
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Sicherheit in der Informationstechnik

Hardening Digital Circuits against Invasive Attacks
with On-Chip Delay Measurements

Michael Weiner

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: apl. Prof. Dr.-Ing. habil. Helmut Gräb
Prüfer der Dissertation: 1. Prof. Dr.-Ing. Georg Sigl

2. Assoc. Prof. Salvador Manich Bou, Ph.D.

Die Dissertation wurde am 15.06.2020 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik
am 02.11.2020 angenommen.

“You cannot force ideas. Successful ideas are the result of slow growth. Ideas do not
reach perfection in a day, no matter how much study is put upon them.”

Alexander Graham Bell

Abstract

What do electronic passports, digital locking systems and car theft protection have in
common? The answer is simple: their security is based on hardened embedded systems
implementing cryptographic algorithms that promise to ensure confidentiality, integrity
and/or availability of the protected system.

The level of security relies on many factors. The mathematical strength of state-of-
the-art cryptographic algorithms with adequate key sizes is generally assumed to be
good enough for the next years. It has therefore become interesting for attackers to
target actual implementations rather than algorithms. An adversary can either exploit
weaknesses in software, or he can conduct physical attacks: this means to attack the
actual hardware.

Physical attacks either aim at carefully observing the attack target while it is performing
a critical operation, or at disturbing it in a targeted way. This allows an attacker to
extract secrets, such as intellectual property or cryptographic keys, without permission.

An elaborate, but especially powerful type of physical attacks is called microprobing. It
means attaching microscopic needles, which are actually made for semiconductor testing
and fault analysis, to the internal connections on a microprocessor chip die.

While there exist “secure elements”, i.e. microprocessors that are specially designed to
resist physical attacks, the protection against microprobing is difficult, because it di-
rectly attacks the inner workings of the chip. Therefore, protection against microprobing
is an area of research with rising importance.

This thesis proposes two circuits that can detect the physical effects of microprobing,
namely the additional delay introduced to a line by the added capacitive load of a
probe needle. The first detection circuit is called Low Area Probing Detector (LAPD),
and is optimized for a small area footprint. The second detector is called Calibratable
Lightweight Invasive Attack Detector (CaLIAD); it proposes calibration to improve the
sensitivity. A comparison with previous publications shows that the area of probing
detectors is significantly reduced, while the sensitivity is on a comparable level, or,
depending on the configuration, even better.

Finally, the thesis discusses challenges faced when integrating such a detector into a
microprocessor, and proposes solutions, for example, to minimize the area overhead
when protecting on-chip parallel buses.

Keywords: Physical Attacks, Microprobing, Invasive Attacks, Attack Sensors, Micro-
processor Bus Systems.

Kurzfassung

Was haben elektronische Ausweisdokumente, digitale Schließanlagen und Autodieb-
stahlschutz gemeinsam? Die Antwort ist einfach: deren Sicherheit basiert auf gehärteten
eingebetteten Systemen, die kryptografische Verfahren implementieren. Damit soll
die Vertraulichkeit, Integrität und/oder die Verfügbarkeit des geschützten Systems
sichergestellt sein.

Das Sicherheitsniveau hängt von vielen Faktoren ab. Die mathematische Stärke ak-
tueller kryptografischer Verfahren wird bei adäquater Schlüssellänge als ausreichend
für die nächsten Jahre betrachtet. Deshalb ist die Implementierung von Algorithmen
anstelle der Algorithmen selbst in das Ziel von Angreifern gerückt. Ein Angreifer kann
Schwachstellen in Software ausnutzen, oder er kann physische Angriffe durchführen: dies
bedeutet, die Angriffe direkt gegen die Hardware zu richten.

Physische Angriffe zielen entweder darauf ab, kritische Operationen auf dem Angriff-
sziel genau zu beobachten, oder die Operation gezielt zu stören. Dies erlaubt es einem
Angreifer, Geheimnisse wie z.B. geistiges Eigentum oder kryptografische Schlüssel un-
berechtigt zu extrahieren.

Obwohl es “Secure Elements” gibt, d.h. Mikroprozessoren, die speziell gegen physische
Angriffe gehärtet sind, ist der Schutz gegen Microprobing schwierig, da hier die inter-
nen Funktionen des Chips selbst Ziel des Angriffs sind. Daher ist der Schutz gegen
Microprobing ein Forschungsgebiet mit wachsender Wichtigkeit.

Diese Dissertation stellt zwei Schaltungen vor, die die physischen Effekte von Micro-
probing erkennen können, nämlich die Verlangsamung einer Leiung durch eine Probing-
Nadel, die als zusätzliche kapazitive Last wirkt. Die erste Schaltung heißt Low Area
Probing Detector (LAPD) und ist für eine kleine Chipfläche optimiert. Der zweite De-
tektor heißt Calibratable Lightweight Probing Detector (CaLIAD); es verwendet Kalib-
rierung, um die Sensitivität zu erhöhen. Ein Vergleich mit vorherigen Veröffentlichun-
gen zeigt, dass die Fläche der Probing-Detektoren erheblich verkleinert werden konnte,
während die Sensitivität je nach Konfiguration vergleichbar oder sogar besser ist.

Schließlich werden in dieser Arbeit Fragestellungen behandelt, die bei der Integra-
tion solcher Detektoren in Mikroprozessoren entstehen, zum Beispiel, wie man den
Flächenbedarf klein hält, wenn man parallele chipinterne Busse schützen möchte.

Schlüsselworte: Physische Angriffe, Microprobing, Invasive Angriffe, Attack Sensors,
Mikroprozessor-Bussysteme.

Acknowledgments

I would like to thank Prof. Dr.-Ing. Georg Sigl for supervising this thesis, and for all
the assistance, advice and guidance during the course of this work. You did not only
give me the opportunity to work on this thesis, but also made it possible that I can
work on other research topics outside the main focus of the institute.

I would also like to thank Prof. Dr. Salvador Manich from the UPC Barcelona for the
co-supervision. Thank you, Salvador, for introducing me to the area of analog circuit
design in general, and to the research area of microprobing detection in particular.
Thanks for all the long discussions, both in person and remotely. This work would not
have been possible without you.

Salvador, also thank you for making the numerous stays in Barcelona possible, and
for all the things you did to make me feel comfortable there. The time in Barcelona
did not only help me advance in academic matters, it certainly also contributed to my
development as a person.

I am especially grateful for the support and friendship I received from Salvador and his
family (especially Carmen and Ramon) in personal matters during hard times.

Carmen and Ramon, thank you for providing accommodation and a family-like envi-
ronment during my numerous stays in Barcelona!

I am also thankful to my employers, SimonsVoss and later BMW, for offering work
conditions that facilitated writing this thesis, despite the fact that the timeline needed
to be adjusted.

To all my colleagues: Thank you for all the fruitful discussions, both technical and
personal, and for the friendships that arose. And a belated “sorry” for my numerous
bad puns!

Nacho, thank you for the accommodation and the support when I started writing this
thesis.

Finally, I would like to thank my family and friends for all their support.

Parts of this work were funded by the Spanish government projects TEC2010-18384 and
TEC2013-J41209-P, and by the German Federal Ministry of Education and Research
(BMBF) through the project SIBASE (01S13020A).

Contents

1 Introduction 1
1.1 Types of Information Security Threats 1
1.2 Classification of Attacks . 2
1.3 Physical Attacks against Smart Cards . 3
1.4 Contributions . 3
1.5 Outline . 4

2 Introduction to Invasive Attacks 5
2.1 Classification of Physical Attacks . 5

2.1.1 Non-Invasive Attacks . 5
2.1.2 Semi-Invasive Attacks . 6
2.1.3 Invasive Attacks . 7

2.2 Real-World Probing Attacks . 7
2.2.1 Reverse Engineering . 8
2.2.2 Hardware Setup of Probing Attacks 8
2.2.3 Linear Code Extraction . 10

2.3 Countermeasures . 10
2.3.1 Masking Techniques . 11
2.3.2 Obstruction of Physical Access 12
2.3.3 Probing Detection . 13

2.4 Electrical Model of Probes . 14
2.5 Conclusion . 16

3 The Low Area Probing Detector 19
3.1 Circuit Concept . 19

3.1.1 Principle of Operation . 20
3.1.2 LAPD Model . 23
3.1.3 Error Compensation . 25
3.1.4 Control and Evaluation Logic . 25

3.2 Results . 26
3.2.1 Nominal simulation . 27
3.2.2 Effects of local variations . 27
3.2.3 Reliability Metric . 29
3.2.4 LAPD dimensioning . 30
3.2.5 Corners . 32
3.2.6 Derivative based Optimization . 33

I

3.2.7 Resource Usage . 35
3.2.8 Error Compensation . 36

3.3 Conclusion . 37

4 The Calibratable Lightweight Invasive Attack Detector 39
4.1 Circuit Concept . 39

4.1.1 Sub-Gate Delay Measurement Circuits 40
4.1.2 The Vernier Delay Line Principle of Operation 41
4.1.3 Delay Model . 42
4.1.4 Probe Detection Concept . 42
4.1.5 Circuit Realization . 43
4.1.6 Calibration . 44
4.1.7 Design Considerations . 46

4.2 Results . 48
4.2.1 Effects of manufacturing variations 48
4.2.2 Detection performance . 50
4.2.3 Corners . 52
4.2.4 Resource Usage . 52

4.3 FPGA Implementation . 54
4.3.1 Design . 54
4.3.2 Experimental Setup . 55
4.3.3 Results . 57

4.4 Conclusion . 58

5 System Integration 61
5.1 Introduction . 61
5.2 Integration Challenges . 64
5.3 Solution . 64

5.3.1 Considerations of Detector Placement 65
5.3.2 Triggering and Evaluation . 67
5.3.3 Security Considerations . 68
5.3.4 Protection of More than Two Bus Lines 69

5.4 Results . 72
5.4.1 WISHBONE Bus Integration . 72
5.4.2 Multi-Line Bus Protection with HTS-XOR Gates 75
5.4.3 Handling of Intermediate Buffers 78

5.5 Conclusion . 79

6 Simulation Environment 81
6.1 Introduction . 81
6.2 The SALVADOR simulation framework 83
6.3 Future Work . 89
6.4 Conclusion . 90

7 Conclusion and Future Work 93

A Appendix 95
A.1 Alpha-Power Model . 95
A.2 Dependency between Input Slew Rate and Effects of Mismatch Variations

for Inverters . 96
A.3 LAPD model fit . 99
A.4 VHDL Source Code of CaLIAD Emulator 100
A.5 Simulating with Cadence Virtuoso and spectre 105

Bibliography 113

Lists 123
List of Figures . 123
List of Tables . 125
List of Acronyms . 127
List of Symbols . 129

1 Introduction

Semiconductors have been used in security applications for more than 30 years. Public
telephones were among their first applications, where they served as payment cards.
In pay TV, they were required to decrypt video signals. As such security relevant
semiconductors were most frequently embedded into plastic cards, the term “Smart
Card” was coined for such cards with an embedded semiconductor.

Nowadays, the use cases of such systems are much more widely spread: contactless cards
are used for various types of payment systems, secure microcontrollers control access to
paid extra features of expensive products such as cars or test equipment, electronic keys
serve as access control tokens, and smart cards are designed to store sensitive health
information or are used for online identification with national identity cards.

Industry associations like the fido Alliance [fid] were founded to extend password based
authentication, which is prone to password theft by phishing or malware, with hardware
based security tokens.

As secure microcontrollers are now available in a broad variety of form factors, the term
“Secure Element” has become prevalent for such controllers.

1.1 Types of Information Security Threats

Before considering the security of embedded systems in particular, it seems useful to
get a broader overview of security in information processing systems. “Security” most
commonly refers to confidentiality, integrity and/or availability that needs protection.

Confidentiality is, for example, the major design goal for pay TV providers: their goal is
sharing their broadcast content only with the desired recipients, i.e. paying customers,
while leaving the data unusable for others.

Besides confidentiality, online banking is a prominent example that highly depends on
integrity: it ensures that the transaction details such as recepient or amount of money
are not altered. This is why banks often use two independent devices to confirm the
details of a transaction, such that the customer can detect changes in a transaction on
the second device if the first device is compromised.

The importance of availability can be seen in recent cases where the Information Technol-
ogy (IT) systems of hospitals were attacked. While this mostly targets the computers

1

1 Introduction

in administration nowadays [BBC], there is no big step towards attacking embedded
medical systems on which the lives of patients depend.

1.2 Classification of Attacks

Adversaries use different types of weaknesses for successful attacks. The human factor
is one of them – unaware persons may be victim of attacks like phishing or social
engineering, and thus open the door for further attacks. Whilst almost 20 years old,
“The Art of Deception” gives quite vivid examples how social engineering can work in
practice [MS02].

Another attack vector are weaknesses in technical concepts, such as cryptographic al-
gorithms or protocols. While there exist sufficiently secure cryptographic algorithms
nowadays, it is often seen that legacy systems or backwards compatibility is a gateway
for attackers. There exists a large amount of cryptographic protocols, many of them
are application specific and do not pass through a scientific review before being used
in the field. This leads to a potentially high number of vulnerable cases. Just to name
one example, the EMV standard used in card payments was prone to an attacks on
the integrity of transactions [MDAB10, BCM+14]. In general, security problems with
technical concepts can be challenging to solve once implemented and widely deployed,
because conceptual updates often break compatibility with existing implementations.

Luckily, the conceptual level is not only a source of security problems. A good security
design is also made at this level. Considerations for a good design may be, for example,
the distribution and management of keys in a cryptographic protocol; keys that are not
known by an entity can not be extracted by an attacker by any means. Another example
for a good design goal is making security critical decisions in a secure environment, such
as a secure backend, wherever possible.

There exists a broad variety of implementation weaknesses, especially, but not limited
to, in software implementations. A typical example for flaws in this category are buffer
overflows. Even though the technical advancement has already outdated many technical
details, the book “The Art of Exploitation” can still be considered a good introduction
to binary exploitation techniques in general [Eri08].

All previously described types of attacks exploit explicit mistakes that were made. How-
ever, an attacker can also make use of intrinsic effects on hardware level, for example
the fact that the current consumption is influenced by the processed data, including
secrets. This effect is called side channel leakage and can be exploited as, for example,
discussed by Mangard et al. [MOP08]. Another attack vector – to be precise, one that
motivated the work on this thesis – is the plain fact that the secrets need to be processed
by a microprocessor; commercially available test equipment allows observing this even
on a microscopic level.

2

1.3 Physical Attacks against Smart Cards

1.3 Physical Attacks against Smart Cards

As described earlier, good security starts at the conceptual level. Ideally, hardware
given out to customers does not even possess the knowledge or power to cause critical
damage. Bank transactions, for example, need to be approved by a backend when
a certain threshold is exceeded; Subscriber Identity Module (SIM) card duplicates in
mobile networks can be detected by the operator.

There are many use cases, though, where these protection concepts cannot be applied
easily. For example, pay-TV systems working over satellite have no backend connection
that would allow to detect clones of cards.

It is therefore no surprise that attacks on the hardware level nourish an increasing
demand for secure elements in embedded systems. However, what makes secure elements
secure, in fact?

Three decades ago, when the first Smart Cards appeared, so did attacks against them:
In the simplest case, their purpose could have been preventing to debit balance from
phone cards, while more sophisticated attacks already aimed at full dumps to reveal
algorithms and keys of cryptographic primitives. The methods used were quite simple in
the beginning: Debiting balance could be prevented by disconnecting the programming
voltage; ROM dumps were possible, for example, using glitching [AK96].

In the meantime, a circle of novel attacks and countermeasures have significantly im-
proved the attack resistance of today’s security microcontrollers: Glitch detectors as well
as temperature and light sensors were added to detect fault attacks. When side channel
attacks came up, massive efforts were spent on modeling and reducing the leakage at dif-
ferent abstraction layers. Today, the most sophisticated attacks of this kind appear to be
localized electromagnetic attacks [HMH+12]; recent publications [HHM+14, HHM+15]
have presented detectors of these attacks.

In 2010, Tarnovsky was able to carry out a full memory dump of a smart card controller
by microprobing the bus [Tar10a]. This was successful in spite of its protective mesh.

Attacks like these are possible as only few countermeasures focus on the intrinsic effects
caused by microprobing [MWS12,WHH+15]. The given thesis aims at filling this gap by
providing circuit concepts and integration proposals aiming at a comprehensive detection
of probing inside integrated circuits such as microcontrollers.

1.4 Contributions

Four main contributions are provided in this thesis.

The Low Area Probing Detector can detect microprobing attacks by evaluating race
conditions between the delay introduced by the capacitive load of a probe and a delay

3

1 Introduction

element. On a 65 nm technology, it can detect microprobes of 40 fF or less using only
digital components, and its circuitry is extremely small compared to other solutions. It
is marginally able to detect the best known microprobes; however, it cannot compensate
manufacturing variations. The LAPD has been published in [WMS14,WMRMS18].
A drawback of the LAPD is the need to fine-tune its transistor dimensions to achieve the
desired sensitivity. For this reason, the Calibratable Lightweight Invasive Attack
Detector is presented. It allows to compensate manufacturing variations by means of
calibration, and outperforms the LAPD in terms of sensitivity while avoiding the need
to optimize the transistor dimensions. In its basic form, it also only consists of digital
circuit components. An optional optimization can use reference capacitances to further
increase the sensitivity. Its ability to make up for process and mismatch variations
allows the detection margin to be reduced to 18 fF or less, depending on the mode of
operation. The CaLIAD has been published in [WWL+19].
Both LAPD and CaLIAD in its plain form are presented as models for two lines, whereas
the detectors shall be applicable to multi-line on-chip bus systems. This thesis presents
concepts for system integration; this includes, for example, a discussion of where to
place detectors from a security perspective, as well as a lightweight circuit to merge the
results of multiple neighboring line comparisons into one result.
The last contribution of this thesis is the analog simulation framework Simula-
tion Automation Library for Verification and Analysis of Design Operating
Regions (SALVADOR) that can manage several tens of thousands of simulations.
It consists of multiple components, one to parametrize netlists, another to manage the
parallel execution of simulations, and a third to collect all results in a unified way for fur-
ther post-processing. The development of this tool was motivated by the need for such
simulations, especially during the work on the LAPD and the CaLIAD, where existing
tools came to their limits. The lightweight yet flexible design, and the open source, may
be helpful to other researchers to reproducibly process large data sets, also outside of
the area of analog simulations. This made it appear appropriate to be presented as one
of the main contributions, despite the lack of scientific novelty by itself. SALVADOR
has been published in [WMB16].

1.5 Outline

Chapter 2 reviews the state of the art in invasive attacks and countermeasures. The
LAPD is then presented in chapter 3. The CaLIAD, which achieves improved sensitivity
by means of calibration, is introduced in chapter 4. Chapter 5 describes the challenges
and provides conceptual solutions to integrated probing detectors into bus systems.
The simulation framework SALVADOR is presented in chapter 6. Finally, chapter 7
concludes this thesis and discusses future work.
The appendix in chapter A presents derivations of electrical models related to micro-
probing.

4

2 Introduction to Invasive Attacks

Attacks on computer systems that target its hardware implementation, rather than
algorithmic or software flaws, are called physical attacks. This section aims at giving
an overview of the theory and practice of such attacks, especially those that are called
invasive.

Section 2.1 provides a classification of attacks and gives examples for each type. The
approach to attack real-life systems is discussed in section 2.2. Section 2.3 then presents
countermeasures against invasive attacks; eventually, an electrical model of an invasive
attack is given in section 2.4.

2.1 Classification of Physical Attacks

For the case of physical attacks against integrated circuits, Skorobogatov introduced
the case distinction between non-invasive, semi-invasive and invasive attacks [Sko05].
Non-invasive attacks do not require decapsulation of the attacked integrated circuit,
semi-invasive attacks need access to the chip surface but leave the passivation layer
intact, and invasive attacks tamper with internal signals of an integrated circuit.

2.1.1 Non-Invasive Attacks

Non-invasive attack methods usually refer to operating devices outside its specification
in order to trigger exploitable effects, and to most types of side-channel analysis. In
spite of the relatively low effort required by an attacker, they are quite powerful against
unprotected circuits and systems.

An attacker can provide a supply voltage, temperature or clock outside the specification.
A prominent example for this type are cold-boot attacks [HSH+09] that allow attackers
to read out the contents of Dynamic Random Access Memory (DRAM) modules after
switching off their power; the bit error rate could be significantly reduced by cooling
down the modules to about −50 °C before powering off. Undervolting can be used, for
example, to reduce the entropy of certain hardware-based random number generators
[AK96].

5

2 Introduction to Invasive Attacks

Glitching is used to inject targeted faults into the control flow or the data by means of
applying short voltage pulses to the supply net at a desired time instance, or by momen-
tarily increasing the clock frequency beyond the specification. Electromagnetic pulses
are another method of glitching [DDRT12,MDH+13]. Faults in the control flow often
aim at conditional branch instructions, for example to bypass a Personal Identification
Number (PIN) verification, to avoid leaving a loop that dumps memory contents to the
outside [AK96], or to reduce the number of rounds executed in iterative cryptographic
algorithms [AK98,WMT+13] to extract secret keys using basic cryptanalysis. Secret
keys of known algorithms, or unknown actual algorithms with a known basic structure,
can also be recovered by introducing faults into the data [BDL97,BS97].
Countermeasures against fault attacks can be classified into approaches that detect faults
on a generic level, and detectors for specific attack types. The former adds redundancy,
either in hardware [JL10, Inf12] or in software, for example by inserting and testing for
checkpoints in the code, or by duplicating data [TMS+13]. Countermeasures against
specific attack types include voltage and clock frequency detectors as well as using
an internal clock, or dummy cycles that make it more difficult to time glitches; such
countermeasures are already widely deployed in the field.
Prominent side-channel attacks are timing attacks [Koc96], including more subtle vari-
ants such as cache timing attacks [Ber05]. They exploit the fact that the runtime of
an algorithm depends on a secret. Countermeasures include careful examination of the
generated assembly code as well as improved cache designs [WL07].
Power analysis attacks measure the power consumption over time; variants use electro-
magnetic radiation as the source of information instead [QS01,AARR03]. They are clas-
sified into Simple Power Analysis (SPA) and Differential Power Analysis (DPA) [KJJ99]:
Simple Power Analysis implies that secrets are visible directly from the power trace; this
can be the case for the exponents of an RSA exponentiation. Differential Power Analysis
makes secrets visible by classifying captured traces based on hypotheses of intermediate
values that depend on secrets. The same approach is possible using the global electro-
magnetic radiation as a leakage source [QS01,GMO01]. As a countermeasure, masking
aims at randomizing the processed data to prevent attackers from setting up hypotheses.
Hiding tries to make the power consumption independent from the processed data by
either equalizing it using specialized logic styles [PKZM07], or by adding noise.

2.1.2 Semi-Invasive Attacks

Semi-invasive attacks depend upon opening up the chip package, but leave the passiva-
tion layer intact as they do not need electrical contact. A classical example for these
attack types use light pulses to inject faults: Low cost attackers employ flash units of
cameras and expose the complete chip surface to the fault. A simple countermeasure
against this type of attack are light detectors facing the top layer of the protected device.
More sophisticated adversaries take advantage of microscopes equipped with variable-
power laser cutters to focus the pulses to the region of interest. Localized electromagnetic

6

2.2 Real-World Probing Attacks

attacks [HMH+12] are an example for semi-invasive attacks. They use inductive probes
with a very close distance to the chip surface to exploit location dependent side channel
leakage, which is used to circumvent conventional side-channel attack countermeasures.
Such attacks can be detected by other types of detectors, as for example presented by
Homma et al. [HHM+14,HHM+15].

Andrew Huang could remove the lock bits that prevent code readout from a micro-
controller by exposing it to ultraviolet light in an Erasable Programmable Read Only
Memory (EPROM) eraser. He had to cover the Flash area with electrical tape to pre-
vent the code from being erased; furthermore, the controller needed to be tilted within
the EPROM eraser to prevent the top layer metal covering the fuses from blocking the
UV light [bH, SDK+13]. Nail polish can also be used instead of electrical tape. In
general, however, this type of attack is only possible if an erased fuse corresponds to
the unlocked state and if the lock bits are far enough away from the code and/or data
memory. Considering these limitations during the design allows thwarting this type of
attack [Zon16].

Eventually, Photonic Emission Analysis [SNK+12,KNSS13] uses the effect that switch-
ing transistors emit photons to reveal data processed by an attacked device. While
this is semi-invasive by the definition of not tampering with the passivation layer, it
requires significantly more effort than the other semi-invasive attacks, such as thinning
the backside of the IC.

2.1.3 Invasive Attacks

Attacks that tamper with the passivation layer are called invasive. The most commonly
known use case are attack methods that need electrical contact; examples include Fo-
cused Ion Beam (FIB) editing and attaching microprobes to lines containing secrets.
The process of taking high-resolution chip pictures for the purpose of reverse engineer-
ing is also invasive, as it usually involves removing several metal layers, e.g. by means
of polishing.

Despite the fact that invasive attacks are quite powerful, they are also economic due
to the existence of a second-hand market of laboratory equipment and the availability
of FIB laboratories paid per hour. Invasive attacks have not only been analyzed in
academia; instead, hackers have successfully performed complete memory dumps of
hardened devices [Tar10a].

2.2 Real-World Probing Attacks

This section gives an overview of probing attacks that have successfully been carried
out against real-life targets. The knowledge about how attacks work is crucial to design

7

2 Introduction to Invasive Attacks

countermeasures to be effective; an improper design of countermeasures may not only be
useless, it may even simplify attacks. Kömmerling, who used to be a pay-TV smart card
hacker [Whi12], and Kuhn [KK99] mention an example of such a “countermeasure”: It
calculated the checksum of a memory region at each start-up; while this was designed to
detect tampering with the memory contents, it turned out to be useful for an adversary
aiming for the contents of this memory region – probing the data bus during checksum
calculation would automatically reveal the data.

2.2.1 Reverse Engineering

Before actually probing a chip, an attacker needs to reverse-engineer it to identify the
interesting probing targets. The authors of [KK99] describe the general workflow: At
first, the package needs to be removed; then, a high-resolution chip image is created by
stitching images captured with a digital camera connected to a microscope. Reverse-
engineering custom hardware, such as cryptographic accelerators of unknown ciphers,
may be assisted with the free software named degate [deg]. In the case of microcon-
trollers, bus lines – i.e. lines “that cross clearly visible module boundaries” such as
Random Access Memory (RAM), Read Only Memory (ROM), or the Arithmetic Logic
Unit (ALU) [KK99] – are a main target of interest, but also lead to other promis-
ing attack targets, such as instruction latches of the Central Processing Unit (CPU)
core, which reveal the sequence of executed instructions to an attacker [Tar10b]. While
optical microscopes were earlier sufficient for complete recovery of regions of interest,
technologies from 130 nm or below usually require electron microscope or FIB imag-
ing according to Tarnovsky [Tar10a]; Nohl sees the limit of optical imaging to be at
180 nm [Noh11]. In general, finding areas of interest may be assisted by commercially
available databases such as the TechInsights Library, which claims to have “accurate
semiconductor technical data and analysis” of “24.000+ dies” [Tec].

2.2.2 Hardware Setup of Probing Attacks

As soon as the targets have been identified, preparatory steps may be needed before
actually probing the target lines. FIB processing may be required to uncover signals of
interest, especially if meshes are used [Tar10a]. Eventually, microprobing is performed
to listen, or to induce faults in order to, for example, repeat loops that dump mem-
ory beyond the intended iteration count [Tar08a]. An attacker uses a probe station
together with micropositioners and microprobes for this purpose. A probe station con-
sists of a microscope with high magnification and a flat surface for the micropositioners
surrounding the stage with the device under attack.

The micropositioners are attached with a magnetic or vacuum fixation, and they are
used to mount the actual microprobe; micrometer screws allow adjusting its position
and placing it onto the line of interest. Passive microprobes consist of a tungsten tip

8

2.2 Real-World Probing Attacks

that makes electrical contact to the tested line as well as an electrical connection to the
measurement device (e.g. oscilloscope or logic analyzer). In addition, active microprobes
contain an amplifier circuitry that significantly reduces distortion of the probed lines.
This is especially helpful to probe internal signals such as bus lines as their drivers
are not designed to be strong enough to drive the wiring between tungsten tip and
measurement device. However, their influence on the circuit is still visible; microprobe
manufacturers usually model the parasitics of the tungsten tip and amplifier circuitry
as a capacitive load and a leakage current.

The microprobe model that was found to have the smallest parasitics is called “Picoprobe
18C/19C” by GGB, Inc. [GGBa]. It exhibits an input capacitance of 20 fF if the specified
transition time constraints are fulfilled, and a leakage current of 10 fA. While simulations
have shown the effect of the leakage current to be negligible, the additional capacitive
load on a bus line can be detected by precise timing measurements.

The tungsten wire connecting to the probe has a thickness in the range of 50 µm; its
tip is sharpened to down to 0.1 µm [GGBa] by means of chemical etching. The small
dimensions make the positioning of the probe fragile; in some occasions, for example
when probing deeply buried lines from the front side or when the exposed surface of the
target wire is small, one can use a FIB to make an L-shaped metal to allow a stable
mechanical and electrical contact. Figure 2.1 shows this for a sample case of two lines.

Figure 2.1: Supporting L-shape deposits to probe two lines.

9

2 Introduction to Invasive Attacks

2.2.3 Linear Code Extraction

When the attack objective is a memory dump, a technique called Linear Code Extraction
can be used. In its simplest form, it uses two probe needles: one that sits on a bus line,
and another one that prevents the CPU core from performing branches. To do this, an
attacker desires to force the core to repeatedly execute any instruction that does not
branch and does not access memory, such that the instruction fetch logic linearly walks
over the address region of interest, and the actual instructions and operands, and in
case of a Von-Neumann architecture also data, become visible to the probe on the bus
one after another.

Forcing to repeat an instruction can be done by tampering with the clock input or clock
enable line of the instruction latch. Alternatively, some architectures like ARM indicate
in a single bit of an instruction whether a branch shall be executed – this bit can be
overridden as well [MN12]. These steps need to be repeated as many times as there are
bus lines, such that the results can be eventually merged.

The attacker needs to know the point in time at which he needs to tamper with the
instruction latch such that he sees the memory region of interest on the bus. There
may be cases in which finding this point is challenging as well, i.e. when an Memory
Management Unit (MMU) needs to be configured before the region of interest is reached.

2.3 Countermeasures

As a first line of defense against invasive attacks, circuit camouflaging is proposed
to increase the effort of reverse-engineering netlists from high resolution chip images
[RSSK13]. This means implementing certain gates in such a way that gates of different
type (e.g. NOR or NAND) have the same appearance, such that the logic function
cannot be determined from the optical image. However, on the one hand, this does not
prevent attackers from observing the interconnection architecture, e.g. from searching
for sets of long lines to find buses. On the other hand, the authors of [EMGT15] show
how camouflaged circuits can be attacked efficiently using Boolean satisfiability problem
(SAT) solvers, and claims that IC camouflaging shall be considered by IC designers with
“strong caution”.

Protection techniques against microprobing in smartcard controllers can be classified
into three categories: one can either devalue the outcome of probing, e.g. by using bus
encryption or masking, one can obstruct physical access to target lines, or one can detect
inherent effects of probes.

