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Abstract
Background: Similar to chronic wounds, skin aging is characterized by dysfunction 
of key cellular regulatory pathways. The hypoxia-inducible factor-1 alpha (HIF-1α) 
pathway was linked to both conditions. Recent evidence suggests that modulating 
this pathway can rejuvenate aged fibroblasts and improve skin regeneration. Here, 
we describe the application of a novel HIF stimulating factor (HSF™)-based formula-
tion for skin rejuvenation.
Methods: Over a period of 6 weeks using a split-face study design, the effects on skin 
surface profile, skin moisture, and transepidermal water loss were determined in 32 
female subjects (mean age 54, range 32-67 years) by Fast Optical in vivo Topometry 
of Human Skin (FOITSHD), Corneometer, and Tewameter measurements. In addition, 
a photo documentation was performed for assessment by an expert panel and a sur-
vey regarding subject satisfaction was conducted.
Results: No negative skin reactions of dermatological relevance were documented for 
the test product. A significant reduction in skin roughness could be demonstrated. The 
clinical evaluation of the images using a validated method confirmed significant im-
provement of wrinkles, in particular of fine wrinkles, lip wrinkles, and crow's feet. A sig-
nificant skin moisturizing effect was detected while skin barrier function was preserved. 
The HSF™-based skin care formulation resulted in a self-reported 94% satisfaction rate.
Conclusion: With no negative skin reactions and highly significant effects on skin 
roughness, wrinkles, and moisturization, the HSF™-based skin care formulation 
achieved very satisfying outcomes in this clinical trial. Given the favorable results, this 
approach represents a promising innovation in aesthetic and regenerative medicine.
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1  | INTRODUC TION

Despite intensive research efforts currently focused on devel-
oping agents capable of mitigating or reversing the signs of cu-
taneous aging, no single approach has been identified that can 
address the various underlying factors, including structural and 
physiological components, epidermal and dermal atrophy, and 
loss of connective tissue structure and vascularity.1 Most reju-
venation products, with the exception of retinoids, only provide 
adequate skin hydration; they lack the ability to actively support 
the biological processes known to be diminished in the aged 
population.2,3

Recent studies suggest that the mechanisms that hinder the phys-
iologic healing response in chronic wounds, dysfunction of various 
cellular signaling pathways, are also responsible for impaired tissue 
homeostasis and regeneration in aged skin.4-9 In particular, the hy-
poxia-inducible factor-1 alpha (HIF-1α) pathway has been identified 
as playing a key role in both settings.4,9-11 Its activation leads to pro-
duction of extracellular matrix including collagen, glycosaminogly-
cans, and nutritive blood vessels.12,13 Modulating this pathway has 
been shown to significantly enhance tissue regeneration,5,6,14-17 in-
cluding in the setting of advanced age, which, similarly to diabetes 
and other degenerative skin diseases, correlates with attenuated 
HIF-1α function.4-9

In aging, increased activity of the prolyl hydroxylases (PHD)4,9 
causes destabilization of HIF-1α, resulting in impaired release of 
growth factors, reduced neovascularization, inadequate tissue re-
generation, and poor tissue quality. Modulating this pathway holds 
great promise for rejuvenation. We have recently demonstrated that 
in vitro activation of HIF-1α in aged fibroblasts with deferiprone 
reduces cellular stress and enhances cell metabolism, proliferation, 
survival, and viability. In addition, we have shown that deferiprone is 
able to penetrate through human skin in relevant concentrations to 
activate dermal fibroblasts.18 Based on these findings, we developed 
a HIF stimulating factor (HSF™)-based formulation for skin rejuve-
nation. Here, we assess its performance in a single-center blinded 
randomized clinical trial.

