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Abstract
For spatiotemporal learning with neural networks, hyperparameters are often set manually by a human expert. This is espe-
cially the case with multiple timescale networks that require a careful setting of the values of timescales in order to learn
spatiotemporal data. However, this implies a cumbersome trial-and-error process until suitable parameters are found and it
reduces the long-term autonomy of artificial agents, such as robots that are controlled by multiple timescale networks. To
solve the problem, we propose the evolutionary optimized multiple timescale recurrent neural network (EO-MTRNN) that is
inspired by the neural plasticity of the human cortex. Our proposed network uses a method of evolutionary optimization to
adjust its timescales and to rewire itself in terms of number of neurons and synapses. Moreover, it does not require additional
neural networks for pre- and postprocessing input–output data. We validate our EO-MTRNN by applying it to a proposed
benchmark training dataset with single and multiple sequence training cases, as well as by applying it to sensory-motor data
from a robot. We compare different configuration modes of the network, and we compare the learning performance between a
network configuration with manually set hyperparameters and a configuration with automatically estimated hyperparameters.
The results show that automatically estimated hyperparameters yield approximately 43% better performance than manually
estimated ones, without overfitting the given teaching data.We also validate the generalization ability by successfully learning
data that were not included in the hyperparameter estimation process.

Keywords EO-MTRNN · Autonomous hyperparameter estimation · Neural plasticity · Evolutionary optimization

1 Introduction

It has become amatter of common knowledge that the human
brain is highly adaptive. The neural structures in the neocor-
tex can self-organize and rearrange themselves rapidly. This
occurs especially in infancy, where there is a tremendous
increase in the number of synapses and dendrites (Hutten-
locher 1990). Cortical regions have the property of reshaping
themselves in terms of not only increasing but also prun-
ing the number of synaptic connections (Huttenlocher and
Dabholkar 1997; Shaw et al. 2008). This restructuring hap-
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pens over time over many years including adulthood. The
more the structuring of a cortical region progresses over
time, the more specific or specialized the region gets (John-
son 2010). The specialization that emerges over time seems
not to be predetermined from the beginning on, but highly
depends on the stimuli that it receives upon environmental
interaction. This is referred to as neuroplasticity (Johnson
and de Haan 2015). Modelling this plasticity in computa-
tional models such as artificial neural networks (ANNs) has
not been well investigated in the past, since many hyperpa-
rameters representing structure and dynamics of the model
are either predetermined, or manually changed during cum-
bersome trial-and-error experiments.

1.1 Motivation

Our goal is tominimize the parameterization effort of a recur-
rent neural network (RNN) that is the multiple timescale
recurrent neural network (MTRNN) originally proposed by
Yamashita and Tani (2008). We take inspiration from the
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plasticity of the human cortex (Johnson and de Haan 2015;
Johnson 2010). Further motivation comes from develop-
mental robotics that is in turn influenced by neuroscientific
insights (Lungarella et al. 2003).

The reconfiguration of system parameters by a human
expert should be avoided during an agent’s run time. Agents
that can autonomously adjust their parameters to learn new
tasks are also characterized as skull-closed (Wang et al.
2011). This means that there is no need to stop the agent
upon a problem, to open its settings, i.e. the “skull”, to make
the changes or rewirings, and start it again in an effort that
the behaviour will be better upon manual parameter change.

Likewise, it would be desirable if a neural network can
restructure itself over timewhen the trainingdata changes due
to newly collected samples, e.g. when the network controls
a robot.

1.2 Problem

In detail, the original MTRNN (Yamashita and Tani 2008)
is a special type of continuous time recurrent neural net-
work (CTRNN) that operates with sigmoid activation in
the fast and slow context group, and softmax activation in
the input–output group. In the following paragraphs, we
describe significant technical challenges of using the orig-
inal MTRNN. Nevertheless, these challenges also apply to
all future derivations of the MTRNN, such as an MTRNN
with four different timescales (Alnajjar et al. 2013) and the
MSTNN (Jung et al. 2015), i.e. to various recurrent neural
networks with multiple scales.

Finding the correct neural timescales The learning perfor-
mance of the MTRNN is strongly dependent on the settings
of the timescales for each neuron group; in particular, the
ratio between the timescales for fast context and slow con-
text influences the performance (Yamashita and Tani 2008).
Networks related to the MTRNN, such as the MSTNN (Jung
et al. 2015), also rely on multiple timescales, and it is crucial
to find good values for them. However, finding proper val-
ues for these different timescales is problematic, and so far
it has been achieved through many trial-and-error tests con-
ducted by a human experimenter who evaluated the network
performance.

Finding the number of context neurons Determining the
number of fast and slowcontext neurons is also not trivial. It is
often dependent on the number of input–output neurons that
in turn depend on the given pre- and postprocessing schema.

Training additional neural networks for pre- and post-
processing The MTRNN input and output are processed by
topologically preserving maps (TPMs) (Kohonen 1982), like
inYamashita and Tani (2008) andArie et al. (2012). This pre-
and postprocessing of the network input and output increases

the learning ability by reducing the overlaps in the training
data (Yamashita andTani 2008).However, the usage ofTPMs
represents a slight drawback of the original MTRNN, since
the TPMs are neural networks that need to be trained as well
in addition to the main network.

1.3 Approach

In order to solve the problems, we propose to model the
aforementionedneural plasticity by restructuring the network
through changing the number of neurons of different groups
and the corresponding number of synaptic weights. It is not
enough to consider an optimization of the values of weights
and initial neural potentials only, like it has been the case in
many existing RNNs in the past. The number of neurons per
neural group and the number of weights have to be optimized
as well. In addition, the local activity of particular neurons
has also to be optimized, a property that is crucial for learning
to execute action sequences (Kiebel et al. 2008; Badre and
D’Esposito 2009). We therefore optimize the timescale of
each individual neuron. This timescale determines whether
a neuron is fast, i.e. changing its activity quickly, or rather
slow, i.e. changing its activity slowly.

In sum, we propose to optimize:

– Synaptic weights
– Initial potentials of context neurons
– Neural timescales
– Number of context neurons

Note that due to the connectivity of our network, an opti-
mization of the number of context neurons implicitly also
optimizes the number of synaptic weights.

Formally, our proposed optimization schema can be
expressed as

argmax
τ ,n

Ω(τ ,n, argmin
W,q�

E(W,q�)), (1)

where τ , n, and q� denotes the vector of all neural timescales,
number of context neurons, and initial context potentials,
respectively, and W denotes the matrix of synaptic weights;
the function Ω is a fitness function that is optimized via
evolutionary optimization, while the error function E is opti-
mized via backpropagation through time (BPTT) (Rumelhart
et al. 1986, 2002). It is speculated that cortical regions also
implement a form of BPTT (Whittington and Bogacz 2019).
We adopt an evolutionary optimization method (Brest et al.
2006) realizing argmaxτ ,nΩ in order to model the plasticity
of a cortical region, a process that happens over a longer
timespan, e.g. over many developmental stages. One can
relate a developmental stage to one ormoregenerations of the
optimization phase, where each generation has a particular
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fitness value Ω . In Fig. 1, we compare our proposed evolu-
tionary approach with the traditional approach. We propose
our version of the MTRNN that does not require additional
training of subnetworks for pre- and postprocessing. This
solves the latter challenge in the aforementioned problem
section.

2 Background

In Sect. 2.1, we provide an overview on recurrent neural
networks that have multiple timescale properties emulating
functional hierarchies in the neocortex. In order to overcome
the aforementioned problems and to model the plasticity, we
adopted a method of evolutionary optimization, a field that
we briefly outline in Sect. 2.2.

2.1 Recurrent neural networks withmultiple
timescales

In neuroscience, the theory of predictive coding (Friston
2008, 2010) attempts to model hierarchical message passing
in the human cortex. Higher levels of the cortical hierarchy
encode abstract entities such as goals or intentions (Fuster
2001; Badre and D’Esposito 2009). Representations in the
higher levels are updated through the bottom-up error prop-
agation process (Friston 2010). From a simplified point of
view, each level of the cortical hierarchy operates with a par-
ticular timescale. This forms a functional hierarchy that can
be best explained through the example of action selection
and execution, referred to as temporal abstraction (Badre
and D’Esposito 2009, p. 661).

In analogy to temporal abstraction, RNNs based on pre-
dictive coding have been studied by Tani (2016) in a robotics
context. Compared to earlier RNNs, e.g. Elman (1990) and
Jordan (1997), neural networks based on predictive cod-
ing have more than one timescale in their context group.
Yamashita and Tani (2008) proposed the MTRNN that
has two different timescales within its context group. The
MTRNN is the foundation for newer networks that are based
on the principle of multiple timescales, such as the MSTNN
(Jung et al. 2015). The MTRNN overcomes the limited stor-
age capacity of a traditional continuous time recurrent neural
network (Tani et al. 2008). While the context group of tra-
ditional RNNs can encode goal-directed actions (Nishimoto
et al. 2008), the switching or transition between different
action primitives should happen smoothly and be also rep-
resented in the network. Instead of having many distinct
local networks encoding primitive sequences and a higher-
level selection module to switch between the output of these
networks, the MTRNN integrates these capabilities in one
single neural network through itsmultiple timescale property.
Primitive sequences are encoded by a group of context neu-

rons with a faster change in activity (fast context) compared
to another group of context neurons with a slower change
in activity (slow context). The slow context neurons alter
their activity when a switching between primitive sequences
occurs, which is, for example, the case at branching points
of trajectories in space-time.

The application possibilities offered by the MTRNN as
a dynamic system and the idea of multiple timescales have
been further investigated in Arie et al. (2012), Yamashita
and Tani (2012) and Jeong et al. (2012). Further MTRNN
applications were shown in Sasaki et al. (2015), Takahashi
et al. (2015b) and Takahashi et al. (2015a).

