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Abstract
Very simple non-parametric tests are proposed to detect symmetry and radial sym-
metry in the dependence structure of bivariate copula data. The performance of the
proposed tests is illustrated in an intensive simulation study and compared to the one of
similar more advanced tests, which do not require knownmargins. Further, a powerful
non-parametric testing procedure to decide whether the dependence structure of the
underlying bivariate copula data may be captured by an elliptical copula is provided.
The testing procedure makes use of intrinsic properties of bivariate elliptical copulas
such as symmetry, radial symmetry, and equality of Kendall’s tau and Blomqvist’s
beta. The proposed tests as well as the testing procedure are very simple to use in
applications. For an illustration of the testing procedure for ellipticity, financial and
insurance data is analyzed.

Keywords Asymptotic normality · Elliptical copulas · Goodness-of-fit test ·
Kendall’s tau · Non-parametric tests · U-statistics

1 Introduction

Since Embrechts et al. (2003), Frees and Valdez (1998), and Li (2000), copulas were
widely used in economics, finance, and risk management to capture the dependence of
multivariate data. Bivariate parametric copulas are usually the basis ofmanymultivari-
ate copula constructions [see, e.g., Aas et al. (2009) or Fischer et al. (2009)]. Therefore,
the choice of a parametric bivariate copula family is very crucial to accurately capture
the multivariate dependence. For large and huge sample sizes, carrying out known
goodness-of-fit tests is very time consuming. Graphical tools like scatter plots can
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significantly reduce the amount of copulas to be considered but may lead to erroneous
decisions. In this paper, we fill this existing gap and propose simple statistical tests to
detect symmetry or radial symmetry of the underlying bivariate copula data.

The existing tests for symmetry and radial symmetry of bivariate copulas by Genest
et al. (2012), Genest and Nešlehová (2014), Li and Genton (2013), and Quessy (2016)
assume unknown marginal distributions and take into account their non-parametric
estimation. Therefore, the asymptotic distribution of their test statistics is of complex
nature and derived using the weak convergence of empirical copula processes. In
applications, bootstrap techniques are needed for the computation of p-values, and
this is computationally expensive for huge sample sizes.

Assuming given copula data,we propose simpler non-parametric tests for symmetry
and radial symmetry of bivariate copulas. We manipulate the underlying copula data
without changing its dependence structure to create two bivariate samples. Our test
statistics are then based on the difference between the empirical Kendall’s tau of
both samples. The limiting distributions of the test statistics can be derived using
the classical theory of U -statistics. Therefore, our non-parametric tests are related to
asymptotic normal distributions and are very simple at work. Our tests are based only
on a sample characteristic of the bivariate copula data. Therefore, they are easy to
implement and computationally very fast. In times of Big Data, this nice feature of
our tests is very useful in the analysis of data sets with huge sample sizes.

In Jaser et al. (2017), we proposed a goodness-of-fit test for elliptical copulas under
the assumption of given copula data. It utilizes the known equality of Kendall’s tau
and Blomqvist’s beta for elliptical copulas (see Schmid and Schmidt 2007). There-
fore, this test may illustrate poor performance in finite samples if Kendall’s tau and
Blomqvist’s beta are very close for a particular copula family. In this paper, we propose
a multiple testing procedure for ellipticity of copula data, which combines our simple
non-parametric tests for symmetry, radial symmetry, and the equality of Kendall’s tau
and Blomqvist’s beta. Thus, the proposed multiple testing procedure utilizes the most
common properties of elliptical copulas, which should make it powerful to detect a
non-elliptical dependence structure in bivariate copula data.

This paper is organized as follows. In Sect. 2, copulas, the general properties of sym-
metry, radial symmetry, and ellipticity, as well as the concordance measure Kendall’s
tau are introduced. Simple non-parametric tests for symmetry and radial symmetry
are proposed in Sect. 3. Section 4 presents a Monte Carlo simulation study to evaluate
the finite-sample performance. In Sect. 5, a simple and powerful non-parametric test-
ing procedure is proposed to decide whether the dependence structure of underlying
bivariate copula data may be captured by an elliptical copula. Applications to financial
and insurance data are reported in Sect. 6 to illustrate the testing procedure at work.
Finally, Sect. 7 concludes, and the Appendix contains one technical derivation and the
main proof.

2 Preliminaries

Here and in the sequel, we consider bivariate distribution functions with continuous
univariate marginal distribution functions. Let H be a bivariate distribution function
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with continuous margins F and G. According to Sklar (1959), there exists a unique
copula C : [0, 1]2 → [0, 1] such that H can be represented at each (x, y) ∈ R

2 as

H(x, y) = C(F(x),G(y)) . (1)

By virtue of Eq. (1), the copula C(u, v) of H , for any u, v ∈ [0, 1], is then given by

C(u, v) = H
(
F−(u),G−(v)

)
,

where F− and G− are the generalized inverses of F and G, respectively.
A bivariate copula C is symmetric if and only if C(u, v) = C(v, u), for all (u, v) ∈

[0, 1]2. If C is symmetric and the distribution function of a random vector (U , V ),
then the dependence structure between U and V is symmetric and, hence, we have

(U , V )
d= (V ,U ) . (2)

A test for the hypothesis that the unknown copula C is symmetric, that is

Hs
0 : C(u, v) = C(v, u) , for all (u, v) ∈ [0, 1]2 ,

against the alternative

Hs
1 : ∃(u, v) ∈ [0, 1]2 , such that C(u, v) �= C(v, u) ,

is proposed in this paper.

The bivariate copula C is radially symmetric if (U − 0.5, V − 0.5)
d= (0.5 −

U , 0.5 − V ) or, equivalently, (U , V )
d= (1 − U , 1 − V ). Since the survival copula

C is the distribution function of (1 − U , 1 − V ), a bivariate copula C is radially
symmetric if and only if it coincides with its own survival copula, that is C = C . The
null hypothesis and the alternative to test whether the unknown copula C is radially
symmetric are given by

Hr
0 : C = C versus Hr

1 : C �= C .

