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Abstract: The dark matter particle can be a QCD axion or axion-like particle. A locally over-densed
distribution of axions can condense into a bound Bose–Einstein condensate called an axion star,
which can be bound by self-gravity or bound by self-interactions. It is possible that a significant
fraction of the dark matter axion is in the form of axion stars. This would make some efforts searching
for the axion as the dark matter particle more challenging, but at the same time it would also open
up new possibilities. Some of the properties of axion stars, including their emission rates and their
interactions with other astrophysical objects, are not yet completely understood.
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1. Introduction

The QCD axion is one of the best motivated dark matter particle candidates, since it provides
a solution to the QCD strong CP problem. (For a recent review, see [1].) The QCD axion is a boson
with spin-0. It has a tiny mass and extremely weak couplings with the Standard Model particles,
as well as extremely weak self-interactions. However, axion dark matter is not simple because
axions are identical bosons. Its tiny mass indicates that if a large proportion of dark matter is axions,
the occupation numbers can be very large. Therefore, the axions can form a Bose–Einstein condensate
(BEC). The collective behavior of BEC can be very different from an ideal gas of bosons. The axion
BEC can be bound gravitationally, which are called axion stars, or bound by self-interactions, which are
called axitons. (For a recent review, see [2].) If a large fraction of the axion dark matter is in such
bound configurations, the theoretical predictions of the behavior of dark matter could be dramatically
different, which would affect the experimental searches.

The QCD axion has been strongly constrained [1]. The allowed range of axion mass has been
reduced to between 10−6 and 10−2 eV. Axion dark matter can also more generally refer to other light
spin-0 boson with a periodic potential for self-interaction. There are motivations from string theory and
astrophysics for a dark matter particle that is a very light boson with mass as light as 10−22 eV [3–5].
In this proceeding, we focus mainly on the QCD axion, but many of our results are presented in a form
that can be applied to other axion-like particles straightforwardly.

2. Axion Field Theories at Different Energy Scales

The fundamental quantum field theory for the QCD axion is an extension of the Standard Model
with Peccei–Quinn (PQ) U(1) symmetry. PQ symmetry is spontaneously broken by the ground state of
a complex Lorentz–scalar field [6–8]. After symmetry breaking, the minima of the potential are a circle
of radius fa, which is called the axion decay constant. At momentum scales of order fa, the axion field is
the Goldstone mode corresponding to excitation of the scalar field along that circle.

The axion can be described by a field theory with a real Lorentz–scalar field φ(x) at momentum
scales much smaller than fa. Its potential must have the shift symmetry with φ(x) = φ(x) + 2π fa.
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When the energy scale is below the week scale, which is about 100 GeV, the interactions between
axions and the Standard Model particles are:

αs

8π fa
φ Ga

µνG̃aµν +
cγ0α

8π fa
φ Fµν F̃µν +

1
2 fa

Jµ∂µφ, (1)

where Ga
µν and Fµν are the QCD and QED field strengths, G̃a

µν = 1
2 εµνλσGaλσ and F̃µν are the

corresponding dual field strengths, and the current Jµ is a linear combination of axial-vector fermion
currents. The specific value of cγ0 and the form of Jµ depend on the specific axion model. The QCD
field-strength term in Equation (1) is proportional to the topological charge density αsGa

µνG̃aµν/8π.
The shift symmetry of φ is guaranteed by the quantization of the QCD topological charge in Euclidean
field theory.

When the momentum scale is further below the scale of QCD confinement, which is about 1 GeV,
the gluon degree of freedom is replaced by the degree of freedoms of hadrons. Then, the axion
self-interactions from the coupling to the gluon field in Equation (1) can be described by a real potential
V(φ):

L = 1
2 ∂µφ∂µφ−V(φ). (2)

The invariance of the Lagrangian under the shift symmetry φ(x)→ φ(x) + 2π fa requires the potential
V(φ) to be a periodic function of φ: V(φ) = V(φ + 2π fa). The Lagrangian is also invariant under the
Z2 symmetry φ(x)→ −φ(x), which requires V(φ) to be an even function of φ.