2.2 Evolutionary optimization

We consider optimization methods that neither depend on an
analytical description of the optimization problem, nor on its
gradient. Evolutionary optimization has become increasingly
popular, since it does not require information about the fitness
landscape, works in high-dimensional search spaces, and can
be parallelized (Yao and Xu 2006). Examples include ran-
dom search (Anderson 1953; Solis and Wets 1981; Bergstra
and Bengio 2012), although not necessarily considered as
evolutionary. An optimization method for very large search
spaces is particle swarm optimization (PSO) (Kennedy and
Eberhart 1995; Eberhart and Kennedy 1995; Shi and Eber-
hart 1998). However, it is not guaranteed that PSO finds an
optimal solution, and often, the user has to make a trade-
off between exploration and exploitation (Trelea 2003). A
promising candidate for global optimization is differential
evolution (DE) (Storn and Price 1995; Storn 1996; Storn
and Price 1997). Similar to PSO, DE can be applied to a
wide variety of numerical optimization problems with very
high dimensions, noise, and fluctuations over time, such as in
Rocca et al. (2011). In Vesterstrom and Thomsen (2004) and
Brest et al. (2006), it is reported that DE outperforms PSO in
the quality of computed solutions on benchmark problems.
However, as it is the case with other optimization methods,
the performance of DE is dependent on its control param-
eters. Adverse values for these parameters deteriorate the
optimization performance. To overcome this drawback, Liu
and Lampinen (2005) proposed a fuzzy adaptive version of
DE (FA-DE), which outperformed the original DE. Brest
et al. (2006) proposed a version ofDEwith self-adapting con-
trol parameters (SA-DE), and they extensively compared the
performance of SA-DE with FA-DE and other related meth-
ods. They reported that SA-DE yielded better results than
FA-DE, and that SA-DE yielded better or at least compara-
ble results than the other evolutionary algorithms proposed
in Yao et al. (1999) and Lee and Yao (2004).

These findings suggest that SA-DE is the ideal candidate
for the optimization of MTRNN hyperparameters.
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Fig. 1 Traditional a a human determines the hyperparameters. This
may imply a series of cumbersome trial-and-error runs, each run con-
ducted with the human in the loop, until the system shows satisfactory
learning performance. Proposed b System automatically determines its
hyperparameters, i.e. neural dynamics and network structure, through
a process resembling biological evolution, in which each generation of
the network performs better than the previous one. For each generation,

the performance is determined by running the network in closed-loop
yielding spatiotemporal patterns x0, x1, ..., xL−1 that are comparedwith
the teaching data. The resulting fitnessmetricΩ is fed into the optimizer
determining the hyperparameters for the next generation. To our best
knowledge, evolutionary hyperparameter estimation has not yet been
realized for multiple timescale neural networks

3 Computational model

3.1 Acronyms andmathematical notations

We use the following acronyms unless defined otherwise:

IO: input–output
C : context, can be split into fast con-

text (FC) and slow context (SC)
NIO ∈ N: number of input–output units
NFC ∈ N: number of fast context units
NSC ∈ N: number of slow context units
NS ∈ N: number of sequences
L ∈ N: sequence length
E ∈ R: loss function
ŷ ∈ R|0.0 < ŷ < 1.0: sample value (of a spatial dimen-

sion) of a training sequence
y ∈ R|0.0 < y < 1.0: activation value of an input–

output unit
u ∈ R: potential valueof an input–output

unit
x ∈ R|0.0 < x < 1.0: input value fed into an input–

output unit
c ∈ R|0.0 < c < 1.0: activation value of a context unit
q ∈ R: potential value of a context unit
τ ∈ N>0: timescale of a unit
wab ∈ R: connective weight from unit b to

unit a
t ∈ N: timestep

3.2 Network structure

Figure 2 shows the structure of our proposed version of
the MTRNN. The set F1 represents the neural activa-

Fig. 2 Structure of our MTRNN version that works with sigmoid acti-
vation for all units. The network consists of units (depicted as squares)
connected by a set of mathematical functions F1 and F2. The left half
shows the input–output group IO, and the right half shows the context
group C . The thick arrows between the bottom and the middle units
indicate the connective weights represented by the weight matrix W.
The output of the top context units is fed back to the bottom context
units. The extension of this network by an evolutionary optimizer yields
our proposed EO-MTRNN that is shown in Fig. 3

tion functions which are y(u) for the IO group and c(q)

for the C group. The cardinality of F1 is denoted as
|F1|. It is |F1| = NIO + NFC + NSC. The set F2 rep-
resents the functions for updating the neural potentials
which are ut (τ, ut−1, w, xt , ct−1) for the IO group and
qt (τ, qt−1, w, xt , ct−1) for the C group. The set F2 has the
same cardinality than F1. The F2 functions include recur-
rent dependencies, weights, and timescales. Note that the
timescales can be different from each other, splitting the C
group intoFCandSC.Alsonote that the connections between
the IO group and the SC group are set to zero.

One difference compared to the original version
(Yamashita and Tani 2008) is the usage of sigmoid activa-
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tion for the input–output group of the network, in order to
keep it consistent with the activation for the context group
having sigmoid activation as well. The entire network now
consists of units with sigmoid activation. Besides uniformity,
we decided to use the sigmoid activation for the input–
output group because of the universal approximation theory
of neural networks. Any continuous function can be approxi-
mated by sigmoid units (Cybenko 1989; Barron 1993). For a
dynamic network, such as the MTRNN, this implies control-
lability, i.e. any desired state can be achieved within a finite
number of steps starting from an initial state. The original
version used softmax activation for the input–output group,
since, as described inYamashita andTani (2008), the softmax
activation fits well to the pre- and postprocessor networks
that are TPMs (Kohonen 1982), connected to the MTRNN.
However, these pre- and postprocessor networks have to be
trained as well, in addition to the main network. In contrast,
our version does not require pre- and postprocessor networks.
Nevertheless, if pre- and postprocessing is requested to intro-
duce a sparse representation of the actual input data, we can
achieve it by a simple analytical pre- and postprocessing
scheme. We propose this analytical preprocessing scheme
as one of our network configuration modes. The second pro-
posed mode is an early stopping method included into the
training procedure. When activated, it is supposed to reduce
the overfitting of the teaching data.

3.3 Optimization of synaptic weights and initial
neuron potentials

Here, we describe argminW,q�E(W,q�) of Eq. (1).
We use sigmoid neurons throughout the entire network.

The activation of an input–output neuron is given by Eq. (2)
and the activation of a context neuron is given by Eq. (3):

y(u) = 1

1 + exp(−u)
(2)

c(q) = 1

1 + exp(−q)
. (3)

The potential value of an input–output unit is updated by

u(i)
t =

(
1 − 1

τ (i)

)
u(i)
t−1

+ 1

τ (i)

(∑
k∈IO

w(ik)
ux x (k)

t +
∑
k∈C

w(ik)
uc c(k)

t−1

)
(4)

with i ∈ IO.
The potential value of a context unit is updated by

q(i)
t =

(
1 − 1

τ (i)

)
q(i)
t−1

+ 1

τ (i)

(∑
k∈IO

w(ik)
qx x (k)

t +
∑
k∈C

w(ik)
qc c(k)

t−1

)
(5)

with i ∈ C .
We use the following loss function:

E =
∑
t

Et =
∑
t

∑
i∈I O

1

2

(
ŷ(i)
t − y(i)

t

)2
(6)

In the following, we derive all partial derivatives that are
required for the update of synaptic weights and the update of
initial potentials of context neurons. This derivation is based
on the network structure (Fig. 2), the functions (2), (3), (4),
(5), and the loss function (6). The partial derivative ∂E

∂u(i)
t

can

be expressed as:

∂E

∂u(i)
t

= ∂Et

∂u(i)
t

+ ∂

∂u(i)
t

⎛
⎝ ∑

t ′=t+1

Et ′

⎞
⎠ . (7)

Equation (7) is the recurrence equation of the input–output
group, and it is developed to contain the recurrence term

∂E
∂u(i)

t+1

∂u(i)
t+1

∂u(i)
t
:

∂E

∂u(i)
t

= ∂Et

∂u(i)
t

+ ∂E

∂u(i)
t+1

∂u(i)
t+1

∂u(i)
t

(8)

with i ∈ IO.
The right side of Eq. (8) is going to be expanded. Applying

the chain rule to ∂Et

∂u(i)
t

and deriving
∂u(i)

t+1

∂u(i)
t

by using Eq. (4)

result in

∂E

∂u(i)
t

= ∂Et

∂ y(i)
t

∂ y(i)
t

∂u(i)
t

+ ∂E

∂u(i)
t+1

(
1 − 1

τ (i)

)
(9)

It follows for one unit i ∈ IO:

∂Et

∂ y(i)
t

= ∂

∂ y(i)
t

(
1

2

(
ŷ(i)
t − y(i)

t

)2) = −
(
ŷ(i)
t − y(i)

t

)
(10)

The variable y(i)
t denotes the sigmoid activation of the IO

group (Eq. (2)); thus,

∂ y(i)
t

∂u(i)
t

= ∂

∂u(i)
t

(
1

1 + exp(−u(i)
t )

)
= y(i)

t

(
1 − y(i)

t

)
.