Our test statistics for the null hypotheses Hs
0 and Hr

0 are based on Kendall’s tau,
which contemplates one of the most popular rank-based dependence measures. How-
ever, any non-parametric bivariate measure of ordinal dependence, e.g. Spearman’s
rho or Blomqvist’s beta, could be used instead. Let (U1, V1) and (U2, V2) be indepen-
dent copies of the random vector (U , V ) whose distribution function is the copula C .
Kendall’s tau is defined by

τUV : = E[sgn(U1 −U2)sgn(V1 − V2)] ,

where sgn denotes the sign function. Since Kendall’s tau is completely determined by
the underlying copulaC , we denote τC := τUV . Given a random sample (U1, V1), . . . ,
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(Un, Vn) of size n from the random vector (U , V ), Kendall’s tau can be empirically
estimated by

τ̂C,n := 2

n(n − 1)

∑

1≤i< j≤n

sgn(Ui −Uj )sgn(Vi − Vj ) .

The asymptotic distribution of this estimator for Kendall’s tau is well investigated (see
Höffding 1947) and independent of the knowledge of the true marginal distributions.

In Jaser et al. (2017), we designed a goodness-of-fit test for elliptical copulas based
on the equality of Kendall’s tau τC and Blomqvist’s beta βC , that is the null hypothesis

He
0 : τC = βC is tested against the alternative He

1 : τC �= βC .

Now, our proposed tests for symmetry and radial symmetry are combined with this
test in order to develop a powerful and simple statistical procedure to test whether the
dependence structure of a bivariate random vector with uniform margins is captured
by an elliptical copula. Let C be the unknown bivariate copula of the given bivariate
random vector with uniform margins and Celli pt the class of elliptical copulas. Then,
the null hypothesis and the alternative of the testing procedure are given by

H0 : C ∈ Celli pt versus H1 : C /∈ Celli pt .

3 Simple non-parametric tests for symmetry and radial symmetry

In this section, we derive our two statistical tests for symmetry and radial symmetry for
bivariate copulas. We assume that we are given a copula sample and neglect unknown
marginal distributions and their estimation. In practical applications, one usually esti-
mates marginal distribution functions non-parametrically to avoid misspecification.
For the following subsections, let (U1, V1), . . ., (Un, Vn) ∈ [0, 1]2 be a sample from

the statistical model
(
([0, 1]2)n , B([0, 1]2)⊗n, P⊗n

)
, where P is a distribution with

copula C and uniform margins.

3.1 Test for symmetry

Let (U , V ) be distributed according to the symmetric copula C , that is (U , V )
d=

(V ,U ). Further, we assume thatP(U=V ) = 0. For a given sample realization fromC ,
the scatter plot displays symmetry with respect to the main diagonal. By interchanging
the coordinates, any two observations, one below and one above the diagonal, can
be mirrored to the opposite side of the diagonal. The modified data set can still be
considered as a realization from the given copula C . Therefore, a sample realization
from the copula C can be generated just using all observations either above or below
the diagonal.
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The complementary events that (U , V ) is below or above the diagonal, that is

Bs := {ω : U − V > 0} and Bs := {ω : U − V < 0} , (3)

have equal probabilities of 0.5. The law of total probability now implies that the
symmetric copula C can be represented as a mixture of two conditional distribution
functions given by

C(u, v) = 0.5 · FU ,V |Bs (u, v) + 0.5 · FV ,U |Bs (u, v) , (4)

or
C(u, v) = 0.5 · FU ,V |Bs (u, v) + 0.5 · FV ,U |Bs (u, v) . (5)

Here, FX ,Y |A denotes the conditional distribution function of (X ,Y )given (X ,Y ) ∈ A.
Details on the derivation of Eqs. (4) and (5) are provided in the Appendix.

According to Eq. (4) and (5), the symmetric copula C can be represented either
as a mixture of two conditional distribution functions given the event that (U , V ) is
below the diagonal or as a mixture of two conditional distribution functions given the
event that (U , V ) is above the diagonal. This constitutes the key idea of our testing
procedure for symmetric copulas pursued to produce two i.i.d. random samples out of
a given i.i.d. random sample from C .

Let (U1, V1), . . . , (Un, Vn) be an i.i.d. random sample from the symmetric copula

C . First, we consider the sub-sample (UBs

1 , V Bs

1 ), . . . , (UBs

NBs
, V Bs

NBs
) for whichUBs

. −
V Bs

. > 0 holds, that is, whose realizations are below the diagonal. By virtue of Eq. (4),

a new sample from C can be obtained by choosing either (UBs

i , V Bs

i )with probability
0.5 or (V Bs

i ,UBs

i ) also with probability 0.5, for i ∈ {1, . . . , NBs }. The resulting
random sample is denoted by

(Ũ Bs

1 , Ṽ Bs

1 ), . . . , (Ũ Bs

NBs
, Ṽ Bs

NBs
) . (6)

Similarly, we proceed with the sub-sample (UBs

1 , V Bs

1 ), . . . , (UBs

NBs
, V Bs

NBs
) for which

UBs

. − V Bs

. < 0 holds, that is, whose realizations are above the diagonal, and create
a second random sample

(Ũ Bs

1 , Ṽ Bs

1 ), . . . , (Ũ Bs

NBs
, Ṽ Bs

NBs
) . (7)

