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Abstract
The problem of learning Boolean linear functions from quantum examples w.r.t. the
uniform distribution can be solved on a quantum computer using the Bernstein–
Vazirani algorithm (Bernstein and Vazirani, in: Kosaraju (ed) Proceedings of the
twenty-fifth annual ACM symposium on theory of computing, ACM,NewYork, 1993.
https://doi.org/10.1145/167088.167097). A similar strategy can be applied in the case
of noisy quantum training data, as was observed in Grilo et al. (Learning with errors is
easy with quantum samples, 2017). However, extensions of these learning algorithms
beyond the uniform distribution have not yet been studied. We employ the biased
quantum Fourier transform introduced in Kanade et al. (Learning dnfs under prod-
uct distributions via μ-biased quantum Fourier sampling, 2018) to develop efficient
quantum algorithms for learning Boolean linear functions on n bits from quantum
examples w.r.t. a biased product distribution. Our first procedure is applicable to any
(except full) bias and requires O(ln(n)) quantum examples. The number of quan-
tum examples used by our second algorithm is independent of n, but the strategy is
applicable only for small bias. Moreover, we show that the second procedure is stable
w.r.t. noisy training data and w.r.t. faulty quantum gates. This also enables us to solve
a version of the learning problem in which the underlying distribution is not known in
advance. Finally, we prove lower bounds on the classical and quantum sample com-
plexities of the learning problem. Whereas classically, Ω(n) examples are necessary
independently of the bias, we are able to establish a quantum sample complexity lower
bound of Ω(ln(n)) only under an assumption of large bias. Nevertheless, this allows
for a discussion of the performance of our suggested learning algorithms w.r.t. sample
complexity. With our analysis, we contribute to a more quantitative understanding of
the power and limitations of quantum training data for learning classical functions.
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1 Introduction

The origins of the fields of machine learning as well as quantum information and com-
putation both lie in the 1980s. The arguably most influential learning model, namely
the PAC (“probably approximately correct”) model, was introduced byValiant in 1984
[26] with which the problem of learning was given a rigorous mathematical frame-
work. Around the same time, Benioff [7] and Feynman presented the idea of quantum
computers [12] to the public and thus gave the starting signal for important innova-
tions at the intersection of computer science, information theory and quantum theory.
Both learning theory and quantum computation promise new realms of computation in
which tasks that seem insurmountable from the perspective of classical computation
become feasible. The first has already proved its practical worth and is indispensable
for modern-world big data applications, the latter is not yet as practically relevant but
much work is invested to make the promises of quantum computation a reality. The
interested reader is referred to [20,25] for an introduction to statistical learning and
quantum computation and information, respectively.

Considering the increasing importance of machine learning and quantum compu-
tation, attempting a merger of the two seems a natural step to take and the first step
in this direction was taken already in [10]. The field of quantum learning has received
growing attention over the last few years and by now some settings are known in
which quantum training data and the ability to perform quantum computation can be
advantageous for learning problems from an information-theoretic as well as from
a computational perspective, in particular for learning problems with fixed underly-
ing distribution (see, e.g., [3] for an overview). It was, however, shown in [4] that no
such information-theoretic advantage can be obtained in the (distribution-independent)
quantum PACmodel (based on [10]) compared to the classical PACmodel (introduced
in [26]).

One of the early examples of the aptness of quantum computation for learning
problems is the task of learning Boolean linear functions w.r.t. the uniform distribution
via the Bernstein–Vazirani algorithm presented in [8].Whereas this task of identifying
an unknown n-bit string classically requires a number of examples growing (at least)
linearly with n, a bound on the sufficient number of copies of the quantum example
state independent of n can be established. This approachwas taken up in [13]where it is
shown that, essentially, the Bernstein–Vazirani-based learning method is also viable if
the training data is noisy. However, also this analysis is restricted to quantum training
data arising from the uniform distribution. The same limiting assumption was also
made in [10] for learning Disjunctive Normal Forms and in this context an extension
to product distributions was achieved in [17].

Hence, a next direction to go is building up on the reasoning of [17] to extend the
applicability of quantum learning procedures for linear functions to more general dis-
tributions. The analysis hereby differs from the one forDNFs because no concentration
results for the biased Fourier spectrum of a linear function are available. Moreover,
whereas many studies of specific quantum learning tasks focus on providing explicit
learning procedures yielding a better performance than known classical algorithms,
we complement our learning algorithms with lower bounds on the size of the training
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data for a comparison to the best classical procedure and for a discussion of optimality
among possible quantum strategies.

1.1 Overview over the results

The task of learning linear functions has already served as a toy model for quantum
speed-ups in the early days of quantum computing. We describe possible general-
izations of known results in different scenarios. First, in Theorem 3 we exhibit a
Fourier-sampling-based algorithm which learns Boolean linear functions on n inputs
fromO(ln(n)) quantum examples arising from a c-bounded product distribution Dμ.
(Classically, it is known thatΩ(n) examples are required.) Moreover, for a bias vector

μ satisfying |μi | ≤ O
(

1√
n

)
for all i , this can be reduced to O(1) quantum exam-

ples (Theorem 4). We also show that this reduction to a constant number of quantum
examples is not possible for arbitrary product distributions by giving quantum sample
complexity lower bounds in Theorem 6.

In Theorem 8, we exhibit a noise bound for quantum examples arising from

a product distribution Dμ with |μi | ≤ O
(

1√
n

)
for all i but corrupted by noise

which guarantees thatO(1) quantum examples still suffice for learning. Under milder
assumptions on the noise, aO(ln(n)) upper bound on the sample complexity is given.
Similarly, faulty quantum gates can be tolerated in our learning algorithm. Based on
this observation, we construct a quantum learning algorithm without prior knowl-
edge of the underlying distribution which requires O(n2) quantum examples by first
estimating the bias vector classically (Corollary 3).

1.2 Related work

The (classical) problem of learning linear functions from randomly drawn examples
in the presence of noise was studied in [9] (over the field F2) as well as in [22] (over
a field Fq for q prime). The latter of these two works also established the relevance
of this learning problem for cryptography by connecting it to certain lattice problems.
A different model for learning linear functions is studied in [16], where the training
data is not assumed to be noisy but instead only partial information about the function
values is revealed.

The quantum PAC model was introduced in [10], where it was employed for learn-
ing DNF formulae w.r.t. the uniform distribution using a quantum example oracle.
This was extended to product distributions by [17]. On the basis of this notion of
quantum examples, the known Bernstein–Vazirani algorithm [8] can be reinterpreted
as giving rise to a quantum learning algorithm for linear functions. This interpretation
is explicitly given and further elaborated upon for the case of noisy training data in
[11] (for q = 2) and in [13] (for general primes q). Cross et al. [11] established that,
whereas the learning parity problem without noise is feasible both for classical and
quantum computation, the learning parity with noise problem is widely believed to be
classically intractable but remains feasible for quantum computers, where the runtime
depends only logarithmically on the number of qubits. This quantum advantage for
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noisy systems was demonstrated experimentally in [23]. Grilo et al. [13] extends this
analysis to general fields and a broader class of noise models and obtains that also
for that scenario, learning linear functions from noisy data is feasible for quantum
computers; however, their runtime bound is polynomial in the number of subsystems.
In [5], the class of juntas is found to also allow for efficient quantum learning. The
framework of Fourier-based quantum exact learning is shown to be efficiently appli-
cable more generally also to Fourier-sparse functions in [1]. Limitations of the power
of quantum computation for learning have been studied in a series of papers culmi-
nating in [4] and more recently also in [2]. The former work shows that without prior
restrictions on the underlying probability distribution, quantum examples are not more
powerful than classical examples. The latter work demonstrates that, assuming quan-
tum hardness of the learning with errors problem from classical examples, the class
of shallow circuits is hard to learn from quantum examples.

Aside from the task of learning from examples, also the problem of learning from
membership queries, both classical and quantum, is well studied. For instance, [24]
established a polynomial relation between the number of required quantum versus
required classical queries, which was recently improved upon in [1]. Also, [19] uses
quantum membership queries for learning multilinear polynomials more efficiently
than is classically possible.

1.3 Structure of the paper

The paper is structured in the following way. In Sect. 2, we introduce the well-known
notions from classical learning, quantum computation and Boolean Fourier analysis
required for our purposes as well as the prototypic learning algorithm which moti-
vates our procedures. Section 3 consists of a description of the learning task to be
considered. This is followed by a generalization of the Bernstein–Vazirani algorithm
to product distributions in Sect. 4. In the next section, this is used to develop two quan-
tum algorithms for solving our problem. (“Appendix A” contains a stability analysis
of the second of the two procedures w.r.t. noise in training data and computation.)
In Sect. 6, we establish sample complexity lower bounds complementing the upper
bounds implied by the algorithms of Sect. 5. Finally, we conclude with some open
questions and the references.

2 Preliminaries

2.1 Basics of quantum information and computation

We first define some of the fundamental objects of quantum information theory, albeit
restricted to those required in our discussion. For the purpose of our presentation,
we will consider a pure n-qubit quantum state to be represented by a state vector
|ψ〉 ∈ C

2n (in Dirac notation). Such a state encodes measurement probabilities in the
following way: If {|bi 〉}2ni=1 is an orthonormal basis of C2n , then there corresponds a
measurement to this basis and the probability of observing outcome i for a system in
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state |ψ〉 is given by |〈bi |ψ〉|2. Finally, when considering multiple subsystems we will
denote the composite state by the tensor product, i.e., if the first system is in state |ψ〉
and the second in state |φ〉, the composite system is in state |ψ, ϕ〉 := |ψ〉 ⊗ |φ〉.

Quantum computation now consists in evolution of quantum states. Performing a
computational step on an n-qubit state corresponds to applying an 2n × 2n unitary
transformation to the current quantum state. (The most relevant example of such
unitary gates in our context will be the (biased) quantum Fourier transform discussed
in more detail in Sect. 2.4.) As the outcome of a quantum computation is supposed to
be classical, as final step of our computation we perform a measurement such that the
final output will be a sample from the corresponding measurement statistics.

We will also use some standard notions from (quantum) information theory. For
example, we denote the Shannon entropy of a random variable X by H(X), the condi-
tional entropy of a random variable X given Y as H(X |Y ) and the mutual information
between random variables X and Y as I (X : Y ). Similarly, the von Neumann entropy
of a quantum state ρ will be denoted as S(ρ) and the mutual information for a bipartite
quantum state ρAB as I (ρAB) = I (A : B). Standard results on these quantities which
will enter our discussion can, e.g., be found in [20].

2.2 Basics of learning theory

Next we describe the model of exact learning. In classical exact learning for an input
space X , a target space {0, 1}, and a concept class F ⊂ {0, 1}X , a learning algo-
rithm receives as input labeled training data {(xi , f (xi ))}mi=1 for some (to the learner)
unknown f ∈ F , where the xi are drawn independently according to some probability
distribution D onX which is known to the learner. The goal of the learner is to exactly
reproduce the unknown function f from such training examples with high success
probability.

We can formalize this as follows: We call a concept class F exactly learnable
if there exists a learning algorithm A and a map mF : (0, 1) → N s.t. for every
D ∈ Prob(X) (where Prob(X) is the set of all probability measures on X ), f ∈ F and
δ ∈ (0, 1), running A on training data of size m ≥ mF (δ) drawn according to D and
f with probability ≥ 1− δ (w.r.t. the choice of training data) yields a hypothesis h s.t.
h(x) = f (x) for all x ∈ X . The smallest such map mF is called sample complexity
of exactly learning F .