(11)
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Inserting Eq. (10) and Eq. (11) back into Eq. (9) yields

∂E

∂u(i)
t

=
(
y(i)
t − ŷ(i)

t

)
y(i)
t

(
1− y(i)

t

)
+

(
1− 1

τ (i)

) ∂E

∂u(i)
t+1

(12)

with i ∈ IO.
In analogy to Eq. (7), the partial derivative ∂E

∂q(i)
t

can be

expressed as

∂E

∂q(i)
t

=
∑
k∈IO

∂E

∂u(k)
t+1

∂u(k)
t+1

∂c(i)
t

∂c(i)
t

∂q(i)
t

+
∑
k∈C

∂E

∂q(k)
t+1

∂q(k)
t+1

∂q(i)
t

(13)

with i ∈ C . Equation (13) is the recurrence equation of the
context group, resulting from the structure and connectiv-
ity of the network. The right side of Eq. (13) contains the
following parts:

∂u(k)
t+1

∂c(i)
t

= 1

τ (k)
w(ki)
uc (14)

with i ∈ C and k ∈ IO,

∂c(i)
t

∂q(i)
t

= ∂

∂q(i)
t

(
1

1 + exp(−q(i)
t )

)
= c(i)

t

(
1 − c(i)

t

)
(15)

with i ∈ C ,

∂q(k)
t+1

∂q(i)
t

= δik

(
1 − 1

τ (k)

)
+ 1

τ (k)
w(ki)
qc

∂c(i)
t

∂q(i)
t

(16)

with i ∈ C , k ∈ C , and δik as Kronecker delta (δik = 1 for
i = k, δik = 0 for i �= k). Inserting Eq. (15) into Eq. (16)
results in

∂q(k)
t+1

∂q(i)
t

= δik

(
1 − 1

τ (k)

)
+ 1

τ (k)
w(ki)
qc c(i)

t

(
1 − c(i)

t

)
(17)

with i ∈ C and k ∈ C . Inserting Eq. (14), Eqs. (15), and (17)
back into Eq. (13) yields

∂E

∂q(i)
t

=
∑
k∈IO

∂E

∂u(k)
t+1

1

τ (k)
w(ki)
uc c(i)

t

(
1 − c(i)

t

)

+
∑
k∈C

∂E

∂q(k)
t+1

(
δik

(
1 − 1

τ (k)

)

+ 1

τ (k)
w(ki)
qc c(i)

t

(
1 − c(i)

t

))
(18)

with i ∈ C . The partial derivatives ∂E
∂u(i)

t
(Eq. (12)) and ∂E

∂q(i)
t

(Eq. (18)) are important, since they are required to compute
the gradients ∂E

∂w
according to:

∂E

∂w
(ik)
ux

=
∑
t

∂E

∂u(i)
t

∂u(i)
t

∂w
(ik)
ux

=
∑
t

∂E

∂u(i)
t

1

τ (i)
x (k)
t (19)

with i, k ∈ IO,

∂E

∂w
(ik)
uc

=
∑
t

∂E

∂u(i)
t

∂u(i)
t

∂w
(ik)
uc

=
∑
t

∂E

∂u(i)
t

1

τ (i)
c(k)
t−1 (20)

with i ∈ IO, k ∈ C ,

∂E

∂w
(ik)
qx

=
∑
t

∂E

∂q(i)
t

∂q(i)
t

∂w
(ik)
qx

=
∑
t

∂E

∂q(i)
t

1

τ (i)
x (k)
t (21)

with i ∈ C, k ∈ IO,

∂E

∂w
(ik)
qc

=
∑
t

∂E

∂q(i)
t

∂q(i)
t

∂w
(ik)
qc

=
∑
t

∂E

∂q(i)
t

1

τ (i)
c(k)
t−1 (22)

with i ∈ C, k ∈ C .
Given these partial derivatives, the weights and initial

potentials can be updated as part of the BPTT algorithm
(Rumelhart et al. 1986, 2002). Within BPTT, the partial
derivatives (12), (18) are iteratively computed for each
training sequence and are required to compute the partial
derivatives of the weights. The partial derivatives (19), (20)
(21), (22) are iteratively computed for each training sequence
with t as sample index, and then, they are summed up over
the training sequences s given in the training set S.

At the beginning of training, the procedure initializes the
weights with random values between − 0.025 and 0.025
like in Yamashita and Tani (2008). In the multiple timescale
mode, i.e. τFC �= τSC, the connective weights between the
IO group and the SC group are set to zero. The weights are
updated by:

Δwn+1 = α
1

T

∑
s∈S

∂E (s)

∂w
+ ηΔwn

wn+1 = wn − Δwn+1 (23)

where n is the epoch index, T is the number of total samples
of the training set, α is the learning rate of weight update, and
η is the momentum.When the BPTT procedure arrives at the
very first sample of a sequence, an additional backpropaga-
tion step is required in order to compute the initial potentials
of the context neurons:

∂E

∂q�(i)
=

∑
k∈IO

∂E

∂u(k)
0

1

τ (k)
w(ki)
uc c�(i)

(
1 − c�(i)

)

+
∑
k∈C

∂E

∂q(k)
0

(
δik

(
1 − 1

τ (k)

)
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+ 1

τ (k)
w(ki)
qc c�(i)

(
1 − c�(i)

))
(24)

with i ∈ C and δik as Kronecker delta. In Eq. (24), c�(i)

represents the initial input activation value of a context
neuron i . The value of c�(i) is set to 0.5 before the training
starts. An activation value of 0.5 corresponds to a potential
of 0 for a sigmoid neuron. It is considered as a neutral value
from which the initial potential is adapted through the train-
ing process. For the set S of given training sequences, the
initial context potentials q� are updated by

q�(si)
n+1 = q�(si)

n − β(i) 1

Ls

∂E (s)

∂q�(i)
(25)

where s ∈ S, i ∈ C , n is the epoch index, Ls is the sequence
length, and β(i) is the learning rate of potential update. Note
that β(i) can have two different values, depending onwhether
the unit i is part of the fast context or slow context group.

The training procedure also contains a slight bias by clip-
ping the gradients (12), (18), (24) through δc := tanh(δ)

where in this case δ represents the gradient (12), (18), (24),
respectively. The weight gradients (19), (20), (21), (22) as
well as the initial potentials (25) are then computed using
the corresponding clipped gradient δc. The usage of clipped
gradients stabilizes the training procedure by preventing an
accumulation of too high values for the partial derivatives
(Goodfellow et al. 2016).

We used the mean squared error (MSE) as part of the
BPTT training procedure. The reason for choosing the MSE
resides in machine learning theory. The basis for supervised
learning is the maximum likelihood estimator that aims to
maximize a log-likelihood. Maximizing the log-likelihood
with respect to themodel parameters yields the same estimate
of parameters than minimizing the MSE (Goodfellow et al.
2016, p.132).

In the recall phase after training, when an input sample is
fed into the input–output group of the network, the entire con-
text states, i.e. fast and slow context, are recognized through
an iterative value search and initialized. Given a particular
sequence Sg and an input pattern xt , the context recognition
starts with setting the initial IO and the initial C activation
states from the BPTT training procedure. By closed-loop
prediction, where the network output is fed into the input,
subsequent IO patterns are computed, each with its corre-
sponding C activation. The predicted IO pattern that has the
minimum Euclidian distance to the given input pattern xt is
selected, and its correspondingC activation is retrieved.With
the retrieved context activation, the sequence can then be pre-
dicted, i.e. generating xt+1, xt+2, etc., by using the learned
weights and the neural updates according to Eqs. (2), (3), (4),
(5).

3.4 Early stopping

An optional part of the learning is an early stopping method.
We divided the entire set of teaching data into training set and
validation set. The training set is fed into the BPTT used to
alter theweights and initial context potentials, and the valida-
tion set is used for early stopping. Given a set of sequences as
teaching data, every third sample of a sequence was excluded
from training and used for validation, yielding a data division
of 67% for training and 33% for validation. For each epoch
of training, the early stopping method does forward prop-
agation and computes the MSE on the validation set. The
method keeps a history of the validation MSE together with
the weights and initial context potentials for the latest Δh
epochs where Δh is the size of the epoch window. During
the training process, if the MSE on the training set becomes
smaller than a defined minimum value (in our case 0.0009),
the method computes the gradient gv of the validation MSE
according to

gv = Δev
Δh

= ev(h) − ev(h − Δh)

Δh
(26)

where ev(h) is the validation MSE at the current epoch h.
We set Δh to 500. During the training process, the valida-
tionMSE declines together with the trainingMSE. However,
if the validation MSE starts to rise (gv > 0, which means
Δev > 0), then the training is stopped and the weights and
initial context potentials, which correspond to the minimum
validation MSE, are returned.

3.5 Input–output preprocessing

In the default configuration, each dimension of an input sam-
ple is mapped to one IO neuron. For example, if the network
is supposed to learn eight-dimensional sequences, then the
number of IO neuronswill be eight. An alternative configura-
tion is an input–output preprocessing, where each dimension
of an input sample at timestep t is mapped to more than one
IO neuron. Likewise, after the network computed the pre-
diction at t + 1, the activation of a number of IO neurons is
mapped back to one dimension of the output sample. For a
given input sample x with the dimension m, input mapping
is done by X = x · vT , where v is the preprocessing weight
vector with the dimension n. The preprocessing vector has
the elements vk ∈ R | 0.0 < vk < 1.0. When applying the
preprocessing, the number of IO neurons required is m · n.
Backwardmapping is done by (

∑
k Xik/vk)/dim(v) for each

i , where Xik is an element ofX, vk is an element of v, with i as
dimension index of the input pattern, and k is the dimension
index of the preprocessing weight vector. Unless defined oth-
erwise, we used vT = [

0.225 0.45 0.9 0.45 0.225
]
, yielding

a pyramid-like activation pattern over each cluster of n IO
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Fig. 3 Proposed EO-MTRNN. The MTRNN (top left) is extended by
components for autonomous hyperparameter estimation. For this pur-
pose, the MTRNN is trained and evaluated with benchmark sequences
(teaching data). The fitness Ω is computed and fed into the optimizer
that estimates a set H of hyperparameters. Here, H consists of the num-
ber of context neurons NFC, NSC, and the multiple timescales τ (i) with
i ∈ IO, FC, SC. The hyperparameters are used to adjust the neural
timescales and to restructure the MTRNN (timescale adjustment and
restructuring indicated by the orange colour) (colour figure online)

neurons. The values of v were determined empirically, and
they can be different. Themiddle element should have a value
close to 1.0, and the values of the adjacent elements should
be significantly smaller. This yields a sparse activation of the
IO neurons of the network.