It should be mentioned that the sampling algorithm can be generalized for 0 <

P(U=V ) < 1 by discarding observations with Ui = Vi .
Note that the sample size NBs is a binomially distributed random variable with size

n and success probability 0.5. From the law of large numbers, it follows that NBs/n
converges to 0.5 in probability as n tends to infinity. The same conclusions can be
drawn for the sample size NBs since the relation NBs = n − NBs holds. Defining the

sequence of random variables Ns
n := min

(
NBs , NBs

)
, it follows that Ns

n/n similarly
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converges to 0.5 in probability as n tends to infinity. Choosing the first Ns
n realizations

from (6) and (7) yields random samples of equal sample size Ns
n given by

(Ũ Bs

1 , Ṽ Bs

1 ), . . . , (Ũ Bs

Ns
n
, Ṽ Bs

Ns
n
) and (Ũ Bs

1 , Ṽ Bs

1 ), . . . , (Ũ Bs

Ns
n
, Ṽ Bs

NNs
n
) . (8)

Under the null hypothesis Hs
0 of C being symmetric, the two newly generated ran-

dom samples have the same underlying copulaC and, hence, Kendall’s tau. Therefore,
the empirically estimatedKendall’s tau for both random samples should be of the same
magnitude. Now, we base our test on the difference

SNs
n

:= τ̂ Bs

C,Ns
n

− τ̂ Bs

C,Ns
n
,

where τ̂ Bs

C,Ns
n
and τ̂ Bs

C,Ns
n
denote the empirically estimated Kendall’s taus based on the

two samples from (8).
It is clear that

NBs

n
P−→ 0.5 and

NBs

n
P−→ 0.5 .

For n ≥ 2 , the above sampling algorithm can be slightly modified to ensure that
NBs and NBs are positive random variables. Therefore, Ns

n is a sequence of positive
integer-valued random variables with

Ns
n

n
P−→ 0.5 . (9)

To state the asymptotic distribution of the test statistic SNs
n
in Theorem 1, we define

h̃1
(
(U1, V1)

) := E
[
sgn(U1 −U2) sgn(V1 − V2) | U1, V1

]
.

Theorem 1 Let (U1, V1), . . . , (Un, Vn) be an i.i.d. random sample from a bivariate
random vector (U , V ) with P(U=V ) = 0, whose distribution function is a symmetric
copula C. Further, let (9) hold. Then,

√
n� · SNs

n

d−→ N
(
0, 2σ 2

)
,

where n� = n/2 and σ 2 = Var
(
2h̃1

(
(U1, V1)

))
.

The proof of Theorem 1 is given in the Appendix and relies on Anscombe
(1952), who showed sufficient conditions to preserve convergence in distribution for
a sequence of random variables indexed by a proper sequence of random variables.
The test statistic SNs

n
is the difference of two U -statistics with random sample sizes,

whose asymptotic distributions were derived by Sproule (1974).
In practical applications, the unknown variance σ 2 in Theorem 1 should be con-

sistently estimated. The following remark describes a possible consistent estimation
procedure for σ 2.
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Remark 1 The function h̃1 has the representation (see e.g. Theorem 4.3 in Dengler
(2010))

h̃1
(
(U , V )

) = 1 − 2U − 2V + 4C(U , V ) .

Subsequently, the asymptotic variance of SNs
n
can be consistently estimated in the

framework of Jaser et al. (2017). Using the whole random sample (U1, V1), . . .,
(Un, Vn), h̃1

(
(Ui , Vi )

)
is estimated non-parametrically by

ĥ1
(
(Ui , Vi )

) = 1 − 2Ui − 2Vi + 4Cn(Ui , Vi ), i ∈ {1, . . . , n} ,

where Cn denotes the empirical copula given by

Cn(u, v) = 1

n

n∑

i=1

I {Ui ≤ u, Vi ≤ v} ,

with I {·, ·} denoting the indicator function. Now, σ 2 is consistently estimated by the
sample variance σ̂ 2

n of

2ĥ1
(
(U1, V1)

)
, . . . , 2ĥ1

(
(Un, Vn)

)
.

For details see Jaser et al. (2017).

Based on Theorem 1, we propose the test function

δs(U1, . . . ,Un) = I
{
|√n� · SNs

n
/ σ̂n| > z1−α/2

}

to test Hs
0 against Hs

1 at the significance level α, where zα denotes the α-quantile of
the standard normal distribution.

3.2 Test for radial symmetry

Let (U , V ) be distributed according to the radially symmetric copula C . Hence, C

coincides with its survival copula C , and it holds that (U , V )
d= (1 − U , 1 − V ) .

Further, we assume that P(U+V=1) = 0. For sample realizations from C , scatter
plots show symmetry with respect to the the point (0.5, 0.5). Now, we split a given
data set with respect to the counter-diagonal into two sub-sets: one below and the other
above the counter-diagonal. By reflecting any two observations from different sub-sets
with respect to the point (0.5, 0.5), the copula of the resulting sample is not changed.
Therefore, a sample from the copula C can be generated just using all observations
either below or above the counter-diagonal.

More precisely, note that the complementary events

Br := {ω : U + V < 1} and Br := {ω : U + V > 1}
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have equal probabilities of 0.5. We follow the idea of our test for symmetry and use
two mixture representations conditioned on the events that (U , V ) is below and above
the counter-diagonal, respectively, in order to generate two i.i.d. random samples of
size NBr and NBr out of one given i.i.d. random sample from C .

Similarly to Sect. 3.1, the corresponding test statistic is given by

RNr
n

:= τ̂ Br

C,Nr
n

− τ̂ Br

C,Nr
n
,

where τ̂ Br

C,Nr
n
and τ̂ Br

C,Nr
n
denote the empirically estimated Kendall’s taus based on the

two samples, and Nr
n := min

(
NBr , NBr

)
. As before, Nr

n can be assumed to be a

sequence of positive integer-valued random variables with

Nr
n

n
P−→ 0.5 . (10)

The asymptotic distribution of the test statistic RNr
n
is given in the following theorem.