2  | MATERIAL AND METHODS

Study conduct and data analysis were based on the Quality 
Management System DIN EN ISO 9001:2015 as well as principles of 
GCP implemented at Institute Dr Schrader (Holzminden, Germany) 
and were in line with the Declaration of Helsinki. Women in overall 
good health, between the ages of 30 and 70 years, with Fitzpatrick 
skin types I-IV qualified for inclusion. Pregnant or lactating women 
and women with allergies to skin care products or those who received 
treatment with botulinum toxin, injectable fillers, microdermabrasion, 
platelet-rich plasma, chemical peelings, laser treatments, or other skin 
tightening treatments within 6 months of the study start date were 
excluded. After informed consent, 32 female subjects were included 
in this study (mean age 54, range 32-67 years) (Figure 1).

A split-face, randomized, blinded test design was chosen for this 
study to compare the effects of HSF™ product on skin physiology 
parameters (skin roughness, moisture, and transepidermal water loss) 
employing objective measurements. Each half of patients' faces was 
randomized to receive either the anti-aging regimen (HSF™ Skin Care, 
Tomorrowlabs) or control regime twice daily (morning and evening) 
over a period of 6 weeks (Figure 1). Patients and research and clini-
cal staff were blinded to which treatment was administered. The first 
product application was done under the supervision of a technician. 
Test subjects were instructed to utilize a standardized application pro-
cedure including a cleansing step with water only. Subjects were eval-
uated for study eligibility at visit 1 (screening) and clinical evaluations 
were conducted at visit 2 (baseline, t(0)), and visit 3 (week 6, t(6)). From 
the screening appointment onwards, study subjects were asked to stop 
their regular skin care regime. No other skin care or cleaning products 
where allowed during the study period. Photo documentation was per-
formed for assessment by an expert panel and a survey was conducted.

During the course of the study, overall changes in tempera-
ture of 20°C were recorded, fluctuating between −5°C and 15°C, 
while relative humidity was constantly above 60% due to the late 
autumn season. To minimize climatic influences on study outcomes, 
all measurements and evaluations were made in a special air-con-
ditioned laboratory guaranteeing a constant room temperature and 

F I G U R E  1   Clinical study design. After informed consent, 32 female subjects were included in the study (mean age 54, range 32-67 y). 
The anti-aging regimen (HSF™ Skin Care, Tomorrowlabs) was applied to half of the face twice daily (morning and evening) over a study period 
of 6 wk. The effects on skin surface profile, skin moisture, and transepidermal water loss were determined by FOITSHD, Corneometer, and 
Tewameter measurements in the periorbital region. Furthermore, a photo documentation of the faces was performed by VISIA CR followed 
by an expert evaluation and a survey regarding satisfaction
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humidity (22°C and 50% relative humidity). An acclimatization pe-
riod of 45 minutes occurred before measurements were taken.

2.1 | Dermatological assessment

Demographic data, skin status/type/sensitivity, and medical history 
were collected during an initial screening by a board-certified derma-
tologist. HSF™'s biocompatibility was evaluated by a board-certified 
dermatologist. Before and after application, test areas were examined 
under constant light conditions. Skin reactions (reddening, scaling, dry-
ness, and others) were graded according to a predefined scoring scale: 

Negative reaction (0 reaction points); Doubtful reaction (0.5 reaction 
points); Weak positive reaction (1 reaction points); Strong positive re-
action (2 reaction points); and Extreme positive reaction (3 reaction 
points). The overall results were summarized in cumulative irritation 
scores, the total number of skin reactions, and total reaction points.

2.2 | Fast Optical in vivo Topometry of Human Skin 
(FOlTSHD)

FOITSHD scans were taken at baseline and at 6 weeks. FOITS uses 
an established optical procedure for noncontact measurements of 