3.6 Structure of the network extended by an
evolutionary optimizer

Figure 3 shows the structure of our proposed EO-MTRNN:
theMTRNNextendedby components for autonomoushyper-
parameter estimation (AHE). Besides a given set of teaching
data, the structure consists of three main components:

– The MTRNN (Sect. 3.2)
– Evaluation metric that is the computation of a fitness
value

– Optimizer, i.e. an evolutionary algorithm that is the SA-
DE

Theaim is to improve the learner performancebymaximizing
a fitness valueΩ . A generation of the network is represented
by H , its weights W, and initial context potentials q∗. For
each generation, the optimizer trains the MTRNN with the
current population as well as with a mutated population of
hyperparameters. For each individual of the population, a
mutated individual of H will replace a population individual,
if the mutated individual has a higher fitness value. Through
this process, the optimizer creates a new generation of the

Table 1 Dimension of optimization problem and the corresponding
MTRNN hyperparameters that are optimized through SA-DE

Problem dimension DP Hyperparameter H

1 τSC

2 τFC, τSC
3 τIO, τFC, τSC
4 NSC, τIO, τFC, τSC
5 NFC, NSC, τIO, τFC, τSC

network that has a higher fitness, i.e. better performance,
than the previous one.

3.7 Fitness value computation

The goal of the fitness value computation is to establish a
mapping Ω from a vector p ∈ N

Dp to a real scalar value,
mathematically Ω : p → R. The vector p has the dimension
Dp (problem dimension) and represents the current setting
of hyperparameters that are used for the optimization pro-
cess. In case of the MTRNN hyperparameters, the vector p
contains integer values. Table 1 shows theMTRNN hyperpa-
rameters which are optimized dependent on the value of the
problem dimension Dp. The default setting is DP = 5, and
then, the number of all context neurons and all timescales
are optimized. The other settings (DP < 5) are optional,
and they can be used to customize the network optimization,
for example if the user only wants to optimize one or more
particular hyperparameter(s), while the others stay fixed.

For anyparticular settingof hyperparameters, theMTRNN
is trained with a set of sequences (represented by the box
teaching data in Fig. 3). It does not matter where the teach-
ing data come from, at least for the scope of this paper. It can
be either the set of benchmark sequences, or any other data set
containing spatiotemporal patterns, e.g. sensory-motor data
collected on a robot. ThemappingΩ represents an evaluation
metric and is considered as fitness value for the hyperparam-
eter optimization process. This fitness value is computed by
using the training data and the current network output. We
use the normalized sum of the entries of the S x B matrix of
correlation coefficients:

Ω := 1

S · B
S∑

i=1

B∑
j=1

ri j , (27)

where S is the number of training sequences and B is the
number of spatial dimensions of the sequences. Each entry
ri j ∈ R | −1.0 ≤ ri j ≤ 1.0 is computed by:

ri j =
∑L

t=1(a
(i j)
t − ā(i j))(y(i j)

t − ȳ(i j))√∑L
t=1(a

(i j)
t − ā(i j))2

√∑L
t=1(y

(i j)
t − ȳ(i j))2

, (28)
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where a(i j)
t ∈ R | 0.0 < a(i j)

t < 1.0 denotes the value of
a training sample at timestep t of sequence i and its spatial
dimension j . Accordingly, y(i j)

t ∈ R | 0.0 < y(i j)
t < 1.0

denotes the value of a predicted sample at timestep t of
sequence i and its spatial dimension j . The mean value of
sequence i and its spatial dimension j are given by ā(i j)

and ȳ(i j) for training and prediction, respectively. The values
y(i j)
t are obtained by running the MTRNN in closed loop as
indicated in Fig. 3.

3.8 Optimization of timescales and number of
neurons

Given the result of argminW,q�E , we describe argmaxτ ,nΩ

of Eq. (1).
Using Ω as optimization metric, the optimizer computes

a new set of hyperparameters H which is used to restructure
or rewire the spatiotemporal learner, i.e. the MTRNN. In
this case, restructuring means altering the timescales which
effect the dynamics and altering the number of context neu-
rons, both fast and slow context. To this end, we adopted
the method of differential evolution with autonomous meta-
parameter1 adaptation proposed in Brest et al. (2006). It
extends the original differential evolution (Storn and Price
1997) by making its meta-parameters self-adapting. In order
to find suitable MTRNN hyperparameters, we applied SA-
DE because it offers a global optimization as well as
autonomous meta-parameter adaptation. Thus, the SA-DE
is an enhanced version of the DE that already finds a global
optimum over continuous spaces (Brest et al. 2006, p. 647).
Using an optimizer with autonomous meta-parameter adap-
tation is beneficial, since the optimalmeta-parameter settings
are problem dependent (Brest et al. 2006).

The goal of this optimization is to maximize Ω . The opti-
mization process works with individuals of two types of
populations: the original population and the crossover pop-
ulation. Following the notation in Sect. 3.7, an individual
i of the original population is described by the vector pi
containing hyperparameters. Additionally, an individual i of
the crossover population is described by the vector ci . Both
populations have the same size NP, thus i going from 1 to
NP. For example, if NP = 4, then the population consists
of {p1,p2,p3,p4}. A property of the SA-DE method is that
NP ≥ 4. The population size is initialized only once and kept
constant during the optimization process; we used NP = 4.
The SA-DE method contains two meta-parameters that are
self-adapting: the mutation control F ∈ R, also called dif-
ferential weight, and the crossover control CR ∈ R. The
adaptation of F is influenced by the lower bound Fl and the

1 Meta-parameters are also termed control parameters; they are the
parameters of an optimization method which in turn is used to optimize
the parameters of a target system.

upper bound Fu; the adaptation of CR is influenced by the
probabilities τ1 and τ2. The parameters Fl, Fu, τ1, and τ2
are initialized only once and kept constant during the opti-
mization process. We used the same values as in Brest et al.
(2006): Fl = 0.1, Fu = 0.9, τ1 = 0.1, and τ2 = 0.1.

The optimization process includes the following key steps:

1. Initialize population
The first step of the algorithm is to initialize the original
population with random positions in the search space.
The search space is bounded by the vectors lower bound
blo and upper bound bup, both of the problem dimension
DP. The control parameters F and CR are extended to
become vectors f and cr, respectively, both with dimen-
sion NP. Each element of f is initialized with a random
floating-point value between Fl and Fu, i.e. fi ∈ [Fl, Fu],
from uniform distribution. Each element of cr is initial-
ized with a random floating-point value between 0 and 1,
i.e. cri ∈ [0.0, 1.0], from uniform distribution.

2. Compute crossover individuals
For each individual, four random values r1, r2, r3, r4
∈ R are generated with r ∈ [0.0, 1.0], from uniform
distribution. Then, each element of the control parameter
vectors is adapted according to the following rule:

f (g+1)
i =

{
Fl + r1 · Fu, if r2 < τ1.

f (g)
i , otherwise.

(29)

cr(g+1)
i =

{
r3, if r4 < τ2.

cr(g)i , otherwise.
(30)

where g, Fl, Fu, fi , and cri denote the current genera-
tion, lower bound, upper bound, mutation control, and
crossover control, respectively. The parameters τ1 and
τ2 are probabilities for modifying fi , and cri , respec-
tively. This adaptation of control parameters according
to Eqs. (29) and (30) is done before the next two steps,
the mutation and the crossover.
The mutation step and the crossover step are done for
each individual i of the current population:
The mutation step begins with picking three individuals
a, b, c from the population at random; these three have
to be different from each other and different from the
current target individual i that is being updated, mathe-
matically i �= a �= b �= c. A mutated individualmi , with
dimension DP, is computed by

mi = pa + fi · (pb − pc) (31)

with population individualspa ,pb,pc, and crossover con-
trol fi . The mutation mi is then pruned to be within the
search space bounded by blo and bup.
The crossover step begins with taking a random index
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Table 2 Elementary benchmark training sequences with Gaussian noise η with μ = 0 and σ = 0.01

Type Length L Mathematical expression y(t)

Rising ramp 50 y1 = 0.0196t + 0.02 + η

100 y2 = 0.0097t + 0.02 + η

150 y3 = 0.0064t + 0.02 + η

Falling ramp 50 y4 = − 0.0196t + 0.98 + η

100 y5 = − 0.0097t + 0.98 + η

150 y6 = − 0.0064t + 0.98 + η

Sigmoid-like upw. slope 50 y7 = 0.9 exp(− 10 exp(− 0.2t)) + 0.04 + η

100 y8 = 0.9 exp(− 50 exp(− 0.1t)) + 0.04 + η

150 y9 = 0.9 exp(− 100 exp(− 0.06t)) + 0.04 + η

Sigmoid-like downw. slope 50 y10 = − 0.9 exp(− 10 exp(− 0.2t)) + 0.94 + η

100 y11 = − 0.9 exp(− 50 exp(− 0.1t)) + 0.96 + η

150 y12 = − 0.9 exp(− 100 exp(− 0.06t)) + 0.96 + η

Sine 50 y13 = 0.35 sin(2π t) + 0.5 + η

100 y14 = 0.35 sin(2π t) + 0.5 + η

150 y15 = 0.35 sin(2π t) + 0.5 + η

Irregular (type K) 50 0 ≤ t ≤ 20: y16 = 0.5 exp(− 5 exp(− 0.6t)) + 0.04 + η

21 ≤ t ≤ 40: y16 = 0.3 exp(− 5 exp(− 0.6(t − 21)) + 0.5 + η

41 ≤ t < 50: y16 = − 0.3 exp(− 5 exp(− 0.6(t − 41))) + 0.5 + η

100 0 ≤ t ≤ 50: Same as irregular (type K) with L = 50

51 ≤ t ≤ 70: y17 = 0.3 exp(− 10 exp(− 0.6(t − 51))) + 0.2 + η

71 ≤ t < 100: y17 = − 0.3 exp(− 19 exp(− 0.6(t − 71))) + 0.5 + η

150 0 ≤ t ≤ 100: Same as irregular (type K) with L = 100

101 ≤ t ≤ 120: y18 = 0.3 exp(− 12 exp(− 0.6(t − 101))) + 0.2 + η

121 ≤ t < 150: y18 = − 0.3 exp(− 12 exp(− 0.4(t − 121))) + 0.5 + η

dx in the problem dimension, which means dx is an
integer with dx ∈ [1, ..., DP]. Then, the crossover indi-
vidual is computed, which is a mixture of an original
individual with the mutated individual. For each dimen-
sion k ∈ [1, ..., DP], a uniform random (floating-point)
number rk is generated with rk ∈ [0.0, 1.0] and the vec-
tor element cik of the crossover individual ci is computed
according to

cik =
{
mik, if rk ≤ cri or k = dx
pik, if rk > cri and k �= dx

(32)

with mik as k-th element of the mutated individual mi

and pik as k-th element of the population individual pi .
3. Compute next generation

