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Abstract 

 

The recent development of dockless shared mobility, such as dockless shared bikes and 

shared e-scooters, provides new chances to improve the accessibility to public transport. 

Understanding such improvement is important for making policies related to public 

transit planning and shared mobility development. Traditionally, the accessibility 

analysis is conducted based on survey-format data, which is costly in data collection 

and usually limited to small data sizes. Dockless shared vehicles are typically equipped 

with GPS receivers, thus provide a convenient way of collecting large amounts of highly 

detailed trajectory data. With the focus on the integration of dockless shared vehicles 

and public transit, this thesis is dedicated to a systematic assessment of accessibility to 

public transit by using spatial movement data.  

The thesis serves three objectives: 1) exploration of biking distances at individual 

transit stations from trajectory and smart card data, 2) investigation of transit 

catchment area to raise the public awareness of the transit accessibility at a general 

level, and 3) inspection of transit accessibility constrained by crowdedness at a fine-

grained level.  

With respect to the first objective, methods of how to identify bike-and-ride trips and 

process bike trajectory data are proposed. The effectiveness of these methods is 

demonstrated with a case study of measuring the bike distances to metro stations in 

Shanghai. Considering the second objective, a methodological framework of generating 

transit catchment areas by non-motorized transport is proposed. It consists of three 

components, namely subgraph construction, extended shortest path tree construction, 

and contour generation. The framework is provided as an open-source tool and applied 

to assess how bike-and-ride would change the accessibility to metro systems in 

Shanghai. The efficiency and effectiveness of the proposed framework are validated in 

a comparative study with four alternative methods. As for the third objective, an 

indicator called metro accessibility level is proposed. On the basis of the public transit 

accessibility level, the metro crowdedness is incorporated into the accessibility 

modeling, leading to the metro accessibility level as a new indicator. Its effectiveness is 

verified in a case study of measuring the accessibility to metro systems in Shanghai at 

the population grid level.   
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The proposed methods provide methodological support to the data-driven assessment 

of public transit accessibility. The developed framework and accessibility indicator are 

applicable to other scenarios of transit accessibility by non-motorized transport. The 

assessment of the transit accessibility at general and grid level can promote a 

comprehensive understanding of how dockless shared vehicles could change the 

accessibility to transit, and the analytical results may provide valuable insights into 

policymaking.  
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Zusammenfassung 

 

Die jüngste Entwicklung der geteilten Mobilität ohne Andockstelle, wie z.B. 

stationsloser Fahrradverleih und E-Scooterverleih, bietet neue Möglichkeiten, den 

Zugang zu öffentliche Verkehrsmitteln zu verbessern. Solche 

Verbesserungsmöglichkeiten zu verstehen ist wichtig für die Gestaltung von Strategien 

im Zusammenhang mit der Planung der öffentlichen Verkehrsmittel und der 

Entwicklung der geteilten Mobilität. Traditionell wird die Zugänglichkeitsanalyse auf 

der Grundlage von Daten im Umfrageformat durchgeführt, was in der Datenerhebung 

kostspielig ist und sich in der Regel auf kleine Datengrößen beschränkt. Stationslose, 

gemeinsam genutzte Fahrzeuge sind in der Regel mit GPS-Empfängern ausgestattet 

und bieten somit eine komfortable Möglichkeit, große Mengen an sehr detaillierten 

Trajektoriedaten zu sammeln. Mit dem Schwerpunkt auf der Integration von 

stationslosen Verleihfahrzeugen und öffentlichen Verkehrsmitteln widmet sich diese 

Arbeit einer systematischen Bewertung der Zugänglichkeit von öffentlichen 

Verkehrsmitteln unter Verwendung von Raumbewegungsdaten.  

Die Dissertation hat drei Ziele: 1) Untersuchung der Fahrraddistanzen an den 

einzelnen Transitstationen anhand von Trajektorien- und Smartcard-Daten, 2) 

Untersuchung des Transit-Einzugsgebietes zur Sensibilisierung der Öffentlichkeit für 

die Zugänglichkeit des Transits auf allgemeiner Ebene und 3) Untersuchung der durch 

Überfüllung eingeschränkten Zugänglichkeit auf Detailebene. 

Im Hinblick auf das erste Ziel werden Methoden zur Identifizierung von Bike-and-

Ride-Touren und zur Verarbeitung von Fahrradtrajektoriedaten vorgeschlagen. Die 

Effektivität dieser Methoden wird anhand einer Fallstudie zur Messung der 

Fahrraddistanzen zu U-Bahn-Stationen in Shanghai demonstriert. Im Hinblick auf das 

zweite Ziel wird ein methodischer Rahmen zur Generierung von 

Transiteinzugsgebieten durch nicht-motorisierten Verkehr vorgeschlagen. Der 

methodische Rahmen besteht aus drei Komponenten, nämlich der 

Teilgraphenkonstruktion, der erweiterten Baumkonstruktion des kürzesten Weges und 
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der Konturgenerierung. Das System wird als Open-Source-Werkzeug zur Verfügung 

gestellt und angewendet, um zu beurteilen, wie Bike-and-Ride die Zugänglichkeit zu 

dem U-Bahnsystem in Shanghai verändern würde. Die Effizienz und Effektivität des 

vorgeschlagenen methodischen Rahmens werden in einer vergleichenden Studie mit 

vier alternativen Methoden validiert. Als drittes Ziel wird ein Indikator namens metro 

accessibility level für den Grad der Metro-Zugänglichkeit vorgeschlagen. Auf der 

Grundlage des Zugänglichkeitsgrads des öffentlichen Nahverkehrs wird die 

Überfüllung der U-Bahn in die Zugänglichkeitsmodellierung einbezogen, was zu dem 

Zugänglichkeitsgrad der U-Bahn als neuem Indikator führt. Die Wirksamkeit des 

Indikators wird in einer Fallstudie zur Messung der Zugänglichkeit der U-Bahnsysteme 

in Shanghai auf der Ebene des Bevölkerungsrasters verifiziert.   

Die vorgeschlagene Methodik unterstützt die datengestützte Bewertung der 

Zugänglichkeit der öffentlichen Verkehrsmittel. Der entwickelte methodische Rahmen 

und der Zugänglichkeitsindikator sind auf andere Szenarien der Transiterreichbarkeit 

durch nicht-motorisierten Verkehr anwendbar. Die Bewertung der 

Transitzugänglichkeit auf allgemeiner und Rasterebene  kann ein umfassendes 

Verständnis dafür fördern, wie die Zugänglichkeit des Transits durch gemeinsam 

genutzte stationslose Fahrzeuge verändert werden kann und die Und die Ergebnisse 

der Analyse können wertvolle Erkenntnisse für die Konzeptentwicklung liefern. 
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1 Introduction 

 

 

1.1  Motivation 

According to the report of World Urbanization Prospects, 55% of the world’s population 

living in urban areas as of 2018, and the number is expected to increase to 68% by 2050 

(United Nations, Department of Economic and Social Affairs, 2018). The growing 

urbanization poses many challenges for sustainable development and city management, 

including housing, transportation, energy systems, education, and health. The huge 

urban population creates high transportation demand, and at the same time, causing 

serious traffic-related problems, including C02 emissions, traffic congestion, and air 

pollution. Therefore, developing sustainable transportation systems is regarded as a 

major aim of transportation planning worldwide. As an important component of 

sustainable transportation, public transit plays a significant role in decreasing C02 

emissions and relieving traffic congestion. In addition to these environmental benefits, 

public transit also provides valuable social benefits in terms of promoting social 

equality, and is particularly important for the mobility of disadvantaged groups, such 

as low-income households and the elderly people. Therefore, it is essential to optimize 

the use of public transit. Many efforts have been made to increase the quality of transit 

service, including constructing more transit systems, extending capability and service 

time, and increasing reliability, Taking the metro systems – a major public transport 

mode for large cities – as an example,  the total serving length has been increased from 

10,920 km to 13,903 km from 2013 to 2017 globally, with an increase of 27.3% 

(International Association of Public Transport, 2018). On the other hand, enhancing 

access to transit systems acts as an effective approach to improving the public transport 

chain, and thus is an alternative means to increase transit use. Major efforts in this 

aspect have been devoted to two directions: 1) decreasing the traveling cost of a certain 

access mode (e.g., improving the walking and biking environments), and 2) enhancing 

and developing alternative access services (e.g., improving feeder services).  

Traditionally, the study of access to public transit mostly focuses on pedestrian 

perspective because walking is commonly regarded as the major access mode of public 
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transit. The recent years have witnessed increasing attention to other green and faster 

transit access modes (e.g., shared bikes) because of their potential to decrease the 

access time and increase the population coverage of transit. This trend is especially 

obvious during the last decade with the globally growing popularity of shared mobility 

provided by very light vehicles, such as shared pedal bikes, electric bikes, and electric 

scooters (e-scooters).  With the development of smartphone technologies, the new 

generation of shared mobility typically adopts the dockless mode as compared with 

traditional station/dock-based bike/scooter-sharing systems. In this dockless mode, 

shared bikes/scooters are equipped with the global positioning system (GPS) receivers, 

making them easily positioned by users and operators. Users are no longer required to 

rent and return bikes/scooters at certain stations, they can find and rent nearby 

bikes/scooters using smartphone apps and leave them at users’ convenience or any 

authorized areas (Zhang et al., 2018). As a result, this new shared mobility achieves 

huge success in terms of serving as a transportation mode for short journeys and acting 

as an important component of the sustainable transportation ecosystem. As an example, 

China – the origin of the new generation of dockless bikeshare – has approximately 221 

million dockless bike-sharing users by the end of December 2017. Additionally, the 

dockless bikeshare has been extended to 21 countries outside China, including 

Singapore and the UK (China Internet Network Information Center, 2018), whereas 

some western countries prefer e-scooters, the e-scooter ridership of the United States, 

e.g., reached 38.5 million as compared with 9.5 million dockless bikeshare trips 

(including pedal and e-bikes) in 2018 (National Association of City Transportation 

Officials, 2018). As one of the major use scenarios, these shared vehicles are extensively 

used for connection with public transit because the last mile to/from public transit is 

regarded as a typical urban short journey. Additionally, from a planning perspective, 

promoting the integration of these vehicles with public transit is regarded as a means 

of improving the efficiency of the public transport chain and might promote the use of 

public transit. This motivates us to explore how the emerging shared mobility is used 

for connecting with public transit and how the accessibility to transit might be changed 

by integrating dockless shared mobility with public transit.  

Traditionally, answering these questions largely depends on reliable travel survey data. 

However, the collection of survey data is usually time-consuming and costly; and hence, 

the datasets are usually limited to a small size and very difficult to update. Fortunately, 

the massive trajectory data automatically collected by the GPS devices now provide new 

data sources. GPS trajectory data usually provide more details about human travel 

characteristics in terms of spatiotemporal granularity, e.g., traveling speeds and route 

choices, as compared with survey-based data. Furthermore, the dynamic updating 

characteristics make the trajectory data especially suitable for the investigation of new 

transport modes because they are unlikely to be included in existing extensive travel 

surveys (e.g., national travel survey).  However, how to model the accessibility to transit 
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at different scales with trajectory data remains a challenging task. Because trajectory 

data are commonly generated with noises and not specifically collected for the purpose 

of accessibility analysis.  

In addition to the data perspective, a systematic assessment of accessibility to public 

transit also requires appropriate accessibility modeling and related technical support, 

especially geographic information system (GIS) technologies. As further steps toward 

these two aspects, this thesis strives to make contributions from a multidisciplinary 

perspective. From the technical perspective, it aims to develop an open-source 

methodological framework of generating catchment areas for evaluating the transit 

coverage. From the modeling perspective, it seeks answers to questions of why and how 

to integrate the information about crowdedness into accessibility measurements by 

comparing the accessibility modeling approaches from health geography and transit 

planning.  

1.2 Research Tasks 

The major objective of this thesis can be described as:  

“To investigate the bike-metro integration using spatial movement data 

and support a systematic assessment of accessibility to public transit”. 

To achieve this objective, the thesis includes the following research tasks. 

 To propose methods to identify trips connecting with transit systems and 

reconstruct the traveler’s routes from the raw trajectories. 

 To explore the factors associated with biking distances to individual transit 

stations.  

 To propose a methodological framework for generating network-based 

catchment areas and evaluate its efficiency and effectiveness. 

 To develop an open-source tool for generating network-based catchment areas. 

 To introduce a new accessibility indicator by integrating the crowdedness 

information. 

1.3 Thesis Structure 

The thesis is structured in six chapters as shown in Figure 1.1 to address the 

aforementioned research tasks. Following this introductory chapter, the related 

theoretical and technical basics are presented in Chapter 2. In Chapter 3, we introduce 

the study area and propose methods to measure biking distances at individual metro 

stations, which are used as input for the two subsequent chapters. In Chapter 4 and 



 
1.3 Thesis Structure 

4 |  
 

Chapter 5, we propose methods to assess the bike accessibility to metro systems at two 

different levels of detail, i.e., the general and the grid level. Chapter 6 concludes the 

thesis and discusses future work.  

 

Figure 1.1. Thesis structure. 

 

The main contents of these five chapters are described below. 

Chapter 2 first describes several fundamental aspects of accessibility, including 

concepts, basic components, classification of existing measures and model calibration. 

The chapter centers on reviewing literature related to public transit accessibility from 

four aspects, i.e., the type of measure, influence factors, required data, and scale of 

analysis. Methodologies related to-transit and via-transit accessibility are discussed. 
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The data characteristics and basic processing techniques related to GPS trajectory and 

smart card data are explained in detail.  

Chapter 3 deals with the measurement of biking distances at individual transit stations 

from trajectory data. We first introduce the study area and data preparation for the 

measurement of biking distances. Massive bike trajectory and smart card data collected 

in Shanghai are used for conducting extensive experiments. Then, we propose the 

methods of identifying bike-and-ride trips and reconstructing the travel routes using 

trajectory data. Based on the measured biking distances in Shanghai, the spatial 

distribution patterns of biking distances at individual stations are presented. 

Regression models are then used to explore factors that might be associated with them.  

Chapter 4 proposes an open-source methodological framework for generating network-

based transit catchment areas (TCAs). The components and implementation are 

illustrated in detail. Using the bike acceptable distances of individual stations derived 

from Chapter 3 as input, the proposed methods are applied to measure the bike 

catchment areas (BCAs) of metro stations in Shanghai. The efficiency and effectiveness 

of the proposed method are demonstrated by comparing with alternative methods.  

Chapter 5 starts with a discussion of accessibility measurements in the fields of health 

geography and transport planning to explain the importance of crowdedness for the 

accessibility measurement. Then, an adapted accessibility indicator integrating 

crowdedness is proposed. Again, combining with the output of Chapter 3, the proposed 

indicator is applied to assess the bike accessibility to metro systems in Shanghai. At last, 

the chapter proposes a method to examine how bike-and-ride might help relieve the 

metro crowdedness.  

Chapter 6 summarizes the major contributions of this thesis and discusses future work.  
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2 Fundamentals and Related 
Works 

 

 

This chapter aims to provide theoretical and technical bases for this thesis. Section 2.1 

explains the basic concepts, components, classification, and calibration of accessibility 

from a multi-disciplinary perspective (Section 2.1). Then, Section 2.2 identifies four 

fundamental aspects of public transit accessibility measures and gives a review of 

existing studies accordingly. Section 2.3 focuses on explaining the characteristics and 

basic processing techniques related to GPS trajectory and smart card data.  

2.1 Basics of Accessibility 

2.1.1  Concept of Accessibility 

Accessibility, a concept frequently used in multiple fields such as transport planning, 

health geography, and urban planning, acts as an important indicator for policymaking. 

Although the term has been widely used, it is difficult to achieve a consensus on the 

precise definition of accessibility. The early definitions of accessibility can be dated 

back to the 1950s, Hansen (1959) defined accessibility as “the potential of opportunities 

for interaction”. Ingram (1971) made the definition as “the inherent characteristic (or 

advantage) of a place with respect to overcoming some form of spatially operating 

source of friction (for example, time and/or distance)”. Handy and Niemeier (1997) 

denoted that accessibility is mainly decided by the ease of reaching potential 

destinations and their characteristics (e.g., magnitude and quality). Geurs and van Wee 

(2004) defined accessibility as “the extent to which land-use and transport systems 

enable (groups of) individuals to reach activities or destinations by means of a 

(combination of) transport mode(s).” In general, researchers treat that accessibility as 

a measure of “the ease of potential opportunities can be reached”.  



 
2.1 Basics of Accessibility 

8 |  
 

2.1.2  Basic Components of Accessibility 

Traditionally, land use and transport – two basic elements of urban form – are 

generally regarded as the core components of accessibility. Land use development 

decides the spatial distribution of potential opportunities (e.g., working places) and the 

origins of the corresponding potential trips (e.g., residential areas). On the other hand, 

the structure, capacity, and connectivity of transport systems jointly decide how 

potential opportunities can be reached by a transport mode and its impedances (e.g., 

travel time and cost). For both components, there is a confrontation between supply 

and demand. For instance, the restricted capacity of a working place may cause 

competition between different origins. Similarly, the capacity of a highway and its 

travel demand might jointly affect the travel speed on the highway.  

Apart from these two components, Geurs and van Wee (2004) identified temporal and 

individual aspects as two additional components of accessibility. It is natural to 

understand the inclusion of the temporal component because the supply of activities 

(e.g., office opening hours) and transportation (e.g., bus serving time) can both vary 

across different times. The individual component emphasizes the importance of socio-

demographic attributes in modeling accessibility. The impact of individual components, 

such as age, income, and car ownership, can be reflected from the perspectives of 

transport and/or land use as well. For instance, the selection of transport modes is 

affected by the car ownership of an individual, and the preference for a type of 

opportunity is affected by his/her age. Furthermore, from the perspective of time-

geography, the available time for each individual can also be different (Kwan, 1998). As 

a result, two individuals may have very distinct accessibility to the same opportunities, 

even though they are located in the same location. Correspondingly, place-based 

accessibility aggregated by person-based accessibility (i.e., considering the individual 

differences) would be diverse from those measured without considering individual 

diversity.  

From the perspective of defining a comprehensive accessibility measure, it might be 

better to incorporate all the above four components in an accessibility measure. In 

practice, some components might be omitted because of operational feasibility (e.g., 

technical/data limitation) and interpretability (i.e., easy to understand for policymaker) 

(Geurs and van Wee, 2004). As an alternative to incorporating every component, 

measuring the accessibility of different subgroups can also be a means to consider a 

component. For example, making a distinction between the accessibility of different 

periods (e.g., weekday and weekends) is an approach of considering the temporal 

component of accessibility. Similarly, the distinction can be made in terms of user 

groups with different socioeconomic statuses (e.g., different educational backgrounds), 

to stress the importance of individual components.  
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2.1.3  Classification of Accessibility Measures 

Generally, accessibility measures can be classified into three categories, namely 

cumulative, gravity-based and utility-based measures (Geurs and van Wee, 2004; 

Handy and Niemeier, 1997; Páez et al., 2012). Cumulative measures, also known as 

contour-based and isochoric measures, measure the accessibility of a 

location/individual by counting the number of opportunities (e.g., shops) within a 

threshold time/distance. They emphasize the number of opportunities (i.e., the 

availability) and make no distinction between opportunities within the threshold 

time/distance. Typical examples of the application of cumulative measures include 

food accessibility (Apparicio et al., 2007; Sharkey et al., 2009) and transit accessibility 

(Lin et al., 2019; Zuo et al., 2018). The advantages of this type of measures include easy 

interpretation, simple implementation, and less demanding of data. The measure is 

frequently criticized for its oversimplification because all the opportunities within the 

threshold distance/time are equally treated, ignoring the effect of spatial decay. 

Gravity-based measures, also known as potential accessibility measures, model 

accessibility by jointly considering the attractiveness of opportunities and transport 

impedance. The corresponding equation can be denoted as below. 

�� = ∑ ���������       (2.1) 

where ��  represents the accessibility from location � to all potential opportunities. �� 

represents the attractiveness of location �, for example, it can be represented by the 

number of jobs in location � (i.e., the supply). ��� is the impedance (e.g., travel time or 

distance) between location � and �, and ������ is the corresponding impedance function. 

The impedance function reflects the decay impact of ��� and can take several distinct 

forms such as inverse-power, Gaussian, exponential, and kernel density. Compared 

with cumulative measures, the decay impact is explicitly integrated into the gravity-

based measure and thus can better reflect the impact of transportation impedance. 

Furthermore, the attractiveness of opportunities can be flexibly designated according 

to the application requirements.  

The basic version of the gravity-based measure ignores the competition between 

demand locations, which may limit the usefulness of the measure. For instance, the 

attractiveness of an opportunity might decrease if too many demanding locations are 

competing for it. As an early effort towards this limitation, Weibull (1976) considered 

the competition from the demand side by calculating a potential demand for each 

supply location, and the ratio between the supply and potential demand is used as the 

indicator of attractiveness. The equations are denoted below.  

�� = ∑ ��������� = ∑
��

��
� ∗ ������     (2.2) 
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�� = ∑ ���������        (2.3) 

Where ��  represents the demand (e.g., population) at location � . ���  denotes the 

impedance between location  �  and � . ��  represents the potential demand for 

opportunities in location � . ��  represents the supply of opportunities in location � . 

