulations but also with data from a scaled
wind turbine model and, in the case of the wind sensing technology, also in the field. The consistency
in the performance of both methods, no matter if tested with synthetic or real data, further adds to the
value of this work.
Based on the results collected in this dissertation, the following conclusions can be drawn.

5.1 Wind sensing

It is possible to exploit the rotor response to estimate the flow impinging on the rotor disk.
Indeed, a spatially dis-homogeneous inflow will lead to periodic changes in the angle of attack and, in
turn, in the blade loads. Therefore, the out and in-plane blade root bending moments were chosen
as input of this wind sensing technology. The non-uniformity in the wind, on the other hand, was
parametrized by four wind states – vertical and horizontal shears and vertical and horizontal misalign-
ments – in order to provide, along with the wind speed, a full first order approximation of the wind field.
So far, no other wind sensing approach considered such a rich wind parametrization. While some
authors included only vertical and horizontal shears [22, 24–26], others only considered vertical shear
and yaw misalignment [19, 20, 23]. Bottasso and Riboldi also proved that the effect of wind parameters

43



44 Chapter 5. Discussion and conclusions

not included in the modelling would negatively affect the results [23].

Both a linear and a non-linear model were formulated to relate the chosen four parameters to 1P
harmonics of the blade root bending moments. Higher order harmonics were not considered, since
their sensitivity to turbulent fluctuations is comparable to their sensitivity to the four wind states. As
direct consequence, one can also assume that once the model has been identified for a turbine, it
should also be directly applicable to a different turbine of the same type. Indeed, it is reasonable to
assume that the response of different installations of the same turbine should not significantly differ at
least in the lowest frequencies, although this still remains to be verified.

The models can be identified as a black box [56] once load and wind state measurements are
available, bypassing the need for a turbine model or any sensitive turbine information. Moreover, an
even simpler identification procedure was developed to ease the identification for field applications,
where usually only measurements of the yaw misalignment and of the vertical shear are available.
Since the effect that a vertical shear has on the blade loads is the same as the effect of a horizontal shear
only with a π/2 phase shift – the same holding for the misalignments – this rotational symmetry can be
used to reduce the model coefficients. In a nutshell, one only needs measurements of the vertical shear
and the yaw misalignment to identify the model: once the missing coefficients are derived using the
rotor symmetry, all four parameters can be estimated. After the model has been identified, the wind
states can be estimated online from wind turbine measurements in a least square sense. A Kalman
Filter was also used in the estimation to account for process and measurement noise [64, 65].

In addition, the proposed wind-load mapping was also adapted to the case of IPC-controlled
turbines. Since the IPC controller will flatten the effect of the wind states on the machine loads, an
additional input parameter was added to the model. Indeed, to reduce the machine loading the
IPC controller will apply a cyclic pitching to each blade, according to its azimuthal position [60–62].
Therefore, the new wind-turbine response model relates the four wind states to both 1P blade bending
moments and 1P blade pitch, since the information lost in the load measurements can be found in the
cyclic pitching of the blades.

This so called wind observer, in its different formulations, was extensively tested in a simulation
environment, considering different mean inflows, turbulence intensities (TI) and seeds, proving
capable of accurately estimating the instantaneous value of the shears and of accurately following the
mean values of the misalignment angles. Tests in the wind tunnel, performed also with different TIs,
confirm the synthetic results, also proving that the rotational symmetry can be exploited to identify
the wind observer. Finally, a first validation with field data was also performed. Despite the limits of
the available dataset – the lack of a rotor-effective reference for all wind states – the observer proved
once again capable of estimating the fast shear fluctuations, while following the mean trends of the
yaw misalignment over a wide range of different operative conditions.

5.1.1 Discussion and outlooks

As a next step, an ad hoc field campaign could be planned to further validate the performance of the
wind observer. Since this observer estimates the rotor-effective inflow from rotor loads, it follows that
it should be first trained and then validated starting from rotor-effective inflow measurements, such as
those provided for example by LiDARs [15, 17]. In the results presented within this thesis though, such
data is not available, and the nevertheless promising validation had to be performed starting from
met-mast measurements. The lack of a reference for the rotor-effective inflow in the field constitutes
of course a possible drawback of this method, which can nevertheless be addressed and partially



5.1. Wind sensing 45

coped with by exploiting several point-wise measurements of the wind parameters, if available, or
alternatively, by training the observer with an accurate model of the machine.

When working with field data, one should also account for possible sensor issues such as miscali-
brations and drift but also for other phenomena such as soiling or ageing, whose effect on the observer
accuracy still remains to be investigated. This might become considerably relevant when, once the
model has been identified for a turbine, it is used on other installations of the same type.

A validation in the field could also identify additional phenomena that might affect the observer
accuracy. For example, if applied to large rotors, a first order approximation of the impinging inflow
might not suffice. Indeed, parameters such as the horizontal wind misalignment might vary with
height, leading to significant wind veer [73]. Also the vertical shear profile might be not properly
represented either by a linear or exponential approximation [74]. To capture also these characteristics,
the current observer implementation needs to be further developed considering the effects of these
specific wind parameters on the machine harmonic response.
Further development will also be required to apply this methodology to floating machines. Indeed,
off-shore turbines are exposed to additional motions with respect to on-shore installations, leading
to additional loading and extra apparent wind speed components. The overall machine harmonic
response needs therefore to be analysed, in order to clearly distinguish the fingerprint of the wind from
that of other effects.

So far, the wind-load response was mapped with a simple analytical model, either linear or non-
linear. Although very simple and accurate, these analytical mappings could be also substituted with
more complex solutions, like the ones provided, for example, by artificial neural networks. Indeed,
given their more complex formulation, such machine learning techniques could be able to capture
additional useful information missed by simple analytical models, in turn increasing the observer
accuracy. They could also be able to handle information lying in higher order harmonics, being able
to separate the contribution due to the wind states from the one due to turbulent fluctuations. This
might allow for a richer description of the impinging inflow, so that maybe additional parameters such
as veer could also be estimated.
It would also be interesting to verify if neural networks could model the relationship between tur-
bine response and each single wind state independently. A current limitation of the wind observer
proposed within this thesis is that to identify the wind-turbine mapping one requires measurement
of at least two wind states. If neural networks could completely separate the effect of each single
wind parameter on the machine response, then one could theoretically estimate the desired wind
state without requiring any measurements of the others. If possible, this would further simplify the
identification procedure and would constitute an additional advantage especially for field applications.

Finally, a field test campaign could also be used to validate the observer, in its different formula-
tions, as a valuable tool for wind farm control. The rotor effective estimate of the yaw misalignment
could be used to realign the machine to the wind. It would be interesting to understand whether
driving the yaw motor with a rotor-effective measurement rather than a point-wise one, for example
provided by a nacelle anemometer, could lead to an increase in power production. But the estimate
of the turbine yaw misalignment could also be used to implement wake redirection strategies: after
detecting the presence of a wake by looking at the estimate for the horizontal shear, the wake could be
redirected by yawing the upstream turbine. Also the estimate of the vertical shear could be used for
wind farm control. Indeed, together with information about the ambient turbulence intensity, it could
be used to derive the level of atmospheric stability and, with it, the wake recovery rate.
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But the information provided by this wind observer could be extended also to other applications.
Once the turbine is equipped with blade load measurements, it automatically turns into a wind sensor.
This means that it can be used to characterize the inflow at a given test site, for power curve verification,
but also to create a turbine digital twin. Indeed, one could feed to the simulation model of the turbine,
i.e. its digital twin, the actual inflow impinging on that turbine rotor disk. This opens a wide range of
possibilities for prediction, maintenance, and fatigue and residual lifetime assessment.

5.2 Rotor rebalancing

It is possible to exploit the rotor response to first detect and then automatically remotely correct for a
rotor imbalance.
Indeed, any type of imbalance in the rotating frame – either caused by a fault in the pitch system,
ice accretion or mass variations among the blades – will generate additional harmonics in the fixed
frame. Therefore, by detecting a significant 1P in either fixed frame moments or accelerations, one can
automatically detect a rotor imbalance. In this work, the signal used as detection parameter was the
fore-aft acceleration measured on the main bearing. On turbines, acceleration sensors are often used
for vibration monitoring and, if not already present, are relatively easy to install.

A linear model was formulated to map the 1P fixed frame response to the rotor imbalance, here
simulated by applying an offset to one or more blades with respect to the desired pitch angle. While
other methodologies require a finite element model of the turbine [34–36] or a comprehensive training
data set [33], the coefficients of this model can be identified as a black box [56] through simple system
identification once two imbalance configurations are available. In a nutshell, to identify the model
one just needs to record a 1P measurement and then arbitrarily further pitch the blades to collect the
second one. This simple identification constitutes a significant advantage for the methodology, making
it very easy to implement. To account for possible wind speed changes between measurements, the 1P
signal is also scaled by the dynamic pressure.

After the model has been identified, it can be used to automatically and, most importantly, re-
motely rebalance the rotor once access to the pitch system is granted. Indeed, the model is used
to find the combination of pitch offsets that needs to be applied to the blades in order to minimize
the measured 1P. The procedure can also be iteratively repeated, if the desired 1P threshold is not
met. Therefore, while other methodologies strongly rely on a continuous controller action [38–40] to
minimize 1P vibrations, causing increased duty cycle and fatigue in pitch actuators, the presented
algorithm engages the controller only for few iterations.

The linearity of the turbine-imbalance model was proved in a simulation environment. It was also
shown that the turbine harmonic response is unique depending on the imbalance location: the model
can therefore be used not only to estimate the gravity of the imbalance but also its location. Extensive
simulations, including a wide range of wind conditions, different TI, turbulence seeds and different
noise levels, proved the robustness of the algorithm, which is capable of significantly reducing the
initial imbalance within two to three complete iterations.
Moreover, the methodology was also tested on a scaled wind turbine model where measurements of
the shaft moments were available. Again, the linearity of the turbine-response model was demon-
strated along with the dependency of the response on the imbalance location. Finally, the rebalancing
procedure was also tested, leading to a significant 1P reduction after only two iterations.
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5.2.1 Discussion and outlooks

Future steps for this methodology could be a validation in the field. Specific tests could be designed
to purposely misalign one or more blades, both to validate the linearity of the imbalance-turbine
response but also to verify, in a controlled environment, the performance of the algorithm.

Further studies could also investigate the effect of different types of imbalances. Indeed, although
the algorithm was thought of to correct for a pitch imbalance, it is actually designed to reduce a 1P in
the fixed frame, irrespective of its root cause. If on one hand this can represent an advantage, since
it is possible to remotely reduce virtually all types of dangerous vibrations, it might also constitute a
disadvantage. For example, in the case of a mass imbalance, the algorithm will generate an aerody-
namic imbalance that compensates the original mass imbalance. While this will reduce vibrations
in the fixed frame, it could also negatively affect the power performance of the turbine, depending
on the severity of the initial problem. To address this issue, one could consider further investigating
the response of the machine to identify additional inputs that could carry useful information about
the type of imbalance present. For example, it is reasonable to assume that a mass imbalance will
have a smaller effect on the produced power than a pitch imbalance, as well as the latter will affect
power production less than an imbalance due to ice accretion [33]. Such information might help in
distinguishing the origin of the imbalance problem, although this might require knowledge of sensitive
turbine information.

In addition, the effectiveness of the methodology still remains to be quantified in the case the im-
balance strongly depends on the operative conditions. Considering again the case of a mass imbalance,
which strongly depends on the rotational speed, as already mentioned the algorithm would derive
the optimal pitch setting to minimize vibrations. Nevertheless, with changing operating conditions,
the effect of a mass imbalance might significantly change, depending on the severity of the problem.
Therefore, the final rebalanced configuration might also have to be derived again for different operative
points. Nevertheless, possible additional iterations would not constitute a considerable disadvantage,
given the very low computational cost of the method and its fast convergence rate.

Overall, this newly developed methodology could lead to significant reductions in operation and
maintenance costs. If accelerometers are already installed as part of a standard condition monitoring
system, no additional hardware is necessary for its implementation, so that it actually consists in
a software upgrade, with also a very small computational cost. Most importantly, since it allows to
correct for imbalances remotely, costly on-site inspections can be virtually avoided: this constitutes a
very significant advantage, especially in a future headed towards more off-shore installations.
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Abstract. The wind field leaves its fingerprint on the rotor response. This fact can be exploited by using the
rotor as a sensor: by looking at the rotor response, in the present case in terms of blade loads, one may infer the
wind characteristics. This paper describes a wind state observer that estimates four wind parameters, namely the
vertical and horizontal shears and the yaw and upflow misalignment angles, from out-of-plane and in-plane blade
bending moments. The resulting observer provides on-rotor wind inflow characteristics that can be exploited
for wind turbine and wind farm control. The proposed formulation is evaluated through extensive numerical
simulations in turbulent and nonturbulent wind conditions using a high-fidelity aeroservoelastic model of a multi-
MW wind turbine.

1 Introduction

The wind blowing over a wind turbine rotor leaves its own
specific fingerprint on the machine response. If this informa-
tion is rich enough and if the wind turbine response can be
measured (for example in terms of loads), then one may think
of turning the rotor into a wind sensor and use it to infer the
wind inflow.

Measurements of the rotor inflow during operation are at-
tractive for a number of reasons, as they may find a wide
range of applications. For example, information on the wind
speed at the rotor disk is typically useful for wind turbine
control, as controller behavior is often scheduled as a func-
tion of wind speed. In addition, knowledge of the wind di-
rection with respect to the rotor is necessary not only to
maximize energy harvesting, but also because operating with
excessive misalignment increases loading. Wake redirection
strategies (Fleming et al., 2014; Jimenez et al., 2010) delib-
erately point the rotor away from the wind with the goal of
deflecting the wake and reducing its interaction with down-
stream machines. This is a control strategy that also requires
good knowledge of the wind direction in order to be imple-
mented. Upflow can change significantly in complex terrain
applications and, if known, it can be used to reduce load-
ing. The presence of an impinging wake, shed from an up-

stream wind turbine, may result in high horizontally sheared
flow at the rotor disk. Turbulence intensity (TI) and vertical
shear may give indications of the characteristics of the at-
mosphere, which is information that can be used to optimize
wind turbine and wind farm control behavior. More gener-
ally, by turning each wind turbine into a wind sensor capable
of measuring the local inflow characteristics, one may build a
more complete picture of the wind flow within a power plant
and provide information that may possibly have a variety of
uses.

Unfortunately, high-quality information on wind inflow is
generally difficult to obtain. Onboard wind turbines, wind
speed is typically measured by cup or sonic anemometers,
while direction is provided by wind vanes. These sensors in-
variably suffer from a number of disturbances, such as the
presence of the nacelle, blade passing and wake-induced flow
deformation. Although most of these effects can be mitigated
by the use of calibrated transfer functions, filtering and ad
hoc processing of the raw measurements, all these sensors
provide only local information at the specific point in the
flow where they are installed. For control applications, it is
clear that rotor-equivalent information is generally more ap-
propriate than local data because what determines the over-
all rotor response is what is felt by the whole rotor rather
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than what takes place at a specific point. Additionally, certain
wind characteristics can only be defined over a rotor disk and
do not have pointwise equivalents, for example shears. Met
masts, being equipped with multiple wind sensors away from
the rotor, do not suffer from some of these issues. However,
the problem of mapping the information from a met mast
to the rotor disk of a wind turbine is generally very diffi-
cult to solve, and it will clearly always be prone to possi-
bly severe inaccuracies. With lidar (light detection and rang-
ing), laser-based sensing technology is rapidly becoming a
game changer, and other remote sensing solutions are also
very promising. While their potential is clearly very real and
will probably have a deep impact on wind energy technology,
these devices are still not in widespread use, mostly because
of cost, reliability, availability and lifetime issues.

In this scenario, wind sensing by using the rotor response
seems to offer an attractive alternative. In fact, any wind
property estimated from the rotor response will be nonlo-
cal and rotor effective in contrast to local sensors. In addi-
tion, this approach provides measurements directly at the ro-
tor disk, avoiding the need for mapping flow characteristics
from one point to another.

The rotor-effective wind speed estimator (Van der Hooft
and Engelen, 2004; Soltani et al., 2013) is one of the first ex-
amples of the use of the rotor response for estimating wind
characteristics. In this case, the idea is to use the dynamic
torque balance equation: based on a map of the aerodynamic
torque (or power) of the rotor over the operating envelope
of the machine, one may solve this equation in terms of the
unknown wind speed, assuming that the other operational
parameters (rotor speed, pitch setting, electrical torque) are
measured at each instant in time.

This idea was first generalized by Bottasso et al. (2010),
who introduced the concept of the rotor as an anemometer.
Instead of using the single torque balance, additional equa-
tions for the dynamic equilibrium of the machine were used,
including the tower and blade degrees of freedom. As multi-
ple equations are now available, multiple wind states can be
estimated in addition to wind speed. Although attractive, the
need to estimate some wind turbine states resulted in a fairly
complicated formulation.

A much simpler approach was developed later in Bot-
tasso and Riboldi (2014), where the idea was not to use
the equations of dynamic equilibrium, but rather to con-
sider the steady-state response of the machine. Specifically,
the approach exploited the fact that steady wind conditions
are associated with a periodic response of the wind turbine.
Therefore, a load–wind model was derived linking the har-
monics of the blade out- and in-plane bending moments at
the rotor frequency (noted 1×Rev, i.e., once per revolution)
with the wind vertical shear and yaw misalignment. A sim-
ple blade flapping model was used to derive and justify the
structure of the model, while, for accuracy, its actual coef-
ficients were obtained through identification from a higher-
fidelity aeroservoelastic model of the wind turbine or directly

from field tests. A validation of the observer using field data
was described in Bottasso and Riboldi (2015) using the Con-
trol Advanced Research Turbine (CART3) (Fleming et al.,
2011; Bossanyi et al., 2009). The results indicated a signifi-
cantly higher correlation of the observer results with respect
to a met mast, assumed as ground truth, than for the onboard
nacelle anemometer and wind vane. Notwithstanding these
very promising results, the same study also showed a marked
sensitivity of the results on the wind upflow angle, indicating
the probable need for a richer description of the wind field.

Following the idea described in Bottasso et al. (2010), an
estimator based on a linearized wind turbine model was pro-
posed in Simley and Pao (2014). The formulation used gener-
ator speed, fore–aft nacelle acceleration and collective cosine
and sine components of the blade out-of-plane bending mo-
ments to estimate, with a Kalman filter, the equivalent wind
speed together with the linear vertical and horizontal shears.
That study demonstrated the performance of the formulation
using nonturbulent wind fields that were exactly parameter-
ized by the assumed wind states. However, the effects of un-
modeled wind characteristics (for example, turbulence and
yaw or upflow misalignments) were not considered.

The concept of the wind turbine as a wind sensor was re-
cently extended to the detection of wake impingement in Bot-
tasso et al. (2015, 2018) and Cacciola et al. (2016a), where
loads are used to detect if and where a wake shed by an up-
stream wind turbine interferes with the rotor.

Motivated by the very promising validation results both
in simulations and in the field, the present paper extends and
improves the formulation of Bottasso and Riboldi (2014) and
Cacciola et al. (2016b) with the goal of addressing some of
their weaknesses.

First, extensive numerical experiments have shown that the
load–wind model on which the estimator is based must con-
sider at least four wind states instead of two, i.e., the two yaw
misalignment and upflow angles as well as the two horizon-
tal and vertical shears. These four states, together with the
mean rotor-equivalent speed, represent the lowest-order full
approximation of the wind inflow at the rotor disk: the two
angles give the orientation of the mean wind vector with the
rotor axis, while mean speed and the two shears describe a
tilted planar (or mixed linear–exponential, depending on the
type of shears considered) inflow. All of these states leave
significant signatures in the low-frequency response of the
rotor. Therefore, failure to include one of them in the model
will invariably create inaccuracies in the others.

Second, the paper shows that the estimators of these four
states should be limited to the use of the 1×Rev response. In
fact, although 2×Rev harmonics are indeed excited by the
four states, these same harmonics are also very significantly
excited by turbulence, i.e., by higher-order wind states (de-
scribing a nonplanar inflow distribution over the rotor disk).
As it is not possible to distinguish the part of the 2×Rev re-
sponse caused by the four wind states from the part caused by
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turbulence, inclusion of this higher-order response will result
in significant pollution of the estimates.

Third, the paper compares both a linear and a nonlinear
(quadratic) load–wind model. Both models are scheduled
with respect to wind speed in order to account for the dif-
ferent characteristics of a wind turbine in its wind speed op-
erating range. Numerical experiments show that the two are
very similar in performance, with a small improvement in
accuracy for the nonlinear model over the linear one.

Fourth, experience has shown that angles (yaw misalign-
ment and upflow) are significantly more difficult to estimate
than shears. The paper explains the reason for this behavior
from two different perspectives. From a mathematical point
of view, an a priori analysis based on the singular value de-
composition (SVD) demonstrates that angles have a lower
level of observability than shears, implying that any small
error or perturbation (in the model, in the measurements, in
the numerical solution, etc.) will be significantly amplified
during the model inversion necessary for the estimation of
the wind states. From a physical point of view, this is also
easily explained in terms of the sensitivity of angle of attack
changes at the blade section to wind state changes. As angles
of attack (and hence loads) change less in response to angle
changes than to shear changes, angles are harder to estimate
than shears when looking at rotor loads.

Finally, the paper demonstrates the performance of the es-
timator through extensive numerical simulations performed
with a high-fidelity aeroservoelastic model of a multi-MW
wind turbine. The numerical results illustrate the excellent
ability of the proposed formulation to follow rapid fluctua-
tions in shears. The same results also show very interesting
behavior of the angle estimators. In fact, although angle es-
timates are indeed generally polluted by oscillations that de-
pend on turbulence level, their mean errors are significantly
low. An analysis that considers the probability distributions
of wind speed and turbulence intensity at a given site shows
that the expected average inaccuracy of the angle estimates is
remarkably low, i.e., less than 1 degree. This means that an-
gles, although apparently oscillatory on short time horizons,
can be followed quite precisely in their mean value changes.

The paper is organized according to the following plan.
Section 2 presents the formulation of the observer, first intro-
ducing load–wind models that relate wind states and blade
harmonics, then describing the identification of the model
parameters with a system identification approach and finally
inverting the model to give wind states when loads are mea-
sured. A first set of simulations is used to motivate the limita-
tion of the load vector to the 1×Rev harmonics. To this end,
the simulation environment is briefly introduced together
with the aeroservoelastic mathematical model of a wind tur-
bine, which is used throughout the entire work to support all
numerical experiments. Section 3 is devoted to an a priori
observability analysis of the wind parameters using the SVD
followed by a concise summary of the expected observer be-
havior given in Sect. 3.2. The results of extensive testing of

the proposed method in nonturbulent and turbulent wind con-
ditions are given in Sect. 4. Finally, Sect. 5 completes the pa-
per by listing the main conclusions and suggesting possible
further improvements to the methodology.

2 Formulation

2.1 Wind anisotropy and its parameterization

The development of the proposed wind inflow observer is in-
spired by the idea of using the wind turbine as an anemome-
ter. In this sense, wind is not only the source of energy to be
harvested, but also one of the principal factors affecting the
wind turbine response. Specifically, the present observer is
based on the lowest load harmonics. Although other response
indicators could be used in principle, for example accelera-
tions, loads are considered in this work because they are now
often measured onboard modern large wind turbines for en-
abling load feedback control, and load sensors will probably
be standard equipment available on most future machines.

In order to understand the connection between blade loads
and wind characteristics, consider two different constant-in-
time wind fields. A first wind field is axially symmetric with
respect to the rotation axis of the wind turbine rotor, while
the second is not in magnitude or direction. In the second
– anisotropic – case, differences in speed and/or direction
over the rotor disk may be due to wind shears (both verti-
cal and horizontal) and/or misalignments with the wind di-
rection (due to both yawed flow and upflow caused by rotor
uptilt, terrain orography, etc.). In the axially symmetric case,
the angle of attack experienced by the blade sections during
their azimuthal travel over the rotor disk will be constant;
hence, the resulting aerodynamic loads will also be constant.
In the non-axially symmetric case, any anisotropy in the wind
will cause periodic fluctuations in the angle of attack at the
blade sections and hence periodic loads. The amplitude and
phase of such loads will depend on the wind field at the ro-
tor disk and on the aeroelastic characteristics of the rotor
blades. Therefore, the amplitude and phase of the periodic
loads carry information on the wind anisotropy at the rotor
disk. This fact can be readily verified with simplified math-
ematical models of a rotating blade in an anisotropic wind
field, for example the classical flapping and lagging blade
model developed in Eggleston and Stoddard (1987). Using
such a model, Bottasso and Riboldi (2014) suggested a linear
structure for a blade-response-based observer of cross-flow
and vertical shear.

In this work, the wind field anisotropy is parameterized us-
ing four variables (termed wind states in the following): the
vertical shear exponent κv, horizontal linear shear κh and the
two angles φ and χ measuring the yaw misalignment and up-
flow, respectively. These quantities are collected in the wind
state vector θ , defined as

θ = (φ, κv, χ, κh)T . (1)
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More complex wind distributions over the rotor disk might
be modeled using higher-order terms. However, such local
fluctuations would manifest themselves in higher Rev har-
monics, complicating the estimation process.

The wind states are defined with respect to a nacelle-
attached frame of reference with origin at the hub made
of three mutually orthogonal unit vectors x, y and z. The
x vector is parallel to the rotor axis and pointing down-
wind and z points upward in the vertical plane, while y is
defined according to the right-hand rule. The wind vector−→
V is expressed in terms of its components in the nacelle
frame as V = (u, v, w)T . The wind speed at the rotor disk
W (y,z)= |V | is readily computed as

W (y,z)= V
((

H + z
H

)κv

+ y

R
κh

)
, (2)

where V is the wind speed at hub height H , while R is the
rotor radius. The three wind velocity vector components are
then expressed as

u(y,z)=W (y,z)cos(φ)cos(χ ), (3a)
v(y,z)=W (y,z) sin(φ)cos(χ ), (3b)
w(y,z)=W (y,z) sin(χ ). (3c)

Note that because of the definition of the nacelle-attached
reference frame (x,y,z), a horizontal wind results in an up-
flow equal to the negative of the nacelle uptilt angle. This is
useful for separating the effects of gravitational loads from
aerodynamic ones, as shown later. To ease the interpretation
of the results, all computed wind states reported in the nu-
merical examples of the rest of this paper were mapped to
a frame of reference similar to the nacelle-attached one, but
with an x unit vector that is horizontal with respect to the
ground instead of being aligned with the rotor axis. Figure 1
illustrates the meaning of the four wind states.

Two different wind fields are considered in the follow-
ing. In the fully parameterized case, the wind field is com-
pletely defined at each instant in time by V and θ . A more
realistic wind field is generated using the Kaimal turbulent
wind model implemented in the open-source code TurbSim
(Jonkman and Kilcher, 2012). In the latter case, the wind
field can be considered the superposition of a fully param-
eterized wind with turbulent fluctuations possessing specific
space–time characteristics. Given a wind turbine operating in
a turbulent wind field, the goal of the proposed observer is to
estimate online a wind state θ that approximates the turbulent
wind at each instant in time.

