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Abstract
In this short paper, we derive an alternative proof for some known (van den Berg &
Gilkey 2015) short-time asymptotics of the heat content in a compact full-dimensional
submanifolds S with smooth boundary. This includes formulae like

∫
S
exp(t�)( f 1S) dV =

∫
S
f dV −

√
t

π

∫
∂S

f dA + o(
√
t), t → 0+,

and explicit expressions for similar expansions involving other powers of
√
t . By

the same method, we also obtain short-time asymptotics of
∫
S exp(t

m�m)( f 1S) dV ,
m ∈ N, and more generally for one-parameter families of operators t �→ k(

√−t�)

defined by an even Schwartz function k.

Keywords Heat equation · Heat content · Riemannian manifolds · Geometrical optics

1 Introduction

Let (M, g) be a complete, boundaryless,1 oriented Riemannian manifold with
Laplace–Beltrami operator �, and volume dV . On a codimension-1 submanifold
of M , we write dA for the induced surface (hyper)-area form. The heat semi-group
Tt := exp(t�) acting on L2(M, dV ) is well defined (� is essentially self-adjoint
on C∞

c (M) [2]) and its behaviour as t → 0+ has been extensively investigated
in the literature. Specifically, for a set S ⊂ M , the heat content of the form

1 We assume that M has no boundary for the sake of simplicity, and the method presented here can be
adapted to more general manifolds with boundary provided that S is compactly contained in the interior
of M . If this is not the case, such as in the classical heat content setting as in [13], it should be possible to
obtain similar results by modifying the geometrical optics construction used.
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�S, f (t) := ∫
S Tt ( f 1S) dV , f ∈ C∞(M), has recently received much attention;

see, for instance, [7,11,12] and the references therein.
Let us briefly recall some known results. OnRn , sets S of finite perimeter P(S) are

characterized by [7, Thm. 3.3 ]

lim
t→0+

√
π

t

(
�S,1M (0) − �S,1M (t)

)
= P(S). (1)

Extensions of this idea to abstract metric spaces are given in [6]. In the setting of
compact manifolds M (or M = R

n) and S a full-dimensional submanifold with
smooth boundary ∂S, the authors of [12] show that

�S, f (t) =
∞∑
j=0

β j t
j
2 , t → 0+, (2)

where the coefficients β j depend on S, f and the geometry of M . The setting of [12]
is more general, amongst other things it includes f which have singularities. Some of
the coefficients obtained in [12, corollary 1.7] are

β0 =
∫
S
f dV , β1 = − 1√

π

∫
∂S

f dA, β2 = 1

2

∫
S
� f dV .

Extensions to some non-compact manifolds M and certain non-compact S are in [11].
Both Eqs. (1) and (2) are proven with significant technical effort, yielding strong

results. For example, in [7], explicit knowledge of the fundamental solution of the heat
equation is used to obtain Eq. (1) for C1,1-smooth ∂S, after which geometric measure
theory is used. Similarly, [12] requires pseudo-differential calculus and invariance
theory.

Our aim is to show that slightly weaker results can be obtained by considerably
lower technical effort. In contrast to [7], we treat only compact S with smooth bound-
ary, and do not allow f to have singularities like [12] does. On the other hand, we
put no further restrictions than completeness on M . The proof presented here is sim-
ple, comparatively short, and provides an alternative differential geometric/functional
analytic point of view to questions regarding heat content. Moreover, this approach
is readily extended to some other PDEs including the semi-group generated by �m .
Observe that T (t) = k(

√−t�) with k(x) = exp(−x2). We allow k to be an arbitrary
even Schwarz function, with �S, f (t) = ∫

S k(
√−t�)( f 1S) dV and will prove:

Theorem 1 Let M be a complete Riemannian manifold with Laplace–Beltrami oper-
ator �, Riemannian volume dV and induced (hyper) area form dA. Let S ⊂ M be a
compact full-dimensional submanifold with smooth boundary. For f ∈ C∞(M) and
N ∈ N,

�S, f (t) =
N∑
j=0

β j t
j
2 + o(t

N
2 ), t → 0+,
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for constants (β j )
N
j=0 described further in the next theorem.