Joseph and Bantock (1982) adopted a similar measure to assess people’s accessibility 

to general medical practitioners in rural areas. Shen (1998) applied equation (2.2) to 

calculate the job accessibility for low-wage workers. The author also gave additional 

proof to highlight an important property of equation (2.2), i.e., “the expected value, or 

weighted average, of accessibility scores equals to the ratio of the total number of 

opportunities to the total number of opportunity seekers”. The popular two-step 

floating catchment area (2SFCA) method proposed by Luo and Wang (2003) and its 

enhanced versions (Luo and Qi, 2009; Luo and Whippo, 2012; Wan et al., 2012) also 

belongs to this category, where the potential demand is measured based on the 

catchment area of an opportunity (e.g., health center). 

As indicated by its name, utility-based measures are defined following the utility theory, 

that tackles the problem of users’ preferences among a set of choices. Applying this in 

transportation modeling, it can be understood that an (group of) individual(s) assigns 

a utility to each opportunity/destination among a choice set and select the alternative 

with the highest utility. Based on the random utility theory, Ben-Akiva (1979) first 

proposed the utility-based accessibility measure as the denominator of multinomial 

logit probabilities, i.e., the log-sum accessibility. The log-sum approach estimates the 

expected maximum utility that a user of a system would perceive among given choices 

(Nassir et al., 2016). The equation of this type of measure is denoted below. 

�� =
�

�
ln(∑ exp(��)�∈� )      (2.4) 

Where the accessibility �� indicates the desirability of the full choice sets � for a (group 

of) individual(s) �. �� is the observed temporal, spatial, and transportation components 

of the utility of the choice � . �  is the scale parameter. The utility measure is 

theoretically more attractive because of its strong link with microeconomic theory. 

Hence, utility-based accessibility can be easily transformed into important economic 

measures, such as total consumer surplus (Neuburger, 1971) and compensation 

variation (Small and Rosen, 1981). Apart from the random utility measures, the doubly 

constrained entropy model (Martínez, 1995) can also be applied for accessibility 

modeling, where further competition factors can be incorporated. More details of 

utility-based measures can be found in an insightful review by (Geurs and van Wee, 

2004). Generally, the utility-based measure is theoretically sound but difficult to 

communicate and implement (e.g., very data demanding) and thus are less common in 

practice. 
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2.1.4  Calibration of Accessibility Measures 

The calibration is a fundamental vehicle of handling the accessibility measures 

regardless of their types.  

For cumulative measures, a threshold distance/time is needed and can be determined 

from two perspectives: 1) use a predefined threshold to reflect the expectation from 

analysts and planners, and 2) define the threshold as an acceptable distance based on 

revealed travel distance/time distributions. The former and latter correspond to the 

normative and positive implementation of accessibility, respectively (Páez et al., 2012). 

The normative perspective emphasizes how far people ought to travel, while the 

positive perspective emphasizes more on how far people actually travel. For instance, 

half a mile (as a measure of 10 minutes walking) is widely regarded as a reasonable 

threshold distance to measure accessibility to rail transit stations. However, the actual 

acceptable distances might be different from this value depending on the urban form 

and socioeconomic status. Therefore, it has been argued that the positive 

implementation of accessibility is better for assessing real transit gaps (El-Geneidy et 

al., 2014; Guerra et al., 2012). Accordingly, a combination of these perspectives would 

provide insightful knowledge on potential alterations of existing policies and the 

development of new policies (Páez et al., 2012). 

For gravity-based measures, the calibration concerns two major aspects, namely the 

impedance function and the attractiveness of opportunities. With respect to the 

impedance function, the parameter (e.g., the standard deviation of Gaussian 

impedance function) reflects how the impedance affects the destination choice (Handy 

and Niemeier, 1997). The parameter can be either defined based on convention (e.g., 

based on published empirical studies) or estimated based on the trip distribution model 

(Iacono et al., 2008). The opportunity attractiveness is usually measured as its activity 

capacity, for example, the number of jobs is commonly used as the attractiveness of a 

workplace. If the individual component is considered during the calibration, the 

impedance and attractiveness parameters may differ from one user group to another 

because of socioeconomic differences.  

For utility-based measures, the parameters are generally calibrated by means of 

destination choice models. This type of model relies on detailed travel data (e.g., travel 

survey data) as the evidence of how users value different choices (i.e., a trip represents 

a choice). The calibration includes three parts which are commonly included in utility-

based measures, namely impedance, opportunity attributes, and individual attributes.  

As a result, the calibration is more complex and data demanding than gravity-based 

measures. On the other hand, the utility-based measure provides more flexibility for 

analysts to test alternative model configurations and compare the relative importance 

of different factors (Handy and Niemeier, 1997).  
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Since revealed travel data are commonly used for accessibility calibration, another 

concern arose because the revealed travel data reflect how residents react to the current 

circumstances instead of how they would behave under the desired circumstance 

(Handy and Niemeier, 1997; Morris et al., 1979). For instance, a person who walks 

longer to reach transit stations does not necessarily mean he/she has a greater 

willingness to walk. Instead, such behavior may be a result of the shortage of transit 

services and/or alternative transport modes (e.g., no vehicle). Therefore, it is important 

to analyze the relationship between the revealed behavior and factors related to transit 

supply and individual characteristics (e.g., user preferences). Such analysis, in turn, 

can provide a sound behavioral basis for interpreting the accessibility and 

policymaking. 

2.2 Accessibility Measures of Public Transit 

2.2.1  Multiple Aspects of Public Transit Accessibility  

This section focuses on studies on public transit accessibility. It starts with a discussion 

of four aspects characterizing the existing transit accessibility measures: type of 

measure, influence factors, data required, and scale of analysis.  

Type of measure: the transit accessibility measures can be divided into two 

categories: accessibility to transit services (termed as to-transit accessibility) and 

accessibility to opportunities via transit (termed as via-transit accessibility). To-transit 

accessibility measures typically take public transit (e.g., transit stations/lines) as the 

destination for accessibility measurement, measuring the ease of reaching public 

transit services. To-transit accessibility is also known as local accessibility (Bhat et al., 

2006) or system accessibility (Lei and Church, 2010). Via-transit accessibility, also 

known as system-facilitated accessibility (Lei and Church, 2010), emphasizes the ease 

of reaching opportunities by using public transit as the major transport mode. 

Influence factors: depending on the application, different influence factors can be 

combined to formulate an accessibility measure. Regarding to-transit measures, 

commonly considered factors from the supply perspective include transit service 

density, road network quality around transit station/stops, service quality of the transit 

services (e.g., frequency and operation hour). While factors from the demand side 

include socio-demographic attributes (e.g., population and employment distributions) 

and travel characteristics (e.g., travel demand rate). For via-transit accessibility, the 

factors include spatial distributions of facilities, facility characteristics, travel 

distances/times, travel costs, travel demand rates and socio-demographic attributes. 

Apart from these hard factors, soft factors, such as safety, lighting, comfort of riding 

and reliability of transit service, can also be integrated into both types of measures. 
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Required data: street network and transit network (i.e., transit spatial locations) are 

two basic datasets to measure the to-transit and via-transit accessibility. 

Corresponding to the aforementioned factors, further datasets, such as transit 

timetable/schedule, facility distribution, travel survey (e.g., travel demand and travel 

rate), and demographical data, can be integrated. The datasets and the modeling 

approach of accessibility mutually constrain each other. 

Scale of analysis: the scale of analysis can be interpreted from two opposite views, 

either from the supply perspective or from the demand perspective. From the supply 

perspective, the transit accessibility can be measured by considering a specific transit 

station/stop, a transit line or a type of transit system. In most cases, transit accessibility 

is measured at the scale of a certain type of transit system (e.g., bus) or the entire transit 

system. From the demand perspective, the accessibility can be measured at different 

spatial resolutions, including point level, zonal level (i.e., subregional level) and 

regional level (a combination of several zones). At the point and zone levels, 

accessibility can be defined in two forms, namely accessibility of a pair of OD, and 

accessibility from one origin to all potential destinations (i.e., integral accessibility 

(Morris et al., 1979)). A higher level of accessibility can be calculated by aggregating the 

corresponding lower level of accessibility. For example, by summing the transit 

accessibility for all the subregions of a city, the transit accessibility for the entire city 

can be derived (Fu and Xin, 2007; Lei and Church, 2010).  

Based on the above four aspects, existing studies related to transit accessibility are 

reviewed, and the results are listed in Table 2.1. In what follows, detailed analyses 

toward to-transit and via-transit accessibility are given.  

2.2.2  Accessibility to Public Transit  

The coverage-based measure is probably the most common and direct approach of 

combining supply and demand factors into an integrated to-transit indicator. The 

coverage-based measurement generally includes three steps: 1) defining and measuring 

the transit catchment areas (TCAs); 2) measuring the population covered by TCAs and 

3) defining accessibility for a zone/region based on the population being covered.  

1) Defining and measuring the TCAs 

The catchment area of a transit represent geographical areas around the transit that 

the majority of users are typically be found (Lin et al., 2016). They can be defined at 

transit station level with examples in (El-Geneidy et al., 2010; Kittelson and Associates, 

2003), and at transit route level with examples in (O’Neill et al., 1992; Polzin et al., 

2002). As people access transit services via transit stops/stations, it has been proved 

that transit stops/stations provide a more accurate estimation of the coverage of 

catchment areas (Horner and Murray, 2004). The route/system level of catchment 
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areas can be calculated by aggregating the corresponding station catchment areas. 

Since catchment areas are commonly represented as a buffer area around the transit 

station, the key task of catchment area measurement is to decide the buffer 

distance/time (termed as cut-off distances/times). Traditionally, conventional cut-off 

distances used by analysts/planners for bus stops and rail stations are 400 m (0.25 

mile) and 800 m (0.5 mile), corresponding to 5 minutes and 10 minutes of acceptable 

walking times (assuming an average walking speed of 5km/h) (Bhat et al., 2006). The 

buffer distance can be measured by using either the Euclidean distance or the network 

distance. According to previous studies (Foda and Osman, 2010; Gutiérrez and García-

Palomares, 2008), the latter can generate a more accurate catchment area because 

people need to travel along roads in the real world. The Euclidean buffer-based method 

usually overestimates the sizes of catchment areas. As urban forms and demographic 

characteristics vary across space and time, conventional cut-off distances are adjusted 

according to the application scenario. The cut-off distance can be considered either as 

a reflection of planners’ expectations or as a reflection of people’s travel behavior (Páez 

et al., 2012). The latter is regarded as an effective means of identifying actual transit 

accessibility. A combination of these two perspectives can be used to identify the gaps 

between transit planning and real use (Páez et al., 2012). Hence, much effort has been 

made toward measuring more realistic cut-off distances/times based on travel survey 

data, examples include (El-Geneidy et al., 2010; Kittelson and Associates, 2003; Zhao 

et al., 2003). As the detailed trip routes are usually unavailable in survey-format travel 

data, a few studies tried to introduce GPS trajectory data to measure transit access 

distances to overcome this disadvantage (Lin et al., 2019; Zuo et al., 2018). More details 

regarding the definition of transit walkable distance can be found in a recent review 

(van Soest et al., 2019). 

2) Measuring population covered by TCAs 

Once the catchment areas are generated, the population being covered by them can be 

measured. The census data are commonly used as the input population data because of 

their easy availability. For a catchment area, the overlapped census units (e.g., census 

tracts) are identified at first. The total population covered by the catchment area can be 

measured by summing up the ratioed population in overlapping units. As the 

assumption of uniformed population distribution may be unrealistic, several studies 

have tried to model a more realistic population distribution by considering additional 

information. For example, O’Neill et al. (1992) relieved this issue by using the network 

ratio to substitute the area ratio to estimate the population covered by catchment areas. 

Biba et al. (2010) used the dwelling unit ratio between a parcel and a census block to 

estimate the population of a parcel. The population covered by a catchment area was 

then the sum of all the population of parcels within it. To consider the distance decay 

effect within the catchment area, Zhao et al. (2003) proposed to weigh the covered 
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population by using a spatial decay function, thus, to overcome the potential 

overestimation of the covered population.  

3) Defining zonal/regional accessibility 

Based on the population covered by transit systems in a region, the corresponding 

population coverage ratio can be derived and used as the indicator of transit 

accessibility for the region. Specifically, a higher proportion of the population being 

covered means better public transit accessibility. In addition to the accessibility 

assessment at the regional level, the population coverage ratio can be measured at the 

zonal level (e.g., transit analysis zones) for comparative accessibility assessment 

between different zones. In such a case, the population coverage ratio of a zone can be 

calculated directly based on its area covered by TCAs and the corresponding population 

density (for example, (Polzin et al., 2002)). 

The above described is a basic version of the coverage-based measurement which 

mainly concerns with the spatial aspects of transit supply. The quality of transit services, 

such as the service frequency and hours (Currie, 2010; Polzin et al., 2002; Rood and 

Sprowls, 1998), can also be integrated into the accessibility measures (see Table 2.1 for 

details). Generally, higher transit frequencies and longer service hours represent better 

access to transit systems. For instance, the time-of-day-tool (Polzin et al., 2002) 

weighed the service frequency of each hour by the corresponding travel demand rate 

and tolerable wait time. The covered population by transit routes was weighed by the 

daily trip rate. Moreover, in addition to using the general population covered by 

catchment areas as the indicator, transport-disadvantaged user groups are particularly 

interesting for accessibility analysis because public transit is regarded as a type of social 

welfare and a tool for promoting social equality (Currie, 2010).  

The coverage-based analysis is commonly measured at relatively coarse spatial 

resolutions (e.g., transit analysis zone). For measuring fine-grained accessibility, the 

London Borough of Hammersmith and Fulham developed the indicator: public 

transport accessibility level (PTAL). The PTAL jointly considered walking distances to 

transit services (i.e., the nearest station of a transit line/route), average waiting time 

(i.e., half of the headway) and multiple transport modes (Kerrigan and Bull, 1992). The 

PTAL is measured at Ordnance Survey grid base and thus can support comparisons of 

relative accessibility for grids within a Borough. Smaller grids can facilitate the 

accessibility comparison for grids within a catchment area. Wulfhorst et al. (2017) used 

20 * 20 m grids to measure grid-level accessibility of public transit systems by 

considering closeness to reachable stops, stop types, service frequencies, average travel 

time to other stations and the number of transfers.  

To incorporate competition factors into transit accessibility, Langford et al. (2012) 

adapted the 2SFCA method (Luo and Wang, 2003) to measure accessibility to transit 
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stations. The competition between potential demand locations for transit service is 

reflected by the supply-to-demand ratio, where the supply is represented as the service 

frequency, and the potential demand is modeled as the weighted population covered by 

the transit catchment area. Along the line of 2SFCA-based transit accessibility analysis, 

Xu et al. (2015) emphasized the significances of temporal dimension in modeling the 

transit demand and supply, where the supply is represented as a combination of transit 

frequencies and vehicle sizes, and the demand for a traffic zone is measured by 

summing up the travel demand to and from the traffic zone. Kyung et al. (2018) used 

mobile phone data to measure the transit demand by excluding population on the road 

area and measure the transit supply as a combination of the service frequencies, vehicle 

sizes, and occupy rates.  

2.2.3  Accessibility to Opportunities via Transit 

This type of accessibility emphasizes using public transport as the major transport 

mode (i.e., a public transport chain) to reach opportunities. As a special case of 

accessibility measurement, the via-transit accessibility can be measured by cumulative 

(Benenson et al., 2010; Lei and Church, 2010), gravity-based (Fayyaz et al., 2017; 

Fransen et al., 2015) or unity-based measures (Bhat et al., 2006).  

Modeling the travel impedance of transit has been a core research question of via-

transit accessibility related studies. A public transit journey consists of three sub trips: 

access transit trip, on transit trip and egress transit trip. Hence, the impedance for 

different trips can be measured in the same unit or multiple units. For instance, Pitot 

et al. (2006) developed a land use & public transport accessibility index to measure the 

to-transit and via-transit accessibility. The via-transit accessibility from a land parcel 

to reach a certain type of destination is decided based on the walking distance to transit 

and transit travel time.  

More commonly, travel time is used as the unit to measure the total impedance of all 

three trips. The access and egress times usually are measured based on the access 

distance and assumed walking speed. The transit time can be either estimated based 

on travel surveys or transit schedules (Mavoa et al., 2012; Pitot et al., 2006). The latter 

is typically achieved by using GIS technologies. Furthermore, waiting time at access 

station, transit transfer time and decay time need to be considered when measuring the 

total transit time. In addition to these non-monetary impedances, monetary costs can 

also be integrated into the impedance because users need to pay for their transit trips. 

A common means to combine the monetary costs and non-monetary impedances is to 

use the generalized transport cost. For instance, Currie (2004) measured the 

generalized transport cost of public transit by considering the walking access/egress 

time, transit fare, waiting time, value of time, and transfer time.  
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The transit frequency and service hour may vary according to the day of the week and 

the time of the day. In light of this, much effort has been made toward modeling more 

realistic transit travel time by considering the detailed departure time and thus to 

integrate the temporal disparity of accessibility (Fayyaz et al., 2017; Fu and Xin, 2007). 

For instance, Fu and Xin (2007) measured the travel times of transit for both directions 

of a round trip based on the desired arrival time to a destination and the desired 

departure time from that destination. The accessibility from an origin to a specific 

destination is measured as the average travel time in both directions. As the specific 

travel time is given, waiting time can be estimated according to the time of arriving 

transit stops and the scheduled departure time. Such estimation is more realistic than 

using half of the headway as the estimation. More recently, the increasing availability 

of transit data in General Transit Feed Specification (GTFS) 1  format has further 

facilitated the time-dependent travel time and accessibility measurement. GTFS is a 

data specification developed by Google for transit agencies to publish transit schedules 

and associated geographic information. Recent examples that use GTFS data for time-

dependent accessibility analysis can be found in (Fayyaz et al., 2017; Fransen et al., 

2015; McGurrin and Greczner, 2011).  

In addition to the gap analysis from the perspective of supply and demand (e.g., (Currie, 

2004)), the gap analysis between public transit and car driving is of special interest for 

some researchers. Because a major aim of improving transit accessibility is to reduce 

the car travel. Fu and Xin (2007) measured the transit service indicator (TSI) between 

an origin-destination (OD) pair as the ratio between the total travel times by auto and 

transit. Based on the TSIs of individual OD pairs, the TSI between two activity zones, 

the TSI from one zone to all desired zones, and the TSI for the entire service area can 

be measured. Similarly, Lei and Church (2010) compared the accessibility between 

auto and transit of a pair of OD to explore the gaps between transit and car driving. 

Benenson et al. (2010) defined the access/service area around an origin/destination as 

a combination of areas that contain reachable destinations/origins via a transport 

mode. By comparing the access area ratio and service area ratio between bus and car, 

the gaps between these two modes can be identified. The access/service area ratio of an 

origin/destination can also be measured based on a specific type of desired 

destinations/origins. 

  

 
1 https://gtfs.org/ 
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2.3 Spatial Movement Data 

The rapid development of information communications technology provides 

unprecedented chances for collecting massive geospatial data, such as GPS trajectory 

data (e.g., taxi trajectories), geotagged social media data (e.g., tweets with location 

information), mobile phone data, and smart card data. These geospatial data have been 

widely used to explore various aspects of our society, such as human activity patterns, 

transportation use, land use characteristics, and social relationships. The following 

sections focus on the analysis of GPS trajectory data and smart card data because they 

are two major types of mobility data used in this thesis. 

2.3.1  GPS Trajectory Data 

A GPS trajectory represents a trace of a moving object that recorded by GPS or GPS-

enabled devices, which is usually represented as chronologically ordered points 

as {��, ��, … , ��}. A point �� consists of a coordinate and a timestamp which can be 

represented as {��, ��, ��, ��} , where (��, ��, ��)  typically correspond to 

(��������, ���������, ��������). Depending on the application, additional information 

such as direction can be included in a point, and the altitude may be ignored. A GPS 

trajectory can be generated by a pedestrian, a vehicle (e.g., bike or taxi), or an animal.  

Trajectory mining is a hot research topic in several disciplines, such as computer 

science, GIS science, and transportation, because of its broad applications. From the 

application domain of GIS science and transportation, trajectory data are applied to a 

series of applications, such as travel time estimation (Jenelius and Koutsopoulos, 2013; 

Wang et al., 2014), road map construction (Ahmed et al., 2015; Biagioni and Eriksson, 

2012), and movement pattern mining (Antoniou et al., 2018; Ding et al., 2016; Zhang 

et al., 2019). As compared with traditional survey-based data such as the self-reported 

travel surveys, GPS trajectory data usually provide a finer spatiotemporal scale of 

human movement. For instance, self-reported travel surveys tend to suffer from the 

problem of imprecise trip details, such as imprecise departure/arrival times and 

missing traveling routes. Furthermore, as trajectory data can be automatically collected 

by GPS/GPS-enabled devices, it is much easier to acquire big data in terms of sampling 

size and duration of data collection. On the other hand, travel data in trajectory format 

alone also suffer from certain limitations related to uncompleted semantic information 

(e.g., unknown travel purposes) and information redundancy (e.g., the owner forgets 

to shut down the device when there is no movement). Due to the unique characteristics 

of GPS trajectory data (e.g., GPS errors) and application-specific requirements, many 

techniques are developed to support trajectory data processing, managing, and mining. 

The following two sub sections are dedicated to explaining the basic trajectory 
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processing techniques relevant to this thesis. More techniques regarding trajectory 

data managing and mining can be found in a review by (Zheng, 2015).  