In the field of practical attacks against real-world chips, talks given at hacker conferences,
especially by Christopher Tarnovsky [Tar08b, Tar08a, Tar10a, Tar10b, Tar19a, Tar19b],
give a deep insight about the mechanics of attacking smartcard processors and the
evolution of countermeasures. Tarnovsky became known as a smartcard hacker in the

10

2.3 Countermeasures

early 1990ies; later on, he worked for a Pay TV company before he founded his own
company, Flylogic, which he eventually sold. In his talks, Tarnovsky talks very openly
about his methods and attack targets.

2.3.1 Masking Techniques

According to Tarnovsky [Tar10b], MC68HC05SC24 type processors had the internal
bus available on unbonded pads in the early 1990ies, such that no probe station was
necessary at all for successfully dumping the chip. A very simple obfuscation method
fixed this issue by permuting the bits of the opcode.

A controller from Infineon, which was mentioned to be used in pay TV systems, XORed
three instruction bits with the three least significant address bits to mask the executed
instruction. OKIDATA 8051-type processors added fake tracks that were not electrically
connected to anything, but were possibly aimed at distracting reverse engineers or at
hiding important signals underneath.

In academia, the authors of [ISW03] apply Multi-Party Computation techniques to
mask signals; however, the circuit complexity increases by O(n2) in the general case for
protecting against probing n lines simultaneously. The authors themselves put the prac-
ticability of their approach in question. Furthermore, protection against fault injection
would require additional complexity. A more lightweight masking scheme is proposed
by Infineon [GG14]. It performs linear transformations on bus lines, which would need
an attacker to probe many lines to compute the value of one single bit. As this does not
prevent recombination of sequentially captured traces of single lines, they propose to
introduce a distinction between uncritical and critical data; in the latter case, a subset
of the bus lines shall transfer a random mask rather than using the full bus width for
the payload.

Another interesting masking approach was developed by Infineon. According to Infineon
design engineers, the growing number of specialized attack types raised the requirement
to implement countermeasures on a more generic level rather than detecting specific
attacks [JL10]. The new concept is called IntegrityGuard and is implemented in the
SLE78 and SLC52G product families. The public documentation [Inf12] promises a
“fully encrypted data path, including encrypted calculation in the CPU itself” ensuring
that “no more plain data is left on the chip”. Furthermore, two CPU cores “constantly
check each other to establish whether the other unit is functioning correctly”; this
aims to detect fault injection at a generic level instead of sensing for known sources of
error, e.g. as this is done with light detectors. This is one of the most comprehensive
approaches found on security controllers, and as of now, no public information about
successful attacks was found.

On the other hand, Christopher Tarnovsky calls this architecture “über-hyped” in the
Flylogic blog [Tar13] and accuses Infineon of having “sacrificed physical security” com-
pared to the “good old trustable” predecessor SLE66P. Compared to previous blog posts,

11

2 Introduction to Invasive Attacks

which contain high-resolution images and detailed weakness explanations of other chips,
this entry remains vague with respect to technical details.

In general, it can be considered difficult to avoid single points of failure with masking or
encryption schemes. For example, even if memories and buses are encrypted, instruc-
tions have to be available in the clear at the instruction decoder. At least in the past,
all successful attacks could be performed by probing the bus with one needle that walks
along the different lines; additional needles were only required to inject faults and/or
to capture the instruction latch clock. This was also true for one of the highest-ranked
attack targets in the public: The Infineon SLE66PE could be dumped by only using
two needles [Tar10a], one for inducing momentary faults, and another for the data bus,
probing one line after another.

2.3.2 Obstruction of Physical Access

Obstructing access to target lines can be done in a passive way, e.g. by metal fillings or
passive shields, or by active shields. Passive shields can be removed by FIB machines
without any negative effects on functionality. Active shields usually drive test patterns
through a mesh on the top layer and verify that the patterns reach the other ends of
the mesh lines.

In a controller manufactured by Taiwan Semiconductor Manufacturing Company
(TSMC), a grid of passive filler metal was added at the top layer [Tar10b]. Drilling
into this grid with a FIB does not affect operation; furthermore, it can even serve as
a coordinate system to help locating regions of interest. If it was intended as a coun-
termeasure, it seems to have been designed improperly and simplifies the work of an
attacker.

The first active mesh appeared on a controller from the ST16 family by STMicroelec-
tronics [Tar10b]. This active part of that mesh was single line tied to VDD. When
damaged, the CPU core would halt, but an attacker could make the chip functional
again by restoring the connection from this line to VDD.

More complex meshes, such as, for example, used in Atmel/Microchip CryptoCompanion
or in the Infineon SLE66PE [Tar10a], can be reverse-engineered by a technique called
voltage contrasting with an electron microscope image and a FIB: disconnecting the
driver of one line makes this line floating; on the resulting image, the line turns black.
This allows to reverse-engineer convoluted interconnection structures without following
vias.

Cioranesco et al. suggested to use cryptographic Pseudo-Random Number Generators
(PRNGs) to provide a large number of unpredictable test signals [CDG+14]. However,
this comes with an increased hardware cost, and it can likely be circumvented by adding
bypass lines on top of the passivation layer using a FIB. Infineon patented a capacitive
coupling detector that can be used to detect FIB-editing of adjacent mesh lines that are

12

2.3 Countermeasures

expected to have a large mutual capacitance [LT04]. A shield that measures the capac-
itive coupling of the mesh lines is presented by Wan et al. [WHH+15]. This approach,
however, needs large reference capacitors.

Other approaches try to bury security critical signals underneath other functional, but
non-critical lines. Shi et al. present an algorithm to determine the exposure of critical
lines [SAFT16]. Wang et al. introduce a workflow to generate shield nets from produc-
tive signals that do not carry critical information [WSN+19]. Still, this does not appear
as the overall solution: zero exposure of target lines is hard to reach, especially if de-
signers want to avoid multiple layout iterations, which is critical for fast time-to-market.
Also, bypassing cut lines above the top layer is still feasible for an attacker.

2.3.3 Probing Detection

All of the described countermeasures do not protect against probing attacks from the
backside. This vulnerability can be avoided if the inherent effects of invasive attacks
such as probing are detected, as it can be done by observing the capacitive load of a
probe. That way, probing can be detected no matter whether extensive FIB editing was
used to uncover target lines, or whether a probe was connected on the back side. The
only approach that detects such attacks and that has been evaluated with respect to
process, voltage and temperature variation is the Probe Attempt Detector by Manich
et al. [MWS12].

Tank
capacitor

BUS

		
A
D

PHASE-
DETECTORS

ALERT
SYNDROME

PROBE
ATTACK

CLOCK
GENERATOR

DOWNSTREAM
CIRCUITRY

vC vO

VDD
Vref

VDD

CP

S

vO
Vref

vC

CT

Figure 2.2: Probe Attempt Detector (PAD) overview.

In figure 2.2, an overview of the detector is shown. When the Probe Attempt Detector
(PAD) is running, a periodic signal is sent simultaneously through all protected lines.
Before starting, these lines are disconnected from their regular function. At the outputs,
XOR gates compare the state of the lines and if transitions arrive with different prop-
agation delays, they generate pulses of a width proportional to the delay difference. A
downstream circuitry adds all these pulses, integrates over time and generates a digital

13

2 Introduction to Invasive Attacks

Tank
capacitor

BUS

		
A
D

PHASE-
DETECTORS

ALERT
SYNDROME

PROBE
ATTACK

CLOCK
GENERATOR

DOWNSTREAM
CIRCUITRY

vC vO

VDD
Vref

VDD

CP

S

vO
Vref

vC

CT

Figure 2.3: Probe Attempt Detector (PAD) detector circuit.

alert syndrome. Because of the differential mode, the response of the PAD does not
depend on the number of buffers inserted in the bus lines.

Figure 2.3 illustrates a simplified model of the PAD downstream circuitry. A tank ca-
pacitor CT with the initial charge CTVDD is gradually discharged by the pulses coming
from the XOR gates. When the pulses arrive, they switch on n-channel Metal Oxide
Semiconductor (nMOS) transistors which in turn extract some charge from CT through
a current source; therefore, the amount of charge discharged from the capacitor is pro-
portional to the ‘active’ time of the nMOS transistors. Initially, when the detector
starts, CT is charged to the maximum voltage VDD through switch S. Then, the switch
is opened and the XOR gates start comparing signals coming from the bus until CT is
discharged below a given threshold. If the arrival times of the XOR inputs are mutually
delayed by a probe, the XOR gates generate pulses accordingly which in turn gradually
discharge the capacitor. A comparator CP raises its output when the voltage vC goes
below the threshold Vref . A probing attack alert is activated when this signal is raised
at a lower number of clock pulses than normal.

The necessity of a large tank capacitor that needs to be charged and discharged still
comes with an area, power and timing overhead that prevents it from being used in ultra
low resource applications. Also, it does not allow its implementation in programmable
logic platforms like Field Programmable Gate Arrays (FPGAs).

2.4 Electrical Model of Probes

It has been assumed that attaching a probe to a line can be modeled as a lumped
capacitance CA connected to it. The validity of this simple model may not be inherently

14

2.4 Electrical Model of Probes

Bus
 lin

e

Model of the microprobe

To instrument

Microprobing attack

C L

C C

RA LA

C A

A

Figure 2.4: Electrical model of a microprobe attack.

evident, considering the order of magnitudes of the different components existing in the
attack.
Therefore, this section presents an an extended electrical model of the microprobe AC
behavior connected to a bus line. It is depicted in figure 2.4. After the attack, the
parasitic components added to the bus line having an intrinsic capacitance of CL are
constituted by: CC (contact capacitance), RA (contact resistance of the microprobe),
LA (tip inductance) and CA (amplifier capacitance). If the microprobe is of an active
type, it will have an amplifier (A) close to the tip which will decouple impedances for
the rest of the instrumentation.
The contact capacitance CC is produced during the preparation of the attack. L shape
platinum landing pads are deposited on the surface of the chip whose objectives are
twofold: stabilize the contact of the microprobe and ease the contact to the bus line
through the drilled vias. From our experience, we know that values lower than 10 fF
may be expected.
The contact resistance RA of the microprobe is highly dependent on the landing stability.
The adversary aims to have a contact as stable as possible which maximizes the signal to
noise ratio of the microprobe. Under this condition, values lower than 1 Ω are expected
in tungsten tips [ZZM99]. The inductance of the tip LA is caused by the piece of
wire transmitting the signal to the amplifier. For short wires, about 2 mm in air, typical
values of 100 nH can be obtained [CBB+03]. The amplifier capacitance CA is provided in
data-sheets of microprobes and is highly dependent on amplifier technologies. Minimum
values of 20 fF have been found for the technology [GGBa].
After the attack, the bus line is loaded with two admittances which induce current in
the bus drivers and therefore generate the corresponding delays in the transmission of
the signals.

YBL = YL + ∆Y
∆Y = YC + YA

(2.1)

15

2 Introduction to Invasive Attacks

YBL is the total admittance of the bus line and ∆Y is the added contribution due to the
attack. A circuit analysis shows that the obtained admittances are

YC = jωCC

YA = jωCA
χ

∆Y = jω(CC + CA
χ

)

χ = (1− ω2LACA) + jωCARA

(2.2)

The term χ is a complex dimensionless number that modifies the reactive admittance of
CA as a function of LA, RA and the signal frequency ω. For low frequencies its real part
tends to 1 and the imaginary part tends to 0, so that the only significant contribution
of the microprobe becomes CA, and RA and LA can be neglected since χ 1. In effect,
the microprobe is a second order filter with a given resonant frequency ωc =

√
LACA

−1.
If the excitation frequency is far below the resonant one, ω � ωc (as in our case), the
gain tends to unity and the behavior becomes entirely reactive, depending only on the
capacitor CA.

For a probe band-width of 350 MHz [GGBa], and considering the maximum values
assumed before for the components, the estimation of χ is

χ = 0.9903 + j0.00004398 ' 1

and therefore it can be assumed that

∆Y ' jω(CC + CA) > jωCA

in which the right term of the inequality is the simplified admittance considered here.
Therefore, the assumption that the load contribution of the attack is due only to CA, is
a conservative strategy that assures the reliable detection of the microprobing attack.
Therefore, a real attack will produce a larger load on the bus line and thus a delay larger
than modeled here.

2.5 Conclusion

This chapter has summarized the state of the art in invasive attacks. It started with
an overview of physical attacks to explain how invasive attacks can be classified in this
area, and then gives examples of attacks against devices in the field in academia and
in the hacker scene. It is shown here that microprobing serves as an important tool
for real-world attacks having the goal of, for example, extracting firmware from secure
microcontrollers.

16

2.5 Conclusion

The following section focused on countermeasures. On the one hand, one can observe
a movement from countermeasures against specific attacks, such as fault injection by
light pulses, to more generic countermeasures such as error detection schemes that are
unaware of the source of error. On the other hand, detectors that are specific to intrin-
sic effects of probing are considered to gain importance in order to thwart the power of
microprobing attacks. The Probe Attempt Detector, one of the first microprobing de-
tectors, is described in more detail; it has a good detection performance, but depends on
large analog circuit components. Finally, the electrical model of a microprobe is given.
It shows that the parasitic properties of such a probe can be expressed as a lumped
capacitance CA.

This leads to the question whether probing detectors can be shrunk in size by avoiding
large analog capacitors. A solution is discussed in chapter 3; however, the solution
discussed there is not capable of compensating manufacturing variations, and therefore,
the sensitivity leaves space for improvement. A calibratable digital sensor circuit is
presented as an approach to combine a high sensitivity with the avoidance of large
analog components; this is presented in chapter 4. Lastly, another open question is how
probing detectors can be integrated into actual bus systems. This topic is addressed in
5.

17

3 The Low Area Probing Detector

The PAD [MWS12] has been published as a detector of the intrinsic effects of micro-
probing. It was the first circuit discussed in academia that is conceptually able to detect
backside probing attacks; however, it needs a large tank capacitor, which has a consid-
erable area usage, and which may not be available in purely digital technologies. That
may be a limitation in bulk products such as SIM cards, where the price is a limiting
factor.

Reducing the area overhead of microprobing detectors may open the market for such
low cost commodity products. This section presents the concept of a Low Area Probing
Detector (LAPD) that only consists of a few gates and therefore keeps the area and
power overhead low. A demonstration of its reliability is given here with respect to
process variations and varying environmental conditions. Furthermore, a small-scale
optimization is carried out to increase the reliability beyond its initial limits.

Section 3.1 will give a brief description of the LAPD. The results and discussion of
reliability are presented in section 3.2. Eventually, the chapter is concluded in section
3.3.

Parts of this chapter have been published in [WMS14,WMRMS18, HWPG18]. The
derivative based optimization from section 3.2.6 was carried out as a joint work with
Andreas Herrmann from the Chair of Electronic Design Automation at the Technical
University of Munich.

3.1 Circuit Concept

As described in section 2.4, a microprobe attached to a line on a semiconductor can
be modeled as a small parasitic capacitance; this increases the rise and fall times of
the transmitted signals. Considering a set of lines that are symmetric with respect to
dimensions and timing, probing one of the lines introduces a small timing asymmetry
between the probed line and the unprobed lines. The Low Area Probing Detector can
measure such timing differences and raise an alarm if they are beyond normal noise
or manufacturing variations. This increases the complexity of a microprobing attack:
If B lines are protected by the LAPD, B − 1 microprobes can be detected such that
the adversary would need to attach the same capacitive load to all B protected lines.
This is assumed to be an effective countermeasure against practical probing attacks, as

19

3 The Low Area Probing Detector

the space for micropositioners on a probe station is limited and the measurement setup
becomes more and more fragile with each additional probe. Tarnovsky, for example,
preferred using only two probes for a successful attack, even though this implied a
significant post processing overhead [Tar10a].
The LAPD performs pair-wise comparisons, so the next two sections will focus on the
case of two lines. Chapter 5 will then show how a set of B lines can be protected.

0

1

1

0

sel

CL

CL

Dout,1

R

S

Q

Q

CA1

Din,1

Din,2 Dout,2

T1

T2

M1

M2

N1

N2

stage 2: protected lines with input buffers
stage 3: LAPD buffers and core

stage 4: arbiter

L1

L2
stage 1: test signal source

S
CA2

Figure 3.1: Schematic of the Low Area Probing Detector.

3.1.1 Principle of Operation

The LAPD compares the delays of two lines by alternatively introducing an intentional
delay tD to each one of the lines and then verifying that the delayed line is effectively
slower than the line without intentional delay.
In figure 3.1, the full circuit is shown. Bold letters represent gate instances, typewriter
letters represent line names and italic letters represent capacitances. The different stages
of the LAPD are indicated by dotted squares.
The signal source S in stage 1 generates test pulses that are fed to the lines under test
L1 and L2. In stage 3, a combination of multiplexers M and delay elements T of delay
tD allows alternately delaying one of the lines at a time through signal sel. Finally,
the arbiter in stage 4, which consists of gates N, decides who “wins” the race. Under
normal conditions, both lines “win” alternately; however, one line is always winning if
an imbalance of more than tD is introduced by a probe. For signal values sel = 0/1,
the latch output Q exhibits the values Q1/Q2 respectively, as described in section 3.1.2.
The arbiter is implemented by a NOR RS latch. In one test cycle, both latch inputs are
first set to the active state (1); after that, both inputs change to the inactive state (0).
After the transition, the output is determined by the input signal that had been active
for longer: If the R input remains active longer than the S input, Q becomes 0 and vice
versa.
The complete LAPD timing is presented in figure 3.2. It shows two test cycles: In the
first cycle, L2 is delayed by element T2 while L1 is directly passed through. This is

20

3.1 Circuit Concept

L1

L2

sel

R

S

Q

first cycle second cycle

X X

(a) No attack.

L1

L2

sel

R

S

Q ? X X

(b) L1 probed.

L1

L2

sel

R

S

Q X X

(c) L2 probed.

Figure 3.2: LAPD timing; gray bars denote intentionally introduced delay tD; red bars
represent latch output sampling time.

21

3 The Low Area Probing Detector

CL

CL

R

S

Q

Q

CA1

L1

L2

(a) first cycle: detection of excess of capacitance at line 1.

CL

CL

R

S

Q

Q

L1

L2

CA2

(b) second cycle: detection of excess of capacitance at line 2.

Figure 3.3: Simplified LAPD schematic for the two test cycles.

Table 3.1: Summary of latch outputs in the two test cycles when probing one line.
Q1 Q2

no probe attached 1 0
probe at L1 0 0
probe at L2 1 1

shown in the simplified circuit diagram in figure 3.3a. This cycle can detect an excess
of capacitance at L1, which is shown in the timing diagram in figure 3.2b. This diagram
shows that the default latch output in the first cycles is Q1 = 1, but when a probe is
attached to L1, the output becomes Q1 = 0.

In the second cycle, which is depicted in the simplified circuit diagram in figure 3.3b,
the delay introduced by element T1 is applied to L1 while L2 is directly passed through.
That cycle can detect an excess of capacitance at L2, which is shown in the timing
diagram in figure 3.2c. Here, the default output of the latch is Q2 = 0, but when a
probe is attached, the output becomes Q2 = 1.

The possible LAPD latch outputs are summarized in table 3.1.

Note that when both latch inputs R and S are simultaneously high, both latch outputs Q
and Q are low. However, the output behavior may vary under this condition depending
on the latch implementation type. Therefore, the output state of the latch is considered
invalid in that period. This is denoted by X in the timing diagrams.

22

3.1 Circuit Concept

3.1.2 LAPD Model

In order to compare the delay between two lines it is assumed that both have an intrinsic
parasitic capacitance of CL. While the previous example assumed that only one line is
attacked at a time, the LAPD is in fact sensitive to the difference of capacitive loads.
Therefore, the model is stated more generically, assuming that two microprobes with
parasitic capacitances of CA1 and CA2 are attached to L1 and L2 respectively. As a
result, the effective capacitances of the lines during the attack are

C1 = CL + CA1 (3.1)
C2 = CL + CA2 (3.2)

Using the alpha-power model described in the appendix A.1, the delay difference between
the probed and the unprobed lines is

∆tL1,L2 = Ω (C2 − C1) = Ω (CA2 − CA1) (3.3)

where Ω summarizes the technological parameters of the transistors and the supply
voltage.

In a first approximation, the delay difference is proportional to the difference of attack
capacitances CA2 − CA1, as shown in equation (3.3). The alpha-power model approach
works better for small values of C1 and C2. State-of-the-art semiconductor microprobes,
as, for example, offered by GGB Industries, Inc. [GGBa,GGBb], have parasitic capac-
itances in the range of tens of femtofarads and therefore can be assumed to be small
enough for the approximation. Microprobes with a larger attack capacitance may dis-
turb regular operation of the circuit and thus not be suitable for successful microprobing
attacks; furthermore, the delay function is also monotonic outside the boundaries of the
small-value approximation of Equation (3.3), and therefore a reliable LAPD operation
can be expected.

After the bus, the Dout inverters increase the slew rate to minimize the effects of different
switching thresholds of the multiplexers M. Dout also scales the delay difference. To
model the nominal case, one can write

∆tL1,L2 = kDout ·∆tL1,L2 (3.4)

where ∆tL1,L2 is the delay difference observed after the Dout inverters.

After the Dout inverters, the transitions pass through T and M before they reach the
RS latch, therefore the delay difference at the latch inputs can be expressed as follows:

∆tRS = ∆tL1,L2 ± tD + (tM2 − tM1) (3.5)

tD is the delay introduced by the delay element T. In the two cycles shown in figure 3.2,
it is alternated between the R and S inputs of the latch. In both cycles, one multiplexer
is fed by Dout while the other multiplexer is driven by T. Their outputs have slightly

23

3 The Low Area Probing Detector

different transition times, which may affect the multiplexer timing behavior as well; this
is modeled by the expression tM2 − tM1. Note that ∆tRS shall be interpreted as “time
from R transition to S transition”; in other words, if ∆tRS > 0, then S is active longer
than R, and if ∆tRS < 0, then R is active longer than S. The difference (tM2 − tM1)
models the imbalances of the multiplexers M due to different slew rates at the input.
Inserting (3.3) and (3.4) into (3.5), it follows

∆tRS = kDoutΩ · (CA2 − CA1)± tD + tM2 − tM1 (3.6)

The latch needs to have a minimum distance between the falling edges to produce a
reliable output; this distance can be compared to the hold time of a flipflop. Therefore,

|∆tRS| > tH (3.7)
holds, where tH is the “hold time” of the latch.
Before (3.6) is inserted into (3.7), it is necessary to distinguish between two cases:
Case 1: When CA2 ≤ CA1 holds, the first cycle (sel = 0) is used to detect a probe.
In this case, the delay element T2 is attached to the S input of the latch, which implies
∆tRS to be increased; therefore, tD in equation (3.6) has a positive sign. From this, one
can obtain the two inequalities

CA1 − CA2 <
tD + tM2 − tM1 − tH

Ω kDout

(3.8)

CA1 − CA2 >
tD + tM2 − tM1 + tH

Ω kDout

(3.9)

where inequality (3.8) refers to the case that reliably does not raise an alarm, and
inequality (3.9) denotes the case that does raise an alarm reliably.
Case 2: When CA2 > CA1 holds, the second cycle (sel = 1) is able to detect a probe.
In that case, the delay element T1 is connected to the R input of the latch, thus causing a
reduction of ∆tRS. Consequently, tD in equation (3.6) has a negative sign. In that case,
inequality (3.10) describes the upper bound of capacitive difference for not triggering an
alarm in a reliable way; inequality (3.11) is the lower bound to trigger an alarm reliably.

CA2 − CA1 <
tD + tM1 − tM2 − tH

Ω kDout

(3.10)

CA2 − CA1 >
tD + tM1 − tM2 + tH

Ω kDout

(3.11)

Note that this model can only be considered as a first approximation of the performance
of an LAPD implementation. Simulations provide a significantly better accuracy; it is
difficult to find an accurate closed-form model of circuits that make use of analog race
conditions due to the complexity of transistors. However, the model may still be helpful
in cases where certain designs need to be selected out of a larger set for further analysis
by simulation. The accuracy of the model is evaluated in the appendix section A.3.

24

3.1 Circuit Concept

Table 3.2: Qualitative advantages of the LAPD against other state-of-the-art prob-
ing protection.

alternative
advantages of the LAPD

contermeasure

meshes
no additional layer

protection against backside attacks
bus encryption no latency
PAD [MWS12] no large capacitor

general only few gates hardware overhead

from S
tD + tA selff_clk

T-FF
Q

Figure 3.4: Example LAPD control logic.

3.1.3 Error Compensation

Manufacturing variations as well as varying environmental conditions lead to inter-
sample variation of the threshold capacitance value that decides between “alarm” and
“no alarm”. In this context, the following two types of errors should be considered:

• errors upon which an alarm is raised when the circuit is in fact not being attacked.
These errors are called false positives or type I errors.

• errors upon which no alarm is raised when the circuit is in fact being attacked.
These errors are called false negatives or type II errors.

These types of errors will be analysed in the next section.

In this section, the concept of a Low Area Probing Detector was described. Its simple
construction allows it to be implemented in a very lightweight manner. The advantages
of the LAPD over other protection concepts are qualitatively summarized in table 3.2.

3.1.4 Control and Evaluation Logic

The signals required to control the LAPD, and to capture the results, can be derived
from the output of the test signal source S. sel controls whether latch input R or S shall
be delayed. Figure 3.4 depicts an example circuit for sel. It is generated by a toggle
flip-flop clocked by a delayed, inverted output of the test signal generator S. The rising
edge of the T flip-flop clock ff_clk shall occur after the falling edge of the delayed
LAPD latch input. An additional delay tA ensures this condition.

25

3 The Low Area Probing Detector

ffclk

D-FF
QD

(from LAPD)

(from control logic)

D-FF
(from LAPD)

D-FF

D-FF

pass

fail

Q QD

QD QDQ

Figure 3.5: Example redundant LAPD evaluation logic.

On the output side of the latch, the evaluation logic shall provide feedback about the
absence or presence of a probe. Conceptually, this is a PASS/FAIL signal where PASS
means that Q toggles every cycle and FAIL indicates that Q remains at a constant value
over two subsequent cycles. Implementing a single PASS/FAIL output line is dangerous,
though: if an attacker would force such a line to a constant PASS, for example by the
means of a second microbe, the LAPD would become obsolete.

The circuit as provided in Figure 3.5 has two redundant outputs pass and fail to avoid
this single point of failure. It is fed by the signals Q and Q and uses the clock ff_clk
coming from the control logic. As a positive side effect of the symmetry of the evaluation
logic, both outputs of the LAPD latch are equally loaded, which avoids introducing a
bias to the circuit.

3.2 Results

The LAPD has been implemented in a 65 nm STMicroelectronics technology with a core
voltage of 1.2V. For the gates, low power standard threshold voltage transistors psvtlp
and nsvtlp were used. Simulations were performed using Cadence spectre 11.1 on a
machine with four AMD Opteron 6274 CPUs and 256 GB RAM.

SALVADOR was used to automate the simulation workflow in a reproducible way, and
collect the results for post-processing, such as plotting the detection charts. Details of
SALVADOR are explained in chapter 6.

Due to the symmetric property of the LAPD, it was considered sufficient to only simulate
an attack to L1; this decreased the simulation runtime approximately by a factor of 2,
which was especially helpful in the early exploration phase when different transistor
dimensions and circuit variants were tested. Therefore, simulations were using the
following assumptions:

CA1 = CA (3.12)
CA2 = 0 (3.13)

26

3.2 Results

3.2.1 Nominal simulation

In a first run of nominal simulations, an ambient temperature of ϑ = 27 °C was assumed.
All nMOS transistors in the design had an aspect ratio W

L
= 10. The intrinsic line capac-

itance was assumed as CL = 100 fF. This corresponds to a line length of approximately
1.3 mm on the top metal layer in the used technology, assuming an adjacent GND line
with minimum distance.
In the case that the delay elements T are implemented as chains of two inverters, the
minimum detected attack capacitance is C∗A = 10.3 fF. For the case of four inverters,
the minimum value becomes C∗A = 23.4 fF.

3.2.2 Effects of local variations

0 10 20 30 40 50
CA/fF

0.0

0.2

0.4

0.6

0.8

1.0

re
la

ti
ve

fr
eq

u
en

cy
of

al
ar

m
s
f A

(C
A

)

T: two inverters

T: four inverters

Figure 3.6: Relative alarm frequency for different implementations of delay elements T
(nominal transition values are dashed).

As the LAPD works in differential mode, a Monte-Carlo analysis of the mismatch vari-
ations was performed using N = 2000 samples. Figure 3.6 shows the result for the
two implementations, again with delay elements T consisting of two and four inverters
respectively. The x axis represents the attack capacitance and the y axis denotes the
relative frequency of alarms, which is defined as

fA(CA) = A

N
(3.14)

27

3 The Low Area Probing Detector

A is the number of Monte-Carlo instances rising an alarm, and N is the total number
of Monte-Carlo simulations.

The following qualitative observations can be made from the figure:

• The two-inverter delay implementation exhibits a non-zero alarm frequency for
CA = 0.

• both implementations exhibit an uncertainty region ∆CU
A in which the behavior

of the circuit is not well predictable.

The uncertainty region is defined as

∆CU
A = CreliableAlarm − CreliableNoAlarm (3.15)

with the following helper variables:

fA(CreliableAlarm) > 1− ε (3.16)
fA(CreliableNoAlarm) < ε (3.17)

By visual inspection of figure 3.6 one can estimate an uncertainty region of ∆CU
A ≈

25 fF. Please note that state-of-the-art microprobes by the commercial supplier GGB
Industries can all be detected by the four-inverter implementation: While the Picoprobe
Model 18C/19C [GGBa] are declared to have a minimum input capacitance of 20 fF,
the data sheet constrains this property to signals with a transition time lower than 3 ns,
while its input capacitance is 60 fF for transition times below 1 ns. Further analysis of
the simulation results shows that the maximum transition time for CA = 50 fF is smaller
than 0.6 ns. The second best microprobes with respect to input capacitance are called
Picoprobe Model 28/29 [GGBb] which exhibit CA = 40 fF regardless of the slew rates of
the probed signals.

While the two-inverter T implementation can marginally detect all probes according to
their specification, its uncertainty region ∆CU

A is still significant. The size of this region
determines both the likelihood of false positives and false negatives, and hence the
reliability of the circuit. As conversations with industry representatives have suggested
that reliability is one of the most important design goals, it seems desirable to know
how much the uncertainty region ∆CU

A can be narrowed by optimizing the LAPD. For
the sake of reliability, the four inverter implementation was chosen as a starting point
as it does not show a non-zero alarm rate at CA = 0.

To get a better understanding about the effects of variations, the first target of analysis
were the effects of variation of each LAPD stage on the alarm threshold. In a first set of
simulations, the variance of the delay difference between the two latch inputs Var(∆tRS)
at CA = 0 was observed to quantify this variation. ∆tRS is a good indicator for the
reliability of the circuit: its distribution can be mapped to the probability of the latch
output Q being 0 or 1, however, ∆tRS is continuous, and therefore exhibits a non-zero
Var(∆tRS) at any sweep point of CA, rather than only in the uncertainty region. This

28

3.2 Results

Table 3.3: Variance of timing differences at latch inputs of four-inverter implementation.
Var(∆tRS,sel=0)

all variations enabled 8.15× 10−23 s2

w/o Din variation 5.32× 10−23 s2

w/o Dout variation 2.43× 10−23 s2

w/o M variation 8.00× 10−23 s2

w/o T variation 7.89× 10−23 s2

allows efficiently analyzing the sensitivity of the LAPD stages by means of simulation
with one single CA value; sweeping over CA is not required. Here, the value CA = 0 fF
was used.