Based on the result of the previous computation of
crossover individuals, this step implements a selection
process that leads to a newpopulation generation. In other
words, it is the creation of a population g + 1 based on
the previous population g.
We introduce v

(P)
i ∈ R and v

(C)
i ∈ R as elements of the

population fitness vector v(P) and crossover fitness vec-
tor v(C), respectively. Both vectors have the dimension

NP. The computation of any fitness value v is described
in Sect. 3.7. Computation of v

(P)
i requires a training of

the MTRNN with the hyperparameters contained in the
population individual pi . Computation of v

(C)
i requires a

training of the MTRNN with the hyperparameters con-
tained in the crossover individual ci .
Differential evolution originally minimizes a fitness Ω .
Maximization is done by setting Ω∗ := −Ω and using
the fitness Ω∗ when computing the selection.
In our case, this is implemented by the boolean variable
max that was always true, since the goal is fitness maxi-
mization. For each individual i , the update is

v
(P)
i ← −v

(P)
i

v
(C)
i ← −v

(C)
i

}
only if max = true. (33)

Then, for each individual i , the selection is done by

p(g+1)
i =

{
ci , if v

(C)
i < v

(P)
i .

p(g)
i , otherwise.

(34)
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In sum, after the initialization of the population (Step 1), the
process updates the current population p consisting of NP
individuals and updates their fitness v(P). This update loop
(containing Step 2 and Step 3) is executed for a given number
of generations NG.

Then, in the final step, the individual psol is returned that
has the optimal fitness value v

(P)
opt . The value v

(P)
opt is either

a minimum fitness in case of minimization, or a maximum
fitness in case of maximization. Formally, this is done by
setting

v
(P)
opt = v

(P)
1 . (35)

Then, for each individual i , do:

v
(P)
opt = v

(P)
i

sol = i

}
only if v

(P)
i < v

(P)
opt . (36)

The corresponding optimal fitness value is returned depend-
ing on the boolean variable max specifying minimization or
maximization, in our case maximization:

v
(P)
opt ← −v

(P)
opt only if max = true. (37)

Algorithm output contains two parts: The first is
hsol := psol containing the optimal MTRNN hyperparam-
eters. The second is the corresponding fitness value v

(P)
opt .

All these aforementioned Steps 1, 2, 3 are integrated in
Algorithm 1 that realizes our proposed EO-MTRNN shown
in Fig. 3.

3.9 Implementation

For the implementation of the EO-MTRNN, we did not use
any frameworks or libraries. Our implementationwaswritten
in C++ and run on Linux (Ubuntu 16.04) on a conventional
computer with an i7 central processing unit (CPU). Based on
the mathematical and algorithmic descriptions in this paper,
the EO-MTRNN can be implemented in any programming
language of choice.

4 Benchmark training dataset

Training the network on this benchmark dataset should yield
an insight how the network performs depending on various
factors such as the type of the training sequence, its dimen-
sion, and its length.

The benchmark training dataset is divided into sequences
with one spatial dimension (elementary sequences) and
sequences with multiple spatial dimensions. The multi-
dimensional benchmark sequences are composed of the

Algorithm 1 Optimization of MTRNN hyperparameters
Input: Fitness value Ω (updated through retraining and re-evaluation
of the network)
Output: Final solution vector hsol of hyperparameters
Parameters: Problem dimension DP, population size NP, number of
generations NG, lower bound vector blo, upper bound vector bup
Variables: Generation index g, individual index i , population indi-
vidual pi , crossover individual ci , fitness value v

(P)
i of population

individual pi , fitness value v
(C)
i of crossover individual ci , vector h

containing temporary hyperparameters

1: Initialize population with blo and bup
2: g ← 0
3: while g < NG do
4: Compute crossover individuals
5: for i ← 0; i < NP; i ← i + 1 do
6: Round pi
7: h ← pi
8: Retrain MTRNN with h
9: Compute Ω

10: v
(P)
i ← Ω

11: Round ci
12: h ← ci
13: Retrain MTRNN with h
14: Compute Ω

15: v
(C)
i ← Ω

16: end for
17: Compute next generation using v(P) and v(C)

18: g ← g + 1
19: end while
20: Get psol with v

(P)
opt

21: hsol ← psol
22: return hsol

elementary sequences. Each spatial dimension of a bench-
mark sequence can be described mathematically, where y
is the sample value and t is the discrete timestep. Gaussian
noiseηwas addedwith ameanμ = 0 and varianceσ = 0.01.
This addition of noise simulates the property of teaching or
training data, which would be collected in a real applica-
tion scenario, for example when sensory-motor training data
would be collected on a robot through kinesthetic teaching.
The network should be robust to noise in the training data to
a certain extent.

4.1 One-dimensional sequences

Here, we introduce training sequences with one spatial
dimension only. They are also referred as elementary bench-
mark sequences. Table 2 provides the mathematical descrip-
tion to generate elementary benchmark sequences used to
train and evaluate the network. The sequences with L = 150
are visualized in Fig. 4.

Note that for the sine-like sequence (Fig. 4e), we used its
mathematical description in Table 2, incremented t by 0.02 to
generate the function values, and assigned discrete timesteps
to each of those values separately.
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(b) Falling ramp
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(c) Sigmoid-like upward slope
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(d) Sigmoid-like downward slope

0 25 50 75 100 125 150

Timestep

0

0.2

0.4

0.6

0.8

1

V
al

ue

(e) Sine-like
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(f) Irregular (type K)

Fig. 4 Elementary benchmark training sequences of length L = 150.
See Table 2 for their mathematical description used to generate them

Training data is often irregular in practice, i.e. it does not
follow a regular shape like a ramp for example. Therefore, we
added training sequences of irregular type to the benchmark
data set. These irregular sequences can be mathematically
approximated byGompertz functions, see Table 3. The irreg-
ular benchmark sequences are shown in Fig. 5.

4.2 Multi-dimensional sequences

In practice, training sequences provided to a recurrent neural
network typically have multiple spatial dimensions. For our
benchmark data set, each spatial dimension contains one of
the elementary benchmark training sequences from Table 3.
The multi-dimensional benchmark sequences are described
in Table 4. These sequences, especially the sine-like and
irregular ones, often occur in robotics applications, e.g. when
the robot is taught to manipulate objects (Jeong et al. 2012).

5 Results

Usingour proposedbenchmarkdataset,we conduct an empir-
ical analysis of our proposed system. Section 5.1 deals with
the network settings, as well as the termination criterion for
optimizing the weights and initial potentials. In Sect. 5.2, we
explain the metric we use to measure the learning capabil-
ity. Sections 5.3 and 5.4 present the results of our proposed
MTRNNwhen applied to sequence learning in different con-
figurations, i.e. with and without pre- and postprocessing,

Table 3 Elementary benchmark training sequences of irregular type

Type Length L Interval a d e

A 50 0 ≤ t < 50: 0.2 0 0.1

100 51 ≤ t < 100: − 0.2 51 0.3

150 101 ≤ t < 150: 0.3 101 0.1

B 50 0 ≤ t < 50: 0.2 0 0.3

100 51 ≤ t < 100: 0.3 51 0.5

150 101 ≤ t < 150: − 0.3 101 0.8

C 50 0 ≤ t < 50: − 0.3 0 0.6

100 51 ≤ t < 100: 0.2 51 0.3

150 101 ≤ t < 150: 0.2 101 0.5

D 50 0 ≤ t < 50: 0.1 0 0.1

100 51 ≤ t < 100: 0.2 51 0.2

150 101 ≤ t < 150: − 0.1 101 0.4

E 50 0 ≤ t < 50: − 0.2 0 0.3

100 51 ≤ t < 100: 0.3 51 0.1

150 101 ≤ t < 150: − 0.3 101 0.4

F 50 0 ≤ t < 50: − 0.2 0 0.6

100 51 ≤ t < 100: 0.2 51 0.4

150 101 ≤ t < 150: − 0.1 101 0.6

G 50 0 ≤ t < 50: − 0.3 0 0.9

100 51 ≤ t < 100: − 0.2 51 0.6

150 101 ≤ t < 150: − 0.2 101 0.4

H 50 0 ≤ t < 50: 0.3 0 0.5

100 51 ≤ t < 100: − 0.2 51 0.8

150 101 ≤ t < 150: 0.2 101 0.6

I 50 0 ≤ t < 50: 0.3 0 0.2

100 51 ≤ t < 100: − 0.3 51 0.5

150 101 ≤ t < 150: 0.3 101 0.2

J 50 0 ≤ t < 50: − 0.1 0 0.5

100 51 ≤ t < 100: 0.2 51 0.4

150 101 ≤ t < 150: − 0.3 101 0.6

Each sequence type can be described by y(t) = a exp(−b exp(−c(t −
d))) + e + η, with b = 10, c = 0.2, and η is Gaussian noise with
constants μ = 0 and σ = 0.01

and with and without early stopping, respectively. We then
validate the correctness of our SA-DE implementation in
Sect. 5.5. In Sect. 5.6, we add the SA-DE to theMTRNN and
show how the automatic estimation of key network hyper-
parameters improves the learning ability. Finally, we also
present examples of learning robot sensory-motor data in
Sect. 5.7.