2.3.1.1 Basic Processing Techniques of GPS trajectories 

Noise filtering: due to sensor noise and other factors (e.g., signal occlusion by high-

rise building), raw trajectories may contain some unusually deviating GPS points, or 

outliers.  Noise detection can thus be regarded as a special issue of outlier detection. A 

natural method to detect such noises is to compare the speeds of a point with its 

predecessor and successor, if speeds from both sides are larger than a specific threshold, 

the point can be regarded as noise point. Similarly, a density can be defined for each 

point by counting points within a certain distance and points with density smaller than 

a threshold can be regarded as noise. Apart from outlier detection-based methods, 

noise filtering can also be achieved by using Kalman and Particle filters. For instance, 

the Kalman filter can generate an estimation of trajectory with fewer noises based on 

the measurement and motion models. Detailed procedures regarding the application 

of Kalman and Particle filters for noise reduction can be found in (Lee and Krumm, 

2011). 

Stop/stay point detection: during the moving, an object may stay at one or more 

locations for a certain period of time. For instance, taxi drivers need to wait when the 

traffic light is red, and a commuter may stay at a restaurant for breakfast on the way to 

work. Such stay points may be of special interest for some applications, such as 

identifying popular points of interest and detecting traffic congestion locations. On the 

other hand, for applications, such as travel time/distance estimation, it is necessary to 

exclude stop points to derive a more precise estimation. An intuitive approach for 

detecting stop points is to find consecutive trajectory points with a speed below a 

threshold. The speed-based method is effective if a user stays at a location without 

movement, and the GPS gives an accurate localization. In the case of a user wander 

around a location, the speed-based method is likely to lose its effectiveness. Under such 

a condition, additional factors, such as the moving (Euclidean) distance and moving 

direction, can be considered to improve the stay point detection. For instance, Li et al. 

(2008) designed an algorithm to detect stay points by finding a set of consecutive 

points within a certain distance to an anchor point for a certain period of time. Sultan 

et al. (2017) measured the directions between an anchor point and points around it and 

assign these directions into different slices. If the slice number of the anchor point is 

larger than a predefined threshold, then the anchor point is regarded as a stop point. 

Trajectory compression: a higher sampling rate (i.e., a short sampling interval) 

means a fine-grained trajectory and requires larger storage and computational power. 

Therefore, a desired trajectory compression always seeks to make a compromise 

between data size and accuracy. The compression can be conducted either offline or 

online. For the offline practice, a given trajectory is compressed by discarding less 
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important points. The Douglas-Peucker algorithm (Douglas and Peucker, 1973) is one 

of the most popular algorithms to serve this purpose. For the online practice, the 

compression takes place in a real-time by retaining certain newly generated GPS points. 

The retaining criteria can be based on the distance metric (Meratnia and Rolf, 2004) 

or speed and direction (Potamias et al., 2006). For instance, Meratnia and Rolf (2004) 

applied a heuristic of the Douglas-Peucker algorithm to an open window to keep points 

above a certain distance to the segment of the first and last points in the window. 

2.3.1.2 Map Matching Basics 

Map matching is the process to align raw GPS trajectory points with the road network 

and reconstruct the corresponding travel route as a sequence of road network edges. 

Early map-matching algorithms can be categorized into geometric, topologic, and 

probabilistic algorithms (Zheng, 2015). As an advanced combination of these aspects, 

the Hidden Markov Model (HMM) based method proposed by Newson and Krumm 

(2009) and Lou et al. (2009) has been widely adopted since 2009, because of its elegant 

integration of geometric, topologic, GPS errors and other factors (e.g., speed limitation). 

Since then, various studies are devoted to improving the HMM-based algorithms, 

either from the perspective of accuracy (Li et al., 2013; Yuan et al., 2010) or from the 

perspective of efficiency (Huang et al., 2013; Yang and Gidófalvi, 2018).  

Given a trajectory {��, ��, … , ��}, the HMM-based algorithm firstly iterate each point �� 

to find its candidate edges ���
�, ��

�, … , ��
��� within a certain distance � and the candidate 

points ���
�, ��

�, … , ��
���  can be identified by projecting point ��  to the corresponding 

candidate edges. For a point ��, the number of candidate edges is ��; thus, the total 

number of candidate path ��� = ∏ ��
�
��� . As illustrated in Figure 2.1, the processing of 

HMM-based map matching can be modeled by a transition graph, and the goal is to 

find the most probable path. 
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Figure 2.1. Illustration of the transition graph corresponds to a trajectory 

map matching. 

 

Given a candidate edge ��
�
 of ��, there is an emission possibility reflecting the likelihood 

that �� is actually a sampling point on it. The possibility is measured by assuming a 

Gaussian distribution of GPS errors, which is denoted below.  

���
�

=
�

√��
�

�
�����,   �

�
�

����
�

���      (2.5) 

Where ����, ��
�
� is the Euclidean distance between the two points �� and ��

�
.  � and � 

are corresponding mean and standard deviation of the Gaussian distribution of GPS 

errors, respectively. By defining the emission probability, candidate edges near to a 

GPS point are potentially the real traversed edges.  

To integrate the topologic information, a transmission probability is defined for a pair 

of neighboring candidate points ����
�  and ��

�.  

��(����
� → ��

�) =
������

� ,   ��
��

�������
� ,   ��

��
     (2.6) 

Where �(����
� , ��

�) and ��(����
� ,   ��

�) represent the Euclidean distance and the shortest 

distance along the road network between two neighboring candidate points, 

respectively (see an example in Figure 2.2). The rationale behind this definition is based 

on the observation that people tend to choose the shortest path (Lou et al., 2009).  
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Figure 2.2. Example of the transition between two neighboring points. 

 

By combing the emission probability and transmission probability, an integral 

probability for the transition from ����
�  to ��

� can be measured as their product. 

���(c���
� → c�

� ) = ���
� ∗ ��(����

� → ��
�)   (2.7) 

Given a candidate path CP with a sequence of candidate points as �c�
�� , ��

��, … , ��
���, the 

overall probability is calculated as:  

�(CP) = ∑ ���(c���
���� → c�

�� )�
���     (2.8) 

In this way, the candidate path with the largest overall probability is treated as the 

optimal map-matching result. In practice, there is no need to iterate all the ��� 

candidate paths. The Viterbi algorithm (Forney, 1973) can be used to find the optimal 

path efficiently.  

2.3.2  Smart Card Data  

The wide deployment of automated fare collection (AFC) systems offers an easy 

approach to continuously collecting massive smart card records regarding public 

transit use. In addition to the aim of revenue collection, smart card data have been used 

for a series of applications related to transit performance evaluation and network 

planning (Jang, 2010; Trépanier et al., 2009), travel pattern analysis (Ma et al., 2013; 

Seaborn et al., 2009), transit time and reliability analysis (Jang, 2010; Sun et al., 2016; 

Zhao et al., 2013) and transit demand modeling (Sun et al., 2017; Tu et al., 2018).  

The procedures of using a smart card within a public transport chain are illustrated in 

Figure 2.3. As showed in Figure 2.3 (a), a user may be required to swipe in before 
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his/her boarding and swipe out after his/her alighting. For instance, metro systems 

usually take this form and smart card readers are equipped at specific entry/exit points. 

Otherwise, smart card readers are equipped inside vehicles, and users are thus required 

to swipe in after their boarding and swipe out before their alighting. The latter form is 

more common in bus and tram systems. Such a distinction is important for applications, 

such as smart card-based travel time estimation and transit reliability modeling, 

because travel times measured by smart card records are based on the time difference 

of swiping in and out. The AFC systems can be categorized into entry-only systems and 

entry-exit systems. The entry-only system only requires users to swipe the card at the 

beginning of the travel (e.g., New York Subway), while the entry-exit system requires 

to swipe at both ends of the transit (e.g., London Underground and Shanghai Metro). 

The entry-only system is more suitable for flat rate fare systems and the entry-exit 

system is usually required by distance-based fare systems.  

The processing of smart card data usually starts with a data cleaning procedure to 

remove error transaction records, including duplicate transaction records (e.g., swipe 

in and out at the same station and time) and uncompleted transaction records (e.g., 

missing transaction time). After the data cleaning, a common processing procedure is 

to reconstruct transit trips as they are the basis for analyzing travel patterns either at 

the individual or at transport system levels (e.g., OD matrix between transit stations). 

For entry-exit systems, as the boarding and alighting information are recorded in 

transaction records, it is easy to construct a transit trip by chronologically ordering 

transaction records of a smart card user. Then, every two consecutive transaction 

records can be organized as a trip (Lin and Zhu, 2019). By combining multiple 

consecutive trips, a journey consisting of several individual trips can be constructed. 

For example, a bus-metro journey can be recovered by combining the corresponding 

bus and metro trips. Such construction is usually based on the assumption that walking 

distance and time between the preceding alighting location and current boarding 

location should be limited within a certain threshold. For most of the metro systems, 

no swiping is required for transferring between different lines; hence, trips constructed 

by two consecutive records may contain additional transfer trips in between. 



  
2 Fundamentals and Related Works  

27 |  
 

 

Figure 2.3. Procedures for using a smart card to ride public transit. (a) 

example for a metro system, and (b) example for a bus system. 

 

For entry-only systems, the trip construction is more difficult because no information 

regarding the exit/alighting is recorded by the smart card records. Additionally, the 

entry/boarding information may also be incomplete, for instance, the boarding stops 

of bus trips are not included in smart card records in a number of Chinese cities such 

as Beijing, Chongqing, and Nanjing (Ma et al., 2012). Therefore, many studies have 

been devoted to developing methods to infer the missing OD information. For the 

estimation of boarding location, the boarding time and additional information, such as 

transit schedules and vehicle trajectories, can be integrated to infer the boarding 

locations (Gordon et al., 2013; Ma et al., 2012; Tu et al., 2018). For the estimation of 

alighting information, most studies have adopted trip-chaining methods proposed by 

(Barry et al., 2002) under  two key assumptions: 

1) A high percentage of users start their trips at the alighting stations of their 

preceding trips. 

2) Most users usually go back to the first departure station at the last trip of the 

day. 

These two assumptions are widely accepted as the basis of destination inference. To be 

more realistic, some studies tried to relax these two assumptions based on applications 

under consideration. Specifically, the boarding station/stop of the current trip may be 

a new one that is near to the alighting station/stop of the preceding trip. Similarly, the 

second assumption can be relaxed as a user may return to a station/stop near to the 
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first departure station of the day (Trépanier et al., 2007). An insightful evaluation of 

commonly used OD estimation algorithms is given by (Alsger et al., 2016).  
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3 Biking Distances at 
Individual Transit Stations  

 

 

The acceptable distance (or cut-off distance) of transit stations is a fundamental 

element for the assessment of accessibility to transit, either using coverage-based (see 

Chapter 4) or grid-based measures (see Chapter 5). This chapter aims to propose 

methods to measure the acceptable distances of individual transit stations by using 

trajectory and smart card data. Furthermore, to interpret the disparity of acceptable 

distances, regression models are used to explore the associations between the biking 

distances of individual metro stations and potential factors. 

Section 3.1 describes the necessity of measuring biking distances at individual stations 

for accessibility assessment and related technical challenges. The study area and data 

preparation are described in Section 3.2.  Section 3.3 explains how to identify bike-and-

ride trips based on bike trajectory and smart card data. Section 3.4 illustrates the 

methods of bike trajectory processing, especially focusing on the trajectory map 

matching. Analytical results regarding the identified bike-and-metro trips in Shanghai 

are shown in Section 3.5. Section 3.6 summarizes this chapter. Part of the materials in 

this chapter have been published in (Lin et al., 2019). 

3.1 Challenges of Measuring Biking Distances  

As an important approach of promoting access to public transit, the integration of bike 

and public transit (i.e., bike-and-ride) has been advocated by many governments. 

Depending on the stage of bike use, bike-and-ride can take three forms: bike-ride, ride-

bike, and bike-ride-bike (BRB). The recent popularization of dockless bike-sharing 

service has further promoted the integration of bike and public transit because the 

dockless shared bikes are widely used for connecting with public transit (Shen et al., 

2018; Zhou et al., 2018). To date, most bike-and-ride related studies (Lee et al., 2016; 

Martens, 2004; Pan et al., 2010; Wang and Liu, 2013), have been focused on private 

bikes and dock-based shared bikes. Inadequate efforts were reported for the 
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integration between dockless shared bikes and public transit. Additionally, most of the 

existing studies are based on survey data, in which the detailed traveling routes are 

usually missing. As a result, bike trip lengths are usually estimated by using the shortest 

path algorithm. 

Fortunately, the biking trajectories of dockless shared bikes can be easily recorded by 

the embedded GPS devices. Thus, trajectory data can be used to investigate the 

integration of dockless shared bikes and public transit, providing a new chance to 

derive more accurate acceptable biking distances. The variable “acceptable biking 

distances” of individual stations obtained from trajectory data offer a fine-grained basis 

to model the actual accessibility (Páez et al., 2012), as compared with a predefined 

acceptable distance or a unified value for the entire region. Furthermore, 

understanding the disparity of acceptable distances at different stations is important 

for the interpretation of the measured accessibility relying on actual travel data and 

policymaking (see Section 2.1.4).  

The major challenge in using trajectory data to measure the bike distances is twofold: 

1) bike trajectories are not specifically collected for transit accessibility analysis; hence, 

it is necessary to develop a method to extract bike-and-ride trips, and 2) for estimating 

accurate distances of bike-and-ride trips, we need to construct the real biking paths 

using the raw trajectories. To tackle the first issue, bike trips used for BRB trips are 

extracted firstly. Then, the threshold for identifying bike-and-ride trips are decided 

based on the distribution of the BRB bike trips. To tackle the second issue, the raw bike 

trajectories are preprocessed by resampling and stop point filtering, and an adapted 

map-matching algorithm is proposed to align them with road networks. The proposed 

methods are applied, taking Shanghai as a case study to extract the bike trips intended 

for connecting with metro systems (i.e., bike-and-metro trips) and to measure biking 

distances at individual metro stations.  

3.2 Study Area and Data Preparation 

With a population of 24.2 million as of 2018, Shanghai is the most populous urban area 

in China, also a global center for finance, innovation, and transportation (Shanghai 

Municipal Bureau of Statistics, 2019). The central city of Shanghai corresponds to the 

areas within the outer ring road and has a compact area of 660 km2 (Figure 3.1 (a)). 

According to the Shanghai Master Plan 1999–2020, the central city is the urban core 

of Shanghai, where its six major business districts are located (Shanghai Municipal 

Government, 1998). Shanghai Metro is a major public transport mode in the city, 

ranking as the world’s longest rapid transit system by route length totaling 676 
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kilometers as of December 20182. The average daily volume of Shanghai Metro is 10.16 

million ridership in 2018 (Shanghai Municipal Bureau of Statistics, 2019). Shanghai is 

one of the biggest dockless bike-sharing markets in the world. By the end of August 

2017, there are more than 1.5 million dockless shared bikes in Shanghai (Xinmin 

Evening News, 2017) and the shared bikes are widely used to connect with public 

transit. According to a recent study (Zhou et al., 2018), more than one-third of the 

respondents shifted from other modes to use shared bikes as the metro access/egress 

mode after the dockless bike-sharing was launched in Shanghai. These characteristics 

make Shanghai a representative area for investigating the integration of dockless 

shared bikes and public transit. 

Major data used for measuring the biking distances include bike road network, metro-

related data, smart card data, and bike trajectories.  

Bike road network: the road network is download from OpenStreetMap (OSM) via 

the Python package OSMnx (Boeing, 2017) by specifying the network type as “bikeable”. 

To increase data reliability, the downloaded bike networks are assessed by comparing 

them with randomly selected 50,000 raw trajectories. For each trajectory, the distances 

from its GPS points to the nearest roads are measured, if the distance for a point is 

larger than 50, it might indicate missing roads around the point. Google Satellite 

images and Baidu street views are then jointly used to verify the potential missing roads. 

Eventually, 10,700 extra road network edges are added to the original network. The 

final road network contains 74,800 nodes and 106,300 edges.  

Metro-related data: metro timetables and basic attributes, including the number of 

entrance and terminal station information, are collected from the official website of 

Shanghai Metro. The geographic information of metro stations (e.g., entrance locations) 

and bus stops around metro stations are collected via Gaode map API (a leading map 

service provider in China). In total, 1,223 metro station exits/entrances of 301 different 

stations of 14 metro lines are obtained3. 

Smart card data: the smart card data are used for estimating the average traveling 

time between metro stations. The dataset covers the transaction records generated in a 

normal week in 2015 of Shanghai, with a total number of 98.2 million transaction 

records. Each record includes user ID, date, time, bus line ID or metro station name, 

transport mode, fee, and discount. The transport mode specifies which transport mode 

a smart card is used because the smart card in Shanghai can be used for taking various 

transport modes, such as metro, bus, ferry and taxi. Thus, the records correspond to 

 
2 Data comes from Shanghai Metro: 
http://www.shmetro.com/node49/201812/con115165.htm 
3  To keep consistency with the dockless shared bike data, the metro stations that 
opened later than 1 October 2017 are ignored, and 3 metro stations located in KunShan 
(a city near Shanghai) are ignored as well. 
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metro trips are identified by extracting records with the transport mode as “metro”. 

The automated fare collection (AFC) system of Shanghai Metro belongs to the entry-

exit system, i.e., passengers are required to swipe in before boarding and swipe out after 

alighting. Hence, both the boarding and alighting stations and times are recorded in 

the transaction records. A data cleaning procedure is applied to remove error records 

such as duplicated records and uncompleted records. The transaction records belong 

to each smart card user are ordered in a chronological sequence. Then, every two 

consecutive transaction records can be organized as a metro trip. A total of 28.5 million 

metro trips are identified and the average traveling time between two metro stations is 

measured accordingly.  

Bike trajectories: the trajectory dataset is provided and authorized by one of the 

leading bike-sharing company, Mobike. As of March 2017, there are over 3.65 million 

shared bikes owned by Mobike, generating about twenty million trips per day4. The 

dataset used in this thesis is generated by randomly selecting a certain number of users, 

who specified their registration locations as Shanghai in their personal accounts. After 

excluding the trips made outside Shanghai, 777,896 trips by 135,239 users are kept, 

covering 15 days of transactions from September 16th to 30th, 2017. Each trip record 

includes trip ID, user ID, bike ID, longitudes and latitudes of the origin and destination, 

timestamps of the origin and destination, and a trajectory consists of sampling points 

recorded during the trip. Each sample point is represented as a tuple of (longitude, 

latitude, timestamp). 

 
4 http://www.sootoo.com/content/670814.shtml 
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Figure 3.1. The study area. (a) the metro stations and lines, and (b) the road 

networks of Shanghai. 
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3.3 Identification of Bike-and-Ride Trips 

Extracting bike trips intended to connect with transit systems is difficult because no 

clear information is available regarding the purposes of bike trips. A straightforward 

approach of extracting the bike-and-ride trips of a station is to determine the trips with 

an origin/destination within a certain distance to the stations. Since transit stations in 

metropolitan areas (e.g., Shanghai) usually have complex structures with more than 

one exit/entrance. The entrances of a station, rather than the station center, are thus 

used to build circular buffers. By dissolving the entrance buffers of a station, the station 

buffer area can be constructed (Figure 3.2). The key issue here is to determine a suitable 

threshold for the circular buffer, to reflect how far users usually park/pick their bikes 

around the station entrance. For an individual bike trip, there is no evidence if it 

belongs to a bike-and-ride trip or not. However, it is possible to identify BRB trips, i.e., 

transit trips that use bikes as the access and egress modes. Figure 3.3 illustrated an 

example of a BRB trip.  

To extract BRB trips, potential bike-and-ride trips at the access and egress sides are 

extracted by setting a relatively large buffer threshold ����. Correspondingly, the sets 

of the potential access and egress bike trips are represented as � and �, respectively. 

Supposing we have one potential access trip �� ∈ � and one potential egress trip �� ∈ �, 

corresponding to transit stations ��  and �� , respectively. The timestamps of the 

destination of trip  ��  and the origin of trip ��  are denoted as  ���(�)  and ���(�) , 

respectively. The time duration between ���(�)  and ���(�)  can thus be measured and 

denoted as �����
. The average traveling time between station �� and �� is denoted as 

�����
, which can be measured using smart card data. Then, the following three criteria 

can be used to decide if trip �� and trip �� belong to the same BRB trip. 

 Trip �� and trip �� belong to the same user.  

 Station �� is different from ��, i.e., �� ! = ��. 

 The difference between �����
 and �����

 should be limited to a certain time 

duration. Theoretically,  �����
 should be larger than �����

 because users need 

additional time to walk from bike parking locations to swipe in locations and 

walk from swipe out locations to bike fetching locations. Thereby, the following 

criterion should satisfy. 

0 < ���� < �, where ���� = �����
− �����

  

By iterating all the potential combination of �� and ��, the bike trips that belong to the 

BRB trips can then be identified. The corresponding access and egress trips of the BRB 

bike trips are denoted as ���� and ����, where ���� ⊆ � and ����  ⊆ �. For a trip from 
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���� ( ���� ), the Euclidian distance between its destination (origin) to the nearest 

entrance of its corresponding transit station can be measured, assuming users parking 

(fetching) a bike at the nearest transit entrance. Then, the distances between the bike 

parking locations and the nearest transit entrances, and the distances between the bike 

fetching locations and the nearest entrances can be obtained, respectively. Their 

distributions are used as references to define the circular buffer for extracting bike-

and-ride trips (see Section 3.5.1).  