The potential V(φ) for the axion field is determined by nonperturbative effects of QCD.
The specific form can be systematically derived order-by-order from the chiral effective field theory for
light pseudoscalar mesons of QCD and the axion [9]. The leading order potential derived from the
chiral effective field theory for the axion and pions gives the chiral potential [10]:

V(φ) = (mπ fπ)
2

(
1−

√
1 + z2 + 2z cos(φ/ fa)

1 + z

)
, (3)

where z = mu/md is the ratio of the up quark and down quark masses. The coefficient can be calculated
by the pion mass mπ = 135.0 MeV and the pion decay constant fπ = 92.2 MeV, which are related to
ma and fa by [11]

mπ fπ =
1 + z√

z
ma fa. (4)

A next-to-leading order analysis in the chiral effective field theory gives the numerical value z =

0.48(3) [9]. With the upper and lower bounds on fa from cosmology and astrophysics, the allowed
mass range for the QCD axion is between 6× 10−6 and 2× 10−3 eV [1]. In this proceeding, every time
we provide a numerical value which depends on ma, we give the value in the form:

ma = 10−4±1eV. (5)

It should be understood, as the value is between 10−5 and 10−3 depending on the choice of the axion
mass. In addition to the more precise chiral potential, a popular model for the axion potential that has
been widely used in phenomenological studies is called the instanton potential:

V(φ) = (ma fa)
2[1− cos(φ/ fa)

]
. (6)

It can be derived with a dilute instanton gas approximation [12], which cannot be improved
systematically. The field theory given by the Lagrangian in Equation (2) with the instanton potential in
Equation (6) is often called the sine-Gordon model.
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The axion field can be more simply expressed as a complex scalar field in a nonrelativistic effective
field theory (NREFT) when the energy scale is much smaller than the axion mass ma. A naive way of
deriving the NREFT is to replace the real field by the complex field ψ with:

φ(r, t) ≈ 1√
2ma

(
ψ(r, t) e−imat + ψ∗(r, t) e+imat

)
. (7)

Then, by dropping out the terms with a rapidly oscillating phase in the form of exp(inmat) with
nonzero integer n, we can get the NREFT Lagrangian:

Leff =
1
2 i (ψ∗ψ̇− ψ̇∗ψ)−Heff. (8)

This effective Hamiltonian density depends on the field ψ and its gradients. It can be separated into
three parts: Heff = Teff + Veff + Weff, where Teff is the kinetic energy density, Veff is a function of ψ∗ψ

only, and Weff consists of all other interaction terms that also depend on gradients of ψ. An n-body
term in Heff has n factors of ψ and n factors of ψ∗, with arbitrary numbers of gradients. The kinetic
energy density Teff includes all the one-body terms:

Teff =
1

2ma
∇ψ∗ · ∇ψ− 1

8m3
a
∇2ψ∗∇2ψ + . . . . (9)

These terms reproduce the energy–momentum relation E =
√

m2 + p2 −m in the nonrelativistic limit.
The effective potential Veff can be expanded in powers of ψ∗ψ beginning at order (ψ∗ψ)2:

Veff(ψ
∗ψ) = m2

a f 2
a

∞

∑
n=2

vn

(n!)2

(
ψ∗ψ

2ma f 2
a

)n
. (10)

This NREFT Lagrangian can also be derived strictly by a nonlocal canonical transformation from
the relativistic real scalar Lagrangian in Equation (2) [13]. The coefficients vn are complex numbers
in general, which can be calculated by matching the scattering amplitudes at low energy [14–16].
The contributions from Feynman diagrams without an internal propogator can be summed into
a compact form, which is:

V(0)
eff (ψ

∗ψ) = (mπ fπ)
2
(

1− z
4(1 + z)2 n̂− 1

1 + z

∫ 1

0
dt
√

1 + z2 + 2z cos(n̂1/2 sin(πt))
)

, (11)

for chiral potential, and:
V(0)

eff (ψ
∗ψ) = (ma fa)

2
[
1− 1

4 n̂− J0(n̂1/2)
]

. (12)

for instanton potential, where n̂ = 2ψ∗ψ/(ma f 2
a ) is the dimensionless number density. A systematic

scheme of including the off-shell internal propagators is suggested in [14].