A technology feature allows to selectively switch off variations for single transistors – this
was employed to selectively disable variations stage by stage and quantify the influence
on Var(∆tRS). The results of both cases sel = 0 and sel = 1 were captured, but only
minor differences could be observed, so the following explanations are focused on the
first case sel = 0 for simplicity. The results for the four inverter implementation of the
delay element T are shown in table 3.3. ∆tRS,sel=0 refers to the time from the edge at
the R signal to the edge of the S signal in the first of the two test cycles (thus sel=0);
the bold letters in the table refer to the gates in figure 3.1. Notice that disabling the
variations in the buffer stage Dout significantly reduces the variance of ∆tRS. Therefore,
this stage is assumed to have the highest influence on reliability at the selected design
point. A model for this behavior is given in the appendix A.2.

3.2.3 Reliability Metric

Prior to dimensioning the LAPD, a reliability metric is introduced that allows comparing
the quality of different LAPD implementations. This metric q is defined as the area
between the ideal curve of an LAPD having a detection threshold C∗A and the curve of
an actual implementation.

q =
∫ C∗

A

0
fA(CA) dCA +

∫ Cmax

C∗
A

(1− fA(CA)) dCA (3.18)

with
fA(C∗A) = 0.5 (3.19)

This approach takes all CA sweep values that were simulated into consideration and thus
minimizes numerical noise. For reasons of computational complexity, the boundary of
this area is chosen to be [0;Cmax]. Equation (3.19) centers the threshold C∗A between the
two integrals in equation (3.18) around the intrinsic 50% alarm frequency of a circuit.
With this, the metric effectively prefers a low uncertainty range over a predefined alarm

29

3 The Low Area Probing Detector

threshold. The condition fA(0) < ε was defined as an additional filter criterion to sort
out false positives. Figure 3.7 illustrates the metric for the four-inverter implementation.
The plot was generated using Matplotlib [Hun07].

0 10 20 30 40 50
CA/fF

0.0

0.2

0.4

0.6

0.8

1.0

re
la

ti
ve

fr
eq

u
en

cy
of

al
ar

m
s
f A

(C
A

)

Figure 3.7: Illustration of the reliability metric of the four inverter implementation (qfF =
4.02).

3.2.4 LAPD dimensioning

A simple optimization was performed on the four-inverter implementation to estimate
the minimum CA that can be detected reliably. As shown before, variations in stage
Dout appear to have the strongest influence on the delay difference variations. For this
reason, it was analyzed how much the overall reliability can be improved by fine-tuning
the transistor dimensions of this stage. In a new series of simulations, a coarse sweep
was performed over CA as well as the aspect ratio and the channel length to select good
candidates for a further finer analysis.

W

L
∈ {10, 20, 50, 100}

L ∈ {1, 2, 5, 10} · Lmin
Lmin = 0.06 µm is the minimum channel length as needed to be specified in the simulator.
The results of this set of simulations, for which a step size of ∆CA = 5 fF and 200 Monte-
Carlo iterations were used at each point, is shown in table 3.4.

30

3.2 Results

Table 3.4: Threshold capacitance and reliability metric for different Dout dimensions
(∆CA = 5 fF, 200 Monte-Carlo runs).

W
L

L
Lmin

C∗
A

fF
q
fF

10 1 23.5 4.46
10 2 23.6 3.58
10 5 24.1 3.48
10 10 23.3 4.80
20 1 25.3 3.67
20 2 24.9 3.32
20 5 24.8 3.85
20 10 24.8 6.72
50 1 26.6 3.22
50 2 26.3 3.38
50 5 25.7 5.43
50 10 24.5 12.47
100 1 26.9 3.45
100 2 26.5 3.89
100 5 25.5 8.15
100 10 17.5 18.53

The “50% alarm capacitance” C∗A, which is defined in equation (3.19), has been estimated
by linear interpolation. q is the quality metric defined in equation (3.18). The best six
rows (in bold) with respect to the reliability metric have been selected for a more detailed
analysis with 2000 Monte-Carlo iterations and a step size of ∆CA = 0.2 fF.

The results of the finer analysis are shown in table 3.5; the separated row represents
the initial design, the following lines show the results after optimization. The meaning
of the first four columns is the same as in table 3.4, and two more columns contain
additional threshold values described in the following paragraph. The best case with
respect to the quality metric is highlighted in bold.

These results shall be used to estimate the real alarm probability pA(CA) based on the
absolute number of alarms A, the number of Monte-Carlo simulations N as well as the
desired confidence level α that was assumed as α = 0.01. The Wilson method [Wil27]
was used to estimate the confidence intervals. Based on these, a “1% alarm thresh-

31

3 The Low Area Probing Detector

Table 3.5: Threshold capacitance and reliability metric for different Dout dimensions
(∆CA = 0.2 fF, 2000 Monte-Carlo runs).

W
L

L
Lmin

C∗
A

fF
q
fF

C0.01
fF

C0.99
fF

10 1 23.6 4.02 11.2 37.2
10 2 23.8 2.95 14.2 33.4
10 5 24.3 2.92 15.0 34.2
20 2 25.3 2.77 16.4 34.4
50 1 26.8 2.82 17.4 36.0
50 2 26.4 2.93 17.0 36.6
100 1 27.3 2.83 18.2 37.0

Table 3.6: Analysis of corners.
typical worst case worst case at corners

initial
C0.01 11.2 fF 7.4 fF FF, 0 °C, 1.08 V
C0.99 37.2 fF 41.6 fF SS, 85 °C, 1.08 V

optimized
C0.01 16.4 fF 12.0 fF FF, 0 °C, 1.08 V
C0.99 34.4 fF 39.4 fF SS, 85 °C, 1.08 V

old” C0.01 and a “99% alarm threshold” C0.99 were estimated, such that the following
inequalities hold:

pA(C0.01) < 0.01 (3.20)
pA(C0.99) > 0.99 (3.21)

Compared to the initial design, the quality metric of the best case has improved by
more than 40 %. If the uncertainty region ∆CU

A is defined as ∆CU
A = C0.99 − C0.01,

then the reduction of this region is also a little more than 40%. In other words, after
improvement, there is 40% more margin with respect to timing jitter or CL imbalance,
and the delay elements T can also be tuned more effectively towards a lower C∗A without
increasing the number of false positives too much.
Figure 3.8 shows the curve of the optimized implementation next to the initial design.
The reduction of the uncertainty region is also clearly visible in this figure.

3.2.5 Corners

The behavior of the LAPD after dimensioning has been analyzed with respect to
process, voltage and temperature corners. The process corner points used have

32

3.2 Results

0 10 20 30 40 50
CA/fF

0.0

0.2

0.4

0.6

0.8

1.0

re
la

ti
ve

fr
eq

u
en

cy
of

al
ar

m
s
f A

(C
A

)

initial design

after optimization

Figure 3.8: Relative frequency of alarms of the best circuit, compared to the initial
design.

been SS (slow-slow), TT (typical-typical) and FF (fast-fast); for the temperature,
ϑ ∈ {0 °C, 27 °C, 85 °C} were used; for the voltage, the tested values were VDD ∈
{1.08 V, 1.2 V, 1.32 V}.

The analysis of corners was used to determine the worst-case values of C0.01 and C0.99.
The results are shown in table 3.6. The two rows labeled “optimized” represent the
corner cases of the optimized design (W

L
= 20, L

Lmin
= 2). For reference, the values of

the initial design (W
L

= 10, L
Lmin

= 1) are also given.

One can see that the initial design fails to detect a 40 fF probe in the worst case, while
the optimized design has a worst case C0.99 slightly below this value. Also, it can be
stated that the worst case C0.01 keeps away far enough from CA = 0. The worst case
uncertainty region ∆CU

A has reduced from 34.2 fF to 27.4 fF, which is an improvement
by about 20 %. This shows that it is possible to achieve reliable operation of the LAPD
without being obliged to use dedicated optimization tools.

3.2.6 Derivative based Optimization

In addition to the previously described manual optimization, a derivative based
optimization using the electronic design automation tool WiCkeD was carried out
[HWPG18]. As shown in figure 3.9, this shows significantly better results than the

33

3 The Low Area Probing Detector

0 5 10 15 20 25 30 35 40
CA/fF

0.0

0.2

0.4

0.6

0.8

1.0

re
la

ti
ve

fr
eq

u
en

cy
of

al
ar

m
s
f A

(C
A

)

initial design

hand-optimized

with WiCkeD

Figure 3.9: LAPD detection performance after derivative based optimization with
WiCkeD.

hand optimized variant. Its nominal 1% alarm threshold is C0.01 = 6.4 fF; the 99%
alarm threshold is C0.99 = 20.4 fF.

The methodology described here characterizes the latch using Monte-Carlo simulations
in a first step to obtain a relationship between “timing difference of input signals” and
“probability of the latch output being 0 or 1”. In a second step, the remaining circuit
shall be optimized, using the timing constraints obtained from the first step. This two-
step approach is necessary as the optimization tool must be able to extract a performance
metric based on one simulation – which is true for timing behavior, but not for latch
output probabilities, as they need Monte-Carlo simulations.

Note that in the actual optimization, the latch was mistakingly included in the opti-
mization with respect to area, such that the latch timing behavior characterized in the
first step is different from the resulting latch after optimiztion. However, this does not
affect the detection performance described here, as for the final evaluation, the LAPD
circuit is assessed as a whole.

34

3.2 Results

Table 3.7: Area, Timing and Energy Comparison of Cryptographically Se-
cure Shields, PAD and LAPD; B denotes the number of bus lines to
be protected.

area a [GE] cycles energy [fJ]
CSS [CDG+14] 8081 – 7.01× 1012 s−1

PAD [MWS12] 549 (for B = 2) 50-100 n/a
LAPD ≤ 48 ·B (for B > 2) 2 981 (for B = 2)

optimized LAPD (section 3.2.6) ≤ 109 ·B (for B > 2) 2 1131 (for B = 2)

3.2.7 Resource Usage

A quantitative area, timing and energy consumption comparison between the Crypto-
graphically Secure Shields (CSS) by Cioranesco et al. [CDG+14], the Probe Attempt
Detector [MWS12] and the LAPD is shown in table 3.7. All three implementations are
available in the same STMicroelectronics 65 nm technology (note that the description
in [MWS12] uses a 180 nm implementation of the PAD, and the 65 nm implementation
is currently not published). The LAPD dimensions in terms of Gate Equivalents were
determined by normalizing to the sum of transistor dimensions of the smallest size stan-
dard cell NAND gate HS65_LS_NAND2X2. The dimensions of the CSS and the PAD, both
after layout, were normalized to the layout area of the same NAND gate.

Note that the exact size figures are difficult to compare, as, for example, the CSS figures
are taken from a complete Application Specific Integrated Circuit (ASIC) implementa-
tion, whereas the LAPD figures only conver the bus drivers and the detector. Therefore,
the actual LAPD sizing depends on the number of lines as well as how the integration
is done, which will be discussed in chapter 5. The given figures refer to the case of
parallel detector instances (for details, see section 5.3.4) and can be considered as an
upper bound of area consumption. In general, however, it can be seen that the LAPD is
one order of magnitude smaller than the PAD and more than two orders of magnitude
smaller than the CSS.

The CSS are designed to run continuously, while PAD and LAPD shall only be used
prior to security critical operations. For this reason, the energy consumption of the CSS
are given per second. Compared to the PAD, the LAPD is faster by a factor of 25 to
50. The energy consumption of the LAPD was simulated for one test run at CA = 0
and two bus lines. Even assuming that the CSS would, for example, only run for one
millisecond, its energy consumption is larger than the one of the LAPD by several orders
of magnitude.

35

3 The Low Area Probing Detector

3.2.8 Error Compensation

Error probability bounds have been provided based on simulations of the aforementioned
variations. However, the computational complexity of the simulations only allows to
provide such bounds in the magnitude of 10−2. This is still quite high when considering
mass production, especially because this probability only covers a small part of the chip
functionality. If all components of a chip had an error probability in this magninude,
the overall error probability would be significantly worse.

Assuming statistical independence, voting schemes can be used to significantly improve
the error probability, for example as proposed by Parhami [Par94]:

• local variations can be compensated by providing k LAPD instances

• timing jitter can be compensated by repeating the evaluation k times

Note that the assumption of statistical independence is not true for global variations as
well as voltage and temperature variations; however, focussing on the local variations
can already lead to a significant improvement due to the differential mode of operation
of the LAPD.

As an example, majority voting can be used as voting scheme. In this case, k should
be odd such that at least k+1

2 alarm votes are required to raise an alarm. If the alarm
probability of a single LAPD instance evaluation at a certain operating point is assumed
pA(CA), the alarm probability after voting follows a binomial distribution:

pkA(CA) = P

(
X ≥ k + 1

2

)

=
k∑

i= k+1
2

(
k

i

)
pA(CA)i (1− pA(CA))k−i

(3.22)

This distribution shows a tendency towards its extremes:

lim
k→∞

pkA(CA) =

0 pA(CA) < 0.5
0.5 pA(CA) = 0.5
1 pA(CA) > 0.5

(3.23)

Assuming that an alarm for a specific CA for which pA(CA) < 0.5 holds is called false
positive, figure 3.10 allows to quantify the reduction of false positives. For example,
voting with k = 5 for a single-instance alarm probability pA(CA) = 10−2 leads to an
overall alarm probability of pkA(CA) = 10−5. Likewise, this approach also reduces false
negatives.

36

3.3 Conclusion

10−3 10−2 10−1 100

alarm probability pA(CA) of single circuit

10−9

10−7

10−5

10−3

10−1

al
ar

m
p

ro
b

ab
il
it

y
pk A

(C
A

)
af

te
r

vo
ti

n
g k = 3

k = 5

k = 7

k = 99

Figure 3.10: Alarm probability after majority voting.

3.3 Conclusion

This chapter has described the concept of a low area probing detector, which only con-
sists of a few gates and has a significantly lower area than other protection mechanisms
such as the PAD [MWS12] or bus encryption.

The reliability of such a detector has been analyzed with respect to local variations as
well as process, voltage and temperature corners using Monte-Carlo simulations on a
65 nm technology. The results of these simulations have been used to estimate the regions
of probe capacitances in which the circuit gives reliable results. These results show that
an initial LAPD implementation can detect state-of-the-art commercial microprobes
under typical conditions, but possibly not in worst case scenarios.

A simple optimization of the LAPD could reduce the capacity threshold for undetectable
probes. With optimizing only one single stage of the LAPD, the uncertainty region could
be improved by 40% under nominal conditions as well as 20% for the corners. After
optimization, the previously mentioned microprobes can also be detected in the worst
case scenario.

37

4 The Calibratable Lightweight
Invasive Attack Detector

The Probe Attempt Detector and the Low Area Probing Detector are designed to detect
the intrinsic effects of microprobing, and can therefore protect against attacks such as
backside probing. The PAD still uses analog circuit elements, though, which are larger
than digital components, and which might not be readily available in some technologies.
The LAPD fills this gap with a purely digital circuit measuring race conditions between
buffers and capacitively loaded lines. However, the LAPD needs the protected lines to
be carefully balanced, and its transistor dimensions to be fine-tuned to work with the
desired precision. Also, the inability to compensate the effects of process variation by
calibration leads to a lower sensitivity than the PAD.
Yet there is no detection circuit that can be calibrated to compensate process varia-
tions and line length imbalances by calibration and that is still based on only digital
components. Such a detector could be integrated into the design process of a digital
Integrated Circuit (IC) much more smoothly than the LAPD. It would still be robust
against process, voltage, and temperature variations as well as enough sensitivity to
detect state of the art microprobes. Furthermore, it would not require fine-tuning of its
transistor dimensions in order to exhibit the desired sensitivity.
In this chapter, a new invasive attack detector named CaLIAD is presented which com-
bines the advantages of previous detectors and improves the detection sensitivity and
reliability with respect to process, voltage, and temperature variations. The chapter
is structured as follows: Section 4.1 describes the concept behind the CaLIAD, section
4.2 evaluates the results. An FPGA implementation, which was joint work with Emili
Lupon, is presented in section 4.3. Finally, section 4.4 concludes the chapter. Parts of
this chapter have been previously published in [WWL+19].

4.1 Circuit Concept

A microprobe touching a line behaves as a capacitive load, as described in section
2.4. This makes transitions less steep and consequently delays the transitions in the
connected gates. When one line out of a set of symmetric lines such as a bus is probed,
a timing difference between the probed and the unprobed lines can be observed. This
timing difference can be measured using a Time-to-Digital Converter (TDC).

39

4 The Calibratable Lightweight Invasive Attack Detector

Similar to previous approaches such as the PAD [MWS12] or the LAPD described in
the previous chapter, this can detect probing of at most B − 1 lines when protecting
a bus that consists of B lines. In accordance with the explanation of practical attacks
in section 2.2, this is claimed to be sufficient as it is practically difficult to probe many
lines simultaneously.

4.1.1 Sub-Gate Delay Measurement Circuits

Stephan Henzler gives an overview of different types of TDCs [Hen10]; circuits that
allow sub-gate delay measurements are especially interesting here because they allow a
new concept of calibratable probing detectors that are presented here.

In the presented use case, one main selection criterion of the circuit concept for delay
measurement is a low area. It shall also be possible to use standard logic cells for imple-
menting such a detector, such that the standard digital design workflow can be followed.
Intrinsic resilience against manufacturing variations of the delay measurement circuit is
not that crucial because it is sufficient to measure the difference from a calibrated state,
but it is not necessary to extract accurate absolute timings.

There are three types of sub-gate delay measurement concepts presented in [Hen10]:
Local Passive Interpolation TDCs use voltage dividers between inputs and outputs of
driver stages to reach below the resolution of an inverter delay. Its structure is com-
paratively resilient to manufacturing variations. However, it requires differential signals
and stages that cause a significant area and power overhead.

Another idea to measure timings smaller than inverter delays are pulse shrinking delay
lines [Hen10,RK93]. They use chains of unbalanced inverters with differing rise and fall
times. A pulse applied to the input of a pulse shrinking delay line will be reduced in
duration along the line before it eventually disappears completely. Its disadvantage is
the need for gates with an unbalanced dimensioning of p-channel Metal Oxide Semi-
conductor (pMOS) and nMOS transistors that might not be available in all technology
libraries.

The Vernier Delay Line (VDL) has a comparatively small area footprint but shows
inferior resilience against manufacturing variations when it comes to reliability of precise
time measurements. This does not pose a problem when the goal is detecting deviations
from a calibrated timing behavior.

It was decided to base a probe detector on the VDL: It has a comparably low area and
power overhead, and its bad performance with respect to manufacturing variations is
not an issue in the use case of detecting microprobes. This effect can be compensated
by storing calibration values as described later.

40

4.1 Circuit Concept

4.1.2 The Vernier Delay Line Principle of Operation

A block diagram of the Vernier Delay Line is shown in figure 4.1. The device under test
generates two output signals START and STOP that are passed through two differently
dimensioned delay chains with different propagation delays. Both signals contain one
transition; at the beginning of the line, the START transition occurs before the STOP
transition. However, it propagates slower through the delay line than the STOP signal
and eventually gets passed. Arbiters connected to each tap of the delay lines determine
at which of the two taps the transition comes first. An example timing is shown in figure
4.2. In this figure, STOP passes START between tap 1 and tap 2.

STOP

START

faster delay line

slower delay line

Figure 4.1: Vernier Delay Line block diagram.

START
STOP

delay line input tap 1 tap 2 tap 3

Figure 4.2: Vernier Delay Line timing.

CA1

CA2

CL

CL

L2

L1
switch

switch

t0 tfast

tslow

tfast

tslow

tfast

tslow

Q1 Q2 Qn
S1

R1

S2

R2 Rn (if n is even)
Rn (if n is odd)

Sn (if n is even)
Sn (if n is odd)

Figure 4.3: Schematic of the Calibratable Lightweight Invasive Attack Detector.

41

4 The Calibratable Lightweight Invasive Attack Detector

4.1.3 Delay Model

To model the delay that an attack capacitance CA causes, the case of two lines is
considered for reasons of simplicity. Chapter 5 evaluates how to apply the detection
concept to buses with more symmetric lines.

Two lines L1 and L2 that both have an intrinsic capacitance CL are used for the model,
as depicted in figure 4.3. In addition, attack capacitances CA1 and CA2 are attached to
L1 and L2 respectively. Equations (3.1) and (3.2) can be used also here to model the
overall capacitive load of the bus lines. The timing difference of two lines is described
by equation (3.3) accordingly.

4.1.4 Probe Detection Concept

The use case of a VDL is adapted by evaluating one edge of a test signal; at line L2,
this signal is passed through a delay line with a slow incremental delay tslow per stage,
and at line L1, it is passed through a line with an initial delay t0 and a fast incremental
delay tfast per stage, as shown in figure 4.3.

The two incremental delays tfast and tslow of the chain can be described as a common
delay tC and a delay difference ∆t between the slow and the fast stage:

tfast = tC (4.1)
tslow = tC + ∆t (4.2)

The transition at the faster line with initial delay passes the transition at the slower line
between positions k and k + 1 for which the following equations hold:

tL1 + t0 + k · tfast > tL2 + k · tslow (4.3)
tL1 + t0 + (k + 1) · tfast < tL2 + (k + 1) · tslow (4.4)

To insert CA1, CA2 and ∆t into the inequalities, equations (4.3) and (4.4) are solved for
the delay difference tL1 − tL2, which is replaced by the difference of capacitances using
equation (3.3). Then, equations (3.1) and (3.2) are solved for CA1−CA2, and equations
(4.1) and (4.2) are solved for ∆t. This is eventually inserted into the transformed
inequalities.

k ·∆t− t0 < Ω · (CA1 − CA2) < (k + 1) ·∆t− t0 (4.5)

It will be shown later that k can be stored as a calibration value. Therefore, the concept
is called “Calibratable Lightweight Invasive Attack Detector” (CaLIAD): On the one
hand, calibration is possible, as it is with the Probe Attempt Detector, but which
is not possible for the Low Area Probing Detector. On the other hand, it avoids large
analog circuit components such as the PAD tank capacitor and only needs digital circuit
elements that are comparably lightweight.

42

4.1 Circuit Concept

4.1.5 Circuit Realization

The schematic of the CaLIAD is shown in figure 4.3. The schematic is illustrated for
a case study bus of two lines, which is the minimum number of lines required for its
correct operation.
From left to right, it contains a test signal source, bus drivers, the bus lines that are
under attack, output buffers, the initial delay element t0 and eventually the VDL. One
VDL chain element contains one RS latch that acts as an arbiter and two inverters: one
with a slower propagation delay (tslow) and a second which is slightly faster (tfast).
It is recommended to introduce the ability to switch off the evaluation circuitry starting
at t0 and the first stage of tslow when not in use. This is shown in the circuit diagram
as “switch”. Being able to switch off the circuitry saves energy on the one hand, and on
the other hand it prevents attackers from probing the end of the delay to read signals
from the protected lines.
Note that the VDL is tapped after each inverter rather than after each buffer which is
the usual approach found in literature [Hen10]. This optimization allows to reduce the
number of inverters in the VDL part by a factor of 2, but requires proper handling by

• either evaluating the rising edge of a test signal at even chain element positions k,
and evaluating the falling edge of a test signal at odd chain element positions k,
such that each arbiter can have high active inputs,

• or alternating between different arbiter types: NAND RS latches have low active
inputs and can be used at odd chain element positions, whereas NOR RS latches
have high active inputs and can be used at even chain element positions.

Both optimization alternatives were considered to be equally effective. Here, the focus
was put on the latter option to keep simulation time low, as only one transition needs
to be simulated instead of two.
Considering equation (4.5), the outputs Qi are 0 if i ≤ k and 1 if i ≥ k + 1. Without
attack, the transition from 0 to 1 will occur at positions k0 and k0 + 1. To check for an
attack, two elements are selected, one called left with l ≤ k0, and another called right
with r ≥ k0 + 1. The following equation holds for the outputs of the selected elements.

(Ql, Qr) =

(0, 1) no probe attached
(0, 0) probe at L1
(1, 1) probe at L2

(4.6)

The timing of the CaLIAD is shown in figure 4.4 for the left element l and the right
element r. Figure 4.4a shows the timing without attack. Figure 4.4b highlights the case
of probing L1 while figure 4.4c focuses on the effect of probing L2.
If more than two VDL chain elements are used, a thermometer code is obtained as a
response as shown:

(Q1, Q2, · · · , Qk, Qk+1, · · · , Qn−1, Qn) = 00 · · · 01 · · · 11 (4.7)

43

4 The Calibratable Lightweight Invasive Attack Detector

L1

L2

R

S

Q ? ?

(a) No attack.

L1

L2

R

S

Q ? ?

(b) L1 probed.

L1

L2

R

S

Q ??
stage l stage r

(c) L2 probed.

Figure 4.4: CaLIAD timing; red bars represent latch output sampling time.

The position k+1 where the first 1 occurs will be referred to as position of first 1 (PF1).

4.1.6 Calibration

In the ideal case, i.e. assuming constant temperature and voltage as well as absence of
manufacturing variations, two chain elements are sufficient, such that l = 1 and r = 2
would hold.

44

4.1 Circuit Concept

In reality, manufacturing variations make it difficult to predict the position of the tran-
sition from 0 to 1 in the thermometer code. When no probe is attached, i.e. CA = 0 fF,
the transition occurs between a position k0 and k0 +1, where k0 will vary from device to
device. This position can be stored as a calibration value to compensate manufacturing
variations. It is required to perform B− 1 comparisons and thus store B− 1 calibration
values to protect a B line bus.

Depending on the sensitivity of the design, that position may shift a small number
of steps when varying voltage and temperature or under the presence of noise. To
compensate that, an additional safety margin m is defined to avoid false positives: If
(Qk0 , Qk0+1) = (0, 1) holds for a certain calibrated position k0, m steps to the left and to
the right of that position can be skipped, and the detector can be configured such that
the actual evaluation takes place at the two latch outputs l and r as follows:

l = k0 −m (4.8)
r = k0 +m+ 1 (4.9)

Voltage and temperature variations cannot be compensated using this method, but they
only have second order effects due to the differential nature of the circuit.

Another effect that cannot be completely compensated is a variation of the individual
delay differences ∆t between the slow and the fast inverters in the VDL chain, as
described by the authors of [HYM+08].

The variation of ∆t also implies that calibration accuracy is best at the capacitive load
CA that is used for calibration and decreases with increasing distance to the calibration
capacitance. The proposal above calibrates at CA = 0 fF. The CA values at which the
most accuracy is expected, though, are those that determine the transition between “no
alarm” and “alarm”.

Therefore, a second calibration method using a reference capacitance Cref per protected
line is proposed. This method shall be called two-point calibration; it is expected to
further increase the detection performance compared to the previously proposed single
point calibration method.

Two-point calibration is intended as a method to improve the sensitivity beyond single-
point calibration, but not as a replacement; in most cases, single-point calibration is
expected to be good enough. Also, two-point calibration is not applicable in all use
cases, because the required reference capacitances increase the area usage; furthermore,
they might help an attacker to spot the probing targets of interest.

Cref is the smallest capacitance that is supposed to raise an alarm when attached to
any line. To determine its value, a minimum alarm capacitance C0.99 is defined first,
for which an alarm shall be raised with an estimated alarm probability of pA ≥ 0.99. If
it is sufficient to fulfill this condition at the voltage and temperature corner where the
circuit is calibrated, one can use Cref = C0.99.

45

4 The Calibratable Lightweight Invasive Attack Detector

Table 4.1: Two-point calibration example.
CL1 CL2 Q1, · · · , Qn

CL + Cref CL 00000000000000011111
CL CL 00000000001111111111
CL CL + Cref 00011111111111111111

As an attacker can, however, control the operating conditions, Cref shall be slightly
smaller to compensate second order effects. This way, the designer can ensure that an
attack capacitance of C0.99 is reliably detected at all voltage and temperature corners.
The value of Cref ≤ C0.99 is determined by Monte-Carlo simulations.

To perform calibration, L1 and L2 are alternately loaded with Cref . The left calibration
position kL is determined as the PF1 when Cref is connected to L2. Accordingly, the right
calibration position kR is determined as the position of the last 0, i.e. the immediate
left neighbor of the PF1, when Cref is connected to L1. An example is shown in table
4.1 where kL and kR are highlighted in bold.

The evaluation can then take place at kL and kR.

l = kL (4.10)
r = kR (4.11)

Notice that equation (4.6) still applies.

4.1.7 Design Considerations

The performance of CaLIAD implementations can be evaluated based on different cri-
teria. This section gives an overview of them and concludes with general design consid-
erations.

The minimum detectable capacitance difference ∆CA,min determines the most “negative”
capacitance difference, i.e. excess of attack capacitance attached to L2 compared to L1
that can be distinguished from range excess. When its value is applied, only the first
VDL chain element is zero: (Q1, Q2, · · · , Qn) = 01 · · · 1. From equation (4.5), one can
conclude that the following inequality must hold in this case:

∆t− t0 < Ω ·∆CA,min < 2 ·∆t− t0 (4.12)

From this inequality it can be seen that the value of ∆CA,min is determined by the initial
delay t0 as well as delay difference ∆t between the slow and the fast inverter in the VDL
chain. In the first place, this metric may not seem directly helpful – the CaLIAD only
needs to give a pass/fail result and does not require to provide quantitative information
about the attached probe. However, it provides a lower bound of ability to calibrate the

46

4.1 Circuit Concept

CaLIAD: Upon calibration, a too high value of ∆CA,min can lead to a left stage l < 1
that refers to a non-existing VDL chain element.

Similarly, the maximum detectable capacitance difference ∆CA,max determines the max-
imum excess of attack capacitance attached to L1 compared to L2 that can be distin-
guished from a range excess. When its value is applied, only the last VDL chain element
is one: (Q1, · · · , Qn−1, Qn) = 0 · · · 01. One can conclude from equation (4.13) that the
value of ∆CA,max is determined by t0, ∆t as well as the total number of chain elements
n.

(n− 1) ·∆t− t0 < Ω ·∆CA,max < n ·∆t− t0 (4.13)

∆CA,max determines the upper bound of ability to calibrate, as devices with a right
calibration position r > n refer to a non-existing VDL stage and therefore cannot be
calibrated.

Ideally, a symmetric detection range is desired, i.e. ∆CA,max = −∆CA,min. This
implies that CA1 − CA2 = 0 fF corresponds to a centered transition position
(Q1, · · · , Qn

2−1, Qn
2
, · · · , Qn) = 0 · · · 01 · · · 1.

Another important metric is the detector sensitivity, i.e. the extent of PF1 shift de-
pending on the shift of the attack capacitance. It is determined by ∆t. Decreasing
∆t increases the sensitivity, which allows to compensate manufacturing variations more
accurately, but also implies longer chains, as seen in equations (4.12) and (4.13). Fur-
thermore, circuit limitations impose a lower bound on ∆t: it must be considered that
the latches need a minimum time difference ∆tRS,min between the edges of Ri and Si to
avoid metastability and get a reliable output Qi. This has an implication on ∆t be-
tween two VDL stages: While metastability cannot be avoided for one latch output, a
lower bound 2 · ∆tRS,min < ∆t shall be fulfilled to avoid that two or more latches be-
come metastable. Otherwise, PF1 can not be uniquely determined. This effect is called
bubbles. An example is shown in equation (4.14).