 

Figure 3.2. Example of constructing the buffer area of a station. 

 

 

 

Figure 3.3. Illustration of the bike-ride-bike (BRB) trip. 
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3.4 Trajectory Processing 

3.4.1  Pre-Processing 

Resampling: trips with an abnormal length or duration are excluded, i.e., only trips 

within the length interval of (50 m, 30 km) and with a time duration of larger than 60 

s are kept. Since the original bike-and-ride trips are recorded at a high sampling rate 

(66% trips with a sampling interval under 5 s), resulting in GPS point redundancy and 

may introduce additional errors in map matching. The raw trajectories are thus 

resampled to a larger sampling interval. The new interval of the resampling is jointly 

decided by the original sampling intervals and biking speeds, to achieve a balance 

between computational efficiency and critical information for map matching.  

Stop point removal: as stop points may introduce errors to trajectory map matching 

and trip distance estimation, they need to be cleaned. The orientation-based stop point 

detection method proposed by (Sultan et al., 2017) is applied to identify stop points 

among the trajectories. Specifically, given a trajectory {��, ��, … , ��} , the distances 

between every two consecutive points are calculated and represented as � =

{��, ��, … , ����}, where ��  is the distance between ��  and ����. Then, a search radius 

�� = mean(�) + 2 ∗ std(�) can be defined for the trajectory, where mean(�) and std(�) 

represent the mean and the standard deviation of � , respectively. A circular area 

centered at a point  ��  with a radius of ��  can be constructed, and points within the 

circular area can be found (denoted as ��). The circular area is equally divided into eight 

sectors and each point in �� is assigned to one of the eight sectors. If �� are distributed 

at more than four sectors, the examining point �� is considered as a stop point because 

of the discontinuity of moving direction (Sultan et al., 2017). Figure 3.4 illustrates an 

example of orientation-based stop detection. The middle points (the yellow point on 

the left and green point on the right) in the center represent the point under 

examination, and red points represent the corresponding nearby points. Since there 

are 5 different slices on the left side and 3 different slices on the right side, the examined 

yellow point is considered as a stop point and the green point is regarded as a normal 

one. 
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Figure 3.4. Illustration of the orientation-based stop point detection. (a) the 

examined point (yellow) is identified as a stop point, and (b) the examined point (green) 

is regarded as a normal sampling point. 

 

3.4.2  Trajectory Map Matching 

After the preprocessing, the Fast Map-Matching (FMM) algorithm (Yang and Gidófalvi, 

2018) is applied to reconstruct the actual routes of the bike-and-ride trips from the 

trajectories. The FMM algorithm is selected because it offers an efficient approach to 

align a large number of trajectory points and provides an open-source implementation. 

The FMM is an adapted version of map matching based on the Hidden Markov Model 

(HMM) (see Section 2.3.1.2), which improves the original algorithm by precomputing 

the shortest paths between each network node and its nearby nodes within a ����� 

distance. The precomputed shortest paths are then used to accelerate the HMM-based 

map matching from two aspects: 1) the measurement of the shortest paths between 

neighboring candidate points, and 2) the construction of the optimal path. 

Furthermore, the FMM can also handle the problem of reverse movement (back and 

forth movement on a bidirectional road segment) that frequently observed in the 

results of HMM-based map matching.  

When using FMM directly for the map matching of bike trajectories, the map-matching 

results tend to be very sensitive to GPS errors along the opposite movement direction. 

This is illustrated in Figure 3.5 by two examples observed in the trajectory dataset. 

{��, ��, ��, ��, ��, ��, ��}  are the seven GPS points of an input trajectory. The real 

traveling path is {���, ���, ���}. The raw trajectory shows a fake backward movement 

from p� to p�  because of a large GPS error along the opposite moving direction at p�. 

As a result, the FMM algorithm tends to give a matching result as the edge sequence of 

{ ���,���, ���, ���, ��� }, with a sequence of “forward–backward–forward” (FBF) 
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segments  {���, ���, ���} included in the matching results. For trajectories recorded at a 

low sampling rate (i.e., sparsely sampled trajectories) or generated by vehicles with 

faster speed (e.g., taxi trajectory), the moving distance between two neighboring points 

is usually larger than GPS errors along the opposite moving direction. Hence, the 

phenomenon of fake backward movement and FBF segments are less likely to occur. 

However, the FBF artifacts may likely to occur when dealing with trajectories at a low 

speed (e.g., biking) and with a high sampling rate (e.g., a sampling interval of 5 s). Since 

such an FBF movement is unlikely to happen to normal biking trips, it is reasonable to 

assume that the matching results are affected by the GPS errors along the opposite 

direction of moving if FBF segments are detected. An iterative assessment is used to 

check if any FBF segments are presented among every output edge sequence (i.e., the 

optimal path) obtained by the FMM algorithm and only the first forward edge of the 

FBF segments is kept. 

 

Figure 3.5. Two typical examples of GPS points with positioning errors 

along the opposite moving direction (a) and (b). For both examples, the 

trajectory is represented by chronologically ordered GPS point {��, ��, ��, ��, ��, ��, ��}. 

The actual traversed routes are {���, ���, ���}. The GPS positioning errors along the 

opposite moving direction occur at point ��. 
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3.5 Analytical Results 

3.5.1  Identified Bike-and-Metro Trips 

The ����  is set as 100 m by assuming bike-and-metro users park/fetch bikes at a 

maximum distance of 100 m. We argue such an assumption is reasonable for dockless 

shared bikes because users are not required to park/fetch their bikes at designated bike 

stations. In terms of parameter �, a series of values, ranging from 4 to 15 minutes, are 

used to extract the corresponding bike-metro-bike trips. Their corresponding statistics 

of the distances between parking/fetching locations and the nearest metro entrances 

are shown in Table 3.1. The percentile values at the access side are quite close to the 

corresponding values at the egress side. The increase of � only shows a slight impact on 

the percentile values at both the access and egress sides. For example, the 75th 

percentile distance between the bike parking locations and the nearest entrances only 

increases by 2.5 m as the � increase from 4 to 15 minutes. Therefore, the major question 

here is to decide which percentile value should be selected as the reference for setting 

the circular buffer. In general, the smaller the buffer distance, the stricter the validation 

condition. With the increase of the buffer distance, some non-connecting trips may be 

identified as bike-and-metro trips (Ji et al., 2018). For example, the 50th percentile 

distance could be a relatively conservative value for the circular buffer, and the 90th 

percentile distance could be a relatively risky choice. As a compromise, the 75th 

percentile distances are thus used as the reference to estimate how far most people park 

(fetch) bikes before (after) they enter (exit) the metro stations. The circular buffer is 

thus set to be 50 m, leading to the identification of 163,048 bike trips as bike-and-metro 

trips.  
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Table 3.1. Statistics of the distances between parking/fetching locations to 

the nearest entrances. The parking and fetching correspond to the access and egress 

sides of the bike-metro-bike trips, respectively.  

 

� 

 

Access: distances between parking 

locations and entrances (m) 

Egress: distances between fetching 

locations and entrances (m) 

50th  75th  90th  50th  75th  90th  

4 30.3 47.2 66.2 29.9 46.4 65 

5 30.5 47.7 67.3 30.1 46.5 65.7 

6 30.8 47.7 68.2 30.4 46.8 66.6 

7 30.9 48.4 68.7 30.5 47.2 67.1 

8 31.0 48.7 69.8 30.7 47.6 67.7 

9 31.1 49.1 69.2 30.9 48.2 68.2 

10 32.2 49.2 69.3 31.0 48.4 68.7 

11 31.2 49.4 69.6 31.2 48.5 68.9 

12 31.3 49.5 69.6 31.3 48.7 69.2 

13 31.4 49.6 69.9 31.3 48.8 69.3 

14 31.5 49.7 70.2 31.3 48.8 69.2 

15 31.5 49.7 70.2 31.6 48.9 69.6 

 

Among the identified bike-and-metro trips, there are 21,874 trips without sampling 

points, whose routes are estimated by using the shortest path algorithm. Knowing that 

the majority of remaining trips have a small sampling interval (66% under 5s) and the 

average biking speed is 10.3 km/h, 15 s is selected as the resampling interval, resulting 

in a considerable reduction of GPS points, from 15.2 to 3.3 million. During the stop 

point removal, 31,824 trips are found to have stop points, and 127,990 stop points are 

removed. Figure 3.6 gives an example of a trajectory before and after the stop point 

removal. As shown in Figure 3.6 (a), the original trajectory has two clusters of stop 

points (marked by the red circle). One is near the road cross, which is likely caused by 

the waiting for the traffic light. Whereas the other is not near any road cross and 

unlikely related to traffic congestion. Such an observation indicates that bikers have 

more freedom and convenience to stop their biking, which in turn implies the necessity 

of removing stop points. After the preprocessing, 141,174 trips with 3,193,268 trajectory 

points remain to be aligned with the road network via map matching.  
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Figure 3.6. Example of removing stop points. (a) trajectory with stop points, and 

(b) trajectory after removing the stop points. 

 

The FMM parameters are set as follows through a number of experiments: for the pre-

computation of the shortest paths, the ����� is set as 2.5 km; the searching radius � =

50 m; the maximum number of edge candidates � = 6; and the standard deviation � is 

configured to 30 m. Table 3.2 shows the results of map matching, indicating a success 

rate of 90.1%, approximately 9.9% of the trajectories failed for reasons, such as large 

GPS errors (i.e., larger than the searching radius of 50 m) and biking along prohibited 

roads, among others. The distances of the failed trips are thus measured as their 

trajectory lengths. A total of 42,384 edges generated by 17,249 trips are deleted during 

the FBF handling of the successfully matched trips. The large proportion (12.2%) of the 

FBF trips demonstrates the necessity of handling the FBF case to improve the map-

matching results. 

Table 3.2. Map-matching results of the bike-and-metro trajectories. 

 Number Percent 

Successfully matched trips 12,7187 90.1% 

Failed matched trips 13,987 9.9% 

FBF trips 17,249 12.2% 

 

3.5.2  General Trip Characteristics 

Figure 3.7 shows the spatiotemporal distributions of the bike-and-metro trips. The trip 

frequencies over 7 days * 24 hours are depicted in Figure 3.7 (a), three patterns can be 

observed: 1) more trips are observed during the commuting periods (7–9 am and 5–7 

pm); 2) more trips are generated during the morning peak than the afternoon peak (i.e., 

23,399 vs. 17,925 trips, respectively); and 3) no obvious peak pattern is observed during 

the weekend. The first and third pattern are in line with the metro ridership pattern in 
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Shanghai (Lin and Zhu, 2019). The second pattern indicates that more people use the 

metro during the morning peak than during the afternoon peak (Lin and Zhu, 2019). It 

may be interpreted as a fact that fewer people use bike to access/egress metro stations 

at the afternoon peak because they have less time pressure after work. Figure 3.7 (b) 

shows the spatial distribution of trip ODs by using a 500 * 500 m grid. Obviously, more 

trips are observed in the city center because more metro users are living in the densely 

populated urban area of Shanghai.  

 

Figure 3.7. Spatiotemporal distribution of bike-and-ride trips. (a) temporal 

distribution of one-week bike-and-metro trips, and (b) the spatial distribution of the 

origins and destinations for all the bike-and-metro trips. 
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The distributions of the trip lengths, durations, and speeds for the bike-and-metro trips 

are shown in Figure 3.8. For the sake of clarity, the 1% largest values for the trip lengths, 

durations and speeds are not considered in the corresponding distributions.  

Trip length: the average trip length is 1319 m. The length is shorter than the average 

trip length (1598 m) of the entire bike trajectories, indicating a greater willingness 

among people to bike farther when using shared bikes for non-connecting purposes.  

49% and 84% of the trips are restricted to 1 km and 2 km, respectively. The distribution 

shows an increasing trend at the beginning and followed by a decreasing trend from 

the bin of 500 to 750 m. The decreasing trend can be explained by the spatial decay 

effect of people’s travel behavior, although the holistic pattern does not match with the 

spatial decay effect very well. 

Trip duration: the average duration for the bike-and-metro trips is 8.2 minutes. The 

overall pattern for the trip duration is very similar to that of the trip lengths. The 

proportions of trips with a duration of fewer than 5 minutes and 10 minutes are 34% 

and 77%, respectively. The majority of bike-and-metro trips are constrained within 10 

minutes and the most frequent biking duration located in the bin of 4 to 5 minutes.  

Trip speed: the average trip speed for bike-and-metro trips is 10.3 km/h. Assuming 

an average walking speed of 5 km/h, biking could save half of the time to access/egress 

the metro station. Compared with the distributions of the trip length and duration, the 

speed distribution shows a more centralized pattern, with approximately 46% trips 

within the bins of 9 to 12 km/h. 
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Figure 3.8. Distributions of the bike-and-metro trips. (a) length distribution, 

(b) duration distribution, and (c) speed distribution. 

 

As compared with the bike access/egress distances derived in other study areas (see 

(Lee et al., 2016) for an overview), the overall biking distances in Shanghai appeared to 

be shorter than the biking distances reported in several European countries, such as 

the Netherlands, Germany and the UK (Givoni and Rietveld, 2007; Martens, 2004). 

For instance, 54% of the access trips to train stations have a distance larger than 3 km 

(Givoni and Rietveld, 2007) in the Netherlands, reflecting more longer bike trips are 

generated. Similarly, the mean bike access distances to train stations in Atlanta and Los 

Angeles are reported to be 1.7 km and 4.5 km (Hochmair, 2015), which are larger than 

the mean trip length in Shanghai (1.32 km). The disparity of biking distances is likely 

to be attributed to the disparity of biking willingness and transit station density. 

Compared with train stations, metro stations in urban areas are usually more densely 

distributed. For example, the mean biking access distances to the metro stations 

reported in Seoul, South Korea (Lee et al., 2016) and Beijing, China (Wang et al., 2016) 

are 1.47 km and 1.45 km, respectively, which are quite close to the counterpart in 

Shanghai. 
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3.5.3 Statistics of Biking Distances at Individual Stations  

To eliminate potential biases caused by insufficient sample size, metro stations with 

fewer than 40 trips are omitted, and the remaining 280 stations are used for analysis5. 

For each station, its mean, 75th and 85th percentile trip distances are calculated 

accordingly. Based on the ring roads in Shanghai (i.e., inner, middle and outer rings, 

see Figure 3.9), the entire study area is divided into four non-overlapping zones: inner 

zone (areas within the inner ring), middle zone (areas between the inner and middle 

rings), outer zone (areas between the middle and outer rings), and suburban zone 

(areas outside the outer ring). Table 3.3 lists the average values of mean, 75th and 85th 

percentile trip distances for different zones. The average values show a noticeable 

increase from the inner zone to the suburban zone. For instance, the average mean 

biking distance increases from 1076 m (inner zone) to 1576 m (suburban zone). 

Correspondingly, the average 75th percentile distances for these two zones are 1376 m 

and 2073 m, respectively. Figure 3.9 shows the spatial distributions of the 75th 

percentile biking distances at individual metro stations. The visualization also confirms 

the increase of biking distances from the city center to the suburban.Table 3.3. 

Average values of the mean, 75th, and 85th percentile biking distances in 

different zones.  

 Mean 

(m) 

75th percentile 

(m) 

85th percentile 

(m) 

Inner zone 1,076 1,370  1,744 

Middle zone 1,203 1,544 1,946 

Outer zone 1,314 1,682 2,125 

Suburban zone 1,576 2,073 2,584 

Entire area 1,268 1,634 2,059 

 

 
5 All the stations within the outer ring are kept, i.e., with a trip number over 40. 
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Figure 3.9. Spatial distributions of the 75th percentile biking distances at 

individual stations. 

 

3.5.4  Regression Modeling of Biking Distances 

To understand the disparity of biking distances at individual metro stations, we apply 

ordinary least-squares (OLS) regression to explore the associations between biking 

distances and potential factors. According to (Cheng and Lin, 2018; Hochmair, 2015; 

La Paix Puello and Geurs, 2016), potential factors that may contribute to the biking 

distances at individual stations can belong to four categories: socioeconomic attributes, 

station attributes, built environment, and trip attributes. The socioeconomic attributes 

are not available for this thesis due to the privacy issue; thus, the remaining three 

groups are considered. Additionally, locational attributes are added as a new group of 

explanatory variables because of the spatial disparity of biking distances reflected in 

Section 3.5.3. Table 3.4 lists the statistics of the explanatory variables. The average train 

interval is measured as the train frequency of a station. The road straightness reflects 

the detour degree of roads around a station. For a station, 100 road network nodes are 

randomly sampled from all the nodes within 2 km distance, their network and 

Euclidean distances to the station are measured accordingly. Then, the average ratio 

between the network distances and the Euclidean distances is deemed to be the road 

straightness. The number of bus stations within 300 m reflects the potential 
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competition from buses. The average distance of four nearest metro stations represents 

the density of the metro station. The unique user ratio represents the degree of user 

diversity, which is measured as the proportion of distinct users among the entire trips. 

The morning and evening trip ratios correspond to the proportions of the trips 

generated during the morning and evening peak hours, respectively. The locational 

attributes are represented as dummy variables by using stations in the inner zone as 

the reference. Similarly, non-terminal stations are used as the reference to specify the 

dummy variable “terminal”. The road density and the number of bus stations around 2 

km of the metro station are ignored because of their high correlation with the metro 

density. Additionally, some potential factors, such as trip purposes and bike availability, 

are not included because of their limited availability.  

Table 3.4. Statistics of the explanatory variables (N = 280). 

Variable Min Max Mean Std 

Station attributes 

Average train interval (minutes) 3.75 14 6.2 2.1 

Number of entrances 1 20 4.08 2.44 

Terminal (0–1) 0 1 0.057 0.232 

Built environment 

Average distance of the four nearest stations (m) 860 6520 2090 1060 

Road straightness within 2 km 1.03 2.875 1.33 0.156 

Bus station number within 300 m 0 12 3.14 1.91 

Trip attributes     

Unique user ratio 0.349 0.932 0.568 0.088 

Morning trip ratio (7:00–9:00) 0.134 0.576 0.345 0.072 

Evening trip ratio (17:00–19:00) 0.061 0.396 0.205 0.051 

Locational attributes 

Middle zone (0–1) 0 1 0.23 0.43 

Outer zone (0–1) 0 1 0.24 0.42 

Suburban zone (0–1) 0 1 0.21 0.41 

 

The mean (termed as model 1) and 75th percentile trip distances (termed as model 2) of 

the metro stations are used as the dependent variables, respectively. The 75th percentile 
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is selected because it is usually regarded as the “acceptable” distance of a station (Lin 

et al., 2019; Wang et al., 2016). On the other hand, the mean value reflects the average 

biking willingness (Hochmair, 2015). Table 3.5 summarizes the results. The largest 

variance inflation factor for both models is 3.65, indicating low multicollinearity. As 

reflected by the adjusted R2 values, model 1 (adjusted R2 = 0.562) achieves a better fit 

than model 2 (adjusted R2 = 0.533). This indicates that the mean trip distance is a 

better statistical variable for modeling the biking distances at the station level. The two 

models show a consistent association for every individual independent variable with 

slight differences in statistical significance. The entrance number is positively 

associated with the corresponding dependent variables in both models, which might be 

explained by the observation that stations with more entrances usually attract users 

from more diverse directions. The average distance of the four nearest stations shows 

a positive association with the dependent variables, indicating that users living in areas 

of fewer metro stations tend to bike farther to access metro stations. According to the 

exploratory regression analysis, the metro station density acts as the most significant 

variable, implying that the supply of metro stations plays a critical role in shaping the 

“acceptable” biking distance of users.  

On the contrary, the train interval is negatively associated with the dependent variables. 

A larger train interval means more waiting time, which makes a metro station less 

attractive for users living farther. Terminal stations tend to have larger mean and 75th 

percentile distances in comparison to non-terminal stations. All three trip-related 

variables are statistically significant for both models. Specifically, stations associated 

with diverse users tend to have larger biking distances. More morning and evening trips 

lead to larger biking distances, which might be explained by the observation that more 

trips originating from residential areas are generated during these periods, especially 

in the morning (Hochmair, 2015). In line with the spatial distribution of biking 

distances revealed in Section 3.5.3, the three locational variables reflect statistical 

significance in both models, which also demonstrate the rationality of integrating 

locational variables into the OLS regression model. The Moran’s I test is employed to 

the spatial autocorrelation of the standardized residuals of the two models. No 

statistical significance has been detected for both models, i.e., the values of (z-score, p-

value) for model 1 and model 2 are (1.42, 0.16) and (0.88, 0.38), respectively. This also 

indicates the effectiveness of incorporating location attributes into OLS models to solve 

the issue of spatial autocorrelation, which is a major concern of applying OLS models 

to spatial problems.  

With regard to the statistically significant variables, the associations reflected by 

station type (i.e., terminal or not), train interval, station density, morning trip ratio and 

distance to the city center (indicated by the locational variables) are in line with 

previous findings (Daniels and Mulley, 2013; Hochmair, 2015; Sanko and Shoji, 2009). 