5.1 Network settings and termination criterion of
BPTT

For the learning of both, one-dimensional and multi-
dimensional sequences (Sects. 4.1 and 4.2), we used the
following parameterization in Table 5. Note that the vari-
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(a) Irregular type A
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(b) Irregular type B
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(c) Irregular type C
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(d) Irregular type D
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(e) Irregular type E

0 25 50 75 100 125 150
Timestep

0

0.2

0.4

0.6

0.8

1

V
al

ue

(f) Irregular type F
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(g) Irregular type G
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(h) Irregular type H
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(i) Irregular type I
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(j) Irregular type J

Fig. 5 Elementary benchmark training sequences of irregular type. See
Table 3 for their mathematical description used to generate them

able number of IO neurons in Table 5 results from the given
network configuration mode. For example, if the preprocess-
ing is deactivated, a four-dimensional input pattern requires
exactly four IO neurons, i.e. one-to-one mapping. The same
pattern requires 20 IO neurons if preprocessing is activated
(four-dimensional input times five-dimensional preprocess-
ing weight vector). The numbers shown in Table 5 were kept
fixed, until we proceeded with the hyperparameter estima-
tion which we show later in this section. The values for the
learning rates and momentum were kept fixed throughout all
experiments; they were also kept fixed during the hyperpa-
rameter estimation that focused on the timescales and the
number of neurons. The values for the learning rates and
momentum are summarized in Table 6. For the optimization
of weights and initial potentials, the BPTT terminated if the
number of epochs reached 500,000 or if the training MSE

Table 4 Multi-dimensional benchmark training sequences

Spatial dimensions Elementary type

1 D

2 D, E

4 D, E, C, B

6 D, E, C, B, A, F

8 D, E, C, B, A, F, H, G

10 D, E, C, B, A, F, H, G, J, I

See Table 3 for each elementary type. For example, the two-dimensional
sequence consists of type D as its first spatial dimension and type E as
its second spatial dimension. Note that the order does not matter, and it
was composed randomly

Table 5 Number of neurons and timescales for the learning

NIO NFC NSC τIO τFC τSC

Variable 20 5 20 25 250

Table 6 Learning rates α, βFC,
βSC and momentum η kept fixed
for all experiments

MSET α βFC βSC η

≥ 0.03 0.6 0.6 0.6 0.9

< 0.03 0.4 0.4 0.4 0.9

reached 3.0× 10−5 or less, independent of the network con-
figuration. In case of early stopping, the BPTT also stopped
if the training MSE was below 9.0×10−4 and the validation
MSE started to rise.

5.2 Metric for the learning capability

We investigate the learning capability depending on the
length of the training sequences, the type of the training
sequences, and their dimension. The learning capability is
measured by Ω defined in Eq. (27). In the following, we call
this metric R-value, i.e. R ∈ R | −1.0 ≤ R ≤ 1.0, since
it is a normalized sum of the correlation coefficients. Each
correlation coefficient, given by Eq. (28), describes howwell
the prediction fits the observed data.

5.3 Learning one-dimensional sequences

Table 7 compares four different configuration modes of run-
ning the network, and how the learning of sequences is
affected by these modes.

5.4 Learningmulti-dimensional sequences

The network is trained with multi-dimensional sequences
(Table 4). The learning results are summarized in Fig. 6.
An example case of learning and recall is shown in Fig. 7.
Figure 8 shows an example of the extrapolation behaviour of
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Table 7 Learning of one-dimensional benchmark sequences

Length Network configuration Type of training sequence

Preprocessing Early stopping Ramp Sigmoid-like Sine Irregular (type K)

Falling Rising Downward slope Upward slope

50 OFF OFF 0.992 − 0.0415 0.997 0.998 0.937 0.479

50 OFF ON 0.966 0.994 0.986 0.988 0.120 0.333

50 ON OFF 0.998 0.998 0.995 0.996 0.945 0.318

50 ON ON 0.965 0.970 0.987 0.996 0.900 0.501

100 OFF OFF 0.994 − 0.447 0.999 1.00 0.827 0.451

100 OFF ON 0.953 0.982 0.943 0.944 0.285 0.0458

100 ON OFF 0.996 0.999 0.998 0.999 0.644 0.410

100 ON ON 0.940 0.954 0.941 0.962 0.491 0.419

150 OFF OFF 0.995 − 0.404 0.999 0.999 0.664 0.177

150 OFF ON 0.930 0.950 0.901 0.905 − 0.0408 0.106

150 ON OFF − 0.617 0.999 0.999 0.999 0.196 0.793

150 ON ON 0.707 0.844 0.885 0.939 0.172 0.488

The learning is measured by the R-value. Four different network configuration modes were compared, given the length of a training sequence
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off
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(b) Network configuration 2: preprocessing off, early stopping
on
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(c) Network configuration 3: preprocessing on, early stopping
off
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(d) Network configuration 4: preprocessing on, early stopping
on

Fig. 6 Learning of multi-dimensional benchmark training sequences. The learning is measured by the R-value indicated by the colour bar. Four
different network configuration modes were compared (colour figure online)
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(b) Recall after learning

Fig. 7 Learning and recall of the noisy six-dimensional benchmark
training sequence with length L = 150. Network configuration: pre-
processing on, early stopping off. Achieved R-value: 0.974. See Table 4
for details on the training data (colour figure online)
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Fig. 8 Recallwith extrapolation from timestep 150 to 450.Dashed lines
are the training sequence labelled (T), see also Fig. 7a. Solid lines are
the predicted sequence labelled (P). The network tends to extrapolate
the sequence based on the latest history of input–output activations,
behaving like a type of predictive memory (colour figure online)

the net, i.e. the prediction of a sequence over a much longer
timespan than the original timespan given in training.

5.5 Validation of SA-DE implementation

In order to validate whether we correctly implemented the
SA-DE, we compared our numerical results against the
results obtained from the original version in Brest et al.
(2006), with the same parameter settings. Table 8 shows that
our results concur with Brest et al. (2006); hence, our imple-
mentation is correct. In particular, the results on benchmark
functions f8, f9, f10, f11, f12, f13 are important to consider,

Table 8 Comparison of numerical results using the benchmark function
set F from Brest et al. (2006)

F # Gen. SA-DE (own) SA-DE (Brest et al. 2006)

f1 1500 2.0 × 10−16 1.1 × 10−28

2400 5.7 × 10−29

f2 2000 3.3 × 10−14 1.0 × 10−23

3200 1.5 × 10−23

f3 5000 4.9 × 10−3 3.1 × 10−14

13,000 2.4 × 10−14

f4 5000 2.2 × 10−9 0

f5 20,000 2.9 × 10−30 0

f6 1500 0 0

f7 3000 2.83 × 10−1 3.15 × 10−3

f8 9000 − 12,569.5 − 12,569.5

f9 5000 0 0

f10 1500 3.7 × 10−9 7.7 × 10−15

2500 7.2 × 10−15

f11 2000 0 0

f12 1500 1.7 × 10−17 6.6 × 10−30

2400 6.4 × 10−30

f13 1500 1.1 × 10−16 5.0 × 10−29

2400 5.3 × 10−29

f16 100 − 1.03163 − 1.03163

f17 100 0.397887 0.397887

f18 100 3 3

The main results are the minima (columns 3 and 4) of particular bench-
mark functions; the minima are averaged over 50 independent runs. The
only purpose of this comparison is to validate a correct implementation
of the SA-DE method. Since our results concur with Brest et al. (2006),
our implementation of the SA-DE method is correct

since they demonstrate the ability of the method to find a
global optimum despite a high number of local optima (Brest
et al. 2006; Yao et al. 1999; Törn and Žilinskas 1989). Note
that this validation only serves to ensure a correct implemen-
tation of the SA-DE optimization method.

5.6 Improvement of learning capability by
evolutionary optimization

Here, we investigated whether our proposed Algorithm 1 can
improve the learning of given training data. Algorithm 1 per-
forms the autonomous hyperparameter estimation (AHE), in
order to yield an evolutionary optimized network. We set the
problem dimension (see Table 1) to five, i.e. our optimization
system suggested the number of context neurons NFC, NSC,
and the different timescales τIO, τFC, τSC. For the SA-DE, we
set the population size NP = 4 (minimum number possible
due to the property of SA-DE) and the number of generations
NGen. = 10. In contrast to the original DE, we do not need to
care about the values for the crossover probability CR and the
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Table 9 Default parameterization for comparison purpose

NIO NFC NSC τIO τFC τSC
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NFC = 15, NSC = 5, τIO = 10,
τFC = 20, τSC = 40. Achieved R-value: 0.734
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(a) Default parameterization with

(b) Optimized parameterization with NFC = 14, NSC = 30, τIO =
142, τFC = 37, τSC = 201, computed by Algorithm 1. Achieved
R-value: 0.945. The prediction (P) shows a better fitting of the
data (T) than in the default case above

Fig. 9 Example of hyperparameter estimation: The target sequence
(dashed lines) had 4 spatial dimensions and length 50. The configu-
ration was preprocessing on and early stopping on meaning that only
33 of 50 samples were used for training. The recall performance of a
weak to reasonable default parameterization is shown in a. Applying
our proposed hyperparameter optimization to NFC, NSC, τIO, τFC, τSC
increased the performance by 28.7 %without overfitting the data, see b
(colour figure online)

differential weight F , since they are autonomously adjusted
through the self-adapting property of SA-DE. The values
of F and CR were updated by Eqs. (29) and (30), respec-
tively, with F ∈ [0.1, 1.0] and CR ∈ [0.0, 1.0]. Regarding
the search space, we set the bounds for the context neurons to
5 ≤ N ≤ 30 for fast context and slow context, respectively.
We set the bounds for the timescales to 2 ≤ τ ≤ 300 for
input–output, fast context, and slow context group, respec-
tively.