(Qk−3, Qk−2, Qk−1, Qk, Qk+1, Qk+2, Qk+3) = 0010011 (4.14)

Calibration would still be possible under the presence of bubbles: In the case of single-
point calibration, one can use the middle between the position of the last consecutive
0 and the first consecutive 1 to estimate PF1. Obviously, m would have to be chosen
such that l and r are outside the bubble region. The occurrence of bubbles indicates a
limit in sensitivity. In that case, other measures would need to be taken to extend the
sensitivity, e.g. an optimization of the used latches.

Other important metrics are area usage and power consumption of the CaLIAD. Aiming
for good performances with respect to sensitivity and range of detectable capacitances
will deteriorate the area and power performances.

47

4 The Calibratable Lightweight Invasive Attack Detector

4.2 Results

The CaLIAD was implemented on a 65 nm ASIC technology from STMicroelectronics.
All circuit elements are based on the low power standard threshold voltage transistors
psvtlp and nsvtlp. Cadence spectre 11.1.0 was used to simulate the circuit on a
workstation with four AMD Opteron 6274 CPUs and 256 GB of RAM. The simulation
sweeps were automated using SALVADOR, as described in section 6.2.

The simulated ambient temperature was set to a value of 27 °C; the intrinsic line capac-
itance was presumed as CL = 100 fF, which corresponds to an approximate line length
of 1.3 mm on the top layer, assuming a parallel GND line with minimum distance.

4.2.1 Effects of manufacturing variations

The simulated CaLIAD chain consists of 30 chain elements. The fast inverters in the
chain elements were implemented with an aspect ratio of W

L
= 20, the slow inverters

had an aspect ratio of W
L

= 8. All other circuit elements were given a default aspect
ratio of W

L
= 10. The initial delay element was constructed as a chain of four inverters

to have a sufficient margin at the left end of the chain.

It is expected to see a shift in PF1 depending on the attached attack capacitance dif-
ference ∆CA. The simulations are limited to the simple case of probing either L1 or L2,
therefore assuming CA = ∆CA. In order to merge the results, negative values of CA are
defined as |CA| being attached to L2 while CL remains constant for both lines.

CA > 0 ⇒ CL1 = CL + CA ∧ CL2 = CL
CA < 0 ⇒ CL1 = CL ∧ CL2 = CL + |CA|

(4.15)

N = 2000 Monte-Carlo simulations have been executed for each sweep point CA ∈
[−40 fF; 40 fF] with increments of 1 fF. The simulations included process (per-chip) and
mismatch (per-transistor) variations.

Figure 4.5 shows the distribution of the absolute PF1 in the chain as a function of
the attack capacitance CA. The larger CA is, the further PF1 moves to the right. As
described by equation (4.15), positive values of CA represent a probe attached to L1
and negative values refer to a probe attached to L2. The outlier at the bottom left of
the figure is caused by large absolute CA values that already reach the beginning of
the line, i.e. Q1 = 1. In this case, PF1 cannot move further to the left such that all
further increases of absolute value of CA accumulate in this point. With the current
implementation, no bubbles have been observed in the VDL response.

The random offset of each device instance can be compensated by subtracting PF1 at
0 fF for each device instance. Figure 4.6 shows that the variation is significantly reduced
by this calibration. However, one can also see that the variation increases with increasing
distance to the calibration point. As explained before, this is due to the variation of

48

4.2 Results

−40 −20 0 20 40
CA in fF

0

5

10

15

20

25

30

ab
so

lu
te

p
os

it
io

n
of

fir
st

1

Figure 4.5: Distribution of transition positions without calibration; positive values of
CA represent a probe attached to L1 and negative values represent a probe
attached to L2.

−40 −20 0 20 40
CA in fF

−15

−10

−5

0

5

10

15

re
la

ti
ve

p
os

it
io

n
of

fir
st

1

Figure 4.6: Distribution of transition positions with single-point calibration at CA =
0 fF.

49

4 The Calibratable Lightweight Invasive Attack Detector

−4

0

4

8
ri

gh
t

st
ag

e
r

−40 −20 0 20 40
CA in fF

−8

−4

0

4

le
ft

st
ag

e
l

p
os

it
io

n
of

fir
st

1
re

la
ti

ve
to

Figure 4.7: Distribution of transition positions with two-point calibration (Cref = 16 fF).

∆t that cannot be compensated with the single-point calibration. However, figure 4.6
suggests that using calibration at the actual points of interest – values of CA at which
the transition between “no alarm” and “alarm” is desired to occur – can further reduce
the noticed variation. This effect is shown in figure 4.7. The bottom half shows PF1
relative to the left calibrated stage with index l and the top half shows PF1 relative to
the right calibrated stage with index r. One can see a reduction of noise towards the
extremes of CA; more importantly, the PF1 becomes more accurate in the surrounding
of the desired alarm threshold of 20 fF. This becomes visible by the fact that figure 4.7
exhibits two nodes with low variation around the desired alarm thresholds, whereas in
the single-point calibration case, there is only one node at CA = 0, thus further away
from the point where high precision is desired.

4.2.2 Detection performance

Table 4.2 shows the detection boundaries of different CaLIAD calibration methods at
the nominal corner, i.e. at a temperature of 27 °C and a supply voltage of 1.2 V. For
the single-point calibration, the safety margins m = 4 and m = 5 are shown due to
their proximity of the detection threshold to 20 fF, which is the smallest capacitive
load of a commercial microprobe that was found [GGBa]. C0.01 denotes the smallest
capacitance with an estimated alarm probability of pA ≤ 0.01 at either of the lines L1
or L2; accordingly, C0.99 refers to the minimum capacitance with an estimated alarm
probability of pA ≥ 0.99.

50

4.2 Results

Table 4.2: Nominal corner detection performance of different CaLIAD calibration meth-
ods.
calibration method C0.01 C0.99 ∆C nmin

single-point (m = 4) 9 fF 18 fF 9 fF 23
single-point (m = 5) 11 fF 21 fF 10 fF 24
two-point 11 fF 16 fF 5 fF 25
LAPD 16.4 fF 34.4 fF 18 fF –
optimized LAPD (section 3.2.6) 6.4 fF 20.4 fF 14 fF –

The Wilson method [Wil27] was applied to estimate the probability bounds using N =
2000 Monte-Carlo iterations and assuming a confidence level of α = 0.01.

Stricter bounds would imply a significant increase of simulation time. For cases in
which the estimated probability bound is not sufficient, one can use simulation methods
such as Statistical Blockade [SR07, SR09] that can significantly improve the efficiency
when analyzing rare events. Additionally, one can use majority voting by repeated
measurements and/or circuit duplication to get significantly stricter probability bounds,
as described in section 3.2.8.

∆CU
A = C0.99 − C0.01 is the region at which the CaLIAD output is not reliable. Smaller

values of ∆CU
A mean better performance. One can see from table 4.2 that the two-point

calibration method outperforms the single-point calibration method approximately by
a factor of two with respect to ∆CU

A .

nmin is the minimum required chain length. It is determined such that the right VDL
evaluation stage r is still within the chain length for all Monte-Carlo instances, i.e.
r ≤ nmin always holds.

The CaLIAD represents a significant improvement of detection performance compared
to previous probing detectors. For example, the optimized LAPD from section 3.2.6
exhibits an uncertainty region of ∆CU

A = 14 fF, whereas the CaLIAD has a worst case
uncertainty region of 10 fF; with two-point calibration, 5 fF could be achieved.

Another advantage of the CaLIAD is its flexibility with respect to calibration: When
using single-point calibration, the detection thresholds can be shifted by adjusting the
safety margin m; in the case of two-point calibration, the reference capacitance Cref can
be chosen according to the requirements.

The value Cref has been selected such that 20 fF are detected at all corners: The best
microprobes with respect to input capacitance that were found are GGB Model 28/29
[GGBb] with an input capacitance of 40 fF, as well as GGBModel 18C/19C [GGBa] with
an input capacitance between 20 fF and 60 fF depending of the transition time of the
measured signals. Therefore, the absolute worst case attack capacitance is considered
to be 20 fF.

51

4 The Calibratable Lightweight Invasive Attack Detector

Table 4.3: Worst case corner detection performance of different CaLIAD calibration
methods.

calibration method CWCC
0.01 CWCC

0.99 ∆CU
A

single-point (m = 4) 6 fF 20 fF
14 fF

worst case at corner 0 °C, 1.08 V 0 °C, 1.08 V
single-point (m = 5) 9 fF 23 fF

14 fF
worst case at corner 0 °C, 1.08 V 0 °C, 1.08 V
two-point 9 fF 20 fF

11 fF
worst case at corner 0 °C, 1.08 V 0 °C, 1.08 V
LAPD 12.0 fF 39.4 fF 27.4 fF

Table 4.4: Area, Timing and Energy Comparison of CSS, PAD, LAPD and CaLIAD.
area a [GE] cycles energy [fJ]

CSS [CDG+14] 8081 – 7.01× 1012 s−1

PAD [MWS12] 549 (for B = 2) 50-100 n/a
LAPD ≤ 48 ·B (for B > 2) 2 981 (for B = 2)

optimized LAPD (section 3.2.6) ≤ 109 ·B (for B > 2) 2 1131 (for B = 2)
CaLIAD ≤ 352 ·B (for B > 2) 1 1154 (for B = 2)

4.2.3 Corners

An analysis of voltage and temperature corners has been performed to determine
the worst case corner values of CWCC

0.01 and CWCC
0.99 with respect to varying environ-

mental conditions. The used corners were ϑ ∈ {0 °C, 27 °C, 85 °C} and VDD ∈
{1.08 V, 1.2 V, 1.32 V}. This gives results comparable to the the LAPD corners. To ob-
tain the threshold capacitances, at first, a calibration at the nominal corner ϑ = 27 °C
and VDD = 1.2 V was conducted. Then, each corner was observed and the worse of the
two capacitance values of either probing L1 or L2 was selected. Eventually, the worst
case values of all nine corners were taken. They are shown in table 4.3.

The uncertainty region was observed to increase by at most 6 fF. Note that two-point
calibration value of CWCC

0.99 is the desired target value that was used to determine the
reference capacitance Cref .

4.2.4 Resource Usage

Table 4.4 compares the area usage, timing and energy consumption of the CaLIAD with
other probing detection circuits.

52

4.2 Results

Table 4.5: area of the CaLIAD elements in gate equivalents.
adrivers 4
at0 8
afast 4
aslow 1.6
alatch 8

The CSS [CDG+14] aim at covering large parts of a chip with an active shield using
Advanced Encryption Standard (AES) as a random pattern generator. Similar to the
CaLIAD, the PAD [MWS12] and the LAPD detect timing imbalances of symmetric
lines, but they use different measurement concepts.

The area a in GEs can be expressed as

atotal = B ·
(
adrivers + 1

2at0 + n · (afast + aslow + alatch)
)

(4.16)

where B is the number of bus lines to be protected in parallel, adrivers denotes the area
of the driving stages before and after the bus, at0 represents the area of the initial delay
element t0; afast, aslow and alatch represent the area of one CaLIAD stage element. Note
that there exist alternative, more area efficient ways to protect multi-line buses; this
will be discussed in chapter 5.

Each element in equation (4.16) is computed as follows:

a = 1
Aref

(
L2 · W

L
· t · (1 + s)

)
(4.17)

Aref is the absolute area of the smallest NAND gate HS65_LS_NAND2X2, L is the channel
length of the transistors, which is a constant of L = 0.06 µm in this case, W

L
is the

nMOS transistor aspect ratio, which is used to tune the delay of the chain elements and
has a default value of W

L
= 10, t is the count of nMOS transistors of the stage under

consideration, and s is a technology dependent pMOS transistor aspect ratio scale factor,
which is s = 2.2 in this case.

Table 4.5 shows the area of the stages based on equation (4.17).

A chain length of n = 25 was assumed, which is the minimum length for which calibra-
tion was possible at all Monte-Carlo simulations for all described calibration methods
and safety margins. Inserting the values from table 4.5 into equation (4.16) results in
a total area of 352 gate equivalents. The data of CSS and PAD as well as the LAPD
area are taken from section 3.2. The optimized LAPD was re-implemented to get an
estimation for the power consumption; its dimensions were obtained by inserting the
raw transistor dimensions into equation (4.17). While no energy consumption is avail-
able for the PAD, it is expected to be significantly higher as when compared to the
CaLIAD as the PAD requires 50 to 100 cycles in which a large capacitor is charged. It

53

4 The Calibratable Lightweight Invasive Attack Detector

is difficult to make a timing and energy consumption comparison with the CSS as the
CSS is supposed to run continuously.

The CaLIAD is second best with respect to area after the LAPD implementations. Its
power consumption is comparable to the LAPD. It has a superior detection performance
and a faster response time compared to PAD and LAPD (the CSS are not directly
comparable in these terms).

Furthermore, as the CaLIAD offers more parameters and therefore more degrees of
freedom than the LAPD, one can presume that systematic optimization can yield better
results as well. First results have been published by Girardi and Graeb after the work
on this thesis has been finished; they could get the number of chain elements down to
n = 8 at 100% yield on a 130 nm technology [GG20].

4.3 FPGA Implementation

A FPGA was used as a proof-of-concept implementation platform to demonstrate its
functionality on real digital hardware. Furthermore, a temperature sweep was performed
in a climate chamber to analyze its reliability over temperature changes. This was a joint
work with Prof. Emili Lupon from Escuela Tecnica Superior de Engineriya Industrial
de Barcelona, which is part of the Universitat Politècnica de Catalunya.

4.3.1 Design

An Altera/Intel Cyclone III FPGA, model EP3C16F484C6, was used for the experi-
ments conducted. It is implemented in a 60 nm technology [Alt15]. The majority of the
28x40 internal blocks of the FPGA are Logic Array Blocks (LABs); other blocks imple-
ment memory and multipliers or are reserved. One LAB consists of 16 Logic Elements
(LEs) and a local interconnect bus. Each LE contains a four-input Lookup Table (LUT)
and a flip flop.

The synthesis environment Quartus II allows placement of components down to a gran-
ularity of LEs. Routing can not be enforced, but a sparse regular architecture is a good
practice to get balanced delays. Furthermore, post-routing simulations can be employed
to estimate the timing behavior before testing hardware implementations.

As the CaLIAD is an asynchronous design taking advantage of timing properties, the
following components must be designed with care:

• It shall be possible to emulate an attack on either L1, L2, both lines, or to disable
the attack. As it is not possible to emulate a real capacitive load on an FPGA,
an abstract model was chosen to be used to introduce an additional small delay
to the lines for which an attack is emulated. During early simulations, it was

54

4.3 FPGA Implementation

observed that the LUT inputs named DATAD exhibit an internal propagation delay
in the magnitude of 60 ps, whereas another input named DATAC shows an inter-
nal propagation delay of approximately 120 ps across all observed LUTs without
considering the output load. The difference is approximately in the same order of
magnitude as the delay introduced by a probe in the ASIC technology used. This
makes it possible to configure a LUT as a switchable delay element.

• The initial delay t0 can be implemented as a combination of a coarse and a fine
delay. For the coarse delay, one can make use of the inherent routing delays
between cells and by forcing signals to pass through additional LUTs acting as
buffers. Fine delays can be implemented by additional dummy gates increasing
the load and hence the interconnect delay.

• The latches are implemented using a LUT with a feedback from the output back
to an input. Note that this approach results in an inherent imbalance of feed-
back paths compared to the ASIC implementation. Furthermore, simulations have
shown that the interconnect and/or input load of the signals R and S (and, respec-
tively, R and S) is different.

• There must be a delay difference ∆t between the slow and the fast inverters of
the VDL chain. This can be accomplished by using the property of different
LUT inputs having different propagation delay, by different interconnect delays of
different LAB columns, and by introducing different loads at the inverter outputs.
Simulations have shown that the different loads of the latch inputs can be used to
accomplish different delays; this option turns out to exhibit the smallest ∆t ≈ 5 ps
out of all three available options.

Early experiments have shown a more symmetric timing behavior for daisy-chaining
LABs in a column compared to creating chains of rows. Therefore, four columns were
used to implement the VDL chain; each row implements a chain element. As there exist
28 rows in the FPGA that were used, the chain was designed to consist of 28 elements
in total. The four columns are highlighted in darker blue on the right side of figure 4.8,
which shows the layout of the CaLIAD implementation. From right to left, the columns
implement the fast inverter chain, the latches, the slow inverter chain, and eventually
a row of buffers that decouple the latches from the load of the post-processing gates.
The white column between the slow inverter chain and the buffers represents hardware
multipliers and is not used in this design. The dark blue area in the middle of the design
implements control and read out logic that was not subject to placement constraints.

4.3.2 Experimental Setup

A state machine was implemented that emulates the four cases, i.e. no attack, an
emulated attack on L1, an emulated attack on L2, and an emulated attack on both
lines. 10 000 000 iterations are performed for each case, and 28 counters capture the
frequency (i.e. number of events) of a “1” at each latch output. The results are sent

55

4 The Calibratable Lightweight Invasive Attack Detector

Figure 4.8: Layout of CaLIAD FPGA implementation.

Figure 4.9: FPGA in climate chamber.

56

4.3 FPGA Implementation

Table 4.6: Counter values captured at 20 °C.

k

emulated probe at line(s)
– L1 L2 L1,L2

count(Qk = 1)
1,2,. . . ,11 0 0 10 000 000 0

12 10 000 000 0 10 000 000 10 000 000
13 11 593 0 10 000 000 4609
14 9 999 780 0 10 000 000 9 999 310
15 1 0 10 000 000 0
16 10 000 000 0 10 000 000 10 000 000
17 9 730 190 0 10 000 000 9 379 770
18 10 000 000 0 10 000 000 10 000 000
19 9 999 710 0 10 000 000 9 998 106

20,21,. . . ,28 10 000 000 0 10 000 000 10 000 000

back to a computer through a Univeral Asynchronous Receiver/Transmitter (UART)
interface for further evaluation.
To verify the temperature stability of the design, the FPGA was placed into a climate
chamber, as shown in figure 4.9. With this setup, a temperature sweep from 0 °C to
70 °C was performed.

4.3.3 Results

An initial CaLIAD implementation was tested outside the climate chamber. However,
irregularities have been detected that are described as follows.
An extra LUT tuning the initial delay t0 had to be inserted at the slow inverter chain in
order to see a transition between zeroes and ones in the range of the VDL chain. This
is presumably caused by a deviation of interconnection delays from the post place and
route simulations.
Table 4.6 shows the frequency of ones for 10 000 000 iterations after the aforementioned
offset correction. One can see that emulating an attack on either L1 or L2 exceeds the
range of the chain: all elements are either zero or one.
The other two cases, i.e. no attack or attacking both lines simultaneously, show an
almost identical behavior. Latch outputs Q13, Q14, Q15, Q17 and Q19 are not constant –
supposedly because of metastability and noise – while all other elements have a constant
output of 0 or 1. Note that the observed numbers at the non-constant positions may vary
significantly when the experiment is repeated. However, the positions that remained
constant or non-constant did not change in all repetitions.

57

4 The Calibratable Lightweight Invasive Attack Detector

For the non-constant positions, a monotonic increase of counter values is expected
for increasing counter indices. However, the observed sequence of counter values is
not monotonic. This implies there have to be results in the shape of (Q1, . . . , Q28) =
0000000000011101111111111111, i.e. bubbles. It can be considered as a result of three
different effects.

First, post place and route simulations have shown a timing irregularity between row
Y14 and Y15. This can explain the effect that (Q14, Q15) = 10.

Second, one can observe that the counter values in the middle of the chain alternate be-
tween increasing and decreasing from one element to another. Note that the CaLIAD im-
plementation alternates between low active NAND latches and high active NOR latches;
furthermore, post place and route simulations have shown different LUT propagation
delays for rising and falling edges at the input. Consequently, a connection between
these two effects can be assumed.

Third, one can see that there exist situations where (Q12, Q14) = 10. Both latches are of
the same type and the simulator does not point out any timing imbalances after routing.
It is possible that metastability is the cause of this effect, but further investigations are
required for clarification.

When performing the temperature sweep, it could be noticed that the positions with
constant counter values of 0 or 10 000 000 do not change over the full temperature sweep
between 0 °C and 70 °C. The only observable temperature effect was an increase in
variation of counter value with increasing temperature at certain non-constant counter
positions. Therefore, this design is considered temperature stable.

4.4 Conclusion

The CaLIAD is able to detect probing attacks by timing measurements through a Vernier
Delay Line. Its performance has been evaluated with respect to manufacturing varia-
tions and environmental corners. It was shown that the CaLIAD is able to outperform
comparable circuits such as the LAPD with respect to detection performance.

While its area usage is between the Probe Attempt Detector and the LAPD, it only
consists of digital components such as the LAPD; however, it can also be calibrated like
the PAD, thus exhibiting an outstanding detection performance, such as an uncertainty
region as low as ∆C = 5 fF under nominal conditions and 11 fF at the worst case corner.
A qualitative comparison with existing countermeasures is shown in table 4.7. The
FPGA implementation has demonstrated the practical ability to detect probes, which
were assumed to introduce a delay of 60 fs, on real hardware of a similar technology
size than the technology used for simulations. Therefore, the use of the CaLIAD circuit
concept is recommended for future probe detection designs that prefer a high sensitivity
and improved reliability over a very small area.

58

Table 4.7: Qualitative advantages of the CaLIAD
over other invasive attack countermeasures.

alternative
CaLIAD advantages

countermeasure

meshes
detection of backside attacks
very low circuit overhead

bus encryption no latency

PAD [MWS12]
no analog design flow needed

no capacitor

LAPD
no transistor fine-tuning required
better detection margin/reliability

5 System Integration

The previous chapters have presented concepts to detect timing asymmetries in pairs
of lines that are intended to be symmetric. As microprobes cause such asymmetries by
their capacitive load, these detectors can be used to raise an alarm when an adversary
uses them for an invasive attack.

The circuit examples described in the previous chapters were focused on protecting a
pair two of lines. This chapter shows how to integrate them into parallel on-chip buses.

Section 5.1 will give an overview of buses in general. The challenges of integrating prob-
ing detectors are discussed in section 5.2. These challenges are addressed in section 5.3
that proposes implementation concepts to protect an on-chip bus. Section 5.4 presents
the results of an implementation of a probing detector into a real-world bus system.
Eventually, this chapter is concluded by section 5.5.

5.1 Introduction

On-chip buses provide the interface between core components of a microcontroller, such
as CPU core, memories and integrated peripherals. As their interconnection infrastruc-
ture concentrates transfers of potentially confidential data to few physical lines, it is a
comparably worthwhile invasive attack target.

“Classic” bus architectures are considered here, where one or more bus masters can
issue read or write requests to addresses. A part of these addresses is used to resolve the
addressed slave, and another part of the address is passed to the slave. After processing
the request, the slave sends an acknowledge signal to the master, which is, in case of a
read request, accompanied by the returned data.

In general, the signals that make up a bus can be grouped into address, data and control
signals. The terms “address bus” and “data bus” usually refer to the address or data
part of a bus system rather than being an independent bus. This notation will be
applied in the following chapter as well. Masters are bus participants that send requests
to slaves. This is accomplished by placing an address on the address bus and activating
the corresponding control signals to notify about the request. Then, if the master has
requested a read operation, the addressed slave puts the data on the data bus, which is
read by the master; in the case of a write operation, the master puts the data on the
data bus and the corresponding slave processes it.

61

5 System Integration

Buses can be classified by different properties. For example, they can be distinguished by
the protocol features they support. Modern buses offer features such as bursts, pipelined
transfers, split transfers or out-of-order transfers in order to reduce the number of delays
on the bus, thus improving its utilization [PD08]. Implementing an improvement of bus
utilization usually comes with the cost of an increased complexity of bus participants
and/or the interconnect logic; consequently, the trade-off between complexity and bus
performance needs to be found based on the use case. For this reason, even modern bus
protocols such as Advanced Microcontroller Bus Architecture (AMBA) offer lightweight
versions of bus protocols, such as ARM does with AXI4/AXI5-Lite [ARM17]. Other
less commonly known protocol features target use cases differing from what standard
buses can offer. Examples are streaming [ARM10] or broadcasting; the latter can be
useful for cache coherency protocols [PD08].

Another factor to distinguish different buses and their implementations is the intercon-
nection topology. It determines how many bus transactions can take place simultane-
ously; in one extreme, a shared medium only allows one transaction at a time, whereas
in the other extreme, a full bus crossbar, also called point-to-point bus, maximizes the
number of parallel transfers. Besides the extremes, there are other approaches such
as hierarchical topologies, partial crossbars or rings, that can be considered a trade-
off [PD08]. The bus topology does not necessarily influence the interface shown to
masters and slaves; for example, a shared multiplexed bus can have the same control
signals for arbitration as a crossbar switch bus, as this is the case in the open source
WISHBONE bus [Ope10].

The electrical properties of a bus are also important when classifying it. In particular,
one can distinguish between the tri-state and multiplexed operation of a shared bus. In
the tri-state implementation, all bus participants are connected to the bus lines without
intermediate buffers; when a transaction occurs, only the involved parties activate the
output drivers, while the drivers of all other bus participants are in the tri-state mode.
In this case, the data lines can be operated bi-directionally, i.e. for read and write opera-
tions. This is shown in figure 5.1a. When implementing a shared bus using multiplexers,
the data lines for the read and write direction are physically separate. Multiplexers pass
through the data from one master to all slaves on the address bus as well as on the write
direction of the data bus; vice versa, multiplexers on the read data bus forward the data
from one slave to all masters. A simplified example of a multiplexed bus is depicted in
figure 5.1b.

In earlier days of bus systems, tri-state buses were prevalent due to their simplicity and
low number of transistors needed. However, the length of lines without intermediate
drivers becomes challenging with decreasing transistor sizes; an increasing line length
with one driver leads to a quadratic increase of delay, whereas the delay increase is only
linear when intermediate buffers are used [WE93,NHEW10]. Intermediate buffers can-
not be used with tri-state buses, though; furthermore, it performs worse with respect to
power consumption compared to multiplexed buses, and creates challenges when debug-
ging [NHEW10,PD08]. Therefore, multiplexed buses have become prevalent nowadays.

62

5.1 Introduction

M1

M2

S1

S2

(a) Tri-state.

M1

M2

S1

S2

(b) Multiplexed.

Figure 5.1: different bus implementation concepts on electrical level; note that this figure
only shows the data bus.

63

5 System Integration

5.2 Integration Challenges

Today’s bus systems are quite complex, and a 100% coverage of buses by microprobing
detectors is hard to reach. Instead, it seems advisable to carefully select where exactly
probing detectors shall be introduced such that the benefit exceeds the circuit overhead.
An attack model, which describes the approach of an attacker, can help to find out
the exact assets that need to be protected. However, such a model depends on the
exact use case and environment; it shall answer simple questions like “what type and
amount of data shall be protected?”: is it only a small set of cryptographic keys of a
known algorithm, or the complete firmware image of a microcontroller, which can take
several hundreds of kilobytes or more? Can probing detectors be combined with other
countermeasures, such as encryption?

As soon as the parts of the bus to be protected have been identified, the questions become
more detailed. How can a bus that consists of B lines be protected by a microprobing
detector from the previous chapters, which has only been presented to protect two lines?
How can the detection cycles be injected into regular bus operations?

5.3 Solution

Instead of addressing the questions raised before one by one, two case studies will be
used for better clarity. In the course of these studies, different variants of implementing
certain details will become apparent; its benefits and drawbacks will be discussed in the
course of this section.

In the first case, a CPU core from figure 5.2 is considered. It fetches the instructions
from an encrypted bus, then passes them through an internal decryption unit, and
finally stores the plain instructions in an instruction register that serves as an input to
the instruction decoder and following logic. In this case, it is assumed that an attacker
wants to dump the firmware using the attack technique Linear Code Extraction that
was described in section 2.2. To do this, he prevents the CPU from performing branches
by forcing the “clock enable” input of the instruction register to a logical false value
with a probe, and he uses a second probe to capture the data on the bus iterating over
all bus lines.

Another use case considers a multiplexed bus with several masters and several slaves.
In particular, the data flow from a memory unit in the role of a bus slave to the CPU
core in the role of a bus master is considered. Figure 5.3 shows this setup. In the
middle, a multiplexer selects one of the inputs to be passed on to the CPU and the
other masters. This bus crosses boundaries between different circuit components, and
therefore exhibits significantly longer lines than there are in the CPU core case study.
It can consequently be expected that the lines are placed in more upper layers, which
makes them accessible more easily by front side probing. Also note the intermediate

64

5.3 Solution

B

encrypted
bus

CPU core

decryption
unit B

CE
D

CLK

instruction
register

execution logic

Figure 5.2: CPU core attached to an encrypted bus.

buffers both between source and multiplexer inputs, as well as between multiplexer
outputs and signal destination, which are inserted for improved propagation delay.

Memory CPU

Figure 5.3: Multiplexed bus; the figure only shows the data path from slaves to masters.

Based on these use cases, the following sections will explain challenges when integrating
probing detectors and discuss potential solutions.

The detectors are assumed to consist of a test signal generator that produces test pat-
terns, and an evaluation circuitry that generates a response based on the test patterns
and on the timing properties that are affected by microprobes. In most of the cases
that will be described subsequently, the exact test pattern waveforms and the contents
of the results do not need to be defined concretely, such that the concepts are applicable
to both LAPD and CaLIAD as well as other detectors. Any deviations, i.e. integration
concepts that are based on one concrete detector type, will be mentioned explicitly.

5.3.1 Considerations of Detector Placement

In the course of preparing a probing attack, an adversary needs to decide where to
attach probes for a successful attack with minimal effort. This decision must be taken
early in the attack process, as it may imply preparatory processing, such as removing
insulating material with a laser cutter, or using a FIB to re-route wires or add landing
pads for the probe tips.

65

5 System Integration

Considering the CPU core case study, the attacker has three options for probe placement.
Extracting the data from the encrypted bus segment, however, would require additional
knowledge about the encryption function and the used key material. The output of the
decryption unit seems like a good probing target, as all instructions to be executed are
seen here in plain text. The output of the instruction register would in theory yield
the same values; however, as the attacker has disabled its clock enable signal to prevent
branches from happening, a probe would only see one instruction being executed in an
infinite loop.

Consequently, a probe detection unit can be inserted between the output of the decryp-
tion unit and the input of the instruction register. A first question that can be raised
here is how the test patterns can be injected into this segment. One simple option
would be multiplexing between the decryption unit output and a separate test pattern
generator. However, in addition to the hardware overhead, this would leave the path
between the decryption unit and the multiplexer unprotected by the probe detector.
Alternatively, dummy instructions can be stored, for example, in the encrypted startup
code such that the decryption unit itself serves as a test pattern generator. In the case
of the CaLIAD, this could be a sequence of two words that generate simultaneous falling
transitions on all bus lines. A preceding instruction may instruct the control logic to
disable the instruction registers for these two cycles. The values from the CaLIAD
VDL chain can then be stored in special function control registers that can be evaluated
afterwards.

Considering the case study of the multiplexed bus, usual multiplexer implementations
only allow protecting one input per test signal generator. Evidently, this signal gener-
ator shall be inserted as close to the beginning of the line as possible, especially when
intermediate buffers split the line into several segments. At some stage, however, some
sort of multiplexing between signals of type asset and signals of type test signal cannot
be avoided; asset signals contain information that an attacker wants to extract by means
of microprobing, while test signals are used by a probe detector, but its contents are
not valuable to an attacker.