Additionally, three factors (i.e., evening trip ratio, unique user ratio, and entrance 



  
3 Biking Distances at Individual Transit Stations  

49 |  
 

number) that have been hardly examined in the literature show statistical significance 

in the regression modeling. Hence, integrating these variables to estimate the biking 

distances at individual stations is recommended. As model 1 achieves a better R2, the 

obtained mean values are used to estimate the 75th percentile distance by following a 

similar procedure described in (Hochmair, 2015). Specifically, a new estimation of the 

75th percentile distances can be generated by multiplying the obtained mean distances 

by the ratio of the 75th percentile distance over the mean distance. The adjusted R2 for 

the newly estimated 75th percentile distances is 0.527, which is slightly smaller than the 

adjusted R2 of model 2 (i.e., 0.533). Thus, using the regression model directly to 

estimate the 75th percentile distance is recommended because the procedure is even 

simpler than that described in (Hochmair, 2015).  

Table 3.5. Results of the two regression models. The model 1 and model 2 use 

the mean and 75th percentile trip distances as the dependent variables, respectively. 

 Model 1 Model 2 

Variable Coefficient  t-stat P Coefficient t-stat P 

Constant  -233 -1.1 0.274 −383.8 −1.23 0.219 

Average train interval −20. 3** −2.97 0.003 −30.0** −2.98 0.003 

Terminal 114.5* 2.04 0.04 197.4* −2.40 0.017 

Number of entrances 19.9*** 3.65 0.000 31.8*** 3.98 0.000 

Average distance of the 

four nearest stations 

0.12*** 6.40 0.000 0.15*** 5.52 0.000 

Road straightness 184.4* 2.20 0.029 217.7 1.77 0.078 

Bus station number  7.6  1.11 0.269 13.0 1.3 0.195 

Unique user ratio 828*** 4.91 0.000 1125.3*** 4.55 0.000 

Morning trip ratio 675.5** 2.81 0.005 1046.3** 2.97 0.003 

Evening trip ratio 939.9** 3.10 0.002 1123.2* 2.53 0.012 

Middle zone 78.4* 2.17 0.031 119.3* 2.26 0.025 

Outer zone 176.7*** 4.49 0.000 250.0*** 4.33 0.000 

Suburban zone 277.4*** 4.90 0.000 429.2*** 5.12 0.000 

R2 0.581 0.553 

Adjusted R2 0.562 0.533 

***p < 0.001; **p < 0.01; and *p < 0.05 

3.6 Summary 

This chapter introduces methods to identify bike-and-ride trips and to construct the 

biking routes of them using bike trajectory data. For the former task, a method to 

identify BRB trips is proposed and their distributions are used to decide the circular 
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buffer of extracting bike-and-ride trips. For constructing biking routes, an adapted 

version of the FMM map-matching algorithm is proposed to handle the issue of FBF 

segments. The methods are applied to Shanghai as a case study to measure the biking 

distances at individual metro stations. The experiments show the effectiveness of the 

proposed methods. Moreover, the general characteristics of bike-and-metro trips are 

presented in terms of trip length, duration and speed. The spatial distribution patterns 

of biking distances at individual stations are revealed. The associations between the 

selected factors and biking distances are then analyzed in detail.  

The obtained results of the Shanghai case will be used as input for the two subsequent 

chapters. For chapter 4, the 75th percentile distances of individual metro stations will 

be used as the cut-off distances for generating the bike catchment areas (BCAs) of 

metro stations. For Chapter 5, the 75th percentile distances and bike speeds at 

individual metro stations will be used for identifying population grids inside the BCAs 

and their biking access times to metro stations. 
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4 Generation and Analysis of 
Transit Catchment Areas 

 

 

Generating the transit catchment area (TCA) is a prerequisite for coverage-based 

accessibility analysis. The objective of this chapter is to propose an open-source 

framework of generating TCAs by non-motorized transport. Using the proposed 

framework and the acceptable biking distances derived in Chapter 3, the bike 

catchment areas (BCAs) of metro stations in Shanghai are then generated and assessed 

by comparing with pedestrian catchment areas (PCAs).  

Section 4.1 investigates the existing methods of modeling and generating transit 

catchment areas. Section 4.2 presents the methodological framework of generating 

TCAs by non-motorized transport. In Section 4.3, the proposed framework is 

implemented and applied to Shanghai, to answer how bike-and-ride would change the 

population coverage and overlap degree of metro systems. Comparative experiments 

are conducted to evaluate the accuracy and time efficiency of the proposed framework 

in Section 4.4 and followed by a discussion of the potential extension of the proposed 

methods in Section 4.5. Finally, we conclude the chapter in Section 4.6. Part of the  

materials in this chapter have been published in (Lin et al., 2020). 

4.1 Introduction to the Generation of Transit 

Catchment Areas 

There are different types of transit catchment areas, depending on the feeder model of 

transit stations, which can be walking, biking, bus riding and car driving. The modeling 

methods, i.e., how to represent a TCA, can be based on buffer or probability. The buffer-

based method represents the catchment area of a transit station as a buffer area around 

the station, referring to an area within which the majority of users can be located. The 

buffer distance can be either measured by the Euclidean distance or the network 

distance. According to previous studies (Foda and Osman, 2010; Gutiérrez and García-

Palomares, 2008), the latter can generate a more accurate catchment area because 
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people need to travel along roads in the real world. This buffer-based method is widely 

accepted and commonly used for modeling TCAs by non-motorized transport. The 

probability-based method represents a catchment area as a set of sub-areas with 

corresponding probabilities. This type of modeling is tightly correlated with station 

choice modeling and usually used for modeling TCAs by motorized transport modes 

(Lin et al., 2016) or multiple transport modes (Lieshout, 2012; Young, 2016). Lin et al. 

(2016) proposed an enhanced huff model to measure the probabilities of train station 

choice for park-and-ride users living in different suburbs. The derived probabilities of 

station choice are used to redefine the origins of each train station and thus the 

catchment area is constructed based on the redefined origins. Lieshout (2012) applied 

multinomial logistic regression to model the passengers’ airport choices. The 

catchment area of an airport is then represented as a combination of hinterland regions 

in which the airport has a market share of over 1%. We herein focus on the generation 

of buffer-based TCA.  

Several studies have discussed how to generate buffer-based TCAs. The Euclidean-

based TCAs can be easily generated by drawing a circular area centered at the transit 

stations. By combining the Thiessen polygons and the Euclidean-based buffer areas of 

transit stations, mutually exclusive polygons can be generated to represent non-

overlapped catchment areas (Haggett et al., 1977). With respect to generating buffer-

based TCAs based on the network distance, there are two types of input data models to 

represent streets, namely raster data models and network data models. In the raster 

data model, a study region is represented by a tessellation of cells (e.g., square cells). 

In order to measure the network distance, additional strategies are needed to integrate 

the road network information into the raster data model. For example, Upchurch et al. 

(2004) proposed a strategy that assigns different weights to network cells (i.e., cells 

representing roads) and off-network cells (i.e., cells representing areas without roads). 

By setting a “large” weight to the off-network cells, the pathfinding algorithm can 

guarantee the obtained shortest paths are constrained to the road network. 

Additionally, areas without road network can be explicitly represented as off-network 

cells and thus provide an easy way to measure off-network distances. The accuracy of 

the obtained TCAs by the raster data model largely depends on the cell size. Smaller 

size can generate more accurate catchment areas because more details, such as the 

turns of roads and the differences of neighboring lanes, can be included in the model. 

However, a smaller size also means a larger number of cells, which would  exponentially 

increase the time required for computation (Upchurch et al., 2004). In contrast, a large 

size of the cell can help speed the computation process at the cost of accuracy. 

On the other hand, generating TCAs based on the network data model (termed as 

network-based TCAs) is a more straightforward approach because the roads generally 

stored as network data (i.e., nodes and edges, see section 4.2.1). No additional data 

transform between the network data model and the raster data model is needed. The 
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distance along the road network can be accurately measured based on the network data 

model. As a result, this solution is frequently applied to build TCAs in practice. Most of 

the existing studies (Delamater et al., 2012; Lin et al., 2019) mentioned that the 

network-based TCAs are generated based on the service area tool of ArcGIS 6. However, 

few studies have discussed the detailed algorithms for generating network-based TCAs. 

Additionally, few studies have discussed how to evaluate the accuracy of network-based 

catchment areas. Although a study by (Delamater et al., 2012) showed that the 

catchment areas based on the raster data model tend to identify more underserved area 

and population as compared with those identified by the network data model, a 

quantitative evaluation of the accuracy of the network-based catchment area is still 

missing.  

This chapter focuses on methods of generating the network-based TCAs by non-

motorized transport. More specifically, an open-source framework of generating 

network-based TCAs by non-motorized transport (i.e., walking and biking) is proposed. 

Furthermore, combining with the obtained acceptable distances derived in Chapter 3, 

the proposed framework is applied to generate the BCAs in Shanghai and a coverage-

based accessibility assessment is presented accordingly. 

4.2 Methodological Framework 

4.2.1  Problem Definition 

Given a road network graph � =  (�, �) (where the node set �  represents road 

intersections and the edge set �  represent the corresponding roads) and a transit 

facility � with a cut-off distance �����, the network-based TCA of � is defined as:  

An area that exactly encompass all the points with a distance to � less than or 

equal to �����.  

We refer the points within the ����� distance of � as the accessible points; and points 

beyond this distance are termed as inaccessible points. By using “exactly”, we mean all 

the inaccessible points should be excluded in the catchment area. The distance between 

a point (e.g., � in Figure 4.1) and a facility (e.g., � in Figure 4.1) consists of two parts: 

network and off-network distances. Two assumptions are made for the distance 

measurement. First, users are assumed to choose the nearest road of the origin (e.g., � 

to ��) to start their traveling along the road network and leave the road at the nearest 

road of the destination (e.g., �� to �). Second, users are assumed to choose the shortest 

 
6 ArcGIS is a leading commercial GIS software. The description of its service area tool 
can be found in: http://desktop.arcgis.com/en/arcmap/latest/extensions/network-
analyst/service-area.htm 
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path to travel along the road network (e.g., �� to ��). Based on these two assumptions, 

the network and off-network distances can be easily calculated and the distance 

between facility � and any point can be obtained accordingly.  

 

Figure 4.1. Illustration of network and off-network distances. �  and � 

represent the locations of a facility and a point, respectively. 

 

Based on the definition of the network-based TCA, the problem under consideration is 

described as:  

Given a road network graph � =  (�, �) and a set of facilities {��, ��, … , ��}, 

Each facility �� has an associated cut-off distance ������. The aim is to design 

a method to generate n TCAs for these facilities in an efficient and accurate 

way.   

The “efficient” here means the method should be fast in terms of generating a large 

number of catchment areas. The “accurate” means the generated catchment area 

should match with the TCA definition as much as possible, i.e., the generated 

catchment area should include more accessible points and fewer inaccessible points 

(see the detailed evaluation metrics in Section 4.3.2.3).  

4.2.2  The Basic Framework 

The TCAs can be measured in two directions, namely to-facility and from-facility 

directions, corresponding to using the facility as the destination and origin, respectively. 

For an undirected road network, the distance measured in to-facility direction equals 

that measured in from-facility direction; thus, the to and from catchment areas are the 

same. In contrast, it is necessary to differentiate between to and from facility catchment 

areas in a directed road network. In addition to representing a facility as a point, the 

facility can also be geometrically represented as a set of points (i.e., multiple points), a 
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polyline, or a polygon. In this section, we focus on illustrating the framework of 

generating the TCAs by non-motorized transport using the case of the undirected road 

network and point-based facility. The methods on how to generalize the framework to 

directed graph and non-point-based facility are described in Section 4.2.3.  

Figure 4.2 illustrates the structure of the proposed framework. The general idea is to 

build a triangulation to interpolate the contour at the cut-off distance, and the areas 

enclosed by the contour is used as the catchment area. Specifically, given the input road 

network and facilities, the process of TCA generation includes three components: 

subgraph construction, extended shortest path tree (SPT) construction, and contour 

generation. These three components are elaborated in the following subsections. 

 

Figure 4.2. Framework of generating the network-based transit catchment 

areas (TCAs) by non-motorized transport. 
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4.2.2.1 Subgraph Construction 

Since the cut-off distances for TCAs by non-motorized transport are relatively small, a 

subgraph is constructed for each facility to speed up the construction of extended 

shortest path tree (see Section 4.2.2.2) by limiting the searching of shortest path to a 

small size of subgraph (i.e., graph with fewer nodes). 

 Building R-tree 

Based on the input road network edges, an R-tree (Guttman et al., 1984) is built to 

accelerate the nearest road searching and sub-edge extraction. 

 Projecting facilities to the nearest edges 

In order to measure the distance from/to a facility, each facility point needs to be 

projected to its nearest edge. Specifically, the nearest edge of a facility can be retrieved 

using the nearest neighbor query of R-tree (Roussopoulos et al., 1995). Then, each 

facility can be projected to its nearest edge by using a linear reference algorithm, which 

iterates through every segment (a segment is a line connecting two neighboring points 

of an edge) of the edge to determine the nearest segment (Yang and Gidófalvi, 2018). 

As shown in Figure 4.3, �� is the corresponding projected point of the facility �.  

 Extracting sub-edges  

We extract the sub-edges of each facility based on its projected point. Given a facility � 

with its projected point �� and the cut-off distance �����. A square searching box with 

a side length of �  and centered at ��  is created (Figure 4.3). The sub-edges of each 

facility are then extracted by finding the edges that intersect with its searching box with 

the assistance of the intersection query of R-Tree. 

The corresponding subgraph �� of the facility � can be easily constructed based on the 

extracted sub-edges of each facility. Additionally, the projected point �� is inserted into 

��  as a new node. The parameter setting of � needs to satisfy two requirements: 1) all 

the accessible edges (i.e., edges whose distance to/from � are less than or equal to ����� 

should be included in ��; and 2) some edges beyond the distance of ����� need to be 

included in ��, which will be used to interpolate additional boundary points of TCAs 

during the triangulation procedure (see Section 4.2.2.3). Therefore, � should satisfy the 

following criterion 

� ≥ 2 ∗ (����� − �(�, ��))     (4.1) 

Where:  

�(�, ��) is the distance between � and �� 

����� is the cut-off distance of �  
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Under the condition that these two requirements are satisfied, � should be as small as 

possible to improve the computation efficiency. As the detour ratios of roads are usually 

bigger than 1 and �(�, ��) is usually bigger than 0,  � can thus be set to 2 ∗ ����� . 

 

Figure 4.3. Example of subgraph construction of a facility. 

 

4.2.2.2 Extended Shortest Path Tree Construction 

An extended SPT is constructed for each subgraph, based on which the distance from a 

node to any point along the road network can be easily calculated (Okabe et al., 2006).  

 Constructing shortest path tree 

Given a node as the root node, the SPT starting from a root node can be constructed by 

employing the Dijkstra's algorithm. 

 Identifying the non-SPT edges 

As illustrated using an example in Figure 4.4, some edges (the red edges in Figure 4.4 

(b)) are not included in the SPT, which are referred to as non-SPT edges. In order to 

construct an extended SPT that includes these non-SPT edges, additional points need 

to be inserted into them. According to (Okabe and Sugihara, 2012), if a given 

���� (�, �) is a non-SPT edge, there must be a point � (termed as break point) on this 

edge that satisfies the following 

 �[�] + �(�, �) = �[�]  +  �(�, �)   (4.2) 

Where:  

�[�] and �[�] are the distances from the root node to nodes � and � 
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�(�, �) and �(�, �) are the distances between point � and nodes � and � 

How to efficiently find the non-SPT edges and the corresponding break points is a key 

issue for the construction of the extended SPT. We represent a non-SPT edge as a tuple 

(�, �,  ��), where  �� =  �(�, �). The Algorithm 4.1 describes the means of identifying the 

non-SPT edges of a facility (denoted as �����). The input of this algorithm is the 

output of the Dijkstra’s algorithm (i.e., the output of the previous step), including the 

sequence of the examined nodes of the Dijkstra’s algorithm (denoted as �� ), the 

predecessors of the examined node (denoted as �), and the shortest distances from the 

examined nodes to the root node (denoted as �). By iterating the examined nodes in a 

backward direction, the non-SPT edges can be efficiently identified (Line 4-12 in 

Algorithm 4.1).  

 

 

 Reconstructing shortest path tree 

In this step, each non-SPT ���� (�, �,  ��) is split into two edges at its break point �. 

Two new edges, namely (�, �’) and (�’’, �) are generated, where �’ and �’’ have the same 

location at �. Although the �’ and �’’ occupy the same location, they are regarded as two 

distinct nodes to make sure that no circular roads exist in the graph after inserting the 
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break points (Okabe and Sugihara, 2012). After the insertion of every single non-SPT 

edge, an updated graph can be obtained. Then, by re-running the Dijkstra's algorithm 

on this updated graph, the extended SPT can be generated (Figure 4.4 (c)).  

 

Figure 4.4. Demonstration of an extended shortest path tree. 

 

Compared with the SPT, the extended SPT can include all the non-SPT edges. The 

inclusion of these edges is crucial for the interpolation of distance to the root node 

during the contour generation (see Section 4.2.2.3). Figure 4.5 illustrates the 

interpolations based on the SPT and extended SPT by using two non-SPT edges shown 

in Figure 4.4 (b). As demonstrated, if no break point is inserted for a non-SPT edge, the 

interpolation along the edge could be incorrect. For instance, the distance from the root 

node to point �� is 2.5. Under the condition of the extended SPT, the distance to �� 

can be correctly determined through the interpolation along the ���� (3, ��)  (see 

Figure 4.5 (b)). Under the condition of the SPT, the distance is wrongly determined as 

2.33 if the interpolation is conducted along the ���� (3, 4)  (see Figure 4.5 (a)). 

Similarly, under the condition of the SPT, the interpolated distances to points, n1, n2, 

n3, and n4, are incorrect if the interpolation is conducted along the ���� (2, 4) (Figure 

4.5 (c)). Since a non-SPT edge (e.g., ���� (2, 4)) might be used as an edge of the 

triangulation, it is essential to build the extended SPT to guarantee a correct 

interpolation during the triangulation. 
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Figure 4.5. Illustration of the interpolations based on the shortest and 

extended shortest path trees.  

 

In the context of the TCA generation, the root node of the extended SPT is set to be the 

projected point �′ of facility �. The network corresponds to the subgraph ��  of the 

facility �. By following the above three steps, an extended SPT can be generated for each 

subgraph.  

4.2.2.3 Contour Generation 

Based on the extended SPT constructed in Section 4.2.2.2, the contour lines at the 

distance of (����� − �(�, �′))  is generated for a facility �  as the boundaries of its 

catchment area in the following three steps.  

 Segmenting edges 

Given an edge � = (�, �) represented by a polyline (�, ��, ��, … ��, � ), where �� to �� 

are � intermediate points of the edge. We divide the polyline-based edge into � + 1 

segments because the constraints used for constrained Delaunay triangulation are 

represented as segments instead of the polyline. The obtained segments are added as 

the constraints during the triangulation and their endpoints thus act as the vertices of 

the triangulation. Since every single edge is included in the extended SPT, the distance 

from a root node to an intermediate point ��  can be calculated by the following 

formula. 
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�(��) =   �[�]  +  �(�, ��)   (4.3) 

Where:  

 �(��) is the distance from the root node to the intermediate point �� 

�[�] is the distance from the root node to node � 

�(�, ��) is the distance from node  � to the intermediate point ��  

 Building constrained triangulation 

Based on the constrained segments obtained in the previous step, a constrained 

Delaunay triangulation is built for each extended SPT by using the Computational 

Geometry Algorithms Library (Boissonnat et al., 2007).  

 Generating contour lines 

Using the constrained Delaunay triangulation as input, the contour lines specified at 

the cut-off distance (i.e., (����� − �(�, �′))) are generated by employing a tracing-based 

contour generation algorithm (Watson, 1992).  

The reason for constructing the constrained Delaunay triangulation instead of 

Delaunay triangulation is because the edges of Delaunay triangulation may intersect 

with network edges and lead to incorrect distance interpolation during the contour 

generation. Figure 4.6 illustrates the interpolations based on Delaunay and constrained 

Delaunay triangulations for a road network. Figure 4.6 (b) shows a triangulation 

���� (2, 4) intersects with a network ���� (3, 5) at point �. In such case, the distance 

from the root node to point � is interpolated based on the triangulation ���� (2, 4) 

because the network ���� (3, 5) is not included in the Delaunay triangulation. As a 

result, the interpolated distance is different from the real distance from node 1 to point 

� (following a path 1– 2  –  3 –  � ). In contrast, since every network edge is included in 

the constrained Delaunay triangulation (Figure 4.6 (c)), the distance from the root node 

to any point along the network edge can be correctly determined.  
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Figure 4.6. Illustration of the interpolations based on the Delaunay and 

constrained Delaunay triangulations. 

 

Based on the generated contour lines of a facility, the corresponding TCA can be easily 

constructed and represented by the areas enclosed by the contour lines. Using the Da 

Muqiao metro station in Shanghai as an example, the process of catchment generation 

is shown in Figure 4.7. In this example, the road network is represented as an 

undirected graph, and the station is represented as a point. The cut-off distance ����� =

 1 km, the side length of the searching box � = 2 km. Figure 4.7 (a) shows the sub-edges 

extracted by using the searching box. Figure 4.7 (b) shows the SPT edges and non-SPT 

edges among the sub-edges. Figure 4.7 (c) shows the constrained Delaunay 

triangulation. The intermediate points and segments are included in the triangulation 

as its vertices and edges, respectively. Figure 4.7 (d) shows all the accessible edges and 

the corresponding catchment area. The catchment area is represented by a polygon 

consisting of an exterior ring and three interior rings (i.e. the “holes” in Figure 4.7 (d)), 

corresponding to four contours lines obtained during the process of contour generation. 