Note that this definition of learning captures the information-theoretic challenge of
the learningproblem in the sample complexity, but it does not refer to the computational
complexity of learning. The focus on sample complexity is typical in statistical learning
theory. Hence, also our results will be formulated in terms of sample complexity
bounds. As we give explicit algorithms, these results directly imply bounds on the
computational complexity; however, we will not discuss them in any detail.

Note also that the exact learningmodel differs from thewell-knownPAC (“probably
approximately correct”), introduced by [26], in two ways. First, whereas the PAC
model only requires to approximate the unknown function with high probability, we
require to reproduce it exactly; in other words, we set the accuracy in PAC learning
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to 0. Second, whereas in the PAC scenario the learner does not know the underlying
distribution, we assume it to be fixed and known in advance. A short discussion on
how to relax this restriction can be found in Sect. A.3.

The quantum exact learning model differs from the classical model in the form
of the training data and the allowed form of computation. Namely, in quantum exact
learning, the training data consists of m copies of the quantum example state |ψ f 〉 =∑

x∈X
√
D(x)|x, f (x)〉, and this training data is processed by quantum computational

steps. With this small change, the above definition of exact learnability and sample
complexity now carry over analogously.

We conclude this introduction with a concentration result that has proven to be
useful throughout learning theory.

Lemma 1 (Hoeffding’s Inequality [15], compare also Theorem 2.2.6 in [27])
Let Z1, ..., Zn be real-valued independent random variables taking values in closed

and bounded intervals [ai , bi ], respectively. Then for every ε > 0

P

[
n∑

i=1

Zi − E[Zi ] ≥ ε

]
≤ exp

(
− 2ε2∑n

i=1(ai − bi )2

)
.

This directly implies (after replacing Zi with −Zi ) that

P

[∣∣∣∣∣
n∑

i=1

Zi − E[Zi ]
∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
− 2ε2∑n

i=1(ai − bi )2

)
.

2.3 �-biased Fourier analysis of Boolean functions

We now give the basic ingredients of μ-biased Fourier analysis over the Boolean cube
{−1, 1}n . For more details, the reader is referred to [21].
For a bias vector μ ∈ [−1, 1]n , define the μ-biased product distribution Dμ on
{−1, 1}n via

Dμ(x) :=
⎛
⎝ ∏

i :xi=1

1 + μi

2

⎞
⎠

⎛
⎝ ∏

i :xi=−1

1 − μi

2

⎞
⎠ =

∏
1≤i≤n

1 + xiμi

2
, x ∈ {−1, 1}n .

Thus, a positiveμi tells us that at the i th position the distribution is biased towards+1,
a negative μi tells us that at the i th position the distribution is biased towards −1. For
μ = 0 . . . 0, we simply obtain the uniform distribution on {−1, 1}n . The absolute value
of μi quantifies the strength of the bias in the i th component. We call Dμ c-bounded,
for c ∈ (0, 1], if μ ∈ [−1+ c, 1− c]n . Assuming the underlying product distribution
to be c-bounded thus corresponds to assuming that the bias is not arbitrarily strong.
Hence, we will in the following express notions of “small” or “large” bias either in
terms of the bias vector μ or in terms of the c-boundedness constant.
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For Fourier analysis, we now need an orthonormal basis for the function spaceR{−1,1}n

w.r.t. the inner product 〈., .〉μ defined by

〈 f , g〉μ = EDμ [ f g] =
∑

x∈{−1,1}n
f (x)g(x)Dμ(x).

One can show (using the product structure to reduce to the case n = 1) that such
an orthonormal basis is given by {φμ, j } j∈{0,1}n with φμ, j (x) = ∏

i : ji=1
xi−μi√
1−μ2

i

.

For a function f : {−1, 1}n → {−1, 1} this now gives a representation f (x) =∑
j∈{0,1}n f̂μ( j)φμ, j (x) with f̂μ( j) := 〈 f , φμ, j 〉μ. For μ = 0 . . . 0, we recover the

well-known orthonormal basis consisting of χ j (x) = (−1) j ·x from standard Fourier
analysis over the Boolean cube.

2.4 �-biased quantum Fourier sampling

Wenow turn to the description of the quantum algorithm forμ-biased quantumFourier
sampling which constitutes the basic ingredient of our learning algorithms and which,
to our knowledge, was first presented in [17]. There the authors demonstrate that the
μ-biased Fourier transform for a c-bounded Dμ with c ∈ (0, 1] can be implemented
on a quantum computer as the n-qubit μ-biased quantum Fourier transform: For x ∈
{−1, 1}n,

Hn
μ|x〉 = Hμ ⊗ . . . ⊗ Hμ|x1, . . . , xn〉 =

∑
j∈{0,1}n

√
Dμ(x)φμ, j (x)| j〉.

In the same way as the unbiased quantum Fourier transform can be used for quantum
Fourier sampling, this μ-biased version now yields a procedure to sample from the
μ-biased Fourier spectrum of a function using a quantum computer. We describe the
corresponding procedure in Algorithm 1.

Algorithm 1 μ-biased Quantum Fourier Sampling
Input: |ψ f 〉 = ∑

x∈{−1,1}n
√
Dμ(x)|x, f (x)〉 for a function f : {−1, 1}n → {0, 1}

Output: j ∈ {0, 1}n with probability
(
ĝμ( j)

)2, where the function g : {−1, 1}n → {−1, 1} is defined
as g(x) = (−1) f (x).

Success Probability: 1
2

1: Perform the μ-biased QFT Hμ on the first n qubits, obtain the state (Hμ ⊗ 1)|ψ f 〉.
2: Perform a Hadamard gate on the last qubit, obtain the state (Hμ ⊗ H)|ψ f 〉.
3: Measure each qubit in the computational basis and observe outcome j = j1 . . . jn+1.
4: if jn+1 = 0 then � This corresponds to a failure of the sampling algorithm.
5: Output o ←⊥ and end computation.
6: else if jn+1 = 1 then � This corresponds to a success of the sampling algorithm.
7: Output o ← j1 . . . jn and end computation.
8: end if
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One can show that this algorithm indeed works as claimed by analyzing the trans-
formation of the quantum state throughout the steps algorithm and making use of the
orthonormality of the basis. This is the content of the following

Lemma 2 (Lemma 3 in [17])

Denote g : {−1, 1}n → {−1, 1}, g(x) = (−1) f (x). Then with probability (ĝμ( j))
2

2 ,
Algorithm 1 outputs the string j ∈ {0, 1}n .

Proof The proof can be found in [17], we reproducce it in “Appendix B.” ��

This result allows us to generalize results based on quantum Fourier sampling
w.r.t. the uniform distribution. In particular, we will apply it to obtain a generalization
of the Bernstein–Vazirani algorithm.

2.5 The pretty goodmeasurement

A basic problem in quantum information is that of distinguishing quantum states. We
now describe a useful tool in this context, namely a measurement that is guaranteed to
have a “pretty good” success probability to correctly identify an unknown state from
a known ensemble.

Suppose that Alice (A) chooses one among m pure states |ψi 〉 ∈ C
d according to

probabilities pi ∈ [0, 1], where pi ≥ 0 and
∑m

i=1 pi = 1 and then sends the state
to Bob (B). B wants to identify the state by performing a POVM measurement A.
Let E = {(pi , |ψi 〉)}i=1...,m be the ensemble describing A’s preparation procedure,
denote B’s optimal success probability by Popt := maxPOVM A PA, where PA :=∑m

i=1 pi 〈ψi |Ai |ψi 〉 for a POVM A = {Ai }i=1,...,m . Hausladen and Wootters [14]
suggested a canonical form for a measurement for state discrimination, which is now
usually referred to as the “pretty good measurement” (PGM) corresponding to the
ensemble E . It is defined in the following way:

First let |ψ ′
i 〉 := √

pi |ψi 〉 be the states renormalized according to their respective
probabilities. The density operator of the ensemble E is ρ := ∑m

i=1 pi |ψi 〉〈ψi | =∑m
i=1 |ψ ′

i 〉〈ψ ′
i |. Now define |ϕi 〉 := ρ− 1

2 |ψi 〉, where the inverse square root is taken
only over nonzero eigenvalues of ρ. Now the PGM is APGM = {|ϕi 〉〈ϕi |}i=1,...,m .
(Observe that this is indeed a valid POVM, even a projection-valued measure (PVM),

because
∑m

i=1 |ϕi 〉〈ϕi | = ρ− 1
2 ρρ− 1

2 = 1d .)
The “pretty good” performance of the PGM was proved in [6]:

Theorem 1 For the PGM measurement defined above it holds that

Popt (E)2 ≤ PPGM (E) ≤ Popt (E).

Another useful property of the PGM is that the corresponding success probability
can be computed from the Gram matrix of the ensemble as follows:
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Lemma 3 The success probability for the PGM measurement for an ensemble E =
{(pi , |ψi 〉)}i=1...,m can be written as

P PGM (E) =
m∑
i=1

√
G(i, i)2,

where G is the Gram matrix with entries G(i, j) = √
pi p j 〈ψi |ψ j 〉 for 1 ≤ i, j ≤ m.

Proof This result can be shown by direct computation using the definition of the PGM
and the uniqueness of the positive square root of a positive matrix. ��

3 The learning problem

We now describe the learning task which we aim to understand. For a ∈ {0, 1}n , define

f (a) : {−1, 1}n → {0, 1}, f (a)(x) :=
n∑

i=1

ai
1 − xi

2
(mod 2).

When we observe that 1−xi
2 is simply the bit-description of xi , it becomes clear that

f (a) computes the parity of the entries of the bit-description of xi at the positions at
which a has a 1-entry. To ease readability, we will write x̃i = 1−xi

2 .
The classical task which inspires our problem is the following: Given a set of m

labeled examples S = {(xi , f (a)(xi ))}mi=1, where the xi are drawn i.i.d. according
to Dμ, determine the string a with high success probability. Here, we assume prior
knowledge of the underlying distribution and that the underlying distribution is a
c-bounded product distribution as introduced in Sect. 2.4. This means that we are
considering a problem of exact learning from examples with instances drawn from a
distribution that is known to the learner in advance.

Classically, as we show in Sect. 6, successfully solving the task requires a number of
examples that grows at least linearly in n. If we consider a version of this problemwith
noisy training data, then known classical algorithms perform worse both w.r.t. sample
complexity and running time. For example, [18] exhibits an algorithmwith polynomial
(superlinear) sample complexity but barely subexponential runtime (both w.r.t. n).

The step to the quantum version of this problem now is the same as from classical
to quantum exact learning. This means that training data is given as m copies of the
quantum example state |ψa〉 = ∑

x∈{−1,1}n
√
Dμ(x)|x, f (a)(x)〉 and the learner is

allowed to use quantum computation to process the training data. The goal of the
quantum learner remains that of outputting the unknown string a with high success
probability.
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4 A generalized Bernstein–Vazirani algorithm

To understand how μ-biased quantum Fourier sampling can help us with this learning
problem, we first compute the μ-biased Fourier coefficients of g(a) := (−1) f

(a)
, with

f (a) for a ∈ {0, 1}n the linear functions defined in Sect. 3.

Lemma 4 Let a ∈ {0, 1}n, g(a) := (−1) f
(a)

and μ ∈ (−1, 1)n. Then the μ-biased
Fourier coefficients of g(a) satisfy:

(i) If ∃ 1 ≤ i ≤ n s.t. ai = 0 �= ji , then ĝ(a)
μ ( j) = 0.

(ii) If for all 1 ≤ i ≤ n s.t. ai = 0 also ji = 0, then

ĝ(a)
μ ( j) =

⎛
⎝ ∏

l:al=1 �= jl

μl

⎞
⎠

⎛
⎝ ∏

l:al=1= jl

√
1 − μ2

l

⎞
⎠ .