For comparison purposes, we used a weak to reasonable
default parameterization of the network, see Table 9.
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quence. A concrete example is the case of length 50 shown in
Figure 9. The gain is 28.7 %, 98.3 %, 25.1 % for the length 50,
100, 150, respectively

Default vs. optimized H-parameterization: Learning 10-dim. sequence
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(a) Performance gain when learning a 4-dimensional target se-

(b) Performance gain when learning a 10-dimensional target se-
quence. The gain is 0.4 %, 36.4 %, 70.0 % for the length 50, 100,
150, respectively

Fig. 10 Default versus optimized hyperparameterization: Compari-
son of learning performance when learning a multi-dimensional target
sequence with different lengths; network configuration was preprocess-
ing on and early stopping on. From these cases, it follows an average
performance gain of approximately 43 % compared to the default
parameterization given in Table 9 (colour figure online)

5.6.1 Single sequences

The number of IO neurons was predetermined by the given
network configuration; it was the same as described in
Sect. 5.1. Figure 9 shows an example where the hyperparam-
eter estimation improved the learning result. To summarize,
we show a performance comparison between a default and
an optimized hyperparameterization in Fig. 10.

5.6.2 Multiple sequences

Using our benchmark sequences of irregular type (Fig. 5),
we also evaluate different cases of simultaneous learning of
multiple sequences. We simultaneously trained 7 sequences;
each of them had 4 spatial dimensions. The assembly of these
sequences is given in Table 10.

We investigated three different cases of temporal dimen-
sions, i.e. sequence lengths: L = 50, L = 100, and L = 150.
The optimized hyperparameters were computed by Algo-
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Table 10 Benchmark training sequences of irregular type; all 7
sequences were trained simultaneously

Sequence number Spatial composition

1 D, E, C, B

2 A, F, H, G

3 J, I, D, E

4 B, C, E, D

5 E, A, J, B

6 I, J, H, A

7 F, G, D, C

Each spatial dimension contains an elementary sequence of irregular
type (see Fig. 5 for the visualization of each spatial dimension). The
arrangement of the spatial dimensions does not matter; it was composed
randomly

rithm 1 trained with 7 sequences simultaneously, each with
L = 150. The obtained hyperparameters were then kept con-
stant and used to train the network with different lengths per
sequence: L = 50, L = 100, L = 150. Since 7 sequences
were trained simultaneously for each case, the total number
of samples was 350, 700, and 1050, respectively. Each case
was also trained with default hyperparameters (Table 9) to
compare the performance.

We used an 11-dimensional weight vector for our analyt-
ical pre- and postprocessor generating sparse representation
of IO data. The middle element of this vector is close to 1.0,
while the other elements are close to 0.0. Beginning with the
first and going to the last, the elements of the weight vector
vT were 0.007812, 0.015625, 0.03125, 0.0625, 0.125, 0.99,
0.125, 0.0625, 0.03125, 0.015625, and 0.007812.

The computed hyperparameters were NFC = 10,
NSC = 9, τIO = 19, τFC = 167, τSC = 37. Looking at
the timescales, the roles of the fast context and slow context
neurons were swapped by the evolutionary algorithm, i.e. the
fast context group became slow context and vice versa. Nev-
ertheless, this can be justified by the results when comparing
the learning performance with the default parameterization.
The performance results are summarized in Fig. 11.

For each case of trainingwith default and optimized hyper-
parameters, the number of epochs was 106. An example
of sequence recall is shown in Figs. 12 and 13, where 7
sequences (each L = 100) were trained simultaneously with
the optimized hyperparameters. Corresponding to this exam-
ple, we also investigated the self-organization of the initial
activation states of the context neurons. Figure 14 shows
these initial activation states.

In order to find suitable hyperparameters for these bench-
mark sequences trained simultaneously, the number of
epochs was set to 15,000. This is relatively short, but was
necessary due to time restrictions. Using 15,000 epochs per
single individual of the network population going through the

Default vs. optimized H-parameterization:
Learning 7 sequences (4-dim.) simultaneously
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Fig. 11 Default versus optimized hyperparameterization for multiple
sequences trained simultaneously: Network configuration was prepro-
cessing on and early stopping off. The greater the size of training data,
the more the evolutionary optimization is worth it. Cases L = 100 and
L = 150 have great differences in the R-value, respectively: 0.530 ver-
sus 0.811 (53.0 % gain) and 0.171 versus 0.531 (210.5 % gain, albeit
poor performance in the default case). As an example, the optimized
casewith L = 100 is visualized by Figs. 12 and 13 (colour figure online)

evolutionary process and using the learning rates in Table 6,
Algorithm 1 takes roughly 35 h to find suitable hyperparame-
ters for 1050 (i.e. 7×150) sample vectors with 4 dimensions,
when run on an i7-7500U CPU (2.7 Ghz). Note that this can
be significantly speeded up by running the proposed algo-
rithmonagraphics processingunit (GPU) supportingparallel
programming, e.g. CUDA. This is important to consider
because many more epochs per training and more evolution-
ary generations can be computed within the same timeframe.
Consequently, GPU usage would boost the learning perfor-
mance within the same timeframe.

5.7 Application to sensory-motor data from robots

In this section, we investigated our network performance
when trained with action sequences that were shown to a
Sony QRIO humanoid robot in Yamashita and Tani (2008).
In their paper, the robot was fixed to a stand and manipu-
lated a cubic object that was placed on a workbench in front
of the robot. The action sequences taught to the robot con-
sisted of several manipulation primitives using both arms,
e.g. reach and grasp the object, and move the object up and
down three times. Each action sequence begins and ends in
a defined home position. The action sequences are sensory-
motor sequences; each of them has 10 spatial dimensions
but a different length depending on the interaction taught.
Among the 10 spatial dimensions, the first 8 dimensions rep-
resent theDOF of the robot arms: 3DOF shoulder and 1DOF
elbow per arm. A 2 DOF head-neck joint followed the object
automatically by a given visual servoing mechanism. These
2 dimensions represent the visual input (horizontal X , verti-
cal Y ), describing the object position relative to the robot’s
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(b) Recall of sequence 1
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(c) Sequence 2
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(d) Recall of sequence 2
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(e) Sequence 3
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(f) Recall of sequence 3
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(g) Sequence 4
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(h) Recall of sequence 4

Fig. 12 Simultaneous training of 7 benchmark sequences (L = 100) and their recall: sequences 1–4. See Fig. 13 for the sequences 5 to 7 (colour
figure online)

visual field. Each 10-dimensional sensory-motor pattern was
sampled every 150 ms.

In the following two paragraphs, we adopt parts of the
training data from Yamashita and Tani (2008) and apply it to
our proposed network. The values for the learning rates and

momentum were the same as in Table 6. For our analytical
pre- and postprocessor generating sparse representation of IO
data, we used the same 11-dimensional weight vector as in
Sect. 5.6.2. With eight-dimensional proprioceptive and two-
dimensional visual data, this resulted in 88 neurons encoding
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Fig. 13 Simultaneous training of 7 benchmark sequences (L = 100) and their recall: sequences 5–7 (colour figure online)

the motor part of the IO group and 22 neurons encoding the
visual part of the IO group. This yielded NIO = 110. If the
IO group is split in two parts, e.g. proprioceptive and visual,
the connective weights between theses two parts are zero.
Learning sensory-motor data with adverse hyperpa-
rameters In the following experiment, the objective is to
investigate the mental simulation performance of our EO-
MTRNN when deliberately operated with hyperparameters
that are far from the optimum. We selected the sequence
representing the following behaviour: starting from home
position, reach and grasp the object (a box) with both arms,
and move it up and down three times, then go back to home
position. This robot task is visualized in Fig. 15 and taught to
the robot through kinesthetic teaching. Kinesthetic teaching,
in which a human takes the arms of the robot and shows it the
task, is used to collect the sensory-motor data. This sensory-

motor data are used as training data for theMTRNN.The data
encoding this task is also shown in the first column (Teach) in
Yamashita andTani (2008, p. 7, Fig. 4).Weadopted these data
and trained our EO-MTRNN with this sequence, however,
using a default configuration without hyperparameter esti-
mation, in order to investigate a worst-case scenario. We set
the number of context neurons and the values of timescales
as follows: NFC = 15, NSC = 5, τIO = 10, τFC = 20,
τSC = 40. Our network reached an MSE of 3 × 10−6 after
821,990 epochs. We validated the recall of this sequence, i.e.
itsmental simulation. Figure 16 shows the results. The results
show a reasonable performance in recalling or predicting the
sequence; the R-value was 0.550.

Generalization ability of autonomous hyperparameter
estimation The objective is to investigate the generaliza-
tion ability of the EO-MTRNN. We evaluate whether the
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Fig. 14 Initial activation states of the context group in principal com-
ponent (PC) space after being trained with 7 sequences simultaneously
(each sequence with L = 100), using optimized hyperparameters. It
can be seen that all 7 sequences are clearly separable in the activation
space of each context group. Mapped from each initial activation state
of fast and slow context, the corresponding sequence can be recalled,
see Figs. 12 and 13, by using the learned weights

hyperparameters that were obtained based on a particular
teaching data would still enable our EO-MTRNN to learn
different data. By different data, we mean data that was not
part of the teaching data used for the optimization of hyperpa-
rameters. For this purpose, we selected the longest sequence
that was taught in the experiment by Yamashita and Tani,
and we used it as input for the optimization of hyperparam-
eters. The sequence encodes robot actions similar to, but
not the same as the one depicted in Fig. 15. For example,
the box is moved left to right, instead of up and down. We
used this sequence as teaching data for the AHE. Then, we
used the automatically estimated hyperparameters to train
our network with the former behaviour sequence consisting
of reaching, grasping, and moving up and down (Fig. 15).
In sum, the obtained hyperparameters were used to learn a

different sensory-motor sequence, i.e. not encountered dur-
ing the AHE process. Teaching data and results of recall
are shown in Fig. 17. The AHE process yielded NFC = 30,
NSC = 18, τIO = 64, τFC = 57, τSC = 290. For training the
different sequence, that is not seen during AHE process, we
set the target MSE to 9.0 × 10−6 that was reached after 106

epochs. The achieved R-value was 0.622.