Theorem 2 Let (U1, V1), . . . , (Un, Vn) be an i.i.d. random sample from a bivariate

random vector (U , V )withP(U+V=1) = 0, whose distribution function is a radially
symmetric copula C. Further, let (10) hold. Then,

√
n� · RNr

n

d−→ N
(
0, 2σ 2

)
,

where n� = n/2 and σ 2 = Var
(
2h̃1

(
(U1, V1)

))
.

The proof of Theorem 2 is similar to the proof of Theorem 1 and, therefore, omitted.
Note that the asymptotic variance σ 2 is the same as in Theorem 1. Hence, Remark 1
yields a consistent estimation procedure for the asymptotic variance of RNr

n
and the

test function δr is constructed similarly to δs .

4 Simulation study

In order to assess the finite-sample performance of our proposed tests for symmetry
and radial symmetry, a Monte Carlo study was conducted for the test problems Hs

0
and Hr

0 . First, we would like to point out that the tests are based on a random sam-
pling algorithm. Therefore, the value of the test statistic inherits some variability. The
upcoming simulation study shows that the randomness of the test statistic does not
affect the empirical level of the tests and the tests still provide good empirical power.

As a benchmark, we use the more advanced tests by Genest et al. (2012) and Genest
andNešlehová (2014), respectively,which are available in the R-packagecopula (see
exchTest and radSymTest in Hofert et al. (2018)). Note that our proposed tests
rely on the assumption of known marginal distributions, while the tests by Genest
et al. (2012) and Genest and Nešlehová (2014) take into account their non-parametric
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estimation. Further, their tests compare the whole copulas while our proposed tests
are based on two sample characteristics of the bivariate copula. We assume that this
fact is mainly responsible for the differences between our and their numerical results.

The mixture representations for symmetric or radial symmetric copulas may not
hold if marginal distributions are estimated. Therefore, it is not straightforward for us
to extend the proposed tests for unknown margins. Further, if marginal distributions
are estimated non-parametrically, the two newly generated samples may contain ties.
Our Monte Carlo study empirically assesses the influence of non-parametrically esti-
mated marginal distributions on the level and power of our proposed tests. For this,
each copula sample (U1, V1), . . . , (Un, Vn) is replaced by the corresponding bivariate

pseudo-observations (Û1, V̂1), . . ., (Ûn, V̂n), where

(
Ûi , V̂i

) = 1

n + 1

(
rank of Ui in U1, . . . ,Un , rank of Vi in V1, . . . , Vn

)
,

for i ∈ {1, . . . , n}.

4.1 Setup

First of all, the number of Monte Carlo replications was set to N = 1000, and all tests
were performed at a significance level of α = 0.05. To determine the empirical level
and power of the tests, the simulation study was carried out for different sample sizes,
levels of dependence measured in terms of Kendall’s tau and types of dependence
expressed in terms of copula families.

More precisely, random samples of size n ∈ {100, 250, 500, 1000}were considered
for all tests throughout the study. In addition, the influence of the strength of depen-
dence was investigated by choosing five different levels of dependence in terms of
Kendall’s tau given by τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. Finally, the type of dependence
is determined through the choice of a specific copula family. For this, some of the
most popular copula families and some derived special cases were considered in the
simulation study. The performance of all tests was studied for samples from the Gaus-
sian, t , Frank, Clayton, and Gumbel copula families. The Gaussian and the t copula
are elliptical copulas and, thus, also symmetric and radially symmetric. Further, the
Frank, Clayton, and Gumbel copula are symmetric Archimedean copulas. In addition,
the Frank copula is also radially symmetric.

Since all listed copulas are symmetric, asymmetrized versions of the Gaussian,
Clayton, and Gumbel copula families were additionally used to assess the power of
the test for symmetry. Regarding the asymmetrization, we followed the procedure in
Genest et al. (2012) and used Khoudraji’s device (see Khoudraji 1995). The asymmet-
ric copulas are given in terms of an asymmetrization parameter δ ∈ (0, 1). Maximum
asymmetry is observed for δ = 0.5 and, hence, we also chose δ ∈ {0.25, 0.5, 0.75}.
Since there is only little asymmetry for small values of τ , we analyzed the performance
of the test for symmetry for τ ∈ {0.5, 0.75, 0.9} in this context. Following Genest and
Nešlehová (2014), a Skewed-t copula with 4 degrees of freedom and skewness param-
eter γ = (1, 1) was chosen to study the power of the test for radial symmetry.
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4.2 Test for symmetry

In this section, the finite-sample performance of the test of Hs
0 for symmetry based on

the test statistics SNs
n
is analyzed. To study the level of the test, random samples from

the Gaussian, t , Frank, Clayton, and Gumbel copula were considered. Table 1 reports
the empirical level of our test (in Column JMS), of our test for pseudo-observations
(in Column JMSP), and of the test by Genest et al. (2012) (in Column GNQ).

First, note that our test holds its nominal level across all copula models, sample
sizes, and values of Kendall’s tau. Compared to the more advanced test by Genest et al.
(2012), our test seems to hold its nominal level a little better. For pseudo-observations,
our test is generally rather conservative and its empirical level is decreasing with
increasing sample size. Surprisingly, this does not influence the empirical power neg-
atively.

Random samples from the asymmetrized versions of the Gaussian, Clayton, and
Gumbel copula families were used to investigate the power of the test for symmetry.
Table 2 displays the empirical power of our test (in Column JMS), of our test for
pseudo-observations (in Column JMSP), and of the test by Genest et al. (2012) (in
Column GNQ). Even if the results vary noticeably across the different combinations
of factors, our test generally achieves sufficient power. As expected, the rejection rates
increase with the sample size as well as with the strength of dependence. In terms of
the asymmetrization parameter δ, the largest power is mostly observed for δ = 0.5.
Since maximum asymmetry occurs near δ = 0.5, this is also expected.