With the j th derivative k( j) (for j ∈ N0), let r j := (−1) j/2k( j)(0) for j even

and r j := (−1)( j−1)/2
∫ ∞
0

2k j (s)
−πs ds for j odd. Let ϕ locally be the signed distance

function (see also [8, Sect. 3.2.2]) to ∂S with S = ϕ−1([0,∞)), and denote by ∇ and
· the gradient and (metric) inner product, respectively. The vector field ν := −∇ϕ is
outer unit normal at ∂S.

Theorem 2 The coefficients of Theorem 1 satisfy β0 = r0
∫
S f dV and β1 =

− 1
2r1

∫
∂S f dA. For even j ∈ N≥2,

β j = r j
j !

∫
S

1

2
� j/2 f dV .

Moreover, given the Lie-derivative Lν with respect to ν,

β3 = r3
2 · 3!

∫
∂S

Lν(−Lν + 1

2
�ϕ) f − 1

2
� f + 1

2
(−Lν + 1

2
�ϕ)2 f dA,

similar expression can be found also for larger odd values of j (see Sect. 3).

The properties of the signed distance function ϕ may be used to express terms
appearing in Theorem 2 using other quantities. For example, its Hessian ∇2ϕ is the
second fundamental form on the tangent space of ∂S [3, Chap. 3], and thus 1

2�ϕ is
the mean curvature.

Our approach to prove Theorems 1 and 2 is to combine 3 well-known facts:

(A) The short-time behaviour of the heat flow is related to the short-time behaviour
of the wave equation (cf. [1]).

(B) The short-time behaviour of the wave equation with discontinuous initial data
is related to the short-time behaviour of the eikonal equation (cf. ‘geometrical
optics’ and the progressing wave expansion [10]).

(C) The short-time behaviour of the wave and eikonal equations with initial data f 1S

is directly related to the geometry of M near ∂S.

Though points (A)-(C) are well known in the literature, they have (to the best of our
knowledge) not been applied to the study of heat content so far.

A significant portion of (C) will rest on an application of the Reynolds transport
theorem. Here, denote by 	s the time-s flow of the vector field ν = −∇ϕ. For small
s, the (half) tubular neighbourhood

S−s := {x ∈ M \ S : dist(x, ∂S) ≤ s} (3)

satisfies S ∪ S−s = 	s(S). For a ∈ C∞((−ε, ε) × M), by [5, Chap. V, Prop. 5.2],

d

ds

∫
S−s

a(s, ·) dV
∣∣∣∣
s=0

= d

ds

(∫
S−s∪S

a(s, ·) dV −
∫
S
a(s, ·) dV

)∣∣∣∣
s=0

=
∫
S
Lν̃[a(0, ·) dV ] =

∫
∂S

a(0, ·) dA. (4)
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The last equation is a consequence of Cartan’s magic formula and Stokes’ theorem,
where we use that dV (ν, ·) = dA(·) on ∂S.

2 Proof forˇ0,ˇ1

By Fourier theory (for non-Gaussian k, the formulae must be adapted),

k(t) = exp(−t2) =
∫ ∞

0
k̂(s) cos(ts) ds with k̂(s) := 1√

π
exp

(−s2

4

)
.

On the operator level, this yields the well-known formula [10, Sect. 6.2]

Tt = exp(t�) =
∫ ∞

0
k̂(s) cos(s

√−t�) ds. (5)

The operatorWs := cos(s
√−�) is the time-s solution operator for the wave equation

with zero initial velocity, in particular u(s, x) := (Ws f 1S)(x) (weakly) satisfies
(∂2t − �)u = 0. Let 〈·, ·〉 denote the L2(M, dV ) inner product. Using Eq. (5),

〈Tt f 1S,1S〉 =
∫ ∞

0
k̂(s)〈Ws

√
t f 1S,1S〉 ds.