2.2 Blade load harmonics

Under the effects of a steady anisotropic wind, the response
of a stable wind turbine converges to a periodic motion. In
such a regime, a generic blade load m can be expanded in

Lateral view

Lateral view

Upper view

Upper view

Vertical shear Horizontal shear 

Yaw misalignment Upflow angle

𝑧

𝑥
𝑥

𝑦

Figure 1. Definition of the four wind states used for parameterizing
the wind field over the rotor disk.

Fourier series as

m(ψ)=m0+
∞∑
n=1

(mnc cos(nψ)+mns sin(nψ)) , (4)

whereψ is the azimuth angle, the subscripts (·)nc and (·)ns re-
fer to the n×Rev cosine and sine components, respectively,
and m0 is the 0th harmonic constant amplitude. The signal
harmonics can be computed by demodulating the blade load
m(ψ) or, for rotors with at least three blades, by using the
Coleman–Feingold (or multi-blade coordinate) transforma-
tion (Coleman and Feingold, 1958; Bottasso and Riboldi,
2014). By using the latter method, harmonics at the n×Rev
frequency can be computed as{
mnc
mns

}
=2

3

[
cos(nψ(1)) cos(nψ(2)) cos(nψ(3))
sin(nψ(1)) sin(nψ(2)) sin(nψ(3))

]
(5)

m(1)
m(2)
m(3)

 ,
wherem(i) andψ(i) are the ith blade moment and azimuth an-
gle, respectively. Similar relationships also exist for a higher
number of blades but not for a smaller number. It can be
shown that harmonics at the i×Rev are thus transformed
into 0×Rev components, whereas the other harmonics are
either canceled out or transformed into multiples of the num-
ber B of blades. This implies that it is always necessary to
filter around and above the B×Rev frequency after having
applied the Coleman transformation. Adaptive filtering can
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be used to follow rotor speed changes caused by variations
in the wind speed.

Both out-of-plane (superscript (·)OP) and in-plane (super-
script (·)IP) blade bending harmonic components up to a de-
sired Rev frequency are considered and collected in a vector
m, defined as

m=
(
m1c

OP, m1s
OP, m1c

IP, m1s
IP, m2c

OP, m2s
OP, m2c

IP, m2s
IP, . . .

)T
. (6)

2.3 Wind state observer

2.3.1 Modeling of the load–wind relationship

The formulation of a wind state observer necessitates a
model expressing the dependency of the loads on the wind
conditions, in particular of the load harmonicsm on the wind
state vector θ . To this end, first consider a wind turbine model
expressed by a set of nonlinear differential equations together
with their output relations:

f
(
x, ẋ,u(θ ,V ,%)

)= 0, (7a)
y = g(x, ẋ,u(θ ,V ,%)

)
, (7b)

where x is the state vector, u is the input vector and y =
(mOP,mIP)T indicates the output vector (in this case, con-
taining the out- and in-plane components of the blade bend-
ing moment m). The input vector only includes the exoge-
nous disturbance represented by the wind parameters θ , the
wind speed V and the air density % because the presence of
a feedback controller (usually in the form of a pitch-torque
controller) can be considered to be included in the definition
of the system model f (·).

Under a steady input u, the response of the system (Eq. 7a)
in terms of its states converges to a periodic solution, which
can be described through a truncated Fourier expansion as

x = x0+
N∑
n=1

(xnc cos(nψ)+ xns sin(nψ)) . (8)

By inserting Eq. (8) into Eq. (7a) and collecting all terms at
the same frequency (a procedure termed harmonic balance),
one can compute xnc and xns, which will clearly depend on
θ , V and %. Finally, the harmonics xnc and xns can be in-
serted into the output Eq. (7b), yielding the desired relation-
ship between load harmonics and wind parameters:

m=M(θ ,V ,%). (9)

An example of this derivation for a simplified flapping blade
model can be found in Bottasso and Riboldi (2014). In prin-
ciple, the resulting input–output relationship should also in-
clude the dependency on other parameters, such as blade
pitch and rotor speed, as shown for example in Simley and
Pao (2014). However, all these quantities depend in turn on
the environmental and operating conditions according to the
particular regulation strategy adopted by the onboard con-
troller. Therefore, in this work the model is assumed to de-
pend only on θ , V and %. Vector θ is to be estimated with the

proposed observer, while V , which is a scheduling parame-
ter for the model, can either be measured or observed using
a rotor-equivalent wind speed estimator (Soltani et al., 2013;
Simley and Pao, 2014; Bottasso et al., 2015, 2018).

This approach leads to a white box model, i.e., a model
using analytical formulas to express relationships among
the relevant variables based on physical principles (Ljung,
2010). The use of white box models may suffer from inac-
curacies. Any mismatch between model (Eq. 7) and reality
will inevitably pollute the input–output relationship (Eq. 9).
To address this problem, one may calibrate some of the pa-
rameters of the model (Eq. 7) based on available measure-
ments. This procedure is carried out using parameter identi-
fication techniques (Jategaonkar, 2015) and leads to a gray
box model, defined as a white box model in which some pa-
rameters are taken as unknown (Ljung, 2010).

In this paper, a third approach is used, which is entirely
based on system identification. In this case, the desired
input–output relationship between loads and wind states is
considered as a black box (Ljung, 2010). In this case, the
model does not contain any physics-based formulas, but it is
designed to be capable of parameterizing the desired func-
tional dependency in a general and flexible way. This is typi-
cally done through a set of assumed bases and associated free
parameters (Ljung, 2010), which are then identified directly
from measurements of m and θ . This way, the need for an
analytical model is bypassed completely. The advantage of
avoiding the use of a white or gray model is paid in terms
of the need for a set of measurements that is rich and com-
plete enough to enable the identification of the relationship
of interest. Also note that although we use a black box ap-
proach, which by definition is blind to the physics, we bring
specific knowledge on the nature of the problem through the
definition of the output vector in terms of load harmonics.

The data set for the identification of the black box model
can be obtained either by simulation or by measurements per-
formed in the field. The former approach, which is also the
one that was used for the present work, is relatively simple
because in a simulation environment one can readily mea-
sure all necessary quantities (loads and wind states). In con-
trast to this simplicity, it is clear that any mismatch between
the simulation model and reality will affect the quality of
the identified input–output model. While this is in principle
a possible drawback, one should not forget that the present
approach only uses the very lowest harmonics (typically only
the 1×Rev) of the response. State-of-the-art aeroservoelastic
codes used for the design and certification of wind turbines
are typically quite accurate in this frequency range. An ad-
ditional remark on this modeling approach is in order: it is
clear that identifying a black box model based on the outputs
of a simulation is in a sense akin to the extraction of a white
box model from the simulation model itself. However, given
the level of complexity of modern comprehensive aeroser-
voelastic codes, the direct extraction of the necessary input–
output relationship through the manipulation of the underly-
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ing equations is hardly feasible in practice, especially when
working with legacy codes.

Another possible approach is to use field measurements.
In this case the machine should be equipped with load sen-
sors, a met mast and a lidar or other flow sensors to measure
wind states. Each of these techniques implies its own hypoth-
esis (e.g., frozen turbulence in the case of flow measurements
performed away from the rotor disk), each is limited by its
own specific inherent accuracy and each is affected by er-
rors and disturbances. While this approach is certainly pos-
sible and was in fact successfully demonstrated in Bottasso
and Riboldi (2014), it was not pursued further in the present
work.

2.3.2 Linear model

Inspired by Eq. (9), a linear input–output model can be ex-
pressed as

m= F(V,%)θ +m0(V,%), (10a)

= Tθ , (10b)

where F and m0 are the model coefficients, while T(V,%)=
[F(V,%), m0(V,%)] and θ = (θT , 1)T .

Matrix F is the sensitivity of the harmonics with respect to
the wind states and depends on the operating condition of the
machine through the wind speed V and the air density %. Vec-
torm0 is a term accounting for gravity-induced loads. In fact,
when θ = 0, the wind field is a constant-over-the-rotor-disk
flow parallel to the rotor axis, which only causes a 0×Rev
load response and therefore does not contribute to m. Simi-
larly, inertial effects due to the rotor spinning with an angular
velocity� also generate only 0×Rev loads, and hence do not
contribute to Eq. (10). Vector m0 can be expressed as

m0 = g+ qAc(V,%). (11)

The first term, g, accounts for in-plane and out-of-plane
gravity-induced loads, the latter being caused by blade pre-
cone, prebend and rotor uptilt. The second term, qAc, is a
gravity-induced load due to the rotor deformation caused by
aerodynamic loads, which can therefore be nondimensional-
ized accordingly. For the same reasons noted above, this term
also generally depends on V and %.

Separating the effects of gravity from aerodynamic-
induced loads allows for the correction of air density
changes. This is important in practice because density, being
dependent on temperature, undergoes significant fluctuations
in the field, thereby affecting load measurements. The split
of gravity-induced terms into constant and aerodynamically
caused terms is also important, as it highlights the variability
of the latter term with the operating condition.

The unknown matrix of coefficients T can be computed
by collecting multiple observations for the momentsm(i) and
inputs θ

(i)
, where (·)(i) indicates the ith of Nexp available ob-

servations. By grouping the measurements into the matrices

M=
[
m(1), m(2), . . ., m(Nexp)

]
, (12a)

2=
[
θ

(1)
, θ

(2)
, . . ., θ

(Nexp)
]
, (12b)

the input–output relationship (10) can be written collectively
for all observations as

M= T2. (13)

Finally, matrix T is readily estimated in a least-squares sense
as

T=M2T
(
22T

)−1
. (14)

The problem is solvable if and only if matrix 2 has a full
rank. In this sense, the condition number of matrix 22T

gives an indication of the identifiability of a model given a
set of measurements. If the condition number is excessively
high, then the problem is ill posed and the data set has to be
enriched and/or modified.

As previously noted, the input–output model should be
scheduled in terms of the wind speed V and air density %, as
the model coefficients depend on the operating condition of
the machine. To this end, a piecewise linear scheduled model
can be expressed as

m=
NnodeV∑
k=1

Nnode%∑
w=1

Fk,wnk,w(V,%)θ +m0k,wnk,w(V,%)

=
NnodeV∑
k=1

Nnode%∑
w=1

Tk,wnk,w(V,%)θ , (15)

where the wind speed and air density ranges have been
discretized by introducing NnodeV wind speed nodes and
Nnode% density nodes, while Fk,w and m0k,w are the model
coefficient nodal matrices grouped together as Tk,w =
[Fk,wm0k,w]. Finally, two-dimensional shape functions are
noted nk,w(V,%). The scheduled model (Eq. 15) can be writ-
ten in a more compact form as

m= T̂ θ̂ (V,%) (16)

where θ̂ (V,%)= N̂(V,%)θ and

T̂=
[
T1,1, T1,2, . . ., Tk,w, . . ., TNnodeV ,Nnode%

]
, (17a)

N̂=[n1,1(V,%)I, n1,2(V,%)I, . . ., nk,w(V,%)I,

. . ., nNnodeV ,Nnode% (V,%)I
]T
, (17b)

where I is an identity matrix of suitable dimensions.
Samples of the wind states and associated loads are now

collected at Nexp different operating conditions, each corre-
sponding to its own wind speed V (i) and air density %(i). The
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Figure 2. Behavior of two load sensitivities as functions of wind speed V and air density %: sensitivity of out-of-plane 1×Rev cosine
moment with respect to vertical shear κv (a) and yaw misalignment φ (b). The boundaries between regions II, II 1

2 and III are indicated by
red solid lines. The color indicates the value of the function, i.e., the elevation of the plot.

ith load vector and wind state vector are notated as m(i) and
θ̂ (V (i),%(i)), respectively. Both loads and wind states are col-
lected into matrices as

M̂=
[
m(1), m(2), . . ., m(Nexp)

]
, (18a)

2̂=
[
θ̂ (V (1),%(1)), θ̂ (V (2),%(2)), . . .,

θ̂ (V (Nexp),%(Nexp))
]
, (18b)

leading to the overall system

M̂= T̂2̂. (19)

Finally, the matrix of unknown coefficients T̂ is computed in
a least-squares sense as

T̂= M̂2̂
T
(
2̂2̂

T
)−1

. (20)

The problem is well posed if the solving least-squares matrix,
2̂2̂

T
, is non-singular. One must clearly ensure that samples

adequately cover all wind speed intervals in order to ensure
the identifiability of all nodal matrices Fk,w and m0k,w.

An example of the typical behavior of the model coeffi-
cients is given in Fig. 2 for the wind turbine described later
in this paper. The figure reports ∂m1c

OP/∂κv (Fig. 2a) and
∂m1c

OP/∂φ (Fig. 2b) as functions of V and %. There is dis-
tinctly different behavior with respect to the wind speed of
the load sensitivities in regions II (partial load) and III (full
load). The rapid changes in the transition region II 1

2 call for
a suitable refinement of the node spacing in this regime. In
general, the situation with respect to density is simpler, with
small departures from linear behavior only in the transition
region.

2.3.3 Nonlinear model

The assumption of linearity in the input–output relation-
ship (Eq. 9) might lead to inaccuracies. To correct for these
potential effects while limiting model complexity, a model
with an assumed degree of nonlinearity is formulated as

m= FNLθNL+mNL0 . (21)

The nonlinear wind state vector θNL contains, in addition to
the elements of θ , their nonlinear combinations θNLj up to a
given order p, where

θNLj =
∏
i

θi
αi s.t.

∑
i

αi ≤ p; (22)

θi is the ith element of the linear wind state vector θ . For
p = 2, which is the case considered here, the nonlinear wind
state vector contains 14 terms:

θNL = (φ, κv, χ, κh,φκv, φχ, φκh,

κvχ, κvκh, χκh, φ
2, κv

2, χ2, κ2
h

)T
. (23)

As the nonlinear model (Eq. 21) is linear in the unknown co-
efficients FNL and mNL0 , its identification is formally iden-
tical to that of the linear model for both the unscheduled
and the scheduled cases. However, as more coefficients are
present, one has to check that the data set is complete enough
to guarantee that the problem is well posed.

2.3.4 Wind turbine simulation model

In this work, an aeroservoelastic simulation model is used to
represent the dynamic behavior of a wind turbine in all differ-
ent scenarios of interest. The model represents a horizontal
axis wind turbine with a rotor of 93 m diameter with an uptilt
of 4.5◦, a hub height of 80 m and a rated power of 3 MW. The
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Figure 3. Comparison between measured and predicted harmonics for the linear model (dashed thick lines) and the nonlinear model of
order 2 (solid thin lines). Normalized 1×Rev cosine (a) and sine (b) out-of-plane moment components are shown for different wind state
variables.

wind speeds at cut-in (VCI), rated power (VRP) and cut-out
(VCO) are respectively equal to 3, 12.5 and 25 m s−1. A rather
wide transition region II 1

2 extends from 9 to 12.5 m s−1. The
cut-in rotor speed is equal to 5.2 RPM, whereas the rated ro-
tor speed is equal to 15 RPM. Both side–side and fore–aft
tower frequencies ftower are equal to 0.3 Hz. The first blade
flapwise frequency fflap varies between 0.9 Hz at cut-in and
1 Hz at rated rotor speed. Finally, the first blade edgewise
mode fedge is at around 1.5 Hz.

The aeroservoelastic model of the machine is devel-
oped using the finite-element multi-body code Cp-Lambda
(Bauchau et al., 2003; Bottasso and Croce, 2006). The model
includes flexible blades, a tower and a drivetrain imple-
mented with geometrically exact nonlinear beam models
(Bauchau, 2011). Rotor-speed-dependent mechanical losses
are considered within the drivetrain generator model, and
compliant foundations are used to connect the tower base
to the ground. The aerodynamics are rendered through the
classical blade element momentum theory (BEM) and con-
sider hub and tip losses, dynamic stall and unsteady cor-
rections. The model is completed by an active pitch torque
controller implemented as a speed-scheduled linear quadratic
regulator (LQR) (Bottasso et al., 2012; Riboldi, 2012). Ad-
ditionally, the pitch and torque actuators are modeled as
second- and first-order systems, respectively. Finally, the
model is subjected to wind time histories generated by the
code TurbSim (Jonkman and Kilcher, 2012).

2.3.5 Load–wind relationship in steady conditions

To test the performance of the linear and nonlinear
models, the wind turbine was simulated in a vari-
ety of different operating conditions. Fully parameterized
steady winds were generated at NnodeV = 10 speeds V =
{3, 4, 5, 6, 7, 8, 9, 11, 15, 19}m s−1, where for each differ-
ent wind speed all 900 possible combinations of the follow-
ing wind parameters were considered:

φ = {−16, −12, −8, −4, 0, 4, 8, 12, 16} deg, (24a)
κv = {0.0, 0.1, 0.2, 0.3, 0.4}, (24b)
χ = {0, 4, 8, 12} deg, (24c)
κh = {−0.1, −0.05, 0.0, 0.05, 0.1}, (24d)

resulting in Nexp = 9000 available observations. Loads were
measured on the aeroelastic model in a blade-attached refer-
ence frame located at the root of each blade, thereby simu-
lating the presence of strain gages measuring flapwise and
edgewise bending moment components, which were then
transformed into out- and in-plane rotor components by using
the blade pitch angle. Next, the out- and in-plane loads were
decomposed into their harmonics at the 1×Rev and 2×Rev
with the Coleman transformation and used together with the
corresponding wind states to identify the linear and nonlinear
models used throughout this work.

From the full range of tests performed, Fig. 3 shows two
representative examples at a wind speed of 7 m s−1, illustrat-
ing the match between the measurements obtained on the
wind turbine simulation model (taken as ground truth) and
the outputs of the identified models. The ground truth is re-
ported with markers, the linear model with dashed lines and
the nonlinear model with solid lines. Figure 3a shows m1c

OP

as a function of φ for different values of κv and for κh = 0.0
and χ = 4◦. Figure 3b shows m1s

OP as a function of χ for
different values of κh and for κv = 0.0 and φ = 0◦. Both mo-
ments are nondimensionalized with respect to their own max-
imum absolute values.

The figure shows that both models are capable of captur-
ing the relevant behavior of the harmonics with respect to
wind states. The relationships appear to be linear, with only
very minor nonlinearities. These analyses also graphically il-
lustrate the sensitivity of the loads with respect to the wind
parameters. As expected, even though all parameters have a
certain effect on all loads, cosine harmonics are mainly in-
fluenced by the couple {φ, κv}, whereas sine harmonics are
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Figure 4. Comparison between measured and predicted harmonics for the nonlinear model of order 2 (solid thin lines). Normalized out-of-
plane 2×Rev cosine (a) and in-plane 2×Rev sine (b) are shown for different wind state variables.

influenced by {χ, κh}. Similar considerations can be derived
for the in-plane harmonics, which are not shown here for the
sake of brevity.

In contrast, the 2×Rev harmonics have markedly differ-
ent behavior, as shown in Fig. 4. The plots report the nondi-
mensional out-of-plane 2×Rev cosine term (Fig. 4a) and the
in-plane 2×Rev sine term (Fig. 4b) as functions of φ and for
varying κv, with κh = 0.0 and χ = 4◦. Given the clear non-
linearity of the relationships, only the nonlinear model is able
to capture the correct trends of these higher harmonics with
respect to the wind states.

2.3.6 Choosing the number of harmonics

The previous analysis performed in steady wind conditions
showed that the 1×Rev harmonics exhibit largely linear be-
havior with respect to the wind states, while the 2×Revs ex-
hibit marked nonlinearities. In order to understand the be-
havior of the models in more realistic conditions, simula-
tions were conducted in turbulent winds. In particular, it is
necessary to establish whether the unsteadiness in the exci-
tation provided by a turbulent wind is compatible with the
steady-state harmonic models considered herein. In addition,
as previously noted, a turbulent wind field cannot generally
be exactly represented by the reduced set of wind states.

To investigate these effects, a 10 min simulation was per-
formed at a 5 m s−1 mean wind speed with a TI equal to
20 % and null mean yaw misalignment, upflow and vertical
and horizontal shears. At each instant in time, values of the
wind parameters were computed from the wind grid gener-
ated with TurbSim (Jonkman and Kilcher, 2012) by fitting
in a least-squares sense Eqs. (2) and (3). Blade load harmon-
ics were extracted from the simulated outputs using the Cole-
man transformation and filtered with a low-pass sixth-order
Butterworth filter with a cut-out frequency of 0.14 Hz in or-
der to remove the remaining 3×Rev harmonic content in the
Coleman-transformed moments. Figure 5 shows a compari-
son of the harmonics extracted from the simulation (shown

as a thick blue solid line and again assumed to represent the
ground truth) with those predicted by the second-order non-
linear model (shown as a thin red solid line) fed with the wind
parameters computed from the wind grid. Figure 5a shows
moment m1c

IP, while Fig. 5b shows moment m2c
OP.

By looking at Fig. 5a, it appears that there is an excellent
match between the predictions and measurements for the in-
plane 1×Rev cosine harmonic. The small delay between the
two signals is due to the filter used for removing higher fre-
quencies. Both the linear and nonlinear models yield simi-
larly accurate results for the sine and out-of-plane compo-
nents, which are not reported here for brevity. These results
show that 1×Rev harmonics are primarily influenced by the
wind states used here for parameterizing the wind field, with
only small disturbances caused by turbulent fluctuations and
blade dynamic effects. In this sense, 1×Rev harmonics are
good candidates for feeding a wind state observer.

In contrast, Fig. 5b shows completely different behavior
of the measurements and predictions for the 2×Rev compo-
nents in turbulent conditions. It should be remarked that, as
previously illustrated in Fig. 4, the model is perfectly capable
of capturing these higher harmonics with good accuracy in
steady wind conditions. The reason for the very poor results
in the turbulent case is that small-scale turbulent fluctuations
in the wind field cause 2×Rev harmonics that are compa-
rable to, if not larger than, those caused by the wind states
used for the parameterization. Therefore, although 2×Rev
harmonics carry information on the wind states, this infor-
mation cannot be separated from the pollution brought by the
smaller-scale wind field fluctuations. In this sense, 2×Rev
harmonics are not good candidates for the observation of
wind states. Based on these results, the vector of blade har-
monics is limited in the rest of this work to 1×Revs and
simply defined as

m=
(
m1c

OP, m1s
OP, m1c

IP, m1s
IP
)T
. (25)
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Figure 5. Comparison in turbulent wind conditions between measured harmonics (thick solid line) and harmonics predicted with a second-
order nonlinear model (thin solid line). (a) In-plane 1×Rev cosine component; (b) out-of-plane 2×Rev cosine component.

2.3.7 Wind state estimation

The problem of computing an estimate θE of the wind state
vector given a load harmonic vector mM is considered next.
Given the input–output model (Eq. 9), a measured load mM
can be expressed as

mM =M (θ ,V ,%)+ r, (26)

where r is the measurement error with covariance R=
E
[
rrT

]
. The residual is assumed to be zero-mean, white and

Gaussian. The residual is due not only to measurement noise,
but also to all effects not captured by the model, such as sam-
pling and discretization errors, unmodeled nonlinearities and
turbulence-induced loads. This implies that the assumption
of a zero-mean, white and Gaussian noise might be far from
real.

The generalized least-squares estimate of θ given mM is

θE =argmin
θ((

mM−M (θ ,V ,%)
)T R−1(mM−M (θ ,V ,%)

))
. (27)

Consider the linear model (Eq. 10a) and assume V to be
known. The solution to the problem in Eq. (27) can be
worked out analytically as

θE =
(

F(V )TR−1F(V )
)−1

F(V )TR−1(mM−m0). (28)

Vector θE is structurally identifiable (or observable) if matrix
F(V )TR−1F(V ) is non-singular. The structural identifiability
analysis, which reveals when the estimation problem is well
posed and to what degree of accuracy it can be solved, will
be analyzed in Sect. 3.

For the nonlinear model (Eq. 21), the solution to the prob-
lem (Eq. 27) involves a nonlinear unconstrained minimiza-
tion, which was solved here starting from a suitable ini-
tial guess by using the Levenberg–Marquardt method (More,
1977). As multiple local solutions may characterize the non-
linear problem, a global search algorithm or multiple starting

points should be used to find the optimum. Here again, one
must verify observability, as discussed later in Sect. 3.

The estimator (Eq. 27) was first characterized in steady
wind conditions, and the results of this analysis are shown
next. All plots are arranged in a similar way: any estimated
wind state variable is plotted on the y axis as a function of
its corresponding ground truth quantity, which is reported on
the x axis. A black thin solid line indicates the bisector of the
plot, representing a perfect match between the two quanti-
ties. Estimates are plotted using markers and thick solid lines
for different wind conditions. Clearly, any deviation from the
bisector directly indicates an estimation error.

Figure 6 shows an excerpt of the results obtained with the
linear model for different wind conditions at 5 m s−1. The
estimates appear to be of good accuracy for all wind state
variables, although some small errors affect the two angles.
The reason for this behavior can be traced back to mild non-
linearities clearly not captured by the linear model that affect
angles to a greater extent than shears. Among the wind pa-
rameters, the upflow seems to be the least accurate, while the
horizontal shear appears as the most precise. Similar results
not shown here were obtained for different wind speeds and
flow conditions.

The match improves with the use of the nonlinear model,
as reported in Fig. 7. The plots show that all quantities appear
to be well captured, with a clear improvement in the quality
of the results.

3 A priori observability analysis

The observability of the wind parameters is analyzed next.
As one can easily imagine, the level of accuracy of the es-
timates strongly depends on the sensitivity of the moments
with respect to the to-be-estimated parameters and the noise
in the measurements.

Assuming a linear model, the real (unknown) wind state
vector θR is related to the measured load vector mM as

mM = FθR+m0+ r. (29)
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Figure 6. Wind states observed using the linear model for different steady inflow conditions at 5 m s−1: yaw misalignment φ at χ = 8◦ and
κh =−0.1 (a), vertical shear κv at χ = 8◦ and κh =−0.1 (b), upflow angle χ at φ =−8◦ and κh =−0.1 (c), horizontal shear κh at χ = 8◦
and φ =−8◦ (d).

By inserting Eq. (29) into Eq. (28), the estimation error εθ is
readily derived as

εθ = θE− θR =
(

FTR−1F
)−1

FTR−1r. (30)

The estimate is unbiased because the expected value of
the error E [εθ ] is equal to zero when the residual is zero-
mean. Additionally, the covariance of the estimation error
Cov[εθ ]= E

[
εθεθ

T
]

(Crámer, 1946) is written as

Cov[εθ ]=
(

FTR−1F
)−1

. (31)

This expression shows the interplay between noise r and sen-
sitivity F captured by the term R−

1
2 F: the higher the variance

and/or the lower the sensitivity of the measurements with re-
spect to the wind states, the worse the accuracy of the esti-
mates.