While the output of a multiplexer that combines asset signals and test signals is pro-
tected by a probe detector, the asset signal at the input is usually unprotected. This
conceptual problem can be mitigated when multiplexing takes place at a stage where
the assets are not accumulated yet to a single set of lines; for example, the test signal
generator may be integrated into a memory array, such that the internal multiplexers
can switch between bit lines containing assets, which are not yet accumulated to a single
bus, and test signal generators. This way, there is no segment that is unprotected and
aggregates all assets at the same time.

An example of this concept is shown in figure 5.4. It shows a memory array consisting
of seven rows and eight columns that is connected to the same output multiplexer than
the test signal generator of a probe detector. This way, the output of the multiplexer is
protected, and at the input, the assets are distributed over seven input lines, such that
an attacker would need to probe all of them to dump the contents of the memory.

66

5.3 Solution

test signal generator

Figure 5.4: Probe detector test signal generator integrated into memory array.

As an alternative to having a dedicated test signal generator, one can consider triggering
test cycles when the productive data transmitted on the bus is suitable. In the case of the
CaLIAD, this is true when two neighboring bits have simultaneous falling transitions.
This approach can be called online testing as it avoids additional bus cycles; it also
reduces area overhead, and in case that the implicit test signal source also carries assets
to be protected, it avoids the detector being “blind” at the multiplexer input, which
would be the case for a dedicated test signal generator, as described before. It may
however not always be possible to ensure that the transferred data allows testing all bus
lines before a critical operation.

Branches with intermediate buffers at the multiplexer output, as for example shown in
figure 5.3, prevent probe detectors from protecting the whole output tree. These limi-
tations can be addressed by either including probe detectors in all components that are
connected to the multiplexer outputs, or by electrical segmentation, i.e. disconnecting
inactive bus participants from the multiplexer output, for example by using transmis-
sion gates as switches. More exotic approaches may use entire multiplexers based on
transmission gates that allow interconnecting all input signals, or buffers that can be
bypassed, when performing a measurement cycle.

5.3.2 Triggering and Evaluation

The evaluation must be triggered early enough to prevent successful attacks. In the
CPU core use case, this means before the address space with the target code is reached,
in order to ensure that the linear code extraction attack is successfully prevented. This

67

5 System Integration

is especially the case when triggering the probing detection and evaluating the results in
software; in that case, for manipulating the instruction register and thus stepping over
the code linearly, it is sufficient for the attacker to reach the first non-branch instruction
of the target code.

To prevent linear code extraction, the detector must be run before reaching the target
address space. If the target CPU architecture supports an MMU, this can be accom-
plished by having different virtual address mapping for the startup code in ROM and the
target code in flash memory such that a page fault would occur when stepping linearly
through the virtual address space. Alternatively, it can be ensured that stepping over
the address space halts before reaching the target address (e.g. by locating the startup
code at a higher address, and preventing address wrap-around in hardware).

The action of triggering a measurement run, the evaluation of the result, and conse-
quently also the reaction, can be implemented in hardware or in software. Software
implementations can either use special extensions to the instruction set or special func-
tion registers comparable to configuring other peripherals that pause the normal circuit
operation to perform a test cycle. Interrupts can be used for triggering a test cycle by
hardware. As a less obvious alternative to interrupting regular operation to perform
measurements, which could be called offline testing, one can implement circuits that
detect occurrences of suitable test patterns during regular operation. In the case of the
CaLIAD, such test patterns would be simultaneous falling edges on neighboring bus
lines. Such an approach, which can be called online testing, is able to avoid interrup-
tions of the productive use. While the data on the bus is not generally optimized for
detection coverage, a dedicated sequence of data values can be placed on a bus before
security critical operations to ensure that all lines are tested.

From a security perspective, the actual triggering seems of minor importance, as long
as it can be ensured that certain checkpoints are only reached after a successful probing
detection cycle revealing that no probe is attached. The measurement itself obviously
takes place in hardware using the LAPD or CaLIAD circuits. The evaluation includes
storing the measurement result for further processing and interpreting it; evaluation and
measurement may also include self-tests against manipulation of the detection circuitry.

5.3.3 Security Considerations

The result evaluation and reaction are crucial from a security perspective, as the security
is defeated if an attacker can prevent the execution of reactions to an attack; reaction
means triggering an action, such as keeping the CPU in reset or erasing the memory,
when the result yields an alarm. The security is compromised if these steps can be
tricked into ignoring results that should raise an alarm. At first glance, it seems a good
idea to perform the evaluation in a hardware element that is frequently used for other
purposes as well; this would make malicious circuit modifications, such as, simplisti-
cally speaking, connecting an “alarm output” to ground, more difficult without leading

68

5.3 Solution

to other, unwanted effects. Following this argumentation, a software implementation
seems preferrable. In the case of the CaLIAD, it would read the output of the VDL
chain, compute the distance to a reference value stored in write-protected memory, and
eventually use this distance to obtain the pass/fail result. Depending on this result, it
would either continue regular program execution, or it would call a function that dis-
ables normal operation. However, note that in this case study, it is assumed that the
adversary has tampered with the CPU core in a way that allows skipping the execution
of instructions. Thus, the software must be written in such a way that no combination
of instruction skips can lead to bypassing the alarm when a probe is detected, or when
the check itself is skipped. It must therefore be protected against fault attacks either by
hardware or software redundancy [BECN+06]. Techniques aiming at maintaining the
integrity of the control flow that can be used are, for example, proposed by Moro et
al. [BHKL12,MHER14]. Alternatively, the evaluation and reaction can be implemented
in hardware. In that case, it is also advisable to keep critical signals, such as the “alarm
output” line, redundant.
Similarly important is the storage location and the way of accessing the calibration
values. Storing them in dedicated memory cells can facilitate attacks, as it may enable
tampering with the calibration values without affecting the data the attacker aims at
obtaining, for example by forcing or FIB editing attacks.
On the other hand, using regular memory for storing calibration values implies that
they need to be transferred over the bus, which is the probing target anyway. The
encoding of the calibration values influences how well an attacker can exploit that. If
the CaLIAD calibration value is stored as a thermometrical code, only the lines in the
neighborhood of the transition from 0 to 1 need to be tampered with; on the other
hand, for example, a binary representation of the transition position accompanied by a
checksum significantly increases the number of bits to be manipulated in order to alter
the calibration value.
Another factor to keep in mind is the resistance against forcing, which can be done using
microprobes or with FIB assisted circuit editing. In case of the CaLIAD, an attacker
could observe the calibration value and then connect the corresponding chain elements
to either VDD or GND accordingly. As a countermeasure, a system designer can require a
self-test before running the actual measurement; in a first test cycle, he can set the line
that is connected to the “reset” inputs of the latches in the VDL chain to the active
state, and set the line feeding the “set” inputs to the inactive state; he can then check
whether all latch outputs are Qi = 0. Likewise, in a second test cycle, the line feeding
the “set” inputs can be set to active, and the line driving the “reset” inputs to inactive,
such that all latches are expected to output Qi = 1.

5.3.4 Protection of More than Two Bus Lines

Another open point when implementing bus protection using the LAPD or CaLIAD is
the adaption to the number of bus lines B, as the detectors presented only can protect

69

5 System Integration

two lines in their basic form. In general, probes can be detected using B−1 comparisons,
which allow detecting B − 1 probes. A cautious designer may also implement the
comparison between line 1 and B, such that probing any line, including lines 1 and B,
causes two comparisons to fail.

The comparisons can be implemented in parallel using B−1 parallel detector instances.
This is shown in figure 5.5. The outputs of the detectors are not shown; they depend
on the actual type of detector (i.e. LAPD or CaLIAD). Note that this setup only
parallelizes capturing the results and still requires B − 1 comparisons; if calibration is
necessary, B − 1 individual calibration values need to be stored.

test signal
generator

detector

detector

detector

Figure 5.5: B bit bus with B − 1 parallel detector instances.

Alternately, one detector is sufficient when the bus lines are multiplexed. In that case,
two equally sized groups of lines shall be formed; for each comparison, one line is se-
lected from each group using two multiplexers. As an example, one detector input can
be multiplexed among all odd lines, and the other input can be multiplexed among all
even lines. As this setup implies performing the pairwise comparisons one after another,
the measurement time increases by a factor of B − 1 (or B, depending on the number
of comparisons) compared to the parallel setup, while the overhead of multiple detec-
tor instances is avoided. Note that the area required by the multiplexers can still be
significant. An example of the multiplexed setup is shown in figure 5.6.

A third alternative is obtaining the timing differences between neighboring lines, then
summarizing them as described later in this paragraph, and using a slightly modified
detector for the actual measurement. In simple terms, the timing difference of lines
can be determined by exclusive-OR gates, and the result can be summarized using an
OR gate. Regular XOR gates with inputs i and j need a minimum time for which
i ⊕ j = 1 holds to reliably produce a pulse at the output. As this may prevent small-
scale microprobes from being detected, Manich and Strasser proposed a Highly Time
Sensitive Exclusive-OR (HTS-XOR) gate [MS13], which always produces a pulse in the
case of falling transitions; the width of this pulse is sensitive to small changes of the
input timing. Therefore, the HTS-XOR gate is preferrable for this use case. When a
falling transition is fed simultaneously to the inputs of the bus lines, the output of the
OR gate will provide a pulse with a width that reveals the maximum timing difference of

70

5.3 Solution

test signal
generator

detector
Figure 5.6: B bit bus with one multiplexed detector instance.

neighboring lines. This setup is shown in figure 5.7; note that when using the CaLIAD,
which will be focussed here, the logic that generates the START and STOP signals needs
to be replaced by elements that derive these signals from the OR output pulse.

Merging the pairwise line comparison results into one single pulse, whose length can
be evaluated by a following detector, comes with the benefit of a low response time
despite the need for only one detector instance. In the case of the modified CaLIAD,
the PF1 only shifts towards the end of the chain, regardless of what line is probed.
Contrast to the original CaLIAD, this setup only needs sensitivity in this direction; this
allows to reduce the number of chain elements, thus saving more space. As a drawback,
it is recommended to compensate systematic timing imbalances, e.g. caused by slight
differences in routing, at the HTS-XOR input; otherwise, they would lead to a reduced
probe sensitivity. This approach does not allow to determine the line at which probing
has occurred; it can only give “pass/fail” results for the bus as a whole.

test signal
generator detector

Figure 5.7: B bit bus with a signal merging logic using HTS-XOR gates performing B
comparisons, and one adapted detector instance.

A proof-of-concept implementation of this approach is presented in section 5.4.2.

71

5 System Integration

5.4 Results

This section presents simulations that have been performed to verify the viability of
integration proposals into bus systems. The first set of simulations aims at showing
how a probing detector can be integrated into a WISHBONE bus [Ope10]. Then, the
combination of multiple lines using HTS-XOR gates in combination with a modified
CaLIAD is observed on an electrical level. Lastly, another set of electrical simulations
show how detection performance is influenced by intermediate buffers on bus lines.

For all analog simulations, a 65 nm technology from STMicroelectronics with the low
power standard threshold voltage transistors psvtlp and nsvtlp was used. Cadence
spectre 11.1.0 was used to simulate the circuit on a workstation with four AMD Opteron
6274 CPUs and 256 GB of RAM. The simulation sweeps were automated using SAL-
VADOR, as described in section 6.2.

5.4.1 WISHBONE Bus Integration

This section aims at demonstrating the practical feasibility to integrate probing detec-
tors into a multiplexed bus system using the WISHBONE bus. This bus system was
chosen for its flexibility with respect to interconnection architectures, and because the
availability of the VHSIC Hardware Description Language (VHDL) source code in the
public domain [Wis03] facilitates modifications such as the insertion of a probe emula-
tor. The VHDL models were simulated using GHDL. An address bus width of 16 bits,
as well as a data bus width of 32 bits, were used in the sample implementation. The
considered use case consists of two regular bus masters and two slaves; the data bus shall
be protected in both the write and the read direction. A multiplexed interconnection
topology as shown in figure 5.1b was used here.

The setup is shown in figure 5.8; it adds a detector controller and a passthrough slave
to the bus system. The detector controller contains a test signal generator, actual
detectors, and a finite state machine controlling these components, and the passthrough
slave forwards the data from the data input to the data output. The detector controller
is connected to the bus as a slave on the one hand in order to be configured and triggered
by other masters; this can happen before critical operations, such as the transmission of
a cryptographic key. On the other hand, the detector controller uses its master interface
to send the test signal and receive the response through the passthrough slave. Here, the
actual detector consists ofB = 32 parallel CaLIAD instances to allow parallel monitoring
of all bus lines. Registers after the CaLIAD latch chain capture the detector results for
reading them out later. Finally, the state machine starts a detection cycle when a “1”
is written to an internal control register by another master. Its state diagram is shown
in figure 5.9. After triggering a detection cycle, the result registers must be read out
and evaluated in software. In the given proof-of-concept implementation, the registers
contain the “bare” CaLIAD result as a thermometrical code; note that a productive

72

5.4 Results

detector
controller

M2

M1

pass-
through
slave

S2

S1

slave

master

Figure 5.8: Sample bus use case with two regular masters, two regular slaves and two
probe detection components.

implementation shall use a more manipulation resistant encoding, as described in section
5.3.3.

In the simulation environment, the read and write requests coming from masters M1 and
M2 are read from a text file.

This environment can monitor the data bus after the multiplexers in both read and
write directions. Additionally, a configuration logic in the passthrough slave allows
forwarding the address bus input instead of the data bus input as well in order to
monitor the address bus. This can be useful when secrets are contained in the addresses
accessed rather than data, such as when using an AES implementation with an S-Box
implemented as a lookup table. Note that the most significant bits of the address
that are used to select the slave cannot be observed that way without modifying the
interconnection logic; generally, this does not pose any limitations, as secret address
values usually do not cross slave boundaries.

With the given implementation, one detection run requires 71 bus cycles:

• At first, the passthrough slave is configured to either pass through the address or
data bus input to the data bus output. This means writing to a control register
and takes one bus cycle.

• The detection run is triggered by writing to a control register through the slave
interface of the detector controller. This also takes one bus cycle.

73

5 System Integration

Idle

RequestBusAccess

detector triggered

SendTestSignal

bus access granted

CaptureLatchOutput

Figure 5.9: State diagram of CaLIAD detector controller.

• In the current implementation, the state machine of the detector controller needs
five bus cycles to perform the detection and capture the results in the result
register.

• After that, the results can be read out from the result registers. There exists one
result register for each of the 32 pairs of lines; thus, this step takes 32 bus cycles.

• Finally, the reference values need to be read from memory. This is also assumed
to take 32 bus cycles; however, the actual number may vary depending on the
memory timing.

This does not include the comparison itself, which is expected to be done by the CPU
core in software.

Note that the exact timings on a complete System-on-Chip (SoC) device are highly
dependent on implementation details, such as the memory latency and the relation
between CPU and bus clock. Given one completely integrated SoC implementation,
deriving generically valid quantitative conclusions about performance would still be
challenging without further examination; therefore, such an analysis is left for further
work.

74

5.4 Results

5.4.2 Multi-Line Bus Protection with HTS-XOR Gates

As shown in section 5.3.4, the results of the pair-wise line comparisons can be merged
before the detector input to reduce the hardware effort needed for multiplexing or for
parallel detector instances. As depicted in figure 5.7, HTS-XOR gates can be used
for comparison, and an OR gate for merging the result, which is then evaluated by a
modified CaLIAD.

pulse

START

STOP

Figure 5.10: Signals START and STOP that must be derived from the pulse coming out of
the OR gate that merges the pairwise line comparisons.

The modifications comprise a glue logic that converts the pulse coming out of the OR
gate into two different signals START and STOP as shown in figure 5.10. These signals are
driving the VDL part of the CaLIAD: START feeds the input of the first slow inverter
tslow shown in figure 4.3 and STOP provides the input to the first fast inverter tfast.

cmp1,2
cmpB,1

pulse

init
S

R

Q S

R

Q STOP

RSTOP

START

preSTART

Figure 5.11: Example for glue logic between HTS-XOR gates and VDL part of CaLIAD.

A sample implementation of the glue logic is shown in figure 5.11, and the corresponding
timing is depicted in figure 5.12. To reduce the number of required gates, the logic uses
a NOR gate instead of an OR gate to merge the HTS-XOR outputs, as shown on the
left side. Note that the number of inputs depends on the number of protected bus
lines. In the example case of a 32 bit bus, the pull up network would contain up to
32 pMOS transistors connected in series; first simulations have shown that this heavily
deteriorates the rise time of the pulse signal. Experiments have shown that a single
pMOS transistor in saturation mode (i.e. the gate connected to the drain) exhibits a
significantly better timing performance.

The latch on the left consists of two NAND gates. Its output is set to Q = 1 before
the pulse using an external signal named init; the latch is used to generate the falling
transition of the START signal when the pulse begins. Note that a delay element is used

75

5 System Integration

STOP

START

RSTOP

preSTART

pulse

pulse

cmpB,1

cmp2,3

cmp1,2

init

?

?

?

?

Figure 5.12: Timing of example glue logic.

to compensate the extra delay that comes from the HTS-XOR gate; this allows reducing
the number of elements in the VDL chain.

The following latch consists of two NOR gates. It is used to generate the falling transition
of the STOP signal at the end of the pulse.

Nominal simulations were performed for the use case of an 8-bit bus. The same circuit
parameters as described in 4.2 were applied. For the previously described pull-up pMOS
transistor of the NOR gate, an aspect ratio of

(
W
L

)
PMOS

= 11 was used.

All 256 possible combinations of probes being attached to the bus lines were simulated
and grouped by the number of probes. CA = 20 fF was assumed as the attack capacitance
value.

The results are illustrated in figure 5.13. The x axis represents the number of probes
being attached, and the blue bars denote the mean value of the shift of PF1 compared
to the “golden” case without any attached probes. The black bar, which only becomes
visible for the case of four attached probes, represents the minimum and maximum PF1
shift. Note that the minimum and maximum values are equal in all other cases.

The area usage of this approach in GEs can be expressed as

atotal = B · aperLine + aNOR−Pullup + aglueLogic + n · aperChainElement (5.1)

76

5.4 Results

1 2 3 4 5 6 7 8
number of probed lines

0

1

2

3

4

5

6

re
la

ti
ve

p
os

it
io

n
of

fir
st

1

Figure 5.13: Shift of position of the first 1 depending on the number of probes attached;
the black line represents minimum and maximum values.

Table 5.1: Area of the individual parts of an HTS-XOR based CaLIAD in gate equiva-
lents.

adrivers 4
aHTS−XOR 8

aNOR−Pulldown 0.625
aNOR−Pullup 3.125
aglueLogic 24
afast 4
aslow 1.6
alatch 8

with

aperLine = adrivers + aHTS−XOR + aNOR−Pulldown (5.2)
aperChainElement = afast + aslow + alatch (5.3)

Using the data from table 5.1, and assuming a CaLIAD chain length of 25, as it was
done in chapter 4, one can summarize the area as

a = 377.1 + 12.6 ·B (5.4)

which scales significantly better than a full parallel implementation, the area of which
was estimated in table 4.4.

77

5 System Integration

attacked attacked segment
line 1 2 3
L1 ≤ −11 ≤ −11 -8
L2 10 11 7

Table 5.2: Shifts of the PF1 when loading different line segments with CA = 20 fF.

To conclude, the simulations confirm the ability of this concept to detect up to seven
probes that are simultaneously attached to an 8-bit bus in the nominal case. The area
estimation suggests a significantly lower area consumption compared to the stand-alone
CaLIAD implementation.

5.4.3 Handling of Intermediate Buffers

This section aims at analysing the effects of segmented bus lines on the detection capa-
bilities of probing detectors.

segment 1 segment 2 segment 3

C ′L

C ′L

C ′L

C ′L

C ′L

C ′L
generator detector

L2

L1

Figure 5.14: Simulated environment of a probing detector protecting a segmented bus
line.

For this purpose, the CaLIAD circuit was modified to contain three bus line segments
instead of one, which is shown in figure 5.14. The intrinsic capacitance of each line
segment was assumed to be divided by three accordingly, i.e.

C ′L = 1
3CL = 33 fF (5.5)

while the transistor dimensions remained unchanged.
The simulations were run using an attack capacitance of 20 fF that was alternatingly
applied to the three line segments of the two lines. Table 5.2 shows how the position
of the first 1 in the VDL chain shifts compared to the case without attack. Note that
without attack, the PF1 occurs at the 12th chain element; when L1 is attacked at
segment 1 or 2, the detector reaches the limit of the chain. Compared to the original
CaLIAD simulations presented in chapter 4, one can notice an increased sensitivity
caused by the reduced intrinsic capacitance per segment.

78

5.5 Conclusion

5.5 Conclusion

Not only the design of probing detectors is important to protect an integrated circuit
against invasive attacks; it is equally relevant how and where such detectors are inte-
grated into a device to provide adequate protection while keeping the hardware and
timing overhead acceptable.

By discussing different buses and interconnections as well as variants of integrating prob-
ing detectors, this chapter serves as a toolbox to system designers helping to understand
the pros and cons of the available options with respect to time, area and security level.

A proof-of-concept implementation of the CaLIAD in the WISHBONE bus has given
a basic example of a bus integration by explaining the necessary hardware components
and timing. Furthermore, different ways to use two-line probe detectors to actually
protect B bus lines were presented; in general, the implementation using HTS-XOR
gates is recommended when low area and time consumption is important. The last set
of simulations shows that the CaLIAD can successfully protect segmented bus lines.
Compared to the original scenario, it exhibits an increased sensitivity, which can be
beneficial to detect future smaller scale probes.

79

6 Simulation Environment

Analog simulation is an essential tool for the design space exploration of circuits that are
difficult to describe on a more abstract level; typical applications include amplifier or RF
circuits. However, they are also handy in the hardware security domain: Circuits such
as Ring-Oscillator based Physical Unclonable Functions (RO-PUFs) make use analog
properties of circuits that were designed for digital purposes. This is also true for
microprobing detectors that are the focus of this thesis.

6.1 Introduction

Well-known analog simulators are spice and spectre, which are often used in combination
with large Integrated Circuit (IC) design frameworks such as Cadence Virtuoso [Cad14].
These are focused on accompanying the complete chip design flow and offer tools for
digital design synthesis, drawing schematics, performing layout, parasitics extraction,
and analog simulations.

While the integration of tools for different IC design stages is very helpful if the actual
goal is producing an IC, this work focuses on analog simulations. These were used for
exploring the design space and improving the performance of microprobing detectors
on the one hand; on the other hand, they were needed to generate data for the plots
illustrating the performance of the simulated circuits.

The 65 nm technology library cmos065 by STMicroelectronics was used for simulations
using Cadence Virtuoso 6.1.5 with spectre 11.1.0.509.isr14 under the hood. As large
batches of simulations were to be carried out, several limitations could be observed
when using the Virtuoso graphical user interface.

• The configuration options for the simulation environment are distributed across
different graphical dialogues. This makes configuration error prone.

• Not all relevant messages generated by spectre are passed on to Virtuoso. This
includes warnings, such as floating nets, indicating errors in the simulated circuits.

• At some stages of the design, changes in hierarchical circuit components needed
to be made; for example, the definition of parameters of an inverter needed to be
changed when refactoring simulations. When performing a modification like this,
it is desired to maintain the ability to reproduce the results of previous simulations.

81

6 Simulation Environment

With Virtuoso, this implies copying all components or views in a circuit hierarchy
from the changed component up to the top-level test bench – which is not only
cumbersome, but also impacts clarity, as all circuit components reside in the same
namespace.

• Virtuoso allows parameters sweeps, i.e. performing a set of simulations with differ-
ent combinations of values assigned to circuit parameters, as well as Monte-Carlo
simulations for statistical analyses of manufacturing variations. However, Virtuoso
does not allow to combine both options in the version used.

• Virtuoso does not support certain features offered by spectre, such as using pa-
rameters to select different implementations of a component, e.g. to specify the
length of an inverter chain. Note that this has been solved in future versions of
Virtuoso [MA15].

• The graphical user interface needs to be visible while simulations are running. It
implies for long-running simulations on a remote server that third-party software
such as x2go is required to maintain a virtual display (i.e. X server), as otherwise,
connection losses would lead to aborting the simulations.

Considering the use case of design space exploration and/or circuit optimization, it is
possible to use dedicated circuit optimizers like WiCkeD [Mun] in many cases. Its
systematic approach usually outperforms hand-optimization of circuits significantly.
WiCkeD is well integrated into the Virtuoso workflow and can help optimizing circuits
without needing any additional tools.

However, there are certain limitations: for example, a performance figure that is subject
to optimization needs to be visible from one single simulation. It is not directly possible,
for example, to formulate constraints like “optimize the dimensions of a flip-flop such
that the setup time ts < ts,max is fulfilled in 99% of manufactured samples”, because
this would require multiple Monte-Carlo simulation iterations to obtain the formulated
performance value.

Hence, there are use cases of optimization where existing optimization tools are not
sufficient. Furthermore, the generation of performance plots can require simulations
that cannot be automated by Virtuoso, for example, when it is necessary to combine
Monte-Carlo simulations and parameter sweeps.

In the course of this thesis, a framework named SALVADOR has been developed to
automate large-scale simulations in a lightweight and portable manner. SALVADOR is
not an optimization tool; its purpose is rather

1. instantiating netlist templates (in fact, this is context-agnostic: the templates are
directories containing text files with variables, which makes the tool quite flexible),

2. managing the execution of simulations,

3. and collecting their results to have a machine-readable format for further post-
processing, such as plotting charts.

82

6.2 The SALVADOR simulation framework

While SALVADOR is not a scientific result by itself, discussions with fellow researchers
have indicated that the limitations mentioned above were also faced by others, and were
often answered by manual repetition of simulations or case-specific monolithic scripts
that were difficult to adapt to changing use cases or environments. Therefore, pub-
lishing the framework as open source software at https://gitlab.lrz.de/michael.
weiner/salvador and providing a description of the motivation and a comprehensive
documentation as a part of this thesis nevertheless seems to be a helpful contribution
helping the research community to increase tooling efficiency and avoid errors.

SALVADOR was designed to be as independent from the used simulation environment
as possible: the generation of simulation instances only comprises inserting variables
into text-file templates; the part that generates netlist instances is not aware of any
specifics of the netlist description, and therefore can be used with spectre, spice, and
any other simulator that uses text files as input. The result extraction is specific to
spectre, as it needs to parse log and result files that are generated by the simulator;
however, the modular design of SALVADOR allows an easy adaption to other use cases
without the need to understand or modify the rest of the code base.

The rest of this chapter is organized as follows: Section 6.2 discusses the tools of which
SALVADOR consists and proposes a workflow of how to use them. Then, section 6.3
elaborates potential future improvements and extensions to SALVADOR. Eventually,
section 6.4 concludes this chapter. Parts of this work have previously been published
in [WMB16].

6.2 The SALVADOR simulation framework

A lightweight simulation framework was developed to compensate the limitations de-
scribed in section 6.1. It is named Simulation Automation Library for Verification and
Analysis of Design Operating Regions (SALVADOR). The following design criteria were
considered during its design:

• All configuration settings of one set of simulations shall be concentrated in one
file.

• Combining parameter sweeps and Monte-Carlo simulations within one set of sim-
ulations shall be possible.

• The simulator statistics shall be made visible in order to detect potential mistakes
in the netlist design that do not cause the simulation to fail, and to give feedback
about optimization potential.

• The commands shall be run from the command line in order to support performing
simulations in virtual terminals such as screen or tmux over unstable Secure Shell
(ssh) connections.

83

https://gitlab.lrz.de/michael.weiner/salvador
https://gitlab.lrz.de/michael.weiner/salvador

6 Simulation Environment

• The different steps during execution (e.g. inserting parameters into netlists, run-
ning simulations, collecting results) shall be performed by independent programs,
as suggested by the Unix philosophy. This shall simplify adaptions to different
use cases; it shall be possible to re-use parts of the tools in different contexts,
and furthermore, users shall only need little context knowledge when they need to
make changes.

• The simulation environment shall not be aware of the netlist description language
as long as netlists only consist of plain text files. This avoids the potentially huge
implementation effort of implementing netlists parsers, and allows portability to
different simulators.

SALVADOR is a set of command line tools to accomplish these goals. Figure 6.1 gives an
overview of the simulation workflow and shows how the SALVADOR tools can interact
with each other. Rectangular boxes represent programs belonging to either SALVADOR
or to third parties, and parallelogram-shaped boxes denote data. Edges between the
nodes resemble the data flow; note that the data exchanged between combine and
instantiate is omitted here for reasons of simplicity. The following paragraphs will
describe the data formats and explain how to use the tools of the framework. Note that
the modular design also allows to re-use parts of SALVADOR in other contexts, e.g.
when other file formats are desired for result storage.

To begin, it is necessary to have a netlist template containing variables, as well as a
simulation parameter file that contains concrete values for these variables. The workflow
up to the point of netlist creation (i.e. the output of instantiate) will be demonstrated
using a sample circuit described below. The netlist template is a directory that only
contains text files with variables following the syntax of Python format strings [Pyt].
Note that the netlist files listed below have been simplified for better readability.

As an example, the circuit in figure 6.2 will be simulated. It contains two lines with
capacitive loads; the top line is loaded with C0 +∆C, the bottom line is loaded with only
C0. The bottom line has two additional inverters connected in series to compensate the
delay introduced by ∆C in the top line. An exemplary goal is characterizing the timing
difference ∆t that occurs at the output as a function of C0, ∆C and the transistor
dimensions. It is assumed C0 = 100 fF. spectre, the simulator, uses the following
variables:

• g_driversize describes the nMOS transistor aspect ratio of the first and last
drivers of both lines,

• g_delaysize describes the nMOS transistor aspect ratio of the delay chain at the
bottom line after the capacitor,

• g_delaylength is the number of inverter pairs that form a delay chain at the
bottom line after the capacitor,

• and g_deltac represents ∆C from the circuit diagram.

84

6.2 The SALVADOR simulation framework

auto_instantiate

auto_runall

instantiate

netlists

combine

simulator

results and logfile

result extractor

pickle

environment configuration

simulation parameters

netlist template

results2csv application-specific postprocessing

csv

Figure 6.1: suggested SALVADOR workflow.

C0 + ∆C

C0

∆t

t1

t2

Figure 6.2: example circuit for simulation description.

It is assumed that the listing below are the file contents of
tb_demo_simplified/input.scs, where tb_demo_simplified is the name of
the template directory.

85

6 Simulation Environment

Note that the composition of spectre netlists that are generated by Virtuoso is elaborated
in detail in the appendix in section A.5.