3. Axion Stars

3.1. Dilute Axion Stars

An axion star is a boson star made of axions. The boson star with bosons in BEC was first
considered by Tkachev [17]. The classical solutions for a boson star can be obtained by solving the
Einstein–Klein–Gordon equations for a real scalar field φ(r, t) with axion potential V(φ). The solutions
are approximately localized and periodic.
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Stable solutions exist with the energy density at the center much lower than the QCD scale. We call
these solutions dilute axion stars. The solutions of dilute axion stars can also be obtained using the
axion NREFT with Newtonian gravity. The latter is much simpler and without loss of much accuracy:

iψ̇ = − 1
2ma

∇2ψ +
[
V′eff(ψ

∗ψ) + maΦ
]

ψ, (13a)

∇2Φ = 4πGmaψ∗ψ. (13b)

These equations are also called Gross–Pitaevskii–Poisson (GPP) equations. The number density ψ∗ψ is
much smaller compared to ma f 2

a for dilute axion stars. Thus, we can expand the effective potential
and keep only the leading term:

Veff(ψ
∗ψ) ≈ v2

16 f 2
a
(ψ∗ψ)2. (14)

Chavanis used the GPP equations with this leading term of the potential to derive simple
approximations of the basic properties of boson stars with negative v2 [18]. His results show that there
is a maximum mass for the dilute axion stars G−1/2 fa/ma.

Variational methods has been used to get simple approximations to the dilute axion stars [18–20].
One can also match asymptotic expansions to get more accurate solutions [21]. the numerical method
gives the most accurate solutions. The results below were obtained by numerically solving the GPP
equations in Equation (13). The potential Veff is either the naive effective instanton potential in
Equation (12) or the naive effective chiral potential in Equation (11) with z = 0.48.

In Figure 1, we show the dependence of the radius R99 of the dilute axion star on the mass M.
The critical point (indicated by the solid dot) separates the stable branch from the unstable branch.
When the number density at the center n0 increases, the solution moves from the left to the critical
point along the stable branch. The dilute axion star at the critical point has the largest mass. Then, as n0

keeps increasing, the solution moves from the critical point to the left along the unstable branch.
The self-interaction of axions can be ignored for the stable solutions with a mass which is much smaller
than the maximum mass. The self-interaction only plays an important role close to the critical point.
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Figure 1. Radius R99 versus mass M for dilute axion stars. The axion mass is ma = 10−4 eV. The curves
are calculated with chiral potential with z = 0.48 (black curves) or the instanton potential (gray curves).
The dots are critical points at which the dilute axion stars have the maximum masses. The dots separate
the unstable branch (dashed curve) from the stable branch (solid curve). For comparison, the boson
stars with no self-interaction are shown with a dotted line. The arrow indicates the increase of axion
star mass from the condensation of additional axions in the surroundings.

The properties of the critical point in Figure 1 are important in phenomenology. The number of
axions in the dilute axion star with the chiral potential with z = 0.48 is N∗ = 1.2× 1057∓3 for axion
mass ma = 10−4±1 eV. (This number is smaller by the factor 0.59 for instanton potential because of
the different value of v2.) The corresponding critical dilute axion star is N∗ma = 1.1× 10−13∓4 M�,
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with M� as the mass of the Sun. The critical radius R99∗ = 1.9× 10−4R�, with R� as the radius of the
Sun. More properties of the dilute axion stars can be found in [2].

3.2. Dense Axion Stars

In [22], we pointed out that there could be other stable branches of axion star solutions with larger
center density. Another branch can be found by following the unstable solution from the critical dilute
axion stars in Figure 1. With a larger center density, at some point, we need to consider all terms in the
expansion of the potential Veff(ψ

∗ψ). In [22], we solved the field equation in Equation (13) with the
naive effective instanton potential in Equation (12). In [2], the results using the naive effective chiral
potential in Equation (11) are obtained, which are also shown in Figure 2. A second critical point was
found with the radius smaller by 7 orders of magnitude. The localized solutions near and beyond the
second critical point were called the dense axion stars in [22], because the mass density maψ∗ψ at the
center of the axion star becomes comparable to the QCD scale (ma fa)2.
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Figure 2. Radius R99 versus mass M for axion stars. The solutions are obtained with ma = 10−4 eV
and the naive chiral potential with z = 0.48. The stable branches (solid curves) and unstable branch
(dashed curves) are separated by critical points (labeled with black dots). The upper-left critical point
is the same as the black dot in Figure 1. A second critical point is found by following the unstable
solution to larger center density. Also shown is the Thomas–Fermi approximation (dotted curve).