The covariance Cov[εθ ] expressed by Eq. (31) is typically
fully populated, as the errors of the estimates are correlated.
To ease the understanding of the estimation problem, the
SVD (Golub and van Loan, 1996) can be used to decouple

the estimates. In fact, matrix R−
1
2 F can be factored as

R−
1
2 F= U6VT , (32)

with U ∈Rm×m, 6 ∈Rm×n and V ∈Rn×n, where m is
the number of measurements and n is the number of
wind state variables. Matrices U and V are orthonormal,
i.e., UTU= UUT = I and VTV= VVT = I, whereas 6 =
diag(. . .,1/σi, . . .) is a diagonal matrix and σi is the standard
deviation. By inserting Eq. (32) into Eq. (31), the covariance
of the estimation error can be expressed as

Cov
[
VT εθ

]
=E

[(
VT (θE− θR)

)(
VT (θE− θR)

)T ]
=
(
6T6

)−1 = diag(. . .,σi2, . . .). (33)

This way, the problem is reformulated by the change in vari-
ables ξ = VT θ , where ξ variables are statistically indepen-
dent with diagonal covariance. This reformulation simplifies
the interpretation of the structural observability of the prob-
lem. In fact, the ith column of matrix V linearly combines
the wind parameters by mapping them into a new parameter
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Figure 7. Wind state observed with the nonlinear model for different steady inflow conditions at 5 m s−1: yaw misalignment φ at χ = 8◦ and
κh =−0.1 (a), vertical shear κv at χ = 8◦ and κh =−0.1 (b), upflow angle χ at φ =−8◦ and κh =−0.1 (c), horizontal shear κh at χ = 8◦
and φ =−8◦ (d).

ξi with variance σi2. Clearly, a high variance indicates a low
level of identifiability of the associated linear combination of
wind parameters.

This analysis also provides information on the dependence
of loads on wind states. In fact, one can easily show that

∂m

∂ξ
= R

1
2 U6. (34)

Therefore, the analysis of U reveals the linear combination
of inflow parameters on which each load depends the most.

The same analysis can be applied to the nonlinear case
by linearizing Eq. (21) around a specific operating and wind
condition and using F= ∂(FNLθNL)/∂θ = FNL∂θNL/∂θ .

3.1 Results of the a priori analysis

The a priori analysis was applied to the identified input–
output model. Three different values of the noise covariance
R were considered. In the first two cases, all measures were
assumed to be uncorrelated and affected by the same noise
level, i.e., R= γ 2I, where γ is a positive real number. In the
first case, γ was set to 0.01mmin, with mmin being the min-
imum of the load amplitude maxima. In the second case, γ

was set to 0.01mmax, with mmax being the maximum of the
load amplitude maxima. In the third case, the noise covari-
ance was computed using Eq. (26):

Rε = 1
Nexp

Nexp∑
i=1

r ir iT

= 1
Nexp

Nexp∑
i=1

(mMi −Mi(θ ,V ,%))

(mMi −Mi(θ ,V ,%))T , (35)

where mMi values are loads measured on the simulation
model and Mi (θ ,V ,%) represents those given by the ob-
servation model.

For the first case, matrices V and U were computed at a
wind speed of 5 m s−1 to obtain

V=


∼ 0 ∼ 0 0.55 0.83
∼ 0 ∼ 1 ∼ 0 ∼ 0
∼ 0 ∼ 0 0.83 0.55
∼ 1 ∼ 0 ∼ 0 ∼ 0

 ,
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Figure 8. Expected standard deviation of the wind state estimates as a function of wind speed. (a) Standard deviations for angles φ and χ ;
(b) standard deviations for shears κv and κh.

U=


0.11 0.97 0.14 0.18
−0.97 0.11 0.18 −0.14
0.03 0.22 −0.60 −0.77
−0.23 0.02 −0.77 0.60

 , (36)

where ∼ 0 and ∼ 1 indicate a number approximately equal
to 0 and to 1, respectively. To interpret these results,
remember that the wind state vector is defined as θ =
(φ, κv, χ, κh)T , whereas the load vector is defined as m=(
m1c

OP, m1s
OPm1c

IP, m1s
IP)T .

The first and second columns of V are related to the hori-
zontal and vertical shears, respectively. Since their maximum
entries approach 1, both parameters can be independently
identified. However, a coupling between the two angles can
be seen in the third and fourth columns: an error in the esti-
mation of one angle will propagate and affect the estimate of
the other. Similar V matrices leading to the same conclusions
were computed at different wind speeds and different noise
levels γ 2.

To interpret matrix U, consider that rows are associated
with entries of the load vector, whereas columns are associ-
ated with entries of the wind state vector. The first column
of U shows that the horizontal shear mostly affects the sine
components of both out- and in-plane moments. Similarly,
the second column shows that the vertical shear mostly af-
fects the cosine components of the loads. In contrast, the third
and fourth columns, associated with the angles, do not indi-
cate a predominant effect on some load components. In fact,
all loads are affected by both upflow and yaw misalignment,
with the in-plane harmonics exhibiting higher sensitivity.

As a side observation, also note the symmetry between the
couples {φ, κv} and {χ, κh}, which is an effect of the nearly
90◦ symmetry in the definition of the wind parameters and in
the response of the machine (see Fig. 1). In other words, for
the same horizontal or vertical shear the rotor response will
be the same but shifted by 90◦. Similarly, for the same upflow

Table 1. Expected variance of wind state estimates based on the a
priori analysis.

Standard deviations 0.01mmin 0.01mmax Rε

σφ[deg] 0.95 26.0 2.5
σκv 1.1× 10−3 3.0× 10−2 6.5× 10−2

σχ [deg] 0.81 22.3 1.5
σκh 6.2× 10−4 1.7× 10−2 2.3× 10−2

and misalignment angles, the rotor response will be the same
with a 90◦ shift. This symmetry in the behavior of the rotor
can be exploited to simplify the identification problem, as
shown in Cacciola et al. (2016a).

Table 1 reports the expected variances of the wind state
estimation errors for the three considered noise variances.
It appears that, as expected, higher noise levels are associ-
ated with higher variances of the estimates. In addition, the
variance of the angles appears to be significantly higher than
that of the shears. In fact, angle variances approach and ex-
ceed tens of degrees for the higher noise levels, indicating
that instantaneous estimates of these wind states are proba-
bly impractical. However, longer-term observation could be
possible with time filtering, as discussed and shown later.

Finally, Fig. 8 shows the standard deviation (SD) of the
wind parameter estimates with respect to the wind speed,
computed assuming R= γ I with γ = 0.01(mmin+mmax)/2.
The plot shows a marked improvement in the quality of the
estimates with wind speed.

Similar results not shown here for the sake of brevity were
obtained with the nonlinear model.

3.2 Expected observer behavior

Given the behavior of the linear and nonlinear observers and
the results of the SVD-based a priori observability analysis,
the following conclusions can be made.
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Figure 9. Effects of shear and misalignment changes on sectional
angle of attack.

– In general, it should be possible to estimate both shears
with satisfactory precision, as their errors are moderate
even for significant measurement noise levels.

– It is expected that the estimation of both yaw misalign-
ment and upflow angle will be more significantly af-
fected by measurement noise. Because of this, the es-
timation of these angles should be accompanied by a
suitable filtering action in order to remove fast fluctu-
ations. This also implies that these angles can only be
estimated on longer time horizons than in the case of
shears.

– The observation accuracy should increase with increas-
ing wind speed.

– The nonlinear model appears to be more accurate than
the linear model for the estimation of yaw misalignment
and upflow angles. However, shears also seem to be cap-
tured well by the linear model.

The different expected accuracy in the estimation of shears
and angles can be given an even more intuitive explanation.
Consider the blade section depicted in Fig. 9. The relative air-
flow velocity vector can be decomposed into the component
V⊥ = (1− a)V perpendicular to the rotor disk plane, where
a is the local induction factor and the one V// =�r parallel
to it, with r being the section radial position.

A change in shear will be seen by the blade section mainly
as a change in V⊥. However, a change in misalignment will
induce a change mainly in V//. The figure shows that two
equal velocity perturbations, 1V = Vκv = V sin(φ) perpen-
dicular and parallel to the rotor plane, respectively, will in-
duce different changes in the sectional angle of attack. In par-
ticular, the change due to perpendicular (shear-caused) varia-
tion is larger than that due to parallel (misalignment-caused)
variation.

This is also easily shown by considering that the in-
flow angle is tanζ = V⊥/V//. Hence, for a perturbation 1V
due to shear variation, the inflow changes as tanζ = (V⊥+
1V )/V//. In contrast, for a perturbation 1V due to mis-
alignment variation, the inflow changes as tanζ = V⊥/(V//+
1V ). For typical values of V⊥ and V//, Fig. 10 shows the be-
havior of tanζ as a function of 1V . As clearly shown by
the plot, for a same perturbation 1V (for example, 1 m s−1,

Figure 10. Variation in the inflow angle ζ at a blade section as a
function of a perturbation 1V in a direction either perpendicular
(solid line) or parallel (dashed line) to the rotor plane.

as shown in the figure), the ensuing change in inflow angle
is larger when the perturbation is due to a change in shear
than when it is due to a change in misalignment. This implies
similarly larger variation in the sectional angle of attack and
hence in the loads. In conclusion, one may expect that the
rotor response will be more sensitive to variations in shear
than in misalignment when these two different phenomena
produce velocity perturbations of the same magnitude. Due
to the rotational symmetry of the problem, the same conclu-
sions clearly hold true for variation in horizontal shear or for
variation in the vertical upflow angle.

4 Results

After having verified in the previous sections that blade load
harmonics carry enough information to infer wind states in
steady conditions, attention is now turned to the dynamic
problem. The nonturbulent case is considered first by using
fully parameterized wind fields with variable-in-time wind
states. Next, the turbulent case is considered by using wind
fields modeled by the Kaimal method for different constant
mean wind states. Finally, turbulent conditions with variable-
in-time mean quantities are considered.

4.1 Nonturbulent case with fully parameterized wind
fields

Ideal nonturbulent and fully parameterized wind fields with
time-varying wind states were generated according to Eq. (3)
by independently varying angles φ and χ as well as shears κv
and κh. Here and in the following examples, load harmonics
were extracted from the simulated wind turbine response by
using the Coleman transformation followed by filtering with
an eighth-order Butterworth filter with a cut-out frequency
equal to 0.35ftower = 0.105 Hz to remove load oscillations
at the tower frequency. Finally, inflow conditions were es-
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timated with the proposed observer and compared with the
real ones.

Figure 11a and b show the results obtained at 4 and
9 m s−1, respectively, using the linear and nonlinear models.
The agreement is generally good as all parameters are well
observed by both models. The observed states are affected
by a delay of about 7 s, primarily due to the effects of the
filter. There are minor differences between the linear and the
nonlinear models, which are not large enough to allow any
conclusions to be drawn.

4.2 Turbulent case

Different turbulent wind fields were generated using the
TurbSim software according to the Kaimal model. The cor-
responding inflow conditions, in terms of hub-height wind
speed V and wind states θ , were then computed by fitting at
each instant in time the wind state parameterization (Eq. 1)
to the turbulent wind grid over the complete rotor disk. The
wind parameters obtained this way were then used as refer-
ence quantities to verify the accuracy of the estimated ones.

As wind states are inferred from blade loads, which in turn
depend on the wind conditions at the location occupied by
each single blade at each time instant, an alternative way
of computing the reference wind conditions was also used.
In this second implementation, wind parameters were com-
puted by fitting the wind state parameterization expressed by
Eqs. (2) and (3) not over the complete rotor disk, but only to
its portion occupied at that time instant by the three blades.
Spanwise weighting was also used on account of the nonuni-
form power extraction characteristics of rotors (Soltani et al.,
2013). As the two methods do not yield significantly differ-
ent reference wind states, only the results obtained with the
first approach are reported in the following.

Figures 12 and 13 report the results obtained at 7 and
19 m s−1, which respectively belong to regions II and III. Fig-
ures 12a and 13a show the results for a TI equal to 2 %, and
Figs. 12b and 13b show the 12 % TI case.

These results suggest several possible considerations.
First, the estimates of both shears κv and κh appear to have

generally high accuracy: their mean values and their rapid
oscillations are well captured by both the linear and non-
linear models. Here again, the results are affected by a 7 s
delay induced by the filter. For the lower wind speeds and
turbulence intensities, the linear and nonlinear observers ex-
hibit very similar behavior. However, differences appear at
19 m s−1 and 12 % TI, as shown by Fig. 13b. In fact, between
second 250 and second 350 of the simulation, the estimation
of the vertical shear provided by the linear model is affected
by large errors, whereas the nonlinear observer results still
remain acceptable.

The good behavior of the shear estimates suggests the pos-
sible use of a faster filter in order to reduce the estimation de-
lay. For example, the delay can be reduced to only 4 s by us-

ing a filter cut-out frequency of 0.17 Hz, which corresponds
to 1.2 times the rotor frequency at 5 m s−1.

An estimation of the angles φ and χ does not prove to be
as accurate as the estimation of the shears, as fully expected
based on the a priori observability study. Mean values are
well captured, especially by the nonlinear model, but fluctu-
ations are missed by both observers.

The general lower quality of the estimates for the angles
was previously explained by the a priori analysis, and it is
clearly illustrated a posteriori by the simulation results shown
here. Various sources of error may ultimately be responsible
for the oscillations in the estimates shown by the plots, in-
cluding unmodeled dynamics, rapid pitch motions or vari-
able rotor speed. It is interesting to recall that the steady
model (Eq. 9) appeared capable of capturing the behavior
of the 1×Rev loads in turbulent conditions, as clearly illus-
trated by the results shown in Fig. 5a. Notwithstanding this
apparently more than satisfactory behavior when used to sim-
ulate loads given wind states, the inversion of the model to
yield wind states given loads appears to be more problematic.
In fact, because of the generally lower level of observability
of the angles with respect to the shears (see Sect. 3), errors
propagate throughout the solution at a high rate for wind mis-
alignment and upflow, in turn generating fast fluctuations of
the estimates.

It should also be remarked that an additional source of un-
certainty is the ground truth. In fact, the presence of turbulent
eddies in the flow implies that the wind field cannot be ex-
actly parameterized by the assumed wind states. Hence, the
reference quantities plotted here should also be considered
only as indicative proxies of the actual wind states.

The observation errors were further analyzed from a statis-
tical standpoint by generating five different 10 min turbulent
wind field realizations and computing means and standard
deviations. To eliminate the effects of the delay caused by the
filter, which would have prevented any instantaneous com-
parison between the reference and observed quantities, refer-
ence wind states were processed with the same filter used for
the moment harmonics.

Figure 14 shows the behavior of the standard deviation of
the estimation error for the four wind states as functions of
the wind speed and for different TI levels. The curves la-
beled “TI= 0 %” refer to the nonturbulent fully parameter-
ized conditions already described in Sect. 4.1. Since simi-
lar behavior characterizes the results of both observers, only
those obtained with the nonlinear model are shown here to
avoid cluttering the figure.

As expected, the standard deviation increases with the TI
level. Moreover, in regions II and II 1

2 , accuracy tends to in-
crease for increasing wind speed, as similarly predicted by
the a priori observability analysis. The opposite happens in
region III, where oscillations in the results are more signifi-
cant and strongly affect the estimates. This behavior is par-
ticularly visible in the estimation of the angles, as shown in
Fig. 14a and c.
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−
Figure 11. Wind state observations in nonturbulent wind conditions with variable wind parameters at 4 (a) and 9 m s−1 (b). Solid thick blue
lines: real wind parameters; dashed thick green lines: observations by the linear model; solid thin red lines: observations by the nonlinear
model.

Wind Energ. Sci., 2, 615–640, 2017 www.wind-energ-sci.net/2/615/2017/

73



M. Bertelè et al.: Wind inflow observation from load harmonics 631

Figure 12. Wind state observations in turbulent wind conditions at 7 m s−1 for a TI equal to 2 (a) and 12 % (b). Solid thick blue lines:
reference wind parameters; dashed thick green lines: observations by the linear model; solid thin red lines: observations by the nonlinear
model.

Shear errors also remain low at very high TI levels, as il-
lustrated by Fig. 14b and d, indicating that fast, good-quality
shear estimates are possible. In fact, for example, the stan-
dard deviation of κv at 7 m s−1 and 20 % TI is circa 0.055,
which means that about 95 % of the observer samples have
an instantaneous error lower than 0.11.

The evaluation of the observer performance for the angles
deserves special attention. Looking at the yaw misalignment
in Fig. 14a for regions II, II 1

2 and the low region III up to
15 m s−1, the instantaneous error remains within acceptable
bounds for turbulence intensities lower than 5 %. In fact, σφ
is lower than 1.5◦, which implies that estimates are affected
by an error lower than 3◦ 95 % of the time. On the contrary,

the estimation error standard deviation may reach 3, 4 or even
6◦ for the higher turbulence intensities of 12, 16 and 20 %.
The maximum error deviation is obtained at 19 m s−1 for a
TI of 12 %. The same considerations can be derived for the
estimation of the upflow angle.

Figure 15 reports the mean observation errors with respect
to the wind speed for both the linear and nonlinear observers.
Not unexpectedly, the estimation of the shears is character-
ized by almost negligible error means. More surprisingly,
however, even the mean errors of the angles are quite low
for all conditions, although a mild reduction of accuracy can
be observed for increasing wind speeds. In addition, as pre-
viously noted, the nonlinear observer appears to be slightly
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Figure 13. Wind state observations in turbulent wind conditions at 19 m s−1 for a TI equal to 2 (a) and 12 % (b). Solid thick blue lines:
reference wind parameters; dashed thick green lines: observations by the linear model; solid thin red lines: observations by the nonlinear
model.

more accurate than the linear one. As a final remark, it was
found that the error means are not significantly influenced
by TI. Hence, the TI-dependent curves were not displayed in
Fig. 15 to avoid cluttering the plot.

4.2.1 Evaluation of lifetime performance

The previous examples have shown that observed angles are
typically affected by spurious oscillations for the reasons ex-
plained by the a priori analysis. The same examples, how-
ever, have also shown that mean values are typically well
captured and that the amplitude of oscillations is related to
TI. This seems to indicate that fast accurate observations
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Figure 14. Standard deviation of the estimation error of yaw misalignment (a), vertical shear (b), upflow angle (c) and horizontal shear (d)
as functions of wind speed for varying TI levels. All curves refer to the nonlinear observer results.

of angles are generally not possible, while observations on
longer time windows might still be relatively accurate. By
simple inspection of the temporal responses, it is, however,
not easy to get a clear idea of the actual precision of the ob-
servers in turbulent conditions. In order to provide a more
meaningful indication of the observer accuracy, the “life-
time” standard deviation of the observed states is evaluated
in this section. This is computed by weighting the results at
each wind speed and TI with the corresponding probability
distributions at a given site. To this end, measurements taken
at the offshore platform FINO1 (FINO, 2017) from Septem-
ber 2003 to August 2007 were considered. In fact, given the
standard deviation of the observation error as a function of
TI and wind speed (given in Fig. 14) and the wind statistics
of a specific site, one can evaluate the observer performance
when applied to the wind turbine used in the present study if
it were located at that site.

Figure 16 shows some statistical metrics of the wind at an
altitude over the water line of 80 m, which corresponds to
the hub height of the wind turbine considered in the present
study. The TI percentiles at 90 m were extracted from Fig. 2
of Türk and Eimeis (2010) and mapped to the current hub
height by scaling with a factor equal to 1.028 according to

Fig. 5.21 of Emeis (2013), which reports the variation in TI
as a function of hub height.

Next, a shifted Weibull probability density function (PDF)
Wτ was fitted to the TI for each wind speed. The PDF is
defined as

Wτ (τ, V )= α(V )
β(V )

(
(τ − τmin(V ))

β(V )

)α(V )−1

e
−
(

(τ−τmin(V ))
β(V )

)α(V )

, τ ≥ τmin(V ),

0, τ < τmin(V ),
(37)

while its associated cumulative distribution function (CDF)
is written as

Wτ (τ, V )=
{

1− e
−
(

(τ−τmin)
β(V )

)α(V )

, τ ≥ τmin(V ),
0, τ < τmin(V ),

(38)

where τ is the TI level, τmin(V ) is its minimum value and
α(V ) and β(V ) are the shape and scale parameters, respec-
tively, of the probability density function. Figure 17 repre-
sents the Weibull PDF and CDF at 9 m s−1.

Given the probability density function of the observation
error Pε , the TI PDF Wτ and the wind speed PDF WV , the
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Figure 15. Mean estimation error of yaw misalignment (a), vertical shear (b), upflow angle (c) and horizontal shear (d) with respect to wind
speed.
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lifetime standard deviation σLT can be readily computed as

σLT = 1∫ VCO
VCI

WV (V )dV

VCO∫
VCI

WV (V )

 +∞∫
0

Wτ (V,τ )

 +∞∫
−∞

εPε(V,τ,ε)dε

dτ

dV, (39)
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Figure 17. TI PDF (a) and CDF (b) at 9 m s−1.

where the innermost integral represents the wind-speed-
specific and TI-specific standard deviation of the observation
error, σ (V,τ ), which was previously computed and reported
in Fig. 14. This quantity is then weighted by the probability
of each wind speed and TI values to occur at this specific site,
as given in Fig. 16.
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Figure 18. Wind-speed-specific standard deviation of the observation error for angles φ and χ (a) and for shears κv and κh (b). The wind
Weibull distribution is characterized by shape and scale parameters equal to 2.5 and 10, respectively.

Table 2. Lifetime standard deviation and 2σ bounds of the estima-
tion error for the wind parameters.

Wind parameter φ κv χ κh
[deg] [deg]

σLT 0.97 0.011 0.84 0.006
2σLT 1.94 0.022 1.68 0.012

Figure 18 shows the wind-speed-specific standard devia-
tions for the yaw misalignment and upflow errors (Fig. 18a)
and for the shear errors (Fig. 18b) as well as the wind Weibull
distribution at FINO1 as functions of wind speed. The picture
clearly illustrates the fact that for both angles and shears, er-
rors are quite limited for the more probable wind speeds.

Finally, the lifetime standard deviations are reported in Ta-
ble 2. From this point of view, the results are clearly quite
satisfactory not only for shears, but also for angles. In fact,
although fluctuations pollute the instantaneous observation
of these quantities, their long-term metrics are well captured.

4.2.2 Following mean changes in yaw misalignment

The fact that the mean estimation errors of the angles, espe-
cially for yaw misalignment, are limited suggests the use of
a moving average in order to lower the error standard devia-
tion. This way one may capture the slower variations in the
means while filtering out the faster oscillations. The resulting
estimates can be used for slower control actions, for example
yaw control, or for the slow scale monitoring of parameters
of interest.

To test whether it is indeed possible to follow changes in
the mean, large changes in yaw misalignment were simu-
lated. Turbulent wind fields were generated with TurbSim
and gradually rotated to generate mean wind direction
changes from −4 to 4◦ in about 20 s. The observed yaw

misalignment was filtered with a moving average of variable
window length on account of the mean wind speed. The re-
sults of the observations at 7 m s−1 for different turbulence
levels with and without moving average are shown in Fig. 19.

For the very low TI levels shown in Fig. 19a, both the mean
and instantaneous values of yaw misalignment can be suffi-
ciently well captured even without the use of a filter. With
increasing turbulence, spurious oscillations of the estimates
mask the mean wind direction change. However, it appears
that the use of a moving average is capable of eliminating
the faster fluctuations, revealing the presence of a change in
wind direction. Clearly, higher values of turbulence require
longer filtering windows with consequently longer time de-
lays. This delayed detection is, however, compatible with the
usually rather slow and conservative approach used for yaw
control in which the actual realignment of the machine is per-
formed only when a wind direction change of some signifi-
cant entity has been observed for a sufficiently long window
of time, usually many tens of seconds.

As a final remark, the nonlinear observer appears to per-
form slightly better than the linear one, as it is more easily
visible for low turbulence conditions.

5 Conclusions

This paper has presented a method to estimate the wind in-
flow at the rotor disk of an operating wind turbine. The pro-
posed method uses the low-frequency response of the wind
turbine limited to the 1×Rev harmonics to infer four wind
states representing two misalignment angles and two shears.
The rotor response is measured by load sensors, which are
becoming standard equipment on many modern wind tur-
bines. When such sensors are available, the proposed method
does not require any additional hardware and amounts to a
simple software upgrade.
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Figure 19. Yaw misalignment for an 8◦ change in wind direction at 7 m s−1 with 2 % (a) and 20 % (b) TI. Solid thick blue lines: real yaw
misalignment; dashed thick green lines: estimate by the linear model; solid thin red lines: estimate by the nonlinear model.

An input–output model was formulated to represent the
relationship between wind states and load harmonics. The
model was treated as a black box with unknown coefficients
estimated by using the simulated response of a wind turbine
implemented in a high-fidelity aeroservoelastic model. The
input–output relationship was then inverted in a least-squares
sense in order to provide estimates of the wind states when
fed with measured load harmonics. The statistical proper-
ties of the model and, in turn, the observability of the wind
states were analyzed using the SVD. This a priori analysis
highlighted the different nature of the problem of estimating
shears and angles, the former being characterized by a higher
level of observability than the latter. Finally, the proposed ob-

server was analyzed in a wide range of operating conditions
in turbulent wind fields with different characteristics.

From the results of the present study, the following con-
clusions can be made.

– The behavior of the blade out-of-plane and in-plane load
harmonics at 1×Rev are captured well in both steady
and turbulent conditions by a linear or second-order
nonlinear function of the wind states.

– It is not advisable to include in the model harmonics that
are higher than 1×Rev. In fact, although 2×Rev com-
ponents are indeed correlated with wind states, they are
also strongly affected by turbulence. In addition, if one
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uses a simulation model for the estimation or synthe-
sis of the load–wind model, it is expected that such a
model will better capture the 1×Rev response than the
higher harmonics. Therefore, limiting load inputs to the
1×Rev components helps ensure higher accuracy of the
load–wind model and hence of the estimates.

– Wind states can be estimated from 1×Rev blade har-
monics, as these quantities carry enough informational
content for the model to be invertible.

– An a priori observability analysis shows that the accu-
racy of the shears is generally superior to that of the
angles. This is not because of a limit to the present spe-
cific formulation, but it is due to the intrinsic sensitivity
of angle of attack changes to wind state changes, which
is different for angles and shears.

– Extensive simulations in turbulent conditions have
shown that the mean value of the estimation error is
generally significantly low for all states. For example,
the mean yaw error is about 0.5◦ independently of wind
speed and TI, whereas the vertical shear error is about
0.01.

– Standard deviations of the shears are generally very low
even for high TI levels, implying that the observer is
capable of following fast shear fluctuations with good
precision.

– Standard deviations for angles are significantly higher
due to their overall lower observability. In general, an-
gle estimates are polluted by rapid spurious oscillations
due to the amplification of errors through the inverted
estimation model. This implies that one cannot gener-
ally follow rapid variations in the angles, and only ob-
servations on longer timescales are possible.

– Although polluted by fluctuations, on average even the
angle estimates are of good quality thanks to their small
mean errors.