Obviously, all the accessible edges can be successfully covered by the generated 

catchment area. Moreover, the inaccessible areas within the exterior ring can be 

identified and excluded in the generated catchment area.  
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Figure 4.7. The process of catchment area generation of a point facility 

based on an undirected road network. (a) sub edges, (b) SPT and non-SPT edges, 

(c) constrained Delaunay triangulation, and (d) accessible edges and catchment area. 

 

4.2.3  Generalization of the Framework 

In Section 4.2.2, the basic framework is illustrated based on two assumptions: 1) the 

road network is represented as an undirected graph, and 2) the facility is geometrically 

represented as a point. Generally, these two assumptions match well with numerous 

real-world applications. Since the road network for non-motorized transport usually 

can be considered as an undirected road network and transit facilities (e.g., bus stations) 

are commonly geometrically represented as a point. However, some cases might be 
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more complicated. For instance, the road network for bikers may be modeled as a 

directed road network because some cities have roads that only allowing biking in a 

single direction. To get a more accurate TCA, it is better to represent a large transit hub 

as a set of entrance points instead of one single point of its station center. The methods 

on how to generalize the framework to the cases of the directed road network and non-

point facilities are presented in this section. 

4.2.3.1 Generalization to a Directed Road Network 

The major differences between the directed and undirected road networks occur at the 

process of constructing the “Extended shortest path tree” with the following 

modifications.  

 First, for the directed graph, the adjacent nodes in Line 7 of Algorithm 4.1 specify 

the start nodes of the in-edges of node � (i.e., edges with the target node at node �).  

Whereas for the undirected graph, there is no need to distinguish the in-edges and 

the outer-edges of a node.  

 Second, if an edge (�, �) that corresponds to a single-direction road edge is a non-

SPT edge, which means �[�] + �(�, �) ≥ �[�]. Then, it is only possible to find a 

point � at the location of � that satisfies Equation (4.2). Therefore, there is no need 

to insert any break point under such conditions. One the contrary, if a non-SPT 

edge (�, �)  corresponds to a bi-direction road edge, a break point can thus be 

inserted as the case of the undirected graph. Although no break point is added into 

a non-SPT edge when it corresponds to a single-direction road edge, during the 

segmentation of road edges (see Section 4.2.2.3), the distance between an 

intermediate point �� and the root node can be correctly calculated using Equation 

(4.3) as well.  

 Third, during the reconstruction of the shortest path tree, both edges (i.e., edge (�, �) 

and edge ( �, � )) of a bi-direction edge need to be split at the break point � . 

Additionally, instead of inserting two points (i.e., �’ and �’’) with the same location, 

only one break point � is needed. 

With respect to the directed graph, the catchment area of a facility can be further 

classified into to-facility and from-facility catchment area as noted in Section 4.2.1. By 

default, the root node of the Dijkstra’s algorithm is set to be the projected facility point, 

which corresponds to the from-facility catchment area. With respect to the generation 

of the to-facility catchment area, the only modification is to reverse the direction of 

each edge during the construction of subgraph (Section 4.2.2.1). Then, by using the 

projected facility point as the root node, we can obtain the to-facility catchment areas. 

Figure 4.8 illustrates an example of generating a TCA based on the directed road 

network. The directed road network is constructed by manually modifying some bi-
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directional edges (Figure 4.7) to single-direction edges (the red edges in Figure 4.8), 

other parameters are the same as that of Figure 4.7.  

 

Figure 4.8. Two catchment areas of a point facility based on a directed road 

network. (a) from-facility catchment area, and (b) to-facility catchment area. 

 

4.2.3.2 Generalization to Non-point Facilities 

In addition to modeling a facility as a point, a facility can also be geometrically 

represented by a set of multiple points, a polyline, or a polygon. Generally, polylines 

and polygons can be transferred into multiple points by using a discretization strategy. 

Therefore, we use the case that a facility is represented as multiple points to illustrate 

how its catchment area is generated. Assuming a facility  �  is represented by �  sub 

points ��(�), �(�), … , �(�)�  and their corresponding projected points are 

��′(�), �′(�), … , �′(�)�. An intuitive method of generating the catchment area of � is to 

dissolve all the individual catchment areas of its � sub points (termed as dissolving-

based method). However, we propose another method, termed as virtual node-based 

method, to generate the catchment area of � in a more efficient way. Specifically, the 

virtual node-based method requires two modifications. 

 First, during the processing of subgraph construction, the searching box should be 

set as the bounding box of all the searching boxes of ��′(�), �′(�), … , �′(�)�.  

 Second, a virtual node needs to be added to each subgraph during the subgraph 

construction. The weights between the virtual node and any of point in 

��′(�), �′(�), … , �′(�)� are set to be zero. Then, this virtual node is used as the root 

node to construct the extended SPT and generate the corresponding contour lines.  
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Figure 4.9 shows an example of the catchment area of a multiple-point facility 

generated by the virtual node-based method. In this example, Da Muqiao metro station 

is represented by its six entrances (i.e., six points of the multiple points). The cut-off 

distance is set to be 1 km. The catchment area boundaries of each individual entrance 

by using 1 km as the cut-off distance are generated as well (in yellow dotted lines). As 

shown in Figure 4.9, the generated catchment area is almost the same as that obtained 

by dissolving the individual catchment areas of each entrance (i.e., the dissolving-based 

method). This demonstrates that the virtual node-based method can be effectively 

applied to generate catchment areas for non-point facilities.  

 

Figure 4.9. Catchment area of a multiple-point facility based on an 

undirected road network. 

 

4.3 Implementation and Application to Shanghai 

4.3.1  Implementation 

The proposed framework is implemented as an open-source C++ program7 and its user 

interface is shown (Figure 4.10). The program provides functions for generating TCAs 

with different configurations. Specifically, the input road network can be undirected 

 
7 https://gitlab.com/Drsulmp/tcageneration 
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roads or directed roads; the input facilities can be geographically represented as a 

single point or multiple points. Additionally, the corresponding accessible edges within 

the TCAs can be generated as well.  

 

Figure 4.10. User interface of the TCA tool. 

 

4.3.2  Analysis of the Catchment Areas of Shanghai Metro 

System 

In this section, we apply the proposed methods to generate the BCAs of metro stations 

in Shanghai by representing each station as its entrances (i.e., multiple point facility). 

The 75th percentile distances of individual stations obtained in Chapter 3 are used as 

the cut-off distances. The road network and metro stations related data are the same as 

that used in Chapter 3. Additionally, a population dataset originated from the 250 * 

250 m Global Human Settlement (GHS) is used for population coverage analysis 

(Schiavina et al., 2019).  

To understand how dockless shared bikes could change the accessibility to transit, the 

BCAs are compared with 800 m PCAs. The obtained catchment areas correspon0ding 

to the PCAs and BCAs are showed in Figure 4.11. Two indicators, namely population 
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coverage ratio and overlap degree, are used for quantitative comparison. The 

population coverage ratio is the proportion of the population being covered in a zone 

(see Section 2.2.2). A large population coverage ratio means a good accessibility to 

metro systems. For a location inside a zone, the overlap degree is reflected by the 

number of overlapped catchment areas, i.e., covered by how many catchment areas of 

metro stations. Thus, a location with a large overlap degree means many stations are 

available within acceptable distances. Table 4.1 lists the population coverage ratios 

corresponding to different zones in Shanghai. All the zones show an increase in 

population coverage, and the increase of the coverage ratio for the middle and outer 

zones is especially noticeable (increased by 103% and 162%, respectively). The increase 

demonstrates the benefits of the integration of dockless shared bikes and the metro 

system. Given the fact that areas outside the inner zone have a higher increase of 

population coverage but a relatively low trip density; bike-sharing sectors should be 

aware of the potential scarcity of shared bikes in these areas. Furthermore, a small 

proportion of the population within the central city is still beyond the coverage of the 

BCAs. The uncovered population should be given special attention in case of potential 

scarcity of metro feeder services. If necessary, measures, such as enhancing bus 

services and adding roads, may help improve the accessibility to metro stations. 

Table 4.1. The population coverage ratios in different zones corresponding 

to 800 m pedestrian catchment areas (PCAs) and bike catchment areas 

(BCAs). 

 Inner zone Middle zone Outer zone Central city 

PCA 0.751 0.432 0.265 0.471 

BCA 0.952 0.876 0.693 0.839 

Increase 26.8% 103% 162% 78.1% 

 

As illustrated in Figure 4.11, the catchment areas are classified into five categories based 

on the overlap degrees: areas covered by 1, 2–3, 4–5, 6–7, and 8–9 stations. The 

maximum overlap degrees for the PCAs and the BCAs are 5 and 9, respectively. Similar 

to the population coverage, the overall overlap degree can also be largely increased by 

bike-and-metro, particularly in the inner zone. From the perspective of demand, the 

increased overlap degree indicates bike-and-ride offers users more choices of metro 

stations. In other words, metro stations that are not accessible within the walking 

distance can be accessed by biking. Such an overlapping phenomenon might also 

indicate that bike-and-ride could be used to relieve the issue of overcrowded metro in 

Shanghai by guiding users to less crowdy metro stations. Further examination is 

needed to check in which locations such possibility may exist (see Chapter 5). From the 

perspective of supply, a high overlap degree might indicate an excessive system 
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redundancy (El-Geneidy et al., 2014). The overlap degrees of the PCAs are mostly 

smaller than 4, indicating a reasonable level of system redundancy. In contrast, the 

overlap degrees of the BCAs are very high in the inner zone, indicating a high system 

redundancy. However, since walking still acts as the primary metro access mode, the 

conclusion of a system redundancy can only be drawn with some special caution. 

Further examination regarding the traffic flow, bike availability, and people’s biking 

willingness is necessary.  

 

Figure 4.11. Pedestrian and bike catchment areas of metro stations in 

Shanghai. (a) 800 m pedestrian catchment areas, and (b) bike catchment areas. 
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4.4 Comparative Experiments and Evaluation 

4.4.1  Data and Experimental Set-up 

Two major datasets, namely the metro station dataset and road network dataset, are 

used for experiments. In total, 280 metro stations and the associated 1143 metro 

entrances in Shanghai are included. The data collection methods are illustrated in 

Section 3.2. All the experiments are conducted on a desktop computer with Intel Quad 

Core CPU 3.40 GHz and 32 GB RAM.  

4.4.2  Comparison with Alternative methods 

To illustrate the effectiveness of the method developed in this thesis, the author 

investigated four alternative methods.  

Method 1: Convex hull-based method. This method first finds the cut-off points 

along with the network, whose distance to/from the facility is equal to the cut-off 

distance. Then, the convex hull of the cut-off points is used to represent the catchment 

area. 

Method 2: A SPT-based triangulation method. This method is a simplified 

version of the proposed framework. Specifically, after the construction of subgraph, a 

normal SPT is built to obtain the distances between network nodes and the facility. 

Then, using the network nodes as the input, a Delaunay triangulation is built to 

generate the contour lines at the specific cut-off distance. 

Method 3: An extended SPT-based triangulation method. As indicated by the 

name of this method, the difference between this method and the proposed method 

only occurs at the part of triangulation construction. Instead of a constrained Delaunay 

triangulation, a Delaunay triangulation is constructed based on the nodes of the 

extended SPT. The contour lines are then generated based on the constructed Delaunay 

triangulation.  

Method 4: The ArcGIS method. In this method, the service area tool provided by 

ArcGIS is used to generate the network-based catchment areas. The ArcGIS method is 

conducted via the ArcGIS Desktop 10.6, where the polygon type of the service area is 

set to be “detailed” and the other parameters are set as default.  

Using the same input and setting as that of Figure 4.7 (Section 4.2.2.3), the catchment 

areas generated by the four above methods and our proposed method are visualized in 

Figure 4.12. It is noticeable that some inaccessible edges are wrongly included in the 

catchment area generated by method 1. Very few inaccessible edges are wrongly 

included in the catchment areas generated by method 2 and 3. As shown by the dotted 
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black circle 4 in Figure 4.12 (c), the method 3 has improvements on excluding 

inaccessible edges than method 2 because the non-SPT edges are included in the 

extended SPT. Some accessible edges are not correctly included in the catchment areas 

generated by method 2 and 3. Specifically, these accessible edges are marked by the 

dotted back circles 1, 2 and 3 in Figure 4.12 (b) and Figure 4.12 (c). In contrast, all 

accessible edges are correctly included, and inaccessible edges are correctly excluded 

in the catchment areas generated by method 4 (Figure 4.12 (d)) and our method (Figure 

4.12 (e)). Slight differences can be found in terms of the shapes of these two catchment 

areas (e.g. marked by the dotted black circle 6 in Figure 4.12 (d) and Figure 4.12 (e)). 

The comparison between the proposed method and method 3 illustrates the necessity 

of building the constrained Delaunay triangulation. The comparison between method 

3 and method 2 shows the advantages of the extended SPT over the normal SPT.  
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Figure 4.12. The catchment areas generated using five different methods. 
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4.4.3  Accuracy Evaluation 

In this section, the accuracy of TCAs generated by the proposed method is evaluated. 

Based on the visual analysis of Figure 4.12, we select the ArcGIS method as a 

comparison because it has the closest result as ours. For the accuracy evaluation, a 

benchmark is needed to represent the “correct/actual” catchment area of a facility with 

a given cut-off distance. Corresponding to the TCA definition given in Section 4.2.1, a 

set of regular grid points within the searching box of each facility are generated (see 

Figure 4.13). The distance between any grid point and the facility can be easily 

calculated based on the extended-SPT. The grid points can then be classified into 

accessible points and inaccessible points, depending on whether they are within or 

beyond the cut-off distance as shown in Figure 4.13.  

 

Figure 4.13. Illustration of accessible and inaccessible points within the 

searching box. 

 

Theoretically, a good catchment area should satisfy two criteria:  

 a high ratio of the correctly included accessible points to all the included points 

 a high ratio of the correctly included accessible points to all the accessible points  

In this way, the accuracy evaluation of catchment areas is reduced to a binary 

classification issue. Specifically, the first criterion means a high precision; and the 

second criterion means a high recall. Furthermore, another commonly used integrated 

metric, i.e., F1 score, is used as an integrated metric of accuracy evaluation. F1 score is 
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the harmonic average of the precision and recall, and a higher F1 score represents a 

better accuracy of the generated catchment area. Mathematically, the precision, recall 

and F1 score are measured as follows.  

��������� =  
����_���

����
       (4.4) 

������ =
����_���

����
       (4.5) 

��_����� = 2 ∗
���������∗������

��������� � ������
     (4.6)  

Where:  

N���_��� denotes the number of accessible grid points within the catchment area 

N��� denotes the number of grid points within the catchment area 

N��� denotes the number of accessible grid points 

�, �, and ��_����� denote the precision, recall, and F1 score, respectively 

 

For evaluation, the 32 station centers of the metro line 12 are used as the input facilities. 

Corresponding to non-motorized transport mode, the cut-off distances are set to be 0.8 

km, 1 km, and 1.2 km, respectively. The size of the grid is set to be 10*10 m for the 

generation of grid points. Given a cut-off distance, the corresponding precision, recall 

and F1 score for each station are measured. The average values of the precision, recall 

and F1 score for the 32 stations are listed in Table 4.2. As indicated by the average 

number of grid points in the TCAs, the TCAs generated by the proposed method are 

larger than those generated by the ArcGIS method. The two methods both obtain a 

mean F1 score larger than 90% for all the three cut-off distances, indicating that both 

methods can be suitably used for the generation of network-based TCAs. As reflected 

by the mean values of F1 score, the proposed method generally achieves better 

performance than the ArcGIS method. The ArcGIS method generally gets a higher 

precision than the proposed method, indicating that less inaccessible grid points are 

wrongly included in the TCAs generated by the ArcGIS method. On the contrary, the 

proposed method achieves higher recall than the ArcGIS method, indicating more 

accessible grid points are correctly included in the catchment areas.  
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Table 4.2. Statistics for 32 stations under different cut-off distances. 

Cut-off  

distance 

(km) 

Average number 

of grid points in 

the TCAs 

Average 

Precision 

Average 

Recall 

Average 

F1 score 

ArcGIS Ours ArcGIS Ours ArcGIS Ours ArcGIS Ours 

0.8  9271 10217 0.932 0.908 0.885 0.954 0.904 0.928 

1.0  15120 16798 0.948 0.916 0.891 0.962 0.914 0.937 

1.2  22480 25049 0.955 0.921 0.899 0.973 0.924 0.946 

 

4.4.4  Time Efficiency 

The time efficiency is evaluated by using two experiments. In the first experiment, we 

compare the efficiency of generating TCAs of point-based facilities by using our method 

and ArcGIS method. In the second experiment, we compare the efficiency of generating 

TCAs of multiple-point facilities by using the dissolving-based and virtual node-based 

methods (see Section 4.2.3.2).  

Experiment 1: Point-based facility  

The running times of the ArcGIS and our method are used as the metric for efficiency 

evaluation. For the ArcGIS method, the running time includes two parts: the time used 

for searching the projected points of facilities and the time used for generating the 

catchment areas. For the proposed method, the running time is the entire process time 

from input to output. The experiment requires to set two parameters, namely the 

number of point-based facilities and the cut-off distance. Similar to Section 4.4.3, the 

cut-off distances are set to be three different values: 0.8 km, 1 km, and 1.2 km. With 

respect to the number of facilities, three different levels (i.e., 32, 64, and 128 facilities) 

are selected. The facilities are randomly selected from the 165 metro entrances of line 

12. By combining these two parameters, we get nine different experimental settings. 

For each experimental setting, the same experiment is conducted for three times, and 

the average running time is taken as the final running time.  

The running times listed in Table 4.3 reveal that our method is at least two times faster 

than the ArcGIS method. Under the same cut-off distance, more facilities lead to an 

increase in the running time for both methods. And the increase for the ArcGIS method 

is more obvious than that of ours, as indicated by the increase of running time ratios 

between the ArcGIS method and ours. It is also noticeable that our method is more 

sensitive to the change of cut-off distance. An increase in the cut-off distance causes a 

larger increase in running time in our method than the ArcGIS method. A larger 
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distance of the cut-off distance leads to a larger size of subgraph; hence, the overall 

running time of our method has been increased. 

Table 4.3. Running times of generating the catchment areas of point-based 

facilities using the ArcGIS and the proposed methods.  

Experimental  

setting 

Running time 

(seconds) 

ArcGIS 

running time 

/Our running 

time 

Number of 

facilities 

Cut-off distance 

(km) 

ArcGIS Ours 

32 0.8 177 54.1 3.3 

64 0.8 376 65.3 5.8 

128 0.8 714 84.8 8.4 

32 1.0 177 58.8 3.0 

64 1.0 377 76 5.0 

128 1.0 717 105.5 6.8 

32 1.2 178 65.4 2.7 

64 1.2 380 92.1 4.1 

128 1.2 728 135 5.4 

 

Experiment 2: Non-point facility  

In this experiment, we randomly select 5 different numbers of metro stations (Table 

4.4) from the 280 metro stations to test the running time based on the dissolving-based 

and virtual node-based methods. The two methods are conducted using the proposed 

method and the cut-off distance is set to be 1.2 km. For the dissolving-based method, 

the running time represents the time used for generating individual catchment areas of 

all the entrances, i.e., the time for dissolving the catchment areas is not included. 

Similar to experiment 1, the same experiment is conducted three times for each 

experimental setting, and the average running time is deemed to be the final running 

time. As shown by the results listed in Table 4.4, we observe a sharp drop in the running 

time when the virtual node-based method is used for generating the metro catchment 

areas. Such a drop indicates that the virtual node-based method can largely improve 

the time efficiency, and the improvement is more obvious with the increase of the 

number of input facilities. Furthermore, no additional dissolving procedure is required 

by the virtual node-based method. Combined with the results obtained in Table 4.3, we 

can infer that the virtual node-based method can achieve an even larger improvement 

in efficiency if compared with conducting the dissolving-based method via ArcGIS. For 

instance, the running time for generating the catchment areas of 1143 entrances by 

using ArcGIS is 5326 s, which is 22 times as much as the running time required by the 

virtual node-based method (i.e., 236.4 s).  
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Table 4.4. Running times of generating the catchment areas of non-point 

facilities using the virtual node-based and dissolving-based methods. Both 

methods are conducted via the proposed method and the cut-off distance is 1.2 km for 

all the experimental settings. 

Experimental 

setting 

Running time 

(seconds) 

 

VNB running time 

/DB running time 
Number of 

stations 

Number of 

entrances 

Virtual node- 

based (VNB) 

Dissolving-

based (DB) 

50 193 75.6 152.5 2.0 

100 393 119 321.8 2.7 

150 633 152 480.2 3.2 

200 830 189.6 631 3.3 

250 1022 219.6 747.4 3.4 

280 1143 236.4 814.4 3.5 

 

4.5 Discussions 

The impedance of a network edge is measured by its length in this study. In practice, 

we may use travel time rather than length as the impedance. The proposed framework 

can be easily applied to generate the TCA within a given cut-off time through minor 

modifications. Specifically, the modification occurs at the step of subgraph 

construction, i.e., the cut-off time needs to be transferred to a cut-off distance to define 

the size of the searching box. Such transfer can be achieved by multiplying the cut-off 

time by the maximum speed of road edges.  