Similar reasoning has been used to great effect in [1] to derive heat-kernel bounds
by making use of the finite propagation speed of the wave equation. As in [1], finite
propagation speed yields for s ≥ 0 that 〈Ws f 1S,1M\S〉 = 〈Ws f 1Ss ,1S−s 〉, where
Ss := (M \ S)−s is defined like Eq. (3). Even if 1M\S /∈ L2(M, dV ), we have just
seen that the inner product 〈Ws f 1S,1M\S〉 is nevertheless well defined. In [1], it is
further observed that ‖Ws‖ ≤ 1. Using the Cauchy–Schwarz inequality and assuming
f = 1M , Eq. (4) yields

h(s) := 〈Ws f 1Ss ,1S−s 〉 ≤ ‖1Ss‖2‖1S−s‖2 ≤ s
∫

∂S
dA + o(s), s → 0+. (6)

In addition, |〈Ws f 1S,1S〉| ≤ ‖ f 1S‖2‖1S‖2 for all s ≥ 0, in particular as s → ∞.
We conclude with some calculations (cf. Lemma 3), that

〈Tt1S,1S〉 =
∫ ∞

0
k̂(s)

(
〈Ws

√
t1S,1M 〉 − 〈Ws

√
t1S,1M\S〉

)
ds

= 〈1S,1M 〉 −
∫ ∞

0
k̂(s)h(s

√
t) ds (7)

≥
∫
S
dV − 2

√
t

π

∫
∂S

dA + o(
√
t), t → 0+.

This is weaker than the desired estimate, and restricts to f = 1M . The problem is
that the estimates in Eq. (6) are too crude. To improve them, we instead approximate
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the solution u to the wave equation with geometrical optics, using the “progressing
wave” construction described in [10, Sect. 6.6], some details of which we recall here.
The basic idea is that u is in general discontinuous, with an outward—and an inward—
moving discontinuity given by the zero level-set of functions ϕ+ and ϕ−, respectively.
The functions ϕ± satisfy the eikonal equation ∂tϕ = ±|∇ϕ±| with initial value
ϕ±(0, ·) = ϕ(·). Equivalently, using the (nonlinear) operator Ew := (∂tw)2 −|∇w|2,
the functions ϕ± satisfy E(ϕ±) = 0. Our analysis is greatly simplified by choosing
the initial ϕ to (locally) be the signed distance function to ∂S. The eikonal equation is
then ∂tϕ

± = ±|∇ϕ| = ±| − ν| = ±1, i.e. ϕ±(x, t) = ϕ(x) ± t .
The progressing wave construction further makes use of two (locally existing

and smooth) solutions a±
0 to the first-order transport equations ±∂t a

±
0 (t, ·) + ν ·

∇a±
0 (t, x) = 1

2a
±
0 �ϕ±. Observe that with the Heaviside function θ : R → R, and

� := ∂2t − �, the expression �(a±
0 θ(ϕ±)) is given by

(θ ′′(ϕ±)Eϕ± + �ϕ±θ ′(ϕ±))a±
0 + 2

(
∂t a

±
0 ∂tϕ

± − ∇a±
0 · ∇ϕ±)

θ ′(ϕ±) + �a±
0 θ(ϕ±).