– An analysis, conducted by taking into account the prob-
ability distributions of both wind speed and TI at the off-
shore FINO1 platform in the German Bight, has shown
that the expected standard deviation of the estimation
error in the angles is below 1◦, which appears to be a
very interesting result.

– It was shown that, by filtering the estimated yaw mis-
alignment with a moving average, one may track with
good accuracy significant mean changes in the wind di-
rection even for very high TI, indicating the possible use
of this estimate to drive the wind turbine yaw control
system.

The proposed formulation should be extended to consider
the possible presence of an individual pitch control (IPC)
strategy. This can be done by also including in the load–
wind model the presence of a term depending on pitch load
harmonics. As these quantities are known, they represent fur-
ther inputs that do not change the overall approach, although
the model will have additional coefficients that need to be
identified. This extension of the formulation has already been
tested, and it will be described in a forthcoming publication.

Data availability. Data can be obtained upon request from the au-
thors (carlo.bottasso@tum.de.).
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Appendix: Nomenclature

f Frequency
m Generic blade moment
nk Piecewise linear shape function
p Order of the nonlinear model
q Dynamic pressure
t Time
B Number of blades
H Hub height
Nobs Number of experiments for model identification
Nnodes Number of nodes for wind speed scheduling
R Rotor radius
V Wind speed
VCI Cut-in wind speed
VCO Cut-out wind speed
VRP Rated wind speed
R Real number set
W Weibull cumulative distribution function
Pε Probability density function of the observation error
V Variance
W Weibull probability density function
m Vector of moment harmonics
r Measurement error
u Input vector
x State vector
y Output vector
1 Unitary vector
I Identity matrix
R Measurement error covariance matrix
U Matrix of left singular vectors
V Matrix of right singular vectors
X Demodulation matrix
M Steady-state relation between load harmonics and wind state vector
E[·] Expected value
Cov[·] Covariance
α Shape parameter of the Weibull distribution
β Scale parameter of the Weibull distribution
% Air density
χ Upflow angle
κv Vertical shear
κh Horizontal shear
φ Yaw misalignment angle
ψ Azimuth angle
σ Standard deviation
τ Turbulence intensity level
ζ Blade section inflow angle
� Rotor angular velocity
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εθ Wind state observation error
ξ Vector of statistically independent wind state variables, VT θ
θ Wind state vector
6 Rectangular matrix of singular values
˙(·) Time derivative, i.e., d · /dt

(·)(i) Quantity related to the ith experiment
(·)(j ) Quantity related to the j th blade
(·)k Nodal quantity at the kth node
(·)nc n×Rev cosine amplitude
(·)ns n×Rev sine amplitude
(·)E Estimated quantity
(·)IP In-plane quantity
(·)M Measured quantity
(·)NL Nonlinear term
(·)OP Out-of-plane quantity
(·)R Real quantity
(·)T Transpose
BEM Blade element momentum
CDF Cumulative distribution function
IPC Individual pitch control
Lidar Light detection and ranging
PDF Probability density function
SD Standard deviation
SVD Singular value decomposition
TI Turbulence intensity
TSR Tip speed ratio
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Abstract. The present paper further develops and experimentally validates the previously published idea of
estimating the wind inflow at a turbine rotor disk from the machine response. A linear model is formulated that
relates one per revolution (1P) harmonics of the in- and out-of-plane blade root bending moments to four wind
parameters, representing vertical and horizontal shears and misalignment angles. Improving on this concept, the
present work exploits the rotationally symmetric behavior of the rotor in the formulation of the load-wind model.
In a nutshell, this means that the effects on the loads of the vertical shear and misalignment are the same as those
of the horizontal quantities, simply shifted by π/2. This results in a simpler identification of the model, which
needs a reduced set of observations. The performance of the proposed method is first tested in a simulation
environment and then validated with an experimental data set obtained with an aeroelastically scaled turbine
model in a boundary layer wind tunnel.

1 Introduction

The ability to control a system is often intimately linked to
the awareness of the surrounding environment. For a wind
turbine, the environment is represented by the wind inflow,
which is characterized by speed, direction, shears, veer, tur-
bulence intensity, presence of impinging wakes, etc. Such pa-
rameters have a profound effect on the response of a single
wind turbine as well as on clusters of interacting machines
within a power plant. Better awareness of the wind environ-
ment can be translated into better turbine-level and plant-
level operation and control.

The current standard equipment mounted on board wind
turbines for the measurement of the wind inflow is composed
of one or more anemometers and wind vanes, typically lo-
cated at hub height, either on the nacelle or on the spinner.
Even when properly calibrated, all such devices suffer from
one inherent unavoidable limitation: they provide measure-
ments at the single point in space where they are located.
As such, they are necessarily blind to all wind characteristics

that imply wind variations across the rotor disk. Alternative
sensors are represented by lidars, which are, however, not yet
routinely installed on board wind turbines because of cost,
availability, reliability, effects due to weather conditions and
lifetime issues. In this sense, current wind turbines have only
a very limited awareness of the environment in which they
operate.

The concept of the “rotor as a sensor” was developed to ad-
dress the limitations of current wind measurement devices.
The idea is conceptually very simple: changes in the wind
inflow produce changes in the wind turbine response. If the
wind-response map is known, one can then measure the re-
sponse (for example, in the form of loads and/or accelera-
tions) and estimate the inflow by inverting the map.

Various formulations have been proposed for this concept
(Bottasso et al., 2010; Bottasso and Riboldi, 2014; Simley
and Pao, 2014; Bottasso and Riboldi, 2015). In this paper we
improve on the work described by Cacciola et al. (2016a)
and Bertelè et al. (2017, 2018). The approach parameterizes
the inflow in terms of four quantities: vertical and horizon-
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tal shears and misalignment angles. The wind-response map
relates these four wind states to the 1P in- and out-of-plane
blade root bending moments. Both linear and quadratic maps
were considered in Bertelè et al. (2017), with a marginally
better accuracy for the latter. System identification was used
to find the model coefficients from simulations performed
with an aeroservoelastic model in a variety of wind condi-
tions, spanning the range of interest of the four wind states.
Results indicate a better accuracy of the shears than the an-
gles, although the latter are still well captured in their mean
values.

Despite the more than promising results reported in
Bertelè et al. (2017), the identification of the model relating
wind states to load harmonics can be cumbersome. In fact,
a data set is required that covers a desired range of the four
wind states. While this is not a major issue in a simulation
environment where one can generate all desired wind condi-
tions, an identification based on field test data might not be
easy or even possible. In fact, some wind parameters might
not change much at a given site, e.g. upflow angle and hori-
zontal shear. This would clearly be a major hurdle, as a model
only knows what is in the data used for training it.

To address this issue, the present work exploits the rota-
tionally symmetric behavior of the rotor. In fact, the effect
caused by a horizontal shear on the rotor response is the same
as that caused by a vertical shear, only shifted by π/2. Sim-
ilarly, the effect of a vertical upflow angle is the same of
a horizontal yaw misalignment, again shifted by π/2. This
means that one can collect data sets containing the desired
changes in vertical shears and yaw misalignments, and iden-
tify a model that is also capable of representing the same
range of horizontal shears and upflow angles.

The paper is organized as follows. Section 2 first intro-
duces the wind parameterization and the wind-load map, and
then uses the rotational symmetry of the rotor to eliminate
some of the model coefficients from the identification prob-
lem unknowns. Section 3 compares the results of the new for-
mulation to the original one first by simulations – conducted
with an aeroservoelastic model – and then experimentally –
using a scaled turbine in a wind tunnel. Finally, the work is
closed by Sect. 4, where conclusions are drawn.

2 Formulation

2.1 Wind parameterization and rotational symmetry

The wind inflow is characterized in terms of four so-called
wind states, which are defined as the vertical (upflow) and
horizontal (yaw) misalignment angles χ and φ, respectively,
and the vertical and horizontal linear shears κv and κh, re-
spectively. These quantities should be regarded as rotor-
equivalent fits of the actual spatial distribution of the wind
impinging on the rotor disk at a certain instant of time.

The wind states are defined with respect to a nacelle-
attached reference frame (x, y, z) centered at the hub as

Figure 1. Definition of the four wind states used for parameterizing
the wind field over the rotor disk.

shown in Fig. 1: unit vector x is aligned with the rotor axis
and faces downwind, z points upward in the vertical plane,
while y is defined according to the right-hand rule. The com-
ponents of the wind vector in the nacelle-attached frame of
reference are noted V = {u,v,w}T and they write

u(y,z)=W (y,z)cos(φ)cos(χ ), (1a)
v(y,z)=W (y,z) sin(φ)cos(χ ), (1b)
w(y,z)=W (y,z) sin(χ ), (1c)

where W (y,z) is a linearly sheared wind field

W (y,z)= VH

(
1+

z

R
κv+

y

R
κh

)
, (2)

VH being the wind speed at hub height, and R the rotor ra-
dius. According to this definition, the yaw misalignment and
upflow angles are positive when the wind blows from the left
and the lower part of the rotor, respectively, when looking
upstream.

Notice that the formulation of Cacciola et al. (2016a) used
a horizontal reference frame with respect to the terrain, while
in the present case the frame is aligned with the rotor axis.
Together with the assumed linearity of both shears, this is
necessary in order to exploit the rotational symmetry of the
rotor response. Hence, if the rotor is uptilted, one will have
to transform the nacelle-frame wind components into a frame
aligned with the ground if necessary.

Looking at Eq. (2), it appears that the effect of the verti-
cal shear κv on the velocity distribution is the same of the
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one caused by the horizontal shear κh, when rotated by π/2.
On the other hand, looking at Eq. (1a–c), the effect of the an-
gles φ and χ is more complex. To eliminate this problem, the
rotor-in-plane wind velocity components can be expressed in
terms of the new variables

ṽ =
v(0,0)
VH

= sin(φ)cos(χ ), (3a)

w̃ =
w(0,0)
VH

= sin(χ ), (3b)

which, respectively, represent the nondimensional horizon-
tal and vertical wind cross flows at the hub. This change of
variables results in

u(y,z)=W (y,z)
√

1− ṽ2− w̃2, (4a)
v(y,z)=W (y,z)̃v, (4b)
w(y,z)=W (y,z)w̃. (4c)

With this reformulation, the effect of ṽ on v is the same as the
effect of w̃ on w, when rotated by π/2. Given ṽ and w̃, the
misalignment angle φ and upflow χ can be readily recovered
by inverting their respective definitions (Eq. 3a–b):

χ =arcsin(w̃), (5a)
φ =arcsin(̃v/cosχ ), (5b)

although for small angles the difference between the two sets
of variables will be negligible.

2.2 Wind observer formulation

In this work, the linear model of Cacciola et al. (2016a) and
Bertelè et al. (2017) is used to relate inflow conditions and
machine response. The model writes

m= F(V,%)θ +m0(V,%)

=
[
F(V,%) m0(V,%)

][ θ
1

]
= T θ , (6)

where m is the load vector, θ = {̃v κv w̃ κh}
T is the wind

state vector, while F andm0 represent the model coefficients,
scheduled with respect to wind speed V and air density %.
The load vector is defined as

m=
{
mOP

1c , m
OP
1s , m

IP
1c, m

IP
1s

}T
, (7)

wherem indicates the blade bending moment, subscripts (·)1s
and (·)1c, respectively, indicate sine and cosine harmonics,
while superscripts (·)OP and (·)IP, respectively, out- and in-
plane components. The load harmonics are readily computed
via the Coleman and Feingold transformation (Coleman and
Feingold, 1958) once three measured blade loads are avail-
able. For simplicity and brevity, the present paper only con-
siders a linear wind-response map. However, nonlinearities

in the map can be readily included, as shown by Bertelè et al.
(2017).

To identify the model coefficients T, one should collect a
rich enough data set for which both wind states θ and associ-
ated blade loads m are known. Stacking side by side the ith
wind and load vectors into matrices 2 and M, one gets

M= T2. (8)

Finally, the model coefficients are readily identified as

T=M2T(22T)−1. (9)

The invertibility of the system is discussed in Bertelè et al.
(2017).

Once the model expressed by Eq. (6) has been identified,
it can be used to express the dependency of given measured
loads mM on the wind states,

mM = Fθ +m0+ r, (10)

where r is the measurement error, and the dependency on
V and % has been dropped for a simpler notation. The least
squares estimate of the wind states θE is then readily obtained
as

θE =
(

FTR−1F
)−1

FTR−1(mM−m0), (11)

where R= E[rrT
] is the covariance weighting matrix. Given

θE, the misalignment and upflow angles can be recovered by
using Eq. (5).

2.3 Rotational symmetry

By considering the rotational symmetry of the rotor, the num-
ber of unknown coefficients in F can be reduced. Indeed,
a vertical shear will cause the same response of an equiva-
lent horizontal shear, simply shifted by an azimuthal delay
of π/2. The same consideration holds for the vertical and
horizontal cross flows. This rotational symmetry is reflected
in the derivatives of the loads with respect to the wind states,
i.e., in the coefficients of matrix F. By a rotation of π/2, the
load componentm1c becomesm1s, while the load component
m1s becomes−m1c. As a result, the following conditions ap-
ply between pairs of model coefficients:

∂m1c

∂ṽ
=
∂m1s

∂w̃
, (12a)

∂m1s

∂ṽ
=−

∂m1c

∂w̃
, (12b)

∂m1c

∂κh
=
∂m1s

∂κv
, (12c)

∂m1s

∂κh
=−

∂m1c

∂κv
. (12d)

These conditions apply to both the out- and the in-plane com-
ponents.
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The term m0 in Eq. (6) represents the effects of gravity on
the loads (Bertelè et al., 2017). Since this term is nonsym-
metric, no reduction of these coefficients is possible in this
case.

The advantage of this approach is not only in the reduced
number of unknown model coefficients, but, most impor-
tantly, in the reduced datapoints necessary for identification.
In fact, by eliminating the coefficients of horizontal shear and
upflow angle, one can use tests in which only yaw misalign-
ment angle and vertical shear are changing. Therefore, since
the model is linear and depends on two parameters, a mini-
mum of only three operating conditions is required for iden-
tification.

3 Results

3.1 Verification in a simulation environment

The proposed method was first tested by numerical simu-
lations, using the model of a horizontal-axis three-bladed
3 MW wind turbine. The machine has a rotor diameter of
93 m; a hub height of 80 m; 4.5◦ of nacelle uptilt; and cut-
in, rated and cut-out speeds equal to 3, 12.5 and 25 m s−1,
respectively. A transition region II 1/2 connects the partial-
and full-load regimes, extending between 9 and 12.5 m s−1.
The machine response was simulated by the aeroservoelas-
tic multibody software Cp-Lambda (Bauchau et al., 2003;
Bottasso and Croce, 2006), which is based on a geometri-
cally exact finite element formulation. The model includes
flexible blades, tower and drive train, and compliant foun-
dations. The collective pitch and torque controller is im-
plemented according to Riboldi (2012) and Bottasso et al.
(2012), while generator and pitch actuators are modeled
as first- and second-order dynamical systems, respectively.
The aerodynamic rotor model is based on blade element
momentum theory (BEM), augmented by classical tip and
root losses, unsteady aerodynamics and dynamic stall mod-
els. Turbulent wind time histories were generated with the
TurbSim code (Jonkman and Kilcher, 2012) in accordance
with the Kaimal model, at the nodes of a square grid overlap-
ping the rotor disk. “Ground truth” values of the wind states
– to be used for assessing the quality of observed quantities
– were obtained by fitting the instantaneous wind field at the
grid nodes to the rotor swept area.

Turbulent simulations were run for a duration of 10 min,
according to standard practice. The 1P harmonics were com-
puted by the Coleman and Feingold transformation (Cole-
man and Feingold, 1958), using in- and out-of-plane bending
moment components measured by strain gauges placed at the
root of each blade. The resulting signal was finally cleaned
with a low-pass filter; on-line adaption of the filter parame-
ters was used to account for changes in rotational speed due
to turbulent wind fluctuations.

Two observation models were identified. The first is the
linear formulation of Bertelè et al. (2017), which does not

exploit the rotational symmetry of the rotor, while the sec-
ond is the linear rotationally symmetric formulation of the
present paper. In the first case, the model was identified from
nonturbulent wind cases corresponding to all combinations
of the following wind parameters:

φ = [0 16]◦, (13a)
κv = [0.06 0.18], (13b)
χ = [4.5 16.5]◦, (13c)
κh = [0 − 0.1]. (13d)

A separate identification was performed for each wind speed,
considering the values V = [3 4 5 6 7 8 9 11 15 19] m s−1.
A second model was obtained by exploiting symmetry and
linearity. Accordingly, the identification set was reduced to
the following wind parameter combinations:

φ = [0 16]◦, (14a)
κv = [0.06 0.18], (14b)
χ = 4.5◦, (14c)
κh = 0, (14d)

therefore assuming both upflow χ and horizontal shear κh to
be constant. Notice that the upflow angle is set to 4.5◦, which
corresponds to the rotor uptilt.

The two models were then tested and compared in turbu-
lent wind conditions. Three different combinations of inflow
angles and shears (not included in the identification set) were
considered, each using four different turbulent realizations,
for a total of 12 tests performed at each given wind speed
and turbulence intensity (TI). Figures 2 and 3 show, respec-
tively, the mean (over 10 min and over all turbulent seeds)
absolute error ε and standard deviation σ as functions of
wind speed, for two different levels of TI, equal to 5 % and
12 %. The results of the reference full model are shown us-
ing solid lines, while the ones of the rotationally symmetric
formulation using dashed lines. The two formulations appear
to be characterized by a very similar performance. Actually,
notwithstanding its reduced identification set, the symmetric
method obtains marginally better results. As expected, TI has
a negative effect on the quality of the estimates. In addition,
as already noticed in Bertelè et al. (2017), angle estimates
appear to be less precise than shear estimates. Nonetheless,
for 12 % TI at 15 m s−1, the yaw misalignment mean error is
about 2.5◦. This appears to be a good result when compared
to the typical accuracy of nacelle-mounted anemometers.

3.2 Verification with a scaled model in a wind tunnel

Next, the proposed formulation was tested using an aeroe-
lastically scaled wind turbine operated in a boundary layer
wind tunnel. The scaled model represents a three-bladed
horizontal-axis wind turbine with a hub height of about
1.8 m, a rotor diameter of 2 m and a rated wind speed of
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Figure 2. Mean absolute error ε of the four wind states vs. wind speed for 5 % and 12 % turbulence intensity (TI) levels. Nonsymmetric
model: solid lines; symmetric model: dashed lines.

Figure 3. Standard deviation σ of the four wind states vs. wind speed for 5 % and 12 % turbulence intensity (TI) levels. Nonsymmetric
model: solid lines; symmetric model: dashed lines.

6 m s−1 (Bottasso et al., 2014). The turbine design preserves
the tip speed ratio, Lock number, and placement of the low-
est tower and rotor nondimensional frequencies of the refer-
ence machine, resulting in a scaled model of realistic aeroe-
lastic behavior (Bottasso et al., 2014). Each of the flexible
scaled blades is equipped with strain gauges at the blade
roots, which measure the flapwise and edgewise bending mo-
ments, while an optical incremental encoder is used to mea-
sure the blade azimuthal position.

Tests were performed in the boundary layer test section
of the wind tunnel of Politecnico di Milano (Bottasso et al.,
2014). Two different boundary layer conditions, character-
ized by different mean vertical shears and TI levels, were
obtained by the use of suitable turbulence generators at the

chamber inlet and roughness elements placed on the floor.
Such inflow conditions were then accurately mapped over
the rotor swept area with triple hot-wire probes, providing
a reference mean inflow that can be considered the “ground
truth”. The lower turbulence condition was characterized by
a TI of 3.8 % and a linear vertical shear of 0.03, while the
higher turbulence case by a TI of 8.5 % and a linear vertical
shear of 0.12.

For various wind speeds, several tests were performed for
different combinations of yaw misalignment, vertical shear
and upflow angle as reported in Table 1. Changes in mean
vertical shear were obtained by changing the wind tunnel
boundary layer conditions. Changes in mean misalignment
angle were realized by yawing the turbine model with re-
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Table 1. Test matrix for the wind tunnel experiments. Symbol “×” marks the identification set; “◦” marks the validation set.

Experiments conducted with an upflow angle χ = 6◦

Misalignment angle φ (◦)

Wind speed V (m s−1) Vertical shear κv 20 15 10 6 0 −6 −10 −15 −18

5 0.03 and 0.12 × ◦ × ◦ ◦

5.5 0.03 and 0.12 × ◦ × ◦ ◦

6 0.03 and 0.12 × ◦ ◦ × ◦ ◦ ◦

7 0.03 and 0.12 × ◦ ◦ × ◦ ◦ ◦

7.5 0.03 and 0.12 × ◦ × ◦ ◦

Experiments conducted with upflow angles χ = 0 and 12◦

Misalignment angle φ (◦)

Wind speed V (m s−1) Vertical shear κv 20 15 10 6 0 −6 −10 −15 −18

5.5 0.03 and 0.12 ◦ ◦ ◦

Figure 4. Wind states observed for different steady inflow conditions: yaw misalignment φ at χ = 6◦ and κh = 0 at a wind speed of
7 m s−1 (a), upflow angle χ at φ = 6◦ and κh = 0 at a wind speed of 5.5 m s−1 (b).

spect to the wind. To create different upflow angles, the wind
turbine tower foot was installed on a tiltable ramp. By chang-
ing the ramp angle, the turbine can be pitched by±6◦. As the
rotor has an uptilt angle of 6◦ with respect to the tower, the
use of the ramp allows one to obtain upflow angles between
0 and 12◦. Finally, the horizontal shear for all tests can be
considered null, as the flow in the wind tunnel is essentially
uniform in the lateral direction.

A total number of 174 different conditions were tested.
The entire set of experiments was then divided into two
subsets. The first one was used for identifying the observer
model, and it contains two combinations of vertical shear and
misalignment angle per wind speed, with an upflow of 6◦;
these test points are indicated with “×” symbols in Table 1.
The second subset was instead used for validating the ob-
server performance. This second subset contains all the other
experiments, indicated with “◦” symbols in Table 1. Notice
that the second set of experiments correspond to upflow an-

gles of 0 and 12◦, values that are not contained in the iden-
tification set. This is possible thanks to the symmetry of the
rotor: the information contained in the identification set on
the effect of the misalignment angle is used to infer the ef-
fect of the upflow, although no operating points at different
upflows are used during training.

To validate the performance of the observer, the machine
response during each test was averaged over a time window
of 180 s in order to estimate the corresponding mean inflow
parameters. The length of the time window is dictated in this
case not only by the need to average out turbulent fluctua-
tions, but also by the dynamic characteristics of this partic-
ular closed-return wind tunnel. Figure 4 shows an excerpt
of the results obtained at a wind speed of 7 m s−1 (Fig. 4a),
which corresponds to the beginning of the full load region,
and a speed of 5.5 m s−1 (Fig. 4b), which corresponds to
the end of the partial load region. In each panel, the refer-
ence (true) wind parameter is shown on the x axis, while
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Figure 5. Mean absolute error ε of the four wind states vs. wind speed for 3.8 % and 8.5 % turbulence intensity (TI) levels.

the corresponding observed quantity is given on the y axis.
It follows that an ideal match would be represented by the
bisector of the quadrant. The yaw misalignment estimation
(Fig. 4a) appears to be quite accurate and has a maximum
error of less than 1.3◦. Better accuracy can be achieved for
high positive yaw angles; this is to be expected, since such
conditions are included in the identification set (cf. Table 1).
Even the upflow estimation (Fig. 4b) appears to be quite ac-
curate, with a maximum error of about 1.5◦. Note that the ac-
curacy in the upflow estimation validates the assumption of
rotational symmetry of the parameters, as no upflow changes
were present in the data set used for identifying the load-
wind model (again, cf. Table 1). Indeed, the model coeffi-
cients related to this parameter were obtained using the sym-
metry conditions given by Eq. (12a–d).

Finally, to better understand the performance of the ob-
server, mean inflow parameters were estimated and com-
pared to the respective ground truth for each test not included
in the identification set. For each wind speed, such mean er-
rors were averaged over the number of tests and reported in
Fig. 5. Here again, results appear to be significantly accurate;
in fact, for both turbulence levels, a maximum mean error
smaller than 1◦ is observed in the angle estimates, while the
error in the shear estimates is less than 6× 10−3.

Comparing the experimental results with the numerical
ones in the low TI cases (equal to 3.8 % and 5 %, respec-
tively), one should notice that the mean estimation errors
present the same range of accuracy, as one can appreciate
by comparing Fig. 5 with Fig. 2. This can be considered an
additional proof of the general applicability of the method,
since these results were obtained with two different models
applied to two very different machines, using numerical and
experimental data sets.

4 Conclusions

Following the work presented in Cacciola et al. (2016a) and
Bertelè et al. (2017), this paper has further developed and
experimentally validated a method to estimate the inflow at
the rotor disk. Specifically, a linear model was formulated
to estimate four wind parameters: the vertical and horizontal
shears, and the vertical and horizontal wind misalignments.
Improving on the previous publications, the rotationally sym-
metric behavior of the rotor was exploited in order to simplify
the model identification procedure, by reducing the number
of necessary measured operating conditions.

The performance of the proposed rotationally symmetric
model was tested both in simulation and with an aeroelas-
tically scaled wind turbine model in a boundary layer wind
tunnel. Results indicate no significant difference in the ac-
curacy of the new rotationally symmetric formulation with
respect to the original one, even if the number of tests re-
quired for identification is significantly decreased. The ex-
pected mean error in the angle estimation is less than 1 and
2.5◦ for low and high TI levels, respectively. An even higher
accuracy can be obtained for the estimation of shears. More-
over, the experimental results are well in line with the ones
obtained by numerical simulations.

Data availability. Data can be provided upon request. Please con-
tact the corresponding author Carlo L. Bottasso
(carlo.bottasso@tum.de).
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Appendix A: Nomenclature

m Generic blade moment
m Vector of moment harmonics
R Rotor radius
V Wind speed
V Wind vector
ṽ Non-dimensional horizontal cross flow at the hub
w̃ Non-dimensional vertical cross flow at the hub
% Air density
φ Yaw misalignment angle
χ Upflow angle
κv Vertical shear
κh Horizontal shear
ε Mean error
σ Standard deviation
θ Wind state vector
(·)T Transpose
(·)E Estimated quantity
(·)OP Out-of-plane quantity
(·)IP In-plane quantity
(·)1c 1P cosine amplitude
(·)1s 1P sine amplitude
BEM Blade element momentum
Lidar Light detection and ranging
TI Turbulence intensity
1P Once per revolution
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Abstract.

A previously published wind sensing method is applied to an experimental dataset obtained on a 3.5 MW turbine and a

nearby hub-tall met-mast. The method uses blade load harmonics to estimate rotor-equivalent shears and wind directions at the

rotor disk. A second independent method is used to extend the met-mast-measured shear above hub height to cover the entire

rotor disk.5

Although the experimental setup falls short of providing a real validation of the method, it still allows for a realistic practical

demonstration of some of its main features. The method appears to be robust to turbulent fluctuations and air density changes.