We can reformulate this as

ĝ(a)
μ ( j) =

⎛
⎝ ∏

l:al=0

(1 − jl)

⎞
⎠

⎛
⎝ ∏

l:al=1

(
(1 − jl)μl + jl

√
1 − μ2

l

)⎞
⎠ , j ∈ {0, 1}n .

Proof We first observe that all the “objects of interest,” namely the probability distri-
bution Dμ, the basis functions φμ, j , and the target function ĝ(a)

μ , factorize. This now
implies that also the μ-biased Fourier coefficients factorize, i.e., we have

ĝ(a1...an)
μ ( j1 . . . jn) =

n∏
i=1

EDμi
[φμi , ji (xi ) · (−1)ai ·x̃i ].

Therefore we only have to study the case n = 1 in detail and the general result
then follows. In this case, we have f (a)(x) = ax̃ , g(a)(x) = (−1)ax̃ for x̃ = 1−x

2 ,
φμ,0(x) = 1, and φμ,1(x) = x−μ√

1−μ2
. (We leave out unnecessary indices to improve

readability.) We compute

ĝ(a)
μ ( j) = EDμ[(−1)ax̃φμ, j (x)] = 1 + μ

2
· 1 · φμ, j (1) + 1 − μ

2
· (−1)a · φμ, j (−1).

By plugging in we now obtain

ĝ(0)
μ (0) = 1, ĝ(0)

μ (1) = 0, ĝ(1)
μ (0) = μ, ĝ(1)

μ (1) =
√
1 − μ2,

which is exactly the claim for n = 1. ��
For clarity, we write down explicitly the algorithm which we obtain as a gener-

alization of the Bernstein–Vazirani algorithm to a μ-biased product distribution as
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Algorithm 2. The generalization compared to the standard Bernstein–Vazirani algo-
rithm consists only in going from the uniform to a more general product distribution,
which gives rise to different observation probabilities.

Algorithm 2 Generalized Bernstein–Vazirani algorithm

Input: |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉 for a ∈ {0, 1}n , and μ ∈ [−1, 1]n

Output: o ∈ {0, 1}n with probability

⎛
⎝ ∏
l:al=0

(1 − ol )

⎞
⎠

⎛
⎝ ∏
l:al=1

(
(1 − ol )μ

2
l + ol (1 − μ2

l )
)⎞⎠

Success Probability: 1
2

1: Perform the μ-biased QFT Hμ on the first n qubits, obtain the state (Hμ ⊗ 1)|ψa〉.
2: Perform a Hadamard gate on the last qubit, obtain the state (Hμ ⊗ H)|ψa〉.
3: Measure each qubit in the computational basis and observe outcome j = j1 . . . jn+1.
4: if jn+1 = 0 then � This corresponds to a failure of the algorithm.
5: Output o =⊥.
6: else if jn+1 = 1 then � This corresponds to a success of the algorithm.
7: Output o = j1 . . . jn .
8: end if

We now show that the output probabilities of Algorithm 2 are as claimed in its
description. This follows directly by combining Lemma 2 on the workings of μ-
biased quantum Fourier sampling with Lemma 4 on the μ-biased Fourier coefficients
of our target functions and is the content of the following

Theorem 2 Let |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉 be a quantum example state,

with a ∈ {0, 1}n and μ ∈ (−1, 1)n. Then step 3 of Algorithm 2 provides an outcome
| j1 . . . jn+1〉 with the following properties:

(i) P[ jn+1 = 0] = 1
2 = P[ jn+1 = 1],

(ii) P[ j1 . . . jn = a| jn+1 = 1] = ∏
l:al=1

(1 − μ2
l ),

(iii) for o �= a:

P[ j1 . . . jn = o| jn+1 = 1] =
∏

l:al=0

(1 − ol) ·
∏

l:al=1

(
(1 − ol)μ

2
l + ol(1 − μ2

l )
)
,

(iv) P[∃1 ≤ i ≤ n : ai = 0 �= ji | jn+1 = 1] = 0, and

(v) P[∃1 ≤ i ≤ n : ai = 1 �= ji | jn+1 = 1] ≤
n∑

i=1
μ2
i . In particular, if Dμ is

c-bounded, then P[∃1 ≤ i ≤ n : ai = 1 �= ji | jn+1 = 1] ≤ n(1 − c)2.

Note that (v) can be trivial if the bias is too strong. This observation already hints
at why we later use different procedures for arbitrary and for small bias.

We also want to point out that in the case of no bias (i.e., μ = 0), Algorithm 2
simply reduces to the well-known Bernstein–Vazirani algorithm [8].
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5 Quantum sample complexity upper bounds

This section contains the description of two procedures for solving the task of learning
an unknown Boolean linear function from quantum examples w.r.t. a product distribu-
tion. (Here, we assume perfect quantum examples, noisy examples will be taken into
consideration in the next section.) It is subdivided into an approach which is applica-
ble for arbitrary (albeit not full) bias in the product distribution and a strategy which
produces better results but is only valid for small bias.

5.1 Arbitrary bias

As in the case of learning w.r.t. the uniform distribution, we intend to run the gen-
eralized Bernstein–Vazirani algorithm multiple times as a subroutine and then use
our knowledge of the outcome of the subroutine together with probability-theoretic
arguments. The main difficulty compared to the case of an example state arising from
the uniform distribution lies in the fact that whereas an observation of jn+1 = 1 when
performing the standard Bernstein–Vazirani algorithm guarantees that j1 . . . jn equals
the desired string, this is not true in the μ-biased case. Hence, we have to develop a
different procedure of learning from the outcomes of the subroutine. For this purpose,
we propose Algorithm 3.

Algorithm 3 Amplified Generalized Bernstein–Vazirani algorithm - Version 1

Input: m copies of |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉 for a ∈ {0, 1}n , where the number of

copies is m ≥ C

⎛
⎝
⎡
⎢⎢⎢

(
2 ln

(
1

1−c+ c2
2

))−1 (
ln(n) + ln( 2δ )

)⎤⎥⎥⎥

⎞
⎠ for a suitable constant C > 0, and

μ ∈ (−1, 1)n and c ∈ (0, 1] s.t. Dμ is c-bounded.
Output: a ∈ {0, 1}n
Success Probability: ≥ 1 − δ

1: for 1 ≤ l ≤ m do
2: Run Algorithm 2 on the lth copy of |ψa〉, store the output as o(l).
3: end for
4: if ∃1 ≤ l ≤ m : o(l) �=⊥ then
5: for 1 ≤ i ≤ n do
6: Let oi := max

l:o(l) �=⊥
o(l)
i .

7: end for
8: Output o = o1 . . . on .
9: else if ∀1 ≤ l ≤ m : o(l) =⊥ then
10: Output o =⊥.
11: end if

The amplification procedure in Algorithm 3 differs from the majority vote in the
standard Bernstein–Vazirani learning procedure (w.r.t. the uniform distribution) as
used in [11,13] in the following two ways: Instead of working on the level of the
whole string, we use a componentwise strategy. And instead of taking a majority
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vote over observed values, we take a maximum to account for the asymmetry in the
probability of an observation error (see Theorem 2).

We now show that the number of copies postulated in Algorithm 3 is actually
sufficient to achieve the desired success probability.

Theorem 3 Let |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉, a ∈ {0, 1}n, μ ∈ (−1, 1)n

s.t. Dμ is c-bounded for some c ∈ (0, 1]. Then

O
⎛
⎝
(
2 ln

(
1

1 − c + c2
2

))−1 (
ln(n) + ln(

2

δ
)

)⎞
⎠

copies of the quantum example state |ψa〉 are sufficient to guarantee that, with prob-
ability ≥ 1 − δ, Algorithm 3 outputs the string a.

Proof We want to show that P[Algorithm 3 does not output a] ≤ δ. We do so by
treating separately the cases in which Algorithm 3 does not output a.
The first such case occurs if o =⊥. The second such case would be that there exists
1 ≤ i ≤ n s.t. ai = 0 �= oi , but due to Theorem 2, this is an event of probability 0.
The third and last such case is that there exists 1 ≤ i ≤ n s.t. ai = 1 �= oi . Hence, we
can decompose the probability of Algorithm 3 producing a wrong output as

P[Algorithm 3 does not output a]
= P[Algorithm 3 outputs ⊥] + P[∃1 ≤ i ≤ n : ai = 1 �= oi ]. (5.1)

First, we bound the probability of the algorithm outputting ⊥ (i.e., of each subroutine
failing) as follows:

P[Algorithm 3 outputs ⊥]
= P[∀1 ≤ l ≤ m : Algorithm 2 applied to |ψa〉 outputs ⊥]
=

(
1

2

)m

,

where the last step uses Theorem 2 and that the training data consists of independent
copies of |ψa〉, i.e., is given as a product state. The choice of m now guarantees that
this last term is ≤ δ

2 (if we choose the constant C > 0 sufficiently large).
Now we bound the second term in Eq. (5.1). We make the following observation:

Suppose 1 ≤ i ≤ n is s.t. ai = 1. As the Fourier coefficients, and with them the output
probabilities, factorize, the probability of Algorithm 2 outputting a string j1 . . . jn with
ji = 1 = ai is simply the probability of Algorithm 2 applied to only the subsystem
state of |ψa〉 corresponding to the i th and the (n + 1)st subsystem outputting a 1. By
Theorem 2, this probability is

P[ ji = 1] = P[ jn+1 = 1] · P[ ji = 1| jn+1 = 1] = 1

2
· (1 − μ2

i ).
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Hence, assuming ai = 1, the probability of not observing a 1 at the i th position
in any of the m runs of Algorithm 2 is

(
1 − 1

2 · (1 − μ2
i )
)m = ( 1

2 (1 + μ2
i )
)m

. By
c-boundedness of the distribution Dμ we get

(
1

2
(1 + μ2

i )

)m

≤
(
1

2
+ 1

2
(1 − c)2

)m

=
(
1 − c + c2

2

)m

.

So using the union bound, we arrive at

P[∃1 ≤ i ≤ n : ai = 1 �= oi ]
= P[∃1 ≤ i ≤ n : ai = 1 and in m runs no 1 is observed at the i th entry]

≤
n∑

i=1

P[ai = 1 and in m runs no 1 is observed at the i th entry]

≤ n ·
(
1 − c + c2

2

)m

.

The choice ofm guarantees that this last term is≤ δ
2 (if we choose the constant C > 0

sufficiently large).
We now combine this with Eq. (5.1) and obtain

P[Algorithm 3 does not output a] ≤ δ

2
+ δ

2
= δ,

which finishes the proof. ��

Remark 1 We want to comment shortly on the dependence of the sample complexity
bound on the c-boundedness constant by considering extreme cases. As c → 0,
i.e., we allow more and more strongly biased distributions, the sample complexity
goes to infinity. This reflects the fact that in the case of a fully biased underlying
product distribution, only a single bit of information about a can be extracted, so
exactly learning the string a is (in general) not possible.
For c = 1, i.e., the case of no bias, we simply obtain that O ((

ln(n) + ln( 2
δ
)
))

copies
of the quantum example state are sufficient. Note that this does not coincide with the
bound obtained for the standard Bernstein–Vazirani procedure which is independent
of n. (This can easily be shown using Lemma 1.)