Compared to the test by Genest et al. (2012), our test has slightly lower power and
needs higher sample sizes to achieve similar power. The empirical power of our test
for pseudo-observations is in most cases comparable to the one for the copula samples.
Moreover, across all different combinations of factors, there are several scenarios with
higher empirical power for the pseudo-observations even though the empirical level
for them is lower than for copula data.

Our test for symmetry is computationally less intensive than the more advanced
test by Genest et al. (2012), where bootstrap methods are applied. Table 3 illustrates
the running times of the tests (in Row JMS and GNQ, respectively) for samples of
size n = 103, 104, and 105. For one sample of size n = 104, the running time of our
test is about 2 seconds in comparison to more than 2 minutes for the corresponding
test by Genest et al. (2012). For n = 105, it was not possible to conduct the test for
symmetry of Genest et al. (2012) using the R-package copula, while our test runs
in a bit more than 3 minutes. Thus, our test for symmetry is up to 75 times faster and
can especially be recommended for huge samples.

4.3 Test for radial symmetry

In this section, the finite-sample performance of the test of Hr
0 for radial symmetry

based on the test statistic RNr
n
is analyzed. Random samples from the Gaussian, t , and

Frank copula were considered in order to examine the empirical level. Table 4 presents
the empirical level of our test (in Column JMR), of our test for pseudo-observations
(in Column JMRP), and of the test by Genest and Nešlehová (2014) (in Column GN).
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Table 3 Running times in
seconds for our tests (JMS/JMR)
and the tests by Genest et al.
(2012)/ Genest and Nešlehová
(2014) (GNQ/GN) for samples
of size n

n = 103 n = 104 n = 105

JMS 0.02 1.77 197.70

GNQ 1.34 134.03 –

JMR 0.04 3.55 399.91

GN 7.60 655.05 63,982.67 (17.77 h)

In general, our test and the test by Genest and Nešlehová (2014) hold their nominal
level. For pseudo-observations, our test also holds its nominal level in most cases. One
exception is the Frank copula for τC = 0.75. Further analysis showed that increasing
the sample size does not reduce the problem of inflated rejection rates as the empirical
levels oscillate around 0.119. Hence, our test for radial symmetry is systematically
too liberal in this setting.

To assess the empirical power, random samples from the Clayton, Gumbel, and
Skewed-t4 copulawere used. Table 5 reports the empirical power of our test (inColumn
JMR), of our test for pseudo-observations (in Column JMRP), and of the test byGenest
and Nešlehová (2014) (in Column GN). First, note that the results differ considerably
for the various combinations of factors. For all copulas, the power increases with
the sample size, which is expected. Further, for the Clayton and the Gumbel copula,
the power also increases with the degree of dependence, whereas for the Skewed-t4
copula, the power decreases with increasing τC . Lastly, note that the rejection rates
are slightly lower for the Gumbel copula.

Our test overall achieves satisfactory empirical power against the various alter-
natives. Compared to the test by Genest and Nešlehová (2014), it is in many cases
somewhat less powerful. However, it achieves equal or even slightly higher power
especially in scenarios where the more advanced test has difficulties to detect the
radial asymmetry. Examples are given by the Gumbel copula and the Skewed-t4 cop-
ula for n = 100 and n = 250 in combination with τC = 0.75. The empirical power
of our test for pseudo-observations is overall slightly higher than the one for copula
samples, which might be caused by possible high empirical levels.

Table 3 illustrates the running times for our test (in Row JMR) and the test by
Genest and Nešlehová (2014) (in RowGN) for samples of size n = 103, 104, and 105.
For one sample of size n = 104, the running time of our test is less than 4 seconds in
comparison to almost 11 minutes for the corresponding test by Genest and Nešlehová
(2014). For one sample of size n = 105, it runs in less than 7 minutes, while the test
by Genest and Nešlehová (2014) requires almost 18 hours. Thus, it is up to 190 times
faster and, similarly to our test for symmetry, it can especially be recommended for
huge samples.
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5 Testing procedure for ellipticity

This section presents a powerful and simple non-parametric statistical procedure to test
whether the dependence structure of a bivariate random vector with uniform margins
is captured by an elliptical copula.

5.1 The testing procedure

The testing procedure consists of the following three steps. First, the hypothesis that the
unknown copula C is symmetric, that is Hs

0 is tested against the alternative Hs
1 . If the

hypothesis Hs
0 cannot be rejected, we test the hypothesis that the unknown copulaC is

radially symmetric, that is Hr
0 against the alternative H

r
1 . In the third step of our testing

procedure, the equality of Kendall’s tau and Blomqvist’s beta is tested, that is He
0 is

tested against the alternative He
1 . If any of the three hypotheses is rejected, we also

reject our original null hypothesis H0 that C belongs to the class of elliptical copulas.
If none of the three hypotheses can be rejected, we cannot reject the null hypothesis H0
of C being elliptical. To assess the effect of non-parametrically estimated marginal
distribution functions on the proposed testing procedure, the following simulation
study is also conducted for pseudo-observations.

5.2 Simulation study

In this section, the finite-sample performance of the proposed testing procedure is
analyzed. The corresponding Monte Carlo study was set up similarly to Sect. 4. Note
that our testing procedure for ellipticity consists of a multiple test problem with three
sub-hypotheses. In order to maintain the global level α = 0.05, we made use of
the standard Bonferroni procedure (see, e.g., Miller and Rupert 1981). For this, the
three null hypotheses Hs

0 , H
r
0 , and He

0 were tested sequentially and separately at the

significance level α/3. Finally, the null hypothesis H0 : C ∈ Celli pt was rejected if
any of the considered sub-hypotheses was rejected.