Results indicate a good quality of the estimated shear, both in terms of 10-min averages and of resolved time histories, and a

reasonable accuracy in the estimation of the yaw misalignment.

1 Introduction10

This paper presents a first attempt at the field validation of a wind sensing method based on load harmonics.

Wind sensing refers to the general concept of using the response of the turbine to estimate characteristics of the inflow,

which can be done in several different ways (Bottasso et al., 2010; Bottasso and Riboldi, 2014; Simley and Pao, 2016; Bottasso

and Riboldi, 2015; Bertelè et al., 2017; Bottasso et al., 2018; Schreiber et al., 2020). Information on the inflow can support

a variety of applications, including turbine and farm-level control, lifetime assessment and fatigue consumption estimation,15

power and wind forecasting, and others (Schreiber et al., 2020). In wind sensing, the rotor response is typically measured in

the form of blade loads. If blade load sensors are already available, for example for load-mitigating control, wind sensing is a

way of augmenting the value of load sensors, by providing an extra set of uses to the data that they already collect.

The method based on load harmonics was first proposed by Bottasso and Riboldi (2014), and then further elaborated and

improved by Bottasso and Riboldi (2015); Cacciola et al. (2016a); Bertelè et al. (2017, 2018, 2019). In a nutshell, this method20

is based on the fact that some characteristics of the inflow (horizontal and vertical shear, lateral and vertical misalignment

angles) generate a specific response of the rotor at the 1P (once per revolution) frequency. This is a very desirable feature,

because:

– The 1P frequency is strongly dominated by these “deterministic” characteristics of the wind, and much less so by turbu-

lent fluctuations (Bertelè et al., 2017);25
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– Low frequencies are easier to measure than higher frequencies, as they require slower sampling rates (typically around

one second for capturing the 1P of a wind turbine);

– There should be limited variability in such low frequencies among different installations of a same wind turbine type;

– The lower spectrum of the response of a wind turbine should be reasonably well captured by existing simulation tools

used for design and certification.5

The load-harmonic method requires a training dataset consisting of measured rotor loads and corresponding measured wind

characteristics. The dataset can be based on experimental measurements, or be generated synthetically using a simulation

model; these two approaches were respectively termed model-free and model-based in Bottasso and Riboldi (2014). Here

we consider the former approach; indeed, a model might not always be available, for example in cases when wind sensing

is applied to a turbine without the support of the manufacturer. Even when a model is available, it might not have been fully10

validated, so that a purely data-driven approach has a significant appeal. Thanks to the rotational symmetry of the rotor (Bertelè

et al., 2019), the measured wind conditions that are necessary for training can be limited to the vertical shear and the horizontal

(or yaw) misalignment; based on these quantities, the effects caused by horizontal shear and vertical (upflow) misalignment

can be reconstructed. After training, the method can estimate the four wind parameters online during turbine operation simply

from measured rotor loads.15

It is envisioned that, in a practical application of the model-free harmonic-based method, the training phase would be a

one-off activity performed at a test site equipped with a met-mast or other wind measuring devices such as lidars or sodars

(Carswell, 1983; Vogt and Thomas, 1995; Lang and McKeogh, 2011). Indeed, hub-tall met-masts are routinely used during

certification (IEC, 2017), and could be employed for the additional purpose of training the observer. After training, the method

could be used on other installations of that same turbine type at normal production sites without necessitating of met-masts or20

other devices.

Goal of this paper is to present the application of the load-harmonic estimator to field test data collected at a test site on a

3.5 MW wind turbine and a nearby met-mast (Schreiber et al., 2020; Bertelè and Bottasso, 2020). This experimental setup is a

realistic representation of the scenario outlined above, where a hub-tall met-mast is located in close proximity of a wind turbine

for certification purposes. From this point of view, the present dataset provides opportunities not only for a first —partial—25

field demonstration of the method, but also for addressing some important practical implementational aspects.

Specifically, the vertical shear requires special attention. In fact, a hub-tall met-mast with more than one anemometer can

only measure the wind shear over the lower part of the rotor disk; on the other hand, the load-harmonic observer estimates a

rotor-equivalent shear (i.e. a shear over the entire rotor disk area). For large modern rotors, half-rotor or full-rotor shears are not

necessarily equal (Murphy et al., 2019; Schreiber et al., 2020). Therefore, a way is needed to extend the measurement of the30

inflow above the met-mast, possibly without resorting to extra wind-scanning equipment to reduce cost and complexity. This

problem is solved here using yet another wind sensing method (Bottasso et al., 2018; Schreiber et al., 2016, 2020). This second

approach uses blade loads to estimate the average local speed over sectors of the rotor disk; from these sector-equivalent wind

speeds, one can then estimate shears, including a vertical shear defined over just the lower half of the rotor.

2
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The sector-effective speed and load-harmonic observers have distinct characteristics, which make them somewhat comple-

mentary and applicable to different scenarios. In fact, the sector-effective observer does not need to be trained with data before

it can be used, which is particularly useful in the case considered here, but can only reconstruct shears and not wind directions

(Schreiber et al., 2020). On the contrary, the load-harmonic observer can reconstruct both shears and directions but needs to

be trained from data, which is a potential complication. A three-step procedure is developed and demonstrated here, where the5

two observers are used in synergy:

1. The lower-half-rotor shear measured by the sector-equivalent speed method is tuned and validated with respect to the

met-mast reference;

2. The full-rotor shear is computed using the validated sector-equivalent speed method, extending the measurement of the

inflow above the met-mast;10

3. This rotor-equivalent shear is finally used for training the harmonic-based estimator.

Although the present setup allows for a first demonstration of this procedure, it also presents some limitations that hinder

a real and complete validation of the method. First, the extension of the shear above the met-mast is performed through the

same rotor loads that are also used by the harmonic-based estimator. Clearly, a completely independent measurement of the

inflow up to the tip of the rotor would be preferable for validation purposes. Second, the present met-mast only includes a wind15

vane at hub height. This is a point-wise measurement, whereas the one provided by the observer —being obtained through the

response of the rotor— is a rotor-effective quantity. Here again, it would be desirable to train and verify the method with an

independently-derived rotor-equivalent quantity. Third, a met-mast cannot really provide a true and absolute ground truth, as it

measures the flow away from the rotor disk (two and half diameters away, in the present case). When the wind is not directly

aligned with turbine and mast, the wind shear and direction may be slightly different, on account of wind spatial variability,20

orographic and vegetation-induced effects. These differences are indeed visible to some extent in the present dataset. Even

when wind, mast and turbine are aligned, the two measurements are not co-located and therefore not necessarily identical.

Clearly, a more precise characterization of the effective inflow experienced by the rotor disk would be desirable for validation

purposes.

Although the present study clearly falls short of a true validation of the harmonic-based formulation of wind sensing, it still25

provides for an interesting and —in the authors’ opinion— very promising insight into some of its characteristics.

The paper is organized as follows. Section 2 describes the overall methodology, including a brief review of the harmonic-

based estimator in §2.2 and a description of the test site and the measurement of the inflow characteristics in §2.3. The analysis

of the wind observer performance is presented in Section 3, while Section 4 concludes the paper.

3
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2 Methods

2.1 Wind parametrization

The wind inflow is described by four parameters: the vertical linear shear κv , the horizontal linear shear κh, the vertical wind

misalignment angle (or upflow) χ, and the horizontal (or yaw) misalignment angle φ. These quantities are illustrated in Fig. 1.

Figure 1. Definition of the four wind states used for parameterizing the wind field over the rotor disk.

A linearly sheared wind speed W at the rotor disk is defined as5

W (y,z) = Vh

(
1 +

y

R
κh +

z

R
κv

)
, (1)

where Vh is the hub-height speed, and R the rotor radius. With reference to Fig. 1, the wind velocity vector components u, v

and w along the x, y and z axes, respectively, of a hub-centered nacelle-attached frame write

u(y,z) =W (y,z)
√

1− ṽ2− w̃2, (2a)

v(y,z) =W (y,z)ṽ, (2b)10

w(y,z) =W (y,z)w̃, (2c)

4
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where ṽ and w̃ are defined as

ṽ =
v(0,0)
Vh

= sinφcosχ, (3a)

w̃ =
w(0,0)
Vh

= sinχ. (3b)

For notational simplicity, the four wind parameters are grouped together in the wind state vector θ = {ṽ, κv, w̃,κh}T . Given

θ, the misalignment angles can be readily computed by inverting Eqs. (3) to get χ= arcsin w̃ and φ= arcsin ṽ/cosχ.5

2.2 Wind observer formulation

The relationship between wind states and rotor loads is assumed in the form

m= F (V,ρ)θ+m0(V,ρ) = [F (V,ρ)m0(V,ρ)]


 θ

1


= T θ, (4)

where F andm0 are model coefficients that depend on wind speed V and air density ρ. The dependency on wind speed is taken

into account by discretizing the wind speed range in nodal values and linearly interpolating the model based on the current10

wind speed, while density is accounted for as explained in §2.2.1. The load vectorm is defined as

m=
{
mOP

1c , m
OP
1s , m

IP
1c , m

IP
1s

}T
, (5)

where m indicates the blade bending moment, subscripts (·)1s and (·)1c respectively indicate 1P sine and cosine harmonic

amplitudes, while superscripts (·)OP and (·)IP indicate out- and in-plane load components, respectively. Harmonic components

are obtained from measured blade loads using the Coleman transformation (Coleman and Feingold, 1958), followed by low15

pass filtering.

The model coefficients F are not all independent, because of the rotational symmetry of the rotor (Bertelè et al., 2019). In a

nutshell, the effects on loads caused by the horizontal shear are the same as the ones caused by the vertical shear after a rotation

of π/2; the same holds true for the wind misalignment angles. This not only reduces the number of unknowns, but also eases

the identification of the model. In fact, whereas vertical shear changes naturally over a significant range (for example, because20

of diurnal fluctuations), horizontal shear does not (except in waked conditions). Similarly, whereas yaw misalignment changes

significantly in normal operation because of the inability of the yaw system to immediately and exactly track wind direction

fluctuations, upflow changes little (except that for orographic wind-direction-dependent effects). Therefore, a complete model

can be identified simply from variable vertical shear and horizontal misalignment, because the effects of the other two wind

states are obtained by the symmetry of the coefficients.25

The model coefficients T are identified by stacking side by side measured wind states θ into a matrix Θ =
[
θ1, . . . ,θN

]
,

while the corresponding measured blade loadsm are stacked into matrixM = [m1, . . . ,mN ], obtaining

M = TΘ. (6)

5
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The model coefficients are then computed by least squares as

T =MΘT (ΘΘT )−1. (7)

Given the model coefficients, the estimated wind states θE are computed online from the measured loadsmM as

θE =
(
F TQ−1F

)−1

F TQ−1(mM−m0), (8)

whereQ is the co-variance weighting matrix.5

2.2.1 Density correction

Aerodynamic loads can be written as

mA = qAC, (9)

where q = 1/2ρV 2 is the dynamic pressure,A the rotor disk area and C a non-dimensional coefficient. A correction for density

can be simply obtained as10

mAref =mAi

ρref

ρi
, (10)

where ρref is a reference density, and ρi the density corresponding to measurement mAi .

However, blade load sensors measure not only aerodynamic loads but also the effects of inertia and gravity, which do not

depend on air density. Inertial loads for a rotor spinning at constant rotor speed do not generate 1P harmonics, and hence do

not appear in Eq. (4). On the other hand, gravitational terms generate 1P loads represented by the non-homogeneous term m015

in that same equation. According to Bertelè et al. (2017), this term can be written as

m0 = qAC + g. (11)

The first term is a gravity-induced load due to the rotor deformation caused by aerodynamic loads; for example, if the blade

bends under the push of thrust, the resulting deformation generates a non-null moment arm for gravity with respect to the blade

root where the load sensor is located, resulting in a 1P load. This term is proportional to dynamic pressure and can be corrected20

for density. The second term g accounts for in-plane and out-of-plane gravity-induced loads, the latter being caused by blade

precone, prebend and rotor uptilt. This term does not depend on density, and hence it should be eliminated by the equations

before a density correction can be applied. To this end, the model coefficients of Eq. (4) were identified for a very low wind

speed, just above cut-in. Here the effects caused by qAC are negligible, and hence g ≈m0. Having first identified the gravity

term g and then having eliminated it from model (4), each measured load was finally corrected for density using Eq. (10).25

2.3 Wind parametrization in the field

Before wind states can be estimated at run time from measured loads using Eq. (8), the model coefficients must be identified

through the simultaneous measurements of wind states and associated loads using Eq. (7). This section presents a practical

6
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method to perform this task, based on the use of a standard IEC-compliant (IEC, 2017) hub-tall met-mast. A similar procedure

could be used to identify the observer for a specific wind turbine type. Having obtained the model coefficients, one should be

able to use the same observer for other installations of that same wind turbine type. Although there is yet no direct demonstra-

tion of this assertion, it seems reasonable to assume that wind turbines of the same model will have a similar 1P response to

shears and misalignment angles. Additionally, Bottasso and Riboldi (2015) showed that the method is fairly robust to changes5

in some of the wind turbine parameters that may vary among different installations of a same wind turbine type, including

changes in the stiffness of foundations, orographic effects, imbalance due to pitch misalignment, miscalibration of the load

sensors and changes in airfoil lift and drag due to soiling/erosion.

2.3.1 Test site

Figure 2 shows a panoramic view of the test site (Bromm et al., 2018), which is located in Germany a few kilometers inland10

from the Baltic Sea and characterized by gentle hills, open fields and forests. Data was measured between October 19 and

November 29, 2017 on a 3.5 MW eno114 turbine designed and produced by eno energy systems GmbH. The turbine (labelled

WT1 in the figure) has a 92 m hub height and a rotor radius of 114.9 m.

A met-mast is situated at about 2.5 diameters (D) from the turbine. Wind direction was measured at a height above ground of

89.3 m with a Thies GmbH wind vane, while wind speed measurements were obtained with three cup anemometers produced15

from the same company and located at 89.3 m, 91.5 m and at the lower tip of the rotor (about 34 m).

A second turbine (labelled WT2) is also present on site, and its wake affects the met-mast and WT1 for easterly and south-

easterly winds. Similarly, the wake of WT1 affects the met-mast for northern wind directions. All these conditions were

discarded from the training dataset, in addition to all other situations when WT1 was not in a normal power production state.

A forest of 15-20 m tall trees is located 300 m east of WT1; as only wind directions Γ ∈ [180,340] deg were considered in20

this work, this high roughness area was never in the inflow direction. On the other hand, the town of Brusow is located about

1 km to the west of the site, and its effects on the inflow are unknown. A test campaign conducted at the same site in the

period July-November of the previous year revealed an almost equal distribution of unstable, neutral and stable conditions, as

measured by an eddy covariance station (Bromm et al., 2018).

Synchronized turbine and blade load data was sampled at 10 Hz on WT1. Blades 1 and 3 were equipped with strain gages,25

installed in close proximity of the blade roots and measuring both flapwise and edgewise bending components. The load on

blade 2 was computed as the mean of the measurements of blades 1 and 3, shifted by ±π/3. In general, sensors deployed in

the field cannot be assumed to be always exactly calibrated, and they may suffer from a variety of issues that affect the quality

of the measurements that they provide. To address this problem, it is useful to devise simple and practical ways to correct

the measurements, even when the root cause of the problem is unknown. Here, consistent mismatches between the long-30

term mean readings of the two blade load sensors were observed; this problem was eliminated by scaling the measurements

as m1(1 + s) =m3(1− s), with s= 0.0274. Additionally, the azimuth signal was corrected to account for sensor bias and

dynamic effects, as explained in Schreiber et al. (2020). The turbine on-board wind vane was not used here, because these

7
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sensors typically require a careful calibration to correct for nacelle and rotor effects. The yaw encoder signal was also corrected

for an apparent inconsistency of its readings, as explained later in this section.

Figure 2. Satellite view of the test site, including waking directions and distances. WT1 indicates the turbine used for the present analysis

(© Google Maps).

2.3.2 Wind shears

The met-mast present at the test site reaches only up to hub height; this is also the typical case of IEC-compliant met-masts

used for certification (IEC, 2017). The three anemometers at 34, 89 and 92 m can be used to estimate the shear over the lower5

half of the rotor, which however in general differs from the shear computed over the whole rotor height.

To address this issue, the sector-effective wind speed (SEWS) estimation method described in Schreiber et al. (2020) was

employed. In a nutshell, the blades are used as local speed sensors that, scanning the rotor disk, provide average speeds over

four rotor quadrants. By using the two lateral and the lower quadrants, the shear over the lower part of the rotor disk can be

computed. This quantity is validated with respect to the shear measured by the met-mast, assumed as a ground truth. Then,10

having verified a good correlation between the measured and estimated shears over the lower part of the rotor, the average

speeds for all four quadrants are used to calculate the wind shear over the whole rotor disk. A brief overview of the SEWS

estimator is reported next, and the interested reader is referred to Schreiber et al. (2020) for further details.

8
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The rotor cone coefficient is defined as

Cm (β,λ,q,ψi) =
mi

0.5ρARV 2
, (12)

where β is the pitch angle, λ= ΩR/V the tip speed ratio and Ω the rotor speed, mi the out-of-plane bending load of the

ith blade and ψi its azimuthal position. Coefficient Cm was computed here with the aeroelastic code FAST (Jonkman and

Jonkman, 2018). Inverting Eq. (12), a look-up table (LUT) is generated that returns the blade-effective wind speed Vi given5

measured blade pitch angle, rotor speed, azimuthal blade position, bending moment and density:

Vi = LUTCm

(
β,Ω,ψ,mi,

ρ

ρref

)
. (13)

This way each individual blade is turned into a local wind speed sensor, which scans the rotor disk. Since this local measurement

is noisy, the rotor disk is divided into sectors of area AS, and a sector-equivalent wind speed is computed as

VS =
∫

AS

Vi(ψi)dAS. (14)10

Here the four sectors shown in Fig. 3 were used. This yields four measurements of the local speed at the rotor disk, located at

2/3R above, below and to the sides of the hub center (Bottasso et al., 2018).

Figure 3. Definition of the four rotor sectors and their relative position with respect to the met-mast. Right: view looking downstream.

The rotor-effective horizontal linear shear can be computed inserting the sector-effective wind speeds in Eq. (1) to get

κh =
3
2
VS,left−VS,right

VS,left +VS,right
. (15)

For a more coherent comparison of the linear vertical shears estimated by the met-mast and by the sector-effective speeds,15

it is useful to first fit a power law to the respective wind speed measurements, as they are obtained at different heights above

9
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ground. The power law profile is defined as

V (z)PL = Vref

(
z+H

H

)α
, (16)

where H is the height of the hub, Vref the wind speed at that point, and α the power law exponent. Given n measurements Vi

at zi, the parameters of the power law are computed by the following best fit:

(Vref ,α) = arg min
Vref ,α

n∑

i=1

(VPL(zi)−Vi)2 . (17)5

Notice that two measurements at two different heights are sufficient to estimate the power law. Having solved the fitting

problem (17), the linear shear κv between heights zA and zB is computed as

κv =
R (VPL(zA)−VPL(zB))
zAVPL(zB)− zBVPL(zA)

. (18)

The left plot of Fig. 4 shows the correlation between 10-min averages of the vertical shears obtained by the met-mast

and by the sector-effective wind speeds on the lower half of the rotor. Only wind directions between 170 and 220 deg are10

considered, where the turbine and met-mast are aligned. The power law for the met-mast was obtained by using all three speed

measurements, although the two at 89.3 and 91.5 m above ground are almost coincident. For the sector-effective estimator the

power law was obtained by using the two measurements (VS,left +VS,right)/2 at z = 0, and VS,down at z =−2/3R. For both

cases, the lower-half-rotor linear shear was computed from Eq. (18) using zA = 0 and zB =−R and the corresponding fitted

power law. The figure shows that there is a good correlation between the two lower-half-rotor shears, resulting in a Pearson’s15

coefficient of 0.906. However, the figure also shows that the linear fit (red dashed line) has a different slope than the ideal

match (black solid line). The results presented later in Section 3 were corrected to account for this error.

For the same data points, the right plot of Fig. 4 shows the correlation between the vertical shears obtained by the met-mast

and by the sector-effective estimator over the complete rotor. Here again the power law for the met-mast was obtained by using

all three speed measurements. For the sector-effective estimator the power law was obtained by using the three measurements20

VS,up at z = 2/3R, (VS,left +VS,right)/2 at z = 0, and VS,down at z =−2/3R. For both cases, the full-rotor linear shear was

computed from Eq. (18) using zA =R and zB =−R and the corresponding power laws. It should be noted that, since the

height of the top anemometer reaches only up to hub height, for the met-mast the calculation of the full rotor shear implies a

considerable extrapolation outside of the available measurements.

Comparison of the right and left plots of Fig. 4 shows that in the full-rotor case there is a lower correlation between the25

met-mast and the SEWS observer than in the lower-half rotor case. This indicates that the shear changes over the height of the

rotor disk. In addition, as expected for a typical power law where the profile gradient increases with height, the lower-half-shear

coefficient is typically higher than the full-rotor one.

Based on these results, it appears that the rotor-effective shear used for identifying the model of §2.2 would require a tall

met-mast or other wind measurement devices such as lidars or sodars capable of scanning the inflow reaching the top of the30

rotor. Here —as such a tall mast was not available— an alternative approach was used: the sector-equivalent wind speed method

was used to virtually extend the met-mast measurements to the required height. Based on the good correlation shown by the

10
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Figure 4. Correlation between 10-min averages of the vertical linear shears measured with the met-mast and the sector-effective observer.

Left: lower-half rotor shears; right: full-rotor shears. Red dashed line: linear best fit; black dashed line: ideal match; R: Pearson’s correlation

coefficient; N : number of data points; εRMS: root mean square error.

left plot of Fig. 4 for the lower-half-rotor shear, it was concluded that the two lateral and the lower sector-equivalent speeds are

sufficiently accurate for the purpose of estimating shears. Since the top sector speed is based on exactly the same calculation

procedure as the other ones, all four speeds were then used to estimate the full-rotor shear, which in turn was used as reference

for the identification of the model of §2.2.

Unfortunately a similar validation cannot be performed for the horizontal shear with the present met-mast, because of the5

lack of multiple lateral measurements. However, the horizontal shear is based on the same sector-equivalent wind speeds that

estimate the vertical shear with good accuracy, so that there is no reason to believe that Eq. (15) should not provide a similarly

good-quality estimate. Additionally, the horizontal shear based on the two lateral sector-effective wind speeds was shown in

Schreiber et al. (2020) to track the movement of an impinging wake with remarkable accuracy.

2.3.3 Wind misalignment angles10

The met-mast is equipped with a single wind vane measuring the wind direction Γ at hub height. Unfortunately, this means

that only a point-wise measurement is available, instead of the rotor-equivalent one that would be ideally necessary for the

training of the load-harmonic method of §2.2. This is a limit of the current setup and of the present attempt at validating the

approach. Nonetheless, a pragmatic choice was made here to filter the wind vane signal with a moving average to remove the

faster fluctuations, and to use this signal as a proxy for the rotor-effective horizontal wind direction. The misalignment angle15

between turbine and wind was obtained by subtracting the absolute yaw angle of the nacelle from the met-mast-measured
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wind direction. The result was shifted in time on account of the distance between turbine and met-mast, the time delay being

computed from the average wind speed.

The top plot of Fig. 5 shows 10-min averages of the resulting met-mast yaw misalignment angle ΦMM, plotted as a function

of wind direction Γ. The clear trend visible in the plot is probably due to a miscalibration of the nacelle yaw encoder. Indeed,

Bromm et al. (2018) also noticed a non-constant offset when comparing the turbine SCADA orientation with the one provided5

by a temporarily installed GPS system. This trend was removed using the first ten days of data, excluding waked directions,

obtaining the bottom plot of Fig. 5.
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Figure 5. 10-min averages of met-mast horizontal wind misalignment angle φMM vs. wind direction at the met-mast Γ, before (top) and after

(bottom) correction for yaw encoder error.

As the current setup does not provide for measurements of the upflow, the rotational symmetry of the rotor was used to

compute the relevant model coefficients.

2.3.4 Wind speed and density10

Since the load-wind model expressed by Eq. (4) depends on the operating conditions, a rotor-effective wind speed was com-

puted with the torque balance equation (Ma et al., 1995; Van der Hooft and Engelen, 2004; Soltani et al., 2013; Schreiber et al.,

2020) and used as scheduling parameter of the wind observer. Figure 6 shows an excellent correlation for the 10-min averages

of the computed rotor-effective wind speed and the met-mast hub-height speed. Density was obtained from the ideal gas law

based on temperature, since no additional information was available, and was used to rescale the load measurements.15

12
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Figure 6. Correlation between 10-min averages of met-mast hub-height wind speed VMM and rotor-effective wind speed VTB estimated with

the torque balance equation. Red dashed line: linear best fit; black dashed line: ideal match; R: Pearson’s correlation coefficient; N : number

of data points available; εRMS: root mean square error.

3 Results

3.1 Model identification

The observer coefficients were identified with Eq. (7) using the horizontal and vertical shears obtained from the sector-effective

wind speeds, and the yaw misalignment angle computed from the met-mast wind vane and the nacelle yaw encoder, corrected

according to Fig. 5. The upflow model coefficients were obtained from the rotational symmetry of the rotor behavior. The5

model coefficients were scheduled as functions of the rotor-effective wind speed computed from the torque balance equation,

and load measurements were corrected for density.

The model was identified based on 10-min averages. The wind speed nodes of the linear parameter varying model (4) were

defined as V = [4, 5, 6.5, 8, 9, 10, 12, 13.5] m/s, while the reference density was set to 1.238 kg/m3. Table 1 shows the range

covered by each parameter within the training dataset.10

About 15% of the available data was used for identification, leaving about 370 hours of measurements for validation. In the

following, the performance of the harmonic observer is evaluated solely based on the validation dataset.

A similar identification was also performed using the same training set, but using instantaneous 10 Hz measurements instead

of 10-min averages. As this led to a small decrease in model performance, it was concluded that some time averaging may be

beneficial as it probably alleviates the effects of possible outliers.15

13
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Table 1. Minimum and maximum values of rotor effective wind speed, turbulence intensity (TI), density, yaw misalignment, vertical and

horizontal shear within the training dataset.

V [m/s] TI [%] ρ [kg/m3] φMM [deg] κv [-] κh [-]

min 3.89 1.15 1.221 −12.66 −0.045 −0.053

max 13.68 11.06 1.256 8.28 0.242 0.087

3.2 Wind observer performance

Figure 7 gives an overview of the model performance in terms of correlations between 10-min averages of reference and

observed parameters, using the validation sub-set for wind speeds above 8 m/s. For each parameter, one per subplot, the

reference state is shown on the x axis, whereas the observed one on the y axis. For the shears, the Pearson’s correlation

coefficients (R) is above 0.9, and the root mean square (RMS) error εRMS is of the order of 10−3. The yaw misalignment angle5

is less accurate, possibly because the reference is point-wise whereas the estimate is rotor-effective. Indeed, investigations at

the same site with a more complete setup including a lidar profiler reported significant veer at the inflow (Bromm et al., 2018).