For the dense axion stars near the second critical point in Figure 2, the contribution of gravity
is almost negligible. Thus, the dense axion stars near the second critical point are actually oscillons.
The oscillons are approximately localized solutions of a real scalar field, which are bound only by
self-interactions. For the chiral potential with ma = 10−4±1 eV and z = 0.48, the critical number of
axions is N∗ = 2× 1050∓4. The critical mass N∗ma is 3× 1010∓3 kg, and the critical radius R99∗ is
2× 10−2∓1 m. More properties of the critical dense axion stars can be found in [2].

As shown in Figure 2, beyond the lower critical point, the mass M of the dense axion star increases
as a function of the radius R99. With larger central density, the dense axion star curve approaches the
Thomas–Fermi approximation [23], which is the straight dotted line in Figure 2. In the Thomas–Fermi
approximation, the kinetic pressure is ignored except on the surface of the stars; in the bulk, it is the
repulsive force from axion self-interaction which balances the attractive force from gravity. In [22], the
Thomas–Fermi approximation was mistakenly used to extrapolate the curve of R99 to very large values
of M. As pointed out in [24], the curve for R99 versus M actually crosses the line of the Thomas–Fermi
approximation at a small angle. Therefore, the Thomas–Fermi approximation is not a proper estimate
for dense axion stars.

4. Theoretical Issues

Below, we have listed two prominent theoretical issues on axion stars. More details can be found
in [2].
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4.1. Emission from Axion Stars

As the axion is a real scalar field, the number of axions is not conserved. Self-interactions can
convert the nonrelativistic axions into relativisitic ones. The axion stars and any other localized axion
configuration with nonrelativisitic axions, inevitably radiate axion waves with relativistic wavelengths.
As a result, the axion stars have finite lifetimes. It is important to calculate the lifetime of axion stars,
since it determines whether they can have any observational significance.

NREFT appears to give unambiguous predictions for the conversion rate of nonrelativistic axions
in axion stars into outgoing relativisitic axion waves [15]. The rate of decrease in N, the total number
of nonrelativistic axions, is described by the anti-Hermitian terms in the effective Hamiltonian. When
the number density of axions is small, such as in a dilute axion star, the loss of nonrelativistic axions is
dominated by the decay into two photons. Thus the decay rate of the dilute axion star is the same as
the decay rate of a single axion. The lifetime of a dilute axion star is therefore much longer than the
age of the universe. For dense configurations, we define the lifetime to be the time required for the
total number of axions to decrease by a factor 1/e, when it moves to the left along the lower branch
in Figure 2. In a dense axion star, the loss rate from the 4 → 2 process is approximately 5 orders of
magnitude larger than that from a→ 2γ. The resulting predictions for the lifetime of the dense axion
stars are still much longer than the age of the universe [15].

The predictions of NREFT for the loss rate of nonrelativistic axions are, however, incomplete.
Surprisingly, there are loss processes for axions in the relativistic theory that cannot be reproduced by
NREFT. NREFT is expect to correctly reproduce results from the corresponding relativistic theory for
an oscillon with a small boson binding energy εb � ma as an expansion in powers of εb/ma. However,
such an expansion is blind to terms which are exponentially small in ma/εb, such as exp(−c

√
mb/εb ),

where c is some constant. Thus, we should not expect a contribution having such an exponential factor
to be reproduced by NREFT.

The contribution of loss processes whose rates have exponentially small factors can be calculated
from the asymptotic expansion for the oscillon [25]. These terms have a radiative tail in the form of
standing waves with exponentially small amplitudes that extend to infinity and have infinite energy.
Without incoming waves, the outgoing waves decrease the total number of nonrelativistic axions of
the localized part of the solution. The rate of decrease in the particle number, or equivalently the mass
M, of the oscillon with angular frequency ω =

√
1− ε2 ma in the limit ε→ 0 has the form [26]:

− dM
dt

=
A
ε2 exp(−3.406/ε) f 2

a , (15)

where the prefactor A depends on the axion potential V(φ). The sine-Gordon model is a special case
in which A is suppressed by ε2. For the sine-Gordon model in 3D, A is calculated to be 760.5 ε2 [26].

Eby et al. derived an expression for the loss rate that can be expressed in terms of the complex
field ψ(x) of NREFT [27]. Their derivation involves the matrix element of V(φ) inserted between an
initial state of N condensed axions, each with energy ω = ma − εb, and a final state consisting of N− 3
condensed axions plus an on-shell relativistic axion with energy 3ω. This can be interpreted as a 3→ 1
interaction, which is forbidden in the vacuum by conservation of momentum and energy. Their result
for the rate of energy loss [27] can be expressed in the form:

− dM
dt

=
maωk

192π f 4
a

∣∣∣∣∫ d3r eik·r
[
λ4 +

λ6ψ∗ψ

8ma f 2
a
+ . . .

]
ψ3
∣∣∣∣2 , (16)

where k2 = 9ω2−m2
a and ψ(r) is the wavefunction of the condensed axions normalized so the number

of axions is
∫

d3rψ∗ψ. A result consistent with Equation (16) was also obtained in [28], where this loss
mechanism was referred to as “decay via spatial gradients”. Since |k| ≈

√
8 ma, the loss comes from the

small high-momentum tail of the wavefunction. For the instanton potential, its expansion in powers
of ψ∗ψ in Equation (16) can be summed up to all orders in terms of a Bessel function [27]. Eby et al.
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obtained a result for the loss rate in Equation (16) for the sine-Gordon model in the limit εb → 0 [29].
Their exponential suppression factor is consistent with Equation (15), but with the argument differing
by less than 2%. Moreover, their result for the coefficient in the prefactor is A = 2723. It is different
from the result in [26] by lacking a suppression factor of ε2.

4.2. Collapse of Dilute Axion Stars

If a dilute axion star is embedded in a gas of unbounded axions, thermalization can condense
additional axions and increase the mass of the axion star. For dilute axion stars close to the critical mass
M∗ ≈ N∗ma, where N∗ is the total number of axions in the star, further condensation of axions can
increase M to above M∗. Then, it will be unstable and collapse. The remnant of a collapsing dilute axion
star has not been understood definitely. The possibilities for the remnant after the collapse include:

• A black hole, with a Schwarzschild radius which is smaller than the critical radius R99∗ by about
15 orders of magnitude;

• A dense axion star, with a radius which is smaller than R99∗ by about 7 orders of magnitude;
• A dilute axion star, with a radius which is larger than R99∗; and
• No remnant, because of complete disappearance into scalar waves.

Chavanis considered the possibility that a collapsing dilute axion star produces a black hole
in [30]. The evolution of the axion field is obtained by solving the GPP equations for ψ and Φ
given by Equation (13) with the truncated effective potential Veff in Equation (14). He assumes the
configuration for the complex axion field ψ(r, t) can always be described by a Gaussian function, with
a time-dependent radius R(t). He found the time for collapse to R = 0 scales as (M−M∗)−1/4 if the
initial configuration is an unstable solution with mass M near M∗. Same variational methods were
used previously to study the time evolution of gravitationally bound BECs of bosons with a positive
scattering length [31].

Eby et al. also studied the collapse of dilute axion stars using a similar time-dependent variational
approximation, but with Veff given by the naive instanton effective potential in Equation (12) [32,33].
They found that the collapsing process is hindered by repulsive terms in the effective potential,
which becomes important when the radius is close to that of a dense axion star. A large fraction of
the total number of axions is lost through the emission of relativistic axions. But they were unable to
determine definitely whether the remnant is a dense axion star.

Helfer et al. studied the fate of spherically symmetric axion configurations by solving the full
nonlinear classical field equations in the framework of general relativity for axions with the instanton
potential [34]. After evolving the configurations in time, they found the remnant could be a black
hole or a dilute axion star or that there could be no remnant. Their calculations were limited to
the parameter region 4× 10−8 < G f 2

a < 4× 10−2 and 0.03 < GMma < 0.12. The three different
possibilities for the remnant depend on different regions of the plane of G f 2

a versus GMma. The three
regions meet at a triple point given by G f 2

a = 3.6× 10−3 and GMma = 0.095. By extrapolating the
results of [34] to the tiny value of G f 2

a for the QCD axion, one finds that the possibilities could be a
black hole or no remnant.

Levkov, Panin, and Tkachev numerically calculated the collapse of dilute axion stars above the
critical mass with the GPP equations [35]. Their solutions approach a self-similar scaling limit with a
series of singularities at finite times t∗. Their calculation shows multiple cycles of growth of the energy
density close to the center of the star followed by collapsing. The collapse dramatically increases
the energy density near the center, followed by a burst of outgoing relativistic axion waves, which
effectively depletes the energy density near the center. Levkov et al. also found that after these multiple
cycles, the remnant is still gravitationally bound. They therefore concluded that the remnant must
ultimately relax to a less-massive dilute axion star by gravitational cooling.
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