The functions ϕ± and a±
0 have been chosen so the above simplifies to

�(a±
0 θ(ϕ±)) = 2

(
±∂t a

±
0 + ∇a±

0 · ν − 1

2
�ϕa±

0

)
θ ′(ϕ±) + �a±

0 θ(ϕ±)

= �a±
0 θ(ϕ±). (8)

Thus �(a±
0 θ(ϕ±)) is as smooth as θ is. We use

ũ(t, x) := a+
0 (t, x)θ(ϕ+(t, x)) + a−

0 (t, x)θ(ϕ−(t, x))

as an approximation to the discontinuity of the solution u to the wave equation. To
maintain consistencywith the initial values of u, the initial values of the approximation
ũ are chosen to coincide with those of u at t = 0, this is achieved by setting a±

0 (0, ·) =
1
2 f so that (at least formally) ∂t ũ(0, ·) = 0 and also ũ(0, ·) = 1S f .

The function ũ approximates the discontinuous solution u of thewave equationwell
enough that the function (s, x) �→ u(s, x) − ũ(s, x) is continuous on [−T , T ] × M ,
see [10, Sect. 6.6, eq. 6.35]. By construction, ũ(0, ·) = u(0, ·). Hence |(u(s, x) −
ũ(s, x)| = o(1) as s → 0+, which implies

|〈u(s, ·),1S−s 〉 − 〈ũ(s, ·),1S−s 〉| = o(s) s → 0+. (9)

As ∇ϕ = −ν, for sufficiently small t the sets {x ∈ M : ϕ+(t, x) = 0} (resp.
{x : ϕ−(t, x) = 0}) are level sets of ϕ on the outside (resp. inside) of S (see also [10,
Sect. 6.6]). By construction, θ(ϕ−) vanishes outside of S for t > 0. Consequently,
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using Eq. (4), we see that as s → 0+,

〈ũ(s, ·),1S−s 〉 =
∫
S−s

a+
0 (s, x)1{ϕ+(s,·)≥0} + a−

0 (s, x)1{ϕ−(s,x)≥0} dV (x)

= s
∫

∂S
a+
0 (0, x) dA(x) + o(s) = s

2

∫
∂S

f dA + o(s). (10)

Combining Eqs. (9) and (10),

h(s) = 〈Ws f 1S,1S−s 〉 = 〈u(s, ·),1S−s 〉 = s

2

∫
∂S

f dA + o(s), s → 0+.

Calculations along the lines of Lemma 3 and Eq. (7) yield

〈Tt f 1S,1S〉 =
∫
S
f dV −

√
t

π

∫
∂S

f dA + o(
√
t), t → 0+,

as claimed.

Lemma 3 Let j ∈ N and γ : R≥0 → R. Let γ (s) = s j + o(s j ) for s → 0 and
γ (s) = O(1) for s → ∞. Then for t → 0+,

∫ ∞

0
γ (s

√
t)k̂(s) ds = t

j
2

{
(−1)

j
2 k( j)(0) j even

(−1)
j−1
2

∫ ∞
0

2 k( j)(s)
−πs ds j odd

+ o
(
t
j
2

)
. (11)

With k(s) = exp(−s2) and h(s) = c0 + c1s + c2s2 + o(s2), this implies

∫ ∞

0
h(s

√
t)k̂(s) ds = c0 + 2c1√

π

√
t + 2c2t + o(t). (12)

Proof For even j , we obtain Eq. (11) by the Fourier-transform formula for j th deriva-
tives. If j is odd, we also need to multiply by the sign function in frequency space,
and then use that the inverse Fourier-transform (unnormalized) of the sign function is
given by the principal value p.v.

( 2i
x

)
[10, Sect. 4], see also [9, Chap. 7]. Equation 11

holds more generally, e.g. if k is an even Schwarz function. Equation 12 may also be
verified directly without Eq. (11). ��

3 Proof forˇ2,ˇ3, . . .

We now turn to calculating β j for j ≥ 2. We use the N th order progressing wave
construction with sufficiently large N � j . For the sake of simplicity, we write
O(t∞) for quantities that can be made O(tk) for any k ∈ N by choosing sufficiently
large N . As in the previous section, the construction is from [10, Sect. 6.6]. With
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θ0 := θ , and θi (t) := ∫ t
−∞ θi−1(s)ds we write

ũ±(t, x) :=
N∑
i=0

a±
i (t, x)θi (ϕ

±(t, x)).