However, with a correlation coefficient of 0.85 and an εRMS of 1.9 deg, the matching is still good.

Figure 7. Correlation of 10-min averages between estimated parameters (y axis) and their reference quantities (x axis) for V ≥ 8 m/s. From

left to right: yaw misalignment angle, vertical linear shear, horizontal linear shear. Red dashed line: linear best fit; black dashed line: ideal

match; R: Pearson’s correlation coefficient; N : number of data points; εRMS: root mean square error.

It is very interesting to observe that, although the model was trained only with 10-min averages, it is still able to provide for

time-resolved estimates of the parameters. To illustrate this fact, Fig. 8 reports a 10 Hz time history of the vertical shears from10

14
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the validation sub-set. The figure corresponds to about two days of operation, during which the wind direction (bottom plot)

was Γ ∈ [145,260] deg. Turbine and met-mast are roughly aligned for Γ ∈ [177.5,215] deg; WT1 is in the wake of WT2 for

approximatively Γ ∈ [120,170] deg, the two directions being indicated in the plot with two horizontal dashed lines. The top plot

of the figure shows the lower-half-rotor shears measured at the met-mast and by the sector-equivalent speeds. Although some

discrepancies are present, the figure shows that the sector-effective observer is capable of following the main changes in shear5

captured by the met-mast. The main discrepancies can be found between 2PM of October 21 and about 4AM of October 22,

when WT1 is in the wake of WT2 or in its close proximity. However, one should not forget that the two estimates correspond to

two locations spaced 2.5D apart, and that the exact ground truth at the rotor disk —where the observers operate— is unknown.

The central plot of the same figure shows the rotor-equivalent shear estimated by Eq. (8) based on rotor harmonics and its

reference quantity obtained by the sector-equivalent speeds. The two vertical shears are in excellent agreement, even with10

respect to relatively fast fluctuations.

Figure 8. Time history of vertical shears at 10 Hz. From top to bottom: lower-half-rotor shear from the met-mast (blue) and the sector-

effective observer (black); full-rotor-equivalent shear using Eq. (8) (red) and reference from the sector-effective observer (black); wind

direction measured at the met-mast, with WT1 in the wake of WT2 between 120 and 170 deg (dashed horizontal lines).

To provide for a more complete statistical characterization of the observer performance, the 10-min data points were binned

for the various relevant parameters. For each bin, the mean absolute error (MAE) between the estimated θE and reference θR

wind parameter was computed as ε= 1/N
∑N
i |θRi

−θEi
|.

Figure 9 shows the MAE ε for yaw misalignment (top left), vertical and horizontal shear (top and bottom right, respectively),15

plotted as functions of binned wind speed, for various binned turbulence intensity (TI) levels. The number of available hours of

data is reported in the bottom left histogram of the figure, to help determine the statistical significance of the results. Looking

15
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at the yaw angle results, it appears that the maximum error is about 3 deg and that accuracy tends to increase for higher wind

speeds. Moreover, TI appears to play only a small effect on the results. The error in the vertical shear includes the error between

the met-mast and the sector-effective observer of §2.3.2. Even in this case the error is small, and effects of TI are present but

relatively mild. The figure also reports the horizontal shear, whose error —although very small— might not be very indicative,

as no reference value was available from the met-mast for this quantity.5
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Figure 9. MAE ε vs. binned rotor-effective wind speed, for binned TI. Top left: yaw misalignment; top right: vertical shear; bottom right:

horizontal shear; bottom left: hours of available data.

Figure 10 reports the results for varying binned air density. The plots show that the density correction of §2.2.1 is not perfect,

probably because of an only approximate identification of the gravity term in Eq. (11).

Finally, Fig. 11 reports the results for varying wind direction. Looking at the vertical shear, the best results are obtained for

wind directions between 170 and 210 deg, when turbine and met-mast are aligned, whereas the error increases significantly

for other wind directions. When turbine and met-mast are not aligned, the two can be subjected to slightly different inflows,10

on account of orographic and vegetation-induced effects. This indicates once again that, as noted earlier on, the information

provided by the reference met-mast cannot be regarded as an absolute ground truth. The yaw misalignment angle seems to be

less influenced by these local effects, which might induce stronger local changes in shear than in direction at this particular

site.
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Figure 10. MAE ε vs. binned rotor-effective wind speed, for binned density change ∆ρ wrt. standard air. Top left: yaw misalignment; top

right: vertical shear; bottom right: horizontal shear; bottom left: hours of available data.
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Figure 11. MAE ε vs. binned rotor-effective wind speed, for binned wind direction Γ. Top left: yaw misalignment; top right: vertical shear;

bottom right: horizontal shear; bottom left: hours of available data.
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4 Conclusions

This paper has presented the application of a previously published harmonic-based wind sensing method to an experimental

dataset. The setup at the test site is not complete enough to provide for a true field validation of the method. However, it is

representative of a practical scenario where, by using a hub-tall certification met-mast, the method is trained for a given turbine

model, before being deployed on assets of that same type at other production sites. After having explained the methodology5

and described the test site, the paper has also formulated a new method to extend the shear measured by a hub-tall mast to the

tip of the rotor, in order to compute a full-rotor shear.

Based on the results analyzed herein, and notwithstanding the limits of the present dataset, the following conclusions can be

drawn:

– There is a good correlation between met-mast and estimated lower-half rotor shears;10

– There is an excellent correlation between the full-rotor shear extended above the mast and the one estimated by harmonic

loads;

– Training with 10-min data improves the quality of the estimates with respect to the case where a much larger set of

higher-sampling-frequency data points are used.

– Notwithstanding a training based on 10-min averages, the quality of the correlation between estimates and references15

does not only apply to 10-min quantities, but it also extends to time-resolved 10 Hz signals. In this sense, the observer

seems capable of following relatively fast changes in shear. This might be useful for certain application scenarios, as for

example the tracking of horizontal shears induced by wake interactions.

– There is a non-negligible effect of wind-mast-turbine non-exact alignment. In this sense, the actual quality of the cor-

relation might be even better than what appears from the results shown here. This is in fact an intrinsic limit of field20

testing, where an exact ground truth is in general difficult if not impossible to obtain. Realistic simulations and wind

tunnel studies as the ones reported in Bertelè et al. (2017, 2018, 2019) —where the ground truth is known— may help

in this sense.

– Yaw misalignment is also estimated with reasonable quality, although the results here are less conclusive due to the fact

that the met-mast reference is a point-wise measurement that might not fully represent rotor-effective conditions.25

– There is only a modest effect of TI, which supports the hypothesis that 1P harmonics are mostly driven by “deterministic”

wind characteristics and less affected by turbulent fluctuations.

– Notwithstanding the complicated effect of gravity on harmonic load components, its presence can be eliminated with

enough accuracy to allow for a reasonably precise density correction.

A continuation of this work would greatly benefit from access to a more complete dataset, without the limits discussed30

above. Multiple, independent rotor-effective measurements of the inflow in very close proximity of the rotor disk would be

18

https://doi.org/10.5194/wes-2020-83
Preprint. Discussion started: 9 July 2020
c© Author(s) 2020. CC BY 4.0 License.

112 Appendix A. Paper III



necessary to establish an effective ground truth. This would allow for a better characterization of the accuracy of this method,

and to study the effects induced by training with a standard hub-tall mast. A remaining open point is the demonstration that the

method can indeed be trained on a turbine and, then, applied to another machine of that same model at another site; although

this seems to be a very reasonable assumption, the evidence that this is indeed possible is lacking. Finally, it remains to be

shown that the method does not need to be re-trained for an aging turbine. Here again, based also on the reassuring results5

already reported by Bottasso and Riboldi (2015), it is difficult to believe that 1P loads might change over time to the point of

affecting the estimates, although a field proof of this assertion is clearly missing at this point in time.
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access to the measurement data and turbine model, and to Marijn van Dooren, Anantha Sekar and Martin Kühn of ForWind Oldenburg, who
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Nomenclature

A Rotor area

Cm Cone coefficient

H Height of the hub above ground15

m Blade bending moment

m Vector of moment harmonics

N Number of available data points

q Dynamic pressure

R Rotor radius or Pearson’s coefficient20

Q Covariance matrix

V Wind speed

Vh Wind speed at hub height

VS Sector-effective wind speed

VTB Torque-balance rotor-effective wind speed25

ṽ Non-dimensional tangential cross flow at hub height

w̃ Non-dimensional vertical cross flow at hub height

x, y, z Hub-centered nacelle-attached axes

β Pitch angle

Γ Wind direction30

ε Mean absolute error

θ Wind state vector
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κh Horizontal shear

κv Vertical shear

λ Tip speed ratio

ρ Air density

φ Yaw misalignment angle5

χ Upflow angle

ψ Azimuth angle

Ω Rotor speed

(·)T Transpose

(·)IP In-plane component10

(·)OP Out-of-plane component

(·)1c 1P cosine amplitude

(·)1s 1P sine amplitude

(·)E Estimated quantity

(·)MM Met-mast measurement15

(·)ref Reference quantity

(·)RMS Root mean square

1P Once per revolution

MAE Mean absolute error

Lidar Light detection and ranging20

LUT Look-up table

RMS Root mean square

SEWS Sector-effective wind speed

Sodar Sound detection and ranging

TI Turbulence intensity25

WT Wind turbine
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Abstract. In this work, the wind sensing technology that exploits the turbine rotor as an
anemometer is further developed into a non-deterministic formulation. First, an inflow-turbine
response map is identified, which relates out and in-plane blade root bending moments to
both vertical and horizontal shears and misalignments. Then, this linear model is used with
and without a Kalman filter to estimate online the wind field at the rotor disk once blade
loads are measured. A comprehensive simulation study, including different wind speeds and
turbulence intensity levels, was performed to evaluate the accuracy of the new non-deterministic
formulation. The results show that introducing a Kalman filter in the estimation process
allows for a significant improvement in the angle estimates with respect to the deterministic
formulation, with no considerable additional computational cost.

1. Introduction
Reliable and accurate measurements of the inflow conditions at the rotor disk are of significant
importance both at the single turbine level as well as within a wind farm. To realign the rotor to
the wind, decreasing in turn fatigue loads and increasing the harvested power, one must be aware
of the horizontal wind direction. Such information is particularly valuable for wind farm control
strategies as well, where one could also make use of the estimate of the impinging horizontal
shear for wake detection. The wake recovery rate could be inferred from the level of stability
of the atmosphere, which is strongly linked to the vertical shear exponent, but also information
about the vertical wind direction could prove useful to characterize the flow in complex terrain.

To measure the wind inflow in the field, commonly used devices are nacelle anemometers
and met-mast towers. While the first ones provide with a pointwise measurement of the wind
speed and horizontal wind misalignment at the nacelle, the latter can also provide information
about the vertical shear, since they are normally equipped with more measurement points over
the height. Still, this information is representative of an inflow not co-located with the turbine,
whereas the nacelle measurements have to be corrected for blade passing and interference with
the nacelle. To characterize the free stream at the rotor disk as well as to measure also the
vertical wind direction and the horizontal shear, one might use LiDARs, which are nevertheless
still relatively costly and susceptible to weather conditions.

To overcome such issues and to ensure that inflow measurements are actually rotor-effective,
i.e. measured at the rotor disk and over the rotor disk area, references [7, 2] have proposed
to turn the rotor itself into an anemometer. Indeed, in [7, 2] the turbine response is linked to
the spatial dis-homogeneity in the wind via a model so that, once the model itself has been
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identified from either field data or simulations, it can be inverted and used to estimate the
inflow conditions given measured loads. Such methodology with its different formulations has
been validated with comprehensive simulations [7, 2, 3], in the wind tunnel [4] and using field
measurements [1].

The wind observer formulation proposed so far is nevertheless completely deterministic, not
allowing therefore for any process or measurement noise. To include such effects and improve
the robustness and accuracy of the methodology, in this work a Kalman filter is used in the
estimation process. Section 2 will first introduce the wind-load mapping with its deterministic
and non-deterministic estimation procedure. Then, section 3 will provide a comparison of the
overall performance of both methodologies.

2. Methodology
2.1. Wind field parametrization
In this work, the wind inflow is parametrized by four states: vertical and horizontal wind
direction, χ and φ respectively, and vertical and horizontal linear wind shears, κv and κh,
(shown in Fig. 1). Along with the wind speed, this rotor-effective parameters represent a full
first order description of the inflow at the rotor disk. Indeed, the wind field is defined as

V (y, z) = Vh

(
1 +

z

R
κv +

y

R
κh

)
, (1)

where Vh is the wind speed at hub height and R is the rotor radius. The three wind velocity
components are therefore

u(y, z) = V (y, z) cosφ cosχ, (2a)

v(y, z) = V (y, z) sinφ cosχ, (2b)

w(y, z) = V (y, z) sinχ. (2c)

From Eq. (1), one can easily note the rotational symmetry between vertical and horizontal
shear: the effect of a given horizontal shear on the inflow is the same as the one caused by an
equivalent vertical shear, only shifted by π/2 [4]. To better visualize the rotational symmetry
characterizing the wind directions, one can define new variables representing the non dimensional
horizontal and vertical cross flow at hub height

ṽ =
v(0, 0)

Vh
= sinφ cosχ, (3a)

w̃ =
w(0, 0)

Vh
= sinχ, (3b)

and rewrite the problem in terms of the wind state vector θ = {ṽ, κv, w̃, κh}. Such reformulation
can be later exploited for a simpler identification of the model.

2.2. Winds state observer
Since any spatial dis-homogeneity in the wind will cause a periodic response on a stable system,
as described in [7, 2, 3, 4], one can identify a mapping relating the non-uniform inflow to
the one per revolution (1P) harmonics of the blade in and out of-plane bending moments,
noted IP and OP respectively. The harmonic amplitudes can be readily extracted with the
Coleman transformation [8] and grouped into vector m = {m1c

OP,m1s
OP,m1c

IP,m1s
IP}T ,

where subscripts c and s stand for the cosine and sine components, respectively.
This mapping, which can be considered as a black box, is formulated as follows
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Figure 1. Wind state definition.

m = F (V )θ +m0(V ) = [F (V )m0(V )]

[
θT

1

]
= T (V )θ̄, (4)

with F (V ) and m0(V ) the model coefficients scheduled with respect to the wind speed. This
scheduling parameter is known in simulations, but can also be easily measured or even estimated
in the field [14]. In details, m0(V ) represents the gravity-induced 1P loading, due for instance
to coning or uptilt, whereas F (V ) represents the derivative of the machine response with respect
to the wind parameters.

The model can be readily identified just by collecting enough measurements of loads mi and
the respective wind inflow parameters θi, with i = 1, . . . , N , N being the number of available
datapoints. Defining M = [m1, . . . ,mN ] and Θ =

[
θ̄1, . . . , θ̄N

]
, focusing here for brevity on

one wind speed V̄ , the system
M = T (V̄ )Θ, (5)

is inverted so that T can be computed in a least-square sense as

T (V̄ ) = MΘT
[
ΘΘT

]−1
. (6)

An alternative identification strategy was described in [4] to face the possibility of an incom-
plete dataset, i.e. a dataset where not all required wind states are measured. In a nutshell,
by exploiting the rotational symmetry of the rotor one can correlate the model coefficients de-
pending on the horizontal wind direction to the ones depending on the vertical one, the same
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holding for the shears. Therefore, first the coefficients of the measurable parameters are directly
identified from Eq. (6), and then the missing ones are simply derived exploiting the rotor sym-
metry. This procedure can be particularly useful in a field test campaign, where usually only
measurements of the horizontal wind direction and vertical shear are provided.

Once the coefficients have been identified, the wind states can be deterministically estimated
in a least-squares sense from the measured response of the machine mM, leading to the solution
of the following simple problem

θE = arg min
θ

((
mM − Fθ −m0)

T
(
mM − Fθ −m0)

)
. (7)

2.3. Non-deterministic observation
In order to increase the robustness of the estimation process, a Kalman filter is introduced
allowing therefore for both a process and a measurement noise [11, 12]. At any time k, the
estimate of the wind state vector is defined as

θk = θk−1 +wk−1, (8)

with w the process noise with covariance Q, whereas the output equation of the filter writes

zk = mM −mobs + vk = mM − (Fθk −m0) + vk, (9)

where mobs represents the observed machine response and vk the measurement noise, with
covariance R. Note that the filter output zk is set to zero to enforce Eq. (4).

3. Results
To quantify the potential benefits of the Kalman-based formulation, several tests were run at
different turbulence intensities (TI) with different mean wind speeds and mean inflows, i.e. set-
ting the wind directions and shears to constant mean values but with a TI-dependent standard
deviation.

In this work, a three-bladed, 3 MW machine, with cut in and cut out speeds of 3 and 25 ms−1

respectively and region II12 between 9 and 12.5 ms−1, was considered as reference model. Its
aeroservoelastic behavior was simulated with Cp-Lambda [5], a modelling tool representing tower
and blades as geometrically exact non-linear beams and including mechanical losses and a tor-
sionally elastic drive train. The aerodynamic model is based on the Blade Element Momentum
theory along with unsteady corrections, dynamic stall and tip and hub losses, and a collective
LQR pitch and torque controller is used to regulate the machine [6, 13]. In addition, TurbSim
[10] was used to provide as input to Cp-Lambda turbulent wind grids, computed according to
the Kaimal model.

For each simulation performed, both a deterministic and non-deterministic wind observer
were used to estimate the rotor effective wind parameters. Figure 2 shows an excerpt of the
results obtained at 17 ms−1 and 12% TI with a linear wind-response model, i.e. a model that
was identified with a dataset where measurements of all four wind parameters were available.

In each subplot, one per parameter, one can compare the reference wind condition (black)
with the observed one with (red) or without (blue) a Kalman filter. The reference wind states,
considered here as ground truth, were obtained fitting Eq. (1) and (2) on the rotor-swept area
of the TurbSim generated turbulent grid, and therefore also represent a rotor-equivalent mea-
surement.
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Figure 2. Wind parameters vs. time at 17 ms−1 and 12% TI for the linear model: reference
condition (black), deterministic estimation (blue), non-deterministic estimation (red) for yaw
misalignment, vertical shear, upflow angle, horizontal shear (top to bottom).
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Figure 3. Wind parameters vs. time at 17 ms−1 and 12% TI for the symmetric model:
reference condition (black), deterministic estimation (blue), non-deterministic estimation (red)
for yaw misalignment, vertical shear, upflow angle, horizontal shear (top to bottom).

While the deterministic instantaneous estimation of both shears appears to be very accurate,
the observation of both angles can only follow the mean value of the parameters, though with
some fluctuations. The use of a Kalman filter appears to significantly reduce such fluctuations,
especially for the vertical direction, thus improving the model performance. Such considerations
apply also to the results obtained with a rotationally symmetric model, i.e. a model identified
exploiting the symmetry of the rotor, as shown in Fig. 3. Here as well, the Kalman filter reduces
the fluctuations in the angle estimation, whereas no margin of improvement can be noticed as
far as the shears are concerned.

A statistical overview of the performance is presented next. For each chosen wind speed in the
range V ∈ [7, 17] ms−1, given a TI level, three different mean inflows were considered, including
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therefore different values of wind misalignments and shears. Moreover, for each mean inflow 4
different turbulent seeds were used: each marker in figures from 4 to 7 represents therefore a
total of 12 10-minute long turbulent simulations.
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Figure 4. Standard deviation σ of the four wind states vs. wind speed for 5% and 12% TI
levels for the linear model. Deterministic formulation: solid lines; non-deterministic formulation:
dashed lines.
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Figure 5. Mean absolute error ε of the four wind states vs. wind speed for 5% and 12% TI
levels for the linear model. Deterministic formulation: solid lines; non-deterministic formulation:
dashed lines.

Figure 4 and 5 show, respectively, for two different TI levels (5 and 12%), the standard
deviation and the mean absolute error in the estimates of all parameters for both a deterministic
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Figure 6. Standard deviation σ of the four wind states vs. wind speed for 5% and 12% TI levels
for the symmetric model. Deterministic formulation: solid lines; non-deterministic formulation:
dashed lines.
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Figure 7. Mean absolute error ε of the four wind states vs. wind speed for 5% and 12% TI levels
for the symmetric model. Deterministic formulation: solid lines; non-deterministic formulation:
dashed lines.
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(solid line) and non-deterministic (dashed line) linear model. Coherently to what seen in the
exemplary time history, while no improvement in the accuracy can be seen in the shear estimates,
a significant improvement can be noticed for the angles. A possible explanation for this behaviour
lies in the physics behind the model.
As thoroughly discussed in [2], vertical and horizontal shears leave a clearer fingerprint on the
machine response than upflow and yaw misalignment. In fact, to generate the same change in
angle of attack, and in turn in blade loading, one needs a higher variation in wind directions than
in shears. Similar results were confirmed by a singular value decomposition analysis [9, 2], which
also showed that, while both shears are linearly independent parameters, a coupling is present
between upflow and yaw misalignment: an error in the yaw estimate will also propagate in the
upflow observation, and vice versa. The Kalman filter seems to be able to compensate for these
issues, reducing the propagation of the error. Indeed, for higher wind speeds and turbulence
levels, when the Kalman filter is employed the angle standard deviation decreases of almost two
degrees, while the mean error of 1.5 deg, leading to a maximum absolute error in the estimation
of 2.3 and 2.1 deg for yaw and upflow angle, respectively.
Similar considerations can be drawn for Fig. 6 and 7, which show standard deviation and mean
error for a deterministic and non-deterministic rotationally symmetric model. No improvement
in the shear estimation can be noticed, whereas higher accuracy can be obtained for the angles.
Again, the most significant improvements can be noticed for higher wind speeds and higher
turbulence, leading to a maximum estimation error of 2.4 and 1.8 deg for yaw and upflow angle
respectively.

4. Conclusions and Outlooks
In this work, the wind sensing technology described in [2, 4] was further developed in order to
include non-deterministic effects. A linear and rotor symmetrical model relating wind conditions
and blade loads were identified; during operation, the inflow at the rotor disk was inferred from
the machine measured loads. A Kalman filter was included in the estimation process in order
to increase the robustness of the observations and, with it, their accuracy.

Based on a simulation study including several variations of mean inflow, wind speed and
turbulence intensity, the following conclusions can be drawn:

• The non-deterministic wind observer is capable of capturing the instantaneous variations of
both vertical and horizontal shear very accurately. Additionally, no significant improvement
in the estimation can be noted with respect to the deterministic formulation.

• As far as the wind directions are concerned, the non-deterministic observer is capable of
reducing the fluctuation in the estimates of the angle mean values, leading to significant
higher accuracy. This is particularly the case when considering higher wind speeds and TI,
where the mean absolute error can decrease up to almost 2 deg.

• While both the non-deterministic linear and symmetric observer prove better than
their deterministic counterparts, no significant difference can be noted comparing their
performance. This proves once again that one may simplify the model identification
exploiting the symmetry of the rotor without decreasing the quality of the results. This is
very valuable particularly for field test applications, where usually only information about
the vertical shear and about the horizontal wind direction are available.

• Finally, the implementation of the described Kalman filter does not imply any significant
addition to the computational cost of the observer. Indeed, considering that this
methodology relies on simple linear models using as input blade load measurements, the
observer still remains an easy-to implement solution for wind inflow estimation.
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M. Bertelè1, C.L. Bottasso1,2, and S. Cacciola2

1 Wind Energy Institute, Technische Universität München, Garching bei München, Germany
2 Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Milano, Italy

E-mail: {marta.bertele, carlo.bottasso}@tum.de, stefano.cacciola@polimi.it

Abstract. In this paper, the turbine itself is used as an anemometer to estimate the inflow
at its rotor disk. Indeed, given that any anisotropy in the wind will lead to periodic loads, by
studying the machine response one can infer rotor-effective wind conditions and exploit such
information for turbine and farm-level control applications. Specifically, expanding the idea of
previous publications, the case of an individually pitch-controlled machine is considered herein:
a linear implicit model is formulated to relate some characteristics of the wind —in the form
of shears and misalignment angles— to the 1P harmonics of pitch angles and blade loads. The
performance of the proposed algorithm is tested in a simulation environment, including both
uniform and turbulent wind conditions.

1. Introduction
To improve the performance of a single wind turbine as well as of a wind farm, reliable
information about the wind inflow can be of significant help. For example, accurate information
about yaw misalignment can be used by a yaw control system to realign the turbine to the wind.
When this information is of better quality than the one provided by the nacelle wind vane, this
approach might lead to higher harvested power and lower fatigue loads. Similarly, the presence
of a horizontal shear can be used for wake impingement detection, which can be used for the
cooperative control of wind turbines within a wind power plant. Furthermore, measurements
of the vertical shear can be used to better tune individual pitch control strategies (IPC) or to
account for atmospheric stability, which has a strong effect on wake behavior and consequently
on wind farm control strategies.

Unfortunately, accurate wind inflow measurements are still difficult to obtain. Commonly
used devices such as met-masts measure an inflow that is not co-located with the turbine, and
therefore is of only limited use. Wind vanes and anemometers, on the other hand, measure the
wind at the nacelle, but this information is point-wise (as opposed to rotor-equivalent), and also
affected by blade passage and nacelle interference effects. More accurate measurements can be
obtained by LiDARs, which are however still not widely adopted and remain at the moment
confined primarily to research applications. In general, it can be safely stated that wind turbines
today are still largely unaware of the wind conditions in which they operate.

To overcome such hurdles, the idea of using the turbine as an anemometer was introduced
in Ref. [1]. Following this approach, first in Ref. [2, 3] and then in [4, 5], the response of the
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machine was used to infer rotor-effective wind conditions. Specifically, since any anisotropy in
the wind leads to periodic loads [6], by measuring the 1P harmonic components of the blade out-
of-plane and in-plane root bending moment, one can infer the wind field, as described by four
parameters: vertical and horizontal misalignment angles (upflow and yaw angle, respectively),
and vertical and horizontal shears.

In this paper, the formulation proposed in Ref. [4, 5] is extended and adapted to IPC-
controlled machines. Given that such control systems aim at decreasing the loading on the
machine by individually pitching each blade, in this work both blade loads and pitch harmonics
are used to estimate the inflow. Since the only required hardware consists of blade load and
pitch sensors, the proposed wind inflow estimator amounts to a software upgrade when such
sensors are already available (for example, for load alleviating closed-loop control).

2. Formulation
2.1. Wind field parameterization
Exposed to a non-isotropic wind field, i.e. an inflow constant in time but not in space, the loading
experienced by a rotating blade will be periodic, since periodic are the changes in relative velocity
and therefore in angle of attack experienced by its airfoils. To describe such anisotropy, four
parameters are defined as shown in Fig. 1: the yaw misalignment φ, the vertical shear κv, the
upflow angle χ, and the horizontal shear κh, grouped together in the wind state vector:

θ = {φ, κv, χ, κh}T . (1)

The wind field is described as

V (y, z) = Vh

((
z

zh

)κv
+
y

R
κh

)
, (2)

where Vh and zh are the wind speed and the vertical coordinate at hub height, respectively,
while R is the rotor radius. The three wind speed components can then be expressed as

u(y, z) = V (y, z) cosφ cosχ, (3a)

v(y, z) = V (y, z) sinφ cosχ, (3b)

w(y, z) = V (y, z) sinχ. (3c)

2.2. Blade load and pitch harmonics
Under a steady anisotropic wind, the response of a stable wind turbine will converge to a periodic
motion [6]. Therefore a generic load m of the ith blade can be expanded in Fourier series as

m(i) = m0 +m1c cosψ(i) +m1s sinψ(i) + . . . , (4)

with ψ the azimuth angle, m0 the constant amplitude, subscripts 1c and 1s referring to the 1P
cosine and sine component, respectively. Once three measured blade loads are available, sine and
cosine nP harmonics can be readily computed using the Coleman transformation [7] as follows:

{
mnc

mns

}
=

2

3

[
cos(nψ(1)) cos(nψ(2)) cos(nψ(3))
sin(nψ(1)) sin(nψ(2)) sin(nψ(3))

]


m(1)

m(2)

m(3)



 . (5)
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Figure 1. Parameterization of the wind inflow.

A similar approach can be used to extract the components of the blade pitch angle β. The 1P
cosine and sine harmonics of both out- (OP) and in-plane (IP) loads and pitch are respectively
grouped in vectors

m = {m1c
OP,m1s

OP,m1c
IP,m1s

IP}T (6)

and
β = {β1c, β1s}T . (7)

2.3. Wind state estimator
In this paper the idea of inferring the rotor effective inflow from the machine response is applied
to the case of an IPC-controlled machine. When an IPC controller is used for load reduction, a
different pitch demand is computed for each blade, exploiting the fact that each blade has its own
independent pitch actuator. The blade pitch frequency is limited by the maximum pitch speed,
and it is typically further limited to the 1P harmonic, since this allows for a reduction of the
1P blade loads and, in turn, of the 0P (constant) loads in the fixed frame. In the present work,
the controller is implemented by combining a collective pitch and torque LQR formulation [8, 9]
together with the proportional integral (PI) 1P IPC controller of Refs. [10, 11].

The linear model relating the response of the IPC-controlled machine to the wind parameters
is formulated as follows

m = F (V )θ +G(V )β +m0(V ), (8)

where F (V ), G(V ) and m0(V ) are the model coefficients scheduled with respect to the wind
speed V . The effect of wind parameters on blade loads, i.e. the derivative of the latter with
respect to the former, is represented by the coefficients grouped in matrix F (V ), while the effect
of the controller cyclic pitching is represented by matrix G. Finally, vector m0(V ) accounts for
loading induced by gravity [5]. This formulation represents an extension of the one proposed in
Refs. [4, 5], which now includes also the effects of pitch harmonics.

To identify the model coefficients given a specific wind speed, a rich enough set of measured
mj and βj at the respective known θj has to be available. Grouping the j = 1, . . . , N
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experiments together, i.e. M = [m1, . . . ,mN ], B = [β1, . . . ,βN ] and Θ = [θ1, . . . ,θN ], focusing
here for brevity on one single wind speed V̄ , the system can be rewritten as

M = F (V̄ )Θ +m0(V̄ ) +G(V̄ )B = T (V̄ )Θ̄, (9)

where T =
[
F (V̄ ) G(V̄ ) m0(V̄ )

]
and Θ̄ = [Θ B 1]T , 1 being the unit vector. Finally, the

model coefficients grouped in T can be identified in a least-square sense as

T (V̄ ) = MΘ̄T
[
Θ̄Θ̄T

]−1
. (10)

Once the coefficients are known, one can exploit the model to infer the wind state parameters
from the machine response. Indeed, given the measured mM and βM, the estimated wind states
θE can be computed in a least-square sense as

θE =
(
F (V )TF (V )

)−1
F (V )T (mM −m0(V )−G(V )βM) . (11)

3. Results
3.1. Simulation environment
To characterize the performance of the proposed formulation, the flexible multibody
aeroservoelastic model of a 3 MW three-bladed horizontal-axis wind turbine was simulated.
The machine hub height and rotor diameter are 80 and 93 m, respectively, while the cut-in,
rated and cut-off wind speeds are 3, 12.5 and 25 ms−1, respectively, which include a wide region
II1/2 from 9 to 12.5 ms−1. The aeroelastic behaviour of the machine was simulated with the code
Cp-Lambda [12], modeling blades and tower as geometrically exact non-linear beams, including a
torsionally elastic drive-train and rotor-speed-dependent mechanical losses. The aerodynamics
is rendered with the classical Blade Element Momentum theory, including hub and tip losses,
unsteady corrections and dynamic stall.

Wind time histories were generated with the code TurbSim [13], for both turbulent and
non-turbulent conditions. In the turbulent case, the wind histories were generated at a rotor-
attached grid by adding turbulent fluctuations according to the Kaimal model to a steady flow
characterized by given values of the four wind states. At each time instant, reference θ values
were then extracted by fitting Eq. (1) to the wind grid. Such reference values are considered as
the ground truth, and they are subsequently used as terms of comparisons for the corresponding
quantities computed by the estimator.

Several 3-minute long steady simulations were run with the IPC controller on and off,
considering the combinations of the following parameter values:

V = {11, 12, 15, 16, 17, 19} ms−1, (12a)

φ = {−16, −12, −8, −4, 0, 4, 8, 12, 16} deg, (12b)

κv = {0.0, 0.1, 0.2, 0.3, 0.4}, (12c)

χ = {0, 4, 8, 12} deg, (12d)

κh = {−0.1, −0.05, 0.0, 0.05, 0.1}. (12e)

The results of the simulations were then used to identify the model as described in §2.3. After
having identified the model coefficients, the same set of simulations was then used to observe
the wind conditions given measured blade loads and pitch angles.

Figure 2 shows the accuracy of the wind estimation in steady conditions for tests performed at
15 ms−1 with the IPC controller turned on. Each subplot represents a different wind state. The
reference wind parameter, i.e. the ground truth, is reported on the x-axis, while the observed
one on the y-axis: ideally, results should fall exactly on the bisector line. Analyzing the results,
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one can notice that the model is capable of correctly observing both shears, with a slight decrease
in accuracy in the vertical shear observation when high positive yaw angles are considered. The
upflow angle can as well be estimated with only slight inaccuracies, which nevertheless do not
exceed 2◦. Finally, the estimation of the wind direction appears to be very precise for angles
that do not exceed ±12◦, after which a deviation of about 3◦ from the reference can be observed.
A similar overall behaviour was noted at different wind speeds from the one considered here.
Such inaccuracies, specifically the one concerning the yaw angle, are due to non-linearities in
the load-wind relationship, which cannot be captured by the present linear formulation. This
problem can be easily addressed by the use of a model with a prescribed level of non-linearity,
which still results in a linear model-estimation problem [5].
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Figure 2. Wind states observed using the linear model for different steady inflow conditions
at 15 ms−1: yaw misalignment φ at χ = 8 deg and κh = −0.1 (top left), vertical shear κv at
χ = 8 deg and κh = −0.1 (top right), upflow angle χ at φ = −8 deg and κh = −0.1 (bottom
left), horizontal shear κh at χ = 8 deg and φ = −8 deg (bottom right).

3.2. Non-turbulent wind conditions
To test the ability of the wind estimator in detecting changes in the wind parameters, different
simulations were performed in non-turbulent wind conditions with the IPC controller turned on.
In each simulation the wind speed was kept constant, whereas the wind parameters were varied
independently from one another.

Figure 3 shows an excerpt of the results at 17 ms−1. Wind parameters appear to be correctly
estimated, with a very good accuracy as far as shears are concerned, and with only relatively
small errors, not exceeding 3◦, in the case of the angles. Similar results were obtained for different
wind speeds, with an increase in accuracy at higher wind speeds. To ease the comparison, delays
in the observed states induced by the 1P harmonic extraction procedure were eliminated from
the figure.
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Figure 3. Wind state estimates in non-turbulent wind conditions with variable wind parameters
at 17 ms−1. Solid thick blue lines: reference wind parameters; dashed thick red lines:
observations by the linear model.

3.3. Turbulent wind conditions
To test the estimator performance in more realistic wind conditions, several 10-minute long
turbulent simulations were also considered. Starting from mean values of wind speed and inflow
parameters, TurbSim was used to generate wind histories at 5 and 10% turbulence intensity (TI).
To account for changes in the rotational speed of the machine due to turbulence, an adaptive
filter was employed to extract the loads and pitch 1P harmonic components.

Figure 4 shows results at 11 ms−1 and 5% TI. Despite the filter-induced delay, one can notice
that the estimator is capable of nicely following the fluctuations of both shears, particularly the
horizontal one. On the other hand, only the mean values of the angles are well captured. A
justification of this phenomenon is given in Ref. [5], where it is shown that the velocity triangle
at the blade, and with it the angle of attack, is more affected by the presence of wind shear than
of wind misalignment. It follows that the moments at the blades are more sensitive to shear
rather than misalignment, carrying therefore more information about the first than about the
latter. To better quantify the model performance, Tab. 1 and 2 show the standard deviation
and the mean absolute estimation error at 5 and 10% TI. The yaw mean error for the lower
turbulent case is about 1◦, whereas for the higher turbulence level the mean error is about 2.4◦.
For yaw control, such performance should be enough, as the controller typically does not try to
follow fast wind direction changes.

The model coefficients were identified starting from a set of simulations where the IPC
controller was both on and off. Therefore, one should expect the linear model to be able to
estimate the wind inflow both if the IPC controller is used or not. To test this hypothesis,
additional 10-minute long turbulent tests were performed, using only the collective pitch
controller. The standard deviation and mean absolute error with IPC off at 11 ms−1 with
5 and 10% TI are reported in Tab. 1 and 2. In this second scenario, the estimator seems to be
slightly more accurate in computing shears and particularly angles, since now the mean error in
yaw misalignment is less than 0.5 and 1.3◦ for low and high turbulence levels, respectively.
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Figure 4. Wind state estimates in turbulent wind conditions with variable wind parameters at
11 ms−1. Solid thick blue lines: reference wind parameters; dashed thick red lines: observations
by the linear model.

Table 1. Wind state estimate standard deviation at 11 ms−1 and 5 and 10% TI.

Standard deviations 5% TI 10% TI
IPC on IPC off IPC on IPC off

σφ[deg] 1.26 0.56 3.55 1.98
σκv 3.88e-2 3.33e-2 6.77e-2 6.27e-2

σχ[deg] 0.76 0.66 2.16 1.75
σκh 1.42e-2 1.32e-2 2.92e-2 2.6e-2

Table 2. Wind state estimate mean absolute error at 11 ms−1 and 5 and 10% TI.

Mean absolute error 5% TI 10% TI
IPC on IPC off IPC on IPC off

εφ[deg] 1.04 0.46 2.42 1.3
εκv 3.1e-2 2.58e-2 5.44e-2 4.94e-2

εχ[deg] 0.6 0.52 1.57 1.27
εκh 1.12e-2 1.03e-2 2.35e-2 2.04e-2

4. Conclusions
In this work, a linear formulation was proposed to relate the machine response to the wind
inflow, parameterized by a vertical and horizontal misalignment angle and by a vertical and
horizontal shear. Extending the idea of Ref. [5], the case of an IPC-controlled wind turbine was
considered, by using the 1P harmonic of in- and out-of-plane blade bending moments and blade
pitch to infer the wind conditions at the rotor disk.

The model was tested first in uniform and then in turbulent wind conditions. Based on the
reported results, the following conclusions can be drawn:
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• In uniform wind conditions, the model is capable of estimating the instantaneous value of
both shears and angles with good precision. Small inaccuracies decrease with wind speed
and are due to the linearity of the model. This can be improved with a quadratic model,
as shown in Ref. [5].

• In turbulent conditions both shears can be accurately estimated, although with a delay due
to the 1P extraction process. Errors of about 1.3◦ can be noted in the estimation of the
yaw angle for 5% TI. Given that such errors increase with TI [5], only a mean value of such
quantities can be estimated with sufficient accuracy, while instantaneous values are polluted
by significant fluctuations. This problem requires further investigations to be corrected, and
its origin has been explained in Ref. [5].

• The proposed formulation expands the one presented in Refs. [4, 5] to IPC-controlled
turbines, but nevertheless is still capable of estimating the wind inflow even if only a
collective controller is used.
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Abstract. In this work, a new algorithm is presented to correct for pitch misalignment imbalances of wind
turbine rotors. The method uses signals measured in the fixed frame of the machine, typically in the form of
accelerations or loads. The amplitude of the one per revolution signal harmonic is used to quantify the imbalance,
while its phase is used to locate the unbalanced blade(s). The near linearity of the unknown relationship between
harmonic amplitude and pitch misalignment is used to derive a simple algorithm that iteratively rebalances the
rotor. This operation is conducted while the machine is in operation, without the need for shutting it down.
The method is not only applicable to the case of a single misaligned blade, but also to the generic case of
multiple concurrent imbalances. Apart from the availability of acceleration or load sensors, the method requires
the ability of the rotor blades to be commanded independently from one another, which is typically possible
on many modern machines. The new method is demonstrated in a realistic simulation environment using an
aeroservoelastic wind turbine model in a variety of wind and operating conditions.

1 Introduction

The pitch system has the highest failure rate of all wind tur-
bine components (Wilkinson et al., 2010). Issues can include,
among others, faults of the pitch actuators or of the pitch
angle sensors, but they can also be caused by an imperfect
installation of the blades. In general, rotor asymmetries rep-
resent a significant problem for wind turbines, as also wit-
nessed by the fact that certification guidelines require the
verification of the effects of even relatively small pitch mis-
alignments (typically ± 0.3◦ for two blades; GL Standards,
2010, Sect. 4.3.4.1, pp. 4–20).

Irrespective of the specific type of fault, a pitch imbalance
will have as a direct consequence not only a possible de-
crease in harvested energy but, most importantly, also an in-
creased level of vibrations and rotor speed fluctuations (Hy-
ers et al., 2006; Kusiak and Verma, 2011). In fact, when a
pitch misalignment among the blades is present, the periodic
aerodynamic, dynamic and gravitational loading experienced
by the blades is not balanced. As a result, additional har-
monic components are transferred from the rotating to the

fixed frame, resulting in vibrations that may lead to the fail-
ure of other components of the machine and that may also af-
fect its fatigue life if not promptly corrected for (Yang et al.,
2008). Moreover, whenever vibrations are fed back to the
turbine control laws, imbalances can also result in increased
duty cycles for the machine actuators.

Currently, the downtime related to pitch failures is rela-
tively high (Wilkinson et al., 2010). In fact, once an anoma-
lous behavior has been detected – typically by higher than
expected fixed-frame vibrations; see Hameed et al. (2009) –
pitch correction operations are often initiated by a visual in-
spection. An operator (more recently with the possible aid of
a drone) takes pictures or videos of the blades, which are later
analyzed to reveal whether all blades have the same pitch an-
gle. Once a pitch offset has been estimated, the blade pitch
is reset to align it with the others. This operation will im-
ply some downtime and may come at a non-negligible cost.
Furthermore, the procedure might not always be able to pro-
duce an exactly balanced rotor. Clearly, more effective condi-
tion monitoring and correction strategies for the pitch system
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of wind turbines should be developed. An ideal solution for
correcting misaligned blades should be able to first identify
when a rotor is unbalanced, and then it should be able to au-
tomatically rebalance it. This should be obtained without the
need to shut down the machine, without the presence and su-
pervision of an operator, and without the need for expensive
extra hardware.

Imbalance detection and correction techniques have been
developed both in the literature and in practical applications.
For example, Pierce and Slack (2009) and Axelsson et al.
(2014) report on methods that reduce a rotor imbalance by
first arbitrarily setting a pitch offset and then measuring the
resulting loads and accelerations on the shaft or on the yaw
system. However, no mathematical formulation is provided
by the authors, thus preventing a better understanding of
the methodology and its limits. Niebsch et al. (2010) and
Niebsch and Ramlau (2014) proposed a method to simul-
taneously estimate both mass and aerodynamic imbalance
effects from nacelle vibrational measurements. The method
considers a finite-element model of the turbine, and the im-
balance terms are obtained by solving an inverse problem
through nonlinear regularization theory. The results are in-
teresting although not excellent, with errors in the estimation
of the pitch misalignment up to 0.5◦. However, the need for
a detailed model of the machine may hinder the applicability
of this method. A different approach was proposed by Kus-
nick et al. (2015). In this case, the blade misalignment esti-
mation is performed by an ad hoc workflow using multiple
measurements, including power output, blade loads and ac-
celerations. Finally, a method based on system identification
is presented by Cacciola et al. (2016). In that work, a neural
network is trained based on nodding moment and power mea-
surements from different experiments conducted for varying
known pitch misalignments and operating conditions. After
training, the network is able to detect the severity and loca-
tion of the imbalance, even distinguishing effects caused by
pitch misalignments from those induced by ice accretion.

Ad hoc controllers have also been formulated to correct
for rotor imbalances (Kanev and van Engelen, 2009; Kanev
et al., 2009; Petrović et al., 2015; Cacciola and Riboldi, 2017;
Cacciola et al., 2017). In all these cases, the general idea is to
develop a control law that compensates for a pitch misalign-
ment by targeting imbalance-induced vibrations, typically
by Coleman-transforming blade loads (Bossanyi, 2003). One
possible drawback of such approaches is the resulting extra
control activity necessary to rebalance the rotor, which will
induce extra duty cycles in the pitch system.

The analysis of signals such as loads and accelerations
measured on the wind turbine fixed frame provides a way
to determine if a rotor is unbalanced. In fact, it is well known
that the amplitude of the 1P (once per revolution) harmonic
is an indicator of an unbalanced rotor. Recently, it was shown
that the phase of that same harmonic can be used to identify
the unbalanced blade(s) (Cacciola et al., 2016). Based on this
simple signal analysis, a condition monitoring system can be

developed to detect the severity and location of the imbal-
ance in order to schedule appropriate maintenance and repair
actions.

In the present work, the same concept is used to automati-
cally rebalance an unbalanced rotor. In a nutshell, the method
works as follows. First, an unknown linear relationship is as-
sumed between pitch setting of the blades and the 1P ampli-
tude of a signal measured in the fixed frame. Exploiting the
radial symmetry of a rotor, the coefficients of the linear rela-
tionship are reduced to only two. In addition, this also has the
effect of including the phase information in the model, which
eventually allows one to correctly identify the pitch misalign-
ment of each blade. Since the linear imbalance–disturbance
model is determined by two parameters, one single additional
measurement (in addition to the one performed on the cur-
rently unbalanced configuration) is necessary to identify the
unknown imbalance–disturbance relationship. This is easily
achieved by pitching the blades by some amount and measur-
ing the resulting 1P amplitude. Once the linear relationship is
known, it is trivial to compute the blade pitch offset that, by
zeroing the 1P amplitude, balances the rotor. To account for
possible small nonlinearities, the procedure can be iterated
a few times as necessary. A similar approach was presented
in Bertelè et al. (2017), which considered only the case of
a pitch fault located in one single blade. The present work
expands and generalizes this methodology, allowing for the
detection and correction of multiple simultaneous pitch im-
balances.

The paper is organized as follows. Section 2 formulates
the proposed imbalance detection and correction procedure.
In particular, Sect. 2.1 shows the mechanism through which
a pitch imbalance causes a 1P load in the fixed frame by
developing a spectral analysis of the relevant loads and ex-
plaining their origin. Next, Sect. 2.2 formulates the linear
imbalance–disturbance model of an axial-symmetric rotor,
while Sect. 2.3 shows how the model coefficients can be
readily identified by using two fixed-frame measurements at
two different pitch settings. Lastly, Sect. 2.4 explains the re-
balancing procedure. Results are discussed in Sect. 3, which
reports extensive numerical simulations performed with a
state-of-the-art aeroservoelastic model operating in a vari-
ety of different turbulent winds. Tests are conducted in re-
alistic scenarios, in the sense that rebalancing is performed
while the wind turbine is operating in changing wind con-
ditions, including modifications in air density, wind speed,
shear, yaw misalignment, upflow angle and turbulence inten-
sity. Details on the specific combinations of conditions used
in the tests are reported in Appendix A. In addition, Sect. 3.4
presents a study assessing the effects of measurement noise
on the method performance, with the goal of defining min-
imum specification requirements for the whole measuring
chain. Finally, Sect. 4 draws conclusions and gives an out-
look on future work.

Wind Energ. Sci., 3, 791–803, 2018 www.wind-energ-sci.net/3/791/2018/
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Figure 1. Thrust force t computed in terms of the shear forces ti of
the B blades. One single blade is shown for clarity.

2 Methods

2.1 Spectral analysis of an unbalanced rotor

In a balanced rotor with B blades, under the assumption of a
periodic response, loads transmitted from the rotating frame
of reference to the fixed frame contain only nBP frequen-
cies. Indeed, the rotor acts as a filter: while the full spectrum
of frequencies is observed in the rotating frame (1P, 2P, 3P,
4P, . . . ), in the fixed frame only frequencies that are multiples
of the number of blades appear (BP, 2BP, 3BP, . . . ).

On the other hand, when an imbalance is present, other
harmonic components can be detected in fixed-frame mea-
surements, the most prominent typically being the 1P har-
monic. Hence, detection and correction of rotor imbalances
can be based on the analysis of the 1P harmonic measured in
the fixed frame.

As an example, consider the measurement of nacelle fore–
aft accelerations, which are primarily caused by fluctuations
in the rotor thrust. The thrust force t on the rotor can be com-
puted by summing up the out-of-plane shear forces ti of the
B blades, as illustrated in Fig. 1.

The shear force of the generic ith blade can be expanded
in Fourier series as

ti = t0i +

∞∑
n=1

(
tnci cos(nψi)+ tnsi sin(nψi)

)
, (1)

where ψi = ψ1+ 2π (i− 1)/B is the azimuthal angle, sub-
scripts (·)nc and (·)ns refer to the nP cosine and sine compo-
nents, respectively, and t0 is the 0th harmonic constant am-
plitude.

Assuming a periodic response, the harmonic amplitudes
are the same for the various blades; i.e.,

t0 = t0i = t0j , (2a)
tnc = tnci = tncj , (2b)
tns = tnsi = tnsj . (2c)

In the presence of an imbalance, the harmonic amplitudes of
the kth (unbalanced) blade will differ from the other ones and
can be expressed as

t0k = t0+ δt0, (3a)
tnck = tnc+ δtnc, (3b)
tnsk = tns+ δtns. (3c)

Inserting Eqs. (2) and (3) into Eq. (1) and using the proper-
ties of trigonometric functions, one can readily compute the
thrust force t as

t =

B∑
i=1

ti, (4a)

= Bt0+B

∞∑
n=1

(tnBc cos(nBψ)+ tnBs sin(nBψ)) , (4b)

+ δt0+

∞∑
n=1

(δtnc cos(nψk)+ δtns sin(nψk)) , (4c)

where ψ = ψ1. Equation (4c) states that, when the rotor is
balanced (i.e., when δt0 = δtnc = δtns = 0), then only nB

harmonics are present in the spectrum of t . On the other hand,
when the rotor is unbalanced

1. intermediate harmonics also pollute the spectrum, and

2. the phase of these harmonics indicates the unbalanced
blade.

Limiting the analysis to the case of the lowest harmonics of
both expansions in Eq. (4c), which are typically the most en-
ergetic ones, leads to

t =(Bt0+ δt0)0P+ (δt1c cosψk + δt1s sinψk)1P

+B(tBc cos(Bψ)+ tBs sin(Bψ))BP. (5)

This expression states that the 1P harmonic in the fixed frame
is generated by the 1P harmonic of the unbalanced blade.
This is not always the case, as the result depends on the con-
sidered fixed-frame load. For example, similar derivations
performed for the nodding (overturning) moment show that
the 0P of the unbalanced blade also contributes to the 1P in
the fixed frame in that particular case. This is beneficial be-
cause, as shown later on, the 0 and 1P imbalance harmonics
have a different aerodynamic origin. In fact, numerical exper-
iments show that an improved performance and robustness
of the detection algorithm can be obtained by using as an im-
balance detection signal the overturning or yawing moments.
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However, since load sensors in the fixed frame are typically
difficult to install, a similar effect can be obtained by using
the difference of two fore–aft accelerometers located in the
nacelle at a distance between the two of them (which, de-
pending on their positions, will measure nodding or yawing
motions of the rotor or combinations thereof).

To better understand the effects of a pitch imbalance, the
expression for the aerodynamic contribution to the shear in a
blade can be worked out analytically. Following the approach
of Manwell et al. (2009), which uses a one degree of freedom
rigid body model of a flapping blade, the shear ti of the ith
rotor blade is found to be

ti = t0i + t1ci cosψi, (6)

where the 0 and 1P harmonic amplitudes are written as

= t0i − t̄

(
3

2
−
θi

3

)
, (7a)

t1ci = t̄

(
(3− θi)V̄ +

K

3
Ū

)
. (7b)

In these expressions, t̄ = γ J�2/(2R), γ = %cCL,αR
4/J is

the Lock number, % the air density, c the blade chord, CL,α
the lift slope, R the rotor radius, J the flapping moment of
inertia and3= (1−a)U/(�R) the nondimensional flow ve-
locity at the rotor disk, with a being the axial induction, V̄0 =

V0/(�R) the nondimensional cross-flow and Ū = U/(�R)
the nondimensional wind speed; � is the rotor angular ve-
locity and K the linear vertical wind shear.

Assuming a pitch misalignment δθ , the resulting
imbalance-induced 0 and 1P harmonic amplitudes are

δt0 =
t̄

3
δθ, (8a)

δt1c =−t̄ V̄ δθ. (8b)

These expressions state that there is a linear dependency be-
tween a pitch misalignment and the resulting harmonic dis-
turbances. In addition, the 1P imbalance harmonic δt1c that
– according to Eq. (5) – causes the appearance of a 1P har-
monic in the fixed frame is proportional to the cross-flow.
Although in operation there will always be some small mis-
alignment between the rotor axis and the wind vector, this
expression suggests that the 1P signal could be strengthened
by operating at a slight yaw misalignment with the incoming
wind when detecting an imbalance and correcting for it.

A word of caution is due in the interpretation of these an-
alytical results. First of all, this analysis is based on the sole
thrust force, while terms other than the cross-flow contribute
to the 1P harmonic when considering yawing and nodding
moments. In addition, the model is the simplest possible us-
ing one single degree of freedom and including various sim-
plifications in the derivations. Nevertheless, the model is at
least useful in qualitatively understanding the basic mecha-
nisms by which fixed-frame vibrations are caused in an im-
balanced rotor. After having served its purpose, the analytical

model is dropped from the rest of the paper, the further de-
velopments of which are not based on it.