TA B L E  1   Dermatological assessment

Note: HSF™ product's biocompatibility was evaluated by a board-certified dermatologist. Before and after the given application phase, the test areas 
were examined under constant light conditions. Skin reactions (reddening, scaling, dryness, and others) were graded according to a predefined scoring 
scale: Negative reaction (0 reaction points); Doubtful reaction (0.5 reaction points); Weak positive reaction (1 reaction points); Strong positive reaction 
(2 reaction points); and Extreme positive reaction (3 reaction points). The irritation scores were reported by means of reaction points showing every 
subject's score to each treatment area. The overall results were summarized in cumulative irritation scores, the total number of skin reactions, and total 
reactions points. After an application phase of 6 wk, no negative skin reactions of dermatological relevance were documented for the test product.
Diagnostic findings in regard to compatibility parameters (Reaction: –: none; (+): doubtful; +: weak; ++: strong; +++: extremes).
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skin topography based on a combination of a gray-code and phase-
shift techniques, producing a three-dimensional analysis of the 
microstructures of the skin.19,20 Based on surface roughness stand-
ards, FOITS employs computer-assisted strip analysis to process 
information gathered from high-speed, noncontact scanning.21

In addition, FOITSHD enables the accurate measurement of abso-
lute space coordinates of all object points in the selected image area in 
less than one second. The FOlTSHD measurement system consists of 
a projection unit and two 5-Megapixel CCD cameras which are fixed 
at a triangulation angle. Concerning the gray-code method, grids with 
different numbers and width of lines are projected. The number of 
lines is doubled at each new projection up to a maximum of 128 lines. 
This gives a clearly defined hierarchy of lines for each image point. 
Regarding the phase-shift technique, only one grid with a sinus-like 
intensity distribution is projected several times with different phase 
positions. By using a stereo camera system, an increase in signal qual-
ity is achieved. An advantage of this combined imaging technique is 
that in addition to the brightness image of the inspected area for each 
image point the hierarchy, phase, and line value of the projected line 

pattern is calculated. The FOITSHD technique provides the opportu-
nity of an excellent XY resolution of about 20 µm in combination with 
a field of view of approximately 17 cm2. The FOITSHD technique is 
able to realize a depth of sharpness of 20 mm on an inspection area of 
48 × 36 mm2. The resolution in the vertical Z-direction is about 1 µm. 
The resolution in Z-direction is not limited to 256 gray steps of the 
high resolution CCD camera. The high resolution in the vertical direc-
tion is achieved by analyzing intensity and phase displacement of the 
projected grids. The surface structure of the analyzed area causes a 
deviation of the intensity and phase information of the projected grid 
structures from the theoretical model structure of a plane surface. 
With corresponding mathematical algorithms, the absolute 3D coor-
dinates of the inspected area are calculated from these deviations. 
The current computer capacities enable an image sequence with cor-
responding analysis of coordinates in a few hundred milliseconds.

Baseline and 6 week images of the area of analysis are precisely 
overlaid by the software using mathematical algorithms, guarantee-
ing that initial and final evaluations are done on identical skin areas. 
ln order to adapt to the morphological structure of the periorbital 

F I G U R E  2   Fast Optical in vivo 
Topometry of Human Skin (FOlTSHD). 
The basis parameters in order to describe 
the skin surface profile are the averaged 
depth of roughness (Rz) and the arithmetic 
mean roughness (Ra). The results of 
FOlTSHD measurements in the periorbital 
region show a significant decrease in 
roughness parameters Rz and Ra after 
6 wk of regular treatment with test 
product compared with untreated area
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area in the analysis of wrinkles, the roughness parameters Rz and Ra 
(according to DIN)22 are determined perpendicular to the main wrin-
kle direction for an evaluation area of 20 × 20 mm2 using separate 
lines. Starting close to the eye, 50 separate lines with a distance of 
400 µm are analyzed. The resulting roughness score is shown as a 
function of the number of lines. Ten successive lines each are aver-
aged resulting in five areas of evaluation.