Furthermore, other potential environmental factors, such as road quality (e.g., road 

material) and connectivity, can be incorporated into the travel impedance modeling. 

For instance, the sidewalk is an important element that may need consideration for 

defining the travel impedance of walking. Correspondingly, cyclists may pay more 

attention to the number and quality of bike lanes. In general, the impact of these 

elements can be modeled by incorporating additional weighing factors to the length of 

road edges. The updated travel impedance of an edge � denoted as follows. 

 ��(�)   =  �(�(�))      (4.7) 

where �� (�)  is the new impedance of  � ,  �(�)  is the length of  � , and �(∗)  is the 

weighting function determined by considered influence factors. Hence, a new weighted 

road network can be constructed and used to support the new approach for the 

generation of TCAs.  
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The interpolation based on the constrained Delaunay triangulation is one of the key 

components of the proposed framework. Since all road segments are included as the 

constraints during the triangulation, the interpolated distances along the network are 

thus guaranteed to be accurate. On the other hand, the interpolation by triangulation 

cannot guarantee an accurate result for the off-network area. This is reflected by the 

accuracy evaluation of generated TCAs (i.e., the precision and recall are both below 

100%). Generally, the high F1 score indicates that such a triangulation-based method 

offers a reasonable accuracy of TCAs in the urban context. This can be partly explained 

by the high density of roads in urban areas because a high road density means more 

network nodes are involved during the interpolation. Figure 4.14 shows an example of 

the scatter plot between the road density and the F1 scores. The road density is 

measured as the ratio of the total length of subgraph edges to the area of the 

corresponding searching box. The F1 scores correspond to the evaluation of the 32 

catchment areas generated by our framework under the cut-off distance of 1.2 km (see 

Section 4.4.3). As shown, although it is not a linear relationship, the distribution 

generally indicates that a higher density of road is likely to have a better F1 score.  

 

Figure 4.14. Relationship between road densities and F1 scores. The F1 

scores correspond to the evaluation of the 32 catchment areas generated by our 

framework under the cut-off distance of 1.2 km. 

 

It is important to note the F1 score is an integrated accuracy evaluation from the 

geometrical perspective. A high F1 score means a high similarity of the generated 

catchment area and the real catchment area. In this way, such a metric is especially 

useful when the generated catchment area is employed to differentiate the transit-

covered areas from underserved areas. If the generated catchment area is specifically 

used for estimating the population being covered by a station (e.g., for transit ridership 

modeling), we may need additional metrics to evaluate the performance of a TCA 
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generation method, i.e., metrics to test how the covered population estimated by the 

generated TCAs is different from the real covered population. For instance, a 

comparison of the total population of the accessible points and the covered population 

by the catchment area could be a possible approach.  

As demonstrated by the time efficiency evaluation, the proposed framework is 

especially useful for a fast TCA generation of non-point transit facilities (e.g., rail transit 

stations). For instance, identifying a suitable cut-off distance for transit ridership 

modeling from a series of candidates (e.g., 600 – 1200) is a typical time-consuming 

scenario. The running time of our method is largely affected by the cut-off distance. A 

larger cut-off distance means a larger size of subgraph and more computing time for 

the construction of the extended SPT and constrained Delaunay triangulation. For 

transit catchment areas by non-motorized transport, the cut-off distances usually are 

small (e.g., less than 3km), which makes the running time can be limited at a reasonable 

level. In our test, we find that the most time-consuming part of the processing is the 

construction of constrained Delaunay triangulation. Therefore, reducing the number of 

constraint edges is a possible way to improve time efficiency. Correspondingly, a 

preprocess of road simplification (e.g., remove the intermediate points within a straight 

road edge) could help speed up the generation of catchment areas. 

4.6 Summary 

Generating the network-based TCA is one of the prerequisites for coverage-based 

accessibility analysis. It is therefore highly desirable to make this service sharable and 

transparent to the public. Our open-source framework of generating TCAs by non-

motorized transport is developed for this purpose. The methodological framework 

includes three components of the process: subgraph constructions, extended SPT 

construction, and contour generation. The methods on how to extend the framework 

to the directed graph and non-point facilities are developed. The implementation of the 

framework is provided as an open-source prototype. Using the proposed framework 

and the derived acceptable distances in Chapter 3, the BCAs of metro stations in 

Shanghai are generated. Comparing with 800 m PCAs, the population coverage ratio 

of the central city has been increased from 47.1% to 83.9% by using dockless shared 

bikes as the feeder mode. The overall overlap degrees for catchment areas have also 

been increased noticeably by bike-and-ride. The maximum overlap degrees for PCAs 

and BCAs have been increased from 5 to 9. These results provide us a general picture 

of how bike-and-ride could change the accessibility to Shanghai Metro. 

The feasibility and effectiveness of the proposed framework are evaluated. The results 

show that the precisions and the recalls of the generated TCAs are above 90% and the 

F1 scores are comparable with the ArcGIS method. The running time of the proposed 
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method is much faster than the ArcGIS method under the nine different experimental 

settings. The proposed framework is especially efficient in generating a larger number 

of catchment areas of non-point facilities. 
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5 Bike Accessibility to Metro 
Systems Constrained by 
Crowdedness 

 

 

The coverage-based analysis offers a general picture of how bike-and-ride could change 

the accessibility to the metro system (Section 4.3). However, it failed to provide a finer-

scale assessment of the accessibility inside the catchment areas of metro stations. The 

first objective of this chapter is to assess the bike accessibility at the population grid 

level. To achieve this objective, an indicator called metro accessibility level (MAL) is 

introduced to measure accessibility to metro systems. As mentioned in Section 4.3, 

bike-and-ride could offer a possibility to avoid crowdy stations by shifting to less 

crowdy stations; thus, the second objective is to examine in which population grid(s) 

such possibilities exist.  

Section 5.1 analyzes the importance of grid-level accessibility and reasons for the 

necessity of incorporating crowdedness. Section 5.2 elaborates the modeling of the 

MAL indicator. In Section 5.3, the proposed indicator is applied, taking the same test 

site Shanghai. The decision procedure of whether a population grid can be shifted from 

crowded to non-crowded stations is presented in Section 5.4, and the case of morning 

peak is analyzed accordingly. Section 5.5 discusses the analytical results and potential 

improvements on the MAL indicator. Section 5.6 summaries this chapter.  

5.1 The Role of Crowdedness in Accessibility 

Modeling  

Among the numerous assessment approaches of public transit accessibility assessment, 

the coverage analysis of transit catchment areas (TCAs) is easy to implement and 

interpret. Generally, a large area/population coverage of a transit system is regarded as 

an indicator of good accessibility of the transit system (Currie, 2010). The coverage-

based analysis is useful for capturing a general picture of the accessibility to public 
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transit. However, the area/population coverage of a transit system is a simplified 

indicator because all the traveler inside the catchment is deemed to have the same 

degree of accessibility (García-Palomares et al., 2013). 

The public transport accessibility level (PTAL) introduced in Chapter 2 can be adopted 

to model the accessibility at a finer spatial scale. It involves differentiation factors, such 

as average waiting time and access time, to assess the accessibility of individual spatial 

grids. The finer-scale measurement can offer subtle insights into micro-level transport 

planning. For instance, specific areas that need accessibility improvement can be 

determined by a joint analysis of accessibility and the corresponding population 

distributions. Therefore, the PTAL has shown its wide applicability outside London (i.e., 

the origin of the PTAL), including cities such as Manchester (the UK) (Transport for 

Greater Manchester, 2016), Melbourne (Australia) (Saghapour et al., 2016), and Surat 

(India) (Adhvaryu et al., 2019). As one of the limitations of the PTAL, the impact of 

transit crowdedness is not considered in the accessibility modeling. This is partly 

because of the difficulty in modeling and incorporating the impact into the PTAL. 

However, for metropolitans (e.g., Shanghai and London) that suffer from high-level 

transit crowdedness during peak hours, it is crucial to consider the impact of 

crowdedness on transit accessibility. Existing studies have shown that transit 

crowdedness affects traveling from several aspects. First, the crowdedness could 

increase the train dwelling time and cause train delay depending on the number of 

boarding, alighting, and onboard passengers (Kim et al., 2015; Lin and Wilson, 1992). 

Second, the crowdedness can lead to additional waiting time if passengers cannot board 

an overcrowded train (Raveau et al., 2014). Third, the crowdedness also affects the 

comfort of riding and leads to problems such as anxiety and stress. As a result, the 

transit crowdedness is an important component of transit reliability and can affect 

users’ modal choices (Tirachini et al., 2013) and route choices (Kim et al., 2015; Raveau 

et al., 2014). 

The crowdedness can be understood as a result of the imbalance between the supply 

and demand of transit services, i.e., a result of the excessive competition from 

passengers. To incorporate the competition into transit accessibility measurement, 

several studies (Kyung et al., 2018; Langford et al., 2012; Xu et al., 2015) adopted the 

two-step floating catchment area (2SFCA) method to measure the transit accessibility. 

The original 2SFCA method (Luo and Wang, 2003) is developed for measuring 

accessibility to health services and consists of two steps. Step 1 measures the supply-

to-demand ratio of a facility as the ratio between its supply and potential demand (e.g., 

population in the catchment area of the facility). Step 2 measures the accessibility of a 

location as the cumulative supply-to-demand ratios of all the facilities within its 

catchment area. In addition to some adaptions (e.g., the model of transit supply and 

inclusion of distance decay effect) need to suit the transit accessibility characteristics, 

the core value the 2SFCA-based methods added to the transit accessibility 
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measurement is the inclusion of the supply-to-demand ratio. As argued by (Langford 

et al., 2012), the supply-to-demand ratio (in step 1) can reflect the impact of excessive 

demand on transit accessibility. Hence, the transit “crowdedness” is implicitly 

integrated into the accessibility measurement. Generally, a larger supply-to-demand 

ratio acts as an indicator of a lower “crowdedness”. However, the supply-to-demand 

ratio is still “biased” to some extent. Given a bus with 60 seats as its supply and two 

different scenarios with different levels of demands, i.e., scenario 1 with 10 passengers 

and scenario 2 with 20 passengers. In this case, the supply-to-demand ratio of scenario 

1 is two times as that of scenario 2, although there is no crowdedness for both scenarios. 

In addition, the 2SFCA methods usually model potential transit demand based on the 

population inside the pedestrian catchment areas (PCAs) without considering the 

demand beyond the PCAs.  

To integrate the crowdedness into the accessibility measurement, we propose an 

indicator called metro accessibility level (MAL) on the basis of the PTAL. We explicitly 

incorporate the transit crowdedness into MAL by transferring the crowdedness into 

additional waiting time. We then apply the MAL indicator to measure bike accessibility 

to the metro system in Shanghai. To provide a better spatiotemporal granularity of 

accessibility analysis, the accessibility during morning and evening peaks are measured, 

respectively. Additionally, the bike catchment areas (BCAs) and biking speeds of 

individual metro stations are measured using trajectory data; hence, a more realistic 

assessment of bike accessibility to metro systems can be obtained.  

On the other hand, bike-metro integration has the flexibility to relieve the metro 

crowdedness due to its potential in increasing accessibility to metro systems (see 

Section 4.3). For instance, less crowdy metro stations beyond walking distance might 

become accessible within an acceptable time if biking is used as the access mode instead 

of walking. As a result, from the perspective of users, using biking to substitute walking 

might help them to avoid crowded metro stations without increasing the total access 

time (TAT). From the perspective of metro operators, the promotion of bike-metro 

integration might help to relieve the crowdedness of some metro stations. Thereby, we 

propose methods to determine the locations where users might use biking as the access 

mode to avoid crowded stations without increasing the TAT.  

5.2 Metro Accessibility Level  

1)  Access time  

The access time (AT) from a traveler location � to a metro station � depends on the 

corresponding distance and speed. In the case of a station with multiple entrances, the 

distance to the nearest entrance is taken and measured by using Dijkstra’s shortest path 
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algorithm (denoted as Dis��). For different metro stations, the catchment areas might 

be different because the willingness of walking/biking depends on the context of a 

station (e.g., location and service quality). In order to derive the BCAs of individual 

metro stations, the 75th percentile distance of the access/egress trips of a metro station 

is regarded as its maximum acceptable biking distance (Lin et al., 2019; Wang et al., 

2016). Similarly, the biking speeds heading to metro stations vary from station to 

station because the road condition around each metro station is different. Thereby, the 

average biking speed heading to station �  (denoted as  AvgS� ) is estimated as the 

average biking speed of its associated bike-and-ride trips.  

AT��  =  Dis��/AvgS�     (5.1) 

2)  Scheduled waiting time  

Based on the accessible metro stations of a traveler location, the corresponding 

accessible metro lines can be constructed. The scheduled waiting time (SWT) of a metro 

line is then decided by its service frequency and measured as half of the headway. 

               ����  =  0.5 ∗  �� = 0.5 ∗  
��

��
    (5.2) 

Where ����  is the scheduled waiting time for metro line �. ��  and ��  are the service 

frequency and headway of metro line �, respectively. For instance, for a metro line with 

a service frequency of 10 train/hour, the corresponding scheduled waiting time is 3 

minutes. If the service frequencies of the two directions are different, the average value 

is calculated as the headway of the metro line.  

3) Average waiting time caused by crowdedness  

As mentioned in Section 5.1, the metro crowdedness can cause additional waiting time 

for passengers from two aspects: the train delay and the allowed boarding capacity. 

This study focuses on modeling the second aspect. Specifically, a passenger needs to 

wait for additional trains (e.g., waiting for the next train) when the train occupancy rate 

exceeds a certain threshold. Thereby, the average waiting time caused by crowdedness 

(AWTC) can be calculated as follows. 

������ = ��� ∗  �� ∗ ����     (5.3) 

������
 is the average waiting time caused by crowdedness for metro station � of metro 

line �. ��� represents the average number of extra trains that a passenger needs to wait 

when he/she cannot get on board at station � of metro line �. �� is the headway of metro 

line �. ���� is the ratio of crowdedness, which can be calculated as the ratio between the 

number of times that the train with an occupancy rate exceeding the threshold and the 

train frequency. Assuming the headway of a metro line is 6 minutes, 3 of the 10 trains 

in one hour are detected as fully loaded, and passengers need to wait for 1 additional 
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train to board, the corresponding ���� is then measured as 1 ∗  6 ∗  
�

��
= 1.8 minutes. 

Similar to the SWT, the AWTC is also measured as the average value across a time 

period. In contrast, the train crowdedness is measured for every metro station of a 

metro line because the crowdedness of two adjacent stations might be different 

depending on the number of boarding and alighting passengers. Additionally, different 

cities might use different thresholds of occupancy rate to define the condition that a 

passenger could not get on board. For instance, users of London Underground may not 

board the first train (i.e., waiting for the next train) when the occupancy rates exceed 

70%, whereas the threshold is 85% for users of Santiago Metro (Raveau et al., 2014).  

4)  Total access time  

Based on the above three components, the total access time (TAT) from location � to 

metro station � of metro line � is defined as  

������
= ���� + ���� + ������   (5.4) 

The total access time from location � to metro line � is then measured as 

�����
= min �������

� ,         � ∈ �     (5.5) 

where � represents all the stations of metro line � that can be accessed by location �. 

When two or more stations of metro line � (i.e., |K| > 1) are accessible, the ��� from 

location � to metro line � equals to the minimum ��� of its accessible stations.  

5) Equivalent doorstep frequency  

The total access time from location �  to metro line  �  is transferred into equivalent 

doorstep frequency (���) as 30 minutes divided by the corresponding ���. 

�����
 =  

��

�����

      (5.6) 

6)  Metro accessibility level  

The metro accessibility level of a location � is calculated as a summation of the EDFs of 

its accessible metro lines.  

����  =  ��������
+ ∑ 0.5 ∗ �����������    (5.7) 

where ��������
 represents the metro line with the largest ��� with respect to location 

�, and its weighting factor is set to be 1. A weighting factor of 0.5 is assigned to other 

routes (Transport for London, 2015).  
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5.3 Bike Accessibility to Shanghai Metro 

In this section, the proposed indicator and method are applied to the test site Shanghai. 

A detailed analysis of bike accessibility to the Shanghai Metro is presented.  

5.3.1  Data Preparation  

We use population grids as the spatial unit for accessibility measurement. The 

population dataset originated from the 250 * 250 m Global Human Settlement (GHS) 

of 2015 provided by the Joint Research Centre of the European Commission (Schiavina 

et al., 2019). The road network, metro-related data (e.g., timetable), and bike trajectory 

are the same as those described in Section 3.2. The 75th percentile distances of 

individual metro stations obtained in Chapter 3 are used as the acceptable distances of 

individual stations. Additionally, the average biking speed around each individual 

metro station is measured and used to calculate the biking access time.  

In terms of the metro crowdedness, Shanghai Metro provides a system, namely “Real-

time info Display System of Shanghai Metro Passenger Flow 8 ” to indicate the 

crowdedness of the metro system. The system is based on the data collected by 

automated fare collection (AFC), automatic train supervision systems and dynamic 

train weighing systems. There are three different states of a metro station/an interval 

(in between two adjacent stations), namely “suspended”, “crowded”, and “clear”, 

indicated by red, yellow, and green, respectively. Generally, green means the 

transportation capacity is sufficient and the station and metro train can provide normal 

service. Yellow represents operational congestion, indicating that the transportation 

service capacity is insufficient, the train or station is in a crowded state. Red indicates 

the disruption of the operation, such as serious train delays and transit route closures 

(Shen et al., 2012). The crowdedness ratio of a metro station (see Section 5.2) is 

measured by counting the number of yellow states within a certain time period. A 

station is labeled as yellow (i.e., crowded) if it is under the state of limiting passenger 

crowd (e.g., parts of the entrance is closed) or the density of passengers on the platform 

exceeds 2 people/m2. An interval is labeled as yellow if the number of passengers on 

the train exceeds 90% of the capacity of a train (including standee places) and the delay 

of the train is under 10 minutes (Shen et al., 2012). As a result, the crowdedness of a 

metro station has two forms, either the station alone is labeled as crowded (termed as 

form 1) or the station and an interval originated from the station both labeled as 

crowded (termed as form 2). Under the form 2, it is reasonable to assume that 

passengers need to wait for additional trains because of the high occupancy rate. On 

the other hand, form 1 means strategies are made to slow down the speeds of arriving 

 
8 http://service.shmetro.com/en/klssxx/index.htm 
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at the platform, prompting users’ additional time to get on board than normal cases. In 

this study, users are assumed to wait for additional trains when either form 1 or form 2 

crowdedness is observed. The crowdedness states of metro stations during one normal 

week (16.09.2019–20.09.2019) are collected with an interval of 2 minutes. For a 

specific hour, the crowdedness ratio of a metro station can then be calculated based on 

the number of times it is labeled as crowded among the corresponding 30 states. The � 

is set to be 1 for all the stations by assuming passengers need to wait for one more train 

when a station is crowded. 

5.3.2  MALs by Walking and Biking 

Population grids with a distance less than the acceptable distances of metro stations 

are determined and their MALs are measured accordingly. Since frequencies of the 

train service and the crowdedness of metro stations are different during the morning 

and afternoon peaks. Two periods, i.e., 8:00–9:00 (morning peak) and 18:00–19:00 

(afternoon peak), are selected to analyze the MALs of grids inside the BCAs. As a 

comparison, the MALs by walking for both periods are measured by assuming a 

walking speed of 4.8 km/h and an acceptable walking distance of 800 m. According to 

(Adhvaryu et al., 2019; Saghapour et al., 2016), we herein use the quantiles of the MALs 

by walking during the morning peak to classify the MALs into 6 different levels:  very 

poor, poor, moderate, good, very good, and excellent (Table 5.1). In comparison with 

the MAL by walking, two improvements made by the bike-and-metro integration are 

observed. First, the covered population and areas have been largely extended. The total 

population covered by the BCAs is two times as that covered by PCAs. Second, the 

proportion of the population with a MAL above poor has been increased sharply, i.e., 

from 39.7 % to 82.3 % for the morning peak, and from 40.4 % to 83.2 % for the 

afternoon peak. A closer look at the spatial distribution of the MALs by walking and 

biking during the morning and afternoon peaks (Figure 5.1) also confirmed these two 

improvements. The MALs of population grids inside the central city (i.e., area inside 

the outer ring) show a noticeable improvement during both periods. 
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Figure 5.1. MALs of grids in the bike catchment areas during morning and 

afternoon peaks. (a) MALs by walking in the morning peak, (b) MALs by biking in 

the morning peak, (c) MALs by walking in the afternoon peak, and (d) MALs by biking 

in the afternoon peak. 
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5.3.3  MALs Constrained by Population Density  

By combing with the population density distribution, the MAL map can provide fine-

grained knowledge on how the metro accessibility is distributed with respect to 

different levels of population density. For the assessment and potential improvement 

of public accessibility, one type of situation needs special attention, i.e., areas with a 

high population density but poor metro accessibility. Figure 5.2 depicts the MAL 

distribution of the central city during the morning peak and its overlay with the 

population density. By overlaying distribution information, areas with a poor metro 

accessibility but a high population density are determined (labeled by the black dotted 

lines). Among the 7 labeled areas, areas 1, 2, 3, 4 and 6 are beyond the BCAs (i.e., MAL 

equals 0). Areas 5 and 7 have MALs below moderate but very high population density. 