6 Discussion

6.1 Configurations of the proposedMTRNN

We designed our benchmark training dataset to capture a
wide variety of possible sequences which a MTRNN could
possibly encounter. The step-wise increment of the spatial
dimensions of the benchmark sequences, e.g. from 1 to 2
to 4 etc., along with the different temporal lengths, should
help to investigate how the learning ability of the network
scales with the increase in spatial and temporal dimensions.
Gaussian noise was added to the training data in order to
simulate real application scenarios, for example, when the
network is applied to learn sequences from noisy sensory-
motor data collected on a robot.

We started our evaluation of the learning ability by com-
paring four different network configuration modes that are
combinations of preprocessing (PP) and early stopping (ES).
The schema for preprocessing was entirely analytical, i.e.
without any auxiliary neural networks.

For the sequence learning analysis, summarized byTable 7
and Fig. 6, we chose a hyperparameterization similar to the
descriptions in Yamashita and Tani (2008), with a careful
focus on the ratio between the timescales τFC and τSC.

Table 7 shows that a preprocessing of the input dimension
increases the learning capability. A combination of active
preprocessing and early stopping (i.e. PP on and ES on) is
beneficial compared to configurations in which one or both
of them are disabled.

For the learning of multi-dimensional sequences (Fig. 6),
the combination of an active preprocessing and deactivated
early stopping (PPon and ESoff ) shows the best results.
In addition, we observed that preprocessing speeds up the
BPTT convergence up to ten times, compared to configura-
tions without preprocessing.

We used sigmoid activation for all units of the networks.
Using other activation functions may influence the results,
but that is beyond the scope of this work.

6.2 Evolutionary optimizedMTRNN

We validated our implementation of SA-DE and our results
concurred with Brest et al. (2006). This shows the ability of
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Fig. 15 Robot task in Yamashita and Tani (2008) to obtain sensory-
motor data through kinesthetic teaching. In home position, the robot is
facing a box (blue) on aworkbench (grey). It reaches and grasps the box.
Then, the robot moves the box up and down three times, with its head

cameras always focusing on the box by moving the head-neck joint
accordingly. Finally, the robot returns back to home position (colour
figure online)
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Fig. 16 Left side: Teaching data of the behaviour sequence consisting
of reaching, grasping, and up-down behaviour in Yamashita and Tani
(2008). This behaviour sequence is visualized in Fig. 15. Right side:
Recall of the sequence (i.e. mental simulation) by our EO-MTRNN,
although with default (non-optimized) hyperparameters reflecting a
worst-case scenario. The EO-MTRNN is still able to sufficiently learn

the sequence despite an adverse choice of hyperparameters. Note that
the hyperparameters are not optimized in this case; here, it was of inter-
est whether the proposed network can still preserve the task structure
in case of a single learning procedure without going through the evolu-
tionary optimization process (colour figure online)
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mental simulation (solid lines)
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Fig. 17 Left side a, c, e Teaching data of the behaviour sequence used
for autonomous hyperparameter estimation (AHE). It encodes reaching
and grasping the box, andmoving it left and right three times. Right side
b,d, f Dashed lines are the teaching data of the task shown to the robot in
Fig. 15. These data are different from the data on the left used for AHE.
For example, the data on the left side encode moving the box left to
right, instead of up and down. The solid lines are the mental simulation
of the robot task by the EO-MTRNN. These results show generalization

ability: The EO-MTRNN is able to sufficiently learn the task (reach and
grasp the box, move it up and down three times), although it estimated
its hyperparameters for another task (reach and grasp the box, move it
left and right three times). The approximation can be further improved
by increasing the number of generations (NGen. > 10) or by increasing
the number epochs per individual of the network population (colour
figure online)

SA-DE to escape from a high number of local optima and to
locate the global optimum.

The results in Figs. 9 and 10 demonstrate that our proposed
evolutionary optimization system can improve the learning
capability of theMTRNN. The average improvement of 43%
for the training of single sequences was computed from the
different evaluation cases shown in Fig. 10. We decided to
optimize the network configurationwith active preprocessing
and early stopping, i.e.PP on andES on, since this configura-

tion yielded some weaknesses in learning multi-dimensional
sequences with a length greater than 100 (see Fig. 6d).

For the training of multiple sequences simultaneously, the
evolutionary optimization of hyperparameters turned out to
be beneficial particularly for learning sequenceswith increas-
ing length, e.g. L ≥ 100. An adverse (manual) choice of
hyperparameters significantly deteriorates the learning per-
formance, as was seen in the default cases in Fig. 11. There,
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evolutionary optimization yielded a performance gain of up
to 131%.

Due to computational limitations, i.e. all experimentswere
conducted using a conventional CPU, we decided to use a
minimal optimization setting by NP = 4 and NGen. = 10.
This yielded a minimal optimization, since the setting in
many benchmark problems is NP = 100 and NGen. ≥ 100,
like in Brest et al. (2006). Since we ran our optimization on
CPU, this minimal setting with 4 individuals and 10 genera-
tions, including the retraining of the network, took several
hours to complete. Nevertheless, the optimization setting
NP = 4 and NGen. = 10 already improved the learning
capability for the given network configuration. In most of
the conducted experiments, our proposed hyperparameter
estimation system delivered similar ratios of τFC and τSC as
suggested in the literature (Sect. 2.1). It also showed that the
number of context neurons has less impact on the learning
performance than the timescales have.

6.3 Application in robotics

Section 5.7 shows the performance of our EO-MTRNN on
data that were collected on a humanoid robot in Yamashita
and Tani (2008).We validated training and recall of an action
sequence by our proposed network in a non-optimized con-
figuration, where we deliberately chose an adverse parame-
terization to investigate whether it is still able to sufficiently
learn the data (Fig. 16). Compared to a very good sequence
recall in Yamashita and Tani (2008) using optimal values for
timescales and context neurons, the recall performance of
the proposed EO-MTRNN was quite reasonable, although
we switched off the evolutionary optimization in order to
investigate a non-optimal ratio of the timescales (τIO = 10,
τFC = 20, τSC = 40) and used relative few context neurons
(NFC = 15, NSC = 5).

Then, we switched on the evolutionary optimization
mechanism and validated the generalization ability of the
proposed network, i.e. how well the network can learn and
recall data that were not part of the hyperparameter opti-
mization process (Fig. 17). For a good generalization ability,
the hyperparameter optimization should be based on a rich
variety of data. This is why we chose an action sequence
containing oscillatory patterns covering a wide value range.

The EO-MTRNN allows an easier application in sensory-
motor processing. Compared to Yamashita and Tani (2008)
where two TPM networks needed to be trained in addi-
tion to the MTRNN before the robot could be controlled,
our EO-MTRNN offers the possibility to directly feed the
sensory-motor samples into the network, i.e. without the
necessity to train auxiliary networks for pre- and postprocess-
ing. The EO-MTRNN allows an one-to-one mapping where
each element of a sensory or motor vector is directly mapped

to one IOneuron activation, for example inWieser andCheng
(2014), Wieser and Cheng (2016) and Burger et al. (2017).

Moreover, the results have shown that the EO-MTRNN
can learn from a minimum amount of samples, also inves-
tigated in Wieser and Cheng (2014) and Wieser and Cheng
(2016). This is a useful and necessary ability for developmen-
tal robots that robustly bootstrap their sensory-motor skills
from limited amount of data over a continuum of develop-
mental stages (Wieser and Cheng 2018).

In the past, the hyperparameterization of the network had
to be manually estimated dependent on the sensory-motor
data that the robot collected. Now, the evolutionary opti-
mization mechanism allows to automatically reconfigure the
network over time, e.g. when the robot samples a new set
of data that needs to be learned. It allows a form of self-
organization in terms of restructuring itself to better fit newly
collected data. This means a higher autonomy of the robot,
since a human does not have to stop the system to change the
hyperparameters in an attempt to better learn newly collected
data.

Note that we did not conduct a training of multiple robotic
sequences simultaneously due to time restrictions. As we
explained in Sect. 5.6.2, our study of simultaneous multiple
sequence training took several days on a conventional com-
puter with CPU (3 cases of different length shown in Fig. 11,
evolutionary optimization for the third case of 1050 sample
vectors took 35 h).We can conclude that our proposed model
can only scale up its performance to larger sets of data, e.g. on
robots, if the algorithm is implemented on parallel process-
ing hardware such as GPU. This means that any limitation of
performance is due to the hardware our algorithm runs on.

In Wieser and Cheng (2014), Wieser and Cheng (2016),
Wieser and Cheng (2018) and Burger et al. (2017), the
EO-MTRNN is trained with multiple robotic sequences
simultaneously (without optimization of hyperparameters),
and those sequences are collected by the robot’s autonomous
exploration of degrees of freedom and successive interac-
tion phase. The action selection system proposed in Wieser
and Cheng (2014) and Wieser and Cheng (2016) switches
between these multiple sequences to generate meaningful
robot behaviour, runningon conventional hardware, i.e.CPU.

7 Conclusion

Weproposed tomodel the neural plasticity of the cortex by an
EO-MTRNN. When training data significantly changes over
time, that is likely to be the case over multiple developmental
stages of artificial agents, the EO-MTRNN has the ability to
estimate all its neural timescales and to restructure itself by
using evolutionary optimization in combination with BPTT.
For a mixture of different sequences, ranging from 4 to 10
spatial dimensions and 50 to 150 temporal dimensions, this
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yields roughly 43% better approximation performance than
solely optimizing a given number of synaptic weights and
initial potentials. Our study of training multiple sequences
simultaneously confirmed this performance gain and showed
that the learned sequences can be clearly separated in the
context memory of the network. Moreover, the evolutionary
optimization yields a higher autonomy, in particularwhen the
EO-MTRNN controls a robot over long term, since human
intervention for stopping and reconfiguring the system can
be reduced.

A next step would be to transfer the proposed system to
GPU-based computing that would significantly reduce the
time taken for the optimization procedures, thus making it
possible to learn much greater amount of data, and to further
improve the quality of learning since more network genera-
tions can be computed.
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