1 parameters g_driversize ={ fDriverSize :f}
2 parameters g_delaysize ={ fDelaySize :f}
3 parameters g_delaylength ={ dDelayLength :d}
4 parameters g_deltac ={ dDeltaCLine_fF :d}*1.0e -15
5
6 // test signal
7 //
8 // t/ns 0 100
9 // | . |

10 // _
11 // in_s _/ \
12 //
13 //
14 Vpulse (in_s 0) vsource dc=0 type=pulse val0 =0 val1 =1.2 period =100n \
15 delay =50n rise =10p fall =10p width =50n
16
17 // bus
18 I1_mid (in_s line1_s 0 vdd !) inv nmos_aspect_ratio = g_driversize
19 I1_out (line1_s out1_s 0 vdd !) inv nmos_aspect_ratio =10
20 I2_mid (in_s line2_s 0 vdd !) inv nmos_aspect_ratio = g_driversize
21 I2_out (l2del_s out2_s 0 vdd !) inv nmos_aspect_ratio =10
22
23 I2_delay (line2_s l2del_s 0 vdd !) inv_chain \
24 nmos_aspect_ratio = g_delaysize chain_length =2* g_delaylength
25
26 CLine1 (line1_s 0) capacitor c=100f+ g_deltac
27 CLine2 (line2_s 0) capacitor c=100f

Lines 14-27 contain instantiations of circuit elements according to the regular spectre
syntax. In the first four lines, one can see four SALVADOR parameter definitions:

1. fDriverSize of type f (float)

2. fDelaySize of type f (float)

3. dDelayLength of type d (integer)

4. dDeltaCLine_fF of type d (integer)

The simulation parameter file shown below contains values for these parameters.
1 {

86

6.2 The SALVADOR simulation framework

2 # circuit parameters
3 " fDriverSize ": (3,10,),
4 " fDelaySize ": (3,),
5 " dDelayLength ":(1,),
6
7 # line/ attack parameters
8 " dDeltaCLine_fF ": (0, 20,),
9 }

Its syntax is very similar to JavaScript Object Notation (JSON), but in fact it is Python
code describing a hash table (more precisely, a dict). This way, the parameters can be
annotated using Python-style comments; in contrast, JSON has no syntactic support
for comments. The Python type dict contains list of key-value pairs in the syntax
“key1: item1, key2: item2, ...”. In this context, keys represent variable names;
the associated items are sets of corresponding values to be inserted. The tool combine
parses this data and generates the Cartesian product of all sets, i.e. all combinations of
variables. In this example, four tuples would be generated: fDriverSize×fDelaySize×
dDelayLength× dDeltaCLine_fF = {(3, 3, 1, 0), (3, 3, 1, 20), (3, 10, 1, 0), (3, 10, 1, 20)}

combine supports two types of key-value pairs:

• In the simplest case, a key corresponds to one template variable, as shown in the
example above. In this case, keys are of type str containing the netlist variable
names, and values are tuples of a type that is consistent with the type specification
in the netlist template.

• It is also possible to define keys that correspond to more than one template vari-
able. This is useful when it is not desired to create all combinations of values for
given sets of variables, but specify the list of combinations by hand. In that case,
keys are tuples containing the netlist variable names, and values are tuples of
tuples containing the desired combinations.

For example, if only the combinations {(3, 0), (10, 20)} ⊂ fDriverSize ×
dDeltaCLine_fF shall be considered instead of all four combinations, it is possible to
replace lines 3 and 8 from the example with the line below.

1 (" fDriverSize ", " dDeltaCLine_fF "): ((3,0), (10 ,20)),

The output of combine is an array of hash tables in JSON (or, in JSON terms, an
array of objects), where each array element represents the values to be inserted into one
netlist instance. This data is used by instantiate to insert values into the template
variables of all files in the template directory. In the first example, instantiate would
create four directories named 00000, 00001, 00002 and 00003 that contain copies of
the template directory with the concrete values inserted into the template variables. In
addition, a file named params.values that contains the inserted values in JSON format
is added to each directory in order to maintain the relation between inputs and results.

87

6 Simulation Environment

auto_instantiate is a short shell script wrapping the calls to combine and
instantiate, which are usually called together. It assumes a directory and file
nomenclature that shall help keeping the simulations consistent. Note that this may
change in future versions; the reader is therefore advised to read the documentation at
https://gitlab.lrz.de/michael.weiner/salvador.

• A template named ${TEMPLATE_NAME} is stored in
templates/${TEMPLATE_NAME}. In the example above, ${TEMPLATE_NAME}
is tb_demo_simplified.

• paramsets/${TEMPLATE_NAME}/${SWEEP_NAME}.tuples is the name of the simu-
lation parameter file.

• By default, the sweeps (i.e. simulation instances) are stored in sweeps/
${TEMPLATE_NAME}.${SWEEP_NAME}. auto_instantiate also allows to specify
an alternative sweep directory, which is useful, for example, for cases where large
amounts of data produced by simulations shall only be stored in a temporary
location.

Up to this point, the workflow is completely context free; the only constraint is that the
template must be printable text. This gives a high degree of freedom with respect to the
selection of the simulator as well as its configuration. The workflow up to the template
instantiation can also be used in completely different contexts that are unrelated to
analog simulation.

auto_runall is then in charge of running the simulations and collecting the results.
It is written in a generic manner as well, but calls context-aware commands that are
specified in a configuration file. Specifically, auto_runall performs three tasks:

1. Each netlist instance is expected to contain an executable program that is executed
by auto_runall. The user can specify a number of simulations to be executed
in parallel. The name of the executable program is defined in the configuration
file as the variable ${RUN_SIMULATION}; in the case of Virtuoso-generated netlists,
this would be runSimulation. Note that simulations sometimes fail for technical
reasons, e.g. when all licenses are occupied. Therefore, auto_runall checks for
common errors using the simulator-specific command ${GET_PENDING_SIMS}.

2. After simulations, a program defined as ${GET_RESULTS} is called to collect the
results from all netlist instances and store them in one file.

3. The netlist directories are packed into an Lempel-Ziv-Markov chain algorithm
(LZMA)-compressed archive (tar.xz) for documentation purposes. Despite the
fact this is not needed in most cases, it allows evaluations going beyond the results
captured in the result file.

The following paragraphs will focus on the use case of spectre using the montecarlo en-
vironment, which allows to specify Open Command Environment for Analysis (OCEAN)
expressions within the netlist. Note that this environment can also be used for deter-
ministic simulations. Here, ${GET_RESULTS} is set to spectre_mc_getresults, which

88

https://gitlab.lrz.de/michael.weiner/salvador

6.3 Future Work

is included in the SALVADOR repository. It reads data as inputs from each simulation
instance and creates a tuple consisting of three dicts as follows.

• The simulation parameters are read from a JSON file named params.values that
is generated by the SALVADOR tool instantiate. After parsing, the first dict
contains the exact contents of this file.

• The OCEAN expressions are read from monteCarlo/mcparams, the correspond-
ing results are taken from monteCarlo/mcdata. The second dict contains the
OCEAN expression names as keys, and the corresponding results as a list of
float numbers. The number of Monte-Carlo iterations is equal to the number of
elements in the list.

• Simulation statistics are taken from spectre.log and stored into the third dict
with predefined strings as keys. This include simulation time (keys "time_cpu"
and "time_elapsed"), timestamp of beginning ("timestamp_started") and
end of simulation ("timestamp_stopped"), memory usage ("memory_peak") as
well as the number of errors ("errors"), warnings ("warnings") and notices
("notices").

These tuples are serialized and stored into a file for further processing. The module
pickle from the Python standard library is used for that purpose. Note that the tuple
of each instance is serialized individually, instead of, for example, being packed into
one large list that would contain all results. This avoids the need to accumulate all
results in RAM, which would have a heavy impact on performance for large simulations.
Thus, the tool that post-processes the results needs to call pickle.load() n times for
a sweep consisting of n simulation instances. However, the calls to this function are
usually made in an endless loop stopped by the EOFError exception, as this avoids the
redundant storage of the number of instances as metadata explicitly.
The format of the result file should allow the usage with other simulators as long as
they allow to define performance expressions and assign them names; only the available
statistics may vary.
As a last step in the generic workflow, results2csv converts the results into a Comma
Separated Values (CSV) file. This allows quickly reviewing the results, which is recom-
mended to be done before further case-specific processing. The results of the example
circuit are shown in figure 6.3. One line represents one simulated circuit; columns A
to D denote the input parameters that were referenced in the listing of the simulation
parameter file, and the resulting delay, which was described as an OCEAN expression
in the netlist template, is given in column E.

6.3 Future Work

The set of features supported by SALVADOR was sufficient to perform all analog simu-
lations for this thesis in a manner that is significantly more efficient than with Virtuoso.

89

6 Simulation Environment

Figure 6.3: output generated by results2csv from example circuit.

However, there are several features that may extend the usability for third parties or
for other projects.

As of now, OCEAN expressions can only be extracted by SALVADOR tools using the
montecarlo environment of spectre. One improvement would be implementing an alter-
native to spectre_mc_getresults that evaluates the OCEAN expressions based on the
raw data instead of having spectre perform this task. An open question here is where
the OCEAN expressions shall be inserted into the workflow. Possible alternatives are:

• providing them as part of the simulation parameters;

• providing them as part of the netlist. This is similar to the way that is implemented
now;

• introducing a new input to the result extractor. This would require an adaption
of the auto_runall workflow.

Furthermore, the support for other simulators – most prominently, spice or one of its
variants – can be implemented.

6.4 Conclusion

SALVADOR is a generic analog simulation automation framework designed to support
large-scale simulation sets. Its modular design allows using SALVADOR with any sim-
ulator that supports to receive inputs as text files. The simulator-specific parts of the

90

6.4 Conclusion

workflow are currently implemented for spectre, which was used for the analog simu-
lations in this thesis, and it is possible to add support for other environments without
detailed context knowledge of the other process steps or tools used. Compared to state-
of-the-art frameworks such as Cadence Virtuoso, it gives a higher degree of flexibility and
avoids errors caused by manually repeating non-automatable steps. In addition to result
extraction, it allows to parse the log file to detect possibly important warning messages
that would otherwise not attract attention. SALVADOR is open source software that is,
as of March 2020, available at https://gitlab.lrz.de/michael.weiner/salvador.

91

https://gitlab.lrz.de/michael.weiner/salvador

7 Conclusion and Future Work

In this thesis, mechanisms to detect microprobing were developed and evaluated with
respect to their performance; furthermore, it was elaborated how the detection mecha-
nisms can be integrated into existing integrated circuit concepts.

Certain evaluations required large sets of analog simulations. This included varying pa-
rameters in netlists, managing the parallel execution of simulations as well as summariz-
ing the results in a way that simplifies post-processing. For this purpose, SALVADOR
has been developed. It is a flexible open source framework that can parametrize netlists;
the simple syntax-agnostic approach of inserting variables into text files makes this ap-
proach usable for most analog simulators such as spectre or hspice; it may even be
helpful in use cases beyond analog simulation. SALVADOR then uses simple Unix shell
commands to allow executing a specified number of executions in parallel. Finally, it ex-
tracts the simulation results and stores them in a format well suited for post-processing;
this step is simulator-dependent, but the flexible architecture simplifies adaptions to
other use cases.

The Low Area Probing Detector has been developed as an area efficient microprobing
detector that compares the delay introduced by the parasitic capacitance with the delay
of an inverter chain. This approach has the lowest area overhead of detectors focused
on the intrinsic effects of microprobing. In the tested 65 nm technology, it is capable of
detecting the smallest commercially available microprobes that were found during the
work of this thesis; however, it still requires optimizing transistor dimensions for best
performance.

One disadvantage of the LAPD, as compared to, for example, the PAD is its inability
to compensate manufacturing variations. For this purpose, the CaLIAD has been de-
veloped. It compares the delay differences of neighboring lines using a VDL chain that
produces a thermometrical code as a response; this response can be stored as a calibra-
tion value. This approach allows a significantly better detection performance compared
to the LAPD and does not need time-consuming optimizations; still it exhibits a lower
area than the PAD.

The two presented detection concepts in its basic form only discussed how to protect
one line out of two, and without considering constraints of real bus systems. Therefore,
the last chapter of this thesis addressed how to integrate detectors in a real bus system.
It showed, for example, three different approaches how to protect more than two lines
– in most cases, the approach using HTS-XOR gates is recommended. Furthermore,

93

7 Conclusion and Future Work

a sample integration into the WISHBONE bus demonstrated what components and
operations are necessary to perform a detection run.

To conclude, this thesis has enabled to include the detection of intrinsic effects of mi-
croprobing into existing integrated circuits, such as microcontrollers. Contrast to many
other countermeasures, this also permits to detect less common attack techniques such
as backside probing.

In some cases, e.g. when protecting serial buses, it is desirable to protect all B lines
instead of only B − 1. In such a case, an additional reference line can be added; it can,
for example, be dimensioned with a slightly different driver size, such that probing the
reference line will change the timing behavior differently than the asset lines. Further
analysis in this direction can help applying the presented protection concepts to lines
other than classical buses, such as active shields, serial buses and Network-on-Chip
(NoC) interconnects.

Another aspect of which a further analysis seems helpful is security of the storage of
calibration values and the evaluation. It may depend on implementation details, such
as the chosen encoding of calibration values, or the selection of the component that
performs the actual pass/fail checking.

Lastly, but not less importantly, an ASIC implementation would be able to evaluate the
performance of detection circuits far beyond the capabilities of simulations.

94

A Appendix

A.1 Alpha-Power Model

The delay of a Complementary Metal Oxide Semiconductor (CMOS) driver can be
estimated using the alpha-power model for the transistors [SN90,BAE+99]:

d = k̃
C VDD

(VDD − Vt)α
(A.1)

C is the capacitive load at the buffer output and VDD denotes the supply voltage. Vt is
the threshold voltage of the transistors, α represents the velocity saturation coefficient
of the carriers and k̃ is called the trans-resistance that summarizes the remaining tran-
sistor parameters [BCCK07]. It is assumed that the technological parameters between
nMOS and pMOS transistors are balanced with respect to the output transition times.
Furthermore, it is assumed that the signals in the lines exhibit the full swing between
GND and VDD for Equation (A.1), otherwise the approximation would significantly de-
viate from the real behavior. This last assumption is quite reasonable since an attack
will always try to disturb the observed signals as little as possible.

Summarizing the transistor parameters and the supply voltage as Ω, one gets

d = ΩC (A.2)

where Ω is the lumped technological parameter

Ω = k̃
VDD

(VDD − Vt)α
(A.3)

The delay difference of two lines with equally dimensioned transistors and independent
line capacitances Ci and Cj can then be described as

∆d = dj − di = k̃
(Cj − Ci)VDD
(VDD − Vt)α

= Ω (Cj − Ci) (A.4)

95

A Appendix

A.2 Dependency between Input Slew Rate and Effects
of Mismatch Variations for Inverters

The LAPD principle of operation is based on the detection of the delay difference ∆tRS
arriving at the latch inputs. The transitions arriving at the latch are delayed by chains
d1, d2 and tD, tD being alternated between the two chains during the two operating
cycles. Process variations alter the propagating delay of these three chains in such a
way that the magnitude of ∆tRS becomes unstable at a certain degree and therefore less
predictable.

These effects cannot be avoided completely but diminished at a certain degree as it is
seen in section 3.2.4. In particular, after a first assessment it is observed that inverter
Dout has a significantly larger influence on the variability than the rest of stages and
therefore the optimization is further concentrated on this inverter.

To understand why this is the case, the focus can be put on the delay propagating model
of a single inverter that was presented by Shoji in [Shō88], which is summarized in this
section.

In Figure A.1, a simple inverter is shown with the corresponding input / output tran-
sitions. Input / output slew-rates [V s−1] are αI and αO respectively. The delay of the
gates is calculated at 50% of the signal levels and is symbolized by TOI . Internally, the
pMOS and nMOS transistors have transconductances [A V−1] that are represented by
bN and bP respectively, and have a big contribution to the switching speed of the output,
together with the load capacitance.

Tank
capacitor

BUS

		
A
D

PHASE-
DETECTORS

ALERT
SYNDROME

PROBE
ATTACK

CLOCK
GENERATOR

DOWNSTREAM
CIRCUITRY

vC vO

VDD
Vref

VDD

CP

S

vO
Vref

vC

CT

αI

αO

TOI
50%

(bN,bP)

Figure A.1: Input / output slew-rates and delay of an inverter.

The following paragraphs will analyze the two possible scenarios in which the variability
can disturb the propagating delay.

Inverter delay is independent of the input slew-rate Intuitively, it seems apparent
that if the input slew-rate is extremely fast (αI →∞), the propagating delay (TOI → t∞)
will exclusively depend on the inverter load capacitance and the (dis-)charging transistor
transconductance, which is bN for the falling output transition shown in figure A.1. In
each inverter, the delay will be affected by the variations of the (dis-)charging transistor
transconductance and the load capacitance dimensions (typically the input of the next

96

A.2 Dependency between Input Slew Rate and Effects of Mismatch Variations for Inverters

stage). These two elements will generate variability in the propagating delay (t∞) but
it will be independent of the input slew-rate variability produced by the previous stage.
Therefore, the total delay variability of a chain of inverters will be the sum of the
independent variabilities of each inverter stage, and it will typically become a normal
random distributed variable whose variance will be the sum of the variances of each
inverter delay.

This scenario is the most favorable in terms of reducing the effects of process variabilities.
Minimizing tactics are fundamentally based on placing strategies and enlarging the
dimensions of transistors in order to reduce the percentage of the variability over the
total physical dimensions. However, this is at the cost of more area and is only partially
applied until the range of the circuit tolerance is achieved.

Inverter delay is dependent of the input slew-rate When the input slew-rate αI
is significantly smaller than the output slew-rate αO, the delay of gate TOI becomes
sensitive to it too. Particularly, the degree of sensitivity follows a hyperbolic function
whose growing degree depends on the ratio between pMOS and nMOS transconduc-
tances. Therefore, if the previous inverter controlling the input slew-rate is considered,
its variability will propagate to the next inverter through the variability in the slew-
rate, and at the same time it will affect the next stage delay with a contribution much
stronger than the simpler addition seen in the previous scenario.

In the LAPD circuit in figure 3.1, this effect is clearly observed in the inverter Dout
because it receives the input from heavily loaded bus-lines and the output drives smaller
gates like the internal delay chain T and the multiplexer M.

The reduction of the variability effects in this scenario is achieved by doing a proper
balance of the pMOS and nMOS transconductances as it will be clear from the Shoji
delay model presented below.

To model the delay under variable input slew rate conditions, the transconductance ratio
β = bN/bP , the normalized input slew-rate Sl = αI/αO and the normalized inverter delay
Tinv = TOI/t∞ shall be defined first.

According to Shoji [Shō88], the delay can be approximated by the following closed
expressions if the transistor models are linearized and fixed to a zero threshold-voltage:

Tinv = 1 + 1
2(1 + β)

1
Sl

; Sl ≥
β

2(1 + β)

Tinv = 2
√

β

2(1 + β)
1
Sl

+ 1− β
2(1 + β)

1
Sl

; Sl <
β

2(1 + β)

(A.5)

Interestingly, for more realistic transistor models (including non-zero threshold voltages)
Shoji shows that the dependency of Tinv from Sl will follow the same law despite a closed
expression could not be found.

97

A Appendix

-2

0

2

4

6

8

10

0.04 0.4 4

Sl = 1

1
Sl (Normalized slew-rate)

β = 0.25

0.5

1.0

2.0

4.0

Higher sensitivity to the input slew-rate

Lower sensitivity to the
input slew-rate

N
or

m
al

iz
ed

de
la

y
(T

in
v
)

Region of best design

i.e. delay is extremely dependent on input
slew-rate (it follows an hyperbolic
function)

Figure A.2: Variation of the normalized inverter delay as a function of the normalized
input slew-rate [Shō88].

Equation (A.5) is plotted in figure A.2. At the x-axis, the normalized input slew-rate
is fixed and it has two main regions (separated by a dashed line): larger and smaller
than 1. For values larger than 1, the input transition is faster than the output while
for values smaller than 1, the input transition becomes slower than the output one. At
the y-axis, the normalized delay is presented. When it is 1, the delay of the inverter is
exactly t∞ and is equal to the delay when the inverter input switches very fast. Each
one of the curves represents a different β ratio going from 0.25 to 4.

When Sl is higher than one, all the curves closely coincide and are almost equal to 1.
This shows that the delay of the inverter is almost independent of the input slew-rate
Sl and that the transconductance ratio β does not have any importance with respect to
the process variations.

When Sl is smaller than one, curves diverge and thus the sensitivity of the inverter delay
becomes stronger to the input slew-rate Sl. This is clearly seen in the curve β = 0.25,
that for a variation of Sl from 0.05 to 0.042 (a relative change of 13%) the normalized
inverter delay changes from 6 to 8 approximately (a relative change of 29%). This strong
dependence can be reduced by tuning the β ratio at the proper value. In the plot, a
dotted rectangle indicates the region of best design. The transconductance ratio
should be adjusted such that the normalized delay is kept inside this region.

While this process cannot be done analytically given the complexity of the transistor
models, simulations can be used to find the best transconductance ratio β, i.e. like for
the critical inverter Dout.

98

A.3 LAPD model fit

A.3 LAPD model fit

This section aims at evaluating the accuracy of the LAPD model described in section
3.1.2, i.e. the inequalities (3.8) and (3.9) assuming (3.12) and (3.13), the latch consisting
of gates N1 and N2 in figure 3.1 was characterized to find out tH before analyzing the
complete circuit to determine the product kDoutΩ.
A sweep over ∆tRS at the latch inputs was performed to estimate the minimum “hold
time” tH for which the output is reliable, i.e.

∆tRS < 0 ⇒ p(Q = 0) > 0.99 (A.6)

∆tRS > 0 ⇒ p(Q = 1) > 0.99 (A.7)
hold. N = 2000 Monte-Carlo simulations were used with a Wilson score interval [Wil27]
at a confidence level of α = 0.01 to estimate the bounds of tH and obtained a value of
tH = 1.40 ps. This value summarizes the mismatch variation of the latch.
To continue the analysis, equation (3.6) was solved for

kDoutΩ = tD + tM2 − tM1 −∆tRS
C ′A

(A.8)

and then, the mean and variance of this value were determined at different C ′A sweep
points by simulation of the complete LAPD circuit; the values of tD, tM1 and tM2 were
captured as well. Three sigma distances from the mean E(kDoutΩ) were then used to
estimate the reliability bounds:

C∗0.01 = tD + tM2 − tM1 − tH
E(Ω kDout) + 3

√
Var(Ω kDout)

(A.9)

C∗0.99 = tD + tM2 − tM1 + tH

E(Ω kDout)− 3
√

Var(Ω kDout)
(A.10)

Table A.1 shows the approximated threshold capacitances using N = 2000 Monte-Carlo
simulations at different sweep points. The reference values are listed in the “typical”
column of table 3.6. One can see that with increasing C ′A, the difference C∗0.99 − C∗0.01
shrinks. Also, the error of C∗0.01 increases; in absolute terms, the maximum error occurs
with the initial design at C ′A = 40 fF is ∆C0.01 = 16.3 fF−11.2 fF = 5.1 fF. On the other
hand, an increasing C ′A also leads to a reduction of error for the C0.99 estimation: At
C ′A = 40 fF, the worst case occurs at the optimized design at ∆C0.99 = 32.7 fF−34.4 fF =
−1.7 fF. In relative terms, the approximation is more accurate for C0.99 at higher values
of C ′A than for C0.01 at low values of C ′A. Therefore, it seems recommendable to focus
on these values when using the model.
The proposed linear model appears sufficient for qualitative comparisons between dif-
ferent LAPD implementation variants and helps to significantly reduce the number of
required simulations; for precise quantitative analyses, a more elaborate model seems
advisable.

99

A Appendix

Table A.1: Approximated Threshold Capacitances.
C ′A sweep point

10 fF 20 fF 30 fF 40 fF

initial design
C∗

0.01
fF 10.0 13.7 15.4 16.3

C∗
0.99
fF < 0 75.6 44.4 36.3

optimized design
C∗

0.01
fF 13.0 16.8 18.4 19.3

C∗
0.99
fF 258.5 47.3 36.6 32.7

A.4 VHDL Source Code of CaLIAD Emulator

1 −− Slow i n v e r t e r chain i s implemented in column 35. 271 − 240 ps per i n v e r t e r
2 −− (LH − HL f a s t e s t c o n d i t i o n s) .
3 −− Fast i n v e r t e r chain i s implemented in column 37. 267 − 233 ps per i n v e r t e r
4 −− (LH − HL f a s t e s t c o n d i t i o n s) .
5 −− Delay d i f f e r e n c e between f a s t and s low i n v e r t e r chains i s 4 − 7 ps per i n v e r t e r ,
6 −− so 5.5 ps in mean (LH − HL f a s t e s t c o n d i t i o n s) .
7 −− Delay s e l e c t i o n i s implemented in column 35. Delay added when s e l e c t e d i s 61 ps
8 −− (f a s t e s t c o n d i t i o n s) .
9 −− An in te rconnec t de lay i s expec ted between de lay s e l e c t i o n and i n v e r t e r chains .
10 −− I t i s expec ted a l a r g e in t e rc onnec t de lay to column 37 (f a s t i n v e r t e r chain)
11 −− than to column 35 (s low i n v e r t e r chain) . The in t e r connec t d e l a y s shou ld be
12 −− ad jus t ed to f a c i l i t a t e a d i f f e r e n c e o f 77 ps (f a s t e s t c o n d i t i o n s) .
13 −− Latches are implemented in column 36. In terconnec t d e l a y s from columns 35 and
14 −− 37 must be cons idered .
15 −− The l a t c h e s ’ ou tput s d r i v e b u f f e r s implemented in column 33 , thus a l l o w i n g to
16 −− p o s t p r o c e s s them without modifying the d e l a y s in the i n v e r t e r chains .
17 −− Each l a t c h has a 24− b i t counter a s s o c i a t e d to i t to count the number o f t imes
18 −− the l a t c h becomes s e t due to transmiss ion o f a p u l s e on the transmiss ion l i n e s .
19 −− An experiment c y c l e c o n s i s t in the transmiss ion o f 10∗∗7 p u l s e s f o l l o w e d by the
20 −− t ransmiss ion o f the r e s u l t s to a PC through an asynchronous l i n k at 19200 bauds
21 −− with the f o l l o w i n g format (88 b y t e s in t o t a l) :
22 −− 1) A header symbol compound of th r ee 0xFF b y t e s .
23 −− 2) The count f o r each la t ch , s t a r t i n g with l a t c h in s t e p 1 and ending with l a t c h
24 −− in s t e p 28. Each count i s a 24− b i t in t eger , s p l i t t e d in th ree b y t e s . Bytes
25 −− are sent in big −endian order .
26 −− 3) The mode o f the experiment c y c l e (1 by te) .
27 −− Mode 0 = no transmiss ion l i n e i s be ing tapped (ba lanced response) .
28 −− Mode 1 = only transmiss ion l i n e o f s low i n v e r t e r chain i s be ing tapped (s e t
29 −− s i g n a l s are delayed , more l a t c h e s w i l l be s e t) .
30 −− Mode 2 = only transmiss ion l i n e o f f a s t i n v e r t e r chain i s be ing tapped (r e s e t
31 −− s i g n a l s are delayed , more l a t c h e s w i l l be r e s e t) .
32 −− Mode 3 = both transmiss ion l i n e s are be ing tapped (ba lanced response) .
33 −− Experiment c y c l e s are performed cont inous ly , incrementing the mode modulus 4 at
34 −− each new experiment c y c l e .
35
36 l ibrary i e e e ;
37 use i e e e . std_logic_1164 . a l l ;
38 use i e e e . numeric_std . a l l ;
39
40 l ibrary altera_mf ;

100

A.4 VHDL Source Code of CaLIAD Emulator

41 use altera_mf . altera_mf_components . a l l ;
42
43 entity two_chains i s
44 generic (
45 ve r s i on : s t r i n g := " experiment " −− " s imu la t ion " or " experiment "
46) ;
47 port (
48 clk50M : in s td_log i c ;
49 txd : out s td_log i c
50) ;
51 end entity two_chains ;
52
53 architecture e s t r u c t u r a l of two_chains i s
54
55 constant baudrate : i n t e g e r range 0 to 2∗∗10−1 := 10009600/19200;
56 type s t a t e s i s (s t a r t , measure , byte_load , byte_trans) ;
57 subtype count10M i s i n t e g e r range 0 to 2∗∗24−1;
58 type count10M_vector i s array (natura l range <>) of count10M ;
59 signal count5 : i n t e g e r range 0 to 7 := 0 ;
60 signal clk10M : s td_log i c := ’ 0 ’ ;
61 signal s t a t e : s t a t e s := s t a r t ;
62 signal mode : i n t e g e r range 0 to 3 := 0 ;
63 signal se l_delay_f , se l_delay_s : s td_log i c ;
64 signal pu l s e : s td_log i c := ’ 0 ’ ;
65 signal count : count10M ;
66 signal out_buf_1 , out_buf_2 : s td_log i c ;
67 signal out_mux_f , out_mux_s : s td_log i c ;
68 signal out_buf_f , out_buf_s : s td_log i c ;
69 signal out_buf_dly_s : s td_log i c ;
70 signal out_inv_f , out_inv_s : s td_log ic_vector (1 to 28) ;
71 signal out_load_buf : s td_log ic_vector (1 to 2) ;
72 signal q : s td_log ic_vector (1 to 28) ;
73 signal out_buf_q : s td_log ic_vector (1 to 28) ;
74 signal q_count : count10M_vector (1 to 28) ;
75 signal byte_count_txd : i n t e g e r range 0 to 87 := 0 ;
76 signal bit_count_txd : i n t e g e r range 0 to 10 := 0 ;
77 signal time_count_txd : i n t e g e r range 0 to baudrate−1 := 0 ;
78 signal bits_txd : s td_log ic_vector (10 downto 0) := " 00000000001 " ;
79 al ias data_txd : s td_log ic_vector (7 downto 0) i s bits_txd (8 downto 1) ;
80 signal txd_fu l l : s td_log i c := ’ 0 ’ ;
81
82 begin
83
84 div5 : process (clk50M)
85 begin
86 i f clk50M ’ event and clk50M = ’1 ’ then
87 i f count5 /= 4 then
88 count5 <= count5+1;
89 else
90 count5 <= 0 ;
91 end i f ;
92 end i f ;
93 end process div5 ;
94
95 clk10M <= std_log ic_vector (to_unsigned (count5 , 3)) (2) ;
96