The priorities of areas that need accessibility improvement can be assessed based on 

the levels of accessibility and population density. For example, area 1 would be the area 

with the top priority of metro accessibility improvement among the 5 areas beyond the 

BCAs. Because the 5 areas have the same level of MAL and area 1 has the highest 

population density among them. Similarly, the priority of area 7 should be higher than 

that of area 5 because area 7 has a larger population density and a lower MAL than area 

5. 

 

Figure 5.2. MALs constrained by population density during the morning 

peak in the central city.  

 

5.3.4  MALs Decrease Caused by Crowdedness 

As indicated by Table 5.1, the MALs for the morning and afternoon peaks are different. 

In general, the MALs by biking during the afternoon peak are slightly better than the 
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MALs during the morning peak, with 16.8% and 17.7% of the population under the 

moderate level, respectively. This is mainly due to the differences in metro service 

frequencies and crowdedness between the morning and afternoon peaks. The result is 

also a little bit counterintuitive because the service frequencies during the morning 

peak are usually higher than that of the afternoon peak (the average headways for the 

morning and afternoon peaks are 3.7 minutes and 4.3 minutes in our case). The result 

can possibly be explained by the difference between the metro crowdedness during the 

morning and afternoon peaks. The average AWTCs for the morning and afternoon 

peaks are 0.38 minute and 0.05 minute, respectively. We thus measure the 

crowdedness-caused accessibility differences by measuring the accessibility differences 

between MALs with and without crowdedness. Specifically, MALs without 

crowdedness are calculated by following a similar procedure described in Section 5.2 

without the AWTC. The results are shown in Figure 5.3 and the corresponding statistics 

are listed in Table 5.2. The metro crowdedness shows a noticeably larger impact on the 

MALs of the morning peak than that of the afternoon peak, with 61.1% and 29.2% of 

the population’s MALs being affected by the crowdedness during the morning and 

afternoon peaks, respectively. This is because much fewer metro stations are detected 

as crowded during the afternoon peak in comparison with the morning peak. 

Additionally, the spatial distributions of the affected areas during the morning and 

afternoon peaks are also different. The crowdedness-affected grids are mostly located 

near to two metro lines (i.e., line 2 and line 11) during the afternoon peak. Most of the 

affected areas during the afternoon peak are centered in the area inside the inner ring, 

i.e., the city center. In contrast, the affected areas during the morning peak are not only 

limited to the city center but also widely distributed in the suburban area. This can be 

partly explained by the unbalanced distributions of jobs and residences in Shanghai. 

The major commuting direction during the morning peak is from the suburban to the 

city center, and it reverses for the afternoon peak. Furthermore, people usually have 

more choices instead of going home directly during the afternoon peak, which might 

also help relieve the crowdedness. 
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Figure 5.3. MAL differences caused by crowdedness during the morning 

and afternoon peak. (a) the morning peak, and (b) the afternoon peak.  

 

Table 5.2. Proportions of grids and population in different ranges of MAL 

differences. 

MAL differences Morning peak Afternoon peak 

 Grid  Population Grid  Population 

0 48.3% 38.9% 81.6% 70.7% 

0–0.5 33.7% 33.9% 15.1% 21.6% 

0.5–1.0 7.6% 10.5% 1.7% 4.1% 

>1 10.4% 16.6% 1.5% 3.6% 

 

5.4 Mapping Grids with the Possibility of Avoiding 

Crowdedness 

It is possible to avoid crowdy stations without increasing the total access time by using 

biking to substitute walking as the access mode. The question here is to examine in 

which location(s) such possibilities exist and how they distribute spatially. The general 
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idea is to check if bike-metro integration could enable a traveler to get access to any 

less crowdy station beyond the walking distance without increasing the total access 

time (Figure 5.4). The crowdedness of a metro station is determined as the average 

crowdedness of its associated metro lines. Then, a metro station can be classified as a 

crowded or non-crowded station depending on the degree of crowdedness. To find all 

the potential shifts from crowded to non-crowded stations of a location �, the following 

steps are needed. 

 Step 1: Find all crowded stations within the walking distance of location � , 

which are represented as ��(�).  

 Step 2: Find all other stations beyond the walking distance but within the 

biking distance of location �, which are represented as ��(�2�).  

 Step 3: For a crowded station �� ∈ ��(�)  and a non-crowded station ��� ∈

��(�2�). The corresponding walking ��� from location � to the crowded station 

�� is ������
(�), and the corresponding biking ��� from location � to the non-

crowded station ��� is �������
(�). If �������

 (�) < ������
(�), then passengers in 

location � may avoid the crowded station �� by using biking to access the non-

crowded station ���.  

 Step 4: Repeating step 3 to examine all possible shifts of (��, ���) for every 

individual traveler location. 

 

Figure 5.4. Illustration of the shift from crowded to non-crowded stations. 

 

Based on the above 4 steps, we herein take a closer look at the morning peak because 

of its heavy crowdedness. The threshold for crowded and non-crowded stations is set 
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to be zero, i.e., stations with an average AWTC larger than zero are considered as 

crowded. As a result, among the population grids inside the 800 m PCAs, 64.4% of the 

population are inside the catchment areas of the crowded stations (termed as 

crowdedness-affected grids, see Figure 5.5 (a)). Only 19% of the population among the 

crowdedness-affected grids is determined to have the possibility to shift from crowded 

stations to non-crowded stations, which are depicted in Figure 5.5 (b). As noted by the 

red circles in Figure 5.5 (b), several areas (i.e., areas 1–5) around the crowded metro 

stations do not have a possibility to be shifted. For instance, area 1 is around several 

crowded metro stations of metro line 11, which are heavily affected by the metro 

crowdedness. This is because stations near to this area are also crowded stations and 

non-crowded stations are too far away (i.e., beyond the acceptable biking distances of 

grids in this area). 

Among the grids with the possibility of avoiding the metro crowdedness, there are two 

types of shifts. The first type is the shift between stations from the same metro line. The 

second type is the shift between stations from two different lines. The proportion of 

type 1 and type 2 shifts are 21.6% and 78.4%, respectively. These two types of shifts are 

illustrated by using two cases as shown in Figure 5.6 (also see Figure 5.5 (b)). The first 

and second types of shifts are demonstrated by cases 1 and 2, respectively. The 

corresponding access times of different population grids are listed in Table 5.3. As 

noted in the table, bike-metro integration can not only help to avoid the crowdedness 

but also can save the total access time for some population grids (e.g., grid 3 in case 1). 

For case 1, a part of passengers within the pedestrian catchment areas of Chunshen 

Road station (i.e., the crowded station) can shift to Xinzhuang station to avoid the 

metro crowdedness. In this specific case, since most passengers board on Chunshen 

Road station need to transfer at Xinzhuang station, it is practical for passengers to bike 

directly to Xinzhuang station instead of walking to Chunshen station and then ride to 

Xinzhuang station. For case 2, the shift of departure station occurs between metro 

stations from two different lines, i.e., from line 3 to line 10. Under such conditions, 

passengers may need to take further criteria, such as the convenience of transfer and 

total travel time, into consideration. Nevertheless, the numeric evidence can provide a 

reference for users to select a better departure station. For instance, it might be 

attractive for passengers living in grid 6 of case 2 to shift from South Changjiang Road 

station to Xinjiangwancheng station and the total metro access time can be largely 

shortened from 18 minutes to 9.4 minutes.  
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Figure 5.5. Grids with the possibility to be shifted during the morning peak. 

(a) crowdedness-affected grids, and (b) grids with the possibility of avoiding 

crowdedness. 
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Figure 5.6. The shift of case 1 and case 2. (a) the shift between stations from the 

same line, and (b) the shift between stations from different lines. 

 

Table 5.3. The access times of grids with the possibility of shift for cases 1 

and 2. 

Cas
e  

Grid  Crowed station Non-Crowded station TWATi TBATii 

1 1 Chunshen Road station Xinzhuang station 10.75 8.78 

1 2 Chunshen Road station Xinzhuang station 10.21 7.75 

1 3 Chunshen Road station Xinzhuang station 12.3 7.3 

1 4 Chunshen Road station Xinzhuang station 10.3 9.4 

2 1 South Changjiang Road 
station 

Songfa Road station 13.5 9.8 

2 2 South Changjiang Road 
station 

Xinjiangwancheng station 17.2 11 

2 3 South Changjiang Road 
station 

Xinjiangwancheng station 13.5 12.2 

2 4 South Changjiang Road 
station 

Xinjiangwancheng station 12.7 10.4 

2 5 South Changjiang Road 
station 

Xinjiangwancheng station 15.7 14.6 

2 6 South Changjiang Road 
station 

Xinjiangwancheng station 18 9.4 

2 7 West Yingao Road station Xinjiangwancheng station 16.2 14.5 

2 8 West Yingao Road station East Yingao Road station 17.8 12.5 

2 9 West Yingao Road station East Yingao Road station 13.1 12.3 

2 10 West Yingao Road station East Yingao Road station 16.9 11.5 

 

i: TWAT, Total walking access time, unit minute 

ii: TBAT, Total biking access time, unit minute 
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5.5 Discussions 

5.5.1  The Advantages of MAL-based Measurements 

The advantages of the MAL can be revealed in comparison to the coverage-based and 

the 2SFCA-based accessibility measurements.  

1) Taking the coverage-based measures as a benchmark, additional factors, including 

access time, waiting time, and crowdedness are considered in the MAL. In this 

sense, the MAL can be understood as an enhanced indicator of the overlap degree 

of the catchment areas (see Section 4.3).  

2) Taking the coverage-based measures as benchmark again, a finer spatial 

granularity of measurements toward accessibility and population density can be 

obtained. As a result, the MAL-based analysis bears more subtle knowledge for 

micro-level transport planning. For instance, specific areas that need metro 

accessibility improvement are determined by using the grid-level MAL map. In fact, 

Shanghai Metro already made some improvements toward area 1 and area 2 (see 

Figure 5.2) by opening new metro stations, which indicates the usefulness of the 

combined analysis of MALs and population density. Nevertheless, other areas (i.e., 

areas 3–7 in Figure 5.2) also deserve more attention from the public transport 

sectors. In addition to the costly metro station construction, measures, such as 

improving the frequencies of accessible trains (i.e., shorten the waiting time) and 

constructing attractive walking and biking environments, might help to improve 

the accessibility to metro systems in these areas.  

3) Taking the 2SFCA-based accessibility measurements as a benchmark, transit 

crowdedness is explicitly modeled in the MAL indicator by transferring the 

crowdedness into additional waiting time. As revealed by the results in Figure 5.3, 

the metro crowdedness has a significant impact on the accessibility to transit, and 

should not be neglected.  

5.5.2  Potential Extensions of the MAL Indicator 

We regard this work as a starting point to trigger further ideas on fine-grained 

accessibility modeling. Several potential extensions of the MAL indicator are possible. 

1)  Enhanced crowdedness modeling 

In this study, the crowdedness information is collected from the official website of the 

Shanghai Metro. In addition to such a data-driven approach, the crowdedness 

information can also be measured by using well-established modeling approaches. For 

instance, it is feasible to measure the crowdedness of adjacent metro stations (i.e., train 

interval) by using the capacity information of the trains, operation schedules, and the 
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estimation of passenger flow (Jiao et al., 2017). In addition to the impact on boarding, 

the metro crowdedness can also cause train delay and discomfort, which are not 

considered in the current study due to the data limitation. For the aspect of delay, 

automatic vehicle location data can be used as potential data to measure the vehicle 

delay time (Camus et al., 2005). The difficulty is to differentiate the delay caused by 

crowdedness and other factors (e.g., congestion). The aspect related to travel comfort 

can be more likely included in via-transit accessibility instead of to-transit accessibility 

(i.e., our focus). Furthermore, the comfort decrease caused by crowdedness is more 

subjective than objective.  

2) Integration of additional factors 

In addition to crowdedness, other perception-related factors, such as lighting and 

safety of transit stations, can be further incorporated into the accessibility 

measurement because of their impacts on user’s affection and behavior toward transit 

stations. The emerging geotagged social media data contain rich clues to these factors. 

Moreover, service-specific factors may subtly influence the usefulness of the proposed 

indicator. For instance, the convenience of bike parking around transit stations can also 

affect users’ perception toward the transit systems and thus might affect the bike 

accessibility to transit systems.  

3) Higher temporal granularity  

As revealed in Section 5.3.2, it is essential to make a distinctive measurement of 

accessibility to metro systems for different time periods because of the changing 

crowdedness and service frequency. The current MAL is measured on an hourly basis, 

and it can be improved by introducing higher temporal resolutions (e.g., every 10 

minutes) because the metro crowdedness indeed changes more frequently than the 

hourly basis.  

4) Extension to transit systems beyond metro  

Finally, the indicator metro accessibility level, is applicable to measure the accessibility 

to other public transit systems such as buses, rail transit or general public transport 

(i.e., a combination of several public transport systems) as long as the corresponding 

crowdedness information can be obtained. 

5.5.3  The Role of Shared Bikes  

1) Shared bikes as a means of promoting transit accessibility 

The coverage and MAL-based analysis both demonstrated that shared bikes could 

increase transit accessibility as compared with walking. The results revealed that the 

accessibility improvement varies across space and time. It is important to consider such 

spatiotemporal differences to make smarter decisions toward transport planning.  
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The accessibility improvement may also show disparities among different user groups 

depending on their socio-demographic characteristics. For instance, the ability to rent 

and ride shared bikes may vary from one group to another. Since public transport is 

regarded as a type of social welfare for transport disadvantaged groups, it would be 

worthwhile to explore how these users would benefit from the integration of shared 

bikes and public transit.  

2) Shared bikes as a means of avoiding transit crowdedness 

The proportion of the population with the possibility of avoiding metro crowdedness is 

relatively small (i.e., 19% of the crowdedness-affected population). If only the type 1 

shift is considered to be effective, this possibility would be even smaller because only 

21.6% of the shifts belong to the type 1. Furthermore, if the costs of shared bikes are 

considered, the possibility would further decrease. Such a result indicates bike-and-

metro can only act as a supplementary means of relieving the metro crowdedness. 

Nevertheless, measures, such as increasing the availability of shared bikes and road 

quality around non-crowded stations, can be taken to increase this possibility. 

Additionally, users might consider factors (e.g., the total traveling time) beyond the 

total access time when selecting the departure metro stations. Thereby, it is worthwhile 

to integrating other factors into consideration thus providing more useful 

recommendations to users with different traveling destinations and purposes. 

It is important to note that there are two different approaches of relieving the metro 

crowdedness by biking. The focus of this study is to use biking to substitute walking as 

the metro access mode instead of using biking to replace the short-distance metro trips 

(Sun and Zacharias, 2017). As a result, public transport sectors with the aim to relieve 

the metro crowdedness by biking could inspect both possibilities. For instance, it would 

also be interesting to know the possibility of relieving metro crowdedness by using 

biking to replace some short-distance metro trips in Shanghai.  

5.6 Summary 

This chapter proposes a MAL indicator constrained by the metro crowdedness to 

measure the accessibility to metro systems by biking. The impact of crowdedness is 

transferred to waiting time and thus incorporated into the accessibility measurement. 

The proposed indicator is applied to Shanghai as a case study. The results show that 

the population being covered and the population above a poor MAL level have both 

been doubled by using biking as the access mode. Areas that need accessibility 

improvement and their priorities are highlighted by overlaying the MALs with 

population density. Compared with the afternoon peak, a larger proportion of the 
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population’s MALs are affected by the crowdedness during the morning peak. Ignoring 

the crowdedness leads to an overestimation of the MALs.  

To explore how bike-and-metro integration could be used to relieve the crowdedness, 

we propose a method to determine grids with the possibility to avoid the metro 

crowdedness during the morning peak. The results show that bike-and-metro can act 

as a practical option for avoiding the crowded stations for some citizens living in the 

central city. However, such a possibility only limited to a small proportion of the 

crowdedness-affected population; thus, the bike-and-metro can only act as a 

supplementary means of relieving the metro crowdedness in Shanghai.  
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6 Conclusion and Outlook 

 

 

6.1 Conclusion 

The continuous urbanization calls for clean, efficient and sustainable transportation. 

While public transport represents a traditional and effective sustainable transportation 

mode, dockless shared mobility represents an emerging sustainable transportation 

mode. The thesis is devoted to the synergetic effects of these two transportation modes 

by means of data-driven approaches of accessibility assessment from multiple 

perspectives. From the methodological perspective, we proposed approaches of 

identifying bike-and-ride trips from massive bike trajectories and the approaches of 

trajectory processing. From the perspective of technical support, we developed an 

open-source tool for generating network-based transit catchment areas. With regard to 

the accessibility modeling, an enhanced indicator constrained by crowdedness is 

proposed to measure grid-level accessibility to transit. These data-driven approaches 

have demonstrated the radical progresses that allow a full usage of traditional 

knowledge and the potential of big data.  

The major contributions of this thesis are summarized as follows.  

 To measure the biking distances at individual transit stations, the methods of 

identifying the bike-and-ride trip and matching the raw trajectory to the road 

network are proposed. Specifically, a method to extract bike-ride-bike (BRB) trips 

is introduced; and the circular buffer to identifying bike-and-ride trips is decided 

based on how BRB users park and fetch their bikes around transit stations. To 

measure more realistic biking distances, an adapted version of map-matching 

algorithm is proposed to handle the FBF segments that frequently observed in the 

map matching of non-motorized trajectories. These methods can also be 

transferred to investigate the connection between rail transit and other dockless 

shared vehicles in other study areas. Furthermore, two regression models are 

employed to explore the influences associated with biking distances at individual 

metro stations.  
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 To support the coverage-based accessibility analysis, a methodological framework 

of generating transit catchment areas (TCAs) by non-motorized transport is 

proposed. The framework consists of three components: subgraph construction, 

extended shortest path tree construction, and contour generation. In addition to 

the basic case of the undirected road network and point facility, the framework can 

also be used to generate TCAs under the condition of directed road network and 

non-point facility. The accuracy and time efficiency evaluation showed that the 

framework achieves a better performance than alternative solutions. More 

importantly, the framework is provided as an open-source tool for the scientific 

community.  

 To measure more realistic accessibility at a finer-grained level, the metro 

accessibility level (MAL) indicator is proposed. The indicator is an enhanced 

version of the public transport accessibility level (PTAL), which incorporates the 

impact of metro crowdedness. The necessity of explicitly modeling the 

crowdedness into transit accessibility is analyzed. The metro crowdedness is 

transferred to additional waiting time and incorporated into the accessibility 

modeling. Analytical results showed that ignoring the crowdedness leads to an 

overestimation of accessibility to transit, which demonstrates the usefulness of the 

proposed indicator.  

 The thesis provides a systematic assessment of the bike accessibility to metro 

stations in Shanghai. From the perspective of data, multiple travel-related data 

sources, such as bike trajectories, smart card data, and metro crowdedness, are 

jointly used to derive a more realistic accessibility measurement. From the 

perspective of levels of detail, the coverage-based analysis and grid-based analysis 

are used to provide accessibility assessment at the regional and the local level. The 

analytical results provide a comprehensive understanding of how bike-and-ride 

could change the metro accessibility, and implications for policymaking are 

discussed in detail. 

6.2 Outlook 

On the basis of this work, a number of potential research topics need further in-depth 

investigations.  

1) Integrating travel survey data 

Individual information, such as socioeconomic attributes and trip purposes, are usually 

missing in trajectory-format travel data due to the privacy issue. In contrast, such 

information is normally included in survey-based travel data. How to make an 

appropriate combination of the “big” GPS trajectory and “small” travel survey data to 

measure accessibility would be a challenge and interesting research topic.  
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2) Extending the framework of TCA generation 

The proposed framework of TCA generation can be improved in several aspects. First, 

in addition to spatial distance, factors, such as road slopes, turns, road qualities, and 

road levels, can be further modeled as travel impendence to determine a more realistic 

catchment area. Second, the framework is designed for generating TCAs by non-

motorized transport, but can also be applied to generate TCAs by motorized transport 

where more efforts are needed to improve the computation efficiency. Third, from the 

aspect of implementation, designing a user-friendly interface such as interactive visual 

analysis could definitely promote the usability of the open-source tool. Furthermore, 

since catchment area is a concept widely used in multiple fields, such as human 

geography and hydrology, testing the suitability and extending the proposed 

framework to support research in these fields could be very meaningful.  

3) Extending the accessibility modeling 

Integrating the crowdedness into the accessibility measurement is an initial step 

toward a more realistic measurement of accessibility. Feedbacks from transport 

planners are needed to refine the crowdedness modeling, thus promote its applicability 

in transport planning. One the other hand, user-generated data (e.g., geotagged social 

media) can be integrated to model other soft factors, such as perceptive safety and 

lighting condition of transit stations, to enhance accessibility modeling.  

4) Comparative case study 

To obtain a more comprehensive understanding of the integration of dockless shared 

vehicles and public transit. The current accessibility analysis can be extended from to-

transit assessment to via-transit assessment. Furthermore, it is interesting to apply the 

proposed methods to investigate the effect of dockless shared vehicles and public 

transit in other cities. A comparison between the bike-and-ride in different cities could 

provide more insights for policymaking. 
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