This discrepancy is due to the difference in “amplification procedures.” Namely,
in Algorithm 3 we do not explicitly make use of the knowledge that, given jn+1 =
1, we know the probability of j1 . . . jn = a1 . . . an because, whereas for μ = 0
this probability equals 1, for μ �= 0 it can become small. Hence, for μ �= 0 our
algorithm introduces an additional procedure to deal with the uncertainty of j1 . . . jn
even knowing jn+1 and we see in the proof that this yields the additional ln(n) term. In
the next subsection, we describe a way to get rid of exactly that ln(n) term for “small”
bias.
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5.2 Small bias

In this subsection, we want to study the case in which (v) of Theorem 3 gives a good
bound. Namely, throughout this subsection we will assume that the c-boundedness
constant is s.t. n(1 − c)2 < 1

2 or, equivalently, c > 1 − 1√
2n
. This assumption will

allow us to apply a different procedure to learn from the output of Algorithm 2 and
thus obtain a different bound on the sample complexity of the problem. Note, however,
that this requirement becomes more restrictive with growing n and can in the limit
n → ∞ only be satisfied by c = 1, i.e., for the underlying distributions being uniform.
Also, we will from now on refer to c as c-boundedness parameter because the name
“constant” would hide the n-dependence.

Our procedure for the case of small bias is given in Algorithm 4.

Algorithm 4 Amplified Generalized Bernstein–Vazirani algorithm - Version 2

Input: m copies of |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉 for a ∈ {0, 1}n , where the number of

copies is m ≥ C
(

4
(1−2n(1−c)2)2

ln
(
2
δ

))
, as well as μ ∈ [−1, 1]n and c ∈ (0, 1] s.t. Dμ is c-bounded.

Output: a ∈ {0, 1}n
Success Probability: ≥ 1 − δ

1: for 1 ≤ l ≤ m do
2: Run Algorithm 2 on the lth copy of |ψa〉, store the output as o(l).
3: end for
4: if ∃1 ≤ l ≤ m : o(l) �=⊥ then
5: for 1 ≤ i ≤ n do
6: Let oi = argmaxr∈{0,1}|{1 ≤ l ≤ m|o(l)

i = r}|.
7: end for
8: Output o = o1 . . . on .
9: else if ∀1 ≤ l ≤ m : o(l) =⊥ then
10: Output o =⊥.
11: end if

Theorem 4 Let |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉, a ∈ {0, 1}n, μ ∈ (−1, 1)n

s.t. Dμ is c-bounded for some c ∈ (0, 1] satisfying c > 1 − 1√
2n
. Then

O
(

1

(1 − 2n(1 − c)2)2
ln

(
1

δ

))

copies of the quantum example state |ψa〉 are sufficient to guarantee that, with prob-
ability ≥ 1 − δ, Algorithm 4 outputs the string a.

Note that due to the required lower bound on c the sample complexity upper bound
basically loses its n-dependence. This is different from the result of Theorem 3, where
n explicitly entered the upper bound.
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Proof By Theorem 2, we have P[ jn+1 = 1] = 1
2 . Hence, the probability of observing

jn+1 = 1 in at most k − 1 of the m runs of Algorithm 2 is given by

k−1∑
l=0

(
m

i

)(
1

2

)i (1

2

)m−i

= P

[
Bin(m,

1

2
) ≥ m − k

]
,

where Bin denotes a binomial distribution.
Next we assume k ≤ m

2 (this will be justified later in the proof) and use Hoeffding’s
inequality (Lemma 1) to obtain

P

[
Bin

(
m,

1

2

)
≥ m − k

]
= P

[
Bin

(
m,

1

2

)
− m

2
≥ m − k − m

2

]

≤ exp

(
−2

(m
2 − k

)2
m

)
. (5.2)

We will now search for the number of observations of jn+1 = 1 which is required
to guarantee that the majority string is correct with high probability. Assume that we
observe jn+1 = 1 in k runs of Algorithm 2, k ∈ 2N. (The latter assumption clearly
does not significantly change the number of copies.) Using (v) from Theorem 2, we
see that

P[∃1 ≤ i ≤ n : ai �= oi ] ≤ P[∃1 ≤ i ≤ n : ai = 0 �= oi ]
+ P[∃1 ≤ i ≤ n : ai = 1 �= oi ]

≤ 0 +
k∑

l=� k
2 �

(
k

l

)
· (1 − n(1 − c)2)k−l · (n(1 − c)2)l

= P

[
Bin(k, n(1 − c)2) ≥ k

2

]
,

where the second inequality uses that themajority string can only bewrong if in at least
half of the runs where we observed jn+1 = 1 there was some error in the remaining
string.

Nextwe useHoeffding’s inequality and obtain, using our assumption n(1−c)2 < 1
2 ,

that

P

[
Bin(k, n(1 − c)2) ≥ k

2

]

= P

[
Bin(k, n(1 − c)2) − kn(1 − c)2 ≥ k

2
− kn(1 − c)2

]

≤ exp

(
−k

(1 − 2n(1 − c)2)2

2

)
.
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We now set this last expression ≤ δ
2 for δ ∈ (0, 1) and rearrange the inequality to

k ≥ 2

(1 − 2n(1 − c)2)2
ln

(
2

δ

)
. (5.3)

Combining Eqs. (5.3) and (5.2) we now require

exp

⎛
⎜⎝−

2
(
m
2 − 2

(1−2n(1−c)2)2
ln

( 2
δ

))2

m

⎞
⎟⎠ !≤ δ

2
.

Rearranging this inequality gives

m2 − 2m

((
1−2n(1−c)2

2

)−2 − 1

)
ln

( 2
δ

) +
(
1−2n(1−c)2

2

)−4
ln2

( 2
δ

) ≥ 0.

By finding the zeros of this quadratic function, we get to the sufficient sample size

m ≥
((

1−2n(1−c)2

2

)−2 − 1

)
ln

( 2
δ

)

+
√(((

1−2n(1−c)2

2

)−2 − 1

)
ln

( 2
δ

))2

−
(
1−2n(1−c)2

2

)−4
ln2

( 2
δ

)
.

This is in particular guaranteed if

m ≥ 4

(1 − 2n(1 − c)2)2
ln

(
2

δ

)
.

Note that this lower bound in particular implies m ≥ 2k, as required earlier in the
proof. This proves the claim of the theorem thanks to the union bound. ��

Morally speaking, Theorem 4 shows that for product distributions which are close
enough to the uniform distribution the sample complexity upper bound is the same
as for the unbiased case. We conjecture that there is an explicit noise threshold above
which this sample complexity cannot be reached (see the discussion in Sect. 6), but
have not yet succeeded in identifying such a critical value.

In this section, we have discussed the case of quantum training data that perfectly
represents the target function in a superposition state. Similar results can be proved
in the case of noisy quantum training data. As the reasoning is analogous to the one
presented here, the details are deferred to “Appendix A.”

6 Sample complexity lower bounds

After proving upper bounds on the number of required quantum examples by exhibit-
ing explicit learning procedures in the previous section, we now study the converse
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question of sample complexity lower bounds. We will prove both classical and quan-
tum sample complexity lower bounds and then relate them to the above results. Our
proof strategy follows a state-discrimination-based strategy from [3].

6.1 Classical sample complexity lower bounds

Wefirst prove a sample complexity lower bound for the classical version of our learning
problem that upon comparison with our obtained quantum sample complexity upper
bounds shows the advantage of quantum examples over classical training data in this
setting. Neither the result nor the proof strategy are new, but we include them for
completeness.

Theorem 5 Let a ∈ {0, 1}n, μ ∈ (−1, 1)n s.t. μ is c-bounded for some c ∈ (0, 1].
Let A be a classical learning algorithm and let m ∈ N be such that upon input of
m examples of the form (xi , f (a)(xi )), with xi drawn i.i.d. according to Dμ, with
probability ≥ 1 − δ w.r.t. the choice of training data, A outputs the string a. Then
m ≥ Ω(n).

Proof Let A be a random variable uniformly distributed on {0, 1}n . (A describes the
underlying string from the initial perspective of the learner.) Let B = (B1, . . . , Bm) be
a random variable describing the training data corresponding to the underlying string.
Our proof will have three main steps: First, we prove a lower bound on I (A : B) from
the learning requirement. Second, we observe that I (A : B) ≤ m · I (A : B1). And
third, we prove an upper bound on I (A : B1). Then combining the three steps will
lead to a lower bound on m.

We start with the mutual information lower bound. Let h(B) ∈ {0, 1}n denote the
random variable describing the output hypothesis of the algorithm A upon input of
training data B. Let Z = 1{h(B)=A}. By the learning requirement we have P[Z = 1] ≥
1 − δ and thus H(Z) ≤ H(δ). Therefore we obtain

I (A : B) = H(A) − H(A|B)

≥ H(A) − H(A|B, Z) − H(Z)

= H(A) − P[Z = 1]H(A|B, Z = 1) − P[Z = 0]H(A|B, Z = 0) − H(Z)

≥ n − P[Z = 1] · 0 − δn − H(δ)

= (1 − δ)n − H(δ)

= Ω(n).

Wenowshow that fromm exampleswe cangather atmostm times asmuch information
as from a single example. Here we directly cite from [3]. Namely,

I (A : B) = H(B) − H(B|A) = H(B) −
m∑
i=1

H(Bi |A)

≤
m∑
i=1

H(Bi ) − H(Bi |A) =
m∑
i=1

I (A : Bi ) = m · I (A : B1).
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Here, the second step uses independence of the Bi conditioned on A, the third step
uses subadditivity of the Shannon entropy, and the final step uses that the distributions
of (A, Bi ) are the same for all 1 ≤ i ≤ m.

We come to the upper bound on the mutual information. Write B1 = (X , L)

for X ∈ {−1, 1}n and L ∈ {0, 1}, i.e., with probability Dμ(x) we have (X , L) =
(x, f (a)(x)). Note that I (A : X) = 0 because X and A are independent random
variables. Also, I (A : L|X = 1 . . . 1) = 0 because f (a)(1 . . . 1) = 0 ∀a ∈ {0, 1}n ,
and for x ∈ {−1, 1}n \ {1 . . . 1}

I (A : L|X = x) = I (A{i |Xi=−1} : L|X = x)

= H(A{i |Xi=−1}|X = x) − H(A{i |Xi=−1}|L, X = x)

= |{i |xi = −1}| − (|{i |xi = −1}| − 1)

= 1.

Here, the first step is due to the fact that f (a)(x) does not depend on the entries a j

with x j = 1, the third step follows because A{i |xi=−1} is uniformly distributed on a
set of size 2|{i |xi=−1}| and f (a) assigns the labels 0 and 1 to half of the elements of
that set, respectively.
This now implies

I (A : B1) = I (A : X) + I (A : L|X)

= 0 +
∑

x∈{−1,1}n
Dμ(x)I (A : L|X = x)

= 1.

Here, the first step is due to the chain rule for mutual information and the last step
simply uses the fact that Dμ defines a probability distribution.
Now we combine our upper and lower bounds on the mutual information and obtain

m ≥ (1 − δ)n − H(δ) = Ω(n),

as claimed. ��
Remark 2 The result of Theorem 5 is intuitively clear: In order to identify the under-
lying string the learning algorithm has to learn n bits of information. However, a
condition of the form f (a)(x) = l for x ∈ {0, 1}n, l ∈ {0, 1}, takes away at most one
degree of freedom from the initial space {0, 1}n for a and thus from such an equality
the algorithm can extract at most 1 bit of information. So at least n examples will be
required. This observation is thus neither new nor surprising. But we want to empha-
size that this analysis works independently of the product structure of the underlying
distribution Dμ.

If we compare the classical lower bound from Theorem 5 with our quantum upper
bounds from Theorems 3 and 4 , we conclude that quantum examples allow us to
strictly outperform the best possible classical algorithm w.r.t. the number of required
examples.
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6.2 Quantum sample complexity lower bounds

We can use a similar argument to prove quantum sample complexity lower bounds.
Note that steps 1 and 2 carry over with (almost) no changes. Only the analysis of step
3 changes significantly. Even though this proof strategy is possible, as in [3] it can be
improved upon by an argument based on state discrimination. We will thus follow this
same approach.

An n-independent quantum sample complexity lower bound is given in the follow-
ing

Lemma 5 Let |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉, a ∈ {0, 1}n, μ ∈ (−1, 1)n

s.t. Dμ is c-bounded for some c ∈ (0, 1]. Let A be a quantum learning algorithm
and let m ∈ N be such that upon input of m copies of |ψa〉, with probability ≥ 1 − δ,
A outputs the string a. Then m ≥ Ω( 1c ln(

1
δ
)).

Remark 3 Note that any quantum sample complexity lower bound will also lower
bound the classical sample complexity. Hence, Lemma 2 also holds in the scenario of
the previous subsection, which is why we did not discuss the δ-dependence there.

Proof Let a, b ∈ {0, 1}n s.t. there is exactly one 1 ≤ i ≤ n s.t. ai �= bi . AsA is able to
distinguish the quantum states |ψa〉⊗m and |ψb〉⊗m with success probability ≥ 1− δ,
we have |〈ψa |ψb〉m | ≤ 2

√
δ(1 − δ) (see subsection 3.2). We compute

〈ψa |ψb〉 =
∑

x,y∈{−1,1}n

√
Dμ(x)Dμ(y)〈x, f (a)(x)|y, f (b)(y)〉

=
∑

x∈{−1,1}n
Dμ(x)δ f (a)(x), f (b)(x).

By our assumption on a and b, δ f (a)(x), f (b)(x) ≥ δxi ,1. Therefore

〈ψa |ψb〉 ≥ PDμ [xi = 1] = 1 + μi

2
.

We now combine this with our upper bound and rearrange to obtain

m ≥
(
ln

(
1 + μi

2

))−1 (
ln(2) + 1

2
ln(δ(1 − δ))

)

≥ Ω

(
1

μi − 1
ln(δ)

)

≥ Ω

(
1

c
ln

(
1

δ

))
,

where we used the elementary inequality 1
x−1 − (

ln
( 1+x

2

))−1 ≥ 0 for x ∈ [0, 1)
combined with ln(δ) ≤ 0. ��
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We will compare this lower bound with our upper bound(s) from Sect. 5 later on.
Now we turn to the n-dependent part of the sample complexity lower bound.

Theorem 6 Let |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉, a ∈ {0, 1}n, and μ ∈ (−1, 1)

be such that μi = μ ≥ 1 − 1
ln(n)

for all 1 ≤ i ≤ n. Let A be a quantum learning
algorithm and let m ∈ N be such that upon input of m copies |ψa〉, with probability
≥ 1 − δ, A outputs the string a, for 0 < δ ≤ 1

3 . Then m ≥ Ω (ln(n)).

Before going into the detailed proof, we give an overview over its underlying idea.
The learning assumption implies that A is able to identify a state from the ensemble
E = {( 1

2n , |ψa〉⊗m
)}

a∈{0,1}n with success probability ≥ 1 − δ. Thus we will obtain a
lower bound on m by proving an upper bound on the optimal success probability for
this state identification task.

Recall that by Theorem 1, the optimal success probability can be upper bounded by
the square root of the PGM success probability. Moreover, by Lemma 3, the latter can
be computed via the Gram matrix of the ensemble. Thus, we now first study the Gram
matrix and its square root and then use these results to bound the optimal success
probability.

We first recall a well-known result on the diagonalization of matrices with a specific
structure, namely matrices whose entries can be written as Boolean function of the
sum of the indices.

Lemma 6 Let G ∈ R
2n×2n be a matrix with entries given by G(a, b) = g(a + b) for

a, b ∈ {0, 1}n and a function g : {0, 1}n → R. Then

(HGH−1)(a, b) = 2n ĝ(a)δa,b,

with H ∈ R
2n×2n given by H(a, b) = (−1)a·b√

2n
. In other words, the set of eigenvalues

of G is given by {2n ĝ(a) | a ∈ {0, 1}n} and G is unitarily diagonalized by H.

Proof The proof can be found in [3], we reproduce it in “Appendix B” ��
We will later apply this result for G being the Gram matrix corresponding to the

ensemble in our state identification task. Motivated by Lemma 3, we first use the
diagonalization of such a matrix to explicitly compute the diagonal entries of the
matrix square root.

Corollary 1 Let G ∈ R
2n×2n be a matrix with entries given by G(a, b) = g(a+ b) for

a, b ∈ {0, 1}n and a function g : {0, 1}n → R. Then, for every a ∈ {0, 1}n

√
G(a, a) = 1√

2n

∑
j∈{0,1}n

√
ĝ( j).

Proof The proof can be found in [3], we reproduce it in “Appendix B.” ��
With this, we can now prove Theorem 6:
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Proof of Theorem 6 Asdiscussed above,we consider the problemof state identification
with the ensemble E = {( 1

2n , |ψa〉⊗m
)}

a∈{0,1}n . By Lemma 3, with the Gram matrix

Gm(a, b) := 1
2n 〈ψa |ψb〉m we can write the success probability as

PPGM (E) =
∑

a∈{0,1}n

√
Gm(a, a)2.

In our scenario, the Gram matrix has entries

Gm(a, b) = 1

2n
〈ψa |ψb〉m

= 1

2n+m

(
1 + μdH (a,b)

)m = 1

2n+m

(
1 + μdH (a+b,0)

)m
.

This can, e.g., be shown by induction on n when observing that

PDμ [ f (a)(x) = f (b)(x)]
= PDμ

[
f (a1:n−1)(x1:n−1) = f (b1:n−1)(x1:n−1) ∧ an

1 − xn
2

= bn
1 − xn

2

]

+ PDμ

[
f (a1:n−1)(x1:n−1) �= f (b1:n−1)(x1:n−1) ∧ an

1 − xn
2

�= bn
1 − xn

2

]
.

In particular, we can write Gm(a, b) = fm(a + b) for the function fm(x) =
1

2n+m

(
1 + μdH (x,0)

)m
. From now on, we will write |x | := dH (x, 0). By Corollary 1,

we can upper bound the diagonal entries of
√
Gm (and thus the PGM and the optimal

success probability) by upper bounding the (unbiased) Fourier coefficients of fm . To
this end, consider for j ∈ {0, 1}n

0 ≤ f̂m( j) = Ez∼U ({0,1}n)
[

1

2n+m

(
1 + μ|z|)m (−1) j ·z

]

= 1

2n+m

m∑
L=0

(
m

L

)
Ez∼U ({0,1}n)

[
μL|z|(−1) j ·z

]
.

We now rewrite the expectations on the right-hand side

Ez∼U ({0,1}n)
[
μL|z|(−1) j ·z

]

= 1

2n

n∑

=0

min{
,| j |}∑
k=max{0,
−(n−| j |)}

(| j |
k

)(
n − | j |

 − k

)
(−1)kμL·


= 1

2n

| j |∑
k=0

(| j |
k

)
(−1)k

k+n−| j |∑

=k

(
n − | j |

 − k

)
μL·
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= 1

2n

| j |∑
k=0

(| j |
k

)
(−1)kμL·k

n−| j |∑

=0

(
n − | j |




)
μL·


︸ ︷︷ ︸
=(1+μL)

n−| j |

=
(
1 + μL

)n−| j |

2n

| j |∑
k=0

(| j |
k

)
(−1)kμL·k

︸ ︷︷ ︸
=(1−μL)

| j |

=
(
1 + μL

)n−| j | (
1 − μL

)| j |
2n

.

This allows us to upper bound the Fourier coefficients of f as follows:

f̂m( j) = 1

2n+m

m∑
L=0

(
m

L

)(
1 + μL

2

)n−| j | (
1 − μL

2

)| j |

≤ 1

2n+m

m∑
L=0

(
m

L

)(
1 + μ

2

)n−| j | (1 − μm

2

)| j |

= 1

2n

(
1 + μ

2

)n−| j | (1 − μm

2

)| j |
.

According to Lemma 6, this now gives us the following upper bound on the diagonal
entries of the root of the Gram matrix

√
Gm(a, a) ≤ 1

2n
∑

j∈{0,1}n

√(
1 + μ

2

)n−| j | (1 − μm

2

)| j |

= 1

2n

n∑
k=0

(
n

k

)√(
1 + μ

2

)n−k (1 − μm

2

)k

= 1

2n

(√
1 + μ

2
+

√
1 − μm

2

)n

,

and this in turn allows us to bound the PGM success probability as

PPGM (E) =
∑

a∈{0,1}n

√
Gm(a, a)2

≤ 1

2n

(√
1 + μ

2
+

√
1 − μm

2

)2n

=
(
1

2

(√
1 + μ + √

1 − μm
))2n

.
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We combine this with our learning requirement and Theorem 1 to obtain

1 − δ ≤ Popt (E) ≤
√
PPGM (E) ≤

(
1

2

(√
1 + μ + √

1 − μm
))n

.

This can be rearranged (using δ < 1
3 ) to

m =
− log

(
1 − (

2 · n
√
1 − δ − √

1 + μ
)2)

log 1
μ

.

With log(1 + x) ≤ x we obtain 1
log 1

μ

≥ 1
1
μ

−1
= μ

1−μ
and

− log

(
1 −

(
2 · n

√
1 − δ − √

1 + μ
)2) ≥

(
2 · n

√
1 − δ − √

1 + μ
)2

.

For μ ≥ 1 − 1
ln(n)

we now obtain (for n large enough)

m ≥ (ln(n) − 1) ·
(
2

√
2

3
− √

2

)
= Ω (ln(n)) ,

and this finishes the proof. ��
Note that this proof strategy also yields for a strictly increasing function g : N →

R>0 with limn→∞ g(n) = ∞ and for a distribution Dμ with μi ≥ 1 − 1
g(n)

for all
1 ≤ i ≤ n the sample complexity lower bound Ω(g(n)) (for n large enough). This
is consistent with the intuition that solving the learner problem becomes harder when
the distribution is more strongly biased towards the uninformative instance with all
entries equal to 1.

We now compare this lower bound to our previously obtained upper bounds. First,
we consider the n-independent part of the bounds. When comparing Theorem 3 with
Lemma 5, we obtain

Ω

(
1

c
ln

(
1

δ

))
≤ m ≤ O

⎛
⎝
(
ln

(
1

1 − c + c2
2

))−1

ln

(
1

δ

)⎞
⎠ .

We study this for δ � 1 (high confidence) and c � 1 (high bias). Then Taylor
expansion shows

(
ln

(
1

1 − c + c2
2

))−1

= 1

c
+ c

6
+ O(c2) for c � 1.
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Fig. 1 A plot comparing the maximal bias allowed in Theorem 4 (depicted by the blue crosses) with the
minimal bias required in Theorem 6 (depicted by the red line) (Color figure online)

Hence, lower and upper bounds coincide in the relevant region for δ and c, so the
n-independent part of the sample complexity upper bound provided by Algorithm 3
is optimal.

However, in comparing Theorem 4 with Lemma 5 we see a discrepancy between
lower and upper bound for the relevant region δ � 1 and c−(1− 1√

2n
) � 1. Therefore

we conjecture that the c-dependence of the upper bound arising from Theorem 4 is
not optimal.

Now we compare the bounds w.r.t. the n-dependence, i.e., we compare Theorem 3
with Theorem 6, and obtain

Ω (ln(n)) ≤ m ≤ O
(
1

c
ln(n)

)
.

But in Theorem 6, we assumed thatμi ≥ 1− 1
ln(n)

for all 1 ≤ i ≤ n.When considering
values for μ lying on this threshold, we can rephrase this as condition on the (then n-
dependent) c-boundedness parameter, namely c ≤ 1

ln(n)
. So when honestly including

the n-dependence of c, our comparison becomes

Ω (ln(n)) ≤ m ≤ O
(
ln2(n)

)

and is thus not tight.
Finally, we want to point towards a second unsatisfactory aspect of our results.

We provide an n-dependent quantum sample complexity lower bound for “large”
noise and an n-independent quantum sample complexity upper bound for “small”
noise. However, there is a large discrepancy between the obtained characterizations
of “small” and “large” noise. That this already becomes relevant for moderate n can
be seen in Fig. 1.

Hence, we did not succeed in identifying a bias threshold beyond which the sample
complexity qualitatively differs from the unbiased case, butmerely provided a region in
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c = 0 c = 1
O(ln(n))

c =const 1− 1√
2n

1
g(n)

Ω(g(n)) O(1)

learning not possible learning via Bernstein-Vazirani

Fig. 2 Overview of the quantum sample complexity upper and lower bounds from Theorems 3, 4 and 6
depending on the c-boundedness parameter (without noise in the training data). Here, g : N → R>0 is a
strictly increasing function with lim

n→∞ g(n) = ∞ (Color figure online)

which such a threshold would lie. To improve upon our results, it would be necessary
to modify either the proof of Theorem 4 to allow for stronger bias or the proof of
Theorem 6 to allow for weaker bias. In particular, it would be interesting to obtain a
non-trivial quantum sample complexity lower bound for constant bias, i.e., without
introducing n-dependence into the c-boundedness parameter. However, we currently
do not see whether our proof strategies admit such an improvement.

7 Conclusion and outlook

In this paper, we extended awell-known quantum learning strategy for linear functions
from the uniform distribution to biased product distributions. This approach naturally
led to a distinction between a procedure for arbitrary (not full) bias and a procedure
for small bias, the latter with a significantly better performance. Moreover, we showed
that the second procedure is (to a certain degree) stable w.r.t. noise in the training data
and in the performed quantum gates. Finally, we also provided lower bounds on the
size of the training data required for the learning problem, both in the classical and in
the quantum setting. The sample complexity upper and lower bounds in the case of
no noise are summarized in Fig. 2.

We want to conclude by outlining some open questions for future work:

– Can we identify a bias threshold s.t. the optimal sample complexity below the
threshold differs qualitatively from the one above it?

– Is our learning procedure for small bias also stable w.r.t. different types of noise
in the training data, e.g., malicious noise?

– Our explicit learning algorithms also give upper bounds on the computational
complexity of our learning problem. Can we find corresponding lower bounds to
facilitate a discussion of optimality w.r.t. runtime?

– Canwefindmore examples of learning tasks (i.e., function classes)where quantum
training data yields an advantage w.r.t. sample and/or time complexity?
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Appendix

A Stability w.r.t. noise

Both algorithms presented in Sect. 5 implicitly assume that the quantum example state
perfectly represents the underlying function and that all quantum gates performed dur-
ing the computation are perfectly accurate. In this section, we relax these assumptions.
We will do so separately, but our analysis shows that moderate noise in the training
data and moderately faulty quantum gates can be tolerated at the same time.

A.1 Noisy training data

One of themostwell-studied noisemodels in classical learning theory is that of random
classification noise. Here, the training data are assumed to be s.t. with probability 1−η,
the learning algorithm obtains a correct example, and with probability η, the examples
label is flipped. In [4], this is translated to a quantum example state which in our
notation has the form

|ϕnoisy
a 〉 = √

1 − η

⎛
⎝ ∑

x∈{−1,1}

√
Dμ(x)|x, f (a)(x)〉

⎞
⎠

+ √
η

⎛
⎝ ∑

x∈{−1,1}

√
Dμ(x)|x, f (a)(x) ⊕ 1〉

⎞
⎠ .

We will only shortly comment on how to battle this type of noise with our learning
strategy at the end of this subsection. Instead, our focus will be on a performance
analysis of our algorithm in the case of noisy training data similar to [13]. This means
that we now assume our quantum example state to be of the form
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|ψnoisy
a 〉 =

∑
x∈{−1,1}n

√
Dμ(x)|x,

n∑
i=1

ai
1 − xi

2
+ ξ ixi 〉,

where the ξ ixi , for 1 ≤ i ≤ n and xi ∈ {−1, 1}, are independent random variables
distributed according to Bernoulli distributions with parameters ηi (i.e., P[ξ ixi = 1] =
ηi = 1 − P[ξ ixi = 0] for all 1 ≤ i ≤ n) and addition is understood modulo 2.

Here, we choose a noise model that is rather general but we make an important
restriction. Namely, we do not allow a noise ξx that depends in an arbitrary way on x
but rather we require the noise to have a specific sum structure ξx = ∑n

i=1 ξ ixi . This
requirement will later imply that also the noisy Fourier coefficients factorize. As this
factorization is crucial for our analysis, with our strategy we cannot generalize the
results of [13] on that more general noise model.

We first examine the result of applying the same procedure as in Algorithm 2 to a
copy of a noisy quantum example state |ψnoisy

a 〉. To simplify referencing, we write this
down one more time as Algorithm 5 even though the procedure is exactly the same,
only the form of the input changes.

Algorithm 5 Generalized Bernstein–Vazirani algorithm with noisy training data

Input: |ψnoisy
a 〉 = ∑

x∈{−1,1}n
√
Dμ(x)|x,

n∑
i=1

ai
1−xi
2 + ξ ixi 〉, as well as μ ∈ [−1, 1]

Output: See Theorem 7
Success Probability: 1

2 .

1: Perform the μ-biased QFT Hμ on the first n qubits, obtain the state (Hμ ⊗ 1)|ψnoisy
a 〉.

2: Perform a Hadamard gate on the last qubit, obtain the state (Hμ ⊗ H)|ψnoisy
a 〉.

3: Measure each qubit in the computational basis and observe outcome j = j1 . . . jn+1.
4: if jn+1 = 0 then � This corresponds to a failure of the algorithm.
5: Output o =⊥.
6: else if jn+1 = 1 then � This corresponds to a success of the algorithm.
7: Output o = j1 . . . jn .
8: end if

Similarly to our previous analysis, we will first study the Fourier coefficients that
are relevant for the sampling process in Algorithm 5.

Lemma 7 Let a ∈ {0, 1}n. Let ξ ixi , for 1 ≤ i ≤ n and xi ∈ {−1, 1}, be independent

Bernoulli distributions, let g(a)(x) := (−1)

n∑
i=1

ai
1−xi
2 +ξ ixi

and let μ ∈ (−1, 1). Then
the μ-biased Fourier coefficients of g(a) satisfy: For y ∈ {0, 1}n, with probability

n∏
l=1

(
yl · 2ηl(1 − ηl) + (1 − yl) · (1 − 2ηl(1 − ηl))

)
,
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it holds that

ĝ(a)
μ ( j) =

∏
l:al=0

(
yl · (−1)bl

(
(1 − jl )μl + jl

√
1 − μ2

l

)
+ (1 − yl ) · (−1)bl (1 − jl )

)

·
∏

l:al=1

(
yl · (−1)bl (1 − jl ) + (1 − yl ) · (−1)bl

(
(1 − jl )μl + jl

√
1 − μ2

l

))
.

Proof The proof is analogous to the one of Lemma 4, see “Appendix B.” ��
We now make a step analogous to the one from Lemma 4 to Theorem 2 in order to

understand the output of Algorithm 5.

Theorem 7 Let |ψnoisy
a 〉 = ∑

x∈{−1,1}n
√
Dμ(x)|x,

n∑
i=1

ai
1−xi
2 + ξ ixi 〉 be a noisy quantum

example state, a ∈ {0, 1}n, μ ∈ (−1, 1)n. Then Algorithm 5 provides an outcome
| j1 . . . jn+1〉 with the following properties:

(i) P[ jn+1 = 0] = 1
2 = P[ jn+1 = 1].

(ii) For any 1 ≤ i ≤ n, with probability 1 − 2ηi (1 − ηi ) it holds that

P[ai = 0 �= ji | jn+1 = 1] = 0, P[ai = 1 �= ji | jn+1 = 1] = μ2.

(iii) For any 1 ≤ i ≤ n, with probability 2ηi (1 − ηi ) it holds that

P[ai = 0 �= ji | jn+1 = 1] = 1 − μ2, P[ai = 1 �= ji | jn+1 = 1] = 1.

Note that in the scenario of Theorem 7 the underlying distribution Dμ is known to
the algorithm as μ is provided as part of the input (see Algorithm 5). Building on this
subroutine, we will now describe an amplified procedure for moderate noise (which is
made precise in Theorem 8) in Algorithm 6 analogous to the one described in Sect. 5.2.
Again, only the input changes, but we write the procedure down explicitly to simplify
referencing.

Theorem 8 Let |ψnoisy
a 〉 = ∑

x∈{−1,1}n
√
Dμ(x)|x,∑n

i=1 ai
1−xi
2 + ξ ixi 〉, with a ∈

{0, 1}n, μ ∈ (−1, 1)n s.t. Dμ is c-bounded for some c ∈ (0, 1] satisfying c >

1 − 1
2
√
n
. Further assume that 2ηi (1 − ηi ) < 1

5n for all 1 ≤ i ≤ n, write

ρ := max1≤i≤n 2ηi (1 − ηi ) . Then O
(
max

{
1

(1−5nρ)2
, 1

(1−4n(1−c)2)2

}
ln

( 1
δ

))
copies

of the quantum example state |ψa〉 suffice to guarantee that with probability ≥ 1 − δ

Algorithm 6 outputs the string a.

As in Theorem 4, our restrictions on both the c-boundedness parameter and the
noise strength lead to a basically n-independent sample complexity upper bound.

Proof The proof is analogous to the one of Theorem 4, see “Appendix B.” ��
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Algorithm 6AmplifiedGeneralized Bernstein–Vazirani algorithmwith noisy training
data

Input: m copies of |ψnoisy
a 〉 = ∑

x∈{−1,1}n
√
Dμ(x)|x,

n∑
i=1

ai
1−xi
2 + ξ ixi 〉 for a ∈ {0, 1}n , where the

number of copies is m ≥ C
(
max

{
1

(1−5nρ)2
, 1

(1−4n(1−c)2)2

}
ln

(
1
δ

))
, as well as μ ∈ [−1, 1]n and

c ∈ (0, 1] s.t. Dμ is c-bounded.
Output: a ∈ {0, 1}n
Success Probability: ≥ 1 − δ

1: for 1 ≤ l ≤ m do
2: Run Algorithm 5 on the lth copy of |ψnoisy

a 〉, store the output as o(l).
3: end for
4: if ∃1 ≤ l ≤ m : o(l) �=⊥ then
5: for 1 ≤ i ≤ n do
6: Let oi = argmaxr∈{0,1}|{1 ≤ l ≤ m|o(l)

i = r}|.
7: end for
8: Output o = o1 . . . on .
9: else if ∀1 ≤ l ≤ m : o(l) =⊥ then
10: Output o =⊥.
11: end if

The previous Theorem shows that if the bias is not too strong and if the noise is
not too random (i.e., the probability of adding a random 1 is either very low or very
high), then learning is possible with essentially the same sample complexity as in the
case without noise (compare Theorem 4).
Note that the proof of Theorem 8 shows that the exact choices of the bounds (in our
formulation c > 1 − 1

2
√
n
and 2ηi (1 − ηi ) < 1

5n ) are flexible to some degree with a

trade-off. If we have a better bound on c, we can loosen our requirement on the ηi and
vice versa.

Also observe that the requirement of “not too random noise” is natural. If 2ηi (1−
ηi ) → 1

2 or, equivalently, ηi → 1
2 , then the label in the noisy quantum example state

becomes completely random and thus no information on the string a can be extracted
from it. Our bound gives a quantitative version of this intuition.

Nevertheless, the restriction which we put on the noise can be considered quite
strong because of its n-dependence. This can, however, be relaxed at the cost of a
looser sample complexity upper bound. Namely, similarly to the difference between
the proofs of Theorems 3 and 4 , if we, e.g., only assume 2ηi (1 − ηi ) < 1

5 for all
1 ≤ i ≤ n, we can first for each coordinate separately bound the probability of
the noise variables becoming relevant in at least k

5 runs using Hoeffding’s inequal-
ity and then use the union bound. This will yield a quantum sample complexity
upper bound with an n-dependent term of the form ln(n). Hence, if we assume a
c-boundedness parameter strongly restricted as in Theorems 4 or 8, but obtain faulty
training data states without an n-dependent noise bound as in Theorem 8, then we
can still obtain a sample complexity upper bound with the same n-dependence as in
Theorem 3.

Finally, as promised at the beginning of this subsection, we shortly describe how to
use the ideas presented in this subsection in the case of random classification noise as
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in [4]. If the quantum learning algorithm has access to copies of a quantum example
state

|ϕnoisy
a 〉 = √

1 − η

⎛
⎝ ∑

x∈{−1,1}

√
Dμ(x)|x, f (a)(x)〉

⎞
⎠

+ √
η

⎛
⎝ ∑

x∈{−1,1}

√
Dμ(x)|x, f (a)(x) ⊕ 1〉

⎞
⎠ ,

then we observe that applying the μ-biased Fourier transform to SSthe first n qubits
and the standard Fourier transform to the last qubit gives

(H⊗n
μ ⊗ H)

(
|ϕnoisy

a 〉
)

=
√
1 − η + √

η√
2

|0, . . . , 0〉

+
√
1 − η − √

η√
2

∑
j∈{0,1}

ĝμ( j)| j, 1〉.

Hence, compared to the scenario studied in section 5 the probabilities of observing a
certain string as measurement outcome are simply scaled by a factor of (

√
1 − η ±√

η)2 = 1 ± 2
√

η(1 − η). So our analysis carries over almost directly. We do not
give the detailed reasoning here but only mention that incorporating the now rescaled
probabilities basically changes the sample complexity upper bounds from the non-
noisy case by a factor of 1

(η− 1
2 )2

, which is again in accordance with the intuition that

the learning task becomes hard—and eventually impossible—for η → 1
2 .

A.2 Faulty quantum gates

Wenow turn to the (more realistic) settingwhere the quantum gates in our computation
(i.e., the μ-biased quantum Fourier transforms) are not implemented exactly but only
approximately. In this scenario, we obtain

Lemma 8 Let |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉 be a quantum example state,

with a ∈ {0, 1}n, μ ∈ (−1, 1)n. Then a version of Algorithm 2 with Hμ replaced
by Hμ̃ for

∥∥Hμ − Hμ̃

∥∥
2 ≤ ε provides an outcome | j1 . . . jn+1〉 with the following

properties:

(i) |P[ jn+1 = 0] − 1
2 | ≤ ε and |P[ jn+1 = 1] − 1

2 | ≤ ε,
(ii) |P[ j1 . . . jn = a| jn+1 = 1] − ∏

l:al=1
(1 − μ2

l )| ≤ ε,

(iii) for c �= a:

∣∣∣∣∣∣
P[ j1 . . . jn = c| jn+1 = 1] −

∏
l:al=0

(1 − cl) ·
∏

l:al=1

(
(1 − cl)μ

2
l + cl(1 − μ2

l )
)
∣∣∣∣∣∣
≤ ε,
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(iv) P[∃1 ≤ i ≤ n : ai = 0 �= ji | jn+1 = 1] ≤ ε, and

(v) P[∃1 ≤ i ≤ n : ai = 1 �= ji | jn+1 = 1] ≤
n∑

i=1
μ2
i + ε. In particular, if Dμ is

c-bounded, then P[∃1 ≤ i ≤ n : ai = 1 �= ji | jn+1 = 1] ≤ n(1 − c)2 + ε.

Proof This follows from Theorem 2 because the outcome probabilities are the squares
of the amplitudes, and thus, the difference in outcome probabilities can be bounded by
the 2-norm of the difference of the quantum states after applying the biased quantum
Fourier transform and its approximate version. ��

Now we can proceed analogously to the proof strategy employed in Theorem 8 to
derive

Theorem 9 Let |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉, a ∈ {0, 1}n, μ ∈ (−1, 1)n

s.t. Dμ is c-bounded for some c ∈ (0, 1] satisfying c > 1 −
√

1−2ε
2n . Then

O
(
max

{
1

(1 − 2ε)2
,

1

1 − 2(n(1 − c)2 + ε)2

}
ln

(
1

δ

)
+ ε

)

copies of the quantum example state |ψa〉 suffice to guarantee that, with probability
≥ 1 − δ, a version of Algorithm 4 with Hμ replaced by Hμ̃ for

∥∥Hμ − Hμ̃

∥∥
2 ≤ ε ∈

(0, 1
2 ) outputs the string a.

In particular, the sample complexity upper bound fromTheorem4 remains basically
untouched if quantum gates with small error are used.

A.3 The case of unknown underlying distributions

An interesting consequence of the result of the previous subsection is the possibility to
drop the assumption of prior knowledge of the underlying product distribution, as was
already observed in [17] for a similar scenario. The important observations towards
this end are given in this subsection.

Lemma 9 (Lemma 5 in [17])
Let A = An · · · A1 be a product of unitary operators A j . Assume that for every A j

there exists an approximation Ã j s.t.
∥∥∥A j − Ã j

∥∥∥ ≤ ε j . Then it holds that

∥∥∥An · · · A1 − Ãn · · · Ã1

∥∥∥ ≤
n∑
j=1

ε j ,

i.e., the operator Ã := Ãn · · · Ã1 is an ε-approximation to A w.r.t. the operator norm.

Proof This can be proven by induction using the triangle inequality and the fact that
a unitary operator has operator norm equal to 1. For details, the reader is referred to
[17]. ��
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This can be used to derive (compare again [17])

Corollary 2 Let μ ∈ (−1, 1)n be s.t. the distribution Dμ is c-bounded for c ∈ (0, 1].
Let μ̃ ∈ (−1, 1)n satisfy ‖μ − μ̃‖∞ ≤ ε. Then the corresponding biased quantum
Fourier transforms satisfy

∥∥Hμ − Hμ̃

∥∥ ≤ 2
√
2nγ ε,

where γ = 1
c2

(
(2 − c) 3

2
√
2c

+ 1
)
.

Proof This proof is given in “Appendix B.” ��

The next Lemma is on approximating the bias parameter of an unknown product
distribution from examples. (Compare the closing remark in Appendix A of [17].)

Lemma 10 Using m ≤ O(
8γ 2·n2

ε2
ln( n

δ
)) copies of the quantum example state |ψa〉 (or

of |ψnoisy
a 〉) for a product distribution Dμ with bias vector μ ∈ (−1, 1)n s.t. Dμ is

c-bounded for c ∈ (0, 1] one can, with probability ≥ 1 − δ, output μ̃ ∈ (−1, 1)n

s.t.
∥∥Hμ − Hμ̃

∥∥ ≤ ε.

Proof Recall that μi = EDμ [xi ]. Via a standard application of Hoeffding’s inequal-

ity we conclude that O(
8γ 2·n2

ε2
ln( 1

δ
)) examples drawn i.i.d. from Dμ (which can be

obtained from copies of the quantum example state by measuring the corresponding
subsystem) are sufficient to guarantee that, with probability ≥ 1 − δ, the empirical
estimate μ̂i satisfies |μi − μ̂i | ≤ ε

2
√
2γ ·n . As each component of a copy of the quan-

tum example state can be measured separately, we see —using the union bound, that

O(
8γ 2·n2

ε2
ln( n

δ
)) copies of the (possibly noisy) quantum example state suffice to guar-

antee that, with probability ≥ 1 − δ, it holds that
∥∥μ − μ̂

∥∥∞ ≤ ε

2
√
2γ ·n . Now we can

apply the previous Corollary to finish the proof. ��

If we now combine this result with Theorem 9, we obtain a sample complexity
upper bound for our learning problem without assuming the underlying distribution
to be known in advance.

Corollary 3 Let |ψa〉 = ∑
x∈{−1,1}n

√
Dμ(x)|x, f (a)(x)〉, a ∈ {0, 1}n, μ ∈ (−1, 1)n

s.t. Dμ is c-bounded for some c ∈ (0, 1] satisfying c > 1 −
√

1−2ε
2n . Then there exists

a quantum algorithm which, given access to

O
(
8γ 2 · n2

ε2
ln

(n
δ

)
+ max

{
1

(1 − 2ε)2
,

1

1 − 2(n(1 − c)2 + ε)2

}
ln

(
1

δ

))

copies of the quantum example state |ψa〉, with probability ≥ 1− δ, outputs the string
a, without prior knowledge of the underlying distribution Dμ.
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Note, however, that the learning algorithm does need to obtain the c-boundedness
parameter c as input in advance, but this (in general) does not fix the underlying
distribution. Observe also that—since Lemma 10 remains valid for noisy quantum
examples—, even though we do not explicitly formulate the result of this subsection
for noisy quantum training data, such a generalization is possible by combining the
strategies presented in this and the previous subsections.

B Proofs

Proof of Lemma 2 We directly compute the state produced by the algorithm before the
measurement is performed:

(Hμ ⊗ H)|ψ f 〉 =
∑

x∈{−1,1}n

∑
j∈{0,1}n

1√
2
Dμ(x)φμ, j (x)

(
| j, 0〉 + (−1) f (x)| j, 1〉

)

= 1√
2

∑
j∈{0,1}n

EDμ[φμ, j ]︸ ︷︷ ︸
=δ j,0...0

| j, 0〉 + EDμ[gφμ, j ]︸ ︷︷ ︸
=ĝμ( j)

| j, 1〉.

Hence, the computational basis measurement from step 3 of Algorithm 1 on the last
qubit returns 1 with probability 1

2 and if that is the case, the computational basis

measurement on the first n qubits will return j with probability
(
ĝμ( j)

)2, as claimed.
��

Proof of Lemma 6 The proof is by direct computation using the Fourier expansion:

(HGH−1)(a, b) = 1

2n
∑

c,d∈{0,1}n
(−1)c·a+d·bg(c + d)

= 1

2n
∑

c,d, j∈{0,1}n
(−1)c·a+d·b+ j ·(c+d)ĝ( j)

= 1

2n
∑

j∈{0,1}n
ĝ( j)

∑
c∈{0,1}n

(−1)c·(a+ j)

︸ ︷︷ ︸
=2nδa, j

∑
d∈{0,1}n

(−1)d·(b+ j)

︸ ︷︷ ︸
=2nδb, j

= 2n ĝ(a)δa,b.

Unitarity of H can be checked easily by exploiting the same identity as in the second
to last line of the previous computation. ��
Proof of Corollary 1 Using Lemma 6 we can directly compute the diagonal entries of
the matrix root and obtain

√
G(a, a) =

(
H−1 · diag

({√
2n ĝ( j) | j ∈ {0, 1}n

})
· H

)
(a, a)
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= 1

2n
∑

j,k∈{0,1}n
(−1)c· j+d·k√2n ĝ( j)δ j,k

= 1√
2n

∑
j∈{0,1}n

√
ĝ( j)

for every a ∈ {0, 1}n . ��
Proof of Lemma 7 As in the proof of Lemma 4, due to the product structure of all the
relevant objects (here our assumption on the form of the noise enters), it suffices to con-
sider the case n = 1 in detail. In this case,we have f (a)(x) = ax̃ , g(a)(x) = (−1)ax̃+ξx

for x̃ = 1−x
2 , φμ,0(x) = 1, and φμ,1(x) = x−μ√

1−μ2
. (We leave out unnecessary indices

to improve readability.) We compute

ĝ(a)
μ ( j) = EDμ [(−1)ax̃+ξxφμ, j (x)]

= 1 + μ

2
· (−1)ξ1 · φμ, j (1) + 1 − μ

2
· (−1)a+ξ−1 · φμ, j (−1).

By plugging in we now obtain

ĝ(0)
μ (0) = 1 + μ

2
· (−1)ξ1 · 1 + 1 − μ

2
· (−1)ξ−1 · 1,

ĝ(0)
μ (1) = 1 + μ

2
· (−1)ξ1 · 1 − μ√

1 − μ2
+ 1 − μ

2
· (−1)ξ−1 · −1 − μ√

1 − μ2
,

ĝ(1)
μ (0) = 1 + μ

2
· (−1)ξ1 · 1 + 1 − μ

2
· (−1)1+ξ−1 · 1,

ĝ(1)
μ (1) = 1 + μ

2
· (−1)ξ1 · 1 − μ√

1 − μ2
+ 1 − μ

2
· (−1)1+ξ−1 · −1 − μ√

1 − μ2
.

So with probability (η1)2 + (1− η1)2 = 1− 2η1(1− η1), namely if ξ1 = ξ−1 = b ∈
{0, 1}, we obtain

ĝ(0)
μ (0) = (−1)b, ĝ(0)

μ (1) = 0, ĝ(1)
μ (0) = (−1)bμ, ĝ(1)

μ (1) = (−1)b
√
1 − μ2,

and with probability 2η1(1 − η1), namely if ξ1 = b �= ξ−1, we obtain

ĝ(0)
μ (0) = (−1)bμ, ĝ(0)

μ (1) = (−1)b
√
1 − μ2, ĝ(1)

μ (0) = (−1)b, ĝ(1)
μ (1) = 0.

Thereforewe obtain:With probability 1−2η1(1−η1) theμ-biased Fourier coefficients
satisfy

ĝ(a)
μ ( j) =

{
(−1)b(1 − j), for a = 0

(−1)b((1 − j)μ + j
√
1 − μ2) for a = 1

,
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and with probability 2η1(1 − η1) the μ-biased Fourier coefficients satisfy

ĝ(a)
μ ( j) =

{
(−1)b((1 − j)μ + j

√
1 − μ2) for a = 0

(−1)b(1 − j), for a = 1
,

which is exactly the claim for n = 1. ��
Proof of Theorem 8 We want to prove that P[Algorithm 6 does not output a] ≤ δ,

where the probability is w.r.t. both the internal randomness of the algorithm and the
random variables.

First observe that, due to (i) in Theorem 7, exactly the same reasoning as in the
proof of Theorem 4 shows that the probability of observing jn+1 = 1 in at most k − 1
of the m runs of Algorithm 5 (assuming k ≤ m

2 ) is bounded by

P

[
Bin

(
m,

1

2

)
≥ m − k

]
≤ exp

(
−2

(m
2 − k

)2
m

)
. (B.1)

We will now search for the number of observations of jn+1 = 1 which is required to
guarantee that the majority string is correct with high probability. Suppose we observe
jn+1 = 1 in k runs of Algorithm 5, k ∈ 2N. Again we see that

P[∃1 ≤ i ≤ n : ai �= oi ] ≤ P[∃1 ≤ i ≤ n : ai = 0 �= oi ]
+P[∃1 ≤ i ≤ n : ai = 1 �= oi ].

As “false 1’s” can only appear in the case where our noise variables have an influence
(compare Theorem 7), we will first find a lower bound on k which guarantees that
the probability of the noise variable influence becoming relevant for at least k

5 runs is
≤ δ

4 . Namely, we bound (again via Hoeffding)

P

[
Bin(k, nρ) ≥ k

5

]
= P

[
Bin(k, nρ) − knρ ≥ k

(
1

5
− nρ

)]

≤ exp

(
−2k

(
1 − 5nρ

5

)2
)

.

We now set this last expression ≤ δ
4 and rearrange the inequality to

k ≥ 25

2(1 − 5nρ)2
ln

(
4

δ

)
.

Now we will find a lower bound on k which guarantees that, if the noise variable
influence is relevant in at most k

5 of the runs, among the remaining 4k
5 runs with

probability ≥ 1− δ
4 we make at most k

5 “false 0” observations. To this end, we bound
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(again via Hoeffding)

P

[
Bin

(
4k

5
, n(1 − c)2

)
≥ k

5

]

= P

[
Bin

(
4k

5
, n(1 − c)2

)
− 4kn(1 − c)2

5
≥ k

5
− 4kn(1 − c)2

5

]

≤ exp

(
−2k

(
1

5
− 4n(1 − c)2

5

)2
)

.

We now set this last expression ≤ δ
4 and rearrange the inequality to

k ≥ 25

2(1 − 4n(1 − c)2)2
ln

(
4

δ

)
.

Hence, by the union bound a sufficient condition for P[∃1 ≤ i ≤ n : ai �= oi ] ≤ δ
2 to

hold is given by

k ≥ 25

2
max

{
1

(1 − 5nρ)2
,

1

(1 − 4n(1 − c)2)2

}
ln

(
4

δ

)
. (B.2)

Combining Eqs. (B.2) and (B.1) we now require

exp

⎛
⎜⎝−

2
(
25
2 max

{
1

(1−5nρ)2
, 1

(1−4n(1−c)2)2

}
ln

( 4
δ

) − m
2

)2

m

⎞
⎟⎠ !≤ δ

4
.

Rearranging gives the sufficient condition

m ≥ 25max

{
1

(1 − 5nρ)2
,

1

(1 − 4n(1 − c)2)2

}
ln

(
4

δ

)
.

This proves the claim of the theorem thanks to the union bound. ��

Proof of Corollary 2 According to the Lemma 9 it holds that

∥∥Hμ − Hμ̃

∥∥

≤
n∑

i=1

∥∥1 ⊗ . . . ⊗ 1 ⊗ Hμi ⊗ 1 ⊗ . . . ⊗ 1 − 1 ⊗ . . . ⊗ 1 ⊗ Hμ̃i ⊗ 1 ⊗ . . . ⊗ 1
∥∥

=
n∑

i=1

∥∥Hμi − Hμ̃i

∥∥ .
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Thus it suffices to bound the operator norm of the difference of the 1-qubit biased
quantum Fourier transforms. So let |ϕ〉 = ∑

x∈{−1,1} αx |x〉 be a qubit state. Then

(Hμ j − Hμ̃ j )|ϕ〉 =
∑

x∈{−1,1}

∑
j∈{0,1}

(√
Dμi (x)φμi , j (x) −

√
Dμ̃i (x)φμ̃i , j (x)

)
αx | j〉.

We have to bound the (Euclidean) norm of this vector. To achieve this, we will bound
(for arbitrary x ∈ {−1, 1} and j ∈ {0, 1}) the expression

∣∣∣
√
Dμi (x)φμi , j (x) −

√
Dμ̃i (x)φμ̃i , j (x)

∣∣∣
2
.

This is done by direct computation using 1 − μ2
i ≥ 1 − (1 − c)2 ≥ c2, 1 − μ̃2

i ≥ c2

and |μi − μ̃i | ≤ ε as follows:

∣∣∣
√
Dμi (x)φμi , j (x) −

√
Dμ̃i (x)φμ̃i , j (x)

∣∣∣

=
∣∣∣∣∣∣
(xi − μi )

√
1 − μ̃2

i

√
Dμi (x) − (xi − μ̃i )

√
1 − μ2

i

√
Dμ̃i (x)√

1 − μ̃2
i

√
1 − μ2

i

∣∣∣∣∣∣

≤ 1

c2

∣∣∣∣(xi − μi )

√
1 − μ̃2

i

√
Dμi (x) − (xi − μ̃i )

√
1 − μ2

i

√
Dμ̃i (x)

∣∣∣∣

= 1

c2

∣∣∣∣(xi − μi )

(√
1 − μ̃2

i

√
Dμi (x) −

√
1 − μ2

i

√
Dμ̃i (x)

)

+ (μ̃i − μi )

√
1 − μ2

i

√
Dμ̃i (x)

∣∣∣∣

≤ 1

c2

(∣∣∣∣(xi − μi )

(√
1 − μ̃2

i

√
Dμi (x) −

√
1 − μ2

i

√
Dμ̃i (x)

)∣∣∣∣

+
∣∣∣∣(μ̃i − μi )

√
1 − μ2

i

√
Dμ̃i (x)

∣∣∣∣
)

≤ 1

c2

(
(2 − c)

∣∣∣∣
√
1 − μ̃2

i

√
Dμi (x) −

√
1 − μ2

i

√
Dμ̃i (x)

∣∣∣∣ + ε

)

≤ 1

c2

(
(2 − c)

(∣∣∣
√
Dμi (x) −

√
Dμ̃i (x)

∣∣∣ +
∣∣∣∣
√
1 − μ2

i −
√
1 − μ̃2

i

∣∣∣∣
)

+ ε

)
.

Now note that

∣∣∣
(√

Dμi (x) −
√
Dμ̃i (x)

) (√
Dμi (x) +

√
Dμ̃i (x)

)∣∣∣ = ∣∣Dμi (x) − Dμ̃i (x)
∣∣

=
∣∣∣∣
1 + x̃iμi

2
− 1 + x̃i μ̃i

2

∣∣∣∣

= 1

2
|μi − μ̃i |,
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which implies

∣∣∣
√
Dμi (x) −

√
Dμ̃i (x)

∣∣∣ =
∣∣∣∣∣

μi − μ̃i

2
(√

Dμi (x) + √
Dμ̃i (x)

)
∣∣∣∣∣

≤ ε

2

1

2
√

c
2

= ε

2
√
2c

,

and that moreover

∣∣∣∣
(√

1 − μ2
i −

√
1 − μ̃2

i

)(√
1 − μ2

i +
√
1 − μ̃2

i

)∣∣∣∣ =
∣∣∣1 − μ2

i − (1 − μ̃2
i )

∣∣∣

=
∣∣∣μ2

i − μ̃2
i

∣∣∣ ,

which in turn implies

∣∣∣∣
√
1 − μ2

i −
√
1 − μ̃2

i

∣∣∣∣ =
∣∣∣∣∣∣

μ2
i − μ̃2

i√
1 − μ2

i +
√
1 − μ̃2

i

∣∣∣∣∣∣

≤ |μi + μ̃i | · |μi − μ̃i |
2
√
1 − (1 − c)2

≤ 2ε

2
√
2c − c2

≤ ε√
2c

.

Hence, we obtain

∣∣∣
√
Dμi (x)φμi , j (x) −

√
Dμ̃i (x)φμ̃i , j (x)

∣∣∣ ≤ 1

c2

(
(2 − c)

(
ε

2
√
2c

+ ε√
2c

)
+ ε

)
≤ γ ε,

where we defined γ := 1
c2

(
(2 − c) 3

2
√
2c

+ 1
)
. This now implies

∥∥∥(Hμ j − Hμ̃ j )|ϕ〉
∥∥∥
2

≤
∑

x∈{−1,1}

∑
j∈{0,1}

∥∥∥
(√

Dμi (x)φμi , j (x) −
√
Dμ̃i (x)φμ̃i , j (x)

)
αx | j〉

∥∥∥
2

≤ γ ε
∑

x∈{−1,1}

∑
j∈{0,1}

|αx |

= 2γ ε
∑

x∈{−1,1}
|αx |

≤ 2
√
2γ ε.
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Finally, we get

∥∥Hμ − Hμ̃

∥∥ ≤
n∑

i=1

∥∥Hμi − Hμ̃i

∥∥ ≤ 2
√
2nγ ε,

as claimed. ��
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