Here the functions a±
0 are defined as before, and for i ≥ 1 the i th order transport

equations ±∂t a
±
i = −ν · ∇a±

i + 1
2a

±
i �ϕ± − 1

2�a±
i−1 define a

±
i together with initial

data a±
i (0, ·) = − 1

2 (∂t a
+
i−1(0, ·) + ∂t a

−
i−1(0, ·)). As in Eq. (8), one may verify that

�ũ± = �aiθN (ϕ±). Writing ũ = ũ+ + ũ− and

u(t, x) = ũ+(t, x) + ũ−(t, x) + RN (t, x),

the remainder satisfies RN ∈ C (N ,1)([−T , T ] × M) and RN (t, ·) vanishes at t = 0,
see [10, Sect. 6.6, eq. 6.35]. Moreover, RN is supported on {(x, t) : dist(x, S) ≤ |t |},
all of this implies that, as t → 0+,

h(t) =
∫
M\S

u(t, x) dV (x) =
∫
M\S

ũ+(t, x) dV (x) + O(t∞) (13)

and moreover h ∈ C∞([0, T ]). The structure of RN implies that �ũ+(t, x) = O(t∞)

on M \ S, provided that this expression is interpreted in a sufficiently weak sense.
Formally, therefore

∂2t

∫
M\S

ũ+(·, t) dV =
∫
M\S

�ũ+(·, t) dV + O(t∞)

= −
∫

∂S
∇ũ+(·, t) · ν dA + O(t∞), (14)

where the last step is the divergence theorem. One may verify Eq. (14) rigorously by
either doing the above steps in the sense of distributions, or by a (somewhat tedious)
manual computation. Combining this with Eq. (13),

h′′(t) = −
∫

∂S
∇ũ+(·, t) · ν dA + O(t∞). (15)

The quantity h( j)(0)may thus be seen to depend ũ+(0, ·) at ∂S, which in turn depends
on a±

i at t = 0. Defining Si := a+
i +a−

i andDi := a+
i −a−

i for i = 0, 1, . . . , let L be
the (spatial) differential operator defined forw ∈ C∞(M) by Lw := 1

2�ϕw−ν ·∇w.
For i ∈ N0, the transport equations imply

∂tS0 = LD0, ∂tD0 = LS0, (16)

∂tSi+1 = LDi+1 − 1

2
�Di , ∂tDi+1 = LSi+1 − 1

2
�Si for i ≥ 0, (17)
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with initial values satisfying

a+
0 (0, ·) = 1

2
S0(0, ·) = 1

2
f (·), D0(0, ·) = 0, (18)

a+
i+1(0, ·) = 1

2
Di+1(0, ·) = −1

2
∂tSi (0, ·), Si+1(0, ·) = 0. (19)

Lemma 4 For i, n ∈ N0 it holds that ∂2nt Di (0, ·) = 0 (note that as a consequence,
also ai+1(0, ·), LDi (0, ·), and �nDi (0, ·) are zero).

Proof We will proceed by induction over i and use the identities Eqs. (16)–(19). For
i = 0, D0(0, ·) = 0 is trivially satisfied. Moreover, ∂2nt D0 = RnD0, which is zero at
t = 0. For i = 1, observe that a+

1 (0, ·) = − 1
2∂tS0(0, ·) = − 1

2 LD0(0, ·) = 0, and thus
D1(0, ·) = 0. Likewise, ∂2t D1 = ∂t (LS1 − 1

2�S0) = L(LD1 − 1
2�D0) − 1

2�LD0.
As the operator L commutes with ∂2t , this expression vanishes at t = 0. Induction
over n proves the remainder of the statement for i = 1. For the general case, we
assume the induction hypothesis for i and i + 1 and start by noting that Di+2(0, ·) =
2a+

i+2(0, ·) = −∂tSi+1(0, ·) = − (
LDi+1(0, ·) − 1

2�Di (0, ·)
) = 0. Moreover,

∂2t Di+2 = ∂t (LSi+2 − 1
2�Si+1) = L(LDi+2 − 1

2�Di+1) − 1
2�

(
LDi+1 − 1

2�Di
)
,

which again vanishes at t = 0; the case n > 1 may again be proven by induction over
n. ��

Corollary 5 For even j ∈ N≥2, the j th derivative of h satisfies

h( j)(0) = −1

2

∫
S
� j/2 f dV .

Proof Lemma 4 shows that for i ≥ 1, a+
i (0, x) = 0. Together with Eq. (15), thus

h′′(0) = − ∫
∂S ∇a+

0 (0, ·) · ν dA = − 1
2

∫
∂S ∇ f · ν dA. This is the case j = 2. More

generally, for j = 2kwith k ∈ N≥2,weuse that (for x ∈ ∂S), ũ+ satisfies ∂2t ũ
+(t, x) =

�ũ+(t, x) + O(t∞). Equation 15 ensures that as t → 0+,

h(2k)(t) =
∫

∂S
∇(�k−1ũ+(t, ·)) · ν dA + O(t∞).

As for the case k = 1, it follows that h(2k)(0) = − ∫
∂S ∇(�k−1a+

0 ) · ν dA, the
divergence theorem yields the claim. ��

The odd coefficients are trickier, we only compute the case j = 3. We start with
the observation that for x ∈ ∂S, ϕ+(t, x) = t and therefore

ũ+(t, x) =
N∑
i=0

1

i ! t
i a+

i (t, x) for t ≥ 0, x ∈ ∂S.
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Recall that the Lie-derivative acts on functions w ∈ C∞(M) by Lνw = ∇w · ν. Thus
Lνθi+1(ϕ

+(t, x)) = −θi (ϕ
+(t, x)), so for x ∈ ∂S,

Lν ũ
+(t, x) =

N−1∑
i=0

t i

i ! (Lνa
+
i (t, x) − ai+1(t, x)) + O(t∞).

Therefore ∂tLν ũ+(0, x) = ∂t (Lνa
+
0 (0, x) − a+

1 (t, x)) + (Lνa
+
1 (0, x) − a+

2 (0, x)),
but the second term is zero as a+

1 and a+
2 vanish at t = 0 by Lemma 4. Substitut-

ing the transport equations and removing further zero terms leaves ∂tLν ũ+(0, x) =
LνLa

+
0 (0, x)+ 1

2�a0(0, x) = 1
2

(LνL f (x) − 1
2� f (x) + 1

2 L
2 f (x)

)
. Thus (recall that

L = −Lν + 1
2�ϕ) directly from Eq. (15),

h(3)(0) = −1

2

∫
∂S

LνL f (x) − 1

2
� f (x) + 1

2
L2 f (x) dA(x).

The formula

�S, f (t) =
∫ ∞

0
k̂(s)

(∫
S
f dV − h(s

√
t)

)
ds (20)

established in the previous section, together with Lemma 3, yields the asymptotic
behaviour of �S, f (t) by taking the Taylor expansion of h using Corollary 5. This
gives the remainder of the claims of theorem 2.

4 Discussion

The above-said is not specific to the heat equation. Taking k(x) = exp(−x2m),m ∈ N,
we may, for example, study the one-parameter operator family exp(−tm�m). The
wave equation estimates needed are the same. For m ≥ 2, a brief calculation yields
the explicit t → 0+ asymptotics

〈exp(tm�m) f 1S,1S〉 =
∫
S
f dV −

(
π−1

(
2m − 1

2m

) ∫
∂S

f dA

) √
t + o(t).

We conclude with the observation that the generalization of this paper to weighted
Riemannian manifolds (cf. [4]) is straightforward.
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