2.3 | Photo documentation by VISIA CR

Digital photos (right side, left side, and front of the face) were taken 
of each volunteer at baseline t(0) and after 6 weeks t(6) using the 
VISIA CR photo-station (Canfield Imaging Systems) with a Canon 
EOS 6D, 20-Megapixel DSLR camera (Canon Incorporated) under 
standardized lighting conditions. The imaging process is completely 

software controlled. All shooting parameters are encrypted in the 
image so that follow-up pictures are automatically adjusted, ensur-
ing permanent quality control over the whole imaging process. A 
direct line between camera and computer allows the software to 
control all camera settings for standardized images. An integrated 
color standard (MacBeth reference color chip) is present for all im-
ages. A live video preview (ghost view) along with built-in positioning 
aids (adjustable headrest and chincup) ensure reproducible subject 
positioning between all time points. The volunteer's eyes are closed 
and their face is relaxed as much as possible during photography.

2.4 | Expert evaluation of standardized photographs

A blinded expert evaluation (6 independent dermatologists and plas-
tic surgeons) of the standardized photographs was conducted based 

F I G U R E  3   Expert evaluation of 
standardized photographs. The grading 
of standardized images was conducted 
by means of a validated evaluation 
method. The objective measurement 
of signs and extent of dermal aging 
showed a significant improvement of the 
wrinkles in the facial area, in particular a 
significant reduction of fine wrinkles, lip 
wrinkles, and crow's feet after 6 wk of 
treatment with the HSF™-based skin care 
formulation
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on validated assessment scales.23-25 Briefly, examiners compared 
photographs to a 5-point photonumeric rating scale based on mor-
phed images to objectively quantify the severity of facial wrinkles.

2.5 | Corneometer

A quantitative evaluation of changes to the water content of the 
skin can be achieved by means of capacity measurements using a 
Corneometer. These capacity changes are registered by the meas-
uring head capacitor and the data are processed automatically. 
There is no conductive (galvanic) connection between the object 
measured and the measuring equipment, eliminating the impact 
of ionic conductivity and polarization effects on measurement. A 
Corneometer probe CM 825 with MDD4 (Multi Display Device, 
Courage + Khazaka electronic GmbH) was used to measure the 
water content. Ten Corneometer values measured per test area and 
evaluation time are averaged out for every subject.

2.6 | Transepidermal water loss (TEWL)

A Tewameter probe TM 300 with MDD4 (Multi Display Device, 
Courage + Khazaka electronic GmbH) is used for measuring the tran-
sepidermal water loss, which is a reliable indicator for the integrity of 
the skin barrier. The Tewameter probe consists of a cylindrical tube with 
two capacitive moisture sensors that measure the moisture of the air at 
two defined distances above the surface. Three TEWL values measured 
per test area and evaluation time are averaged out for every subject.

2.7 | Survey

We performed a survey at the last follow-up appointment. A 6-item 
Likert scale26 was employed to assess participant satisfaction with 
the HSF™ treatment. The questionnaire results were analyzed by 
means of descriptive statistics.

2.8 | Statistical analysis

Since FOITSHD data are log-normally distributed, we employed anal-
ysis of variance (ANOVA). The general F-test of ANOVA was used to 
determine significance. Paired t test was used for the remaining data 
points. Results were considered significant at P ≤ .05.

3  | RESULTS

3.1 | Dermatological assessment

After an application phase of 6 weeks, no negative skin reac-
tions of dermatological relevance were documented for the test 

product (Table 1). One subject (no. 1) discontinued the study due 
to personal reasons. The data of subject no. 2 were not taken into 
consideration for FOITSHD evaluation due to a pimple formation 
in the analysis area at t6w. Thus, results are based on 30 subjects 
for skin's surface profile measurements and on 31 subjects for all 
other analyses.

3.2 | Fast Optical in vivo Topometry of Human Skin 
(FOlTSHD)

The results of FOlTSHD measurements in the periorbital region 
show a significant decrease in Rz (depth of roughness) and Ra 
(arithmetic mean roughness) after 6 weeks of regular treatment 
with the test product (Figure 2). FOITSHD data show a significant 
skin smoothing effect for the HSF™-based skin care formulation 
(P < .05).