Table 6 reports the empirical level of the testing procedure (in Column JMT) and
of the testing procedure for pseudo-observations (in Column JMTP) based on ran-
dom samples from the Gaussian and the t copula. The testing procedure appears to
hold its nominal level for copula data as well as for pseudo-observations across all
combinations of factors.

To study the power of the testing procedure, random samples of the Frank, Clayton,
and Gumbel copula were considered. Table 7 shows the empirical power of the testing
procedure (in Column JMT) and of the testing procedure for pseudo-observations (in
Column JMTP). As already observed for all individual tests, the rejection rates vary
clearly across copula families, levels of dependence, and sample sizes. As expected,
the power increases with the sample size and with the level of dependence. The lowest
rejection rates are observed for the Frank copula. However, it is still sufficiently good
in detecting the lack of ellipticity if the sample size is large enough and the level
of dependence is not too close to independence. For the Clayton copula, the testing
procedure performs best in detecting the non-ellipticity, even in very small samples of
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Table 6 Empirical level of our testing procedure for ellipticity (JMT) and of our testing procedure for
pseudo-observations (JMTP) with significance level α = 0.05: rate of rejecting H0 as observed in 1000
random samples of size n from copula family C with Kendall’s tau τC

C n = 100 n = 250 n = 500 n = 1000
τC JMT JMTP JMT JMTP JMT JMTP JMT JMTP

Gauss

0.25 0.039 0.034 0.050 0.035 0.053 0.026 0.047 0.023

0.50 0.061 0.041 0.071 0.038 0.053 0.037 0.052 0.032

0.75 0.049 0.044 0.057 0.046 0.054 0.038 0.057 0.048

tν=5

0.25 0.062 0.036 0.054 0.032 0.051 0.035 0.047 0.031

0.50 0.046 0.037 0.052 0.037 0.051 0.034 0.052 0.029

0.75 0.039 0.038 0.056 0.046 0.062 0.043 0.055 0.040

Table 7 Empirical power of our testing procedure for ellipticity (JMT) and of our testing procedure for
pseudo-observations (JMTP) with significance level α = 0.05: rate of rejecting H0 as observed in 1000
random samples of size n from copula family C with Kendall’s tau τC

C n = 100 n = 250 n = 500 n = 1000
τC JMT JMTP JMT JMTP JMT JMTP JMT JMTP

Frank

0.25 0.074 0.045 0.071 0.055 0.112 0.099 0.190 0.169

0.50 0.085 0.087 0.175 0.165 0.331 0.316 0.619 0.597

0.75 0.098 0.167 0.226 0.238 0.459 0.444 0.747 0.749

Clayton

0.25 0.177 0.138 0.375 0.338 0.729 0.729 0.959 0.977

0.50 0.455 0.462 0.896 0.915 0.998 1.000 1.000 1.000

0.75 0.591 0.779 0.993 0.999 1.000 1.000 1.000 1.000

Gumbel

0.25 0.096 0.091 0.140 0.126 0.219 0.218 0.467 0.441

0.50 0.107 0.095 0.270 0.275 0.557 0.551 0.863 0.874

0.75 0.112 0.156 0.340 0.415 0.680 0.714 0.949 0.947

size n = 100. The results for the Gumbel copula are only slightly worse than for the
Clayton copula and, hence, the testing procedure is still powerful. Similar observations
can be made for the empirical power of the testing procedure for pseudo-observations.
As for the individual tests, there are scenarios with higher empirical power for the
pseudo-observations than for copula data.

Compared to the results of our test based on the equality of Kendall’s tau and
Blomqvist’s beta in Jaser et al. (2017), the testing procedure performs much better for
the Clayton and the Gumbel copula. It is now possible to distinguish non-elliptical
copulas with very close Kendall’s tau and Blomqvist’s beta if they are not symmetric
or not radially symmetric. Furthermore, the testing procedure is still able to detect the
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non-ellipticity of the Frank copula, which is symmetric and radially symmetric. All
in all, the idea of using the most known properties of elliptical copulas in the testing
procedure shows clear advantages.

6 Empirical analysis

The main aim of this section is to illustrate our testing procedure for ellipticity in
practice using financial and insurance data. For this, the results of the three building
tests are reported. Since our tests for symmetry and radial symmetry are based on a
random sampling algorithm (see Sects. 3.1 and 3.2), we performed the tests within the
testing procedure for ellipticity 1000 times and consider the averages of the resulting
p-values.

In the sequel, the testing procedure is applied to six different data sets in total. For
the majority of these data sets, the decision resulting from the testing procedure is the
same for all 1000 replications. For two datasets, we get a different decision from 2
and 1 out of 1000 replications, respectively, than we get from the testing procedure
using the average of the p-values. Hence, the number of cases with a different decision
seems to be negligible. We recommend to perform the testing procedure more than 2
times, if the decision to accept or reject the null hypothesis is very close.

6.1 Financial data

As a first illustration, our testing procedure is applied to financial data from the US
stock market. Two major US stock price indices are selected: the Standard & Poor’s
500 (S&P 500), as one of the most popular indices of large-cap US equities, and the
Russell 2000, as one of the most popular small-cap US indices. In order to get data sets
of large sample sizes, daily returns of the two indices over different periods of three
years are considered. It is well known that the dependence structure of financial data
for crisis and non-crisis periods differs. Therefore, the following analysis is based on
the daily log-returns of the S&P 500 and the Russell 2000 indices for the crisis periods
from 1999 to 2001 and 2007 to 2009, as well as for the non-crisis periods from 2003
to 2005 and from 2011 to 2013. Furthermore, we are also interested in the dependence
structure between monthly returns of the two indices, which is of more interest from a
macroeconomic point of view. For this, monthly returns are considered for the period
of the last 30 years from 1988 to 2017.