2.2 Linear imbalance–disturbance model

In this work, an imbalance–disturbance model is assumed in
the form

s = C(b− bm), (9a)
= Cb+ sm. (9b)

The 1P harmonic amplitude vector of the fixed-frame mea-
sured signal s is noted s = (sc, ss)T , where sc and ss are the
cosine and sine components, respectively. Considering here
and in the following the common case of a three-bladed rotor
(B = 3), vector b = (b1,b2,b3)T contains the pitch adjust-
ments bi for each one of the blades, while bm is the unknown
pitch misalignment. Equation (9a) states that, if one knew the
misalignment bm, then by pitching the blades by b = bm one
would obtain s = 0; i.e., the rotor would be balanced. On the
other hand, before rebalancing, b = 0 and hence, according
to Eq. (9b), one measures a 1P signal equal to sm =−Cbm.
In the model, the matrix of coefficients C links imbalance
angles and 1P disturbances, and it is defined as

C=
[
cc1 cc2 cc3

cs1 cs2 cs3

]
. (10)

The model coefficients C and sm are unknown. However,
they can be readily identified from measurements. Once the
model is known, one can use it to compute the pitch adjust-
ment b that rebalances the rotor.

Note that the assumed imbalance–disturbance model im-
plies a linear relationship between the pitch misalignment of
the blades and the 1P harmonic component of a measured re-
sponse signal (acceleration or load) in the fixed frame. As
shown later on, this assumption is not a limitation of the
model because in fact the model can be iteratively identi-
fied as the rotor is rebalanced, thus effectively removing the
linearity hypothesis. However, linearity is confirmed by the
previously derived simple analytical model, and it is indeed
generally also observed in extensive numerical simulations
conducted by using state-of-the-art aeroelastic models.

Since it is nearly impossible to guarantee that the whole
model identification and rebalancing procedure will be con-
ducted in exactly the same wind conditions, it is important to
reduce the dependency of the model on the operating point.
To this end, the harmonic amplitude vector s in Eq. (9) is
scaled by the dynamic pressure

q =
1
2
%U2

a , (11)

where Ua is a moving average of the wind speed. The nondi-
mensionalization by q has the effect of making the model
coefficients C and sm largely independent from the operat-
ing condition. In the turbulent examples reported later on,
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the moving average was computed over 10 min. To avoid the
typical possible inaccuracies of nacelle-mounted anemome-
ters, Ua might be based on estimates of the rotor-equivalent
wind speed (Soltani et al., 2013).

To simplify the identification of the model coefficients, the
radial symmetry of the rotor can be exploited. Assuming a
periodic response, the effects of a misalignment in the second
blade will be the same as those caused by a misalignment in
the first blade, but shifted by 2π/3. Hence, the model coeffi-
cients must obey the following relationship:

{
cc2
cs2

}
=

[
cos(2π/3) sin(2π/3)
−sin(2π/3) cos(2π/3)

]{
cc1
cs1

}
= Rc. (12)

Clearly, the same argument holds for the relationship be-
tween the response of blades two and three. Therefore, ma-
trix C only depends on the two coefficients of vector c and
can be written as

C=
[

c Rc R2c
]
. (13)

It is trivial to observe that this also implies the same relation-
ship between the coefficients of blades three and one, thus
closing the loop.

The imbalance–disturbance model might be affected by
proximity to resonant conditions or by the presence of vi-
bration control algorithms implemented onboard the turbine
control system. The first problem is readily addressed by
avoiding identifying the model and rebalancing the machine
in the proximity of resonant conditions, which is easily done
since these are typically well known. The second problem
might require switching off these additional control loops
during identification and rebalancing, although no general
statements are possible here and the situation would have to
be analyzed in detail for any specific implementation of such
algorithms.

2.3 Model identification

Before computing the pitch adjustments that rebalance the
rotor, one needs to identify the unknown coefficients in
Eq. (9b). To this end, it is convenient to rewrite the
imbalance–disturbance model as follows:

s = Cb+ sm, (14a)
= Bc+ sm. (14b)

By simple algebraic derivations, one can readily show that
matrix B is a sole function of the pitch adjustment b and is
written as

B=
[

B11 B12
−B12 B11

]
, (15)

where

B11 = b1+ cos(2π/3)b2+ cos(4π/3)b3, (16a)
B12 = sin(2π/3)b2+ sin(4π/3)b3. (16b)

At the beginning of the procedure, one has not yet adjusted
the rotor pitch, and hence b = b(1)

= 0. In this condition, a
1P harmonic equal to s(1) is measured on the machine. Next,
the pitch of the blades is changed by a chosen amount b(2). In
order not to upset the operating condition of the machine, this
arbitrary pitch modification should be characterized by a null
collective change. In correspondence to this new condition,
one measures a 1P harmonic equal to s(2). Considering the
two measurements s(1) and s(2) together, one can write{

s(1)

s(2)

}
=

[
B(1) I
B(2) I

]{
c

sm

}
, (17)

where B(1) and B(2) indicate matrix (15) evaluated in corre-
spondence to vectors b(1) and b(2), respectively. Inverting this
relationship, one readily obtains the unknown coefficients c

and sm, which fully characterize Eq. (9b).

2.4 Rebalancing

Now that Eq. (9b) has been identified, it can be used to
rebalance the rotor. Before doing so, however, one should
note that only imbalances among the blades will produce a
1P harmonic in the fixed frame. In fact, a collective rota-
tion of all blades by any given angle will not produce any
imbalance, and therefore it cannot be detected by a method
based on fixed-frame response signals. This implies that one
cannot compute the full pitch adjustment vector b, but only
a zero-collective adjustment that satisfies the relationship∑3
i=1bi = 0. This is also stated by Eq. (9b), which is in fact

a rectangular system of two equations in three unknowns.
By appending the zero-collective constraint to the

imbalance–disturbance model, one gets{
s

0

}
=

[
C
1T

]
b+

{
sm
0

}
, (18)

where 1= (1,1,1)T . Setting s = 0, i.e., requesting a null 1P
harmonic response in the fixed frame, one readily computes
the necessary pitch adjustments as

b =−

[
C
1T

]−1{
sm
0

}
. (19)

Blades are now pitched by b, as computed by Eq. (19). If,
after application of the computed pitch adjustment, a 1P har-
monic is still detected in the fixed frame, then this might be
an indication of a non-exact linearity between pitch imbal-
ance and fixed-frame harmonic amplitude. In this case, one
can iterate the whole procedure. The measured amplitude in
the current configuration becomes the new data point in the
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model identification phase. This data point, together with the
one measured just before adjusting the blade pitch, allows for
the identification of a new model. Given the new coefficients,
the zero-collective constraint is appended to the model, the
inversion of which yields the new pitch adjustments. The pro-
cess is repeated until only a negligible 1P harmonic signal is
left in the fixed frame. Figure 2 gives a graphical representa-
tion of this algorithmic procedure.

Inspecting the values of the computed pitch adjustments
b, one may notice in some cases that two blades are char-
acterized by the same correction, for example b1 = b2 6= b3.
This means that only one blade (number 3 in this specific ex-
ample) was misaligned with respect to the other two. In this
case, one might choose to change the blade pitch of blade
3 by b3− 2b1, which has the effect of realigning blade 3
with the others instead of adjusting all three at null collec-
tive change. This might be useful, for example, in the case
that a blade has been mounted with the wrong pitch offset.

3 Results

3.1 Simulation environment

In this work, the proposed rebalancing procedure is demon-
strated with the help of aeroservoelastic simulations of a
3 MW horizontal axis wind turbine. The machine, character-
ized by an 80 m hub height and a rotor diameter of 93 m, has
cut-in, rated and cut-out speeds equal to 3, 12.5 and 25 m s−1,
respectively. The cut-in rotor speed is equal to 5.2 RPM,
whereas the rated rotor speed is equal to 15 RPM. Both side–
side and fore–aft tower frequencies are equal to 0.3 Hz. The
first blade flap-wise frequency varies between 0.9 Hz at cut-
in and 1 Hz at rated rotor speed. Finally, the first blade edge-
wise frequency is about 1.5 Hz. The transient response of the
machine is computed with the finite-element multibody code
Cp-Lambda (Bottasso and Croce, 2006). The rotor blades
and tower are modeled using a geometrical exact beam for-
mulation (with torsion, axial, bending and shear deformabil-
ity), resulting in a nonlinear finite-element model. The rest of
the wind turbine is modeled by a combination of rigid bod-
ies, joints and flexible elements to represent nacelle, drive-
train and foundations. Generator and pitch actuators are mod-
eled by first- and second-order dynamical systems, respec-
tively. The classical blade element momentum theory (BEM)
is used to represent the aerodynamics, considering hub and
tip losses, dynamic stall, unsteady aerodynamics and rotor-
tower interference. A speed-scheduled linear quadratic regu-
lator (LQR) (Riboldi, 2012) is used for the implementation
of the pitch–torque controller. Turbulent wind time histories
of 10 min duration are generated with the code TurbSim
(Jonkman and Kilcher, 2012) based on the Kaimal turbulence
model.

Different combinations of initial pitch misalignments in
the range±2◦ are considered, in which only one, two or even
all three blades are simultaneously misaligned. To model fi-

nite resolution effects in the pitch system, the minimum res-
olution of the pitch motion is assumed to be 0.1◦. There-
fore, any blade movement smaller than the given resolution is
rounded to the closest neighboring integer multiple. To quan-
tify the effectiveness of the rebalancing algorithm, the abso-
lute residual pitch misalignment angle ε is defined as

ε =max(bm− b)−min(bm− b), (20)

where bm− b is the difference between real and computed
misalignments.

Accelerometers are placed on the machine main bearing,
with the goal of measuring the fixed-frame response of the
system, and they are simulated in the mathematical model in-
cluding the effects of measurement noise. Various tests were
conducted in order to identify an optimal accelerometer con-
figuration. Typically, the best results were obtained when two
accelerometers are located to the two sides of the main bear-
ing and spaced as far as possible from each other. The two ac-
celerometer signals are subtracted one from the other, yield-
ing a differential measurement proportional to the yawing ac-
celerations of the rotor.

3.2 Linearity

The model described in Sect. 2.2 is based on the assumption
that 1P harmonics in the fixed frame depend linearly on the
pitch misalignment angle. To validate this assumption, simu-
lations were performed to study the wind turbine fixed-frame
response to blade misalignments. The simulations were per-
formed in steady sheared wind conditions, misaligning one
blade at a time.

Figure 3 shows the sine and cosine differential acceler-
ation components at the main bearing for each one of the
three blades. The plots correspond to a wind condition of
7 m s−1, although similar results were obtained for different
wind speeds. Accelerations were scaled with respect to the
dynamic pressure and averaged over the simulation time. The
relationship between 1P response and pitch misalignment ap-
pears to be linear to a very good approximation, with the cor-
relation coefficient of the linear best fits differing from 1 by
less that 10−3.

It is interesting to observe that the misalignment of each
different blade leaves a unique fingerprint on the measured
signal. This means that the linear model not only contains
information on the severity of the misalignment, but also on
where the misalignment is located.

3.3 Performance assessment of the rebalancing
algorithm

Next, the performance of the proposed algorithm is tested in
a variety of different wind conditions. The model expressed
by Eq. (17) is identified from accelerometer measurements
recorded in 10 min turbulent conditions, characterized by dif-
ferent values of air density, wind speed, turbulence inten-
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Figure 2. Graphical representation of the rotor rebalancing algorithm.
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Figure 3. Cosine (squares) and sine (circles) 1P components of the main-bearing scaled differential acceleration as functions of pitch
misalignment.

sity (TI), yaw misalignment, wind shear and upflow. These
quantities are assumed to change according to a number of
scenarios, termed series A through F, described in detail in
Appendix A. Once the model is identified, the rotor is re-

balanced by inverting the model itself. The procedure of
identification–rebalancing is then repeated until the residual
1P harmonic is smaller than a given threshold.
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Figure 4. Residual pitch misalignment as a function of the number
of steps for given wind speed and turbulence intensity, but variable
conditions according to series A through D.

Figure 4 shows the absolute residual pitch misalignment
ε after each iteration of the rebalancing algorithm. The spe-
cific cases reported in the figure correspond to situations in
which wind speed and TI are kept constant, whereas mean
values of yaw misalignment, vertical shear and upflow an-
gle vary throughout the identification–rebalancing sequence
according to what is specified for series A through D.

In the figure, the abscissa represents the various steps of
the procedure. At the beginning (step 0), a 1P acceleration is
measured in the fixed frame. Next, one or more blades are
randomly pitched (step 1), while keeping the collective con-
stant. In the resulting new configuration, a new 1P accelera-
tion is measured. Since this step is random, the unbalance of
the blades may worsen in this first step. The algorithm is now
applied by first identifying the model and then computing the
pitch adjustment b that rebalances the rotor. The blades are
then accordingly pitched (step 2). If a residual 1P harmonic
is still present, the algorithm is applied again using data from
steps 1 and 2, resulting in a new pitch adjustment (step 3).
The procedure is repeated until convergence.

The figure shows that the proposed algorithm is capable of
rebalancing the rotor in a very small number of steps, typi-
cally ranging between three and four. It should be noted that
during each one of these steps, the machine is operating in
markedly different operating conditions, as described by the
series reported in the Appendix. Notwithstanding these very
significant operational changes, the procedure seems to be
quite robust.

An important remark is due at this point. As wind condi-
tions may change from one step to the next, in general it is
not possible to guarantee that the imbalance will always di-
minish at each step of the algorithm. Indeed, some of the
following numerical experiments show that the imbalance
may occasionally increase. However, this happens only in the
case of radical changes in wind conditions from one step to
the next. It would be relatively straightforward to avoid such
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Figure 5. Residual pitch misalignment as a function of the number
of steps for given turbulence intensity and variable wind speed, but
variable conditions according to series E and F.

situations by implementing some simple logic in the proce-
dure. For example, one might monitor the operating param-
eters and continue with rebalancing only when changes do
not exceed a certain threshold. In addition, if one observes
an increase in the 1P harmonic amplitude after a rebalancing
step, then that step might be rejected and the blades could
be pitched back to their previous setting. To consider a worst
case scenario, in all numerical experiments presented here
these simple precautions were not taken. Therefore, the al-
gorithm was forced to continue irrespective of the severity
of operating changes. Because of this, the results show oc-
casional increases in the imbalance throughout the iterations.
Nevertheless, these same results also show that the algorithm
was always eventually able to successfully rebalance the ro-
tor in a very small number of steps.

Figure 5 reports results obtained at different TI levels for
cases characterized by changes in wind speed from 7 to
15 m s−1 and in density from 1.225 to 1.1 kg m−3 for series E
and F. For the E series results, the situation temporarily wors-
ens between steps 1 and 2. This may be due to the simulta-
neous change in air density, yaw misalignment and halving
the shear from 0.4 to 0.2 in this step. Here again, very vari-
able inflow conditions do not seem to excessively affect the
performance of the algorithm, which is indeed able to com-
pletely rebalance the turbine rotor within four steps.

3.4 Effects of measurement noise

The effects of noise on the measurement of the accelera-
tions driving the algorithm were then investigated. In fact,
small imbalances induce only small 1P harmonics in the
fixed frame so that the effects of noise on the measurements
can be significant.

Measurement noise is modeled by adding a white
Gaussian signal to the accelerations measured on the
multibody wind turbine model. Five different signal-
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Figure 6. Residual pitch misalignment as a function of the number
of steps for different SNRs in constant uniform inflow at 11 m s−1,
φ = 0◦, κ = 0.4, χ = 0◦ and ρ = 1.225 kg m−3.

to-noise ratios (SNRs) are considered, namely SNR=
[5 15 22 26 30] dB. To obtain statistically relevant results, for
each SNR six different random noise realizations are used,
and the results are then averaged.

In addition to acceleration noise, the study also consid-
ered the effects of errors in the measurement of the average
wind speed Ua of Eq. (11), used for scaling the imbalance
harmonic amplitudes. Such errors might be due to the well-
known poor accuracy of nacelle-mounted anemometers. Re-
sults are not reported here for space limitations, but even er-
rors of ±20% did not significantly affect the performance of
the proposed algorithm.

3.4.1 Nonturbulent wind conditions

To separate the effects of measurement noise from the
stochastic disturbances caused by turbulence, series com-
posed of 3 min long nonturbulent wind conditions are con-
sidered first.

Figure 6 shows the average residual pitch misalignment
for different SNRs for a case in which all wind parameters
are constant and wind speed is equal to 11 m s−1. The results
clearly illustrate the detrimental effects of decreasing SNR
values on the quality of the rebalancing. For SNR= 5 dB,
the residual ε converges to about 0.35◦, which is neverthe-
less a good result considering that in this particular case the
initial imbalance was of 1.5◦. Increasing SNR, the resid-
ual misalignment improves as expected, showing that, from
SNR≥ 22 dB and higher, ε converges to values smaller than
0.1◦ (which is the assumed minimum resolution of the pitch
system, and therefore past this value differences among the
SNR levels become irrelevant).

Figure 7 shows results obtained in varying wind condi-
tions. Specifically, wind speed and density change respec-
tively from 11 to 15 m s−1 and from 1.1 to 1.225 kg m−3,
while vertical shear and misalignment angles vary according
to series G. Here again a temporary worsening of the rotor

Figure 7. Residual pitch misalignment as a function of the number
of steps for different SNRs for variable nonturbulent inflow (series
G).

balancing can be observed between step 2 and 3, probably
due to the halving of shear between these two steps, accom-
panied by simultaneous substantial increases in air density
and wind speed.

It appears that the method very effectively reduces the ini-
tial misalignments. Indeed, results show a very modest effect
of SNR, except for the lowest value of 5 dB that seems to
take a bit longer to converge. The apparently surprising lack
of sensitivity to SNR can be explained by the changing yaw
misalignment within the steps. Indeed, as shown in Eq. (8b),
the 1P harmonic measured in the fixed frame is related to the
presence of a cross-flow component. Therefore, a bit of mis-
alignment of the rotor axis with respect to the wind vector
eases rebalancing because it makes the effects of an unbal-
ance more prominent and therefore less affected by noise.

3.4.2 Turbulent wind conditions

Figure 8 shows the same simulation series as in Fig. 7 (i.e.,
wind speed and density changing from 11 to 15 m s−1 and
from 1.1 to 1.225 kg m−3, respectively, with other wind pa-
rameters according to series G), but for a turbulent inflow
characterized by TI= 5%. Here again it appears that SNRs
larger than 22 dB have very little effect on the speed of con-
vergence of the algorithm.

It is also interesting to observe that convergence is actually
faster in turbulent conditions (Fig. 8) than in nonturbulent
ones (Fig. 7). This may be due again to the fact that turbu-
lence implies a higher excitation of the 1P harmonic, making
it more evident against the sensor noise.

A large number of tests performed in additional operat-
ing conditions and SNR values confirm the findings reported
herein. Clearly, one should choose a sensor with the highest
SNR possible in the frequency range of interest. However,
these results suggest that even fairly limited values of SNR
should typically be sufficient for the algorithm to completely
rebalance a rotor in turbulent and varying wind conditions.
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Figure 8. Residual pitch misalignment as a function of the number
of steps for different SNRs with turbulent inflow at TI= 5% (series
G).

4 Conclusions

This paper has described a new method to detect and correct
pitch imbalances in wind turbine rotors. The method uses a
measured signal in the fixed frame, typically in the form of
accelerations or loads. The signal is demodulated to extract
the 1P harmonic, which is then related to the misalignment
of the blades by a linear model. By exploiting the axial sym-
metry of the rotor, the phase of the signal is used to detect
which blades are unbalanced. The use of the rotor axial sym-
metry has the additional effect of reducing the number of free
parameters in the model to only two.

The model parameters are readily identified by measuring
the signal and computing its harmonics at two different pitch
settings, something that is easily achieved by simply pitching
the blades by a small chosen amount. The procedure can be
performed while the machine is in operation, without shut-
ting it down. The method also works if measurements are
taken at different operating conditions, which is indeed in-
evitable in the field. Once the model has been identified, its
inversion readily yields the pitch adjustments of the various
blades that rebalance the rotor. If, after rebalancing, some re-
maining 1P harmonic is detected, the whole procedure can
be repeated, thereby eliminating the effects of possible small
nonlinearities in the imbalance–disturbance relationship. The
whole approach has fairly minimal requirements, as it only
assumes the availability of a sensor of sufficient accuracy and
bandwidth to detect the 1P harmonic to the desired precision
and the ability to command the pitch setting of each blade
independently from the others.

Extensive numerical simulations were conducted with the
proposed procedure using a detailed aeroservoelastic model
of a multi-MW wind turbine. The analysis considered real-
istic scenarios in which measurements and rebalancing were
performed in operating conditions characterized by varying
air density, wind speed, yaw misalignment, upflow, shear

and turbulence intensity. The simulation environment also
considered the modeling of measurement noise and distur-
bances.

Based on the results presented herein, the following con-
clusions may be drawn.

– The relationship between pitch imbalance and 1P fixed-
frame harmonics appears to be linear and unique de-
pending on the location of the misalignment. This al-
lows one to not only quantify the severity of the imbal-
ance, but also the unbalanced blade(s).

– In realistic wind conditions, i.e., with turbulent wind
and variable air density, speed, vertical shear and wind
rotor angles, the proposed algorithm successfully rebal-
ances the rotor typically within four iterations. To ac-
count for possible changes in the mean value of wind
speed and/or density, the simple scaling of the 1P input
by the dynamic pressure was sufficient to guarantee a
good performance in all tested conditions.

– Given the relatively small magnitude of the signals that
are generated by small misalignments of the blades, one
might expect that particular attention should to be paid
to the selection of the installed sensors. However, results
have shown that measurements are rather insensitive to
SNR. Indeed, values of SNR≥ 30 dB in the frequency
range of interest are more than adequate for the present
application, although even a significantly smaller value
of SNR gives only a slight performance degradation.
However, one should keep in mind that different results
might have been obtained on different wind turbines and
when placing the sensors at different locations than the
ones considered here.

– Good results were obtained by using observation win-
dows of 10 min. Although longer time windows might
appear to be beneficial to smooth out fluctuations due to
turbulence and noise, one should also consider that long
time windows might also imply significant changes not
only in the operating conditions, but also in rotor speed,
which should also be duly accounted for.

Notwithstanding the very promising results obtained here
in a simulation environment, a demonstration in the field re-
mains indispensable to prove the actual effectiveness and ap-
plicability of the proposed method in practice. Finally, fu-
ture studies should consider the case of simultaneous aero-
dynamic and mass imbalances.

Data availability. Data can be provided upon request.
Please contact the corresponding author Carlo L. Bottasso
(carlo.bottasso@tum.de).
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Appendix A: Wind series

The following tables report the values of the relevant oper-
ational and wind parameters used for the verification of the
rebalancing algorithm.

Table A1. Series A. Initial blade misalignment: bm =
(2◦,0.5◦,−1.5◦)T .

Step 0 1 2 3

U (m s−1) 7 7 7 7
TI (%) 5 5 5 5
ρ (kg m−3) 1.225 1.225 1.225 1.225
φ (◦) 0 10 0 10
κ (–) 0.2 0.4 0.2 0.2
χ (◦) 0 0 0 0

Table A2. Series B. Initial blade misalignment: bm =
(0.5◦,−1.5◦,2◦)T .

Step 0 1 2 3

U (m s−1) 7 7 7 7
TI (%) 12 12 12 12
ρ (kg m−3) 1.225 1.225 1.225 1.225
φ (◦) 10 10 10 10
κ (–) 0.4 0.4 0.4 0.2
χ (◦) 0 0 0 0

Table A3. Series C. Initial blade misalignment: bm =
(2◦,0.5◦,−1.5◦)T .

Step 0 1 2 3

U (m s−1) 15 15 15 15
TI (%) 5 5 5 5
ρ (kg m−3) 1.225 1.225 1.225 1.225
φ (◦) 0 0 10 10
κ (–) 0.2 0.2 0.4 0.2
χ (◦) 0 0 0 0

Table A4. Series D. Initial blade misalignment: bm =
(0.5◦,2◦,−1.5◦)T .

Step 0 1 2 3 4

U (m s−1) 15 15 15 15 15
TI (%) 12 12 12 12 12
ρ (kg m−3) 1.225 1.225 1.225 1.225 1.225
φ (◦) 0 10 0 0 0
κ (–) 0.2 0.4 0.2 0.2 0.2
χ (◦) 0 0 0 0 0

Table A5. Series E. Initial blade misalignment: bm =
(2◦,0.5◦,−1.5◦)T .

Step 0 1 2 3 4

U (m s−1) 15 7 7 15 15
TI (%) 5 5 5 5 5
ρ (kg m−3) 1.225 1.225 1.1 1.225 1.225
φ (◦) 0 10 0 10 0
κ (–) 0.2 0.4 0.2 0.4 0.2
χ (◦) 0 0 0 0 0

Table A6. Series F. Initial blade misalignment: bm =
(1◦,2◦,−1.5◦)T .

Step 0 1 2 3 4

U (m s−1) 15 7 7 15 15
TI (%) 12 12 12 12 12
ρ (kg m−3) 1.225 1.225 1.1 1.225 1.225
φ (◦) 10 10 0 10 0
κ (–) 0.4 0.4 0.2 0.4 0.2
χ (◦) 0 0 0 0 0

Table A7. Series G. Initial blade misalignment: bm =
(−1◦,0◦,0◦)T .

Step 0 1 2 3 4 5 6 7 8

U (m s−1) 15 11 11 15 11 15 15 11 15
ρ (kg m−3) 1.1 1.225 1.1 1.225 1.225 1.1 1.225 1.1 1.1
φ (◦) 0 0 10 10 0 10 0 10 10
κ (–) 0.4 0.2 0.4 0.2 0.2 0.2 0.4 0.4 0.2
χ (◦) −4 0 0 0 0 0 −4 0 0
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Appendix B: Nomenclature

a Axial induction
bi Pitch adjustment that rebalances blade i
bmi

Pitch misalignment of blade i
s Fixed-frame signal
t Rotor thrust
ti Out-of-plane shear of blade i
B Number of blades
CLα Slope of the lift coefficient
J Flapping moment of inertia
K Linear vertical shear factor
R Rotor radius
U Wind speed
V0 Cross-flow speed

γ Lock number
ε Residual pitch misalignment angle
θ Pitch angle
κ Vertical shear exponent
% Air density
φ Yaw misalignment angle
χ Upflow angle
ψ Azimuthal angle
3 Nondimensional flow velocity at the rotor disk
� Rotor angular velocity

b Pitch adjustment vector
bm Pitch misalignment vector
s Fixed-frame signal vector
I Identity matrix
R Rotation matrix between two consecutive blades

(·)0 Zeroth harmonic
(·)n nth harmonic
(·)i Quantity related to the ith blade
(·)(j ) Quantity measured with the j th pitch setting
(·)c Cosine amplitude
(·)s Sine amplitude
¯(·) Nondimensional quantity

nP n times per revolution
BEM Blade element momentum
SNR Signal-to-noise ratio
TI Turbulence intensity
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