3.3 | Expert evaluation of standardized photographs

Objective measurement of dermal aging showed a significant 
improvement of facial wrinkles (P < .05), in particular a signifi-
cant reduction of fine wrinkles, lip wrinkles, and crow's feet after 
6 weeks of treatment with the HSF™-based skin care formulation 
(Figure 3).

3.4 | Corneometer

Skin moisture detection is an essential part of the examination of 
cosmetic care products. Corneometer measurements demonstrated 
a significant increase in skin moisture after 6 weeks of regular 

F I G U R E  4   Skin moisture detection. According to the results 
of Corneometer measurements, a significant increase in skin 
moisture is documented for the test product after 6 wk of regular 
application. The statistical comparison to untreated area shows a 
20% difference of skin moisture in favor of the test product
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application of the HSF™-based skin care formulation (20% greater; 
P < .05) (Figure 4).

3.5 | Transepidermal water loss (TEWL)

Tewameter measurements demonstrated no significant differences 
in TEWL after 6 weeks of treatment with the HSF™-based skin care 
formulation in comparison with baseline (data not shown), suggest-
ing preservation of skin barrier function.

3.6 | Patient-reported outcome

Ninety-four percent of study participants were satisfied or very sat-
isfied with their individual outcomes after 6 weeks of regular use of 
the HSF™-based skin care formulation (Figure 5).

4  | DISCUSSION

4.1 | Mechanisms of skin aging

At a cellular and molecular level, aging is characterized by the progres-
sive accumulation of damage to DNA via oxidation, resulting in dimin-
ished physiological integrity and impaired functionality. Researchers 
are only just beginning to understand the biological basis of aging, re-
lying extensively on relatively simple and short-lived organisms such 

as yeast.27 Aging is often attributed to the natural result of entropy 
on cells, tissues, and organs.28 However, accumulating evidence sug-
gests a role for genetic regulation and that age-related breakdown 
of cellular processes represent a programmatic decision by the cell 
to either pursue or abandon maintenance procedures.29 Regarding 
the skin, it is widely accepted that advanced age brings changes to all 
components of the integumentary system with consequent signs of 
deterioration in the epidermis, dermis, and hypodermis.

In general, age-related skin changes are triggered by a combi-
nation of intrinsic and extrinsic factors (eg, ultraviolet/infrared light 
exposure and smoking). Intrinsic or innate aging is a degenerative 
process involving a loss of function30 characterized by a decreased 
capacity to respond to exogenous and endogenous stress,31 includ-
ing telomere loss, oxidative stress, and DNA damage.2,3,32 Several 
studies indicate that telomere length modulates the pace of aging 
and onset of age-associated diseases.33,34 Additionally, emerging ev-
idence shows that lifestyle factors (obesity, smoking, and alcohol) 
may influence the health and lifespan of an individual by directly 
affecting telomere length,35 demonstrating the strong interplay be-
tween the various proposed mechanisms of aging. Extrinsic aging 
is the result of skin exposure to external factors, most importantly 
ultraviolet radiation,31 which weakens both the strength and elas-
ticity of skin36,37 causing “solar elastosis,” a progressive accumula-
tion of elastic fibers in the upper and mid-layers of the dermis.38 
Collectively, aging leads to degradation of collagen fibers, microtex-
tural impairments, and loss of connective tissue structures.39

Both cytoplasmic and extracellular regenerative machinery are 
profoundly impaired in aged skin.40,41 Aged and senescent cutaneous 

F I G U R E  5   Survey results. Being asked for their satisfaction with the results after 6 wk of regular use of HSF™-based skin care 
formulation, 94% of study participants were satisfied or very satisfied with their individual outcomes
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cells demonstrate markedly lower rates of collagen biosynthesis 
than what is observed in infant or fetal tissue.42,43 Similarly, the rate 
of elastin gene expression is markedly reduced after the fourth de-
cade of life.44 An imbalance between biosynthesis and degradation 
of elastin fibers clinically manifests as atrophy and loss of pliability in 
aged skin. Recent evidence also identifies matrix metalloproteinases 
(MMPs) as important mediators of this degeneration.45 By destroy-
ing the endogenous collagen network, proteoglycans, fibronectin, 
and other components of the dermis, these enzymes result in a 
rapid, though not irreversible, cutaneous aging effect.46 Altogether, 
the interplay of these mechanisms affects all three layers of the skin, 
with its biggest influence on the dermis.47,48