To remove temporal dependencies, ARMA-GARCH time series models are fitted
to each series of log-returns. The choice of the final model is done using the BIC
(see, e.g., Schwarz 1978). The resulting standardized residuals are transformed non-
parametrically by using the empirical cumulative distribution functions to achieve
approximate i.i.d. uniform margins. Figures 1 and 2 display the scatter plots of the
underlying copula data for the different data sets comprised of daily and monthly
returns of the S&P 500 and the Russell 2000 for the selected time periods, respectively.
In Fig. 1, an elliptical shape is visually observable for the non-crisis periods from 2003
to 2005 and from 2011 to 2013, whereas the shape of the data for the crisis periods
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Fig. 1 Daily data: Scatter plots of the non-parametrically transformed standardized residuals of the ARMA-
GARCH models for the log-returns of the S&P 500 and the Russell 2000 indices for different time periods

Fig. 2 Monthly data: Scatter
plot of the non-parametrically
transformed standardized
residuals of the ARMA-GARCH
model for the log-returns of the
S&P 500 and the Russell 2000
indices for the time period from
1988 to 2017
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from 1999 to 2001 and from 2007 to 2009 might be non-elliptical from the visual
impression. The shape of the copula data in Fig. 2 is clearly non-elliptical.

Table 8 presents p-values for the above discussed data sets. For the two non-crisis
periods, the null hypothesis H0 of the elliptical dependence structure cannot be rejected
at the considered significance level of 5%. In contrast, the testing procedure rejects
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Table 8 p-values of our tests for symmetry, radial symmetry, and equality of Kendall’s tau and Blomqvist’s
beta for the dependence structure of the financial data (S&P 500 and Russell 2000) for different time periods

Data Time period Symmetry Radial symmetry Equality

Daily data (crisis) 1999–2001 0.154 0.124 0.004

Daily data (non-crisis) 2003–2005 0.943 0.352 0.705

Daily data (crisis) 2007–2009 0.857 0.043 0.030

Daily data (non-crisis) 2011–2013 0.346 0.345 0.965

Monthly data 1988–2017 0.417 0.002 0.380

H0 for the crisis period from 1999 to 2001 due to a very low p-value of the test
for equality. For the crisis period from 2007 to 2009, H0 cannot be rejected at the
considered significance level of 5%. However, the p-values of 0.042 and 0.030 for
the test for radial symmetry and the test for equality, respectively, are quite low and
provide some indication against H0. Note that the test for radial symmetry leads to
a rejection of H0 for 2 out of the 1000 replications. Hence, also for the crisis period
from2007 to 2009, elliptical copulas cannot be recommended tomodel the dependence
structure of the underlying data. The same applies for the data set comprised of the
monthly log-returns. Due to the very low p-value of the test for radial symmetry, the
null hypothesis of ellipticity is rejected at the considered significance level of 5%. All
in all, the results are in accordance with our expectations and the visual observations
from Figs. 1 and 2.

6.2 Insurance data

One famous example for a bivariate data set from the insurance sector is given by losses
and corresponding allocated loss adjustment expenses (short ALAE) of insurance
claims. The US Insurance Services Office has collected data on 1500 general liability
claims randomly chosen from late settlement lags. Each claim contains an indemnity
payment (loss) and an allocated loss adjustment expense (ALAE). A detailed descrip-
tion of the data set can be found in Frees and Valdez (1998). The modeling of the
joint distribution of losses and ALAEs has also been analyzed in Genest and Ghoudi
(January 1998), Klugman and Parsa (1999), Denuit et al. (2006), Chen and Fan (2005),
and Zhang et al. (2016), among others. In Fig. 3, scatter plots of the observations (left)
and of the logarithm of the observations (middle) are displayed.

To achieve the approximate i.i.d. uniform margins, data is transformed non-
parametrically by using the marginal empirical cumulative distribution functions. A
scatter plot of the resulting transformed loss and ALAE is presented in Fig. 3 (right).
Applying our testing procedure for ellipticity then leads to p-values of 0.391 for sym-
metry, 0.034 for radial symmetry, and 0.118 for the equality of Blomqvist’s beta and
Kendall’s tau. At the considered significance level of 5%, our testing procedure can-
not reject the null hypothesis H0. However, the low p-value of 0.034 for the radial
symmetry provides some indication against H0. Note that the test for radial symmetry
leads to a rejection of H0 for 1 out of the 1000 replications. Hence, we would not
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Fig. 3 Scatter plots for data of loss and ALAE (left), logarithms of loss and ALAE (middle), non-
parametrically transformed data of loss and ALAE (right). Sample size n = 1500

recommend elliptical copulas to model the dependence structure of the underlying
loss ALAE data.

The different parametric and semiparametric model selection procedures in Frees
and Valdez (1998), Genest and Ghoudi (January 1998), Denuit et al. (2006), Chen and
Fan (2005), and Zhang et al. (2016) all resulted in the Gumbel copula as the preferred
model for the given loss ALAE data set. In the scatter plot of the copula data (Fig. 3,
right), positive upper-tail dependence but no lower-tail dependence can be observed
between the two variables. This is expected by actuaries, since large losses are often
accompanied by large ALAEs, and in line with the tail dependence properties of the
Gumbel copula, which exhibits only upper-tail dependence. The choice of the Gumbel
copula is therefore not surprising.

7 Conclusion

In this paper, we derive very simple non-parametric tests for symmetry and radial
symmetry for bivariate copula data, which are computationally very fast. An exten-
sive simulation study is conducted to investigate the finite-sample performance and to
compare the proposed tests to the already existing more advanced tests for symme-
try and radial symmetry by Genest et al. (2012) and Genest and Nešlehová (2014),
respectively, which do not require copula data and are applicable on the original scale
of the observations. The results of the Monte Carlo simulation show that the proposed
tests for symmetry and radial symmetry overall achieve sufficient empirical power
against the various alternatives. In comparison to the more advanced tests with non-
parametrically estimatedmargins, they are slightly less powerful and equally powerful
starting from a sample size of 1000. It should be mentioned that the proposed tests are
simpler and computationally less expensive and, hence, attractive for huge samples.
However, the proposed tests are not consistent and may fail to detect the asymmetry
if the two samples resulting from our algorithm have similar Kendall’s taus.

Our next contribution is the construction of a powerful non-parametric goodness-
of-fit testing procedure for elliptical copulas by combining our proposed tests for
symmetry and radial symmetry with our test for copula data in Jaser et al. (2017).
Hence, the most common intrinsic properties of bivariate elliptical copulas, namely
symmetry, radial symmetry, and the equality of Kendall’s tau and Blomqvist’s beta are
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utilized. The corresponding Monte Carlo simulation study shows that the proposed
testing procedure is more powerful than the test in Jaser et al. (2017) for samples from
non-symmetric or non-radially symmetric copula families.

Elliptical copulas are very popular in applied sciences. However, their application
should be treated with caution. To illustrate the testing procedure for ellipticity in
practice, it is applied to financial and insurance data. The first empirical application to
data from the US stock market highlights that the dependence structure of two major
US stock price indices is not always captured by an elliptical copula. The second
application to the loss and ALAE insurance data set indicates that an elliptical copula
might not be the right choice to model the corresponding dependence structure.

Our tests for symmetry and radial symmetry can be combined with variance reduc-
tion techniques (see, e.g., Korn et al. 2010). To this end, the considered sub-samples
are reflected with respect to the main diagonal or the point (0.5, 0.5), respectively.
Thus, the two sub-samples with realizations below and above the main or counter
diagonal are expanded by their reflected counterparts. The empirical estimator of
Kendall’s tau is then based on the enlarged random samples with dependent sample
points. The derivation of the statistical tests for symmetry and radial symmetry based
on the reflected random samples as well as the development of the testing procedure
for ellipticity in higher dimensions are subject of our future research.

Finally, note that the proposed tests can be based on any bivariate non-parametric
measure of ordinal association. Our tests with Kendall’s tau outperform the tests with
Blomqvist’s beta while our tests with Spearman’s rho show comparable performance
as with Kendall’s tau.
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Appendix: Details on the test for symmetry

Mixture representations of a symmetric copula C

Let C be a symmetric copula and the distribution function of a random vector (U , V ).
Using (2), it follows for the events in (3) that

P(Bs) = P(U − V > 0) = P(U − V < 0) = P(Bs) = 0.5 . (11)

The representations of C given in (4) and (5) can be derived using the law of total
probability as well as (2) and (11). Thus, it follows that

C(u, v) = P(U ≤ u, V ≤ v)

= P(U ≤ u, V ≤ v | Bs) · P(Bs) + P(U ≤ u, V ≤ v | Bs) · P(Bs)

= 0.5 · P(U ≤ u, V ≤ v | U − V > 0) + 0.5 · P(V ≤ u,U ≤ v | V −U < 0)

= 0.5 · FU ,V |Bs (u, v) + 0.5 · FV ,U |Bs (u, v) .

Similarly, it holds that

C(u, v) = 0.5 · P(V ≤ u,U ≤ v | V −U > 0) + 0.5 · P(U ≤ u, V ≤ v | U − V < 0)

= 0.5 · FV ,U |Bs (u, v) + 0.5 · FU ,V |Bs (u, v) .

Proof of Theorem 1

Let (U1, V1), . . . , (Un, Vn) ∈ [0, 1]2 be a sample from the statistical model

(
([0, 1]2)n,B([0, 1]2)⊗n, P⊗n

)
,

where P is a distribution with symmetric copulaC and uniformmargins. The samples
given in (8) can then be derived and the test statistic SNs

n
is given by the difference of

the corresponding empirical estimators τ̂ Bs

C,Ns
n
and τ̂ Bs

C,Ns
n
of τC .

For the random sample size Ns
n , it holds that N

s
n/n converges to 0.5 in probability

as n tends to infinity. It follows for n → ∞ that

Ns
n

�n/2�
P−→ 1 ,

where �x�, x ∈ R, denotes the integer part of x . Thus, the assumption of Theorem
1 from Anscombe (1952) is satisfied, and it is sufficient to show that the difference
τ̂ Bs

C,n − τ̂ Bs

C,n satisfies the conditions (C1) and (C2) of Anscombe (1952).

From the theory of U -statistics (see Höffding 1947), it holds that
√
n (̂τC,n − τC )

converges in distribution to a centered normal distribution with variance σ 2 =
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Var
(
2h̃1

(
(U1, V1)

))
. The independence of τ̂ Bs

C,n and τ̂ Bs

C,n , and theDeltamethod imply

√
n

(
τ̂ Bs

C,n − τ̂ Bs

C,n

)
d−→ N

(
0, 2σ 2

)
.

Thus, the difference τ̂ Bs

C,n − τ̂ Bs

C,n satisfies condition (C1) with wn = 1/
√
n .

A sequence of random variables {Yn} satisfies condition (C2) of Anscombe (1952)
if, given ε > 0 and η > 0, there exists a large νε,η and a small c > 0 such that for all
n > νε,η it holds that

P

(

sup
n′:|n′−n|<cn

√
n |Yn′ − Yn| ≥ ε

)

< η .

Further, the proof of Theorem 6 in Sproule (1974) yields that τ̂ Bs

C,n and τ̂ Bs

C,n satisfy

condition (C2). Therefore, the difference τ̂ Bs

C,n − τ̂ Bs

C,n also satisfies condition (C2).
Finally, Theorem 1 of Anscombe (1952) implies the desired asymptotic convergence

√
n�

(
τ̂ Bs

C,Ns
n

− τ̂ Bs

C,Ns
n

)
d−→ N

(
0, 2σ 2

)
.

��
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