101

A Appendix

97 automata : process (clk10M)
98 variable maxcount : count10M := 0 ;
99 variable maxtime : i n t e g e r range 0 to 2∗∗10−1 := 0 ;
100 begin
101 i f ve r s i on = " s imu la t i on " then
102 maxcount := 15 ;
103 maxtime := 15 ;
104 else
105 maxcount := 9999999;
106 maxtime := baudrate −1;
107 end i f ;
108 i f clk10M ’ event and clk10M = ’1 ’ then
109 pu l s e <= not pu l s e ;
110 case s t a t e i s
111 when s t a r t =>
112 i f pu l s e = ’1 ’ then
113 for i in 1 to 28 loop
114 q_count (i) <= 0 ;
115 end loop ;
116 count <= 0 ;
117 s t a t e <= measure ;
118 end i f ;
119 when measure =>
120 i f pu l s e = ’0 ’ then
121 for i in 1 to 28 loop
122 i f out_buf_q (i) = ’1 ’ then
123 q_count (i) <= q_count (i)+1;
124 end i f ;
125 end loop ;
126 i f count /= maxcount then
127 count <= count+1;
128 else
129 count <= 0 ;
130 byte_count_txd <= 0 ;
131 s t a t e <= byte_load ;
132 end i f ;
133 end i f ;
134 when byte_load =>
135 i f txd_fu l l = ’0 ’ then
136 bit_count_txd <= 0 ;
137 time_count_txd <= 0 ;
138 txd_fu l l <= ’ 1 ’ ;
139 bits_txd (0) <= ’ 0 ’ ;
140 bits_txd (10 downto 9) <= " 11 " ;
141 case byte_count_txd i s
142 when 0 => data_txd <= " 11111111 " ;
143 when 1 => data_txd <= " 11111111 " ;
144 when 2 => data_txd <= " 11111111 " ;
145 when 3 => data_txd <= std_log ic_vector (to_unsigned (q_count (1) /2∗ ∗16 , 8)) ;
146 when 4 => data_txd <= std_log ic_vector (to_unsigned ((q_count (1)/2∗∗8) mod 2∗ ∗8 , 8)) ;
147 when 5 => data_txd <= std_log ic_vector (to_unsigned (q_count (1) mod 2∗ ∗8 , 8)) ;
148 when 6 => data_txd <= std_log ic_vector (to_unsigned (q_count (2) /2∗ ∗16 , 8)) ;
149 when 7 => data_txd <= std_log ic_vector (to_unsigned ((q_count (2)/2∗∗8) mod 2∗ ∗8 , 8)) ;
150 when 8 => data_txd <= std_log ic_vector (to_unsigned (q_count (2) mod 2∗ ∗8 , 8)) ;
151 when 9 => data_txd <= std_log ic_vector (to_unsigned (q_count (3) /2∗ ∗16 , 8)) ;
152 when 10 => data_txd <= std_log ic_vector (to_unsigned ((q_count (3)/2∗∗8) mod 2∗ ∗8 , 8)) ;

102

A.4 VHDL Source Code of CaLIAD Emulator

153 when 11 => data_txd <= std_log ic_vector (to_unsigned (q_count (3) mod 2∗ ∗8 , 8)) ;
154 when 12 => data_txd <= std_log ic_vector (to_unsigned (q_count (4) /2∗ ∗16 , 8)) ;
155 when 13 => data_txd <= std_log ic_vector (to_unsigned ((q_count (4)/2∗∗8) mod 2∗ ∗8 , 8)) ;
156 when 14 => data_txd <= std_log ic_vector (to_unsigned (q_count (4) mod 2∗ ∗8 , 8)) ;
157 when 15 => data_txd <= std_log ic_vector (to_unsigned (q_count (5) /2∗ ∗16 , 8)) ;
158 when 16 => data_txd <= std_log ic_vector (to_unsigned ((q_count (5)/2∗∗8) mod 2∗ ∗8 , 8)) ;
159 when 17 => data_txd <= std_log ic_vector (to_unsigned (q_count (5) mod 2∗ ∗8 , 8)) ;
160 when 18 => data_txd <= std_log ic_vector (to_unsigned (q_count (6) /2∗ ∗16 , 8)) ;
161 when 19 => data_txd <= std_log ic_vector (to_unsigned ((q_count (6)/2∗∗8) mod 2∗ ∗8 , 8)) ;
162 when 20 => data_txd <= std_log ic_vector (to_unsigned (q_count (6) mod 2∗ ∗8 , 8)) ;
163 when 21 => data_txd <= std_log ic_vector (to_unsigned (q_count (7) /2∗ ∗16 , 8)) ;
164 when 22 => data_txd <= std_log ic_vector (to_unsigned ((q_count (7)/2∗∗8) mod 2∗ ∗8 , 8)) ;
165 when 23 => data_txd <= std_log ic_vector (to_unsigned (q_count (7) mod 2∗ ∗8 , 8)) ;
166 when 24 => data_txd <= std_log ic_vector (to_unsigned (q_count (8) /2∗ ∗16 , 8)) ;
167 when 25 => data_txd <= std_log ic_vector (to_unsigned ((q_count (8)/2∗∗8) mod 2∗ ∗8 , 8)) ;
168 when 26 => data_txd <= std_log ic_vector (to_unsigned (q_count (8) mod 2∗ ∗8 , 8)) ;
169 when 27 => data_txd <= std_log ic_vector (to_unsigned (q_count (9) /2∗ ∗16 , 8)) ;
170 when 28 => data_txd <= std_log ic_vector (to_unsigned ((q_count (9)/2∗∗8) mod 2∗ ∗8 , 8)) ;
171 when 29 => data_txd <= std_log ic_vector (to_unsigned (q_count (9) mod 2∗ ∗8 , 8)) ;
172 when 30 => data_txd <= std_log ic_vector (to_unsigned (q_count (10)/2∗ ∗16 , 8)) ;
173 when 31 => data_txd <= std_log ic_vector (to_unsigned ((q_count (10)/2∗∗8) mod 2∗ ∗8 , 8)) ;
174 when 32 => data_txd <= std_log ic_vector (to_unsigned (q_count (10) mod 2∗ ∗8 , 8)) ;
175 when 33 => data_txd <= std_log ic_vector (to_unsigned (q_count (11)/2∗ ∗16 , 8)) ;
176 when 34 => data_txd <= std_log ic_vector (to_unsigned ((q_count (11)/2∗∗8) mod 2∗ ∗8 , 8)) ;
177 when 35 => data_txd <= std_log ic_vector (to_unsigned (q_count (11) mod 2∗ ∗8 , 8)) ;
178 when 36 => data_txd <= std_log ic_vector (to_unsigned (q_count (12)/2∗ ∗16 , 8)) ;
179 when 37 => data_txd <= std_log ic_vector (to_unsigned ((q_count (12)/2∗∗8) mod 2∗ ∗8 , 8)) ;
180 when 38 => data_txd <= std_log ic_vector (to_unsigned (q_count (12) mod 2∗ ∗8 , 8)) ;
181 when 39 => data_txd <= std_log ic_vector (to_unsigned (q_count (13)/2∗ ∗16 , 8)) ;
182 when 40 => data_txd <= std_log ic_vector (to_unsigned ((q_count (13)/2∗∗8) mod 2∗ ∗8 , 8)) ;
183 when 41 => data_txd <= std_log ic_vector (to_unsigned (q_count (13) mod 2∗ ∗8 , 8)) ;
184 when 42 => data_txd <= std_log ic_vector (to_unsigned (q_count (14)/2∗ ∗16 , 8)) ;
185 when 43 => data_txd <= std_log ic_vector (to_unsigned ((q_count (14)/2∗∗8) mod 2∗ ∗8 , 8)) ;
186 when 44 => data_txd <= std_log ic_vector (to_unsigned (q_count (14) mod 2∗ ∗8 , 8)) ;
187 when 45 => data_txd <= std_log ic_vector (to_unsigned (q_count (15)/2∗ ∗16 , 8)) ;
188 when 46 => data_txd <= std_log ic_vector (to_unsigned ((q_count (15)/2∗∗8) mod 2∗ ∗8 , 8)) ;
189 when 47 => data_txd <= std_log ic_vector (to_unsigned (q_count (15) mod 2∗ ∗8 , 8)) ;
190 when 48 => data_txd <= std_log ic_vector (to_unsigned (q_count (16)/2∗ ∗16 , 8)) ;
191 when 49 => data_txd <= std_log ic_vector (to_unsigned ((q_count (16)/2∗∗8) mod 2∗ ∗8 , 8)) ;
192 when 50 => data_txd <= std_log ic_vector (to_unsigned (q_count (16) mod 2∗ ∗8 , 8)) ;
193 when 51 => data_txd <= std_log ic_vector (to_unsigned (q_count (17)/2∗ ∗16 , 8)) ;
194 when 52 => data_txd <= std_log ic_vector (to_unsigned ((q_count (17)/2∗∗8) mod 2∗ ∗8 , 8)) ;
195 when 53 => data_txd <= std_log ic_vector (to_unsigned (q_count (17) mod 2∗ ∗8 , 8)) ;
196 when 54 => data_txd <= std_log ic_vector (to_unsigned (q_count (18)/2∗ ∗16 , 8)) ;
197 when 55 => data_txd <= std_log ic_vector (to_unsigned ((q_count (18)/2∗∗8) mod 2∗ ∗8 , 8)) ;
198 when 56 => data_txd <= std_log ic_vector (to_unsigned (q_count (18) mod 2∗ ∗8 , 8)) ;
199 when 57 => data_txd <= std_log ic_vector (to_unsigned (q_count (19)/2∗ ∗16 , 8)) ;
200 when 58 => data_txd <= std_log ic_vector (to_unsigned ((q_count (19)/2∗∗8) mod 2∗ ∗8 , 8)) ;
201 when 59 => data_txd <= std_log ic_vector (to_unsigned (q_count (19) mod 2∗ ∗8 , 8)) ;
202 when 60 => data_txd <= std_log ic_vector (to_unsigned (q_count (20)/2∗ ∗16 , 8)) ;
203 when 61 => data_txd <= std_log ic_vector (to_unsigned ((q_count (20)/2∗∗8) mod 2∗ ∗8 , 8)) ;
204 when 62 => data_txd <= std_log ic_vector (to_unsigned (q_count (20) mod 2∗ ∗8 , 8)) ;
205 when 63 => data_txd <= std_log ic_vector (to_unsigned (q_count (21)/2∗ ∗16 , 8)) ;
206 when 64 => data_txd <= std_log ic_vector (to_unsigned ((q_count (21)/2∗∗8) mod 2∗ ∗8 , 8)) ;
207 when 65 => data_txd <= std_log ic_vector (to_unsigned (q_count (21) mod 2∗ ∗8 , 8)) ;
208 when 66 => data_txd <= std_log ic_vector (to_unsigned (q_count (22)/2∗ ∗16 , 8)) ;

103

A Appendix

209 when 67 => data_txd <= std_log ic_vector (to_unsigned ((q_count (22)/2∗∗8) mod 2∗ ∗8 , 8)) ;
210 when 68 => data_txd <= std_log ic_vector (to_unsigned (q_count (22) mod 2∗ ∗8 , 8)) ;
211 when 69 => data_txd <= std_log ic_vector (to_unsigned (q_count (23)/2∗ ∗16 , 8)) ;
212 when 70 => data_txd <= std_log ic_vector (to_unsigned ((q_count (23)/2∗∗8) mod 2∗ ∗8 , 8)) ;
213 when 71 => data_txd <= std_log ic_vector (to_unsigned (q_count (23) mod 2∗ ∗8 , 8)) ;
214 when 72 => data_txd <= std_log ic_vector (to_unsigned (q_count (24)/2∗ ∗16 , 8)) ;
215 when 73 => data_txd <= std_log ic_vector (to_unsigned ((q_count (24)/2∗∗8) mod 2∗ ∗8 , 8)) ;
216 when 74 => data_txd <= std_log ic_vector (to_unsigned (q_count (24) mod 2∗ ∗8 , 8)) ;
217 when 75 => data_txd <= std_log ic_vector (to_unsigned (q_count (25)/2∗ ∗16 , 8)) ;
218 when 76 => data_txd <= std_log ic_vector (to_unsigned ((q_count (25)/2∗∗8) mod 2∗ ∗8 , 8)) ;
219 when 77 => data_txd <= std_log ic_vector (to_unsigned (q_count (25) mod 2∗ ∗8 , 8)) ;
220 when 78 => data_txd <= std_log ic_vector (to_unsigned (q_count (26)/2∗ ∗16 , 8)) ;
221 when 79 => data_txd <= std_log ic_vector (to_unsigned ((q_count (26)/2∗∗8) mod 2∗ ∗8 , 8)) ;
222 when 80 => data_txd <= std_log ic_vector (to_unsigned (q_count (26) mod 2∗ ∗8 , 8)) ;
223 when 81 => data_txd <= std_log ic_vector (to_unsigned (q_count (27)/2∗ ∗16 , 8)) ;
224 when 82 => data_txd <= std_log ic_vector (to_unsigned ((q_count (27)/2∗∗8) mod 2∗ ∗8 , 8)) ;
225 when 83 => data_txd <= std_log ic_vector (to_unsigned (q_count (27) mod 2∗ ∗8 , 8)) ;
226 when 84 => data_txd <= std_log ic_vector (to_unsigned (q_count (28)/2∗ ∗16 , 8)) ;
227 when 85 => data_txd <= std_log ic_vector (to_unsigned ((q_count (28)/2∗∗8) mod 2∗ ∗8 , 8)) ;
228 when 86 => data_txd <= std_log ic_vector (to_unsigned (q_count (28) mod 2∗ ∗8 , 8)) ;
229 when others => data_txd <= std_log ic_vector (to_unsigned (mode , 8)) ;
230 end case ;
231 s t a t e <= byte_trans ;
232 end i f ;
233 when byte_trans =>
234 i f time_count_txd = maxtime then
235 time_count_txd <= 0 ;
236 bits_txd <= ’1 ’& bits_txd (10 downto 1) ;
237 i f bit_count_txd = 10 then
238 bit_count_txd <= 0 ;
239 txd_fu l l <= ’ 0 ’ ;
240 i f byte_count_txd = 87 then
241 byte_count_txd <= 0 ;
242 mode <= (mode+1) mod 4 ;
243 i f out_load_buf (1) = out_load_buf (2) then −− always t rue
244 s t a t e <= s t a r t ;
245 end i f ;
246 else
247 byte_count_txd <= byte_count_txd+1;
248 s t a t e <= byte_load ;
249 end i f ;
250 else
251 bit_count_txd <= bit_count_txd+1;
252 end i f ;
253 else
254 time_count_txd <= time_count_txd+1;
255 end i f ;
256 end case ;
257 end i f ;
258 end process automata ;
259
260 buf_1 : l c e l l port map (pulse , out_buf_1) ;
261 buf_2 : l c e l l port map (pulse , out_buf_2) ;
262 mux_f : l c e l l port map (
263 (not se l_delay_f and out_buf_2) or (se l_delay_f and out_buf_1) , out_mux_f) ;
264 mux_s : l c e l l port map (

104

A.5 Simulating with Cadence Virtuoso and spectre

265 (not se l_delay_s and out_buf_2) or (se l_delay_s and out_buf_1) , out_mux_s) ;
266 buf_f : l c e l l port map (out_mux_f , out_buf_f) ;
267 buf_s : l c e l l port map (out_mux_s , out_buf_s) ;
268 buf_dly_s : l c e l l port map (out_buf_s , out_buf_dly_s) ;
269 load_buf_f1 : l c e l l port map (out_buf_f , out_load_buf (1)) ;
270 load_buf_f2 : l c e l l port map (out_buf_f , out_load_buf (2)) ;
271 inv_f_1 : l c e l l port map (not out_buf_f , out_inv_f (1)) ;
272 inv_s_1 : l c e l l port map (not out_buf_dly_s , out_inv_s (1)) ;
273
274 inv_chains : for i in 2 to 28 generate
275 inv_f : l c e l l port map (not out_inv_f (i −1) , out_inv_f (i)) ;
276 inv_s : l c e l l port map (not out_inv_s (i −1) , out_inv_s (i)) ;
277 end generate ;
278
279 l a t c h e s : for i in 1 to 28 generate
280 latch_n : i f i mod 2 = 1 generate
281 l a t ch : l c e l l port map (out_inv_f (i) and (not out_inv_s (i) or q (i)) , q (i)) ;
282 end generate ;
283 latch_p : i f i mod 2 = 0 generate
284 l a t ch : l c e l l port map (not out_inv_f (i) and (out_inv_s (i) or q (i)) , q (i)) ;
285 end generate ;
286 buf_q : l c e l l port map (q (i) , out_buf_q (i)) ;
287 end generate ;
288
289 se l_delay_f <= std_log ic_vector (to_unsigned (mode , 2)) (1) ;
290 sel_delay_s <= std_log ic_vector (to_unsigned (mode , 2)) (0) ;
291
292 txd <= bits_txd (0) ;
293
294 end e s t r u c t u r a l ;

A.5 Simulating with Cadence Virtuoso and spectre

This section explains the regular workflow of analog circuit simulation using Cadence
Virtuoso, and it describes certain internals of the workflow that may be helpful for later
usage with SALVADOR.
The sample circuit shown in figure 6.2 is shall be used to illustrate the workflow. Here,
the focus is on the usage of Virtuoso, e.g. how parameters can be defined and how
performance figures can be measured.
At first, the circuit schematic is drawn in Virtuoso Schematic Editor, which is shown in
figure A.3. Values are also assigned to the component parameters here. Parameters can
also be defined here by using the expression pPar("parameter-name") in the Edit Object
Properties window. They can be used in the simulation, or, for hierarchical circuits, in
the component to be used in upper hierarchy levels. In the sample circuit, DriverSize
(aspect ratio of transistors driving the capacitors), DelaySize (aspect ratio of transis-
tors emulating the delay in the lower line) and DeltaC were used as such parameters.
Note that the transistors provided by the technology library offer a parameter named
mismatch that allows to configure the simulation of mismatch variations that will be
described later.

105

A Appendix

Figure A.3: Virtuoso Schematic Editor.

In the next step, the simulation environment is configured using Virtuoso Analog Design
Environment (ADE). This includes selection of the simulation type (e.g. transient simu-
lations, DC simulations, AC simulations), the environment temperature to be simulated,
or simulator options such as how many simulations are allowed to be run in parallel.

One can also chose between deterministic or Monte-Carlo simulations, which enable
statistical variations of transistor parameters emulating the manufacturing variations
based on data from the technology supplier. They can be classified into process or
global variations that affect all circuit elements in the same manner and mismatch or
local variations that affect each circuit element individually and independent from each
other [Cad11b].

In addition to statistical data, technology suppliers usually also provide corners that
allow to simulate corner cases (i.e. worst cases) of global variations. Using corners
adds an offset to certain internal transistor parameters, as defined by the technology
supplier, instead of applying statistics, in order to save simulation time. However, the
notion of a “worst case” is circuit dependent: For example, using the “slow” corner of
a technology may be a worst case for digital designs where the critical path needs to
be kept small, whereas differential circuits such as operational amplifiers might not be
affected as much by slow transistors as by a systematic mismatch of pMOS and nMOS
transistors. Therefore, it is recommended to use Monte-Carlo simulations in addition
to the default extreme cases unless the meaning of worst case is clearly defined for the
circuit under test.

The window that allows configuring corners and Monte-Carlo simulations is shown in
figure A.4. The drop-down boxes referred to under “GLOBAL VARIATIONS”: “Select
All” allows to chose between different corners (the most common corners are “TT” for
typical, “FF” for fast, and “SS” for slow corners) or enable Monte-Carlo process simu-
lations. In the latter case, the given technology allows to chose between two different
distributions, one for a single fab in Crolles, France named crolles or one for multiple
fabs named multifab. “LOCAL VARIATIONS”: “Select All” allows to enable Monte-

106

A.5 Simulating with Cadence Virtuoso and spectre

Figure A.4: corner and Monte-Carlo configuration options.

Carlo mismatch simulations. Using “Select all” for configuration is broken down to the
individual configuration elements below.
ADE requires to assign concrete values to design parameters that were defined in the
previous step. It is possible to assign multiple values, which are separated by a space,
to each parameter. This will trigger a repetition of the simulation with all given values,
which is called a sweep. When multiple values are given for more than one parameter,
simulations will be performed for the Cartesian product of the parameters – i.e. for all
combinations.
In the used version, ADE does not allow to combine Monte-Carlo simulations and pa-
rameter sweeps. Therefore, the following two simulation sets were defined:

• a sweep with DelaySize=3, DriverSize ∈ {3, 10} and DeltaC ∈ {0 fF, 20 fF},
resulting in a total amount of four simulations

• a Monte-Carlo at simulation at DelaySize=3, DriverSize=3 and DeltaC=20 fF
with 200 iterations

It is possible to define so-called OCEAN expressions that extract metrics from the circuit
under test [Cad12]. In the example case, an expression was written to measure ∆t.

107

A Appendix

The configuration of the design parameters and the outputs for the second simulation
instance is shown in figure A.5. The OCEAN expression to measure ∆t is shown as the
fourth line in the “Outputs” box.

Figure A.5: configuration of simulator options in ADE.

When simulations are started, Virtuoso converts the circuit diagrams, configuration
options and parameters into a textual description called netlist, which is understood by
the actual simulator. The default simulator is spectre, Virtuoso however also supports
other simulators such as hspice. Implementation details may vary when using a different
simulator; this thesis will focus on the case of spectre.

In the simplest case, a spectre netlist is one text file with the extension “.scs” that
instantiates circuit elements intrinsically known by spectre, such as capacitor or
resistor, and defines connections between circuit element ports and nets. Nets rep-
resent elements that are electrically connected and therefore have the same potential;
they are identified by their name and can be defined by simply using that name.

In addition to basic circuit elements, spectre knows complex abstract transistor models
such as bsim4 with more than 100 parameters [Cad11a]. These models are instantiated
in models of concrete transistors offered by technology suppliers.

In the shown example case, the netlist consists of multiple files, which use include state-
ments such that the contents are merged at run time. The include hierarchy observed
for the used technology is shown in figure A.6.

input.scs contains the actual netlist including all user-defined hierarchical components.
The mismatch parameter of the transistors that allows disabling mismatch variation for
individual descriptors, which was mentioned earlier in the Schematic Editor description,

108

A.5 Simulating with Cadence Virtuoso and spectre

input.scs
contains netlist models.scs

corners.scs

stat_flags.scs
Process and Mismatch variations selection

global_flags.scs
Global Flags definition

technology library

setupCornersIncludeFile.scs

hiddenOptions.scs
only comments

userIncludeFile.scs
empty

importNetlist.scs
only comments

Figure A.6: include hierarchy of Virtuoso-generated spectre netlists.

can be found in the list of parameters of each transistor instance. The simulation type
and specific configuration options are defined towards the end of the file. During the
work of this thesis, only simulations of type tran (i.e. transient simulations) were used;
other simulation types include ac or dc. When Monte-Carlo simulations are performed,
this is wrapped in a block named montecarlo, which instructs spectre to use pseudo-
random number generators for parameter determination according to the statistical
parameters defined by the technology. One technical difference between deterministic
and Monte-Carlo simulations can be observed with respect to OCEAN expressions:
These are included in Monte-Carlo netlists, but they are not included for deterministic
netlists. In the OCEAN expressions generated in Virtuoso, it is common to see net names
starting with a a slash (“/”). They have a special meaning, as they refer to “schematic
names” that need additional information, which is usually contained in proprietary
binary files in a folder named amap. When writing expressions from scratch or when using
Virtuoso-generated netlists as templates for simulations independent from Virtuoso, it
must be ensured that only spectre-internal names are used [iA12].

Out of the remaining files, the following contain configuration options:

• corners.scs contains the selection of the configured corners. With few exceptions,
each configuration element from shown in figure A.4 is represented by an include
statement referencing a file from the technology library; the corner is chosen by
selecting the corresponding section in the include file.

• stat_flags.scs configures the variations for Monte-Carlo simulations. In the
technology used, this is implemented by setting configuration parameters corre-
sponding to entries in figure A.4.

• global_flags.scs contains the definition of two parameters in the tab “Global
Flags” of figure A.4. They were always left untouched in the course of this thesis.

Experiments with the netlists revealed the possibility to disable variation as part of
the technology-dependent configuration in stat_flags.scs while continuing to use the
spectre block montecarlo. The numerical results obtained in this setup were identical
to the results from regular transient simulations with the occasional exception that the
least significant digit shown in Virtuoso was off by one; however, this was considered
negligible. This can be used to have spectre evaluate OCEAN expressions for nominal
simulations on the command line.

109

A Appendix

The netlists are stored as temporary files in the following locations:

1. ~/simulation/library/cell/view/results/data/.tmpADEDir_user/
library:cell:1/library_cell_view_spectre/netlist

2. ~/simulation/library/cell/view/results/data/result/psf/
library:cell:1/netlist

3. ~/simulation/library/cell/view/results/data/result/number/
library:cell:1/netlist

library refers to the library name where the components are stored, cell is the compo-
nent name, and view denotes the so-called view name that refers to the Analog Design
Environment in this case, and is “adexl” by default. The simulation instance is named
result; one instance is created when the user triggers the start of simulations, e.g. by
clicking on the green “start” button. It has a default prefix of “Interactive.” for de-
terministic simulations or “MonteCarlo.” for Monte-Carlo simulations, and a number
as a suffix. Simulation instances performing parameter sweeps consist of multiple sim-
ulations, which are referred to by number. Finally, the Unix user name of the account
used to run the simulations is called user.

The exact contents of the netlist files will differ slightly in the three mentioned direc-
tories. For example, different parameters are inserted at different simulation numbers.
Also, the first directory path in the list above does not contain the result name, so it
can be assumed that it will be updated every time a simulation of cell in library at view
view is performed by user, whereas the paths containing result stay unchanged in this
case. The third paths contain a shell script named “runSimulation” that contains the
command to call the simulator; it can be called without Virtuoso in a self-contained
way.

When spectre is running, it generates the following outputs. Note that the file names
can be configured on the command line or in input.scs.

• Notices, warnings and errors, as well as memory usage and computing time are
logged to spectre.log.

• The result data (in the case of tran simulations, measured voltages and currents
over time) is stored in a directory named ../psf relative to the third mentioned
netlist directory in a proprietary binary format called “psf”. spectre also sup-
ports American Standard Code for Information Interchange (ASCII) based or
user-defined formats; however, this may affect the simulation performance.

• spectre evaluates OCEAN expressions and stores the expressions to
monteCarlo/mcparams, and the results to monteCarlo/mcdata in a human
readable form if the simulations were wrapped into a montecarlo statement.
Note that without this statement, e.g. when only using tran, spectre does not
evaluate OCEAN expressions itself; instead, they can be extracted from the result
data using the command line tool ocean.

110

A.5 Simulating with Cadence Virtuoso and spectre

After the simulations, ADE shows the results of the OCEAN expressions in the “Results”
tab, as shown in figure A.7 for the parameter sweep. The transient response can also
be displayed by clicking on the plot icon left of the drop-down menu showing “Replace”.
This loads Virtuoso Visualization & Analysis, which is shown in figure A.8. This tool
can be called directly using the command viva. It is able to load spectre results in the
previously mentioned psf format; this is also true for spectre results generated outside
of the Virtuoso environment, i.e. when spectre was called manually on the command
line.

Figure A.7: OCEAN results shown for parameter sweep in ADE.

111

A Appendix

Figure A.8: transient response shown in Virtuoso Visualization & Analysis.

112

Bibliography

[AARR03] D. Agrawal, B. Archambeault, J. R. Rao, P. Rohatgi: The EM side-
channel(s), in: B. S. Kaliski, ç. K. Koç, C. Paar (eds.), Cryptographic
Hardware and Embedded Systems - CHES 2002, pages 29–45, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003.

[AK96] R. Anderson, M. Kuhn: Tamper resistance: A cautionary note, in: Pro-
ceedings of the 2Nd Conference on Proceedings of the Second USENIX
Workshop on Electronic Commerce - Volume 2, WOEC’96, USENIX As-
sociation, Berkeley, CA, USA, 1996.

[AK98] R. Anderson, M. Kuhn: Low cost attacks on tamper resistant devices, in:
B. Christianson, B. Crispo, M. Lomas, M. Roe (eds.), Security Proto-
cols, volume 1361 of Lecture Notes in Computer Science, pages 125–136,
Springer Berlin Heidelberg, 1998.

[Alt15] Altera/Intel: Altera product catalog – devices: 60 nm device portfo-
lio, https://www.altera.com/content/dam/altera-www/global/en_
US/pdfs/literature/pt/cyclone-iii-product-table.pdf, 2015, ac-
cessed on 03.07.2019.

[ARM10] ARM Limited: AMBA 4 AXI4-stream protocol, https://static.docs.
arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_
spec.pdf, March 2010, accessed on 09.07.2019.

[ARM17] ARM Limited: AMBA AXI and ACE protocol specification,
https://static.docs.arm.com/ihi0022/fb/IHI0022F_b_amba_
axi_protocol_spec.pdf, December 2017, accessed on 09.07.2019.

[BAE+99] K. A. Bowman, B. L. Austin, J. C. Eble, X. Tang, J. D. Meindl: A
physical alpha-power law MOSFET model, in: Proceedings of the 1999
International Symposium on Low Power Electronics and Design, ISLPED
’99, pages 218–222, ACM, New York, NY, USA, 1999.

[BBC] BBC: Rouen hospital turns to pen and paper after cyber-attack, https:
//www.bbc.com/news/technology-50503841, accessed on 17.05.2020.

[BCCK07] A. Balankutty, T. C. Chih, C. Y. Chen, P. Kinget: Mismatch characteri-
zation of ring oscillators, in: IEEE Custom Integrated Circuits Conference
(CICC), pages 515–518, 2007.

113

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/pt/cyclone-iii-product-table.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/pt/cyclone-iii-product-table.pdf
https://static.docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf
https://static.docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf
https://static.docs.arm.com/ihi0051/a/IHI0051A_amba4_axi4_stream_v1_0_protocol_spec.pdf
https://static.docs.arm.com/ihi0022/fb/IHI0022F_b_amba_axi_protocol_spec.pdf
https://static.docs.arm.com/ihi0022/fb/IHI0022F_b_amba_axi_protocol_spec.pdf
https://www.bbc.com/news/technology-50503841
https://www.bbc.com/news/technology-50503841

Bibliography

[BCM+14] M. Bond, O. Choudary, S. J. Murdoch, S. Skorobogatov, R. Anderson:
Chip and skim: Cloning EMV cards with the pre-play attack, in: 2014
IEEE Symposium on Security and Privacy, pages 49–64, May 2014.

[BDL97] D. Boneh, R. A. DeMillo, R. J. Lipton: On the importance of checking
cryptographic protocols for faults, in: W. Fumy (ed.), Advances in Cryp-
tology — EUROCRYPT ’97, pages 37–51, Springer Berlin Heidelberg,
Berlin, Heidelberg, 1997.

[BECN+06] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, C. Whelan: The sor-
cerer’s apprentice guide to fault attacks, Proceedings of the IEEE, vol-
ume 94(2), pages 370–382, Feb 2006.

[Ber05] D. J. Bernstein: Cache-timing attacks on AES, 2005.

[bH] A. “bunnie” Huang: Hacking the PIC 18F1320, https://www.
bunniestudios.com/blog/?page_id=40, accessed on 20.12.2020.

[BHKL12] P. Berthomé, K. Heydemann, X. Kauffmann-Tourkestansky, J.-F. La-
lande: High level model of control flow attacks for smart card functional
security, in: 2012 Seventh International Conference on Availability, Reli-
ability and Security, pages 224–229, Aug 2012.

[BS97] E. Biham, A. Shamir: Differential fault analysis of secret key cryptosys-
tems, in: B. S. Kaliski (ed.), Advances in Cryptology — CRYPTO ’97,
pages 513–525, Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[Cad11a] Cadence Design Systems, Inc., Virtuoso Simulator Circuit Components
and Device Models Manual, product version 10.1.1 edition, jun 2011.

[Cad11b] Cadence Design Systems, Inc., Virtuoso Spectre Circuit Simulator Refer-
ence, product version 11.1 edition, sep 2011.

[Cad12] Cadence Design Systems, Inc., OCEAN Reference, product version 6.1.5
edition, sep 2012.

[Cad14] Cadence Design Systems, Inc.: Virtuoso Analog Design Environ-
ment Family, https://www.cadence.com/content/dam/cadence-www/
global/en_US/documents/tools/custom-ic-analog-rf-design/
virtuoso-analog-design-fam-ds.pdf, 2014, accessed on 03.12.2018.