4.2 | The role of HIF-1 in skin aging

Hypoxia-inducible factor-1 (HIF-1) is a dimeric protein composed of 
two main subunits, HIF-1α and HIF-1β, which binds to the hypoxia 
response element (HRE) in the promoter region of target down-
stream genes. The functional HIF-1α subunit has two different 
transactivation domains (TAD): NH2 terminal [N-TAD] and COOH 
terminal [C-TAD]. In the presence of oxygen, the HIF-1α subunit un-
dergoes constant ubiquitination-dependent degradation via the Von 
Hippel-Landau (VHL) E3 ligase protein49 after hydroxylation on both 
transactivation domains50-52 by oxygen-sensitive prolyl hydroxy-
lases (PHDs). In addition to hypoxia, lack of local free iron is also able 
to inhibit HIF-1α degradation.52

HIF-1α is essential for skin homeostasis and regeneration.53-55 
The activation of more than 100 downstream genes, which have 
extensive effects on angiogenesis, cell proliferation, migration, and 
glucose metabolism,56-58 critically regulating skin regeneration59 and 
wound healing,60,61 are profoundly dysregulated in aging.9 The con-
cept of intrinsic and extrinsic damage can also be linked to age-re-
lated loss of epidermal HIF-1 expression.8 Recent findings show that 
cutaneous HIF-1 expression is modulated after UVB exposure and 
that HIF-1α has an important role in the regulation of cellular re-
sponses to this type of genotoxic stress. Lastly, UVB induces ROS, 
which in turn influences HIF-1α expression affecting DNA repair and 
keratinocyte survival.62

4.3 | HIF-1 modulation for skin rejuvenation

Upregulation of HIF-1 reverses age-dependent functional impair-
ments of the skin and results in improved regeneration of aged tis-
sues.63 The biochemical reactions regulating HIF-1 signaling provide 
effective therapeutic strategies to promote HIF-1α stabilization 
and transactivation. Our group has recently demonstrated certain 
advantages in utilizing iron chelators to stimulate HIF-1 and tissue 
regeneration.6,63 These chelators not only deprive HIF-1 degrada-
tion of a necessary co-factor, but also reduce reactive oxygen spe-
cies (ROS) stress via the binding of iron molecules, which in excess 
can be toxic and accelerate the aging process.60 Well known as a 

treatment option for beta-thalassemia and hemochromatosis,64,65 
iron chelating drugs have shown benefits in aesthetic medicine and 
plastic surgery. With their regenerative potential, they have the abil-
ity to increase the retention rate of fat grafts, the survival rate of 
free flaps, and the healing process of diabetic wounds.66,67

In this study, we used an HSF™-based skin care formulation em-
ploying an iron-chelation approach for skin rejuvenation. The HIF 
stimulating factor employed here has been in clinical use for decades 
and has favorable safety characteristics promising for therapeutic 
HIF-1 signaling modulation. Our findings demonstrate a clinical 
proof of principle for the beneficial effects of HSF™-based care on 
aged skin. The presented data suggest a powerful role for this novel 
approach in the emerging field of regenerative skin care. However, 
the promising study results come with some limitations including the 
lack of the same vehicle as the active product as a control group and 
the lack of comparative 3D surface measurements between sides.

5  | CONCLUSION AND OUTLOOK

With no negative skin reactions and highly significant effects on 
skin roughness, wrinkles, and moisturization, the HSF™-based skin 
care formulation achieved satisfactory outcomes in this clinical trial. 
Given the promising results, this approach represents a true innova-
tion in aesthetic and regenerative medicine.
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