[CBB+03] A. Chandrasekhar, S. Brebels, E. Beyne, W. D. Raedt, B. Nauwelaers,
T. V. Bever: RF evaluation of low-cost leadless packages and develop-
ment of distributed electrical models, in: 53rd Electronic Components and
Technology Conference, 2003. Proceedings., pages 1550–1558, May 2003.

[CDG+14] J.-M. Cioranesco, J.-L. Danger, T. Graba, S. Guilley, Y. Mathieu, D. Nac-
cache, X. T. Ngo: Cryptographically secure shields, in: IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), pages 25–
31, May 2014.

114

https://www.bunniestudios.com/blog/?page_id=40
https://www.bunniestudios.com/blog/?page_id=40
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/custom-ic-analog-rf-design/virtuoso-analog-design-fam-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/custom-ic-analog-rf-design/virtuoso-analog-design-fam-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/custom-ic-analog-rf-design/virtuoso-analog-design-fam-ds.pdf

Bibliography

[DDRT12] A. Dehbaoui, J. Dutertre, B. Robisson, A. Tria: Electromagnetic transient
faults injection on a hardware and a software implementations of AES, in:
2012 Workshop on Fault Diagnosis and Tolerance in Cryptography, pages
7–15, Sep. 2012.

[deg] degate: Reverse-engineering integrated circuits with degate, https://
degate.org/, accessed on 10.07.2019.

[EMGT15] M. El Massad, S. Garg, M. V. Tripunitara: Integrated circuit (IC) decam-
ouflaging: Reverse engineering camouflaged ICs within minutes, in: 22nd
Annual Network and Distributed System Security Symposium, NDSS,
2015.

[Eri08] J. Erickson: The Art of Exploitation, No Starch Press, Inc., 2008.
[fid] fido Alliance: Alliance overview, https://fidoalliance.org/

overview/, accessed on 17.05.2020.
[GG14] R. Göttfert, B. Gammel: Busanordnung und Verfahren zum Senden von

Daten über einen Bus, July 2014, Patent DE 10 2013 100 572 A1.
[GG20] A. Girardi, H. Graeb: Modeling and optimization of a microprobe detector

for area and yield improvement, in: 2020 33rd Symposium on Integrated
Circuits and Systems Design (SBCCI), pages 1–6, Aug 2020.

[GGBa] GGB Industries, Inc.: Picoprobe model 18c & picoprobe model 19c, http:
//www.ggb.com/PdfIndex_files/mod18c.pdf, accessed on 07.11.2016.

[GGBb] GGB Industries, Inc.: Picoprobe models 28 & 29, http://www.ggb.com/
PdfIndex_files/mod28.pdf, accessed on 07.11.2016.

[GMO01] K. Gandolfi, C. Mourtel, F. Olivier: Electromagnetic analysis: Concrete
results, in: Ç. K. Koç, D. Naccache, C. Paar (eds.), Cryptographic Hard-
ware and Embedded Systems — CHES 2001, pages 251–261, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001.

[Hen10] S. Henzler: Time-to-Digital Converters, volume 29, Springer Sci-
ence+Business Media B.V., springer series in advanced microelectronics
edition, 2010.

[HHM+14] N. Homma, Y.-i. Hayashi, N. Miura, D. Fujimoto, D. Tanaka, M. Nagata,
T. Aoki: EM Attack Is Non-invasive? - Design Methodology and Validity
Verification of EM Attack Sensor, pages 1–16, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014.

[HHM+15] N. Homma, Y.-i. Hayashi, N. Miura, D. Fujimoto, M. Nagata, T. Aoki:
Design methodology and validity verification for a reactive countermeasure
against EM attacks, Journal of Cryptology, pages 1–19, 2015.

[HMH+12] J. Heyszl, S. Mangard, B. Heinz, F. Stumpf, G. Sigl: Localized Elec-
tromagnetic Analysis of Cryptographic Implementations, pages 231–244,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

115

https://degate.org/
https://degate.org/
https://fidoalliance.org/overview/
https://fidoalliance.org/overview/
http://www.ggb.com/PdfIndex_files/mod18c.pdf
http://www.ggb.com/PdfIndex_files/mod18c.pdf
http://www.ggb.com/PdfIndex_files/mod28.pdf
http://www.ggb.com/PdfIndex_files/mod28.pdf

Bibliography

[HSH+09] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, E. W. Felten: Lest we remem-
ber: Cold-boot attacks on encryption keys, Commun. ACM, volume 52(5),
pages 91–98, May 2009.

[Hun07] J. D. Hunter: Matplotlib: A 2D graphics environment, Computing in
Science Engineering, volume 9(3), pages 90–95, May 2007.

[HWPG18] A. Herrmann, M. Weiner, M. Pehl, H. Graeb: Bringing analog design tools
to security: Modeling and optimization of a low area probing detector, in:
2018 15th International Conference on Synthesis, Modeling, Analysis and
Simulation Methods and Applications to Circuit Design (SMACD), pages
1–4, July 2018.

[HYM+08] T. Hashimoto, H. Yamazaki, A. Muramatsu, T. Sato, A. Inoue: Time-
to-digital converter with vernier delay mismatch compensation for high
resolution on-die clock jitter measurement, in: 2008 IEEE Symposium on
VLSI Circuits, pages 166–167, June 2008.

[iA12] “imagesensor123”, Andrew Beckett: ocean expression in monte carlo
analysis, Cadence Custom IC Design Forums, https://community.
cadence.com/cadence_technology_forums/f/custom-ic-skill/
21674/ocean-expression-in-monte-carlo-analysis, feb 2012,
accessed on 25.03.2019.

[Inf12] Infineon Technologies AG: Integrity guard - the newest gen-
eration of digital security technology, http://www.infineon.
com/dgdl/Infineon-Integrity_Guard_The_newest_generation_
of_digital_security_technology-WP-v04_12-EN.pdf?fileId=
5546d46255dd933d0155e31c46fa03fb, September 2012, accessed on
07.11.2016.

[ISW03] Y. Ishai, A. Sahai, D. Wagner: Private Circuits: Securing Hardware
against Probing Attacks, pages 463–481, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003.

[JL10] M. Janke, P. Laackmann: The technical progress of hardware se-
curity, The Silicon Trust, https://silicontrust.org/2010/09/06/
the-technical-progress-of-hardware-security/, September 2010,
accessed on 29.06.2019.

[KJJ99] P. Kocher, J. Jaffe, B. Jun: Differential power analysis, in: M. Wiener
(ed.), Advances in Cryptology — CRYPTO’ 99, volume 1666 of Lecture
Notes in Computer Science, pages 388–397, Springer Berlin Heidelberg,
1999.

[KK99] O. Kömmerling, M. G. Kuhn: Design principles for tamper-resistant
smartcard processors, in: Proceedings of the USENIX Workshop on

116

https://community.cadence.com/cadence_technology_forums/f/custom-ic-skill/21674/ocean-expression-in-monte-carlo-analysis
https://community.cadence.com/cadence_technology_forums/f/custom-ic-skill/21674/ocean-expression-in-monte-carlo-analysis
https://community.cadence.com/cadence_technology_forums/f/custom-ic-skill/21674/ocean-expression-in-monte-carlo-analysis
http://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_newest_generation_of_digital_security_technology-WP-v04_12-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
http://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_newest_generation_of_digital_security_technology-WP-v04_12-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
http://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_newest_generation_of_digital_security_technology-WP-v04_12-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
http://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_newest_generation_of_digital_security_technology-WP-v04_12-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://silicontrust.org/2010/09/06/the-technical-progress-of-hardware-security/
https://silicontrust.org/2010/09/06/the-technical-progress-of-hardware-security/

Bibliography

Smartcard Technology on USENIX Workshop on Smartcard Technology,
WOST’99, USENIX Association, Berkeley, CA, USA, 1999.

[KNSS13] J. Krämer, D. Nedospasov, A. Schlösser, J.-P. Seifert: Differential pho-
tonic emission analysis, in: E. Prouff (ed.), Constructive Side-Channel
Analysis and Secure Design, volume 7864 of Lecture Notes in Computer
Science, pages 1–16, Springer Berlin Heidelberg, 2013.

[Koc96] P. C. Kocher: Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems, in: N. Koblitz (ed.), Advances in Cryptol-
ogy — CRYPTO ’96, pages 104–113, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1996.

[LT04] P. Laackmann, H. Taddiken: Apparatus for protecting an integrated circuit
formed in a substrate and method for protecting the circuit against reverse
engineering, September 2004, U.S. Patent 6,798,234 B2.

[MA15] Michael Weiner, Andrew Beckett: parametrized netlist generation
at scale, Cadence Custom IC Design Forums, https://community.
cadence.com/cadence_technology_forums/f/custom-ic-design/
34695/parametrized-netlist-generation-at-scale, oct 2015,
accessed on 25.03.2019.

[MDAB10] S. J. Murdoch, S. Drimer, R. Anderson, M. Bond: Chip and PIN is broken,
in: 2010 IEEE Symposium on Security and Privacy, pages 433–446, May
2010.

[MDH+13] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, E. Encrenaz: Elec-
tromagnetic fault injection: Towards a fault model on a 32-bit microcon-
troller, in: 2013 Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy, pages 77–88, Aug 2013.

[MHER14] N. Moro, K. Heydemann, E. Encrenaz, B. Robisson: Formal verification
of a software countermeasure against instruction skip attacks, Journal of
Cryptographic Engineering, volume 4(3), pages 145–156, Sep 2014.

[MN12] P. Maier, K. Nohl: Low-cost chip microprobing, 29th Chaos Communica-
tion Congress (29C3), 12 2012.

[MOP08] S. Mangard, E. Oswald, T. Popp: Power Analysis Attacks, Springer US,
2008.

[MS02] K. Mitnick, W. L. Simon: The Art of Deception, John Wiley & Sons,
2002.

[MS13] S. Manich, M. Strasser: A highly time sensitive XOR gate for probe at-
tempt detectors, IEEE Transactions on Circuits and Systems II: Express
Briefs, volume 60(11), pages 786–790, Nov 2013.

[Mun] MunEDA GmbH, WiCkeD Manual, wicked 6.7 edition.

117

https://community.cadence.com/cadence_technology_forums/f/custom-ic-design/34695/parametrized-netlist-generation-at-scale
https://community.cadence.com/cadence_technology_forums/f/custom-ic-design/34695/parametrized-netlist-generation-at-scale
https://community.cadence.com/cadence_technology_forums/f/custom-ic-design/34695/parametrized-netlist-generation-at-scale

Bibliography

[MWS12] S. Manich, M. S. Wamser, G. Sigl: Detection of probing attempts in secure
ICs, in: Hardware-Oriented Security and Trust (HOST), pages 134–139,
2012.

[NHEW10] D. M. H. Neil H. E. Weste: CMOS VLSI Design: A Circuits and Systems
Perspective (4th Edition), Addison Wesley, 4th edition, 2010.

[Noh11] K. Nohl: Reviving smart card analysis, Chaos Communication Camp
2011, 08 2011, accessed on 10.07.2019.

[Ope10] OpenCores: Wishbone B4 – WISHBONE System-on-Chip (SoC) Inter-
connection Architecture for Portable IP Cores, https://cdn.opencores.
org/downloads/wbspec_b4.pdf, 2010, accessed on 09.07.2019.

[Par94] B. Parhami: Voting algorithms, IEEE Transactions on Reliability, vol-
ume 43(4), pages 617–629, Dec 1994.

[PD08] S. Pasricha, N. Dutt: On-Chip Communication Architectures: System on
Chip Interconnect, Systems on Silicon, Morgan Kaufmann, 2008.

[PKZM07] T. Popp, M. Kirschbaum, T. Zefferer, S. Mangard: Evaluation of the
masked logic style MDPL on a prototype chip, in: P. Paillier, I. Ver-
bauwhede (eds.), Cryptographic Hardware and Embedded Systems - CHES
2007, pages 81–94, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[Pyt] Python: string – common string operations – format specifi-
cation mini-language, https://docs.python.org/3/library/string.
html#formatspec, accessed on 02.04.2019.

[QS01] J.-J. Quisquater, D. Samyde: Electromagnetic analysis (EMA): Measures
and counter-measures for smart cards, in: I. Attali, T. Jensen (eds.),
Smart Card Programming and Security, pages 200–210, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2001.

[RK93] T. E. Rahkonen, J. T. Kostamovaara: The use of stabilized CMOS delay
lines for the digitization of short time intervals, IEEE Journal of Solid-
State Circuits, volume 28(8), pages 887–894, Aug 1993.

[RSSK13] J. Rajendran, M. Sam, O. Sinanoglu, R. Karri: Security analysis of inte-
grated circuit camouflaging, in: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, CCS ’13,
pages 709–720, ACM, New York, NY, USA, 2013.

[SAFT16] Q. Shi, N. Asadizanjani, D. Forte, M. M. Tehranipoor: A layout-driven
framework to assess vulnerability of ICs to microprobing attacks, in: 2016
IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), pages 155–160, May 2016.

[SDK+13] D. Strobel, B. Driessen, T. Kasper, G. Leander, D. Oswald, F. Schellen-
berg, C. Paar: Fuming acid and cryptanalysis: Handy tools for overcoming

118

https://cdn.opencores.org/downloads/wbspec_b4.pdf
https://cdn.opencores.org/downloads/wbspec_b4.pdf
https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec

Bibliography

a digital locking and access control system, in: R. Canetti, J. Garay (eds.),
Advances in Cryptology – CRYPTO 2013, volume 8042 of Lecture Notes
in Computer Science, pages 147–164, Springer Berlin Heidelberg, 2013.

[Shō88] M. Shōji: CMOS digital circuit technology, Prentice Hall, 1988.
[Sko05] S. P. Skorobogatov: Semi-invasive attacks – A new approach to hard-

ware security analysis, Technical Report UCAM-CL-TR-630, University
of Cambridge, Computer Laboratory, April 2005.

[SN90] T. Sakurai, A. R. Newton: Alpha-power law MOSFET model and its
applications to CMOS inverter delay and other formulas, IEEE Journal
of Solid-State Circuits, volume 25(2), pages 584–594, Apr 1990.

[SNK+12] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, J.-P. Seifert: Simple
photonic emission analysis of AES, in: E. Prouff, P. Schaumont (eds.),
Cryptographic Hardware and Embedded Systems – CHES 2012, pages 41–
57, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[SR07] A. Singhee, R. A. Rutenbar: Statistical blockade: A novel method for very
fast monte carlo simulation of rare circuit events, and its application, in:
2007 Design, Automation Test in Europe Conference Exhibition, pages
1–6, April 2007.

[SR09] A. Singhee, R. A. Rutenbar: Novel Algorithms for Fast Statistical Analysis
of Scaled Circuits, Springer Netherlands, 2009.

[Tar08a] C. Tarnovsky: Introducing momentary faults within secure smartcards,
DEF CON 16, aug 2008.

[Tar08b] C. Tarnovsky: Security failures in secure devices, Black Hat DC, February
2008.

[Tar10a] C. Tarnovsky: Deconstructing a ‘secure’ processor, Black Hat DC, Febru-
ary 2010.

[Tar10b] C. Tarnovsky: Semiconductor security awareness, today & yesterday,
Black Hat Las Vegas, jul 2010.

[Tar13] C. Tarnovsky: Change of guard at Infineon, Flylogic’s Analytical Blog,
nov 2013, accessed on 11.04.2019.

[Tar19a] C. Tarnovsky: Exposing the deep-secure elements of smartcards, hard-
wear.io USA, jun 2019.

[Tar19b] C. Tarnovsky: Sophisticated million dollar hack to discover weaknesses in
a series of smartcards affecting millions, hardwear.io USA, jun 2019.

[Tec] TechInsights: Techinsights library, https://www.
chipworks.com/access-reverse-engineering/overview/
library-for-patent-investigations/techinsights-library,
accessed on 10.07.2019.

119

https://www.chipworks.com/access-reverse-engineering/overview/library-for-patent-investigations/techinsights-library
https://www.chipworks.com/access-reverse-engineering/overview/library-for-patent-investigations/techinsights-library
https://www.chipworks.com/access-reverse-engineering/overview/library-for-patent-investigations/techinsights-library

Bibliography

[TMS+13] N. Theißing, D. Merli, M. Smola, F. Stumpf, G. Sigl: Comprehensive
analysis of software countermeasures against fault attacks, in: Proceedings
of the Conference on Design, Automation and Test in Europe, DATE ’13,
pages 404–409, EDA Consortium, San Jose, CA, USA, 2013.

[WE93] N. H. E. Weste, K. Eshraghian: Principles of CMOS VLSI Design, chap-
ter Circuit Characterization and Performance Estimation, pages 175–259,
Addison-Wesley Publishing Company, 1993.

[WHH+15] M. Wan, Z. He, S. Han, K. Dai, X. Zou: An invasive-attack-resistant
PUF based on switched-capacitor circuit, IEEE Transactions on Circuits
and Systems I: Regular Papers, volume 62(8), pages 2024–2034, Aug 2015.

[Whi12] V. White: BBC Panorama: Murdoch’s TV pirates, https:
//www.bbc.co.uk/programmes/b01dlvbm, March 2012, avail-
able on YouTube, https://www.youtube.com/playlist?list=
PLqpZC2iaEqGs8HGudtGjX2N6iU4Qo4Z66, accessed on 09.07.2019.

[Wil27] E. B. Wilson: Probable inference, the law of succession, and statistical in-
ference, Journal of the American Statistical Association, volume 22(158),
pages 209–212, 1927.

[Wis03] The WISHBONE Service Center, http://www.pldworld.com/_hdl/2/
_ip/-silicore.net/wishbone.htm, Sep 2003, accessed on 05.12.2018.

[WL07] Z. Wang, R. B. Lee: New cache designs for thwarting software cache-based
side channel attacks, SIGARCH Comput. Archit. News, volume 35(2),
pages 494–505, June 2007.

[WMB16] M. Weiner, S. Manich Bou: The SALVADOR simulation framework,
TRUDEVICE Workshop, nov 2016.

[WMRMS18] M. Weiner, S. Manich, R. Rodríguez-Montañés, G. Sigl: The low area
probing detector as a countermeasure against invasive attacks, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol-
ume 26(2), pages 392–403, Feb 2018.

[WMS14] M. Weiner, S. Manich, G. Sigl: A low area probing detector for power
efficient security ICs, in: Radio Frequency Identification: Security and
Privacy Issues, volume 8651, Oxford, UK, July 2014.

[WMT+13] M. Weiner, M. Massar, E. Tews, D. Giese, W. Wieser: Security analysis
of a widely deployed locking system, in: ACM SIGSAC Conference on
Computer & Communications Security, CCS ’13, pages 929–940, ACM,
New York, NY, USA, 2013.

[WSN+19] H. Wang, Q. Shi, A. Nahiyan, D. Forte, M. M. Tehranipoor: A physical
design flow against front-side probing attacks by internal shielding, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 2019.

120

https://www.bbc.co.uk/programmes/b01dlvbm
https://www.bbc.co.uk/programmes/b01dlvbm
https://www.youtube.com/playlist?list=PLqpZC2iaEqGs8HGudtGjX2N6iU4Qo4Z66
https://www.youtube.com/playlist?list=PLqpZC2iaEqGs8HGudtGjX2N6iU4Qo4Z66
http://www.pldworld.com/_hdl/2/_ip/-silicore.net/wishbone.htm
http://www.pldworld.com/_hdl/2/_ip/-silicore.net/wishbone.htm

Bibliography

[WWL+19] M. Weiner, W. Wieser, E. Lupon, G. Sigl, S. Manich: A calibratable
detector for invasive attacks, IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, volume 27(5), pages 1067–1079, May 2019.

[Zon16] A. Zonenberg: Resetting lock bits with UV – or, semi-invasive attacks for
dummies, S4x16 Conference, jan 2016.

[ZZM99] Y. Zhang, Y. Zhang, R. B. Marcus: Thermally actuated microprobes for
a new wafer probe card, Journal of Microelectromechanical Systems, vol-
ume 8(1), pages 43–49, March 1999.

121

List of Figures

2.1 Supporting L-shape deposits to probe two lines. 9
2.2 PAD overview. 13
2.3 PAD detector circuit. 14
2.4 Electrical model of a microprobe attack. 15

3.1 Schematic of the Low Area Probing Detector. 20
3.2 LAPD timing; gray bars denote intentionally introduced delay tD; red

bars represent latch output sampling time. 21
3.3 Simplified LAPD schematic for the two test cycles. 22
3.4 Example LAPD control logic. 25
3.5 Example redundant LAPD evaluation logic. 26
3.6 Relative alarm frequency for different implementations of delay elements

T (nominal transition values are dashed). 27
3.7 Illustration of the reliability metric of the four inverter implementation

(qfF = 4.02). 30
3.8 Relative frequency of alarms of the best circuit, compared to the initial

design. 33
3.9 LAPD detection performance after derivative based optimization with

WiCkeD. 34
3.10 Alarm probability after majority voting. 37

4.1 Vernier Delay Line block diagram. 41
4.2 Vernier Delay Line timing. 41
4.3 Schematic of the Calibratable Lightweight Invasive Attack Detector. . . . 41
4.4 CaLIAD timing; red bars represent latch output sampling time. 44
4.5 Distribution of transition positions without calibration; positive values

of CA represent a probe attached to L1 and negative values represent a
probe attached to L2. 49

4.6 Distribution of transition positions with single-point calibration at CA =
0 fF. 49

4.7 Distribution of transition positions with two-point calibration (Cref =
16 fF). 50

4.8 Layout of CaLIAD FPGA implementation. 56
4.9 FPGA in climate chamber. 56

123

List of Figures

5.1 different bus implementation concepts on electrical level; note that this
figure only shows the data bus. 63

5.2 CPU core attached to an encrypted bus. 65
5.3 Multiplexed bus; the figure only shows the data path from slaves to masters. 65
5.4 Probe detector test signal generator integrated into memory array. 67
5.5 B bit bus with B − 1 parallel detector instances. 70
5.6 B bit bus with one multiplexed detector instance. 71
5.7 B bit bus with a signal merging logic using HTS-XOR gates performing

B comparisons, and one adapted detector instance. 71
5.8 Sample bus use case with two regular masters, two regular slaves and two

probe detection components. 73
5.9 State diagram of CaLIAD detector controller. 74
5.10 Signals START and STOP that must be derived from the pulse coming out

of the OR gate that merges the pairwise line comparisons. 75
5.11 Example for glue logic between HTS-XOR gates and VDL part of CaLIAD. 75
5.12 Timing of example glue logic. 76
5.13 Shift of position of the first 1 depending on the number of probes attached;

the black line represents minimum and maximum values. 77
5.14 Simulated environment of a probing detector protecting a segmented bus

line. 78

6.1 suggested SALVADOR workflow. 85
6.2 example circuit for simulation description. 85
6.3 output generated by results2csv from example circuit. 90

A.1 Input / output slew-rates and delay of an inverter. 96
A.2 Variation of the normalized inverter delay as a function of the normalized

input slew-rate [Shō88]. 98
A.3 Virtuoso Schematic Editor. 106
A.4 corner and Monte-Carlo configuration options. 107
A.5 configuration of simulator options in ADE. 108
A.6 include hierarchy of Virtuoso-generated spectre netlists. 109
A.7 OCEAN results shown for parameter sweep in ADE. 111
A.8 transient response shown in Virtuoso Visualization & Analysis. 112

124

List of Tables

3.1 Summary of latch outputs in the two test cycles when probing one line. . 22
3.2 Qualitative advantages of the LAPD against other state-of-the-art prob-

ing protection. 25
3.3 Variance of timing differences at latch inputs of four-inverter implemen-

tation. 29
3.4 Threshold capacitance and reliability metric for different Dout dimensions

(∆CA = 5 fF, 200 Monte-Carlo runs). 31
3.5 Threshold capacitance and reliability metric for different Dout dimensions

(∆CA = 0.2 fF, 2000 Monte-Carlo runs). 32
3.6 Analysis of corners. 32
3.7 Area, Timing and Energy Comparison of Cryptographically Se-

cure Shields, PAD and LAPD; B denotes the number of bus lines to
be protected. 35

4.1 Two-point calibration example. 46
4.2 Nominal corner detection performance of different CaLIAD calibration

methods. 51
4.3 Worst case corner detection performance of different CaLIAD calibration

methods. 52
4.4 Area, Timing and Energy Comparison of CSS, PAD, LAPD and CaLIAD. 52
4.5 area of the CaLIAD elements in gate equivalents. 53
4.6 Counter values captured at 20 °C. 57
4.7 Qualitative advantages of the CaLIAD over other invasive attack coun-

termeasures. 59

5.1 Area of the individual parts of an HTS-XOR based CaLIAD in gate equiv-
alents. 77

5.2 Shifts of the PF1 when loading different line segments with CA = 20 fF. . 78

A.1 Approximated Threshold Capacitances. 100

125

List of Acronyms

ADE Analog Design Environment

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

AMBA Advanced Microcontroller Bus Architecture

ASCII American Standard Code for Information Interchange

ASIC Application Specific Integrated Circuit

CaLIAD Calibratable Lightweight Invasive Attack Detector

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

CSS Cryptographically Secure Shields

CSV Comma Separated Values

DPA Differential Power Analysis

DRAM Dynamic Random Access Memory

EPROM Erasable Programmable Read Only Memory

FIB Focused Ion Beam

FPGA Field Programmable Gate Array

GE Gate Equivalent

HTS-XOR Highly Time Sensitive Exclusive-OR

IC Integrated Circuit

IT Information Technology

JSON JavaScript Object Notation

LAB Logic Array Block

LAPD Low Area Probing Detector

LE Logic Element

127

List of Acronyms

LUT Lookup Table

LZMA Lempel-Ziv-Markov chain algorithm

MMU Memory Management Unit

nMOS n-channel Metal Oxide Semiconductor

NoC Network-on-Chip

OCEAN Open Command Environment for Analysis

PAD Probe Attempt Detector

PF1 position of first 1

PIN Personal Identification Number

pMOS p-channel Metal Oxide Semiconductor

PRNG Pseudo-Random Number Generator

RAM Random Access Memory

RO-PUF Ring-Oscillator based Physical Unclonable Function

ROM Read Only Memory

SALVADOR Simulation Automation Library for Verification and Analysis of Design
Operating Regions

SAT Boolean satisfiability problem

SIM Subscriber Identity Module

SoC System-on-Chip

SPA Simple Power Analysis

ssh Secure Shell

TDC Time-to-Digital Converter

TSMC Taiwan Semiconductor Manufacturing Company

UART Univeral Asynchronous Receiver/Transmitter

VDL Vernier Delay Line

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

128

List of Symbols

CT tank capacitor of PAD. .14
Vref comparator reference voltage .14
vC voltage at tank capacitor terminal connected to comparator 14
vO comparator output voltage . 14
VDD supply voltage . 14
B number of bus lines . 19
tD delay introduced by LAPD delay element . 21
CA1 capacitive load of first line caused by microprobe23
CA2 capacitive load of second line caused by microprobe 23
∆tL1,L2 delay difference observed between two bus lines 23
∆tL1,L2 delay difference between output buffers after two bus lines 23
kDout

scaling factor between delay difference at bus and delay difference
after output buffers . 23

tM1 delay introduced by first LAPD multiplexer . 23
tM2 delay introduced by second LAPD multiplexer . 23
∆tRS

delay between falling edge of reset input
and falling edge of set input at LAPD latch . 23

tH latch hold time . 24
tA additional delay for LAPD control logic . 25
ϑ ambient temperature . 27
W
L

aspect ratio of transistors . 27
∆CU

A

range of additional capacitive load in which the detector
does not work reliably . 27

N number of Monte-Carlo iterations . 27
C∗A

additional capacitive load causing an alarm
with a probability of 50% . 29

q LAPD reliability metric .29
L transistor channel length .30
Lmin minimum transistor channel length . 30
∆CA step size of attack capacitance sweep used for simulations 31
C0.01

additional capacitive load causing an alarm
with a probability of 1% . 32

C0.99
additional capacitive load causing an alarm
with a probability of 99% . 32

tfast delay of fast buffers in VDL chain .42
tslow delay of slow buffers in VDL chain . 42
∆t delay difference between slow and fast buffers in VDL chain 42

129

List of Acronyms

t0 initial delay of fast chain in CaLIAD . 42
l left calibration position in the CaLIAD chain . 43
r right calibration position in the CaLIAD chain . 43
m safety margin for single-point CaLIAD calibration45
k0 calibrated position directly before the first 1 in the CaLIAD 45
kL left calibration position in the CaLIAD chain . 46
kR right calibration position in the CaLIAD chain . 46
Cref reference capacitance for two-point calibration of CaLIAD 46
∆CA,min lower bound for calibrating the CaLIAD . 46
∆CA,max upper bound for calibrating the CaLIAD .47
n number of CaLIAD chain elements . 47
CWCC

0.01
additional capacitive load causing an alarm
with a probability of 1% at worst-case corner . 52

CWCC
0.99

additional capacitive load causing an alarm
with a probability of 99% at worst-case corner . 52

C ′L intrinsic capacitance of a line segment .78
Ω summarized transistor parameters and supply voltage 95
bN nMOS transconductance . 96
bP pMOS transconductance . 96
TOI gate delay measured at 50% of signal levels . 96
αI input slew rate . 96
αO output slew rate . 96
β transconductance ratio .97
SL normalized input slew rate . 97
Tinv normalized inverter delay . 97

130

	Introduction
	Types of Information Security Threats
	Classification of Attacks
	Physical Attacks against Smart Cards
	Contributions
	Outline

	Introduction to Invasive Attacks
	Classification of Physical Attacks
	Non-Invasive Attacks
	Semi-Invasive Attacks
	Invasive Attacks

	Real-World Probing Attacks
	Reverse Engineering
	Hardware Setup of Probing Attacks
	Linear Code Extraction

	Countermeasures
	Masking Techniques
	Obstruction of Physical Access
	Probing Detection

	Electrical Model of Probes
	Conclusion

	The Low Area Probing Detector
	Circuit Concept
	Principle of Operation
	LAPD Model
	Error Compensation
	Control and Evaluation Logic

	Results
	Nominal simulation
	Effects of local variations
	Reliability Metric
	LAPD dimensioning
	Corners
	Derivative based Optimization
	Resource Usage
	Error Compensation

	Conclusion

	The Calibratable Lightweight Invasive Attack Detector
	Circuit Concept
	Sub-Gate Delay Measurement Circuits
	The Vernier Delay Line Principle of Operation
	Delay Model
	Probe Detection Concept
	Circuit Realization
	Calibration
	Design Considerations

	Results
	Effects of manufacturing variations
	Detection performance
	Corners
	Resource Usage

	FPGA Implementation
	Design
	Experimental Setup
	Results

	Conclusion

	System Integration
	Introduction
	Integration Challenges
	Solution
	Considerations of Detector Placement
	Triggering and Evaluation
	Security Considerations
	Protection of More than Two Bus Lines

	Results
	WISHBONE Bus Integration
	Multi-Line Bus Protection with HTS-XOR Gates
	Handling of Intermediate Buffers

	Conclusion

	Simulation Environment
	Introduction
	The SALVADOR simulation framework
	Future Work
	Conclusion

	Conclusion and Future Work
	Appendix
	Alpha-Power Model
	Dependency between Input Slew Rate and Effects of Mismatch Variations for Inverters
	LAPD model fit
	VHDL Source Code of CaLIAD Emulator
	Simulating with Cadence Virtuoso and spectre

	Bibliography
	Lists
	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols

