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Abstract 

 

Today’s food research and development focuses on the improvement of the mouthfeel, so as 

to make food more enjoyable and increase consumer satisfaction. Texture is one of the main 

factors of food quality evaluation, and in order to control quality during product development 

and processing, food scientists need better methods to characterize the parameters that 

influence texture. The most challenging sensory texture attributes are, for solid foods, 

crispiness and crunchiness, and, for semi-solid or liquid foods and beverages, creaminess, 

roughness and astringency (the tactile part). Because these attributes result from complex 

multisensory perception, it is difficult to analyze them instrumentally in a way that mimics 

human perception during the oral processing of food. 

In this work, new approaches were proposed and discussed to solve several texture analysis 

issues. Firstly, three modern signal processing methods, the short-time Fourier transform, the 

continuous wavelet transform, and the Hilbert-Huang transform, were tested to perform the 

dynamic spectral analysis of the crushing mechanics of crispy puffed snacks (crisps) 

from different brands equilibrated at different relative humidity levels. The aim of this first study 

was to assess whether crispiness characterization could be improved by characterizing the 

rates and magnitudes of breakage which evolve over time from jagged force-deformation 

curves during compression. In particular, it was observed that the temporal evolution of the 

irregular breakage characteristics greatly influenced the perception of food texture during 

chewing. Secondly, the crushing sounds recorded during the compression of similar 

crisp samples were submitted to qualitative and hedonic sensory analyses. Qualitative 

analysis by a trained panel was used to investigate which acoustical characteristics influenced 

the evaluation of crispiness associated with crisp freshness. Moreover, the study allowed to 

determine if crushing sounds produced during mechanical measurements contained enough 

information to accurately classify the chips according to their humidity, which is related to 

crispiness and freshness. As for the consumer study, it allowed to relate the acoustical 

crispiness characteristics to acoustical preferences in the target group. Based on these results, 

an automated classification model was proposed, which used multimodal temporal and 

spectral features to gather information about mechanics and acoustics, in the same was as 

humans integrate sensory information in the brain. This is a huge step forward in automatic 

quality control, towards efficiently replacing most expensive and time-consuming routine 

sensory analyses. Finally, the dynamic spectral analysis methods used for the crispiness 

analysis were employed to characterize stick-slip effects in “oral-like” tribology data. In 

this study, it was hypothesized that in lubrication tests using for example oil-in-water emulsions, 

the jagged behavior observed in most force-displacement curves was due to stick-slip effects. 

It was also supposed that the food-dependent frequency-magnitude distributions of these 

effects could help characterize friction-related textures of foods on materials mimicking oral 

mucosa. 

This exploratory research thesis was thus both fundamental and practical. A number of aspects 

were investigated, resulting in state-of-the-art methods and providing advanced insights in food 

texture issues.  
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Kurzzusammenfassung 

 

Um das Essen genussvoller zu machen und die Zufriedenheit der Konsumentinnen und 

Konsumenten zu erhöhen, konzentriert sich die Forschung und Entwicklung von Lebensmitteln 

heute auf die Verbesserung des Mundgefühls. Textur ist ein Hauptfaktor bei der Bewertung 

der Lebensmittelqualität. Zur Charakterisierung der Parameter, welche die Textur 

beeinflussen, werden jedoch bessere Methoden benötigt, um die Qualität während der 

Produktentwicklung und -verarbeitung kontrollieren zu können. Die anspruchsvollsten 

sensorischen Texturattribute sind bei festen Nahrungsmitteln die Knusprigkeit und Knackigkeit 

und bei halbfesten oder flüssigen Nahrungsmitteln und Getränken die Cremigkeit, Rauheit und 

Adstringenz (der taktile Teil). Da diese Attribute aus einer komplexen multisensorischen 

Wahrnehmung entstehen, ist es schwierig, sie mit Instrumenten so zu evaluieren, wie das 

Menschen bei der oralen Verarbeitung von Nahrungsmitteln tun. 

In dieser Arbeit wurden neue Ansätze vorgeschlagen und diskutiert, um verschiedene Aspekte 

der Texturanalyse-Problematik zu lösen. Zuerst wurden drei moderne 

Signalverarbeitungsverfahren, die Kurzzeit-Fourier-Transformation, die kontinuierliche 

Wavelet-Transformation und die Hilbert-Huang-Transformation getestet, um die dynamische 

Spektralanalyse der Zerkleinerungsmechanik von knusprigen gepufften Snacks (Flips) 

verschiedener Marken und unterschiedlicher relativer Luftfeuchtigkeiten durchzuführen. Ziel 

dieser ersten Studie war es, zu beurteilen, ob die Charakterisierung der Knusprigkeit 

verbessert werden kann, indem die Bruchraten und -größen charakterisiert werden, die sich 

im Laufe der Zeit aus gezackten Kraft-Verformungskurven während der Kompression 

entwickeln. Insbesondere wurde beobachtet, dass die zeitliche Entwicklung der 

unregelmäßigen Brucheigenschaften die Wahrnehmung der Nahrungstextur beim Kauen stark 

beeinflusst. Zweitens wurden die während der Kompression von ähnlichen Flipsproben 

aufgezeichneten Bruchgeräusche qualitativen und hedonischen sensorischen 

Analysen unterzogen. Mit Hilfe einer qualitativen Analyse durch ein geschultes Panel wurde 

untersucht, welche akustischen Eigenschaften die Bewertung der Knusprigkeit in Bezug auf 

die Frische der Chips beeinflussten. Darüber hinaus konnte die Studie aufzeigen, ob 

Zerkleinerungsgeräusche, die während mechanischer Messungen erzeugt wurden, genügend 

Informationen enthalten, um die knusprigkeitsbezogenen Frischegrade genau nach ihrer 

Feuchtigkeit zu klassifizieren. Eine Verbraucherstudie diente weiter dazu, die akustischen 

Knusprigkeitseigenschaften mit den akustischen Präferenzen der Zielgruppe in Beziehung zu 

setzen. Folglich wurde ein automatisiertes Klassifikationsmodell vorgeschlagen, das 

multimodale temporale und spektrale Merkmale verwendet, um Informationen über 

Mechanik und Akustik zu kombinieren, ähnlich wie Menschen sensorische Informationen im 

Gehirn integrieren. Dies ist ein großer Fortschritt in der automatischen Qualitätskontrolle, um 

die meisten teuren und zeitaufwendigen sensorischen Routineanalysen effizient zu ersetzen. 

Schließlich wurden die für die Knusprigkeitsanalyse verwendeten dynamischen 

Spektralanalyseverfahren zur Charakterisierung von Haft-Gleit-Effekten in "oral-

ähnlichen" Tribologiedaten eingesetzt. In dieser Studie wurde die Hypothese aufgestellt, 

dass das beobachtete gezackte Verhalten der meisten Kraft-Deformationskurven in 

Schmierstofftests, zum Beispiel mit Öl-in-Wasser Emulsionen, auf Haft-Gleit-Effekten beruht. 

Es wurde auch vermutet, dass die lebensmittelabhängigen Frequenz-Magnituden-
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Verteilungen dazu beitragen könnten, reibungsbedingte Texturen von Lebensmitteln auf 

Mundschleimhaut-imitierende Materialien zu charakterisieren. 

Diese explorative Forschungsarbeit war somit grundlagen- und praxisorientiert. Sie erlaubte 

es, eine Reihe von Aspekten zu untersuchen, die zu modernsten Methoden und 

fortgeschrittenen Einblicken in die Analyse der Lebensmitteltextur führten.  
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Nomenclature 

 
Abbreviation 
 

Explanation Categorization 

AFM atomic force microscopy physical analysis 
AI artificial intelligence statistical analysis 
ANN artificial neural networks statistical analysis 
ANOVA analysis of variance statistical analysis 
COF coefficient of friction, friction 

coefficient 
tribology measure 

CWT continuous wavelet transform dynamic spectral analysis 
DWT discrete wavelet transform dynamic spectral analysis 
EMD empirical mode decomposition dynamic spectral analysis 
FA fast- or rapidly-adapting receptor 

(type 1 or 2) 
anatomy and physiology 

FEM finite element method modelling and simulation 
FFM friction force microscopy physical analysis 
FFT fast Fourier transform dynamic spectral analysis 
FOP food oral processing field of food science 
FP flavor profiling sensory analysis 
HHT Hilbert-Huang transform dynamic spectral analysis 
IMF intrinsic mode functions dynamic spectral analysis 
MD molecular dynamics modelling and simulation 
PCA principal component analysis statistical analysis 
PSD particle size distribution physical analysis 
QDA quantitative descriptive analysis sensory analysis 
SA slow-adapting receptor (type 1 or 2) anatomy and physiology 
Spectral PSD power spectrum density spectral characteristic 
STFT short-time Fourier transform dynamic spectral analysis 
SVM support vector machines statistical analysis 
TI time-intensity sensory analysis 
TDS temporal dominance of sensations sensory analysis 
TPA texture profile analysis physical analysis 
   

   
   

Parameters 
 

The term “parameter” in conventional literature gets a constant value to adjust or 

analyze a varying system. In this thesis, it is used for “texture parameter”. In the field 

of food texture studies, a texture parameter can be any characteristic of a texture 

measurement and can be part or representative of a sensory texture attribute. All the 

parameters that were extracted from data in this thesis can be used as features in a 

model. Then, they can be the dependent variable that the model predicts as an 

output, or they can be the covariates which are the model input. In the field of 

computer science, statistics and modelling, a parameter would rather be used to tune 

a model to optimize computation conditions or analyze a varying system.   
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1. Introduction 
 
“Texture and mouthfeel arising from the consumption of food and beverages are critical to 

consumer choice and acceptability” (Stokes et al., 2013), as an inappropriate texture can lead 

to the rejection of the foodstuff or an attractive texture can increase the palatability, or pleasure, 

of consumption (Engelen and de Wijk, 2012). Those topics are addressed in the numerous 

food oral processing (FOP) studies that absorb an increasing number of food scientists (Chen, 

2009, Wang and Chen, 2017). FOP can be defined as a procedure for the consumption and 

digestion, but also for the appreciation of food texture, taste and flavor. The in-mouth 

processing of food involves operations such as first bite, mastication, saliva secretion, mixing 

and transportation of the resulting food bolus and finally swallowing. In fact, FOP has become 

one of the trendiest fields of research in food science, involving multiple and interrelated 

disciplines such as the understanding of the mechanisms of oral procedures related to oral 

anatomy and physiology, sensory perception and psychology, nutrition and metabolism, as 

well as food structure and design through different in-vivo, in-vitro and in-silico (computer 

modelling) approaches. 

Food research and industry are thus interested in the comprehension and control of texture. 

Food scientists develop methods to characterize the parameters influencing texture for a 

systematic quality control during product development, production, distribution up to the 

moment of consumption. To do so, they need to measure chemical and physical properties of 

foods such as water sorption, structure and mechanics. However, as those properties are 

dynamically changing during food production, transport, storage and FOP, those 

measurements have to be adapted to each stage of the existence of the food material, which 

can be challenging.  

Many instrumental tests (instruments, protocols) are available to objectively characterize food 

texture, specifically for liquids, solids or semi-solids (Bourne, 2002b). Nevertheless, food 

industry needs more reproducible and accurate measurements of crispiness, crunchiness and 

friction-related texture attributes such as the tactile part of creaminess, roughness and 

astringency. Research is going in that direction since the beginning of texture measurements 

by sensory, in-vivo and in-vitro measurement methods (Drake, 1963, Vickers and Bourne, 

1976a, Vickers, 1984a, Van Aken, 2013). Correlation studies combining mechanical and 

acoustical food properties exist since more than 20 years for specific foods such as crispy or 

crunchy foods (Edmister and Vickers, 1985, Tesch et al., 1996a). Structure and composition 

properties of food, such as particle or pore size and geometry, pore wall thickness and their 

distribution (homogeneous or multi-modal), shape (regular/irregular, open/closed foam 

morphology), density and orientation, moisture and fat contents can complement texture 

profiling (Barrett and Peleg, 1992, Gibson and Ashby, 2001, Szczesniak, 2002, Bourne, 2002b, 

Luyten and Van Vliet, 2006, Pittia and Sachetti, 2008, Vliet and Primo-Martín, 2011, Guessama 

et al., 2011). Rheology (see section 3.1.3.2.1) is giving a more accurate viscosity evaluation 

than texture analyzers, in particular for analyzing the flowing properties of the bulk food or its 

bolus, but only when the food is liquid enough to be sheared in controlled conditions by a 

rheometer (Bourne, 2002b). The idea of liquid food friction studies to evaluate friction-related 

texture attributes appeared 40 years ago (Kokini et al., 1977, Selway and Stokes, 2013). The 

study of friction, tribology (Stokes et al., 2011, Chen and Stokes, 2012, Prakash et al., 2013), 

is detailed in section 3.1.3.2.2.  

The role of saliva (Roger-Leroi et al., 2012, Morell et al., 2016, Mosca et al., 2019) and of oral 

surface properties such as saliva coating and lubrication influencing mechanical responses to 

pressures and deformation during FOP is also being studied (De Hoog et al., 2006, Dresselhuis 



6 
 

et al., 2008a, Krzeminski et al., 2012, Baum et al., 2014, Chojnicka-Paszun and de Jongh, 

2014). Such aspects are incorporated into chewing machines which can even imitate 

multidirectional chewing (Takanobu and Takanishi, 1997, Winquist et al., 1999, Pap et al., 

2005, Woda et al., 2010, Xu et al., 2010) to try to make even more realistic texture 

measurements. “Chewing instruments” can be as simple as cutting or crushing fixtures 

incorporated in a materials testing machine (texture analyzer). They can be more complex, 

involving multidirectional chewing movements and polymeric materials. The latest can be very 

useful to better understand interactions during food oral processing, but the complexity of the 

test conditions and results as well as material costs are limiting factors in the development for 

routine analyses. 

Additionally to the development of instrumental testing methods, there is the need for 

developing reliable data analysis and modelling methods able to interpret the measured data 

accurately. As multisensory perception is more and more considered in the field of FOP 

(Zampini and Spence, 2004, Luckett et al., 2016) to understand complex textures in a similar 

way as people perceive during oral processing of food, it is obvious that the in-silico methods 

tend also to complexify. 

  

2. Overview 
 

This overview points out the research questions arising from current problems encountered by 

the food texture science community that are addressed in the state of the art (with details in 

the referenced sections) as well as the possible answers and methods that were used in this 

dissertation (listed in form of subheadings and descriptions below): 

 

Which texture sensations need to be explained and measured (section 3.1.2)? 

 Crispiness and crunchiness 

 Friction-related textures 

Crispiness and crunchiness of solid foods are highly important to consumer preference and 

quality evaluation (Szczesniak, 2002, Bourne, 2002a) as they are “stimulating, fresh and 

pleasant” (Vickers and Bourne, 1976a). Nevertheless, these texture attributes are difficult to 

measure with instrumental methods and measured data do not always correlate with sensory 

scores because brittle foods irregularities induce a low reproducibility of measurements 

(Rohde et al., 1993, Bourne, 2002a, Saeleaw and Schleining, 2011, Vliet, 2014). Friction-

related textures such as creaminess, roughness and astringency (the tactile part) of semi-solid 

(soft solids) or liquid foods and beverages also impact food quality but are highly complex to 

understand and measure (Chen and Stokes, 2012). 

The answer to understand such sensory perceptions depending on stimuli is psychophysics 

(Banerjee et al., 2016, Peleg, 2006, Auvray and Spence, 2008, Crisinel et al., 2012, Luckett et 

al., 2016, Zampini and Spence, 2004, Selway and Stokes, 2014, Unger, 2008). It is the 

interaction of several senses (multisensory or multimodal) and their evolution in time (temporal, 

dynamic) which is summarized by the brain (sensory integration) that determine the texture of 

a food. As one of the first experimental psychology fields of research formulated and theorized 

by Fechner in 1860, psychophysics determine the kind of relationship between an objective, 

physical or physiological stimulus and the subjective contents of consciousness such as 

sensory perception or sensation (Fechner, 1860). Those relationships are often non-linear 
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(Peleg, 2006, Bourne, 2002a, Stokes et al., 2013, Fastl and Zwicker, 2007). In fact, the stimuli 

detected by the sensory cells are generated by complex physico-chemical conditions in the 

mouth (food properties and consumer-specific physiology) and the way the sensation is 

interpreted depends on individual experience and mood (Chen and Stokes, 2012, Engelen and 

de Wijk, 2012, Jeltema et al., 2014, Peleg, 2006, Stokes et al., 2013, Vliet and Primo-Martín, 

2011, Szczesniak, 1963, Selway and Stokes, 2014). The resulting field of research called 

psychophysics thus aims to understand, model and predict human sensations depending on 

physico-chemical stimuli. 

In particular crispiness and crunchiness are evaluated by humans during biting and chewing. 

Friction-related texture attributes are evaluated rather during sipping of a liquid food or 

beverage and during chewing and swallowing a food bolus through squeezing and rubbing 

between oral surfaces (Stokes et al., 2013). All those mouthfeel sensations are perceived 

through the integration of the sensory nerve impulses released by oral tactile and auditory 

mechanoreceptors (Vickers, 1987, Taniwaki and Kohyama, 2012, Vliet and Primo-Martín, 

2011). This bundle of information is obtained by a multitude of sensors around the oral cavity 

(Engelen, 2012, Engelen and de Wijk, 2012, Van Aken, 2010, Dacremont et al., 1991): 

pressure on teeth sensed by the receptors of the periodontal ligament, contact, stress, strain 

and vibration in gingivae, lips, tongue, palate and inner cheeks and finally air-borne sound 

pressure but also bone-conducted vibrations sensed by the ears. It is also supposed that the 

food flow, the sliding force and the vibrations and sounds released during friction of oral 

surfaces in contact with food influence friction-related textures sensations (Van Aken, 2013, 

Stokes et al., 2013). 

 

How to measure those texture sensations and what are the alternatives to existing 

methods (section 3.1.3)? 

 Crushing mechanics and sounds (mechanical texture analysis) 

 Sliding forces (tribology), to be combined with fluid flow characterization (rheology) 

Different measurement methods can be employed to mimic food oral processing (FOP) 

conditions or create simplified measuring conditions with similar constraints as those 

undergone by humans’ oral sensory cells. However, using only one method may not represent 

the complexity of texture evaluation by humans (Banerjee et al., 2016). Thus this dissertation 

work combined mechanical and acoustical texture measurement data from food crushing 

experiments to better predict sensory crispiness evaluations of puffed snacks (Varela et al., 

2006, Vickers, 1987). Several aspects of oral friction were also studied by measuring sliding 

forces while rubbing liquid food samples such as oil-in-water emulsions between two oral-like 

surfaces, which is called tribology. Rheology characterizes the flow of bulk food samples in 

their initial state before being consumed as well as of food boluses after being sheared in the 

mouth. The trend of friction-related texture studies is evolving towards the combination of both 

tribology and rheology. Moreover, improving the simulation of oral conditions by using saliva 

must be considered to get a complete analysis of food texture (Selway and Stokes, 2014). 

Nevertheless, this dissertation focused on studying the way of measuring food texture changes 

during food oral processing that produce strong mechanical and acoustical effects (texture 

analysis) or friction (tribology), without detailed rheological analyses and without saliva. 
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How to represent and interpret the measured mechanical and acoustical data (sections 

3.1.3 and 3.2)? 

 Temporal plotting 

 Spectral plotting 

 Time-frequency plotting 

To answer this question in this dissertation, different representations of the measured 

mechanical and acoustical data (signals) were necessary to understand the data and better 

determine adequate parameters extracted from those data for the characterization of texture. 

Temporal plotting permitted to represent raw measurement force or sound data, whereas 

spectral plotting permitted to represent the vibration frequencies and magnitude distributions 

contained in the jagged (oscillating in zigzags) raw data characterizing crispy breakage 

mechanics and crushing sounds as well as stick-slip effects produced during friction 

measurements. Time-frequency plots finally permitted to represent the dynamics of the jagged 

patterns and better visualize irregularities evolving during the measurements, which may be a 

key for characterizing such products (Liu and Tan, 1999, Luyten et al., 2004). In the present 

work, like in previous published studies, it was never straightforward to find which parameters 

were the most reproducible and if those would better characterize a texture attribute. A visual 

analysis of the plotted data permitted to recognize patterns but not to generalize and to 

conclude on the statistical significance of specific aspects. The next step in this dissertation 

was thus logically to let a computer recognize such trends based on the measured mechanical 

and acoustical data similarly or even better than humans do with their visual, oral tactile and 

auditory senses. 

 

How to apply the knowledge to solve practical issues (section 3.3)? 

 Automatic recognition of specific texture signatures by classification 

 Automatic regression or deep learning as next alternatives 

One final use of this study for food research and industry was to understand food texture by 

determining which factors impact texture sensations for further control and improvement. 

Indirect impact factors may be storage conditions (humidity, temperature) which influence the 

freshness and crispiness of dry snacks for example (Vliet and Primo-Martín, 2011). Direct 

impact factors may be the composition (fat content, thickeners) and the structure (protein 

network, droplets in emulsions, particles in dispersions, pores in cellular foods) of a food. The 

cellular structure of crispy snacks was considered in complement to humidity to study their 

impact on measurable physical product properties (crushing mechanics and acoustics) that 

can be used to evaluate crispiness. Different model food compositions such as the oil content 

in oil-in-water emulsions were considered in the tribology study of this dissertation to evaluate 

their possible impact on the friction properties of food. The friction properties are supposed to 

impact the creaminess, for example, of products with low fat, carbohydrates, salt or additives 

content (Vliet and Primo-Martín, 2011, Pittia and Sachetti, 2008, Selway and Stokes, 2014). A 

lot of other application studies were conducted in literature and detailed in next sections. 

Nevertheless, sensory analysis of creaminess and the other friction-related texture attributes 

was not planned in the tribology study which focused on the signal analysis methods. 

Another use of this study was to control food texture quality as quickly as possible for routine 

work using the simplest, quickest and most reliable measurement and data analysis methods 

for each specific foodstuff. Parameters extracted from measured data can be used as input 

features in pattern recognition algorithms (classification or regression models) determining the 

level of a texture attribute that would be perceived by humans. For that, sensory measurements 
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were performed to determine the crispiness level of test data that was used as a reference to 

train the predictive data-driven models. This modelling by learning from data is called machine 

learning (Banerjee et al., 2016). 

To optimize such predictive models, selecting informative and relevant features from 

instrumental data is critical. For that, the key was to compare carefully different feature 

extraction methods while using the best data representations and statistical evaluations to see 

both overall trends, main components, as well as details. Moreover, different modelling 

methods using specific algorithms were tested to find the best classification efficiency 

(calculation time and prediction result accuracy). Automatic classification was thus studied in 

this dissertation work on the example of crispy snacks, combining mechanical and acoustical 

features extracted from temporal and spectral representations to produce a more realistic and 

precise model than using single features such as the maximal crushing force, the elastic 

modulus, the maximal sound peak level or the number of force and sound peaks (Varela et al., 

2006, Vickers, 1987). Similar models predicting friction-related texture attributes would also be 

possible, but they were not tested in this dissertation. Moreover, deep learning could not be 

applied to the crispy snacks data due to the limited amount of available data, but it was 

suggested to work well for the automatic recognition of time-frequency plots or even raw data, 

mimicking the human’s eyes and brain. 

This dissertation is publication-based. As such, a state of the art of the knowledge and the 

methods used is given as a foundation (chapter 3), followed by the summaries of the three 

main papers published on the topic of texture characterization (chapters 4, 5 and 6) and their 

copies in Appendices A, B and C. Other studies were conducted during the dissertation, which 

are listed in the acknowledgement chapter of the students who worked with me. Some were 

published (Appendix D: Publications List), others are in progress. 
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3. State of the Art and Methods  
 

 Texture of Foods 
 

Texture contributes greatly to the mouthfeel and afterfeel sensations of foods before and after 

swallowing (Engelen and de Wijk, 2012). Food texture was defined by a lot of scientists, 

beginning in the 1950’s with a few listings of texture attributes (Smith, 1947, Kramer, 1955, 

Kokini, 1987). Szczesniak (1963) pointed out that texture is as important as taste or flavour for 

the appreciation of food sensory quality. She is still a reference, saying that texture is the 

characterization of a food structure, the way it reacts under pressure (similar to the terms 

“consistency” or “body”) and how it is perceived by vision, kinesthesis and hearing. Food 

texture influences mouthfeel and afterfeel. 

 

3.1.1. Anatomy and physiology of texture 

 

3.1.1.1. Sensory reception and integration of texture sensations 

 

Mouthfeel and afterfeel result from the simultaneous and multisensory integration of complex 

sensory signals by the brain (Figure 1). The somatosensory system permits to detect stimuli 

thanks to mechanoreceptors (touch or haptic sensations, surface slip, vibrations, pressure, 

position, movement and proprioception), thermoreceptors (temperature changes), nociceptors 

(pain), and chemoreceptors. Those sensory receptor cells and nerve endings transduce stimuli 

to sensory neurons. The stimuli are further led through neural pathways to the parts of the 

brain involved in conscious sensory perception (Chen and Engelen, 2012).  

Different types of tactile mechanoreceptors present in the mouth (for example in filiform 

papillae but also in many other regions) detect different ranges of forces (typically with low 

thresholds of 30–2000 µN) and of vibration frequencies (0.3–400 Hz) with different levels of 

temporal and spatial resolution thanks to their specific receptor structure (Asamura et al., 1998, 

Van Aken, 2010, Upadhyay et al., 2016). A higher density of receptors and nerve fibers per 

area of skin or internal organ combined with a large corresponding surface in the 

somatosensory cortex result in higher sensitivity. The spatial resolution is determined by the 

size of the receptive field of the receptor: receptors with a large receptive field (Ruffini and 

Vater-Pacini receptors) detect changes over a wider area but with less precision about the size 

of a contact point and its position than receptors with a small receptive field (Meissner and 

Merkel receptors). The adaption time to a constant stimulus intensity that is characteristic of 

specific receptors influences the temporal resolution that can be detected. Phaseal receptors 

are fast or rapidly adapting (FA), thus react quickly to changes but their impulse frequency 

decreases at a constant stimulus intensity. They are useful to recognize and manipulate 

objects as well as to detect changes in the environment that are not important to feel all the 

time (such as the sensation of wearing clothes). Tonic receptors are slowly adapting (SA), thus 

they fire at a constant impulse frequency when a stimulus intensity stays constant. They are 
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rather used to localize exactly a stimulus and evaluate their duration as well as helping to 

maintain body posture.  

Merkel’s disks are slow-adapting (SA1), free nerve endings located just below the epidermis 

or mucous membrane surface. Thus they are stimulated by light touch at static pressure, with 

high accuracy in space and at very low vibration frequencies (0.3–3 to <5 Hz). They detect 

indentations, shape and size of objects, forming a part of their texture. Meissner’s corpuscles 

are fast-adapting (FA1), low-threshold, surface encapsulated neurons that respond to fine 

touch at intermediate frequencies (3–40 to 50 Hz). Both surface mechanoreceptors may be 

strongly involved in the evaluation of food texture. Slow-adapting Ruffini endings (SA2), as well 

as the Golgi tendon organs and the muscle spindles in the muscles, are located deeper, for 

example in the tongue. They detect the size of larger particles and have proprioceptive 

functions enabling precise movements. Ruffini endings are encapsulated receptors that detect 

stretch intensity (force and direction) in skin and other tissues at high frequencies (15–400 Hz). 

Vater-Pacinian corpuscles are deep and fast-adapting (FA2), thus responding to deep 

pressure and high-frequency vibrations (10–500 to 700 Hz), but they are rather in glabrous 

skin than in the mouth (Asamura et al., 1998, Van Aken, 2010, Upadhyay et al., 2016, Unger, 

2008). 

The mechanoreceptors in the periodontal ligament fixating the teeth roots to the dental alveoli 

in the jaws deliver important information to control and adapt jaw movement direction and biting 

force of the occlusion during chewing (Chen and Engelen, 2012). Mostly slow-adapting, they 

permit the perception of high biting forces. The fast-adapting ones detect slight contact forces 

and the direction of relatively low forces between about 4 and 10 N, but they saturate until no 

 

Figure 1. Methodological overview on texture analysis of foods, amongst the main 
mouthfeel and afterfeel sensations, characterized in the present thesis. 
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differences are felt anymore. There are also spontaneous firing mechanoreceptors that result 

in reflex behaviors of the muscle spindles to avoid tooth damage by helping to react quickly to 

accidental movements. 

The mechanoreceptors in the inner ears are hair cells that are able to detect sounds and head 

movements thanks to their activation by fluid motion. The surrounding liquid transmits changes 

in air pressure such as produced by sound waves, but also vibrations of the surrounding 

tissues such as produced by bone conduction from the mouth (Dacremont et al., 1991). They 

are very sensitive but respond to sounds over a wide range of intensities (sound pressure) and 

frequencies (dynamic pressure changes of 20 Hz to 20 kHz). 

Mechanoreceptors are thus responsible for the detection of tactile and auditory stimuli, which 

produce specific texture and sound sensations (Szczesniak, 1963, Vickers, 1980, Dacremont 

et al., 1991, Duizer, 2001, Roudaut et al., 2002, Van Aken, 2010, Engelen, 2012, Selway and 

Stokes, 2014). Proprioception detects the position and movement of organs relatively to the 

body, which is important for the positioning of the tongue in the mouth for example. Nociception 

is activated by strong mechanical stimuli (bruise), hot and cold thermal stimuli and chemical 

irritation (chemicals or inflammation). Nociceptors detect the spicy molecules such as 

capsaicin in hot chili and cooling effects such as produced by menthol thanks to free endings 

like thermosensors. Other chemosensors detecting taste and aroma (smell of odorants 

entering the nose orthonasally by sniffing or retronasally by ingesting) also impact mouthfeel 

and afterfeel (Winquist et al., 1999). They can affect the perception of texture, for instance, the 

fatty sensation (Engelen and de Wijk, 2012). Reciprocally, texture stimuli can interact with the 

other senses (Selway and Stokes, 2014). Even appearance as well as handling food by hands 

or with cutlery can influence the perception of texture and the secretion of saliva, which will 

impact food oral processing and oral sensations (Engelen and de Wijk, 2012, Selway and 

Stokes, 2014). Thus, the food product properties such as the ingredients (fat, flavor), the 

production process (shape, particles) and the serving temperature influence texture 

perception. Nevertheless, a lot of other factors may influence food texture perception (Engelen 

and Van der Bilt, 2008), such as the oral conditions (dentition, sensitivity, saliva production, 

tongue mobility) and other conditions specific to the taster (culture, experience, context, mood, 

time of the day, expectations and the trigeminal pathway and integration process in the brain). 

 

3.1.1.2. Evaluation process of different food texture attributes 

 

Various texture attributes (Figure 1) are perceived during food oral processing, depending on 

the initial structure of the food (Szczesniak, 1963, Engelen and de Wijk, 2012, Chen and 

Stokes, 2012). Hard dry snacks or fresh and wet vegetables or meat are examples of solid 

foods. Beverages and some foods are liquid. Semi-solid foods form an intermediate category 

of creams, yoghurts, sauces, etc. which are, for example, thickened to slow down flowing and 

give more consistency in the plate and in the mouth. All their texture attributes are evaluated 

in a dynamic destructuring process called “food oral processing” from biting or sipping to 

chewing, mixing with saliva and swallowing (Szczesniak, 2002, Bourne, 2002b, Saeleaw and 

Schleining, 2011, Prakash et al., 2013, Stokes et al., 2013, Upadhyay et al., 2016).  

Thus, not only the intact food properties should be measured, but also multi-scale, dynamically 

evolving phenomena (Selway and Stokes, 2014). Following texture attributes are primarily 

detected by the mechanoreceptors sensitive to the forces applied to the teeth, but also on the 

lips, palate, the tongue and cheeks (Van Aken, 2010). Sensory hardness (or firmness) is 

opposed to softness and related to mechanical hardness for solid foods or to rheological 
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properties for semi-solid foods (Selway and Stokes, 2014). Toughness is the amount of work 

needed to deform a solid food, as opposite to a ductile material. Springiness, sponginess and 

pastiness refer to the elasticity and plasticity of solid and semi-solid foods. Texture attributes 

related to beverages and the liquid stage of foods are primarily evaluated by sensing the forces 

exerted on the epithelial surfaces in the mouth. Adhesiveness (or stickiness) and thickness are 

related to viscosity. More complex attributes such as brittleness, crispiness and crunchiness 

refer to the fracture mechanics and acoustics of solid foods. Creaminess, smoothness, 

slipperiness, oiliness, roughness and partly astringency refer to the lubrication or friction 

properties of foods (Engelen and de Wijk, 2012, Chen and Stokes, 2012, Stokes et al., 2013).  

 

3.1.2. Sensory Analysis of Texture 

 

Sensory analysis is the study of organoleptic properties of food (ISO, 2014), determined by 

humans (panelists). Tasting standards and methodologies are established to permit the 

performance of reproducible and accurate sensory analyses of food (Szczesniak, 2002). 

Nevertheless, the sensory evaluation of texture is complicated because of less clear 

definitions, despite many attempts to produce definition lists (Szczesniak, 1963, Drake, 1989), 

and a lack of reference samples (Szczesniak, 1963) in comparison to the tastants or odorants 

that panelists use at different concentrations to calibrate their personal scales. 

 

3.1.2.1. Sensory Testing 

 

A consumer panel is selected amongst a target group to predict the appreciation of a specific 

product (DIN, 2008). The results give directions to product developers for marketing purposes. 

They mostly perform hedonic evaluations to give their preferences ranking or determine their 

acceptance of a food and specific characteristics. A questionnaire given to the panelists asks 

for personal information and to rank two or more samples by liking levels or simply to say if 

they like or dislike a sample. Consumers can also be used to measure the intensity of attributes 

or to discriminate samples like in a triangle test. Nevertheless, as consumer panelists are not 

trained, those tests are highly subjective.  

More analytical tests performed by instructed and trained panelists deliver more objective 

sensory results which are used to characterize accurately a sensory attribute or to control 

quality in product development and routine analyses (Lawless and Heymann, 2013). 

Qualitative analysis such as the flavor profiling (FP) describe sensory attributes with descriptor 

terms determined in a consensus discussion of the panelists when exposed to a wide range 

of products within the food category. After training, they evaluate the specific intensities as well 

as the overall impression of samples served like they would be seen by consumers (DIN, 2014, 

DIN, 2018). Profiling  permits to rate multiple sensory attributes (DIN, 1999). Texture 

descriptors were specially defined and standardized for texture profile analysis (Szczesniak, 

1963, Szczesniak et al., 1963). The chewing procedures and the reference samples used to 

calibrate panelists on the standardized rating scales for each texture attribute as defined by 

Szczesniak in 1963 are listed in Table 1, but they can differ because they are adapted to each 

study goal and requirement. The sensory results are generally correlated with instrumental 

measurements in texture profile studies (Table 2 in section 3.1.3.1.1). Quantitative descriptive 

analysis (QDA) was developed to improve some drawbacks of FP, for example serving 

samples in a more controlled way (only the part that should be evaluated instead of the whole 
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foodstuff, if it is composed of different parts). It enables the relative judgement among products 

(instead of the absolute values in FP) of the intensities of different sensory attributes.  

The following tests do not necessarily use trained subjects, but training improves 

reproducibility and accuracy. Discrimination tests determine differences between samples. 

The “triangle test” (ISO, 2004) looks for the different sample. The “duo-trio test” looks for the 

two identical samples (ISO, 2017). Alternatives are the “paired test”, for pairwise comparisons 

(ISO, 2007), the “A – not A test” (DIN, 2001), the “2 out of 5 test” or other customized tests. 

Ranking tests ask to put presented samples in a specific order of intensity of an attribute for 

example (DIN, 1997, ISO, 2006). Time-intensity (TI) tests (DIN, 2002), temporal dominance of 

sensations (TDS) tests (Luyten et al., 2004, Le Révérend et al., 2008, Pineau et al., 2009, 

Albert et al., 2012) and key‐attribute sensory profiling tests (Albert et al., 2012) even account 

for dynamic changes in sensory perceptions during food oral processing but are complicate to 

interpret and use for correlations. In this dissertation study, paired, ranking as well as hedonic 

Table 1. Chewing procedures and standard reference samples to characterize texture 
attributes organoleptically using the texture profile analysis method as defined by 

Szczesniak in 1963. 

Texture 
attribute 

Reference samples from 
low to high intensity 

Chewing procedure 

Brittleness 

(soft & crumbly 

– hard & brittle) 

Corn muffin, Angel puffs, 
Graham crackers, Melba 
toast, Jan Hazel cookies, 
Ginger snaps, Peanut brittle 

Ease or force with which a sample crumbles, 
cracks, or shatters. Secondary parameter, 
encompassing the primary parameters 
hardness and cohesiveness 

Hardness or 
Firmness 

(soft – firm – 

hard) 

Cream cheese, hard-cooked 
egg white, Frankfurters, 
cheese, olives, peanuts, 
carrots, peanut brittle, rock 
candies 

Force required to penetrate a substance with 
molar teeth 

Cohesiveness No standard samples in 
1963 

Related to secondary parameters 

Springiness 
first called 
elasticity 

No standard sample in 1963 From plastic to elastic, difficult to standardize 

Adhesiveness 

(sticky – tacky 
– gooey) 

Hydrogenated vegetable oil, 
buttermilk biscuit dough, 
cream cheese, 
marshmallow topping, 
peanut butter 

Force required to remove the material that 
adheres to the mouth (generally to the palate) 
during normal eating 

Gumminess 

(short – mealy 
– pasty – 
gummy) 

Flour pastes at 40, 45, 50, 
55 and 60% 

Denseness that persists throughout 
mastication. Refers to semisolid materials, 
secondary parameter, product of a low degree 
of hardness and a high degree of 
cohesiveness 

Chewiness 
(tender – 
chewy – tough) 

Rye bread, Frankfurter, gum 
drops, steak, black crows 
candy, peanut chews, 
Tootsie rolls 

Length of time in seconds required to 
masticate a sample at a rate of one chew per 
second in order to reduce it to the consistency 
satisfactory for swallowing. Secondary 
parameter, encompassing hardness, 
cohesiveness, and elasticity 
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tests were performed to evaluate freshness-related crispiness levels of puffed snacks 

according to sound records during in-vitro crushing tests. 

Many external factors have to be controlled strictly during sensory tests. Varying the order of 

presentation of the samples randomly and in a balanced manner decreases their influence on 

the final result (DIN, 2008, ISO, 2014). Defining sensory attributes and training prior to 

evaluation is also primordial for tests which need to determine accurate values. In fact, there 

are known confusions about definitions of attributes due to the differences in available 

vocabulary in different countries, erroneous translations, the lack of consensus in literature and 

different meanings depending on habits, traditions, culture and even people physiology. This 

is the case for the distinction between crispiness and crunchiness (Vickers, 1984b, Dijksterhuis 

et al., 2007, Saeleaw and Schleining, 2011, Tunick et al., 2013), creating controversies 

amongst food scientists and even panelists during sensory sessions. 

 

3.1.2.2. Sensory Analysis of Crispiness and Crunchiness 

 

To summarize most of the definitions of crispiness against crunchiness, one can say that 

crispiness mostly describes dry porous foods such as chips and crunchiness would rather 

describe wet porous foods such as fresh vegetables and fruits (Peleg, 1993b, Luyten et al., 

2004, Vliet and Primo-Martín, 2011). There are always contradictions and exceptions such as 

biscuits of different hardness and brittleness which can be crispy or crunchy depending on 

their type, the moment, and the way of consumption. Some foods can even be both crispy and 

crunchy at different proportions, such as apples, crackers and tortilla chips (Tunick et al., 

2013). Crispiness can result from a highly repetitive breakage of a fragile, brittle structure (Vliet 

and Primo-Martín, 2011) releasing many low- to moderately loud but high-pitched sounds 

whereas crunchiness can result from less repetitive distinct breakages of a denser and harder 

structure until sample failure or small cumulated breakages of the internal structure which 

produce a few strong breakages after compaction requiring a higher force intensity (Bourne, 

2002b) and releasing loud, lower-pitched sounds (Vickers, 1984b, Tunick et al., 2013). Some 

people tell the contrary (Dijksterhuis et al., 2007, Saeleaw and Schleining, 2011). Crispiness 

and crunchiness can be tested by biting or chewing (Vliet and Primo-Martín, 2011) and a partial 

evaluation can be performed by listening to crushing sounds (exact protocol see paper in 

Appendix B), as they highly impact such texture sensations (Vickers, 1984a). In some sensory 

studies, an exact evaluation process is imposed to the panelists (Tunick et al., 2013): biting 

once with the incisors, with or without chewing with the molars (once or more times). The 

mechanical sensation of crushing foods is perceived in the whole oral cavity: on the mucosal 

surfaces, as well as in the teeth and bones which are surrounded by mechanoreceptors. For 

each breakage event in the structure of a dry, crispy or crunchy food sample, the overall force 

needed to break the structure, but also different vibration force intensities and their occurrence 

can be felt. When listening to the in-vivo crushing sounds produced during chewing, humans 

will find differences depending if they chew with open or closed mouth, because the sound 

vibrations will be air-borne or rather bone-conducted (Dacremont et al., 1991). The final 

evaluation results from a combination of both vibrations, which makes it challenging to 

measure instrumentally. In-vivo crushing sound measurements can be performed by 

microphones near the mouth as well as surface vibration measurements near the ear. In-vitro 

measurements can also be performed to standardize the crushing conditions. The definitions 

and instrumental analysis methods of crispiness and crunchiness are further described in 

section 3.1.3.1.2. 

 



16 
 

3.1.2.3. Sensory Analysis of Friction-Related Texture Attributes 

 

Friction-related textures can be evaluated by rubbing the tongue against the palate with a 

beverage, food or rests of food bolus remaining after swallowing or by moving the lips or 

cheeks against the teeth. Mouth- and throat-coating substances such as fat or granular 

textures due to the presence of particles can be detected this way (Szczesniak, 2002, Chen 

and Engelen, 2012, Chen and Stokes, 2012). Coating substances also produce flavor after-

feel, as well as texture after-feel that can be perceived by the mechanoreceptors of the 

pharyngeal mucosa in the throat (Van Aken, 2010, Chen and Engelen, 2012, Van Aken, 2013). 

Several texture attributes are related to the friction between oral or pharyngeal surfaces, 

depending on the lubrication of a thin film of food, beverage and saliva: creamy, slippery, oily, 

smooth, rough, gritty, granular and astringent (the tactile part) textures are a few of them (Chen 

and Stokes, 2012, Stokes et al., 2013). Creaminess is a particular case where the viscosity of 

the bulk food bolus or beverage sip and particle sizes also play a role because this texture 

attribute is evaluated at several stages of food oral processing, thus resulting from a 

multisensory experience (Sonne et al., 2014, Morell et al., 2016). Astringency is also impacted 

by the chemistry of food and beverages as well as the saliva secreted during consumption and 

chemical interactions with oral mucosa, but this sensation is still not well understood (Brossard 

et al., 2016, Upadhyay et al., 2016, Laguna et al., 2019). The complexity of those texture 

attributes, better defined in section 3.1.3.2.2, make it even more difficult to evaluate in sensory 

analyses than simpler ones such as thick and thin sensations. Thick and thin textures result 

from bulk fluid flow properties alone, measured by rheology, that are also lacking universal 

relationships (Chen, 2009, Selway and Stokes, 2014). In this thesis, friction measurements 

were performed to investigate the presence of special (stick-slip) effects in tribology of foods, 

but the results were not related to specific sensory attributes. Nevertheless, those special 

effects may be the key for the description of sensory attributes that are influenced not only by 

overall friction forces that are felt during food oral processing, but also by the vibrations 

produced in the same time and felt by the mechanoreceptors sensitive to vibrations. Such 

friction vibrations can also be the origin of sounds released during in-mouth friction and that 

are gaining interest in recent food texture studies (Van de Velde et al., 2018). 

 

3.1.2.4. Challenge of the Sensory Texture Analysis 

 

Texture attributes are complex, often even more than taste and smell (Szczesniak, 2002). That 

is why texture profile panels must be strongly trained (Szczesniak, 1975). Nevertheless, 

despite all the efforts in standardizing sensory tests, results stay subjective and sensitive to 

environmental conditions during tasting, personal experience, people’s physiological 

characteristics, gender, age, medication, food or drinks just ingested before testing, hunger 

and daytime (Peleg, 2006, Chen and Engelen, 2012, Vliet and Primo-Martín, 2011). Moreover, 

even when sensory scores are reliable, the maintenance of a trained panel and the routine 

analysis are time and cost-intensive. Thus it becomes more and more interesting for food 

industry to find objective instrumental analysis methods to replace or complement subjective 

sensory analyses for the quantification of texture attributes (Rohde et al., 1993, Vincent, 1998, 

Luyten and Van Vliet, 2006, Anton and Luciano, 2007).  

The understanding of texture sensations can be supported by the observation of food physico-

chemical properties and their changes thanks to sampling and in-vivo records during food oral 

processing (mechanics, sounds, flow velocity, release of chemical components or absorption 
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of saliva into the food bolus). The interplay with adapting oral physiology (radiology, neurology, 

dentistry, muscle activity, chewing force and velocity, saliva production and composition) is 

determining to get a global understanding (Chen, 2009, Chen and Engelen, 2012). Finally, in-

vitro measurements permit to focus on a smaller amount of variables to enable easier 

modelling of the food transformation processes and developing routine tests. Nevertheless, 

instrumental analysis provides a simplified view of the reality, limited by the measuring 

conditions. Mathematical models (correlations, machine learning) which should predict texture 

attribute levels from instrumental data are also limited by the number of samples measured as 

well as the span of attribute levels covered by the test samples. Moreover, good models need 

to lay on strong sensory data (significant differences and reproducibility). This preparation work 

cannot be neglected and can represent a certain investment.  

 

3.1.3. Instrumental Texture Analysis 

 

This section details a few instrumental tests, amongst the numerous ones available to 

objectively characterize the texture of liquids, solids or semi-solids (Bourne, 2002b), that can 

be useful to measure crispiness, crunchiness and friction-related texture attributes. 

 

3.1.3.1. Texture of Solid and Semi-Solid Foods  

 

 Instrumental Texture Profile Analysis versus Materials’ Sciences 

 

Texture profile analysis (TPA) is one of the instrumental methods that measure solid and semi-

solid food textures by linking mechanical properties of food materials with sensory attributes 

(Szczesniak, 1963, Bourne, 2002b). This technique is used for the characterization of 

parameters that can correlate with crispiness and crunchiness (Tunick et al., 2013). TPA was 

inspired by material science studies on breakage and flow dynamics during deformation. In the 

contrary to the traditional material testing machines (Callister and Rethwisch, 2013), TPA is 

conducted on a texture analyzer, which is a simplified machine, often smaller, to be installed 

into food science laboratories, and less strong, as food does not need high forces to be 

deformed and destroyed. Moreover, the method measures more than stress-strain curves, the 

maximal strength at breakage and the Young’s modulus of elasticity at specific deformation 

rates. Often, TPA mimics biting or chewing by two or more deformation cycles to evaluate 

elastic recovery and multiple breakages in the structure, as they may be experienced by 

humans. Fundamental tests applying the principles of continuous, isotropic and homogeneous 

material deformation at small strain often do not apply exactly for foods but can be useful to 

understand fundamental physical properties of the material. More empirical tests, with less well 

understood test conditions and results and involving original tools, were thus developed to 

enable routine analyses of the mechanical properties of foods. Food texture studies record the 

force versus deformation of a food sample under specific constraints (Szczesniak, 1963, 

Bourne et al., 1978, Barrett and Peleg, 1992, Duizer, 2001, Bourne, 2002b, Lu, 2013). Force-

deformation diagrams are mostly plotted instead of stress-strain diagrams used in traditional 

mechanical studies (Peleg, 2019). They admit a constant test contact surface and deformation 

rate (speed). The stress values can be calculated as the uniformly applied force divided by the 

surface of contact and the strain is the relation of the deformation to the initial length (Bourne, 
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2002b). As it is difficult to maintain a constant contact surface when measuring foods 

mechanics, results in force units depend on the test conditions and are difficult to generalize 

and to compare with other published results (Peleg, 2019). Imitative tests were meant to 

improve correlations with sensory methods. They reproduce oral conditions such as puncture, 

extrusion, cutting, shearing, bending, compression-crushing by teeth and even use tensile 

tests or stickiness extension tests to look at the properties of the food while being extended by 

hands or when sticking to the teeth (Rohde et al., 1993, Duizer, 2001, Bourne, 2002b, Roudaut 

et al., 2002, Lu, 2013, Tunick et al., 2013, Paula and Conti-Silva, 2014, Swackhamer and 

Bornhorst, 2019). The deformation velocity is a setting that directly impacts the mechanical 

and acoustical responses of materials (Luyten et al., 2004, Luyten and Van Vliet, 2006, Castro-

Prada et al., 2009, Vliet, 2014). Realistic food oral processing velocities mimicking chewing 

rates are of 10 to 40 mm/s (Luyten et al., 2004, Vliet and Primo-Martín, 2011). Lower velocity 

values can be chosen to record more data points for more accurate data analysis (Katz and 

Labuza, 1981).  

TPA parameters were correlated to sensory attributes (Szczesniak, 1963, Szczesniak, 2002, 

Bourne, 2002b, Saeleaw and Schleining, 2011). Hardness would correlate with sensations 

from soft to increasingly hard; brittleness with crumbly, crunchy to brittle-crispy sensations; 

gumminess with short, mealy, pasty to gummy sensations; chewiness with tender, chewy to 

tough sensations; springiness with plastic to elastic sensations; viscosity with thin to viscous 

or thick sensations; and stickiness with sticky, tacky to gooey sensations. Although some 

contradictions can be found in literature, the calculation of typical texture parameters out of 

TPA curves are shown in Figure 2 and Table 2 (Breene, 1975, Bourne et al., 1978, Bourne, 

2002b, Szczesniak, 2002). Stiffness, another single-value parameter, reflects the elastic 

modulus of the material (Vickers and Bourne, 1976b) and can be calculated by two protocols: 

 

Figure 2. Typical texture profile analysis (TPA) curve and parameters for the calculation of 
texture attribute values, as inspired by (Breene, 1975, Bourne et al., 1978, Bourne, 

2002b). 
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the low-strain stiffness, which is the slope of the force-deformation curve in the linear-elastic 

domain at 0.1 % strain (Vickers, 1987) and the high-strain stiffness, which is the slope from 

zero deformation to the maximal force peak (Saeleaw and Schleining, 2011). Other food 

scientists developed simplified empirical definitions of stiffness corresponding to the force 

values at 10, 20 or 30% deformation (Wollny and Peleg, 1994, Harris and Peleg, 1996).  

  

 Challenge of Crispiness and Crunchiness  

 

Despite the controversial differences between crispiness and crunchiness, both are still 

challenging to measure accurately and reliably with instrumental methods. In both cases, 

mechanical and acoustical signals recorded during the crushing of crispy or crunchy samples 

contain a complex series of peaks which are highly variable and difficult to analyze. Thus, 

correlations with sensory results are not always successful (Vickers and Bourne, 1976a, Katz 

and Labuza, 1981, Edmister and Vickers, 1985, Belie et al., 2002, Belie et al., 2003, Belie et 

al., 2000, Roudaut et al., 2002, Szczesniak, 2002, Vincent, 1998, Vincent, 2004, Vliet and 

Primo-Martín, 2011, Vliet, 2014). In some studies, correlations of crispiness were found with 

mechanical attributes such as hardness, or with structural characteristics such as aeration and 

Table 2. Typical texture attributes calculated from texture profile analysis (TPA) curves, as 
inspired by (Breene, 1975, Bourne et al., 1978, Bourne, 2002b). 

Texture 
attribute 

Calculation Explanation 

Fracturability FBreak,1 Force at the first significant force peak value corresponding 
to the first fracture 

Brittleness ΔFBreack,1 Force drop after first fracture 

Hardness FMax,1 Measure of material strength = maximal force value during 
the first compression cycle, often at the maximum 
deformation or at first fracture if it corresponds to the 
maximal force value in compression tests 

Firmness Often used in sensory analyses instead of „hardness“, sometimes used for the 
maximal force at fracture, mostly measured with puncture tests 

Cohesiveness A2/A1 Measure of the strength of internal bonds and of the 
elasticity or recovery potential of the material = area ratio 
representing the work or resistance against the second 
deformation in comparison to the first one 

Springiness 
(first called 
„elasticity“) 

L2/L1 
(sometimes 
L2/L1) 

Measure of the delayed elasticity = ratio of the sample 
change in height of both compression cycles 

Adhesiveness A3 Measure of adhesiveness to the contact surfaces of the 
measuring tool but also of the preservation of the structure 
after first compression (as the sample can break internally) 
= area of negative forces between both compression cycles 

Gumminess Hardness 
*Cohesiveness 

Measure of the energy or work necessary to make semi-
solids swallowable (without chewing but through squeezing 
between tongue and palate) 

Chewiness Gumminess* 
Springiness 

Like gumminess, but for chewable solid foods (hard or soft) 
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crumbliness (Roudaut et al., 2002). In other studies, high-magnitude peaks in crushing 

mechanics and acoustics were sufficient to explain most of the sensory-felt crispiness or 

crunchiness as well as impacting preferences, but they did not always correlate depending on 

the food sample (Castro-Prada et al., 2012, Vliet, 2014, Elder and Mohr, 2016). Some 

considered only the high-pitched crushing sounds, corresponding to high frequencies, and 

their energy to correlate with crispiness (Seymour and Hamann, 1988, Roudaut et al., 2002). 

Typically, food products characterized by strong and loud breakages in their structure during 

chewing such as highly crunchy raw vegetables or hard crispy foods are more probably 

assessable using high-magnitude peaks. Coarse toasted rusk rolls are characterized by 

stronger breakage events than fine toasted rusk rolls (Castro-Prada et al., 2012). The sensory 

crispiness in this example study was defined to distinguish hard and less hard structures and 

was thus well correlated with strong breakage event parameters. Other crispy products are 

appreciated because of their characteristic slighter but more numerous breakage events due 

to finer structures. For such products, the definition of crispiness will not be related to a harder 

structure and stronger breakages and thus not be fully characterized by high-magnitude peaks. 

In fact, the rest of the information, such as smaller peaks or the overall sound signature 

composed of a rhythm, a mixture of sound pitches in a large range of frequencies and 

amplitudes, may also affect perceptions (Drake, 1963, Zampini and Spence, 2004, Saeleaw 

and Schleining, 2011). Contrarily to several foods (Duizer, 2001), hardness, work (overall and 

work to fracture) and sound intensity are even negatively correlated to sensory crispiness of 

specific foods (Seymour and Hamann, 1988). Often, food scientists attempt to reduce 

variability by smoothening the measured curves, taking the mean value of the signal or of 

single-valued texture parameters extracted from data of repeated measurements. Depending 

on the goal of the study, it can be sufficient to use those methods and to optimize sample 

preparation as well as measurement conditions and tools (Tunick et al., 2013). 

Nevertheless, dry snacks are very sensitive to small humidity changes. Thus, to accompany 

the development of the best formula and packaging, instrumental crispiness evaluation must 

be very precise. Measurement methods such as quick water content, water activity in the 

headspace of the product or simple texture analyses may not suffice. Then, mechanical or 

acoustical methods are preferable for characterizing crispiness or crunchiness. Even for quality 

control, to the opinion of the author, it is better to be able to distinguish several crispiness levels 

with a minimum of three classes: best (high), acceptable (intermediate) and rejected (low) 

crispiness levels. 

 

Humidity in crispy foods 

For each type of material, such as puffed snacks, and depending on its composition and 

processing (extruded, deep fried), there is a specific water sorption behavior, represented by 

a sorption isotherm (Peleg, 1993a, Sanahuja et al., 2012). The sorption isotherm shows the 

link between increasing water in the air (or water activity or relative humidity in percent) and 

the water content (or water been absorbed by the material after equilibration) at a specific 

temperature. For dry foods it has typically a sigmoid trend (Katz and Labuza, 1981, Peleg, 

1993a). Water sorption kinematics characterize for this purpose the evolution of water content 

in time and permit to find out the equilibration time after which further increase in water content 

is negligible. Knowing that, equilibration experiments can be conducted in the shortest time 

possible, which avoids also staling of the product by being kept too long in contact with water. 

One method to obtain puffed snacks at controlled humidity levels is to equilibrate them in air-

tight containers (exsiccators) containing different saturated salt solutions adjust the headspace 

humidity around the samples (Katz and Labuza, 1981, Barrett and Peleg, 1992, Rohde et al., 

1993, Wollny and Peleg, 1994, Castro-Prada et al., 2009). 



21 
 

For some dry crispy foods such as puffed snacks, small differences in relative humidity (RH) 

in the domain of low humidity, from 11 to 23% RH for example, can already decrease consumer 

acceptance (Katz and Labuza, 1981, Zampini and Spence, 2004). Polymeric foods such as 

dry starch products undergo anti-plasticization toughening effects at low RH when humidity 

increases, which make them harder to chew and decreases brittleness. Plasticization takes 

place above a critical ductile transition that makes the product softer, thus not brittle anymore 

and producing less to no crushing sounds at all (Katz and Labuza, 1981, Rohde et al., 1993, 

Wollny and Peleg, 1994, Harris and Peleg, 1996, Fontanet et al., 1997, Duizer et al., 1998, 

Roudaut et al., 1998, Suwonsichon and Peleg, 1998, Roudaut, 1999, Pamies et al., 2000, Pittia 

and Sachetti, 2008, Vliet and Primo-Martín, 2011, Luyten et al., 2004). In fact, molecular 

mobility already occurs within the glassy material state below glass transition, explaining 

crispiness loss due to beginning relaxation processes (Roudaut et al., 1998, Roudaut, 1999). 

Both humidifying effects thus decrease crispiness in this type of product, which is why low-

humidity production and packaging are key as well as the maintenance to low RH levels by 

optimized packaging properties such as seal, barrier and absorbing materials limiting humidity 

permeation (Sanahuja et al., 2012). Moreover, the product recipe and production process may 

be optimized if the product crispiness decreases too quickly at room temperature and humidity 

(such as on rainy days at up to 75% RH). 

 

Data analysis of crispy food samples 

However, food scientists still struggle to distinguish instrumentally crispiness levels in the low-

humidity range. This is why more advanced and holistic signal analysis techniques were tested 

in literature, accounting for the characterization of the overall behavior of the whole jagged 

breakage signature and the details of the recorded mechanical and acoustical signals (Barrett 

and Peleg, 1992, Rohde et al., 1993, Wollny and Peleg, 1994, Harris and Peleg, 1996, Peleg 

and Clemens, 1997, Suwonsichon and Peleg, 1998, Selway and Stokes, 2014). Such results 

offer another point of view than looking to raw data. For example, it is interesting to visualize 

data in the frequency domain (section 3.2, chapter 4 and appendix paper A) using frequency 

spectra to discover mathematical characteristics of raw data and better represent data patterns 

than it is possible in the raw, time data. Often, these patterns are recognizable by the (trained) 

eye to distinguish between different data types such as measured on samples with different 

humidity levels. However, results reported in literature are mostly still unsatisfying for the 

means of industrial quality control. Studies often differentiate very different products (extruded 

cylindrical versus flat snacks or biscuits) which do not need to be compared in industry. 

Correlation studies hardly consider small changes in quality happening for the same type of 

product with different ingredients or storage conditions. When small changes in quality are 

studied, models are limited to a specific food. Most studies cannot differentiate automatically 

between the crucial quality levels, for example because of the difficult interpretation of complex 

force data or their frequency spectra or because of the insufficient combinations of single 

parameters (Chen and Engelen, 2012, Srisawas and Jindal, 2003). In opposition, multimodal 

analysis and classification may provide a more complete interpretation of the phenomena 

(section 3.3, chapter 5 and appendix paper B). The classification algorithms that were used in 

this dissertation study permitted a more global recognition of patterns in data of a same group 

besides natural individual differences. This presented the advantage to overcome the issue of 

high variability in data that is encountered even when combining a lot of texture parameters of 

different kinds in correlation models, because brittle foods are inherently highly irregular and 

jagged force or sound curves measured during crushing are characteristic of those samples 

(Rohde et al., 1993, Peleg and Clemens, 1997). However, the classification algorithms in this 

dissertation used machine learning models based on a “black box principle” which does not 

permit to visualize the model and easily interpret the impact of each single texture parameter 



22 
 

(see section 3.3.2). Other recent algorithms may permit to determine the percent of impact of 

each parameter on each model configuration, for example random forest regression methods 

(Chen et al., 2018). However, these methods would have needed more continuous data, with 

a lot of different crispiness levels instead of the available data for the classification study in this 

dissertation, where sensory analysis was limited to a few well-defined humidity groups. 

 

Mechanical Properties 

Crispy and crunchy products are characterized by an appropriate stiffness and brittleness 

during chewing (Drake, 1963, Vickers, 1984b, Luyten and Van Vliet, 2006, Saeleaw and 

Schleining, 2011, Vliet and Primo-Martín, 2011). These texture attributes are logically linked 

to the previously defined hardness or firmness, fracturability and brittleness or total and 

fracture work (Tunick et al., 2013). In fact, the most used texture parameters only consider 

single points in measured data, mostly the first breakage event, leading to the irreversible loss 

of information on evolution of breakages during the mechanical test (Vickers and Bourne, 

1976a, Vliet and Primo-Martín, 2011).  

When a more holistic data analysis is employed, a lot of important texture parameters 

(features) can be extracted additionally: the number, frequency (number of force bursts or 

peaks per second, given in Hertz (Hz), reflecting indirectly the length scales of structure 

fractures) and magnitude distributions of fracture events represented by force peaks as well 

as features contained in the spectra such as the magnitude of octave-frequency-bands 

(defined in sections 3.2 and 3.3.1.1); the mean frequency (number of peaks divided by the 

duration of the signal) or the mean standard deviation of the force data accounting for its 

variability (Varela et al., 2006, Pittia and Sachetti, 2008); the total and fracture-related mean 

work values (related to material’s toughness and corresponding to the area under the force 

curve, obtained by its integration (Saeleaw and Schleining, 2011, Kwak et al., 2019)) and the 

linear distance of the force-deformation curve (Varela et al., 2006, Duizer, 2013). The 

mechanical frequency is related to the breakage rate, the microstructure and pore wall material 

properties (Sanahuja and Briesen, 2015). Other advanced techniques were introduced to 

extract holistic parameters measuring force jaggedness, such as the mean magnitude of its 

power spectrum and the apparent fractal dimension (section 3.2.2.1). In fact, the number of 

different parameters that may be calculated from mechanical data in a food texture study to 

characterize texture attributes such as crispiness or crunchiness is only limited by human’s 

imagination. They cannot be listed exhaustively, as every food scientist will define own 

alternative parameters measured with own constructed instruments and test procedures 

(Barrett et al., 1994a, Roudaut et al., 2002). 

 

Acoustical Properties 

Crispy and crunchy products are also characterized by the release of pleasant rhythmic sounds 

of particular pitch and loudness during crushing (Drake, 1963, Vickers, 1984a, Vickers, 1984b, 

Luyten and Van Vliet, 2006, Salvador et al., 2009, Saeleaw and Schleining, 2011, Vliet and 

Primo-Martín, 2011). Thus, further important texture parameters can be extracted from 

crushing sounds: the maximal loudness (corresponding to the maximal acoustical magnitude, 

energy or sound pressure level), the total loudness (by integration of the whole measurement 

analogous to mechanical work calculation), the mean acoustical frequency or the standard 

deviation of the acoustical data accounting for its complexity (Tesch et al., 1996a). Spectral 

parameters such as those defined for the mechanical data analysis (section 3.2) permit to find 

out characteristic pitches corresponding to specific frequency bands in the spectra and their 
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specific loudness corresponding to the magnitude or energy of those frequencies. Acoustical 

frequency is calculated as the number of sound pressure waves per second (Duizer, 2001). 

For example, high-pitched frequency bands such as around 10 kHz may characterize 

crispiness, but even low-pitched below 3 kHz are known to influence it too (Zampini and 

Spence, 2004, Dijksterhuis et al., 2007, Saeleaw and Schleining, 2011). There, it can be 

difficult to distinguish the crushing sound from the machine noise components which may 

influence sensory perception when listening to the records and thus influence a model which 

would use those data (Christensen and Vickers, 1981, Woods et al., 2011, Pellegrino et al., 

2015). Finally, alternative line jaggedness characterization techniques were also used for 

acoustical data (Tesch et al., 1996a, Roudaut et al., 2002). 

Food scientists develop more and more methods to measure crispiness and crunchiness as 

well as new ways of understanding the measured data by extracting new parameters from 

mechanical and acoustical data. Therefore, it becomes difficult to choose which ones to work 

on in new studies to avoid a huge loss of time in multiple calculations. In fact, to define and 

extract parameters from measured data, a huge effort and expertise are prerequisite. 

Alternatively to pre-defining parameters, some machine learning processes allow a computer 

to recognize patterns directly in raw data like deep-learning algorithms (section 3.3.2.3). Many 

kinds of models combined a few different parameters in equations (Chen and Opara, 2013) 

using first or second order reaction kinetics, the Maxwell model, the finite element method, 

statistical models, the Gibson-Ashby model, the Michaelis-Menten type decay function or the 

logistic equation including Boltzmann function to explain and predict food texture attributes 

such as firmness, crispiness or crunchiness indices. Those equations are based on 

measurements of chemical reactions, water sorption, porous microstructure mechanics, 

destructive mechanics or acoustical destructive and non-destructive vibrations (Chen and 

Opara, 2013). Other food texture studies (Varela et al., 2006, Castro-Prada et al., 2007, 

Castro-Prada et al., 2009) correlated mechanical and acoustical parameters to find out which 

ones are the most related by causal effects such as the sounds resulting from mechanical 

breakages, enabling to choose only one of both parameters in further model studies. 

Nevertheless, in the crispiness study of this dissertation, a lot of parameters were extracted 

from mechanical and acoustical data and not combined, first because each food product is 

different and models or correlations in literature are not universal, and secondly because small 

effects may not be redundant and can have a huge impact in improving the complete food 

signature that can be evaluated by machine learning techniques. Moreover, measured data 

depend on the sensors accuracy, sampling rate and storage resolution of each kind of 

instrument (Castro-Prada et al., 2007), which can also explain why acoustical data recorded 

at a very high sampling rate using independent microphones as it was set up in the thesis 

experiments may contain more information than the mechanical and acoustical data recorded 

by conventional texture analyzers for which internal settings minimize data storage by 

downsampling the data points. This is the case for the acoustic envelope detector (AED) 

system from Stable Micro Systems (Chen et al., 2015, Saeleaw and Schleining, 2011). The 

AED permits to record the envelope of the signal, which shows the main sound energy peaks 

corresponding to breakage events, but the sampling rate is too limited to extract accurate 

frequency spectra and determine the sound pitches that may characterize the acoustical 

signature of a food sample.  

 

3.1.3.2. Texture of Semi-Solid and Liquid Foods 
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Beverages can be considered as liquid foods. Semi-solid foods are soft and almost liquid, but 

with a stabilized shape and often more complex texture. Three instrumental methods were 

adapted to the analysis of such types of foods: texture analyzers measure overall force-

deformation properties such as gel strength, whereas rheometers measure more precisely flow 

and deformation behaviors and tribometers measure lubrication properties (Selway and 

Stokes, 2014). Those mechanical properties can be linked to composition and structure of 

materials to better design their textural properties. Nevertheless, it is seldom easy to find the 

optimal measurement setting to correlate well with sensory results. 

 

 Rheology 

 

Rheology is the science used by food scientists to describe exactly how food materials flow 

and deformation. This may impact their processing, stability in time and at different storage 

conditions as well as some organoleptic properties such as flow-related texture attributes 

(Selway and Stokes, 2014).  

Rheology basically gives a measure of viscosity of a fluid, for example in steady shear 

experiments involving rotational rheometers shearing the fluid between two plates, a cone and 

a plate or other cylindrical constructs adapted to specific levels of thickness (Bourne, 2002a, 

Bourne, 2002b). Viscosity is the term commonly used instead of “dynamic” or “absolute” 

viscosity. It is calculated as the shear stress (applied tangentially to the plane on which the 

force acts) divided by the shear rate (flow velocity gradient), and is represented as the slope 

of shear stress-shear rate curves or as a function of shear stress in flow diagrams. Viscosity, 

thus, represents the internal friction of a fluid material that permits to resist flow. It consists of 

a proportion of plasticity (losing its shape permanently) and a proportion of elasticity (potentially 

recovering its shape after removal of constraints) that determine how rapidly the fluid flows 

under controlled constraints and in time. Newtonian materials are viscous without structure 

changes under constraints. For example, water, edible oils, milk or sugar syrups, that maintain 

a constant viscosity at a specific temperature, independent of shear rate within the laminar 

flow range (non-turbulent), are often used as simplified models to build basic understanding 

and to test instrumental methods. Nevertheless, most foods are visco-elastic (non-Newtonian) 

and erroneous interpretations can be built using instruments and principles designed for 

Newtonian foods. Finally, viscosity depends on temperature, the concentration and type of 

solutes, emulsified drops or suspended particles modelled by more or less complex equations. 

Bingham fluids are plastic, meaning that they need a minimal yield stress to flow. Dilatant fluids 

are shear-thickening whereas pseudo-plastic fluids are shear-thinning, meaning that their 

viscosity increases or decreases, respectively, with the applied shear stress and strain. Food 

thickeners and gelling agents such as polysaccharides and proteins can lead to complex 

behavior in visco-elastic foods that is modelled by simple or combined mechanistic models. 

For example, a viscous dashpot can model the fluid proportion of a food, whereas an elastic 

spring can model the solid proportion. A spring and a dashpot arranged in series model a 

Maxwell fluid. The same model components model a Kelvin-Voigt solid in parallel 

configuration. The number of components and their conformation can be extended to describe 

more complex materials. Viscosity can also increase or decrease in time under constant shear 

constraints, the fluid is then called rheopectic or thixotropic, respectively, if the viscosity change 

is fully reversible (Selway and Stokes, 2014). 

Less destructive measurement principles involving rotational rheometers in oscillatory mode 

were also developed to complement knowledge about the polymeric networking, gel-like 

behaviors and stability related to the viscous/elastic proportions (Metzger, 2012). They capture 
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the evolution of parameters such as the storage or elastic modulus G’, the loss or viscous 

modulus G’’, the loss tangent tan Ø being the quotient of G’’ to G’, the complex modulus G* 

being the square root of the sum of squares of both moduli, the complex viscosity, the linear 

visco-elastic region and the yield or flow point. Amplitude sweep oscillation tests vary the 

amplitude of the deformation (maximal angle of rotation) or of the shear stress while the 

frequency of oscillation is kept constant. Frequency sweep tests are the contrary and they are 

used for studying the time-dependent deformation behavior. Both can be used to study for 

example the yoghurt multiple phase structures and networks and extract instrumental 

parameters to complement tribology experiments in the determination of creaminess (Sonne 

et al., 2014, Morell et al., 2016). Optimal concentrations of thickeners and stabilizers can be 

determined to improve mouthfeel and increase shelf-life by reducing sedimentation, creaming, 

coalescence or syneresis phenomena (Selway and Stokes, 2014, Nguyen et al., 2017). 

Extensional rheology (Rózanska, 2016, Yuan et al., 2018) can also be used for the study of 

texture. During this measurement, a sample is extended vertically at a constant strain rate 

between two sample holders. It evaluates the food stickiness to machine or oral surfaces, and 

thus it is a tool to measure the processability of dough or more liquid ingredients. It gives also 

an alternative evaluation of viscosity and adhesion, by extending instead of shearing a sample, 

which mimics humans testing stickiness by increasing and decreasing the distance between 

two fingers or between the tongue and the palate. It is used to better understand the behaviour 

of saliva or food-saliva mixes during food oral processing by determining which of the 

extensional or the shear viscosity dominate the viscous and the elastic flows. Extensional 

rheology also permits to compare the different cohesiveness values of thickened foods with 

similar shear viscosity (Hadde and Chen, 2019). In fact, improved cohesiveness is important 

for foods that are designed to be easy to swallow, as it impacts bolus flow. In particular for 

people suffering from dysphasia, a swallowing disorder, it can be impossible to swallow liquids 

with too low viscosity such as water, or foods with particles. Nevertheless, extensional viscosity 

is more difficult to measure than shear viscosity, because the sample dimensions vary in time 

and complications occur when the sample falls from the upper sample holder or when the 

filament breaks too quickly, depending on the viscosity, the homogeneity and the strength of 

the inner structure of the sample as compared with its sticking strength onto the sample holder.  

 

 Tribology 

 

Scientific advances 

The word tribology was invented by Peter Jost in 1966 (Jost, 1966). Nevertheless, some 

scientists think it was David Tabor (Adams et al., 2007), because of his research on friction 

and lubrication beginning from the 1940’s and his pioneering book from 1950, together with 

Frank Philip Bowden (Bowden and Tabor, 2001). Used for a long time in the metal and 

machinery industries (Jost, 1966, Prakash et al., 2013, Pradal and Stokes, 2016), tribology 

permits to measure and improve lubricants and material surfaces properties so that they resist 

longer against friction-induced wear and vibrations. Such phenomena produce material 

damage in engines, earthquakes (Basu and Gupta, 2000, Rossouw et al., 2003, Baum et al., 

2014), energy loss (Rossouw et al., 2003) or loud silo noise (Bhandari, 2013). Tribology is 

already in use in orthopedic medicine for the optimization of joint materials and biocompatible 

lubricants (Hua et al., 2007, Guo et al., 2016), in dentistry to study the wear of orthodontic 

materials (Rossouw et al., 2003, Seo et al., 2015), in cosmetics to develop skin-care products 

and creams (Adams et al., 2007, Guest et al., 2013) as well as in the development of resistant 

packaging materials (Andrew, 2013). Moreover, controlling the vibrations called stick-slip 
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effects, using surface roughness levels, may enhance system properties, preventing wear by 

lowering the friction (Scherge and Gorb, 2013, Baum et al., 2014), making instrument strings 

vibrate at whished pitches (Rossouw et al., 2003), enhancing grip in robots technology (Shao 

et al., 2009) by mimicking skin properties (Adams et al., 2007) or tactile properties in virtual 

reality devices by mimicking the finger tips sensitivity (Asamura et al., 1998). Inspired by the 

knowledge on skin mechanoreceptors stimulation, stick-slip effects characteristics even permit 

to classify and recognize surface texture using dynamic tactile array sensors in intelligent 

robots (Heyneman and Cutkosky, 2016). 

Food “oral” (“soft” or “bio”) tribology concepts appeared in 1977-1988 and received higher 

attention during the last decade to be used when traditional food texture analyses were no 

longer sufficient to describe modern food properties (Chen and Stokes, 2012, Chen and 

Engelen, 2012, Stokes et al., 2011, Stokes et al., 2013, Selway and Stokes, 2013, Selway and 

Stokes, 2014, Prakash et al., 2013, Sonne et al., 2014, Pradal and Stokes, 2016, Shewan et 

al., 2019). Both rheology and tribology methods are often combined to express the different 

aspects of food texture that is perceived during consumption. While rheology captures the 

properties of intact foods to explain their physical stability and initial texture perception or the 

bulk flow properties of a food bolus to understand its deformation during swallowing, tribology 

is supposed to characterize product attributes that impact the dynamic changes in texture 

perception at several stages of food oral processing. It studies the friction, lubrication and wear 

effects resulting both from a thin film of fluid and its interactions with surfaces in relative motion 

while being rubbed (Rossouw et al., 2003, Dresselhuis et al., 2008a, Prakash et al., 2013). 

The technique can be used to measure the friction differences produced by different food and 

saliva samples while lubricating the surfaces of contact partner materials that mimick oral 

surfaces (Chen and Stokes, 2012). In fact, many foods are very complex fluids that influence 

both rheology and tribology measurements in different ways, which make it difficult to evaluate 

even the simplest texture attributes such as “thin” or “thick” (Selway and Stokes, 2014). Even 

simple emulsions used to model foods show adverse effects at different measurement 

velocities (Malone et al., 2003, De Hoog et al., 2006, Dresselhuis et al., 2008b, Krzeminski et 

al., 2012, Chojnicka-Paszun and de Jongh, 2014, Oppermann et al., 2016). The friction 

measured at different sliding velocities may give a better overview of the interplay of fluid 

viscosity, dispersed material properties such as particles in suspension or droplets in emulsion 

(concentration, size relative to surface roughness, shape, stability, hardness and 

viscoelasticity) and surface tension and wettability depending on ions, fats, emulsifiers, saliva 

or sweat secretion (Rossouw et al., 2003, Adams et al., 2007, Derler and Rotaru, 2013, Stokes 

et al., 2013, Selway and Stokes, 2014, Pradal and Stokes, 2016, Shewan et al., 2019). This is 

why tribology can be used to differenciate products with similar rheological behavior (Selway 

and Stokes, 2013). Moreover, it captures dynamically bulk fluid flow behavior at high velocities 

such as during processing and swallowing of food as well as thin-film friction behavior at low 

velocities such as during after-feeling and rubbing of remaining food and saliva. Thus, friction 

plays an increasing role in the evaluation of different textures and their dynamic changes during 

food oral processing (Selway and Stokes, 2013).  

While products with conventional texture are generally accepted by consumers, typically 

creamy products may be preferred and powdery or astringent products may be rejected. 

Nevertheless, astringency is a typical characteristic of red wine and tea (Brossard et al., 2016, 

Upadhyay et al., 2016). Astringency results from a combination of chemical and physical 

processes that produce dryness and a puckering feeling. The typical friction felt in the mouth 

when consuming astringent products is considered as being influenced by increased tongue 

surface roughness of papillae, the formation of very small food particles due to the interaction 

with salivary proteins and possibly their fixation to oral mucosa. Those phenomena increase 

dry mouth, powdery and roughness sensations linked to astringency. There are different 
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definitions and sub-levels of the astringent attribute, also often linked to acidity (or sourness), 

bitterness and puckering depending on the compounds present in food or beverages (Bajec, 

2010). Creamy products have to be thick enough, smooth but not lumpy nor grainy, with a fatty, 

slippery, oily mouthcoating and milky flavor (in the case of dairy products). In contrast, thin, 

powdery, astringent to rough or mouthdrying products often associated with bitterness or 

acidity are less enjoyable and may even reveal that they are spoiled (i.e. coagulated dairy 

products). Those high sensory quality requirements are challenging (Selway and Stokes, 

2014) with the trend of “low-fat” (fatty, creamy contribution), “low-carb” (thickening, body 

contribution), “low-salt” (control of taste enhancement and chemical interactions) and “no 

additives” (thickening, stabilizing). Until now, basic texture analysis involving for example 

penetration tests and rheology may predict firmness or thickness; particle size distribution 

(PSD) and optical parameters may show extreme particle sizes that will create powdery to 

grainy or sandy sensations; but available methods are still lacking accuracy to measure and 

predict small differences in smoothness versus roughness, creaminess versus astringency and 

thin textures, fat coating or stickiness (Bourne, 1975, Stokes et al., 2013, Selway and Stokes, 

2014, Laguna et al., 2017). The big challenge for food tribology is thus to be able to measure 

precisely those texture attributes that are supposed to be related to friction and thin-film 

lubrication of oral surfaces in presence of food (Chen and Stokes, 2012, Stokes et al., 2013). 

Examples of applications are the attempts to develop fat-reduced foods with constant frictional 

properties at the University of Wageningen, using double emulsions (Oppermann et al., 2016) 

or microparticulated whey proteins (Liu et al., 2016). A compromise must be found, because 

the thickening and creamy properties rapidly evolve to rough, powdery, gritty (grainy, sandy) 

and even to granular or lumpy characteristics with increasing concentrations and particle sizes 

(Selway and Stokes, 2014).  

 

Friction measurement 

The theory on friction measurements applies in tribology (Figure 3): a body, for example a ball, 

slides or rolls against another contact partner, with or without lubricant (a food sample). 

Tribometry, thus, measures the properties of a system and the interactions between the 

involved materials in contact, but not the properties of a single material (Stokes et al., 2013). 

A normal load is applied to the ball and the sliding or rolling force is measured during the 

relative motion of two surfaces at a specific velocity, resulting in force-displacement or force-

time curves. At a constant velocity, two regions can be distinguished according to Coulomb’s 

law (Liang and Feeny, 1995, Rossouw et al., 2003). During static friction, the two surfaces are 

not yet in relative motion until a maximal sliding resistance is reached. During dynamic friction, 

the sliding or rolling forces often oscillate around an almost constant mean. The conventional 

data analysis method calculates the mean value of this force divided by normal load to obtain 

the friction coefficient (coefficient of friction or COF, unit-less). The friction coefficient is plotted 

against velocity, film thickness or a normalized term (velocity multiplied by viscosity and divided 

by normal load, with a constant viscosity, as far as the lubricant is Newtonian) to form a Stribeck 

curve (Chen and Stokes, 2012). Normalizing by normal load can be meaningful in particular 

for soft-contact tribology experiments where the friction force is not proportional to normal load 

as it would be predicted by the hard-mechanics Coulomb’s law (Malone et al., 2003, Prinz et 

al., 2007a, Cross, 2005, De Hoog et al., 2006, Adams et al., 2007, Krzeminski et al., 2012, 

Nguyen et al., 2016a). Normal load influences soft contact partner’s mechanical response as 

well as the lubricant’s film thickness and properties.  

A Stribeck curve (Figure 3) mostly presents three lubrication regimes directly related to the 

thickness of the lubricant film between two contact partners (Stokes et al., 2011, Chen and 

Stokes, 2012, Chojnicka-Paszun and de Jongh, 2014, Selway and Stokes, 2014). The 
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boundary regime appears at lowest velocities, where asperities of both contact partners are in 

contact with each other, forming a boundary layer, often creating high friction that may increase 

with velocity. The mixed regime represents the transition from a surface-dominated thin-film to 

a rheology-dominated thick-film, at intermediate velocities where a lubricant film of similar 

thickness as the asperities separates them and decreases friction. The hydrodynamic regime 

appears at high velocities where more fluid separates the surfaces, generating hydrodynamic 

pressure that generally increases friction again. The hydrodynamic regime is rather influenced 

by bulk lubricant properties such as viscosity than by surface interactions (Selway and Stokes, 

2014). Moreover, there may be much more complex curve trends, showing more than one drop 

in friction, that are difficult to interpret (Nguyen et al., 2017).  

Even though the lubricant film between contact partners is very thin in the boundary regime, 

the lubricant impacts friction in this Stribeck curve domain due to thin film coating. For example, 

this happens when oil droplets coalesce and separate from an emulsion due to squeezing 

between surface asperities and spread onto the surfaces (De Hoog et al., 2006, Dresselhuis 

et al., 2008a, Dresselhuis et al., 2008b, Pradal and Stokes, 2016). At this moment, depending 

on the surface tension and hydrophilic or –phobic interactions, a lubricant such as fat may 

decrease friction (De Hoog et al., 2006, Oppermann et al., 2016). Thus, higher-fat fluids such 

as full-fat milk mostly produce lower friction than low-fat milk in the boundary domain. For sure, 

the lubricant may influence any domain of the Stribeck curve, but several studies found 

correlations supporting that specific regimes would better predict specific sensory attributes, 

as summarized below (Sanahuja et al., 2017). “The boundary and mixed regimes could be the 

most important for the prediction of several friction-related texture attributes (Pradal and 

Stokes, 2016, Brossard et al., 2016). Wine astringency would be predicted around 0.075 mm/s 

in the boundary regime (Brossard et al., 2016), even though astringency could often not be 

related to friction coefficient values in other studies. Fat perception of food hydrocolloids and 

emulsions would be mainly predicted from 1 to 30 mm/s or higher velocities by the mixed 

 

Figure 3. Friction phenomena measured by tribology: traditional friction characterization of 
the friction coefficient and Stribeck regimes versus new stick-slip vibration 

characterization approach for food texture analysis. Reprinted with kind permission from 
Wiley (Sanahuja et al., 2017).  
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regime friction coefficient (Kokini, 1987, Malone et al., 2003) in the range of velocities 

measured between tongue and palate (Prinz et al., 2007a, De Hoog et al., 2006), as well as 

slipperiness correlated with friction in the mixed regime between 10 and 100 mm/s (Malone et 

al., 2003). Creaminess would result from a combination of surface sensations of the boundary 

regime with fluid flow sensations of the hydrodynamic regime, from 0.01 to 10 mm/s” as well 

as rheological and particle size characteristics (Sonne et al., 2014, Morell et al., 2016). 

During food oral processing, foods are squeezed and sheared between oral surfaces at 

different length scales from centimeters to nanometers and at different velocities and force 

constraints (Asamura et al., 1998, Scherge and Gorb, 2013, Selway and Stokes, 2014, 

Upadhyay et al., 2016). Soft (food “oral”) tribology, involving compliant contact materials to 

mimic oral surfaces, is being developed to improve the study of friction- and thin-film-related 

food properties and texture sensations. Soft tribology is more modern and complex than 

conventional, standardized tribology based on the well-known hard mechanics principles 

(Liang and Feeny, 1995, Rossouw et al., 2003, Adams et al., 2007, Dresselhuis et al., 2008a). 

For example, dry friction tests permit to show that soft, elastomeric materials do not follow the 

Coulomb law of hard materials postulating that the friction coefficient is constant at any velocity 

(Cross, 2005). In fact, viscoelastic materials can exhibit strain-hardening effects because of 

polymer entanglements such as in dough (Dresselhuis et al., 2008a, Selway and Stokes, 

2014). Moreover, frictional forces often increase with the sliding velocity, possibly linked to 

velocity-strengthening effects at mid- and high velocities. Velocity-weakening effects may 

appear at very low sliding velocities such as in the boundary regime where the approximated 

Coulomb law results in almost constant friction coefficient values (Rossouw et al., 2003, 

Krzeminski et al., 2012, Nguyen et al., 2016b). Thus, food tribology is still in development, but 

food tribologists can inspire their test set-ups and procedures using literature on skin 

properties, dentistry and mechatronics. 

Food tribology setups diversified in imaginative ways, more or less inspired by food oral 

processing: 3-balls linear sliding (Chen et al., 2014, Brossard et al., 2016), ball-on-3-plates 

(Krzeminski et al., 2012, Oppermann et al., 2016, Mermelstein, 2016), ring-on-plate (Nguyen 

et al., 2016a), pin-on-disc (Mermelstein, 2016) and other geometries were developed (Kokini, 

1987, Malone et al., 2003, Dresselhuis et al., 2008a, Prakash et al., 2013, Pradal and Stokes, 

2016). Different temperatures, normal forces and contact partner materials are often tested to 

find the most suitable combination to obtain reproducible, accurate, discriminating and 

representative data. Temperature and humidity are not always controlled, but can be regulated 

to 4, 20, 25, 30, 35, or 37°C (Krzeminski et al., 2012, Nguyen et al., 2016a), depending on the 

typical consumption temperature (ambient, refrigerated, frozen, hot) and its supposed 

processing time in the mouth, by hydraulic or Peltier systems as well as air circulation inside a 

hood. Normal force is usually chosen between 0.5 and 2 N to mimic oral conditions that can 

range from 0.01 to 10 N (Nguyen et al., 2016a), much lower than in non-food tribology (Cross, 

2005, Rubinstein et al., 2009, Derler and Rotaru, 2013, Hamilton and Norton, 2016). 

Depending on the tribo-geometry, those normal forces correspond to realistic tongue contact 

pressures of 10-50 kPa to 4-290 kPa (Chen and Engelen, 2012, Krzeminski et al., 2012). In-

mouth surface roughness and asperities as well as oral mucosa hardness and elasticity are 

also special. Those properties are known to influence friction and stick-slip effects (Rossouw 

et al., 2003, Dresselhuis et al., 2008a, Unger, 2008, Krzeminski et al., 2012, Brörmann et al., 

2013, Baum et al., 2014, Nguyen et al., 2016b). This is why biomimetic substrates were 

developed: hard and stiff materials may mimic the palate and teeth, such as iron or glass (being 

inert) whereas soft and flexible materials may mimic the tongue, lips and cheeks, such as 

polydimethylsiloxane (PDMS), a silicone rubber, ethylene propylene diene monomer (EPDM 

rubber) or surgical tape (Dresselhuis et al., 2008b, Chen et al., 2014, Chojnicka-Paszun and 

de Jongh, 2014, Selway and Stokes, 2014, Nguyen et al., 2016a, Nguyen et al., 2016b, 
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Nguyen et al., 2017, Liamas et al., 2020). Several plastic polymers can be mold and structured 

to control the mechanical properties and surface topology (from smooth to different roughness 

levels), but some polymeric materials cannot be stored easily, such as those made of wet 

biopolymers (Selway and Stokes, 2014). Pig tongues were used to mimic most realistically 

human tongues (Dresselhuis et al., 2008a, Dresselhuis et al., 2008b) and the papillae structure 

inspired scientists to produce model surface shapes (Van Aken, 2010, Chen et al., 2014). The 

phenomenon of moving papillae depending on the food flow and friction is still not well 

understood. Scientists are looking into details in multiple scales using rheometers with 

combined microscopes, optical tribological configurations or nanoscale roughness 

measurement tools such as atomic force microscopy (AFM) cantilevers (Dresselhuis et al., 

2008a, Dresselhuis et al., 2008b, Prakash et al., 2013, Pradal and Stokes, 2016, Vakis et al., 

2018, Liamas et al., 2020). Friction force microscopy (FFM) based on AFM gains increasing 

interest in parallel to modelling and simulation using the finite element method (FEM) and 

molecular dynamics (MD) to better understand the friction phenomena, but such methods are 

elaborate (Miesbauer et al., 2003, Vakis et al., 2018, Liamas et al., 2020). Finally, a 

compromise between available budget and reproducibility of results must be found to 

determinate how many times a soft surface can be reused, how it has to be washed and if it 

should be pre-treated, for example by a saliva coating, to control surface tension (Selway and 

Stokes, 2014). 

The test procedure has to be optimized including or excluding several steps: pre-heating, pre-

loading with or without shearing, number of limiting friction and Stribeck curve measurements 

(to mimic dry mouth conditions, first intake or further processing and after-feel), changing the 

sample between repeated measurements, breaks for relaxing the sample as well as measuring 

with increasing or decreasing sliding velocities. Overall, the range of sliding velocities is much 

lower than in traditional tribology measurements. Even though some tribometers provide 

measurements from 10-5 to 103 mm/s and above, friction results obtained at extreme conditions 

(below 10-2 and above 5∙102 mm/s) are often difficult to interpret and not taken into account in 

food tribology studies. 

The texture perceived in the mouth is also evolving during food oral processing because food 

is undergoing physical and chemical changes by mixing with saliva (Chen and Stokes, 2012, 

Stokes et al., 2013, Biegler et al., 2016, Morell et al., 2016). Food compounds interact with 

mucins, the main salivary proteins, and other saliva compounds, that form bound and mobile 

layers on oral surfaces (Mosca et al., 2019). The saliva film alteration or disruption and food-

saliva aggregations influence friction-related texture attributes such as astringency (Stokes et 

al., 2013, Selway and Stokes, 2014, Brossard et al., 2016, Upadhyay et al., 2016). Food 

scientists thus try to incorporate saliva into tribological and rheological tests as well as studying 

taste and aroma releases and perception. Nevertheless, such practice is complexifying the 

development of simple and rapid routine analyses. In fact, the amount and composition of 

saliva used needs to be optimized knowing that humans secrete different saliva quantities and 

types during the day and depending on what they eat. Nowadays, saliva can be obtained from 

spitting and homogenizing, from porcine or bovine extracts or from artificial saliva products 

sold to replace the lacking saliva for people with dysphasia, a swallowing disorder, and dry 

mouth diseases. 

Alternative measurements such as proposed by the company Anton Paar are the 

measurement of the limiting friction or limiting velocity before the surfaces significantly move 

one against each other. Another measurement was developed in the present thesis: the 

analysis of stick-slip effects, which are overlooked or confused with machine noise and rarely 

mentioned in food tribology studies (Prinz et al., 2007a, Krzeminski et al., 2012, Chen et al., 

2014) but already analyzed in skin tribology studies (Adams et al., 2007). In fact, the overall 

mean of friction force represented by Stribeck curves does not represent vibrations resulting 
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from the intermittent sticking and sliding motions corresponding to repeated microscopic (to 

nanoscopic) static and dynamic friction phases (Rossouw et al., 2003, Derler and Rotaru, 

2013, Scherge and Gorb, 2013, Liamas et al., 2020, Vakis et al., 2018) that may occur during 

the rubbing of oral mucosa (Figure 3). Stick-slip effects may contain main information about 

surface roughness (Krzeminski et al., 2012) and any texture attribute related to particle 

sensations such as astringent, powdery, grainy and sandy. The idea gave birth to the study 

published during this dissertation (chapter 6 and appendix paper C) to overcome the limitations 

of overall Stribeck curve analyses (Sonne et al., 2014, Morell et al., 2016, Pradal and Stokes, 

2016). To study stick-slip effects, high-frequency sampled data are required at several velocity 

steps. The rheo-tribometers from Anton-Paar (for example the T-PTD tribocell with a ball-on-

three-plates geometry installed in a MCR-rheometer), which are widely used by food scientists, 

are highly accurate but only record the mean valued force at each velocity (Paar, 2020). 

Moreover, the sampling rate would be limited to 1 kHz and the automated retro-control of the 

normal load impacts measured vibrations. Other instruments such as the Stable Micro 

Systems texture analyzer construct used in studies of Chen (Chen et al., 2014, Morell et al., 

2016, Sanahuja et al., 2017) enabled such measurement. This set-up has no normal load retro-

control (a simple weigh set-up is deposited on top of the sliding object). Nevertheless, it is less 

accurate and it is limited by a maximum 500 Hz sampling rate, which is low, at high velocities, 

in comparison to other stick-slip studies, for example of skin vibrations (Derler and Rotaru, 

2013). This sampling rate is also much too low to enable the characterization of stick-slip 

effects at the nanoscale, which may also influence food texture (Liamas et al., 2020). 

Alternative tribometers can be found on the market (Brookfield, Bruker, CAD Instruments) with 

a lot of different set-ups (Mermelstein, 2016). Moreover, friction sound records (in-vivo and in-

vitro) were introduced by acoustic tribologists (Zahouani et al., 2005, Zahouani et al., 2009, 

Hoskins et al., 2011, Van Aken, 2013, Van de Velde et al., 2018). They may help understanding 

the texture of foams and other foods where stick-slip effects produce audible vibrations, such 

as fatty mouthcoating versus mouthdrying products. 

 

Friction data analysis 

Raw friction data must be analyzed carefully because of the high sensitivity of the methods: 

even small vibrations induced by a door closing or someone touching the instrument may 

produce deviations (visible in repeated experiments); too unsteady and fast-responding normal 

force and torque retrocontrol algorithms combined with slippage phenomena may create 

sudden drops in Stribeck curves that are not directly related to the lubrication behavior of foods. 

This is why some scientists recommend to smoothen the raw friction force data before 

computing the mean values to plot Stribeck curves. Others recommend to sort out data with 

normal force errors greater than 5% of the set values (Nguyen et al., 2017) or not to take into 

account too low or too high velocities and repeated zigzags in the Stribeck curve. 

The simplest way to interpret friction coefficient values is to plot and compare the overall friction 

coefficient behavior of different samples such as the curve shape and maximal values. 

Nevertheless, three methods may permit to analyze the obtained Stribeck curves when they 

cross, show complex behavior or simply when a few features should be extracted for further 

statistical studies. Friction values at specific sliding velocities, at normalized velocities after 

shifting the curves by normalizing the abscissae-axis using the lubricant viscosity, or the friction 

values corresponding to specific Stribeck curve characteristics (peaks) can be compared. 

Unfortunately, the viscosity is not constant for non-Newtonian materials such as most of the 

foods. Several studies used the viscosity at 50 s-1, representing the mean shear rate in the 

mouth during oral processing and correlating well for some fluids with sensory thickness, 

stickiness and sliminess (Selway and Stokes, 2014, Nguyen et al., 2017). Nevertheless, the 
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range of shear rates measured in human mouths is much larger, up to 105 s-1 (Kokini, 1987, 

Chen and Stokes, 2012, Stokes et al., 2013, Selway and Stokes, 2014) and it is difficult to 

relate each sliding velocity to a specific shear rate and thus determine the viscosity, because 

the gap between contact partners in friction measurements depends on the sliding velocity. 

The Hertz model can be used for contact surface, local load and gap height calculations 

(Popov, 2010), but it is more complex in the case of deformable contact partners, irregular 

surfaces and visco-elastic lubricants (Cross, 2005). Following features can be determined by 

peak analysis: minima, maxima and corresponding velocity as well as the slopes in linear 

domains between minima and maxima, fitted curve parameters and inflexion points (Nguyen 

et al., 2016a, Nguyen et al., 2017, Ningtyas et al., 2017). Ratios of those parameters estimating 

changes in consecutive Stribeck measurements may get more insight about the fluid structure 

changes (yoghurts and mousses) after each shearing step, similarly to the different steps 

during food oral processing. Alternatively, the whole set of points measured at each sliding 

velocity can be correlated to sensory results to determine a posteriori the most correlating 

friction parameters and try to explain sensory results with the corresponding friction domains. 

For stick-slip and sound signals, signal analysis techniques and feature extraction similar to 

the studies on crispiness or crunchiness can be used (chapter 6 and appendix paper C). 

Different characteristics of regular and irregular vibration oscillations can be observed in those 

jagged curves but they are difficult to interpret directly (Motchongom-Tingue et al., 2011, Baum 

et al., 2014) and their physico-chemical understanding is still limited (Rossouw et al., 2003, 

Derler and Rotaru, 2013). They may be characterized at each velocity by the mean force peak 

amplitude and frequency (Bagga et al., 2012, Scherge and Gorb, 2013, Seo et al., 2015). 

Those values can be useful in the case of regular repetitions of stick-slip zigzags. 

Nevertheless, the averaging effect of mean amplitudes or frequencies can be criticized in the 

case of complex and unsteady stick-slip effects (Rossouw et al., 2003). In this case, the 

magnitude-frequency distribution spectra (Rubinstein et al., 2009, Dalbe et al., 2015, Baum et 

al., 2014) or the magnitude-time-frequency spectrograms of the stick-slip zigzags are more 

appropriate to highlight the dynamic changes as well as some specific characteristics which 

would be ignored when using average values (Liang and Feeny, 1995, Basu and Gupta, 2000, 

Rubinstein et al., 2009, Heyneman and Cutkosky, 2016). Main frequencies may contribute to 

tactile perception by the activation of mechanical vibration sensor cells in the oral mucosa as 

well as auditory mechanoreceptors (Asamura et al., 1998, Shao et al., 2009, Van Aken, 2013, 

Van Aken, 2010, Derler and Rotaru, 2013, Guest et al., 2013, Chen et al., 2015, Upadhyay et 

al., 2016, Sanahuja et al., 2017). 

Generally, the underlying physico-chemical processes occurring in the mouth during food oral 

processing are complex and tribology as a screening tool in the field of foods development is 

still relatively new. Texture, as a multisensory attribute, can be influenced by appearance, taste 

and aroma due to the instantaneous cross- and multimodal integration of a lot of signals by the 

brain (Selway and Stokes, 2014, Sonne et al., 2014, Banerjee et al., 2016). Studies combining 

several measurement methods may be more precise but can also be costly and not well-suited 

for routine analyses. In parallel, food tribometry still needs improvements to be well-practiced. 

Clear protocols are missing for most of the different food samples: as each scientist uses 

different measurement set-ups and food samples, and as each correlation model depends on 

the reproducibility of the sensory results (that is difficult to obtain for many of the friction-related 

texture attributes), generalizations of measurement protocols are difficult to obtain and 

standards are not established. There is still work to do to improve the reproducibility and 

reliability of food tribometry (Shewan et al., 2019). 
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 Spectral Signal Analysis 
 

When traditional texture parameters (mostly in the time-domain) do not suffice to describe well 

enough a food’s texture attribute, and when details in the instrumental signal data are 

suspected to bear valuable information, it is worth trying to extract new parameters that 

describe those hidden phenomena, such as the frequencies of oscillating signals (Hi et al., 

1988, Dacremont, 1995).  

Spectral analysis can be used as an alternative method to temporal analysis, where the main 

characteristics are visible, such as the maximum value of the time series data. Spectral 

analysis extracts frequency parameters from instrumental data such as crushing forces, 

frictional forces or the produced sounds that may characterize a food signature. Spectral 

analysis does not obligatorily deliver the parameters needed for further statistical analysis, 

because it generates a huge amount of new information. To be used by machine learning, data 

often need to be condensed, for example by signal processing methods extracting the final 

parameters or features. 

 

3.2.1. Signal pre-processing 

 

Before putting efforts in pre-processing signals, it is important to optimize measurement 

conditions. There are different methods to minimize the presence of erroneous signal 

characteristics that do not represent the measured physical phenomena. The physical 

reduction of machine and ambient noise can be obtained by installing an isolation box and 

using an adapted microphone directionality for sound records. Unidirectional microphones 

such as cardioids and hypercardioids, pick up sound predominantly from one direction, which 

would permit to focus on the sound produced just in front of it. Nevertheless, finding a 

microphone able to record exactly the wished sounds can be challenging, because each 

directionality brings also drawbacks such as low-frequency noise for near field sound sources 

(Chung and McKibben, 2011). The probe fixation vibrations and motor control properties can 

be a source of noise in mechanical records depending on the test procedure and the food 

sample.  

Additionally, pre-processing raw data by denoising permits to eliminate more of the useless 

information that may prevent from identifying the main information. Signal distortions and noise 

should be filtered out, for example using Butterworth high- and band-pass filters. Nevertheless, 

it can be difficult to eliminate machine noise only, if it is unsteady (Castro-Prada et al., 2007, 

Vliet and Primo-Martín, 2011, Vliet, 2014). Noise also depends on the variations in the 

measured signal itself, as it happens for mechanical vibrations that are created by a structural 

breakage in a food sample while being crushed. Those vibrations are conducted to the 

instrument (texture analyzer) arm and sensors which influence motor retrocontrol to maintain 

a constant deformation velocity or normal stess. This effect in return produces oscillations in 

the deformation velocity and in the forces needed to deform the sample, meaning that each 

breakage can influence the mechanical behavior of further deformation steps. It is thus often 

difficult to distinguish informative from non-informative signal characteristics. 

To focus on overall trends, a signal can also be smoothed to eliminate details that are not 

relevant to further analysis and only reflect instrumental defects or inherent variability within a 

measured sample.  In the contrary, a signal can be de-trended, normalized by its minimal and 

maximal values or standardized by its mean value or by its variance. Such data transformation 
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permits to minimize the disproportionate weights of different parameters extracted from the 

raw data that have very different units, for example to compare mechanical with acoustical 

data or even to evaluate the influence of the number of peaks, the maximum peak amplitude 

and the area under the peak. It also permits, together with visualizing the logarithmic values of 

the data (Vickers, 1988, DIN, 1997, Belie et al., 2003), to focus on small detail effects 

happening during the measurement that would be dominated by the maximal amplitude of a 

signal (Harris and Peleg, 1996, Peleg and Clemens, 1997). Nevertheless, the overall trend in 

raw data and the magnitudes of oscillations as well as irregular events at different length-

scales can all be characteristic of a measurement. Holistic methods, such as fractal and 

spectral analyses, can extract low- and high-scale information in the same time. 

 

3.2.2. Signal processing and feature extraction 

 

Feature extraction is a process that defines and derives relevant information to characterize 

the raw signal. It mostly produces a more compact set of features that can be obtained through 

selection of specific data points (i.e. filtering or detecting specific parameters) or transformation 

of the raw data (Gurban and Thiran, 2009). 

 

3.2.2.1. Fractal analysis 

 

Fractal analysis calculates the apparent fractal dimension, which reflects the complexity or 

degree of jaggedness of an oscillating or irregular signal containing repeated structures of 

similar patterns at different length-scales. Fractal patterns can be observed everywhere in 

nature, such as ferns, Romanesco broccoli, nautilus or snowflakes. The apparent fractal 

dimension shows low values for smooth curves and higher values for jagged curves. It was 

used by numerous food texture scientists, in particular to try to evaluate crispiness with a 

single-valued parameter out of mechanical or acoustical measurement signals (Peleg et al., 

1984, Rohde et al., 1993, Peleg and Normand, 1993, Wollny and Peleg, 1994, Barrett et al., 

1992, Barrett et al., 1994a, Barrett et al., 1994b, Harris and Peleg, 1996, Tesch et al., 1996b, 

Peleg and Clemens, 1997, Roudaut et al., 1998, Roudaut et al., 2002).  

There are different algorithms to calculate the apparent fractal dimension. Mandelbrot’s 

yardstick algorithm applies sticks along a signal curve (or typically a coastline) to reflect self-

similarity of the signal geometry (Mandelbrot, 1982). It’s fractal dimension is one of the 

parameters of the line length approximation equation resulting from the sum of the different 

stick lengths. The blanket algorithm was derived from Mandelbrot’s idea to determine the 

smoothness or harshness of a texture, and used in image processing (Yan and Zeyan, 2013). 

The signal curve is covered by blankets of decreasing thickness. The length of the curve at 

each iteration is calculated from the blanket’s area divided by twice its thickness and 

represented in a Richardson plot in logarithmic coordinates. The fractal dimension is obtained 

from the slope of the linear portion of this plot. The Kolmogorov algorithm (Zhong et al., 2012), 

based on the box-counting method (Andoyo et al., 2018, Tesch et al., 1996b), lays a grid on 

the signal curve plot and counts the number of boxes occupied by the signal curve. The size 

of the boxes is decreased stepwise and the logarithm of the number of occupied boxes is 

plotted versus the logarithm of the relative box size. The fractal dimension of the signal is finally 

evaluated by the slope of the line. Other calculation methods are  the variation,  the structure  

function,  the root  mean  square  and  the R/S analysis methods (Zhong et al., 2012), or more 
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complex models which were used to estimate the fractal dimension of food colloid structures 

for example (Andoyo et al., 2018). 

The fractal analysis technique was tested during this dissertation but results were not reported 

in this thesis because the crushing force, sound and stick-slip curves were not really fractals 

(or not monofractals), the values did not give reproducible results or the used algorithms were 

not adequate. For example in literature, Tesch et al. (1996b) reported good regression of the 

mean apparent fractal dimension versus water activity, but the apparent fractal dimension 

range on a few measured samples is too large to make the model reliable for the differenciation 

of samples stored at low humidity (between 0.1 and 0.4% RH). Moreover, the fractal dimension 

of puffed snacks did not always coincide well with the critical water content for sensory 

crispiness, as reported by literature (Suwonsichon and Peleg, 1998). Autocorrelation 

calculations also extract jaggedness features which are showed in a co-occurrence matrix 

(Tesch et al., 1996a, Liu and Tan, 1999). Multifractal behaviors can be better characterized by 

wavelets analysis (section 3.2.2.4). 

 

3.2.2.2. Fourier transform 

 

The spectral analysis method mostly used to determine characteristics in the frequency 

domain is the Fourier transform, already used in food texture studies decades ago (Barrett et 

al., 1992, Barrett et al., 1994a, Barrett et al., 1994b, Wollny and Peleg, 1994, Harris and Peleg, 

1996, Tesch et al., 1996a, Peleg and Clemens, 1997). Results obtained from the analysis of a 

transient model signal are represented graphically in a Fourier spectrum (Figure 4) showing 

the extracted frequencies and corresponding magnitudes as well as the mathematical model 

equations.  

 

Mathematical description 

Magnitudes can be expressed as the amplitude, the energy or the power density of each signal 

component. In spectral analysis, a signal is decomposed as the sum of components or basis 

functions, for example using the Fourier transform. Reversely, the energy content being 

preserved as stated by the energy conservation theorem from Parseval (Franklin, 2013), the 

sum of the sinusoid components weighed with their respective magnitude factors permits to 

reconstitute the original signal using the reverse Fourier transform. Josef Fourier (1822) 

defined those components as single sine waves. Thus, the raw signal is modelled by a 

harmonic signal defined by the Fourier series. The frequency of each component is then 

calculated as its occurrence per unit of time (or another unit such as space). The Fourier 

transform evaluates the frequency content of the raw time domain signal by determining its 

similarity with a harmonic signal (Franklin, 2013). The power spectrum density (spectral PSD 

in opposition to the particle size distribution PSD) is the power density distribution over the 

extracted frequencies.  

The mean magnitude of the spectral PSD is one of the parameters that can be extracted from 

this type of analysis, revealing also the degree of jaggedness, like the fractal dimension. Both 

parameters give a quantified value of the complexity hidden in a signal. In the same idea, the 

standard deviation of the raw data is a simple statistical parameter of complexity (Tesch et al., 

1996a, Pittia and Sachetti, 2008).  



36 
 

 

  

 

Figure 4. Example of a transient sinusoidal signal represented in the time domain (raw 
data), in the frequency domain (Fourier spectrum) and in the time-frequency domain 

(4 graphs showing the main differences of STFT with small and large windows, CWT and 
HHT). A colorbar represents the magnitude level of the three-dimensional spectrograms. 

Reprinted with kind permission from Wiley (Sanahuja and Briesen, 2015). 
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Sampling rate 

 Before conducting an experiment that is meant to be analyzed by spectral techniques, one 

should verify the raw data sampling rate (or frequency) that can be set for the measurement. 

It should be in accordance with the maximal frequency that is foreseen to be determined in the 

signal. The Shannon-Nyquist sampling theorem postulates that the sampling rate must be at 

least twice as high as the frequency that will be determined and that oversampling is beneficial 

to spectral analysis accuracy (Franklin, 2013). For example, the maximal breaking frequency 

obtained from a 500 Hz-sampled crushing experiment is 250 Hz. For sound records that should 

be listened by human ears, the minimum sampling rate should thus be 40 kHz to determine 

frequencies of 20 kHz which are still within the human hearing range (Luyten and Van Vliet, 

2006, Bourne, 2002a).  

 

Nonstationarity 

The Fourier transform is designed to analyze stationary signals (Dacremont, 1995). From a 

mathematical perspective on dynamically changing signals (called transient, unsteady), the 

hypothesis that the same sinusoidal pattern characterized by a harmonics spectrum is present 

over the whole signal duration is not valid (Marchant, 2003). Figure 4 shows that the Fourier 

spectrum spread the magnitudes of the raw signal oscillations on a larger range of frequencies 

than the three frequencies present in the signal. Nevertheless, the conventional Fourier 

transform, averaging the spectral content, enables to get a simple, bi-dimensional view on a 

complex signal, which is not the case of the three-dimensional time-frequency-magnitude 

spectrograms produced by dynamic spectral analysis (Liu and Tan, 1999). Dynamic spectral 

analysis is thus more accurate in characterizing a complex signal signature because it localizes 

the evolution of different spectral components of a signal over time (Priestley, 1965). This is 

illustrated by the spectrograms of a transient model signal composed of three non-overlapping 

sinusoids of different frequencies and amplitudes (Figure 4). Moreover, it can reveal important 

single events such as high frequency bursts that would be hidden in a conventional frequency 

spectrum (Daubechies, 1992, Isermann and Münchhof, 2011).  

Several techniques exist for this purpose, that differ in particular in the time and frequency 

discretization, but a thumb rule is that mostly the more time is discretized, the less precise 

frequencies can be calculated (Isermann and Münchhof, 2011). Three main methods were 

compared in this dissertation study and applied to represent the mechanical breaking 

frequencies or the stick-slip frequencies and their corresponding magnitudes, as well as the 

crushing sound frequency bands and their respective loudness at several time steps. Those 

methods may thus characterize well multifracture events in crushing force and sound data or 

unsteady stick-slip phenomena in friction data.  

The selection of those dynamic spectral analysis algorithms was inspired by their applications 

in other fields (Sanahuja and Briesen, 2015): “aeronautics (Huang et al., 2006), ocean 

engineering (Huang et al., 1998), seismic and geologic studies (Huang et al., 1998, Huang and 

Wu, 2008), acoustics and speech recognition (Huang et al., 1998), financial applications 

(Huang, 2008, Amar and Guennoun, 2012), image processing (Abry et al., 2009), and 

structural applications (Huang and Milkereit, 2009)”. Many alternative signal processing 

methods exist, some being inappropriate for the characterization of transient signals 

(Daubechies, 1992, Huang et al., 1998, Marchant, 2003, Huang and Milkereit, 2009, Amar and 

Guennoun, 2012, Oberlin et al., 2013).  

 

  



38 
 

3.2.2.3. Short-time Fourier transform 

 

The short-time Fourier transform (STFT), also called windowed Fourier transform, is the most 

famous method to produce sound spectrograms (Isermann and Münchhof, 2011) and was 

already applied to crushing sounds (Hi et al., 1988, Brochetti et al., 1992, Dacremont, 1995). 

Those studies compared the eating sounds of consecutive chewing cycles. To extract the 

evolution of sound characteristics of the jagged behavior of the curves during a single chew, 

the Fourier transform has to be performed on smaller segments of the signal.  

 

Mathematical description  

STFT discretizes a continuous signal into a finite number of regularly-spaced segments (time-

windows) and performs single Fourier transforms on each window (Sturmel and Daudet, 2011). 

Different windowing functions, acting like filters of different shapes, can be used such as non-

overlapping rectangular windows which are the simplest ones but result in less fluent 

transitions (Figure 5). Hanning windows with 50% overlap are known to deliver more precise 

results in time and frequency localizations (Heinzel et al., 2002, Isermann and Münchhof, 

2011) and were used for crushing sounds analysis of crispiness (Srisawas and Jindal, 2003). 

Other well-known ones are the Gaussian and the Hamming windows. The window shape 

influences the result of the Fourier transform as it results from the convolution of the frequency 

spectra of the original signal and of the window function. This multiplication step allows to 

minimize leakages resulting from sudden discontinuities in the finite time intervals (Isermann 

and Münchhof, 2011). The size of the windows determines the accuracy in time of the analysis, 

detrimental to the accuracy in the frequency domain (Figure 4). In fact, large windows generate 

 

Figure 5. Schematic representation of a transient signal f(t) short-time Fourier transform 
(STFT) decomposition into sinusoidal components Sm,n in each time window n, without 
overlapping (t0 = 1). Reprinted with kind permission from Wiley (Sanahuja and Briesen, 

2015). 
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narrowband spectrograms, which permit a better frequency resolution to lower frequency 

values but a coarser time resolution than short windows that generate wideband spectrograms. 

This is to say that short windows cannot reveal the low-frequency content of a signal that is 

represented by sinusoidal components of waves larger than the window time interval. 

Moreover, changes in frequencies occurring within a window cannot be localized more 

accurately than the window position and width. Thus, a compromise must be found for the 

three tuning parameters which are shape, overlap and width of the modulating windows 

(Marchant, 2003, Luyten and Van Vliet, 2006, Isermann and Münchhof, 2011, Franklin, 2013). 

Overlapping windows permit to gain in time resolution without losing accuracy in the frequency 

domain. A very famous algorithm called the fast Fourier transform (FFT) was optimized to work 

with data vectors corresponding to power of two sized windows and enable quick and efficient 

discrete computation (Franklin, 2013).   

 

3.2.2.4. Continuous wavelet transform  

 

The continuous wavelet transform (CWT) and the discrete wavelet transform (DWT) are 

methods that propose other wave shapes than Fourier’s sinusoidal fitting, which may improve 

the fit for signals with nonsinusoidal behavior (Daubechies, 1992). Daubechies gives an 

extensive overview and detailed information on how to use wavelet transforms in her book 

“Ten lectures on wavelets” (1992). To our knowledge, wavelet transforms have not been used 

for food texture studies before our study on crispiness (chapter 4). Nevertheless, the use of 

CWT to improve the accuracy of food texture analysis was proposed in 1995 (Dacremont, 

1995), and wavelets were used for the automated inspection of agricultural and food products 

 

Figure 6. Schematic representation of a transient signal f(t) wavelet transform 
decomposition obtained from DWT into components ψm,n in each time window n (scale), at 

the discrete level m, without overlapping. Reprinted with kind permission from Wiley 
(Sanahuja and Briesen, 2015). 
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(Singh et al., 2010). According to Singh et al., wavelets have a high potential for “signal pre-

processing, de-noising, feature extraction, and its re-synthesis for classification purposes”.  

 

Mathematical description  

Similarly to the STFT, the wavelet transform decomposes the raw signal into a series of 

wavelet components at different points in time. The decomposed raw signal is fitted to basis 

functions (Figure 6), derived from the “mother wavelet” of a specific shape (Marchant, 2003, 

Isermann and Münchhof, 2011). The Haar wavelet is the simplest (Figure 7), pioneered by 

Haar in 1910, but results in a bad time-frequency localization (Daubechies, 1992). The Morlet 

wavelet is well-known to minimize blurring and distortions at the boundaries of each fitted 

wavelet component (Morlet et al., 1982). A lot more shapes can be generated (Biorthogonal, 

Splines, Coiflets, Daubechies wavelets family, Gaussian, Meyer, Mexican hat, Shannon and 

Symlets). Any user of the MATLAB software can generate new shapes. The shape can be 

chosen according to the similarity of its pattern to the signal that has to be analyzed, such as 

some Daubechies wavelets may represent well abrupt changes in a curve like a breakage 

(Figure 7).  

 

Figure 7. Commonly used “mother wavelet” shapes (continuous) for the construction of 
child functions of the wavelet transform and their center frequency-based approximation 

curves (dashed). Reprinted with kind permission from Wiley (Sanahuja and Briesen, 
2015). 
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CWT estimates the local frequency and corresponding magnitude of the fitted child function 

centered on each point in time by sliding continuously the calculation domain thanks to a 

translation factor and adjusting its scale (or wavelet width or window) width using a scaling 

factor (dilation step) adapted to the investigated frequency (Daubechies, 1992, Abry et al., 

2009). The so-called pseudo-frequencies (Figure 4) approximated using the wavelet transform 

depend on the center frequency of a specific wavelet shape (Abry, 1997, Mathworks, 2014). 

Thereby, they are not exactly corresponding to the inverse of the scale (represented in 

scalograms), because the center frequency is extracted from the Fourier transform of the 

mother wavelet, thus associated to a purely periodic sinusoidal oscillation. DWT is the 

discretized version of the wavelet transform in fixed time frames. Moreover, the translation 

factor is proportional to the wavelet width to avoid overlapping (Figure 6), which presents the 

disadvantage of beeing less precise in time-frequency localization, because wide wavelets 

(low frequencies) are translated by large steps. Thus, spectrograms obtained using CWT look 

smoother and are generally easier to interpret, even though a finite number of scales (for the 

dilation step) can be determined to minimize calculation time and use of memory. Finally, the 

multiresolutional properties of wavelet transforms, in particular CWT, present the advantage 

to overcome the time-frequency compromise hurdle of STFT. A disadvantage of CWT, 

nevertheless, is the information redundancy created due to the overlap of the wavelets with a 

high number of scales for each time step (Daubechies, 1992, Abry et al., 2009).  

 

3.2.2.5. Hilbert-Huang transform  

 

 The Hilbert-Huang transform (HHT) is a data-driven method to find out local wave shapes for 

each component, inherently to the signal (Figure 8), as well as their corresponding frequencies. 

Thus it is well-suited for the analysis of unsteady, irregular, natural phenomena (Huang et al., 

1998, Huang and Milkereit, 2009) which is the case of mechanical signatures of crushing foods 

(Luyten and Van Vliet, 2006). Avoiding the use of predefined basis functions, HHT is the least 

 

Figure 8. Schematic representation of a transient signal f(t) empirical mode decomposition 
(EMD) into intrinsic mode functions (IMF) with residue r(t). Reprinted with kind permission 

from Wiley (Sanahuja and Briesen, 2015). 
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arbitrary of the dynamic spectral analysis techniques described so far. Moreover, it is adaptive 

(empirical) and continuous. HHT computing is based on two main steps of calculations: the 

decomposition into modes followed by the transformation into a spectrogram (Huang et al., 

1998, Huang et al., 2006, Huang and Wu, 2008, Huang and Milkereit, 2009, Wu and Huang, 

2009). To the best of our knowledge until publishing the paper in 2015 (chapter 4), HHT was 

not used in food-related studies, but a paper, also on crispiness analysis, was released just 

after ours (Liu et al., 2015).  

 

Empirical mode decomposition 

One can choose between the empirical mode decomposition (EMD), developed by Huang et 

al. (1998), the ensemble EMD (EEMD) and other optimized algorithms that evolved fast during 

the last years (Flandrin et al., 2004, Huang and Milkereit, 2009, Yeh et al., 2010, Torres et al., 

2011, Lin, 2012, Feng et al., 2014, Huang, 2014). Nevertheless, EMD is the simplest and less 

arbitrary, as there is no need to select algorithmic parameters. The main steps of the EMD 

procedure are illustrated in Figure 9: the signal is decomposed into a finite number of local 

 

Figure 9. Flow chart of the empirical mode decomposition algorithm. Reprinted with kind 
permission from Wiley (Sanahuja and Briesen, 2015). 
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waves and a residue. The sum of the last slow oscillating (low-frequency) waves and the 

residue constitute the trend that may be used to predict stock market (Huang, 2008), to smooth 

jagged curves or to characterize overall texture profiles. The raw data is undergoing a repeated 

sifting process: components, called intrinsic mode functions (IMF), are iteratively extracted until 

there are no more trends to recognize in the remaining data (the residue) after subtraction of 

all identified IMFs. To determine each IMF, the upper and lower envelopes are interpolated 

using cubic splines after identifying the minima and maxima in raw data. Then, the mean value 

of both envelopes at each time point is subtracted from the signal. The sifting continues until it 

results in an IMF fulfilling following conditions: the number of its extrema must be the same, or 

differ at most by one, as the number of zero crossings and the mean value of its envelopes 

must be zero at any point (Huang et al., 1998). After subtracting the obtained IMF, the larger 

sifting cycle begins again for the next IMF. The number of IMFs should be less than the next 

power of two of the total number of data points (Wu and Huang, 2009). 

 

Hilbert transform 

The IMF properties are determined so that they admit well-behaved Hilbert transforms. The 

Hilbert spectral analysis identifies instantaneous frequencies (IFs) and their corresponding 

instantaneous amplitudes in each IMF. IFs approximate Fourier frequencies but they do not 

require a full wave period to be identified. Nevertheless, even though HHT spectrograms are 

the most precise (Figure 4), rippling undulation effects may appear after abrupt changes.  

 

3.2.2.6. Summary on signal processing techniques 

 

Theoretical and practical advantages and drawbacks of the signal processing techniques used 

in this dissertation are presented with the goal to gain precise visualization and quantitative 

parameters to evaluate the similarities and discrepancies in texture measurement signals. 

 

Mathematical strength of the basis functions 

HHT is a less established technique, with an empirical basis opposite to the well-defined basis 

functions used in STFT and wavelet transforms. Nevertheless, HHT, due to its self-

adaptiveness, proposes the least arbitrary and most natural component shapes to fit signals 

with complex patterns. Wavelets propose many alternatives to the sine-waves that may also 

better match natural phenomena than Fourier transforms. 

 

Nonstationarity 

The Fourier transform as well as the fractal analysis are not suited to determine single events 

thorough a signal, but the STFT permits to analyze shorter segments of data to localize those 

events approximately. Wavelets and HHT, though, are optimized for the analysis of unsteady 

signals. 
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Windowing 

HHT works so precisely and pointwise that windowing is not even needed, so that the accuracy 

in the frequency domain is not limited by the accuracy (due to discretization) in the time 

domain. In opposition, STFT is based on a windowing process that requires to optimize window 

shape, width and overlapping, that permit to improve the accuracy of the spectrogram. 

Wavelets are an in-between solution, less sharp than HHT but more than STFT. DWT use non-

overlapping time-frames, but CWT works continuously, being limited by the setting on the 

number of scales that the user wants to get. The multiresolutional properties of CWT create a 

lot of overlapping that generates strong information redundancy, which may not be a problem. 

In the contrary, the wavelets can detect multifractals (local self-similarity at several scales) with 

the assumption that this behavior is present thorough the whole dataset (Abry et al., 2009). 

Finally, the wavelet pseudo-frequencies and the HHT instantaneous frequencies seem to be 

more appropriate for the analysis of jagged food texture patterns. But in practice, the values 

are comparable to the well-established but less precise STFT frequencies, which may be used 

for their simplicity. In fact, all three methods are able to convert irregular signals into analytic 

expressions and to display graphical representations of their complexity like a fingerprint. They 

may thus be suitable to determine similarities and discrepancies between different food texture 

signatures. Nevertheless, as it will be explained in next chapter (3.3), it is often difficult to 

determine which parameters in the analyzed data should be used for statistical models. Single 

parameters sometimes present too high variability to propose legitimate interpretations (based 

on confidence intervals and significance analyses) of texture differences according to a small 

selection of single parameters. This is why the whole spectrograms may be used in machine 

learning like for image recognition to take every hidden detail into account, or the complex data 

in spectra may need to be further condensed to minimize the number of parameters. Moreover, 

the single values obtained from simpler and traditional texture analysis may be combined in a 

multimodal analysis.  

 

 Multimodal Analysis and Classification 
 

In practice, the use of multimodal analyses is still limited for food. This may happen because 

of a lack of awareness about their added value, because the methods are not understood well 

and differ from traditional monomodal analyses, or because the combination of different 

sensory modes measured by instruments needs additional competences, lab work and new 

machine acquisitions. Nevertheless, using different types of measures, called modalities, to 

characterize physico-chemical behaviors is an ongoing trend in food texture evaluation 

(Vickers, 1988, Bourne, 2002a, Saeleaw and Schleining, 2011, Datta, 2016).  

Figure 10 illustrates the steps of multimodal analysis designed to mimic psychophysics by 

integrating similar information as would do a human during mastication, detection of impulses, 

and integration by the brain with final evaluation of food properties (Domingos, 2012, Banerjee 

et al., 2016). This process works similarly for a classification study as for a regression study 

for example. Multimodal signal processing generally permits to obtain more precise information 

than single-modality signals (Gurban and Thiran, 2009) because they are often complementary 

and more reliable than individual values. It is a modern tool which presents many advantages 

in fields like human-machine interaction or voice and face recognition (Gurban and Thiran, 

2009), which makes it perfectly adapted for a psychophysics conception of crispiness.  

Modern data science is able to handle a huge amount of data (Beck et al., 2016). However, 

multimodal signal processing carries several challenges. It needs to extract and select the 
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most relevant features hidden into raw data (Figure 11). In fact, the high complexity of treated 

data such as sounds make it difficult to get a simple overview of the most important features. 

So after first feature extraction steps from raw signals in the time domain or from processed 

signals in the frequency domain for example, an obligatory step for accurate classification 

purposes is the dimensionality reduction through selection and/or transformation. The role of 

this step is to lower the redundancy of features while keeping the smallest amount of 

complementary and significant features (Gurban and Thiran, 2009, Banerjee et al., 2016) to 

efficiently describe crispiness, for example using temporal and spectral mechanical and 

acoustical data. Indeed, a too high amount of input data cannot be processed by classification 

algorithms, slow down computing time and useless information may introduce estimation 

errors or prevent the calculations to converge to a solution (meaningful grouping or recognition 

of the data). So a compromise must be found between high- and low-dimensional information. 

A huge amount of statistical theories and algorithms exist to perform feature extraction, 

dimensionality reduction and classification. It is an additional challenge for any inexperienced 

user as well as for experts to choose the most appropriate techniques and settings. That is 

why this dissertation study tested several techniques to provide an insight and optimize the 

results. 

Moreover, multidimensional signal processing requires huge amounts of samples because the 

samples should be equally-distributed and cover a space region. The number of needed 

samples grows exponentially with the dimensionality of the space (Gurban and Thiran, 2009). 

The first trials in this study were done to evaluate how many samples were needed for each 

type of processing. Depending on the methods, it was not straightforward to combine features 

from different data types, dimensions and sampling rates. Gurban (2009) further discusses 

fusion methods and low or high decision levels, which cannot be taken into account in the 

scope of the present study.  

 

  

 

Figure 10. Multimodal data acquisition for the perception of food texture: human versus 
instrumental food processing, detection, integration and quality evaluation steps. 

Reprinted with kind permission from Elsevier (Sanahuja et al., 2018). 
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3.3.1. Selection and compression 

 

3.3.1.1. Octaves 

 

After signals were processed and first features were extracted, such as the spectral content of 

time signals, a compression process may take place. The numeric integration of the frequency 

content into larger frequency bands can be calculated for a constant bandwidth (Srisawas and 

Jindal, 2003) or for example for octaves (Drake, 1963, ISO, 1973, Srisawas and Jindal, 2003, 

Liu et al., 2015). The frequency bandwidth is doubled with each consecutive octave band 

(Drake, 1963, Zampini and Spence, 2004, Taniwaki et al., 2010). Full octaves deliver a smaller 

number of lower resolution features, whereas halve and third octaves permit to produce a 

compromise between a higher number of features and a higher resolution in terms of 

frequency. The use of octaves as a measure of sound pitch is justified by several 

psychoacoustical or overall psychophysical principles also applying for sensory responses to 

mechanical stimuli (Bourne, 2002a, Peleg, 2006, Fastl and Zwicker, 2007, Stokes et al., 2013) 

stating that humans do not perceive differences linearly between evolving stimulus 

frequencies, as well as intensities. In fact, relationships would rather be logarithmic or follow a 

power law, justifying also the use of Decibels to characterize sound amplitude, which is equal 

to ten times the decimal logarithm of the sound power level divided by the hearing threshold 

level (DIN, 1997, Bourne, 2002a, Peleg, 2006). There are several non-linear psychophyical 

models (Unger, 2008, Kwak et al., 2019, Wassermann et al., 1979) based on Fechner 

(Fechner, 1860), Beidler (Beidler, 1954) or Stevens (Stevens, 1957) models that were used to 

correlate mechanical parameters to sensory crispiness of chips or to predict surface textures 

from friction parameters. 

Alternative compression techniques of spectrogram data exist. For example, the Shazam app, 

which recognizes the title of highly noisy music extracts recorded during a party, developed a 

highly optimized fingerprinting algorithm calculating characteristic hash features. Those series 

of hashes are compared to a large database of music data that were analyzed the same way 

and the result corresponds to the most similar pattern (Wang, 2003). Nevertheless, this 

process is not suited for the classification of crispiness, because each food sample has its own 

 

Figure 11. Multimodal classification strategy of texture developed for the crispiness study. 
Reprinted with kind permission from Elsevier (Sanahuja et al., 2018). 
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signature, and cannot be fitted one to one, even accounting for noise and shifts, to a single 

pattern in each crispiness level. 

 

3.3.1.2. Statistical dimensionality reduction 

 

Correlating a few parameters such as physicochemical food properties with sensory properties 

is a first step to evaluate potential factors influencing an observed phenomenon. When there 

are too many parameters, correlation screenings can be difficult to interpret. Then, multivariate 

statistics permit the selection and dimensionality reduction of a large range of parameters 

(texture parameters that will be features for the machine learning algorithms), but the methods 

and results are not straightforward (Varela et al., 2006). The analysis of variance (ANOVA) 

estimates the significance of the features and their dependence on variables (such as 

humidity). 

Principal component analysis (PCA) combines multiple features linearly to represent them in 

a reduced number of dimensions. Thus, multiple features can be replaced by a minimal number 

of principal components that explain most of the variance (to be checked in a Pareto diagram) 

and may be used as input features in machine learning algorithms (Gurban and Thiran, 2009, 

Ertel, 2017). Nevertheless, the automatic dimensionality reduction using PCA does not 

necessarily improve machine learning model quality because data are not necessarily linearly 

linked to a sensory response (section 3.3.1.1). The process permits also to estimate the linear 

relationships between parameters, find out those with the highest influence on each principal 

component and the data trend in a specific dimension (Varela et al., 2006, Salvador et al., 

2009, Banerjee et al., 2016). The grouping performance of PCA to distinguish between 

different sample types can be checked visually in PCA biplots. Arrows can also be plotted, 

which direction and length are proportional to the contribution of each parameter to a principal 

component. PCA can be a pre-step of machine learning, selecting a smaller number of features 

in high-dimensional data that explain most of the variance (Bishop, 2006, Ertel, 2017). 

Nevertheless, they are only a linear combination of all the input features, which is often not 

powerful enough. The principal component regression, consisting of a PCA followed by 

multiple linear regression, permits to preselect features for a regression model (Liu and Tan, 

1999). A lot of derived approaches were invented for data selection or modelling and applied 

to food texture studies, such as multiple linear regressions (Liu et al., 2015) or multi-way 

alternatives to PCA for classification (Belie et al., 2003). 

 

3.3.2. Machine learning process 

 

First of all, the difference between artificial intelligence (AI) and machine learning needs to be 

clarified (Mitchell, 1997, Bishop, 2006, Ertel, 2017). AI is the study of the acquisition and 

application of knowledge by a computer program to simulate human intelligence, solve 

complex problems and make decisions. AI-driven robots will not follow precise instructions but 

learn from experience to optimize their functioning. Machine learning, or pattern recognition, is 

a subset of AI achieving the knowledge acquisition step, which learns from data to maximize 

the accuracy of a model. The challenge for machine learning developers is to write code that 

enables computer programs to automatically improve their knowledge with experience without 

explicitly programming the exact calculations (like physical models). Machine learning uses 

different strategies to learn by itself. It implements algorithms initially inspired by principles of 
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human learning. Expert knowledge and preselection algorithms can provide the most important 

features to the machine learning algorithm, but they may remove too many. Machine learning 

can thus be used to avoid too much preliminary work by the user who collects and 

preprocesses the data as well as to preserve more information. In fact, features with a small 

effect when taken alone are sometimes able to increase the model accuracy in combination 

with other features (multimodal). In the case of texture evaluation, psychophysics of perception 

may be modelled by the integration of multiple features into a final result, similarly to the brain, 

by a machine learning algorithm. 

 

3.3.2.1. Model goal 

 

 Model applications 

One well-known example of machine learning success is the comparison of computer 

programs with the checker, the chess, the backgammon, and, more recently, the go game 

masters (Ertel, 2017). Such algorithms are being developed since around 1950. They were 

continuously improved to beat humans (Samuel, 1967). Since Samuel’s checker playing 

milestone in 1955, a lot of applications were developed and used daily, even though people 

often do not realize which computer programs are hidden behind their applications (Mitchell, 

1997, Ertel, 2017): 

- Face recognition (tags) on Facebook and photograph modulation programs on 

smartphones as well as object detection for example in self-driving cars that also need 

a lot of other sensor data than images or infra-red 

- Speech recognition based on sound data and the recognition of words and phrases 

- Database mining programs, detecting fraudulent credit cards, enabling speed trading 

or understanding medical records 

- Information-filtering systems and self-customizing programs (recommender systems) 

proposing preferred content to users on websites as well as enabling effective web 

search or anti-spam apps 

- Finally, also understanding human learning by the brain and trying to reproduce those 

processes for AI-purposes 

- Even creating pieces of art such as drawings or texts are possible with the modern 

deep learning algorithms. 

In the field of foods, machine learning may be used for quality control by identifying specific 

characteristics in images (classification of quality levels in raw vegetables) or in other 

measured data (discrimination of spoiled products according to chemical or physical analyses, 

prediction of sensory scores based on instrumental data). It can be practical for adapting 

dynamically the manufacturing processes submitted to changing conditions such as supply 

stocks quality (Mitchell, 1997). Machine learning can help predicting machinery failures based 

on sensor data on the lines to prevent from stopping production. It is also used for R&D trend 

analyses based on market data and social media texts or images (McClements, 2019).  

 

 Classification versus regression and clustering 

The problem that has to be solved by machine learning must be defined according to the goal 

of the study. The task to be performed must be clearly formulated from the beginning to choose 

the appropriate learning algorithm. The goal can be to classify texture data into pre-defined 
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crispiness levels or to classify animal images into different species such as cats versus dogs. 

A classification problem solution produces discrete valued outputs (two or more classes or 

groups) according to pre-defined labels. In the contrary, a regression problem has the goal of 

predicting a precise output value, such as sensory results on a continuous scale. When 

labelled data are not available or the goal of the study is to discover intrinsic data structures, 

clustering creates groups that were not defined by the user (Ertel, 2017). 

 

3.3.2.2. Learning method 

  

 Supervised learning 

Supervised learning algorithms learn from predefined labels on data groups. The grouping of 

the training data is defined by the programmer who can be seen as “the teacher”. Such models 

need to be trained with well-defined data to be able to recognize typical patterns in specific 

data (Banerjee et al., 2016). They can be used for classification or regression of texture data, 

to find relations between datasets, predict on new datasets or detect known anomalies in a 

system. Supervised learning algorithms are for example support vector machines, neural 

networks, k nearest neighbors, decision trees, Bayesian and Gaussian networks (Ertel, 2017). 

 

 Unsupervised learning 

Unsupervised learning (or clustering) algorithms learn by themselves to detect similarities in 

datasets through repeated unlabeled training data inputs and the recognition of patterns. Input 

data do not need to be tagged with the quality level (crispiness level for example) or the group 

they belong to (cats or dogs; crispy or not crispy at all, for example). The number of wished 

output groups can be known or not. This learning method thus permits to create groups such 

as for market segmentation or discover new categories of data that were not identified yet by 

human experts. It can be used to discover intrinsic data structures, to reduce dimensionality 

(data compression or visualization) or to detect new anomalies. Unsupervised learning 

algorithms can be nearest neighbors, k-means, hierarchical clustering as well as neural 

networks and deep learning (Ertel, 2017). 

 

 Learning, validation and testing process 

Typically for supervised learning, the dataset is divided randomly into three subsets, for 

example: 65% of the data samples can be used to train, 15% to validate and 20% to test the 

model. Machine learning thus learns from data, beginning with training and learning iteratively 

in optimization loops from successes and errors and finally selecting the optimal model settings 

for example by comparing results on the validation set, more or less simulating different 

moments in human repeated learning experience (Bishop, 2006, Domingos, 2012). The user 

can also vary the selection of features to determine which ones facilitate the model 

convergence to the best solution. 

It is important to know that a computer model will be trained on data from a specific source 

forming the “experience” or “observation” and for a specific goal or “task” (classifying crispiness 

of chips). Any performance metric such as the accuracy (percent or probability of success) in 

approximating well a predefined target (classifying well a data sample into a group), can be 

used to check the improvements of the model during training and validation (Mitchell, 1997). 
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This measure also evaluates the final model on the test set to assess if its prediction 

generalizes well on new data. There are different methods to evaluate and compare the 

accuracy and confidence intervals of different models (Mitchell, 1997). In unsupervised 

learning, specific distance metrics are used (Ertel, 2017), but the obtained groups can 

sometimes be verified by humans (did the computer recognize the difference between cats 

and dogs images?). 

The more data are kept for testing, the more meaningful the performance of the model is, but 

the less data are available for training the model. Tricks exist to train AI models with a limited 

number of available data: cutting time datasets, transforming artificially the raw data to multiply 

the number of data or finding a compromise in the use of training, validation and test data by 

using the five-fold cross-validation method (Bishop, 2006, Domingos, 2012) or the leave-one-

out framework (Chen et al., 2018). This consists in the random partitioning of the data into five 

sub-samples or to separate one sample at a time from the training data for each sub-model. 

In the five-fold cross-validation algorithm, five sub-models are generated from training 

separately on four sub-samples corresponding to 80% of randomized data and their individual 

performances are evaluated from the remaining 20% data sub-sample. The complete model 

accuracy resulting from training with the whole dataset is approximated by the average of the 

five sub-model accuracies.  

The performance metric of a classification model is often given by a confusion matrix as the 

total accuracy in percentage of well-predicted (true versus false) test samples for all groups as 

well as the detailed accuracies for each group (Ertel, 2017). A receiver operating characteristic 

(ROC) curve can be used to visually explore the tradeoff between true and false positives. In 

medical studies, it can be more important to focus on the optimization of positive predictions 

by finding a few more false positives and less false negatives and conducting a confirmation 

test to see if the patient is really HIV-positive or has a cancer, than to neglect a positive that 

would have dramatic consequences. The illusion of success may be obtained by comparing 

the accuracies of the training set instead of the test set or even showing results for too small 

test sets such as 1 sample per group in extreme conditions (Liu and Tan, 1999). Some 

scientists practice this way, but the model then typically overfits (too much accounting for 

outliers in the training set) and poorly generalizes on new data (Domingos, 2012). A reasonable 

test set size is needed to estimate the expected prediction accuracy of a model on new 

samples. A learning curve that plots the total accuracy of a model obtained for different 

amounts of data samples can be used to extrapolate the number of samples needed to 

increase accuracy significantly (Perlich et al., 2003). Larger datasets should increase the 

model accuracy (Domingos, 2012), but this also depends on the variability of the data. It can 

be a challenge to collect this high number of data for industrial or scientific studies such as the 

sensory quality evaluation of different food product formula. Moreover, training data need to 

be representative of the future dataset distribution to ensure that the model is well calibrated 

for reuse in routine work. Finally, machine learning calculations based on large databases, 

such as big data, are highly demanding in storage capacity and in energetic resources. This 

aspect needs to be taken into account regarding the novel trend of accumulating and analyzing 

more and more data in a lot of applications over the world. There, one could say that a model 

does not need to be more accurate than humans in sensory evaluation and that the study can 

thus be limited in volume of samples. In fact, consumers are not very precise and their senses 

are much less discriminating than trained panelists who are also more subjective than 

machines. Nevertheless, it can be useful to understand a product in the highest precision 

possible to ensure best quality. The acceptance of different consumer groups can be 

established later and a large margin is then implemented into the model results, grouping 

different levels of a sensory attribute into the classes “best, acceptable, and rejected”. 
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3.3.2.3. Machine learning algorithms 

 

Classical statistical models such as linear or logistic regression as well as partial least squares 

models are very practical to perform regressions and help in design of experiment studies 

(Bishop, 2006). They have the advantage of being simple to implement, being easy to interpret 

and giving good performances on simple problems such as finding out which ingredient or 

process parameter influences positively or negatively a measurable result. Drawbacks are 

strict model assumptions such as linearity as well as being suboptimal for solving complex 

problems. Logistic regression is known to be more robust to outliers than least squares 

approaches (Bishop, 2006). Even non-linear regressions using logarithmic, exponential or 

power law relationships and polynomial combinations are still simple enough to interpret when 

using a limited amount of terms (or features). The means of more complex machine learning 

is to provide alternatives to simpler linear modelling, more similarly to psychophysical 

processes. They work well on big datasets and solve complex problems based on noisy, 

nonlinear or incomplete data and they do not necessitate model assumptions such as linearity. 

Their drawbacks are that they require large datasets and that the obtained models are not 

easy to interpret. In fact, they function with a “black box” principle, which does not permit to 

show easily a final equation of calculated coefficients corresponding to linearly combined 

features as would result from a linear regression model for example. Decision trees, in contrast, 

permit to understand the learned knowledge by representing the relationships between the 

classes of data graphically and even as a logical formula (Ertel, 2017). 

Most of those algorithms work with the calculation of “distances” between data to measure 

their statistical similarity and arrange them into categories. Several algorithms choose the 

weights of target approximation functions to best fit to the training data (Mitchell, 1997). The 

process can incrementally refine the weights to minimize the sum of squared errors between 

the training values and the predicted values (Bishop, 2006). According to Mitchell (1997), 

humans would use a more explanation-based approach, where they analyze the reasons of 

successes and failures encountered all along their experience and generalize based on these 

explanations. Genetic algorithms also simulate a biological evolution by further elaborate or 

mutate the most successful programs. 

A machine learning computer algorithm is comparable to a learning method. Humans may 

learn in different ways; some are more appropriate and efficient for specific situations. Many 

machine learning algorithms are already available (Byvatov et al., 2003), and much more 

approach designs than those shortly presented in this thesis (Mitchell, 1997). Their underlying 

structure is known to offer advantages and drawbacks in solving specific target functions (the 

problem to be solved) and type of available data, but it is even possible to screen automatically 

a lot of them using the Classification or the Regression Learner Apps of MATLAB’s Statistics 

and Machine Learning Toolbox of The Mathworks. After finding out the best performing 

algorithms, they can be refined manually by generating the code and changing the default 

settings. Another method is to write code from scratch, but this needs deep programming and 

theoretical knowledge as well a much more time. It is even possible to combine multiple 

learning methods (Mitchell, 1997, Bishop, 2006). 
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 Artificial neural networks (ANN) 

Artificial neural networks mimic networks of nerve cells in the brain (Ertel, 2017). Analogous to 

the dendrites of a neuron that transmit new information coming from other neurons, the number 

of inputs in the input layer of an ANN corresponds to the number of features. The information 

is processed by nodes in the hidden layer of the ANN that correspond to the nuclei of each 

connected neuron in the brain. The information can be combined by several hidden layers. 

The number of classes (in a classification algorithm) corresponds to the number of output 

nodes (like axons of a neuron) in the output layer of the ANN. 

Each node combines information into the summation of the weighed output values of all 

incoming connections. An activation function, for example a non-linear sigmoid, is applied to 

the processed information of each node to be transferred to the next layer of nodes. This feed-

forward process works until reaching the output layer, where the likelihood of belonging of a 

sample to each class is computed per output node resulting in the classification of the sample.  

The most used algorithm to train neural networks is called the backpropagation algorithm. For 

each training sample with several input features and a known output label, the current 

computed output of the network is compared with its label (the target) by calculating the 

approximation error (Bishop, 2006). The goal is to converge to an optimal solution 

corresponding to the minimal error. The optimization process adjusts the weights backwards 

from layer to layer. This is repeated in loops for all training samples until weights no longer 

change (convergence to a local minimum) or the process is stopped (time limit exceeded). 

When a validation set is used, the performance on those samples is checked at every 

optimization stage to stop the training if it tends to overfit. To generalize the use of the obtained 

model on new data, its performance is evaluated on a test set. The more input nodes 

(corresponding to the features) and hidden layers, the more complex is the model. ANNs with 

only one hidden layer, thus linear, are often not strong enough. Nevertheless, time needed to 

compute and converge to a solution and the tendency to overfit also increases with the 

complexity of the model (Ertel, 2017).  

Finally, ANN can be used for supervised classification and regression, or unsupervised 

learning. Several set-ups were already tested by food scientist to evaluate crispiness (Liu and 

Tan, 1999, Srisawas and Jindal, 2003, Liu et al., 2015). 

 

 Support vector machines (SVM) 

The support vector machine algorithm can be a compromise to get a strong but less complex 

model with less overfitting risk than the ANN (Ertel, 2017). It separates the training data by 

planes which have the largest minimum distance to two classes. This distance is usually 

determined by a few data points (support vectors) in the border area of a group of points. This 

algorithm is divided into two steps. First, a linear or nonlinear transformation called the kernel 

(quadratic or cubic for example) is applied to the data so that the transformed data is linearly 

separable. Linear SVM also exist. Then, the support vectors are determined in the transformed 

space to define the plane that separates the groups (Bishop, 2006).  

 

 Deep learning 

Deep learning is a specific case of machine learning (LeCun et al., 2015). It was used 

successfully for speech and visual object recognition or detection, drug discovery, genomics 

and many other applications such as enabling autonomous car driving. A lot of variations exist 

to perform deep learning. Convolutional neural networks are one of the trendiest technologies 
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used nowadays for image recognition by deep learning (Traore et al., 2018). Some deep 

learning algorithms are very autonomous, recognizing intrinsic data structures by themselves 

without guidance from the side of the programmer in extracting and choosing features (Ertel, 

2017). Thus, no manual feature pre-selection, for example using the non-powerful PCA, is 

needed to accelerate computing on high-dimensional data (many input features such as from 

highly pixelized images). To do so, such algorithms need huge amounts of training data and 

multi-layered (deep) neural network architectures with effective calculation methods that permit 

to converge in a reasonable computing time. For example, the network can be split in two parts 

(Ertel, 2017). First, a network with several layers can be pre-trained with unsupervised learning 

that detects patterns in the data (feature extraction). On top, a classical supervised learning 

network using the backpropagation algorithm can perform classification using model 

parameters extracted by previous layers.  

 

 Reinforcement learning 

Reinforcement learning algorithms, such as those used to play checkers, accommodate 

indirect or delayed feedback, from the final result of a game as training information, on single 

playing steps decisions (Mitchell, 1997, Gurban and Thiran, 2009). Such algorithms 

necessitate a lot of example games to train or play against themselves to generate more 

training situations. But there is no direct training data available, such as supervised with labeled 

outputs for each decision step (Ertel, 2017). Another example is a robot that discovers which 

actions are good to solve a problem by performing trial and error/success tests, similarly to 

children learning to walk, as they cannot get precise instructions from the beginning. In the 

field of foods, possibly food texture, if a large database on consumer appreciation of a product 

would be available with the corresponding product recipes and processes, reinforcement 

learning may help in efficient rapid prototyping by creating new formulations. Even simpler 

machine learning methods would work, but the challenge in such studies is always to get 

enough data.  
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4. Dynamic Spectral Analysis of 
Crushing Mechanics  

 

This study entitled “Dynamic spectral analysis of jagged mechanical signatures of a brittle 

puffed snack” was presented at the FOP conference 2014 in Wageningen (The Netherlands) 

and published in the Journal of Texture Studies in 2015 (Sanahuja and Briesen, 2015). The 

first author’s contribution was the experimental project creation, planning, measurements, data 

analyses, literature screening and writing. Heiko Briesen mentored the project, supported data 

analysis, scientific interpretation and manuscript editing. 

Why should a food scientist spend time in learning about spectral analysis and test several 

methods to analyze food texture measurement data which are generally characterized by a 

few parameters known by the food texture community? The ideation of the study began with 

the observation by a colleague, Andre Braun, of the crushing mechanics curves of crispy foods 

measured by the first author. He recognized similarities between the jagged curves and some 

stock market curves being analyzed by his father, Henri Braun. The first author knew it was 

still a huge challenge in the food texture community to analyze accurately instrumental 

crushing mechanics of crispy or crunchy foods to obtain a reproducible evaluation of the texture 

attributes perceived during chewing. Henri proposed a new type of spectral analysis algorithm 

which he used for financial data predictions and may extract a new type of information from 

crushing mechanics data. The method, called Empirical Mode Decomposition (EMD), was 

developed by Norden E. Huang, working for NASA, who combined it to the Hilbert-Huang 

transform (HHT) for unsteady signal analysis. It was already used in oceanography, 

aeronautics and seismology data analysis to detect single events in complex vibrations. The 

method was thus interesting to observe the multiple breakage events such as those happening 

during the compression of a brittle food sample in traditional food texture analysis. In fact, the 

dynamic evolution of the breakage of a brittle, porous food material, showing different pore 

wall sizes and strengths through its structure, may be a key factor in the sensory perception of 

crispiness and crunchiness. Nevertheless, the method had to be confronted to other well-

known spectral analysis algorithms with more developed theory and a lot more applications, 

to decide which one worked best on the food texture data. The simplest method was the 

Fourier transform, but this could not represent any evolution in time of the signal’s spectral 

components. The two selected alternatives for dynamic spectral analysis were the short-time 

Fourier transform (STFT) and the continuous wavelet transform (CWT), both being well-

described but often less precise than the HHT. 

To evaluate the use of the four spectral analysis methods in food texture analysis, two sets of 

compression force measurements were performed on two brands of puffed snacks equilibrated 

at different humidity levels. The Fourier spectra extracted well a lot of breakage frequencies. 

The time-frequency-magnitude spectrograms obtained with the dynamic spectral transforms 

of the jagged crushing mechanics were able to represent graphically the mechanical 

signatures of the puffed snacks in three dimensions. In fact, STFT, CWT and HHT converted 

irreproducible and irregular signals into analytic expressions and images characterized by 

specific time-frequency patterns. Each method offers a bit different perspective, thereby 

enabling the exploration of unforeseen characteristics. STFT was the least precise, but the 

simplest to interpret. CWT was the smoothest and showed more information. HHT presented 
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the sharpest spectra and had the advantage of being self-adaptive, which means no forced 

fitting of pre-defined signal shapes (such as sinusoids or alternative wavelet shapes) on the 

real signal. The manuscript intended to make those modern techniques of signal analysis more 

accessible to food scientists. 

In comparison to earlier spectral data processing techniques used in texture studies, which 

were less precise in the time and/or in the frequency domains, those techniques permitted to 

display the whole richness and complexity of crispy foods’ mechanical signatures in the form 

of a fingerprint. The observations permitted to understand better the crushing dynamics of 

crispy foods and the influence of humidity or porous structure, which are typically linked to 

changes in crispiness. First, the three-dimensional plots showed different trends depending on 

the food structure. In the raw data, typical compression behaviors were observed, as described 

by Gibson and Asby (2001), with the evolution in time of the mechanical signal trends in three 

stages of deformation: brittle fractures, a plateau with numerous fractures and a final 

densification stage. But products from the same brand seemed different in this representation, 

because of individual sample differences. In opposition, the food’s dynamic spectral 

fingerprints helped in recognizing similar products that belong to the same family (comparing 

two different brands, thus with different ingredients, production processes and resulting 

structures), despite natural individuality. They differentiated between the two brands spectral 

behaviors. They thus permitted the recognition or discrimination of similarities and differences 

in the degree of brittleness. Second, the different temporal evolutions of the breakage 

behaviors could be related to the physics of humidifying processes: anti-plasticizing effects at 

low humidity where the material becomes “harder”, with less numerous brittle breakages but 

stronger peaks when humidity increases, followed by a ductile transition at higher humidity 

where food polymers are plasticized, making the material softer and mechanical trends 

smoother until no more breakages could be observed. There, time-shifts of high-magnitude 

peaks and the overall densification in the lower humidity range could be better observed using 

the dynamic spectral representations, whereas the obvious smoothening effects at high 

humidity could already be determined by observing the raw temporal data. Thus, the spectral 

representations discriminated between products equilibrated at different, but similar, low 

humidity ranges. 

In comparison to simpler methods delivering single values to characterize texture, which are 

easier to correlate directly with sensory analysis but often too variable, the three dynamic 

spectral techniques translated more reliably the whole content of the measured signals. In fact, 

not only pointwise characteristics such as a maximum, a minimum or a sum value are important 

for characterizing brittle food textures. Some characteristics, that are obvious for the human 

eye, such as the overall trend shape and its evolution in time at different scales, can be 

determined by time-frequency parameters. Moreover, the mechanical signatures analyzed by 

the investigated methods were able to reveal breaking frequencies in the range of those 

determined by sound studies to be determinant of crispy food products. It was thus supposed 

that, similarly to the synthesis by the human brain, multivariate statistical analysis of those 

numerous objective characteristics would permit a more precise characterization of crispiness. 

This is why the spectral analytical techniques that were established in this study were proposed 

to be used for the extraction of texture characteristics that would better discriminate different 

humidity or crispiness levels correlating with sensory perception. After relating classified food 

samples to their structure and consumer preferences, food structure design and quality control 

can be improved. The methods presented in this study were expected to work reasonably well 
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for the characterization of crushing mechanics, air-, bone-, and soft tissue conducted sounds, 

as well as other vibrations, that may be measured to evaluate crispiness or crunchiness. 

Nevertheless, the challenge that was identified in this study was that it may be necessary to 

determine and select the most relevant parameters amongst the numerous spectral 

characteristics, even though they all represent the real complexity of the measured 

phenomenon, in case their high number and some redundancy effects would overload the 

calculations processes and prevent them from accurate predictions. 
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5. Multimodal Classification of 
Crispiness 

 

This study entitled “Classification of puffed snacks freshness based on crispiness-related 

mechanical and acoustical properties” was first presented at the MATLAB Expo 2016 in 

Munich (Germany), winning the best poster award with preliminary results, then at the MATLAB 

Expo 2017 in Munich, rated as best non-keynote presentation by the audience, and finally 

published in the Journal of Food Engineering in 2018 (Sanahuja et al., 2018). The first author’s 

contribution was the idea to use machine learning to classify automatically food properties 

such as crispiness or humidity levels, the experimental project creation, the planning of the 

student’s sensory analysis studies and the construction of the acoustical isolation box, the 

measurements, the data preparation, the code for feature extraction and selection, the 

literature screening and writing the scientific documents. The classification algorithms were 

programmed by Manuel Fédou with a lot of discussions to optimize the implementation and 

understand the results. Heiko Briesen pointed out the importance of measuring acoustical 

signals and provided necessary material as well as the support for data analysis and scientific 

interpretation. 

This study is the logical follow-up of the study discovering the principles of spectral analysis. 

The holy grail of crispiness studies is to understand better the main impact factors but also to 

get a rapid instrumental method for routine quality control. The study contributed to both goals, 

providing an automatic classification model of puffed snacks freshness, based on the 

combination of crispiness-related mechanical as well as acoustical properties or features. 

This time, force was measured in the same time as the resulting sound during crushing of 

puffed snacks, equilibrated at 6 humidity levels, of one of the brands used in the previous 

study. Up to 70 features could be extracted from the signals, resulting from traditional texture 

analysis evaluation of the force and sound data, like temporal features, and from spectral 

analysis. Amongst the different methods screened in the first study, the simplest, the Fourier 

transform, was finally chosen. It was already giving a huge amount of detail which needed to 

be reduced to avoid too strong overfitting of the classification models. To compress data, the 

Fourier spectra were integrated into full, half and third octave frequency bands. The number 

of features was additionally reduced by the selection of features which had a statistical impact 

on the result. Only a few temporal mechanical features could be eliminated, but the spectral 

data could not be further reduced, because it is the combination of a lot of spectral 

characteristics which characterize a mechanical breakage vibration or a crushing sound 

producing the signature permitting to recognize a sample. The most detailed spectral data, 

third-octaves, resulted in the highest classification accuracy by machine learning. Acoustical 

features had the highest impact on the classification accuracy, but mechanical features were 

necessary too to reach up to 92% classification accuracy using the quadratic support vector 

machine algorithm. Artificial neural network algorithms with different neuron layer complexity 

also worked fine. Finally, the two humidity levels, 11 and 23% relative humidity, in which 

crispiness is perceived as different but which are commonly the most difficult to distinguish 

could be well separated into different classes. The models could also distinguish all the other 

humidity levels which were distinguished by sensory ratings of the instrumental crushing 

sounds, as listened to by a trained panel. A consumer panel rated its liking of the sounds and 
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notes about the characteristics of crispy sounds enabled further comprehension of the 

phenomenon. Finally, the machine learning models were able to mimic multisensory 

integration of crispiness by the combination of multimodal food properties. Thanks to such 

models, it is now possible to automatically identify specific brittleness behaviors and 

discriminate between key crispiness levels in dry crispy foods at different humidity levels such 

as extruded snacks that need to be controlled to ensure best food quality. The same 

methodology can be reproduced to develop a model for other crispy foods and extended to 

crunchy foods. The only hurdle is the high number of samples that have to be measured. On 

the other hand, once a model is established, only a few standardized measurements are 

needed to classify a new sample in daily control procedures. It makes quality control less 

depending on single expert employees who may be replaced by inexperienced ones in 

factories with high turnover, and less depending on a costly and time-consuming human 

sensory panel that needs to be retrained regularly. Another advantage of the presented 

methodology is that each new measurement performed during quality control can then be used 

to improve the model by retraining it continuously. Thus the model accuracy can increase with 

time of usage. 

The use of dynamic signal analysis techniques for extracting more accurately the temporal 

evolution of crushing mechanics and acoustics and increase the accuracy of the model 

obtained in this study would need higher-performance data processing tools for data-intensive 

simulations such as deep-learning. With the evolution of computer capacities and processing 

velocity, it will be easier very soon. This analysis was foreseen for a subsequent study, which 

was not performed in this thesis. 

  



59 
 

6. Spectral Analysis of the Stick-Slip 
Phenomenon in “Oral” Tribology 

 

This study entitled “Spectral analysis of the stick‐slip phenomenon in “oral” tribological texture 

evaluation” was presented at the FOP conference 2016 in Lausanne (Switzerland) and 

published in the Journal of Texture Studies in 2017 (Sanahuja et al., 2017). The first author’s 

contribution was the experimental project planning and grants finding with the help of Heiko 

Briesen, the measurements, the data analyses, the literature screening and writing of the 

scientific documents. The initial idea came from the similarities between the jagged crushing 

mechanics of puffed snacks presented at the FOP conference 2014 and the zig-zags in the 

friction mechanics of liquid foods, as observed by Jianshe Chen. Rheology and tribology 

measurements of the emulsions were performed by Rutuja Upadhyay. Jianshe Chen and 

Rutuja Upadhyay teached the first author about the science of tribology and its applications in 

food texture studies and provided key citations for the common paper. We all had a lot of 

discussions to understand and be critical with our results, Heiko Briesen bringing additionally 

his engineering point of view about general mechanics and supported data interpretation. 

“Oral” tribology conditions were used in this study, mimicking oral conditions such as 

temperature, soft contact surfaces, possibly with mucosal roughness, friction velocities and 

loads in the range of those existing in the mouth when the tongue is rubbed against the palate 

to evaluate friction-related textures. The study goal was to characterize better the friction data 

resulting from the lubrication of the surfaces in relative motion with different food matrices, to 

be able to distinguish complex textures which are distinguished by sensory panels but not well 

by traditional texture analysis, rheology or traditional food tribology. Additional to the traditional 

friction coefficient and the characterization of the Stribeck curves with three friction regimes, 

stick-slip phenomena were observed and characterized by spectral analysis of the sliding force 

vibrations. These vibrations, which are generally overlooked or confused with machine noise, 

characterized the different test conditions with different lubricants. A lot more samples were 

tested than those included in this study, for which several ones having similar friction 

coefficients could be distinguished by spectral characteristics.  

The study focused on dry contact, water and oil behaviors as basic models and tried to explain 

the complex behavior of a few oil-in-water emulsions, which was a topic gaining interest in food 

texture studies. In fact, understanding and predicting the smoothness and creaminess of such 

foods with, for example, decreasing fat contents, will enable food scientists to better design 

healthy foods which have often the disadvantage to be more astringent and produce rough 

feeling after swallowing. It was hypothesized that the stick-slip vibrations may be a key factor 

in characterizing the mechanical component of such friction-related texture attributes, which 

do not result only from the overall friction represented by the friction coefficient, but are also 

impacted by single friction force changes created by the rolling of particles between oral 

surfaces or by sticking and slipping vibrations produced by physico-chemical interactions. 

Different vibration frequencies and amplitudes would result from different food matrices and 

activate mechanoreceptors on the tongue. The spectral analysis permitted to extract 

frequencies from the force data in the range of those detected by oral mechanoreceptors. The 

study was the first in food texture studies to concretely reveal the presence of stick-slip effects 

during oral-like friction measurements on foods. Those effects may influence in-mouth texture 
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sensations, which is why more insight is needed to understand better the physico-chemical 

influencing factors on stick-slip effects in food matrices and in oral friction conditions. Similar 

measurements and spectral data analysis should be repeated and reproduced on other 

samples with controlled variations of a few ingredients, ingredients concentrations, production 

processes and so on. Moreover, to predict and distinguish automatically different levels of 

friction-related textures such as creaminess, the characterizing spectral features should be 

combined, in machine learning studies, to friction coefficient and viscosity values like it was 

done by the crispiness classification study.  
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7. Summary, Conclusions and Outlook 
 

 Summary and Conclusions 
 

The first learning of this dissertation is that one can use a lot of techniques from other fields to 

modernize food science. Nevertheless, a minimal experience is required when it comes to 

choosing instrumental testing tools, signal analysis methods and modelling algorithms, their 

settings and interpreting results. In particular, automatizing the whole food texture evaluation 

process by machines caused headaches to scientists since decades (Duizer, 2013, 

Dacremont, 1995). 

In summary, several attempts to characterize unsteady signals in this dissertation permitted to 

better understand several physico-chemical properties of foods. It revealed the complexity 

governing solid texture sensations such as crispiness (or crunchiness) as well as liquid to semi-

solid friction-related texture sensations. Alternative methods to traditional mechanical texture 

analysis were proposed, using records of crushing mechanics and sounds as well as the 

intermittent friction forces in tribology experiments. Those methods give more complete 

records of the physical phenomena governing texture sensation during food oral processing 

than pointwise measurements. The theory about different representations of raw and spectral 

data was discussed (temporal, spectral or dynamic time-frequency plots of different kinds). 

They were obtained using modern algorithms (comparing the Fourier analysis to the STFT, 

CWT and HHT) to best reveal the hidden details of the rich texture patterns. The information 

was used to provide practical methods for other food researchers, such as selecting specific 

temporal or spectral characteristics (parameters or features) of the measured signals to 

characterize the food samples and observing the overall behavior of the curves or of the bi-

dimensional representations of magnitude-time-frequency spectrograms. Thus, the first study 

in this thesis permitted to understand and visualize better the crushing dynamics of crispy 

foods and the influence of humidity or porous structure, which are typically linked to changes 

in crispiness. The food’s dynamic spectral fingerprints helped to recognize the degrees of 

brittleness of similar products, despite natural individuality as well as to distinguish different 

product brands and different humidity levels, even in the lower humidity range, which is the 

most challenging. The use of such characterizing methods will help research and development 

scientists to measure, visualize and determine which factors impact crispiness or crunchiness. 

Those factors can then be tracked and compared for different food formulations, production 

processes, storage conditions and consumption methods. After relating classified food 

samples to their structure and consumer preferences, food structure design and quality control 

can be improved. Moreover, as consumers have different FOP habits, such as having the 

tendency to rather suck, chew, crunch or smoosh (Chaker, 2013, Chen and Engelen, 2012), 

food industry may indicate on the notice how to prepare food or even explain how to bite, chew 

and in which order, as it is a trend in star restaurants, to optimize the production of specific 

texture characteristics and thus enhance consumption experience. 

Summarizing the complex spectral results by feature compression and selection or using all 

features combined in a multimodal classification model was tested for the automatic 

recognition of crispiness by machine learning algorithms. The second study in this thesis finally 

used the spectral results of the conventional Fourier transform instead of the dynamic analysis 
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results because they first produced too many features, overloading the models and because 

they already produced very successful models. The machine learning models were able to 

mimic multisensory integration of crispiness by the combination of multimodal food properties 

from mechanical and acoustical records. They automatically identified specific brittleness 

behaviors and discriminated between key crispiness levels at different humidity levels in dry 

crispy foods such as extruded snacks that need to be controlled to ensure best food quality. 

This knowledge brings food texture science forward in the context of the fast-developing 

artificial intelligence trend. In fact, such algorithms, even though being less transparent than 

mechanistic (physical) models or traditional regression equations, permit a more efficient and 

accurate prediction of complex multisensory attributes. In comparison to in- and online 

measurements or big data generation in other fields, a big limitation of machine learning in 

food R&D studies is the amount of available data which have to be measured by hand or 

collected from numerous sensory analyses for the establishment of the data-driven models. 

Nevertheless, once a model is established, it is also more efficient and precise than human 

sensory testing. Moreover, the model accuracy will increase with time if each newly measured 

data during quality control is integrated to retrain the model. The same methodology can be 

reproduced to develop a model for other crispy foods and extended to crunchy foods or even 

to classify and predict other texture attributes such as complex friction-related textures. 

The third study in this thesis, about tribology, revealed that stick-slip effects are produced 

during friction force measurements of foods and are highly suspected to reveal important 

properties impacting oral sensory sensations due the detection of vibrations by oral 

mechanoreceptors that are in the same range as those which could be measured and 

characterized using spectral analysis. Spectral parameters were numerous and complex to 

analyze, but several frequency ranges could be related to specific test conditions such as 

contact materials and lubrications (dry contact, rough versus smooth soft surfaces, surfaces 

lubrified with model foods such as water, oil and emulsions) as well as at different friction 

velocities and loads. Further studies should repeat the experiment to show statistically that 

spectral features permit to distinguish between samples with similar friction coefficients, 

Stribeck curves, viscosity and rheology trends, which are the conventional characterization 

methods in food texture studies. Better understanding the physico-chemical factors, such as 

stick-slip effects, influencing friction-related texture attributes, such as smoothness and 

creaminess, will permit to design and control the quality of liquid and semi-solid foods. 

Nevertheless, this in-vitro technique is still limited by the available biomimetic materials. 

Moreover, tribology data (friction coefficients and spectral parameters) should still be 

supported by or combined with data from rheological measurements to better understand the 

dynamic changes of friction-related texture attributes during food oral processing. Machine 

learning could be the right tool to perform multimodal modelling to predict and distinguish 

automatically different levels of friction-related textures, as it was done for crispiness. 

Finally, care has to be taken to decouple the physico-chemical information measured with 

methods presented in this dissertation from the actual neurological processing of 

multisensorial information. In fact, more stimuli such as appearance, taste and aroma may 

influence texture perception during the integration by the brain. Thus, artificial intelligence and 

other multimodal data analysis methods may foresee some phenomena happening in the brain 

and predict friction-related sensory attributes the same way as for crispiness. Nevertheless, 

those findings should be verified by neural activity studies. In fact, psychophysics is the take-

home message to remember: the fact that our perceptions are influenced by physics, 

physiology and psychology of food oral processing and sensory integration. In statistics, it is 
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dangerous to overinterpret correlations and prediction factors. A multidisciplinary approach 

and the exchange with the scientific community, not only of the specific field, but broadened to 

others, is thus key to try to catch all important aspects of such complex studies (Selway and 

Stokes, 2014). 

 

 Outlook 
 

As was summarized in the last section, the instrumental measurement methods and the data 

analysis techniques permitted to understand better specific food texture attributes and to 

classify food samples according to instrumental data similarly as would do a sensory panel. 

Thus, the gained knowledge at the scale of food texture studies is clear. But what may those 

studies bring to a larger scale community and what is becoming a trend therefore? 

Even though the techniques tested were already used in other fields, they were used in new 

ways and for new purposes to advance knowledge and practice focusing on the food texture 

analyses studies of the present dissertation. The aim of all studies was to clarify, modernize 

and introduce new practical techniques to the food texture community. In fact, it is the first time 

that stick-slip effects were analyzed for the understanding of food textures (Sanahuja et al., 

2017), and strong impulses in tribology are foreseen in the next years. Moreover, crispiness 

studies are still being published and stay a topic for food texture scientists due to the increasing 

quality standards. Because data analytics and machine learning are becoming a trend in all 

fields of research, together with the global digitalization and Industry 4.0, spectral analysis, 

feature selection and automatic classification techniques may be further used by food texture 

scientists. We showed that the tools developed by other communities are useful for food 

science and industry, and learnt from the exchanges with scientists from other fields that 

interdisciplinary thinking brings us all forward.  

On the other hand, for any of the studies run during this dissertation, several improvements 

can be done and repeated experiments would strengthen the outcomes. For sure, the trend 

goes to more realistic measurement conditions mimicking food oral processing. Crushing and 

rubbing with more complex movements and biomimetic materials could be integrated into a 

multimodal chewing machine, highly sensitive and with several degrees of liberty, together with 

acoustical recording in an isolation chamber and covered with taste release sensors as well 

as air aspiration towards aroma analysis instruments. Such machine could appear as utopic 

for a food scientist, but several teams around the world already constructed such machines, 

with a simplified set of sensors focusing on specific quality evaluation or sensory attributes 

(McClements, 2019). Some of the so-called “chewing machines”, “chewing robots” or “artificial 

mouths” even incorporated the automatized integration of multimodal information. 

Nevertheless, humanity is far from copying exactly human sensitivity, perception, and most 

importantly, the interpretations and decisions based on the collected information, as science-

fiction humanoids suggest. 

In next studies, it would thus be interesting to: 

- Let “chew” a texture analyzer or material testing machine with force- and direction 

retrocontrol depending on food texture evolving in time (with addition of saliva after the 

first chew), like a chewing machine (Prinz et al., 2007b, Salles et al., 2007, Xu et al., 

2010, Mielle et al., 2010, Benjamin et al., 2012, McClements, 2019). 
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- Use saliva or model saliva in rheology and tribology measurements (Mosca et al., 

2019). 

- Transform air-borne sound measurements into bone-conducted sounds using a 

transfer function. The model would result from measuring in-vivo crushing sounds 

during chewing (with sensors capturing air-borne as well as bone-conducted vibrations) 

and evaluating the filters produced by the different tissues around the oral cavity. The 

modelled bone-conducted sounds may contribute to crispiness or crunchiness 

evaluation by giving a more multi-sensorial summary of information (Drake, 1963, 

Saeleaw and Schleining, 2011, Vickers and Bourne, 1976a, Vickers and Bourne, 

1976b, Dacremont et al., 1991). 

- Integrate taste and aroma components for a more realistic model of food sensory 

evaluation by machines and for determining the main influencing parameters on human 

sensory evaluation, and, finally, liking. It would need huge amounts of data to feed 

machine learning models. Such amounts of data are difficult to generate in the context 

of food industry. Nevertheless, model tongues and model noses are already tested by 

food scientists using multiple array sensors in model mouths (Banerjee et al., 2016). 

- Integrate dynamic features into classification algorithms and automatize the feature 

extraction and selection to save data analysis time (Gurban and Thiran, 2009), for 

example using deep learning. This would need much more training data covering a 

wide range of possible situations. Tricks such as pre-training with similar-looking data 

from other fields where a lot of new insights are being gained every year, for example, 

using the AlexNet from the ImageNet challenge of image recognition would be a 

possible alternative (Deshpande, 2016). Even a food recognition network was created, 

the FoodNet (Pandey et al., 2017). 

- Test automatic regression instead of the classification to predict continuous changes 

or smaller differences in texture attribute levels. 

- Use more mechanistic models to speed up food texture optimization, in parallel to data-

driven models, following the trend of computer-aided engineering as was presented by 

Datta (2016). 
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ABSTRACT

The instrumental evaluation of crispiness and crunchiness of dry and wet cellular
foods is challenging. Available texture analysis methods do not always reliably
predict sensory analysis results. Temporal sensory integration is suspected to be a
key factor in the perception of crispiness and crunchiness. Thus, short-time
Fourier transform, continuous wavelet transform and Hilbert–Huang transform
are proposed and applied as dynamic alternatives for analyzing multifracture
events. The resulting time–frequency–magnitude spectra graphically show the
degree of similarity between the samples. These representations contribute to an
understanding of the dynamics of airy foods’ jagged mechanical signatures, as
demonstrated on corn starch extrudates. In most cases, they finally permit the rec-
ognition or discrimination of similarities and differences in the degree of brittle-
ness, corresponding to a specific production process and water content. The
analytical techniques should help to determine relevant and objective characteris-
tics that correlate with sensory studies.

PRACTICAL APPLICATIONS

Short-time Fourier transform, continuous wavelet transform and Hilbert–Huang
transform help to understand the physical processes and the temporal evolution of
the breakage behavior of foods. They are powerful tools for analyzing jagged
mechanical and acoustic food signatures. Each method offers a different perspec-
tive, thereby enabling the exploration of unforeseen characteristics that could lead
to better predictions of sensory-felt crispiness and crunchiness. A food’s dynamic
fingerprint helps in recognition of similar products that belong to the same family,
despite natural individuality, and aids the discrimination between different prod-
ucts. After relating classified food samples to their structure and consumer prefer-
ences, food structure design and quality control can be improved. The methods
can be applied to multidisciplinary food texture studies that examine air-
conducted crushing sounds, bone-conducted vibrations, dampening effects of
muscles and fatty tissues, or chewing muscle and neural activities. This manu-
script intends to make modern techniques of signal analysis more accessible to
food scientists.

INTRODUCTION

Crispy and crunchy food textures are “stimulating, fresh,
and pleasant” (Vickers and Bourne 1976) and have the

highest impact on overall consumer preference and quality
evaluation of many food products (Szczesniak 2002; Bourne
2002). Both descriptors characterize the freshness of most
dry and wet porous foodstuffs such as chips, raw vegetables
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and fruits (Peleg 1993a; Luyten et al. 2004; van Vliet and
Primo-Martín 2011). Their evaluation is essential in the
field of foods but causes persistent difficulties in industrial
practice.

In general, crispy and crunchy foods are brittle and
abruptly break several times while being chewed (van Vliet
and Primo-Martín 2011). There are many influencing
factors determining the mouthfeel of crispy or crunchy
foodstuffs, and these mostly depend not only on the food
but also on the consumer’s particularities (Peleg 2006;
van Vliet and Primo-Martín 2011; Jeltema et al. 2014).
Physicochemical properties inherent to the food resulting
from composition and structure depend on the formula-
tion, the production process, the storage conditions
(humidity and temperature) and the way the food is
prepared (Pittia and Sacchetti 2008; van Vliet and
Primo-Martín 2011). The overall subjective evaluation
of the food is yield not only by impulses from the mecha-
noreceptors in the mouth but also by the interplay with
many other senses, in particular, hearing (Szczesniak 1963;
Vickers 1980; Duizer 2001; Roudaut et al. 2002; Dacremont
et al. 1991). Furthermore, humans do not sense increasing
stimuli such as force or noise linearly (Peleg 2006; Fastl and
Zwicker 2007; Stokes et al. 2013), which complicates the
interpretation of instrumental measurements.

In practice, characteristic objective descriptors that
strongly correlate with subjective descriptors are required to
quantify the degree of crispiness or crunchiness of foods,
while economizing the use of sensory panels as much as
possible (Rohde et al. 1993; Vincent 1998; Luyten and van
Vliet 2006; Anton and Luciano 2007). Instrumental mea-
surements such as mechanical tests or texture profile analy-
sis record the force required to obtain a certain deformation
in the material (Szczesniak et al. 1963; Bourne et al. 1979;
Bourne 2002; Duizer 2001; Lu 2013), which can be trans-
lated into stress–strain diagrams if the geometry of the
sample and the probes is sufficiently simple. Acoustic
studies record crushing sounds emitted by food during
mastication or mechanical analysis (Drake 1963; Edmister
and Vickers 1985; Tesch et al. 1996a; Duizer 2001; Chen
et al. 2005; Chen and Opara 2013). Tests of time intensity
and temporal dominance of sensations take the temporal
evolution of signals into account (Luyten et al. 2004;
Révérend et al. 2008; Pineau et al. 2009).

At present, the most common method of texture analysis
for brittle food samples uses pointwise characteristics
of mechanical signatures obtained through puncturing,
cutting, bending, shearing, compression or extrusion
(Duizer 2001; Roudaut et al. 2002; Lu 2013; Paula and
Conti-Silva 2014). These analyses often consider only the
first breaking event, which leads to an irreversible loss
of information, leaving the rest of the breaking path
unexplored (Vickers and Bourne 1976; van Vliet and

Primo-Martín 2011). Some research has accounted for the
multitude of force peaks by measuring the amount of peaks,
the mean work for each breaking event or the linear
distance of the curve (Varela et al. 2006; Duizer 2013).
However, all these characteristics are not very reproducible
because brittle foods are highly irregular (Rohde et al.
1993). Typically, the sound peaks can be correlated to
mechanical parameters for some food samples (Varela et al.
2006; Castro-Prada et al. 2007; Castro-Prada et al. 2009).
Crushing mechanics and acoustics can be related to sensory
evaluations of crispiness and crunchiness as well as
crackliness and rubberiness, but not always (Vickers and
Bourne 1976; Katz and Labuza 1981; Edmister and Vickers
1985; Vincent 1998, 2004; De Belie et al. 2000, 2002;
Szczesniak 2002; van Vliet and Primo-Martín 2011; van
Vliet 2014). The results also depend on the resolution and
sampling rate of the mechanical testing method compared
with those of the acoustic detector as well as the method of
signal analysis (Castro-Prada et al. 2007).

More advanced and holistic techniques were introduced
to analyze irregularities in mechanical texture analysis
(Barrett et al. 1992, 1994; Rohde et al. 1993; Wollny and
Peleg 1994; Harris and Peleg 1996; Peleg 1997). Similar
techniques were used for acoustic texture analysis (Tesch
et al. 1996a,b; Roudaut et al. 1998). Hence, fractal analysis
provides the apparent fractal dimension, and Fourier trans-
formation provides the mean magnitude of the power spec-
trum density. Both are used to estimate the degree of
jaggedness in the signal. Thereby, they reveal the signal
complexity, which can also be quantified by the standard
deviation of the force or fluctuations of sound (Tesch et al.
1996a; Pittia and Sacchetti 2008). Exact discrimination of
minor humidity differences is difficult with the jaggedness
evaluations used so far, although differentiating between
larger humidity differences is feasible (Barrett et al. 1992;
Rohde et al. 1993; Wollny and Peleg 1994; Harris and Peleg
1996; Peleg 1997; Suwonsichon and Peleg 1998). In addition
to the problem of practical efficiency, both methods can be
doubted from a mathematical perspective. First, the curves
are not really fractals (as also stated by the authors them-
selves). Second, Fourier transformation supposes that the
harmonics are present over the whole signal length, which is
not true and introduces artifacts in characterizing the
dynamic breakage phenomenon (Marchant 2003; Luyten
and van Vliet 2006). Finally, calculating averages over the
whole deformation process reveals neither evolution in time
nor important single events. Moreover, few events of high
magnitude but of short duration would not be taken into
account even if they were decisive. The challenge for new
analytical methods remains to include the dynamics of the
food crushing process.

Phenomena frequently evolve in time; thus, one talks
about spectral analysis of a time-series in the frequency
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domain. The result is a spectrum of varying magnitude
(amplitude, energy or power density) that is distributed
over the extracted frequencies. Several spectral analysis
techniques are capable of analyzing dynamic signals by plot-
ting the local magnitudes and frequencies over time, pro-
viding spectrograms (Priestley 1965). The three methods
chosen in this study for analyzing the mechanical signals of
crispy foods have been successfully applied in many
domains, including aeronautics (Huang et al. 2006), ocean
engineering (Huang et al. 1998), seismic/geologic studies
(Huang et al. 1998; Huang and Wu 2008), acoustics and
speech recognition (Huang et al. 1998), financial applica-
tions (Huang 2008; Amar and Guennoun 2012), image
processing (Abry et al. 2009) and structural applications
(Huang and Milkereit 2009). Short-time Fourier transform
(STFT), the most commonly used method for creating
sound spectrograms (Isermann and Münchhof 2011;
Franklin 2013), has been applied to studies of crushing
sounds (Hi et al. 1988; Brochetti et al. 1992; Dacremont
1995). STFT is used as a reference to demonstrate its poten-
tial compared with the global Fourier transform. Continu-
ous wavelet transform (CWT) (Daubechies 1992) has not
yet been used in food texture applications, although its
implementation was proposed by Dacremont (1995) to
“improve the accuracy of the results.” Hilbert–Huang trans-
form (HHT), often used for its data-driven methodology
(Huang et al. 1998), is expected to be well suited to precisely
analyze natural phenomena in both time and frequency.
Alternative signal processing techniques have also been
tested but are generally considered inappropriate for some
transient cases (Daubechies 1992; Huang et al. 1998; Huang
and Milkereit 2009).

Each of these methods has theoretical and practical
advantages and drawbacks. In the present study, the poten-
tial of three techniques (STFT, CWT and HHT) is discussed
in terms of improved power and precision of spectral analy-
sis and in terms of visualizing similarities and discrepancies
in the mechanical signatures of products.

MATERIALS AND METHODS

Experimental Work

A series of experiments was conducted to evaluate the
capacity of STFT, CWT and HHT to recognize two products
belonging to the same family or quality, even if they had
natural individual differences. We tested two types of typical
brittle puffed snacks, representing different batches and
possibly different production processes. Inspired by the
studies of Katz and Labuza (1981), Barrett et al. (1992),
Rohde et al. (1993), Wollny and Peleg (1994), and
Castro-Prada et al. (2009), the aging process due to inad-

equate storage conditions was simulated by humidifying the
samples at several moisture levels.

Sample Preparation. Two bags of peanut-coated corn
starch extruded curly chips were used: “Erdnuss Locken”
from The Lorenz Bahlsen Snack World (Neu-Isenburg,
Germany), named M1 in the experiment, and “Ja! Erdnuss-
Flips” from REWE (Köln, Germany), named M2. The
straightest curlies available were cut into 10-mm-long cylin-
ders. The diameters, measured with a caliper, varied around
10.2 ± 0.6 mm for M1 and 10.5 ± 0.3 mm for M2 (standard
error for 10 samples). Because destructive tests do not
permit repeated measurements of exactly the same sample
and because the intraclass variability was high (see Fig. 1),
many tests were required to determine the typical behavior
of a type of sample. Therefore, at least 16 samples of each
type were tested at each humidity level.

The samples were equilibrated for 3 days at six humidity
levels. Humidification was achieved in 6-L exsiccators with
1 L of saturated salt solution: lithium chloride, potassium
acetate, magnesium chloride, potassium carbonate, magne-
sium nitrate and sodium nitrate (all obtained from Carl
Roth, Karlsruhe, Germany), corresponding to 11, 23, 33, 44,
53 and 76% relative humidity (RH), respectively, at 20C. An
acceptable equilibrium state was quickly reached with RH
values of the reference values +2–4% at room temperature
between 21.0 and 22.0C. A computer fan placed at the top
to homogenize the atmospheric humidity above the solu-
tion surface complemented the humidity chambers. The
water content of four replicate samples of 0.6 g was mea-
sured by a moisture analyzer (Sartorius Weighing Technolo-
gies MA 40, Göttingen, Germany). The water content and
RH values were fitted with the sigmoid model developed by
Peleg (1993b) to obtain the sorption isotherm trends of
both M1 and M2. The RH inside the packaging was
deduced from the water content of the fresh products.

Instrumental Measurements. The mechanical signa-
ture of a sample and the results of its signal analysis are

FIG. 1. INTRA- AND INTER-VARIABILITY OF CURLY STRUCTURES
M1 and M2 refer to different brands.
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influenced by the sample orientation, probe type, degree of
deformation, testing velocity and sampling frequency.
During chewing, the degree of compression of the foodstuff
as well as the deformation rate are a consequence of the
initial and evolving mechanical properties (firmness and
brittleness) and will not always reach high deformation
levels at the first chew. Accordingly, tough foods will not be
chewed in the same manner as fragile ones. Consequently,
conventional mechanical tests using a predetermined and
constant velocity and maximum strain value may not
provide a realistic simulation of chewing. However, the
dynamic evolution of the mechanics can be useful for
describing the structure and texture during the first bite.
Mechanical measurements were acquired with a TA.XT
texture analyzer from (Stable Micro Systems, Godalming,
UK) and its Exponent software. The cylinders were com-
pressed (Fig. 2), like crushing between molar teeth (similar
to Rohde et al. 1993), in the normal direction to their circu-
lar surface between two aluminum plates (SMS P /75 mm
probe). A “SMS 5-kg load cell” was chosen for its precision.
A few humidity-strengthened samples exceeded the mea-
surement range of the load cell and thus only the deforma-
tion domain below this point could be considered. The data
exclusion had no effect on the analysis in this manuscript as
the authors took it into consideration for the visual com-
parisons. For further classification studies, new measure-
ment will be carried out.

Maximal strain and crosshead velocity test settings were
chosen according to Katz and Labuza (1981) at 75% defor-
mation and 2 cm/min (approximately 0.33 mm/s), respec-
tively. The probe was controlled to approach the sample at
the same velocity to avoid errors resulting from disconti-
nuities in the electronics control and the machine’s
response time. This pretest ran up to a trigger force of
0.05 N, inducing negligible preloading, before beginning
data acquisition. Actually, the chewing rate is much higher,
from approximately 10 mm/s to a maximum of 40 mm/s
(Luyten et al. 2004; van Vliet and Primo-Martín 2011), and
it has an evident effect on mechanical behavior (Luyten

et al. 2004; Luyten and van Vliet 2006; Castro-Prada et al.
2009; van Vliet 2014). Thus, running the test with a higher
speed would produce more realistic mechanical and acous-
tic signals to mimic the chewing process (Luyten and van
Vliet 2006). However, it would not permit the recording
of sufficient data points for precise spectral analysis of
the breaking events. The sampling rate was thus set at
the available maximum of 500 Hz. As postulated by the
Shannon–Nyquist sampling theorem (Franklin 2013), the
sampling frequency must be at least twice the searched fre-
quency; however, oversampling is desirable to obtain more
accurate spectral analysis results. According to the above
guidelines, a 500-Hz sampling frequency should be suffi-
cient to obtain a maximum breaking frequency of 250 Hz,
which corresponds to approximately one fracture every
1.3 μm, assuming constant velocity. Sound recordings
require much higher sampling rates to obtain vibration fre-
quencies within the human hearing range of approximately
10–20 Hz to a maximum of 20 kHz (Luyten and van Vliet
2006). However, unlike sound studies, the sampling fre-
quency in this study, combined with the low velocity,
should not be a limiting factor for the mechanical measure-
ment of crispy foods.

Other important factors are the testing conditions. The
testing room temperatures varied between 21.5 and 22.0C,
and the atmospheric humidity varied from 50 to 51% RH.
Therefore, each sample was separately taken out of the
exsiccator, weighed and quickly tested in order to avoid
further changes due to the altered humidity level.

To reduce the signal distortion due to the machine ele-
ments, the effects of damping vibrations of the pressure
transducer should be filtered (Castro-Prada et al. 2007; van
Vliet and Primo-Martín 2011; van Vliet 2014). However, to
the best of our knowledge, no method is available to iden-
tify these artifacts.

Finally, the mechanical properties of the solid matrix
together with the geometry (irregular shape and mixed
open/closed foam morphology) play an important role in
fracture behavior (van Vliet and Primo-Martín 2011). In
this study, we did not conduct an extensive structural evalu-
ation. Nevertheless, we measured several pore and pore wall
sizes from microscopic images of sliced samples. To deter-
mine the pore volume distribution, porosity and relative
density of the samples (Barrett et al. 1992) and to link them
to their mechanical behavior, micro-computed tomography
imaging and image analysis would be a promising but costly
option (Guessasma et al. 2011).

Signal Processing Techniques

The whole data were imported into MATLAB 8.3 (release
R2014a (Mathworks, Natick, MA, USA)). The algorithms
used for running the STFT and CWT calculations wereFIG. 2. COMPRESSION TEST
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mainly taken from the MATLAB signal processing toolbox
functions. An open-source package was obtained from
RCADA (2014) for the HHT calculations (Wu and Huang
2009).

A brief description of the methods and settings, as far as
it aids interpretation or facilitates reproduction of the
results, is given below. In principle, all methods aim at
extracting frequency and magnitude information from the
raw signal. The time-dependent information is represented
in form of spectrograms and allows a qualified inspection of
the signal characteristics. For more details about math-
ematical and algorithmic aspects, the interested reader is
referred to Appendix S1 and of course to the cited literature.
The effects of the methods and settings on the spectral
analysis results are illustrated by means of an artificial
model signal (Fig. 3). The model signal was chosen to be
transient, similar to the mechanical signatures of crispy and
crunchy foods. However, to facilitate interpretation, the
model signal was much simpler, composed of three
non-overlapping sinusoids of different frequencies and
amplitudes. The resulting spectrograms in Fig. 3 are three-
dimensional representations of frequency versus time, with
a color bar for the magnitude levels.

STFT. Short-time Fourier transform, also called windowed
Fourier transform, is a time-discretized Fourier transform
based on the established theory of Fourier series from
Joseph Fourier (1822). The continuous governing equation
of the global Fourier transform F of the raw signal f from
the time domain t into the frequency domain ω (Isermann
and Münchhof 2011; Sturmel and Daudet 2011), with the

2 ⋅π physicist convention, is given as follows:

F f e f t dti t
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As measured signals are finite, the limits of the integral are
finite too, from time zero to the signal duration ttot. The
angular frequency ω in radians can be replaced by an
expression using the ordinary frequency FHertz in hertz:
2·π·FHertz. F gives a representation of the frequency content
of f by determining the similarity between the time domain
signal and a harmonic signal (Franklin 2013). However,
information concerning time localization of events such as
high frequency bursts is lost (Daubechies 1992; Isermann
and Münchhof 2011). STFT divides the whole time-series
signal into a finite number of segments by a windowing

FIG. 3. SPECTRAL ANALYSES OF A
TRANSIENT SINUSOIDAL MODEL SIGNAL
Signal generated with a rectangular function
filtering three time span sections of sinusoids
(t: time; ttot: signal duration; sampling
frequency: 1000 Hz). From top to bottom:
raw signal in the time domain; one-sided
Fourier spectrum; two short-time Fourier
spectra (STFT) spectrograms with
non-overlapping rectangular time windows of
0.064 s (small) and 0.2560 s (large);
continuous wavelet transform (CWT)
spectrogram with Morlet wavelet and 8,093
scales (pseudo-frequencies from 0.1 to 25 Hz);
Hilbert–Huang transform (HHT) spectrogram
with empirical mode decomposition
algorithm.
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procedure and performs a global Fourier transform on
localized time-slices. Thus, it provides a description of f in
the time–frequency plane.

STFT has been previously used to evaluate the evolution
of eating sounds in consecutive chewing cycles but no suc-
cessful characteristics could be extracted from the analysis
of the jagged behavior evolving in one chew (Hi et al.
1988; Brochetti et al. 1992; Dacremont 1995). In this study,
STFT was applied to mechanical measurements as a refer-
ence for comparisons with more modern techniques (such
as CWT and HHT). Non-overlapping rectangular windows
were chosen to analyze the model signal (Fig. 3) because of
their simplicity and clarity. Two different sizes of time
windows were computed as an example of the dilemma of
time–frequency accuracy. The settings were optimized to
analyze the mechanical signatures of crispy foods. Hanning
windows (Isermann and Münchhof 2011) were chosen
among many available options because they yielded the
most precise results in time and frequency localizations.
The optimal computation for Hanning windows occurs for
50% overlap, as discussed by Heinzel et al. (2002). Little
rectangular windows of 27 points or 0.256 s without
overlap and big Hanning windows of 210 points or 2.048 s
with 50% overlap were computed to compare the obtained
details.

CWT. Continuous wavelet transform was pioneered by
Haar in the early 20th century and was formulated further
by Jean Morlet (Morlet et al. 1982). A detailed foundation
for the practical use of wavelets in the field of signal analysis
can be found in Daubechies (1992). The wavelet transform
decomposes a signal into a series of wavelet components. A
family of basis functions of a specific shape (Marchant
2003; Isermann and Münchhof 2011) used in the wavelet
analysis is derived from a mother wavelet ψ. CWT performs
frequency analysis on localized domains that are slid and
centered over every measured point so that (a, b) can vary
continuously (Daubechies 1992; Abry et al. 2009), which
results in the transform Twav estimating the magnitude
distribution:

T f a b
a

t b

a
f t dt

t

wav
tot
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The translation factor b indicates the time shift of the
wavelet function. The scaling factor or dilation step |a|
permits the width of the wavelet functions to be adapted to
the frequencies to be investigated and to calculate pseudo-
frequencies depending on the wavelet shape (Abry 1997,
cited by MathWorks 2014, and Appendix S1).

To our knowledge, wavelet transforms have not yet been
used in the field of food texture studies. However, wavelets
are used for automated inspection of agricultural and food

products (Singh et al. 2010). According to Singh et al.
(2010), wavelets have a high potential for “signal prepro-
cessing, de-noising, feature extraction, and its re-synthesis
for classification purposes.”

Compared with the discrete wavelet transform (Appen-
dix S1), CWT has the advantage of not being discretized.
Thus, it is more precise in time–frequency localization
and generally looks smoother, which facilitates interpreta-
tion. Consequently, CWT was used in this study; however,
it had to be limited to a finite number of scales to mini-
mize calculation time and use of memory. For the simple
case in Fig. 3, Morlet wavelets used in CWT calculations
were found to give the best results in terms of minimizing
blurring and distortions at the boundaries. However, this
result cannot necessarily be extrapolated to other cases that
have a more complex morphology than sinusoids. Accord-
ingly, for the measured mechanical signature, the wavelet
type was chosen on similarity to the raw data form and on
subjective validation of the clearest scalogram. After inves-
tigating several different wavelet families (Biorthogonal
Splines, Coiflets, Daubechies, Gaussian, Haar, Meyer,
Mexican hat, Morlet, Shannon and Symlets), the Morlet
wavelet with 1,012 scales, corresponding to pseudo-
frequencies from 0.1 to 25 Hz, was chosen. Spectrograms
over a much larger scale range were also computed;
however, they revealed that the most interesting features
were below 25 Hz. Therefore, the calculating time could be
shortened by limiting the calculation range while main-
taining good resolution.

HHT. Hilbert–Huang transform was initially developed to
analyze more realistic complicated data sets obtained from
natural phenomena that are not regular enough to be
modeled by ideal and steady waveforms used in Fourier or
wavelet transforms (Huang et al. 1998). It has a more
empirical basis and can be obtained in two principal steps
(Huang et al. 1998; Huang 2008; Huang and Milkereit
2009).

First, the empirical mode decomposition, developed by
Huang et al. in 1998, decomposes the original signal into a
finite series of local waves, called intrinsic mode functions
(IMFs). The signal is thus separated into fast and slow oscil-
lations, which are directly adapted from the raw signal. The
sum of N IMFs and the remaining residue r constitutes the
exact raw signal f in the time domain:

f t t r tj

j

N

( ) = + ( )( )
=

∑ IMF
1

(3)

where r constitutes the mean trend containing information
about components of a longer period than the signal length.
In practice, the sum of the last low-frequency IMFs and of
the residue is often taken as the trend, which can be useful
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to determine overall behavior, e.g., in stock market predic-
tions (Huang 2008). Consequently, it could also be used to
smooth jagged mechanical curves and find the overall
texture profile.

Then, instantaneous frequencies and amplitudes for each
point of the adapted IMF waves are identified by Hilbert
spectral analysis using the Hilbert transform H of each IMF
with the Cauchy principal value P (Huang et al. 1998):

H t P
s

t s
dsj

j
t

( ) = ⋅
−

⋅
( )

∫
1

0
π

IMFtot

(4)

The generated instantaneous frequencies are not exactly the
same as Fourier frequencies in their definition because they
do not require a full period to be identified; however, they
do produce reasonable approximations.

Novel algorithms were recently developed to avoid mode
mixing, which results in unwanted amplitude variations
within single IMFs (Flandrin et al. 2004; Wu and Huang
2009; Yeh et al. 2010; Torres et al. 2011; Lin 2012; Feng et al.
2014). However, other problems arise, such as the need to
choose algorithmic parameters, which causes more arbi-
trariness by the user, and the necessity for postprocessing to
obtain intrindic mode functions of good quality. To our
knowledge, HHT has not been used in any food-related
study.

Comparison of the Techniques

For a critical discussion of the results, some key similarities
and differences between the employed techniques as well as
theoretical relevant advantages and drawbacks are discussed
in the following.

Nonstationarity and Frequencies. Fourier analysis is
designed to process stationary signals (Dacremont 1995);
however, eating sounds as well as mechanical signatures of
porous materials are nonstationary. This is why the global
Fourier transform is inherently inadequate to identify time-
dependent spectral characteristics of crispy or crunchy
texture signals. However, STFT, which assumes stationarity
within each window, does not presume stationarity of the
whole signal. Therefore, global Fourier transform spreads
the magnitudes on a nonrealistic range of frequencies more
widely than STFT. These errors can be observed in the time-
independent Fourier spectrum in Fig. 3 where all three real
and additional frequencies are present. HHT is optimized to
process and interpret nonstationary data, avoiding artificial
energy attributions to non-existent frequencies related
to the use of stationary assumptions (Huang et al. 1998;
Huang and Milkereit 2009). Moreover, there are no perfectly
repeating events in mechanical signatures and in many
other natural phenomena (Luyten and van Vliet 2006).

Therefore, the use of frequencies instead of finding local
occurrences of events may fundamentally be doubted. For
this purpose, the local wavelet pseudo-frequencies and
HHT instantaneous frequencies seem to be more appropri-
ate. Nevertheless, their values are comparable with those of
STFT frequencies, as shown in Fig. 3.

Basis Functions. Another difference, which could have
important consequences for the resulting spectrogram fea-
tures, is the shape of the basis function used to transform
data. The global Fourier transform as well as the STFT
hypothesize the presence of sine waves in the analyzed
signal segment that are not necessarily present in breaking
event signals. Wavelets use different available shapes, which
could improve fit for signals with nonsinusoidal behavior.
The choice of a basis similar to the signal shape could yield
a better fit and extract more realistic patterns, even if it is
not trivial as each wavelet family has its own particularities.
Therefore, HHT is the least arbitrary with fully data-driven
components’ shapes, avoiding a predefined basis.

Windowing. One disadvantage of STFT is the need to
find a compromise between accuracy in the time and in the
frequency domain (see Fig. 3 and Appendix S1) by adjusting
the size, shape and overlap of the modulating windows
(Marchant 2003; Luyten and van Vliet 2006; Isermann
and Münchhof 2011; Franklin 2013). An improvement in
the solution of these problems is provided by wavelets’
multiresolutional properties. This means that the searched
frequencies are adapted to a set of time scales: low frequen-
cies can be identified in large time scales and high frequen-
cies in smaller ones. Thus, there is less influence of the
time discretization-related frequency range limitations, even
though a certain span of frequencies is recognized by
neighboring scales, producing informational redundancy
(Daubechies 1992; Abry et al. 2009). Wavelets can detect
self-similarity of a signal at many scales, revealing local
fractal behaviors called multifractal, as the fractal features
evolve in various scales (Abry et al. 2009). Therefore, there
is no need for pre-assuming a fractal dimension for the
whole data set as it is usually carried out for evaluating the
apparent fractal dimension (Peleg 1997). With HHT, neither
discretization parameters nor other parameters must be
chosen, which facilitates its use and makes it easier to
compare results in different studies.

Finally, STFT is the most established technique that
creates the simplest spectrogram, which makes it easier to
interpret but also causes it to lack precise information. The
potential of CWT is found in its continuous algorithm for
precise and scale-adapted time–frequency analysis. A draw-
back of CWT is that depending on the wavelet family, the
result is often distorted in the frequency domain around the
present wavelet shape and presents leakages in the time
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domain, which is demonstrated in Fig. 3 by the color
gradations of the CWT spectrogram compared with the
HHT spectogram. HHT benefits from non-arbitrary set-
tings. Even if undesired little anomalies of low magnitude
occur (Fig. 3) because of rippling undulation effects after
abrupt changes in the input signal, HHT is the most precise
method both in frequency and in time localization, as can
be demonstrated by the Hilbert spectrum (Fig. 3). More
detailed comparisons of the different methods can be found
in the literature for various applications (Huang et al. 1998,
2006; Marchant 2003; Huang and Wu 2008; Huang and
Milkereit 2009; Amar and Guennoun 2012; Oberlin et al.
2013).

RESULTS AND DISCUSSION

The presented techniques are discussed in terms of the
spectrograms of brittle food’s mechanical signatures. Rep-
resentative samples were chosen because it is not possible
to show the graphical representations of all 16 samples of
each product group. In this study, analysis of the complete
signal was chosen, instead of the de-trended signal that
was used by Harris and Peleg (1996) and Peleg (1997).
We believe that the trend of the mechanical signature is
important for the determination of the overall texture
dynamics of the food, such as the strength evolution

and the densification behavior. This information should
not be lost in final analysis results. Additionally, the choice
of the de-trending methods introduces another source of
arbitrariness.

Different Representations of One Signal

Figure 4 illustrates the different perspectives offered by dif-
ferent representations of the same signal. Some features
were present until approximately 10–50 Hz in some spec-
tral representations (not shown here for improved clarity);
however, beyond this, there were some clearly indentifiable
features. In fact, the global frequency spectrum did not
reveal many high-magnitude distributions above approxi-
mately 2 Hz (Fig. 4, left Fourier plot). However, as
explained before, the global Fourier transform cannot
extract the exact present frequencies because of its
assumption of signal stationarity. In the logarithmic visu-
alization (decimal logarithm) of the magnitude distribu-
tion (Fig. 4, right Fourier plot), one can notice that only
little variations of very low magnitude occur above 2 Hz.
In contrast to the model test case (Fig. 3), the logarithmic
representation of the magnitude distributions obtained by
all the techniques was useful in the experimental case
because the mechanical signatures contained higher ampli-
tude variations including very low force drops. With the

FIG. 4. SPECTRAL ANALYSES OF AN M1 BRAND CURLY AT 23% RELATIVE HUMIDITY (RH) WITH LINEARLY SCALED SPECTRA (LEFT) AND
SEMI-LOGARITHMIC REPRESENTATIONS (RIGHT)
CWT, continuous wavelet transform; HHT, Hilbert–Huang transform; STFT, short-time Fourier transform.
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linear visualization, the focus was on the highest magni-
tude, which represented the major breakage events. The
finer details, which can also be important, were amplified
in the logarithmic representation.

Two very distinct STFTs were shown to exemplify the
compromise between the different resolutions in time and
in frequency domains. A better time resolution was
obtained with small windows (rectangular without overlap,
top STFT spectrogram), which showed more exactly the
location of the most important breakage events (marked by
the brown arrows). This was particularly easy to observe in
the semi-logarithmic representation, although differences
between 0 and 4 Hz could not be determined. The overlap-
ping of the larger windows (Hanning with 50% overlap,
bottom STFT spectrogram) permits an optimized resolu-
tion both in time (double accuracy compared with zero
overlap) and in frequency (discretized every 0.5 Hz).
However, the STFT resolution is still limited compared with
the two other dynamic methods to be shown. The highest
increase in force and the locations of the highest frequency
changes were visualized in the four linear representations of
the spectra (Fig. 4, left), which stayed in the 0–3-Hz range.
The lowest frequency values corresponded to the overall
trend. The biggest fractures were represented by approxi-
mately <1–3 Hz, or maximal and minimal breaking dis-
tances of >350 and 120 μm, which could correspond to
the breakage of the snack’s middle-to-high-sized pores as
discussed in next paragraph. Prolongations of the high-
magnitude distributions (in dark red), as observed in the
semi-logarithmic representation (Fig. 4, right), indicate the
sharpness of the big fractures. Events of low magnitude (in
light red to yellow-green) also occurred at higher frequen-
cies than 4 Hz (marked by the orange arrows), representing
little breaks of probably many little sub-sized pores inside
the pore wall matrix (invisible in the snack’s microphoto-
graphs in Fig. 5). These vibrations may also influence
human’s perception of crispiness and crunchiness, even if
they do not release audible sounds (discussion in next para-
graph). These features were particularly amplified by the
wavelet analysis. Finally, the HHT spectrograms displayed
the finest representations with the best contrast; however,
CWT was smoother and easier to interpret for human eyes.

Influence of Processing Factors

Relation to Structure. Figure 4 shows that the mechani-
cal signatures of crispy foods contained the relevant break-
age frequency range for crispy and crunchy foods as
determined by combined analysis of structure and crushing
sounds in the study of Luyten and van Vliet (2006). They
used cutting tests at different velocities; however, their
conclusions can be used for this study: to let the human ear
distinguish sound bursts, little pauses of at least 3–5 ms are

necessary, which correspond to pore diameters of at least
120–200 μm at chewing velocities. Moreover, to amplify the
sound level above the hearing threshold, sounds need to
overlap (in particular in cutting tests) so that the maximum
pore size was determined to be approximately 270–350 μm.
A fast crack growth is required to exceed the critical velocity
of approximately 300 m/s for producing sound vibrations,
which needs a minimal thickness of material to fracture.
Luyten and van Vliet (2006) determined that beams
between 50- and 100-μm thickness satisfy this condition.
However, the maximal beam thickness should be approxi-
mately 300–400 μm to avoid a too firm structure, even if
this also depends on the mechanical properties of the
matrix. Microscopic views of the two sample classes showed
that pore sizes varied greatly between 200–500 μm and
1.5–2 mm (Fig. 5). The pore wall thicknesses were distrib-
uted between approximately 10 and 80 μm. Therefore, our
samples had a structure typical for crispy products.

FIG. 5. MICROSCOPIC VIEW OF THE CELLULAR STRUCTURE OF M1
AND M2 SAMPLES
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The beam lengths are also important (Gibson and Ashby
2001); however, if the pores are not oriented, this information
is directly contained in the pore diameters. According to
Luyten and van Vliet (2006), at our test velocity, and assum-
ing that every cell layer breaks, the frequency range for deter-
mining breaking events should thus be at least between
0.4 Hz (350-μm pore diameter + 400-μm pore wall thick-
ness) and 2 Hz (120-μm pore diameter + 50-μm pore wall
thickness). As the microscopic images of the samples
revealed, other frequencies (lower for bigger pores and higher
for smaller pores) should be present. This reasoning is also
supported by the spectrograms. As discussed by Vincent
(2004), the minimum detectable force of a fracture by peri-
odontal mechanoreceptors is approximately 0.05 N and the
chewing muscles unloading threshold is of the same order of
magnitude. The sensitivity to vibration frequencies and time
spans between loads influences perception as well, and the
integration of the information is not instantaneous. For
example, muscle reflex to load changes needs 10 ms, whereas
a conscious reaction would need 150 ms (van Vliet 2014).
However, not only conscious sensations influence our overall
perception and it is not perfectly known how this physiologi-
cal aspect influences the evaluation of crispiness and crunchi-
ness (van Vliet 2014). Thus, mechanical measurements,

which also include delays and accuracy limits in the same
order, have the potential to reflect human mechanoreception.

Relation to Brand and Structure. In the next figures,
the frequency range for observation was set to 0–25 Hz to
have a broader overview in higher frequencies, which are
suspected to characterize the samples and to have a pos-
sible effect on the texture determination. Two very differ-
ent signatures of the same sample group (Fig. 6) were
chosen to determine whether the methods presented in
this study permit to identify similarities, despite the high
variability among samples. In fact, characteristics are diffi-
cult to recognize in such complex figures. The focus is
required to be on several dimensions and scales at the
same time to build a global yet precise picture. Therefore,
the observation of several examples is required to learn
how to determine common and different morphological
features of curlies.

After looking at the whole data set, we confirm that there
were typical characteristics both in the frequency distribu-
tion and in relation to time. In Fig. 6, the raw data look very
different at first glance, and the global Fourier spectrum
does not reveal remarkable visible features. In reality, the
curlies were of course breaking a bit differently because of

FIG. 6. SPECTRAL ANALYSES OF CURLIES FROM THE SAME BRAND (M1) AND RELATIVE HUMIDITY (23% RH)
CWT, continuous wavelet transform; HHT, Hilbert–Huang transform; STFT, short-time Fourier transform.
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their inhomogeneous pore distribution. However, they
shared approximately the same behavior in the three stages
of deformation, as described for brittle compression by
Gibson and Ashby (2001). First big brittle fractures
occurred, smaller but numerous fractures then formed a
plateau (shorter step in the right sample) and a short densi-
fication stage ended the compression process.

Pure measuring noise can be observed on the right side of
the plots in Fig. 6, in which a part of the unloading step
(forces around 0 N) is represented after the compression.
This noise was of very low magnitude (light blue) and was
not constant; therefore, it was difficult to filter it. It was of
approximately the same magnitude as the magnitudes of
relatively high frequencies in other places in the plots. Thus,
in this example, dark blue to light blue colors did not have
to be considered.

Sensory differences were felt by the experimenter between
the curlies from different brands at the same water activity
(Fig. 7); however, no trained sensory panel was available to
assess the significance of these differences. They may have
had the same amount of breaking events; however, the M1
sample clearly showed higher maximal magnitudes and a
broader distribution of magnitudes, in particular, in the low-
frequency range (see the HHT spectrogram), which can
already be seen in the raw data. This reveals a more inhomo-

geneous structure in sample M1 than M2. We hypothesize
that a spectrum with high magnitudes in a relatively broad
frequency range distributed over a longer time results in a
longer crispy sensation and the product will be ranked as
crispier. However, which sample is really the crispiest should
be determined by sensory analysis to know if more inhomo-
geneous curlies are felt to be crispier or less crispy than
homogeneous ones and if higher breaking forces (M1) have a
positive or negative combined effect on crispiness.

Influence of Humidity

The sorption isotherms of both curly brands (Fig. 8)
showed a sigmoid trend (R2 > 0.98) similar to the one from
Katz and Labuza (1981). The water content of the fresh
products was near to the one of the products equilibrated at
11% RH. Less than 1 to 2 additional mass-% of water
content is susceptible to make them exceed the sensory
acceptability limit corresponding to other corn starch
extrudates, as determined by Katz and Labuza (1981). This
shows that it can be difficult to preserve dry products
because humidification can occur very quickly at ambient
humidity around 50% RH. Thus, there is a need for the
exact determination of the critical value and of the food
quality in aging studies.

FIG. 7. SPECTRAL ANALYSES OF CURLIES FROM DIFFERENT BRANDS (LEFT M1, RIGHT M2) BUT SAME RELATIVE HUMIDITY (11% RH)
CWT, continuous wavelet transform; HHT, Hilbert–Huang transform; STFT, short-time Fourier transform.
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The evolution of the mechanical signatures through the
whole range of humidity environments and their CWT
spectrogram, which were the easiest to incorporate, are
shown in Fig. 9 (complete spectral analysis span in Appen-
dix S2). The samples at 11 and 22% RH seemed to differ in
their overall mechanical behavior because the 11% RH
curve was globally lower and had fewer big peaks. However,
as discussed in Fig. 6, the intra-group variability can be high
enough to prevent possible recognition of similar products
only by judging their mechanical signature. Indeed, some
samples at 11% RH had slightly higher overall force values
than the one shown in Fig. 9.

However, the breaking behavior at 23% RH had a more
heterogeneous breaking frequency distribution and magni-
tude distribution over the whole deformation than at 11%
RH. The low-magnitude peaks were less concentrated; the
high-magnitude peaks were larger in the low-frequency
range and their number increased up to 33% RH. Because
the samples had approximately the same structure type,
independent of the humidification level, only another
mechanical behavior of the pore wall material can explain
these differences in the signatures. This may be caused by an
increase in plastic deformable little pores and in their cohe-
siveness. The stress thus concentrates before colliding on

FIG. 8. SORPTION ISOTHERMS AT 20–22C OF THE TWO CURLY
BRANDS COMPARED WITH LITERATURE VALUES AND SENSORY
ACCEPTABILITY LIMIT
95% Confidence intervals for four replicates are shown for M1 and
M2.

FIG. 9. EVOLUTION OF THE MECHANICAL MEASURES AND OF CONTINUOUS WAVELET TRANSFORM SPECTROGRAMS OF M2 SAMPLES WITH
HUMIDITY LEVELS OF 11, 23, 33, 44, 53 AND 76% RH (FROM THE TOP TO THE BOTTOM)
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bigger pores, which then break. It is also very probable that
the sharp force decreases become more pronounced by
overall structural collapse events than by single pore wall
brittle fractures, as explained by Pittia and Sacchetti (2008).
So at low humidity levels, an increasing humidification
causes anti-plasticization toughening effects (Harris and
Peleg 1996; Suwonsichon and Peleg 1998; Roudaut 1999;
Pamies et al. 2000; Pittia and Sacchetti 2008; van Vliet and
Primo-Martín 2011). The consequence is that more energy
will be dissipated during compression because of relaxation
processes, as shown by the increasing area under the force
curve. The amount of high-magnitude values distributed
against the lowest frequencies (which need a zoom to be
seen with the eyes) in the spectrograms represents tougher
materials. Therefore, more force is required to deform the
sample: the product becomes sensory “harder” and the stiff-
ness in the sense of the force to obtain a certain deforma-
tion increases (Harris and Peleg 1996; Suwonsichon and
Peleg 1998). The information about stiffness is present, even
if difficult to see, in the lowest frequencies of the CWT, and
also in the residue of the HHT. At the same time, the brittle-
ness is lowered (breakage at higher deformation levels). It is
only above a critical ductile transition that food polymers
are more and more plasticized and that the material
becomes soft (Rohde et al. 1993; Wollny and Peleg 1994;
Fontanet et al. 1997; Roudaut et al. 1998; Suwonsichon and
Peleg 1998; Pittia and Sacchetti 2008; van Vliet and
Primo-Martín 2011). Accordingly, the toughness decreased
from 53 to 76% RH, and there were almost no irregularities
up to the maximal strain, except the last densification peak.
The mechanical signatures became smoother from 11 to
76% RH with a decreased amount of high as well as low
magnitude events visible in the raw data. The overall
decrease in brittleness could also be observed in CWT spec-
trograms with the decrease of red to yellow-green peaks,
particularly in the higher frequencies.

The three compression stages described by Gibson and
Ashby (2001) were visible in both representations with a
flatter central plateau, which seemed to shift, from 11 to
53% RH from the left to the right because of brittleness
loss. Thus, according to Roudaut et al. (2003) and
Suwonsichon and Peleg (1998), sensory crispiness loss
should coincide with a decrease in brittleness and an
increase in the hardness or toughening of the product. The
difference between 11 and 23% RH was still subtle after
analysis with dynamic analysis methods. However, typical
characteristics belonging to the different humidity levels
such as brittleness behavior can be better identified than
from the raw mechanical signature, which had a highly vari-
able appearance that depended on the sample tested. Moist-
ening did not simply increase or decrease the number of
peaks or lead to a steady softening; its effects were a com-
bined change in several texture parameters. Some were

revealed by particular values of the spectral analysis and
some were time-dependent observations, such as the shift of
high-magnitude peaks and the overall densification.

General Discussion

To use the methods presented in this study, scientific back-
ground and some familiarity with the methods are required
to adjust the algorithm settings (Duizer 2013). Furthermore,
the greatest difficulty is to automate the feature extraction to
classify the products quickly using computers instead of
humans. This problem, which is not yet solved, has persisted
for decades (Dacremont 1995). Further studies are required
to overcome the difficulties in visual interpretation and could
be based on computational pattern recognition of the spec-
trograms. Because the most important features cannot be
determined easily, only unsupervised analytic classification
techniques to determine the decisive hidden features come
into consideration. We hypothesize that the quality of the
grouping increases with the chosen resolution; therefore,
HHT could be the best candidate for preprocessing. Because
the high-magnitude peaks in mechanical as well as in acous-
tic signals could explain most of the sensory-felt crispiness or
crunchiness (Castro-Prada et al. 2012; van Vliet 2014), one
could test whether they are the main factors for further classi-
fication purposes or whether the lower magnitude peaks also
contribute to the textural effect.

CONCLUSION

The three methods presented, STFT, CWT and HHT, are
capable of converting irreproducible and irregular food
mechanical signatures into analytic expressions and images
characterized by specific time–frequency patterns. They
permit a display of the whole richness and complexity of
crispy foods’ mechanical signatures in the form of a finger-
print, in contrast to earlier data processing techniques used in
texture studies. Simpler methods deliver a few single values
and are easier to correlate with sensory analysis but often
show high variability. The presented methods also revealed
some obvious characteristics, which are not pointwise, but
can be understood and synthesized by the human brain from
the evolution and overall trend. For this, STFT is the least
precise but the simplest to interpret, while CWT is the
smoothest and showed more information. HHT presented
sharper spectra, and it has the advantage of being fully self-
adaptive. That is, it is not necessary to specify any settings to
perform the analysis. Mechanical signatures analyzed by the
investigated methods were able to reveal breaking frequencies
in the range of those determined by sound studies to be
determinant of crispy food products. CWT and HHT, in par-
ticular, showed their potential for analyzing jagged texture
signatures to be compared with the discrimination efficiency
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of fractal and Fourier jaggedness parameters; however, these
findings have to be verified with other food examples.

The final aim for food texture scientists would be
attained if confidence intervals for parameters significantly
correlating with sensory evaluations of crispiness and
crunchiness could be drawn. Nevertheless, we believe that
evolutionary spectra are an important ingredient toward
understanding and interpreting individual patterns that
present a physical dynamic meaning. The methods pre-
sented in this study are expected to work reasonably well for
analysis of crushing mechanics, air-, bone-, and soft tissue-
conducted sounds, as well as vibrations to determine the
different characteristics that could be meaningful.
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APPENDIX S1. DETAILLED EXPLANATION OF THE MATHEMATICAL ASPECTS 

AND ALGORITHMS OF THE EMPLOYED SIGNAL ANALYSIS METHODS 

 
STFT. The short-time Fourier transform (STFT) 

provides a magnitude-frequency-time spectrogram of a 

time-series signal: 
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The absolute values of the STFT coefficients ℱ𝑚,𝑛
𝑤𝑖𝑛  give 

the amplitude distribution of the signal sinusoid 

components 𝑒−𝑖𝑚𝜔0𝑡  found in each time window. The 

discrete windows (function 𝑔), acting like a filter, have a 

fixed duration of width 𝑙. These regularly spaced time 

frames are translated by the shifting parameter 𝑛 on the 

whole time-series. Finally, STFT decomposes the signal 

into 𝑚 regularly spaced frequency steps 𝜔0 in 𝑛 regularly 

spaced windows, which can overlap using the sliding step 

𝑡0 (Sturmel and Daudet 2011). 

 

The windows begin at 𝑛 ∙ 𝑡0 (convention used for the 

graphical explanation in FIG. 10), with a sliding step of 

1 ≤ 𝑡0 ≤ 𝑙 for consecutive windows, to permit 

overlapping of the windows by 𝑙 − 𝑡0 without missing 

any sampling points (Sturmel and Daudet 2011).  

 

A quick and efficient discrete computation of STFT can 

be conducted with the fast Fourier transform (FFT) 

algorithm (Isermann and Münchhof 2011; Franklin 

2013). The windows’ width  is chosen to be a power of 

two because FFT is optimized to work with such input 

vectors (Franklin 2013).  

 

 
FIG. 10. SCHEMATIC REPRESENTATION OF THE STFT 

SIGNAL DECOMPOSITION METHOD  

Transient signal as upper curve, and the components Sm,n in each 

time window n, without overlapping (t0 = l).  

 

The sum of the sinusoid components 𝑆𝑚,𝑛(𝜔0, 𝑡) =

𝑒−𝑖𝑚𝜔0𝑡 of each window, weighed with their respective 

amplitude factors 𝐴𝑚,𝑛, reconstructs the time signal 𝑓𝑛(𝑡) 

in this window (FIG. 10): 

𝑓𝑛(𝑡) = ∑ 𝐴𝑚,𝑛 ∙ 𝑆𝑗,𝑛(𝜔0, 𝑡)

𝑚

𝑗=1

 ( 2 ) 

The energy content in the raw signal segments and their 

Fourier transform is the same, as can be verified by the 

energy conservation theorem from Parseval (Franklin 

2013). Thus, the discrete ℱ𝑚,𝑛
𝑤𝑖𝑛 characterize 𝑓 and can 

reconstruct it through their inverse transform. 

 

Three very important tuning parameters must be selected 

for the windowing procedure: the time window width, its 

overlapping domain, and its shape. Large windows 

generate narrowband spectrograms, which permit a 

higher frequency resolution but a coarser time resolution, 

and short windows generate wideband spectrograms, 

which have contrary resolution rules (Isermann and 

Münchhof 2011). A change in frequency occurring inside 

one window cannot be localized within the time window. 

Consequently, in the two STFT examples of FIG. 3, one 

could not determine the exact location of an abrupt peak. 

Depending on the sampling frequency (on the amount of 

points in each window), the amount of frequency 

segments (the frequency precision) is also limited. Thus, 

too short windows do not permit discrimination between 

close frequency levels. The advantage of allowing the 

windows to overlap a certain edge domain of their 

 
FIG. 11. COMMONLY USED MOTHER WAVELET 
SHAPES (continuous curves) FOR CHILD FUNCTIONS OF 

THE WAVELET TRANSFORM AND THEIR CENTER 

FREQUENCY-BASED APPROXIMATION CURVES (dashed 
curves) 
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FIG. 12. SCHEMATIC REPRESENTATION OF THE 

WAVELET SIGNAL DECOMPOSITION METHOD  

Transient signal as upper curve, and the components ψm,n, 

obtained from DWT for simplification. 
 

respective neighbors is that the time resolution can be 

improved without losing accuracy in the frequency 

domain (Isermann and Münchhof 2011). Finally, many 

window shapes were developed, such as the simple 

rectangular window or the very popular Gaussian, 

Hamming, and Hanning windows, which influence the 

values of the Fourier transform in each window as it 

results from the convolution of the frequency spectra of 

the original signal and of the window function (Isermann 

and Münchhof 2011). Multiplying the time signal with an 

appropriate windowing function minimizes leakages 

resulting from sudden discontinuities in the finite time 

intervals (Isermann and Münchhof 2011). 

 

CWT. The continuous wavelet transform (CWT) is an 

alternative to the STFT for dynamic extraction of 

magnitude-frequency-time information contained in a 

signal. A large varity of wavelet shapes have been 

developed (Marchant 2003; Isermann and Münchhof 

2011), such as the simple Haar wavelet, a family of 

Daubechies wavelets, the Morlet wavelet, or the 

“Mexican hat wavelet” (FIG. 11). 

 

The mother wavelet 𝜓 constitutes a family of basis 

functions: 

𝜓𝑎,𝑏(𝑡) =  1
√|𝑎|⁄ ∙ 𝜓 (

𝑡−𝑏

𝑎
)  ( 3 ) 

Pseudo-frequencies 𝐹𝑎 can be calculated from the scale 

level, the sampling interval ∆𝑡, and the center frequency 

𝐹𝑐 depending on the wavelet shape (Abry 1997, cited by 

The MathWorks 2014): 

𝐹𝑎 =  
𝐹𝑐

𝑎 ∙ ∆𝑡
 ( 4 ) 

The center frequency 𝐹𝑐 is the leading dominant 

frequency of the wavelet associated to a purely periodic 

sinusoid oscillation (FIG. 11), thereby extracted from the 

Fourier transform of the mother wavelet. Therefore, the 

pseudo-frequencies in the wavelet-generated spectrogram 

are not exactly the inverse of the scale (represented in 

scalograms) but are approximations depending on the 

chosen wavelet shape. 

 

The discrete wavelet transform (DWT) is the discrete 

form of the wavelet spectral analysis. It performs the 

wavelet transformation in fixed time frames of the set of 

scales, becoming discrete at the level m (with 𝑎 = 𝑎0
𝑚). 

The translation parameter is proportional to the wavelet 

width to avoid overlapping: narrow (high frequency) 

wavelets are translated by n steps covering the whole 

time span; wider (low frequency) wavelets are translated 

by larger steps. Therefore, 𝑏 = 𝑛 ∙ 𝑏0 ∙ 𝑎0
𝑚. The 

coefficients 𝑇𝑚,𝑛
𝑤𝑎𝑣 can be calculated as follows 

(Daubechies 1992): 

𝑇𝑚,𝑛
𝑤𝑎𝑣(𝑓)(𝑎0, 𝑏0) = 

( 5 ) 1

√𝑎0
𝑚

∙ ∫ 𝜓 (
𝑡

𝑎0
𝑚 − 𝑛 ∙ 𝑏0) ∙ 𝑓(𝑡) ∙ 𝑑𝑡

𝑡𝑡𝑜𝑡

0

 

 

Analogous to the discrete inverse STFT transform, the 

raw signal can be reconstructed from the basis functions 

𝜓 𝑛,𝑚(𝑎0, 𝑏0) weighed by their respective amplitudes 

𝑇𝑖,𝑗
𝑤𝑎𝑣, called wavelet coefficients (FIG. 12): 

𝑓(𝑡) = ∑ ∑ 𝑇𝑖,𝑗
𝑤𝑎𝑣(𝑎0, 𝑏0) ∙ 𝜓𝑖,𝑗(𝑎0, 𝑏0)

𝑛

𝑗=1

𝑚

𝑖=1

 ( 6 ) 

 

HHT. The Hilbert-Huang transform (HHT) is a data-

driven alternative technique for dynamic spectral 

analysis. A sifting process iterates the extraction of an 

intrinsic mode function until it reaches acceptable 

quality. The most important steps of the procedure are 

illustrated in the empirical mode decomposition flow 

chart (FIG. 13): the maximum and minimum values are 

identified from the signal followed by cubic spline 

interpolations to constitute the upper and lower 

 
FIG. 13. FLOW CHART FOR THE EMPIRICAL MODE 
DECOMPOSITION ALGORITHM 
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envelopes. The mean envelope is calculated from the 

upper and lower envelopes and subtracted from the 

signal. The result is an IMF if the number of its extrema 

is equal to the number of zero crossings or differs at most 

by one and if the mean value of the envelopes defined by 

local maxima and local minima is zero at any point 

(Huang et al. 1998). If the result does not satisfy these 

conditions, it enters into a new sifting cycle. Each IMF 

(FIG. 14) thus obtained admits well-behaved Hilbert 

transforms. Then, the condition for stopping EMD is that 

no more IMFs can be extracted from the residue 𝑟 

without IMF becoming monotonic. According to Wu and 

Huang (2009), the number of IMFs is fewer than the next 

power of two of the total number of data points.  

 

 
FIG. 14. SCHEMATIC REPRESENTATION OF THE HHT 
SIGNAL DECOMPOSITION METHOD  

Transient signal as upper curve, the IMF-modes, and the residue 

𝑟 at time 𝑡. 

 

Instantaneous frequencies (IFs) are identified by Hilbert 

spectral analysis (HSA) using the Hilbert transform 𝐻. 

𝐼𝐹𝑗  of each 𝐼𝑀𝐹𝑗  is calculated from its phase 𝜃 (in 

radians) in Eq. 11.  

𝐼𝐹𝑗(𝑡) =
1

2𝜋
∙

𝑑𝜃𝑗(𝑡)

𝑑𝑡
 ( 7 ) 

Because 𝜃 is the argument of the complex expression 

(Eq. 12) of each IMF component, with 𝐼𝑀𝐹 as the real 

part and 𝐻 as the imaginary part, it can be evaluated by 

the arctangent of the ratio 𝐻 to 𝐼𝑀𝐹.  

𝐴𝑗(𝑡) ∙ 𝑒𝑖∙𝜃𝑗(𝑡) = 𝐼𝑀𝐹𝑗(𝑡) + 𝑖 ∙ 𝐻𝑗(𝑡) ( 8 ) 

The instantaneous amplitude 𝐴, the absolute value of the 

magnitude of each spectral component of the Hilbert 

spectrum, is the modulus of the previous complex 

expression (Eq. 12). It can thus be calculated from the 

square root of the sum of the squared components 𝐻 and 

𝐼𝑀𝐹. 

 

Finally, a complex analytic expression 𝑓𝑐𝑜𝑚𝑝𝑙  of the input 

signal 𝑓 is obtained so that 𝑓 can be recovered from the 

Hilbert spectrum by taking the real part of 𝑓𝑐𝑜𝑚𝑝𝑙: 

𝑓𝑐𝑜𝑚𝑝𝑙(𝑡) = ∑ 𝐴𝑗(𝑡) ∙
𝑁

𝑗=1
𝑒𝑖2𝜋∙∫ 𝐼𝐹𝑗(𝑡)∙𝑑𝑡

𝑡𝑡𝑜𝑡
0  ( 9 ) 
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APPENDIX S2. SPECTRAL ANALYSES OF M2 CURLIES AT ALL TESTED 

RELATIVE HUMIDITIES (11, 23, 33, 44, 53, and 76% RH) 

 
 

 
From top to bottom: raw mechanical signal in the time domain; one-sided Fourier spectrum; two short-time Fourier spectra 

(STFT) spectrograms with small rectangular windows of 27 points or 0.256 s without overlap and large Hanning windows of 

210 points or 2.048 s with 50% overlap; continuous wavelet transform (CWT) spectrogram with Morlet wavelet with 1012 

scales, corresponding to pseudo-frequencies from 0.1 to 25 Hz; Hilbert-Huang transform (HHT) spectrogram with empirical 

mode decomposition algorithm.  
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Appendix B: Paper on Multimodal 

Classification of Crispiness  

 

 

Reprinted with kind permission from Elsevier. 
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a b s t r a c t

The use of instrumental methods to support sensory panels in the routine quality control of crispiness
remains challenging. Texture analysis is often insufficient to accurately classify this complex sensory
attribute. Herein, 70 different food properties were combined via machine learning algorithms to mimic
multisensory integration. Force and sound were measured during crushing of puffed snacks equilibrated
at different humidity levels. Sensory panels then ranked crispiness-related freshness and preference
based on the recorded sounds. Selected feature combinations were used to train machine learning
models to recognize the freshness levels at different humidity levels. The classification accuracy was
improved compared with traditional texture analysis techniques; an accuracy of up to 92% could be
achieved with quadratic support vector machine or artificial neural network algorithms. Moreover, third-
octave frequency bands, characterizing breakage frequencies and sound pitches, were determined to be
main descriptors to be taken into account during the research and development of puffed snacks.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In general, the crispiness of food is evaluated via sensory panels
by biting and chewing. It is known that the perception of crispiness
is influenced by a food's texture and the sounds produced during
oral processing. Nevertheless, sensory evaluations are expensive
and time-intensive, leading to a multitude of crispiness studies
trying to correlate the results of sensory panels to the results from
rapid and reproducible instrumental methods (Bourne, 2002;
Szczesniak, 1963). However, traditional instrumental methods do
not take every sensory modality contribution into account and thus
can fail to make the correct predictions (Bourne, 2002; Saeleaw and
Schleining, 2011; Vickers, 1988). Moreover, elaborate methods
generate data (such as crushing sounds) that are difficult to analyze
and to interpret (Chen and Engelen, 2012; Srisawas and Jindal,
2003).

Crispy products should be appropriately stiff and brittle during
oral processing and release pleasant rhythmic sounds that have a
particular pitch and loudness (Drake, 1963; Luyten and Van Vliet,
2006; Saeleaw and Schleining, 2011; Van Vliet and Primo-Martín,

2011; Vickers, 1984b). Nevertheless, it is difficult to preserve
crispiness of dry, porous food at room temperature and under hu-
midity, for example, after opening a packet of chips, which affects
freshness and crispiness and thus consumer acceptance (Katz and
Labuza, 1981). In particular, it is difficult to measure the signifi-
cant differences in sensory crispiness and overall hedonic evalua-
tion of puffed snacks for a relative humidity (RH) between 10% and
20% using a single instrumental method (Katz and Labuza, 1981;
Sanahuja and Briesen, 2015). This can be explained by the
complexity of the multisensory integration process by the brain,
which combines multiple sensory impulses to produce the overall
sensory perception (Auvray and Spence, 2008; Crisinel et al., 2012;
Luckett et al., 2016; Zampini and Spence, 2004). To improve the
prediction of sensory results by instrumental results, it was thus
proposed that psychophysics of multisensory integration should be
mimicked via a multimodal instrumental analysis (Banerjee et al.,
2016). It was expected that for the determination of crispiness-
related freshness levels, important information is contained in
both the mechanical and acoustical measurement data (Mohamed
et al., 1982; Taniwaki and Kohyama, 2012; Vickers, 1987). Their
combination should therefore result in a more realistic and precise
classification of the snacks with regard to their crispiness-related
freshness (Varela et al., 2006; Vickers, 1987). Moreover, as stated
in previous studies (Liu and Tan, 1999; Luyten et al., 2004; Sanahuja
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and Briesen, 2015), the crushing dynamics and irregularities in the
breakage behavior of crispy food should be taken into account for
instrumental analyses.

The goal of this study was to create a simple, rapid, and reliable
quality control technique to determine of the crispiness-related
freshness level of puffed snacks. Food samples of different fresh-
ness levels were prepared via controlled humidification. Mastica-
tionwas simulated with a simplified compression test (Fig. 1): both
the resulting crushing forces and released sounds were detected.
These data were then used as a replacement for oral tactile and
auditory mechanoreception and combined using a computer. Ma-
chine learning algorithms were implemented to obtain a model
able of automatically classifying the sample freshness for various
humidity levels. The distinction of those humidity levels by a
trained sensory panel, based only on the crushing sounds, validated
the use of the recorded sounds in the model. The use of the
recorded mechanics could not be validated because panelists were
not allowed to eat the laboratory samples; however, both me-
chanical and acoustical features have already been used in several
studies to evaluate the texture of crispy foods. Moreover, the
model's performance could only be compared with partial sensory
integration results (i.e., without mechanics) even though it was
supposed to mimic a complete sensory integration. To further un-
derstand the impact of sound on preference, consumers were also
asked to evaluate the crispy sounds. Fig. 2 illustrates the classifi-
cation strategy used in the present study. Similar processes to the
ones shown in Fig. 2 are reported to occur during sensory inte-
gration by the brain (Banerjee et al., 2016; Domingos, 2012; Van
Vliet and Primo-Martín, 2011).

2. Theory: automated classification using machine learning

Automated classification, or pattern recognition, is a machine
learning approach in which a measured sample is classified based
on a pattern appearing from the sample characteristics. In the su-
pervised learning approach, predefined groups are used to train the
classification model to recognize patterns (Banerjee et al., 2016).
Modern data science techniques allow large volumes of data to be
processed (Beck et al., 2016). Nevertheless, raw mechanical and
acoustical data is usually too complex to be used directly. Thus,
preprocessing was used to extract the sample's characteristic fea-
tures such as its texture-related parameters.

2.1. Feature extraction

Traditional texture parameters that can be used to characterize
crispiness can be extracted from time-domain mechanical data
(Fig. 2 step 1). The use of single-event parameters has been criti-
cized, because they are extracted from irregular force curves and
can therefore vary significantly (Sanahuja and Briesen, 2015); they
are, however, useful for characterizing some texture attributes.
Hardness (also referred to or firmness) is a measure of a material's
strength; it is the maximum force measured during mechanical
testing. The first significant force peak in the data is referred to as
the fracturability, while brittleness is defined as the force drop after
the first fracture (Saeleaw and Schleining, 2011). In food texture
studies, two types of stiffness parameters are defined (one at low,
and the other at high strain values), both of which are related to the
elastic modulus of the material (Vickers and Bourne, 1976b): the
low-strain parameter is defined as the slope of the force-
deformation curve for a specific strain value (i.e., 0.1%) in the
linear elastic domain (Vickers, 1987); the high-strain parameter is
calculated at the maximal force peak (Saeleaw and Schleining,
2011). Holistic parameters describe the overall behavior of the
physical data (such as the linear distance of the force-deformation
curve) during the test (Sanahuja and Briesen, 2015). The work done
during mechanical testing, accounting for the toughness of the
material, corresponds to the area under the force-deformation
curve, which can be calculated via numeric integration (Saeleaw
and Schleining, 2011). The mean force reflects the overall trend in
the force data, while its standard deviation is an indication of the
irregularity of the curve. The mean frequency of breakage events
can be determined by dividing the number of force peaks by the
duration of the signal (Varela et al., 2006).

In acoustical data, the magnitude of the sound (also referred to
as sound pressure level) is responsible for how loud a sound is
(Salvador et al., 2009). The maximum of the sound magnitude and
the total sound energy, calculated via numeric integration of the
voltage-time signal, can estimate the sound loudness, analogously
to mechanical hardness and work, respectively (Drake, 1963). The
mean acoustical frequency and standard deviation can also be
calculated.

Frequency- and time-frequency domain representations of the
data enable to characterize holistic spectral patterns (Sanahuja and
Briesen, 2015). The mechanical frequency is related to the breakage
rate, to the microstructure, and pore wall material properties
(Sanahuja and Briesen, 2015) in porous materials. Acoustical

Fig. 1. Illustration of human organs versus machine texture evaluation components. Mastication with teeth can be mimicked using compression probes. The detection of me-
chanical and acoustical signals with mechanoreceptors in the mouth and ears can be performed using force transducers and microphone sensors. The final integration of the
information by the brain or a computer transforms the raw data into a quality parameter level.
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frequency is defined by the number of sound pressure waves per
second, which is related to the sound pitch (Duizer, 2001). The
relative magnitude (energy or power spectrum density, PSD) of
each frequency can be calculated by Fourier analysis and repre-
sented by a spectral distribution curve. Spectrograms are used to
follow the evolution of the frequency band magnitudes over time
(Liu and Tan, 1999; Sanahuja and Briesen, 2015). Sanahuja and
Briesen (2015) evaluated state-of-the-art dynamic spectral anal-
ysis methods to precisely characterize jagged mechanical signa-
tures in the time domain: short-time Fourier (STFT), continuous
wavelet (CWT), and Hilbert-Huang (HHT) transforms. However, the
spectrograms they obtained were difficult to analyze statistically
due to their complexity.

2.2. Selection and compression

Introducing too many features into the classification algorithms
can make it impossible to converge on a solution, slow down
computing and lead to estimation errors. Classification efficiency
generally improveswhen non-significant or redundant information
is avoided (Banerjee et al., 2016). Multivariate statistics can be used
to select the most relevant features for the evaluation of crispy food
freshness (Fig. 2 step 2); however, this not straightforward (Varela
et al., 2006). Relevant features can be selected by using the analysis
of variance (ANOVA) method and by determining their dependence
on the variable (such as humidity). Principal component analysis
(PCA) can reduce the dimensionality of the problem by combining
features linearly into principal components. Principal components
allow to represent data in a few dimensions. A selection of the
components that account for most of the variance in the data can
also replace large sets of initial features as inputs for classification
algorithms. PCA can also draw potential linear correlations be-
tween measured physicochemical food properties and sensory at-
tributes (Banerjee et al., 2016; Salvador et al., 2009; Varela et al.,
2006). Moreover, the huge number of spectral characteristics (fre-
quency peaks) can be compressed into frequency bands with a
constant bandwidth (Liu et al., 2015; Srisawas and Jindal, 2003) or
into octave bands, for which the frequency bandwidth is doubled at
each consecutive octave (Drake, 1963; Taniwaki et al., 2010;
Zampini and Spence, 2004). Following classical psychoacoustical
principles, the human perception of stimuli intensity would rather
depend on its logarithmic than on its linear evolution (DIN, 1997),
which promoted the use of sound amplitude given in decibels and
of pitch given in octaves.

2.3. Machine learning

In the present study, features were selected statistically with a
physical background based on knowledge about the crispiness
characteristics of the sample food. The selected features were then
used to classify freshness via algorithms inspired by neural struc-
tures. For that, data were first separated randomly into training,
validation, and test sets. Then, the machine learning (or artificial
intelligence) model was iteratively trained (Fig. 2 step 3) to
recognize patterns in the features of the training sets and their
corresponding classification groups via repeated exposure
(Domingos, 2012), which is similar to how humans learn. Finally,
the model was optimized via the validation set. Quadratic support
vector machines (SVM) and artificial neural networks (ANN) are
popular state-of-the-art algorithms to perform learning tasks
(Byvatov et al., 2003). The algorithms have the advantage of being
able to provide models that are more similar to the way sensory
integration takes place in humans (i.e., compared with algorithms
relying on linear relationships). The classification accuracy was
then evaluated using the test set.

2.4. Hypotheses

The following questions and hypotheses were evaluated: Can
humans determine the freshness of puffed snacks based only on the
sounds recorded during the crushing by a machine? It was ex-
pected that fresh samples and samples equilibrated at an RH of 11%
would not differ significantly; but that both samples would, how-
ever, differ significantly from those equilibrated at 23% RH, as
crispiness and liking decrease with increasing humidity due to the
absorption of water from the environment (Katz and Labuza, 1981).
Further, it was studied whether multimodal combinations of the
temporal and spectral characteristics of instrumental measure-
ments could be used to improve the classification accuracy of
crispiness in the low-humidity range compared with using tradi-
tional texture or water content analysis methods. The study finally
aims at determining whether the statistical preselection of relevant
features is able to improve the classification accuracy.

3. Materials and methods

3.1. Experimental work

More than 1200 mechanical and corresponding acoustical data
(Table 1) of a typically crispy snack were produced as a basis for
machine learning. Several freshness levels that correlate with

Fig. 2. Strategy of the present study for multimodal classification of texture: workflow of the steps and tested methods for raw data input that output classification levels (STFT:
short-time Fourier transform; CWT: continuous wavelet transform; HHT: Hilbert-Huang transform; ANOVA: analysis of variance; PCA: principal components analysis; SVM: support
vector machines; and ANN: artificial neural networks).
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changed perception in crispiness (Katz and Labuza, 1981; Zampini
and Spence, 2004) were simulated via humidifying corn starch
puffed snacks at different RH levels.

3.1.1. Sample preparation
Six bags of the same “Erdnuss Locken” batch (peanut-coated

corn starch puffed snacks from The Lorenz Bahlsen Snack-World,
Neu-Isenburg, Germany) were used to minimize variability.
10� 10mm cylinders (Fig. 3) were cut from the straightest puffed
snacks and equilibrated in exsiccators at six different RH levels
(Table 1), following the procedure of Sanahuja and Briesen (2015).
Samples were humidified during four days to ensure a homoge-
neous water distribution but no time-induced staling. Fresh sam-
ples taken from recently opened bags and those equilibrated at 11%,
23%, 33%, 44% and 53% RH showed similar sorption isotherms
(Appendix A, Fig. A1) at room temperature 22.2± 0.9 �C to those
found in a previous study (Sanahuja and Briesen, 2015): expectedly,
water content increased with relative humidity.

3.1.2. Mechanical measurements
Mechanical analysis issues have already been extensively dis-

cussed in Sanahuja and Briesen (2015). Data points were gathered
using a sufficiently precise “50-kg load cell” and acquiredwith a TA.
XT texture analyzer from Stable Micro Systems (Godalming, UK)

and its Exponent software. Samples were compressed in the length
direction up to 75% strain between 20-mm-diameter plates, which
covered the crushed puffed snacks and fitted into the sound
isolation box (Fig. 3). This relatively high strain value was chosen so
that a large proportion of the sample structure would be destroyed
and to capture most of the potential crushing mechanics and
acoustics in a single compression step. While a texture profile
analysis consisting of several steps maymimic chewing better, little
additional information would be gained from the additional com-
pressions, as the chosen food itemwas very brittle food. The pretest
and compression test velocities were equal to avoid the motor
retro-control delay that would occur just after the sample height
sensing at a trigger force of 0.1 N (instead of default 0.05 N to ensure
that machine vibrations do not initiate the test, as this could not be
controlled for visually owing to the isolation box walls). A low ve-
locity of 0.33mm/s was used to allow the largest number of data
points to be recorded for precise spectral analysis at the maximum
sampling rate of 500 Hz. A high velocity of 10mm/s was also used,
as this is similar to human chewing (Luyten et al., 2004), permitting
more realistic deformation and breakage processes. Six repeated
humidification experiments were conducted with about 20 puffed
snacks each at each RH level and at both compression test veloc-
ities, resulting in about 100 samples per sample type (Table 1).

3.1.3. Acoustical measurements
Crushing sounds were recorded duringmechanical testing using

an R-44 field recorder (Roland, Los Angeles, US) using NT5 micro-
phones (Rode, Silverwater, Australia) on SSM-4 shock mounts
(Thomann, Burgebrach, Germany). A cylindrical Plexiglas and
soundproofing KR-20 mat (Tapetec, Feldkirchen, Germany) box
isolated the recording from most background (external and ma-
chine) noises (Fig. 3). The microphone was positioned through a
hole according to Chen et al. (2005) and Salvador et al. (2009) at 45�

and 25mm distance from the sample's center. To reproduce the
acoustical set-up and settings, please refer to Appendix A.

3.1.4. Sensory analysis
For safety reasons, panelists were not allowed to taste the

samples. However, crushing sounds are known to be a major factor
in crispiness-related freshness (Vickers, 1984a). Thus, the panelists
were instructed to listen to the crushing sounds obtained at the
high testing velocity and for five different RH levels and rate those
to evaluate to what degree humans can distinguish audible differ-
ences based on crispiness. Data were randomly selected and ar-
ranged into three sets that were evaluated equally often in a
random order. The samples at 53% RH were not evaluated as they
were strongly different from the lower-humidity samples in terms
of crushing sounds. They were measured to produce an extreme
freshness level, for the automated classification experiment, in
opposition to fresh samples. Panelists were placed in a quiet room
in front of a computer equipped with studio quality ATH-M50 dy-
namic headphones (15e28 kHz, Audio-Technica, Mainz-Kastel,
Germany) using a constant sound volume. Questionnaires were
used to preselect the panelists (Appendix B). The following statis-
tical tests were performed using the sensory data, with significance
levels of 0.05e0.01: normality distribution tests; Friedman tests of
the significantly different freshness groups, Page tests of significant
ranking and Fisher's tests for grouping of the ranking test data
according to D. ISO (2006); and significant differences tests ac-
cording to the binomial distribution law and Turkey's tests for
multiple comparisons to represent graphically the significant dif-
ferences in the paired test data according to D. E. ISO (2007).
Additionally, panelists were asked after their tests which sound
characteristics they thought were typical for each different sample
group. Further, an informal sessionwas held involving the chewing

Table 1
Number of valid sample data at each compression test velocity and RH level. The
higher number of fresh samples enabled a higher classification accuracy for this
reference group.

RH % Fresh 11 23 33 44 53

0.33mm/s 149 96 101 104 96 99
10mm/s 154 100 102 99 98 101

Fig. 3. Texture measurement set-up photograph: (a) example of whole and cut puffed
snacks in the sound isolation box which was closed using a Velcro® fastener; and (b)
compression probe and positioned microphone.
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of samples from freshly opened bags and those stored in a kitchen
atmosphere for several hours to study which mechanical charac-
teristics of the crispiness-related freshness sensationwere relevant.

Qualitative sensory analysis. 25 volunteers (age about 20e30)
were trained during 3 weeks by ranking the instrumental crushing
sounds according to freshness (Table 2). Then, theywere selected to
qualitatively evaluate the sounds: 16 participated in the first
ranking test,18 in the second ranking test, and 17 in the paired tests
owing to their availability and ability (Spearman test). More than a
week was needed to reach an agreement on the rating scales and
definitions owing to the complexity and confusion on the definition
of crispiness (Dijksterhuis et al., 2007; Saeleaw and Schleining,
2011; Tunick et al., 2013). The forced choice ranking (D. ISO,
2006) of five samples with regards to freshness was performed
once before the paired test (D. E. ISO, 2007) and repeated three
times a week after to enhance the reliability of the results.

Hedonic sensory analysis. To represent a target consumer
group for snacks, 78 untrained volunteers (age 15e30) were
recruited (DIN, 2008; D. ISO, 2006). A ranking test ranging from
“dislike very much” to “like very much” was performed for the
instrumental crushing sounds on a 10-cm-long continuous line
with smileys to aid understanding.

3.2. Data analysis

Data were analyzed using MATLAB 9.0 (release R2016a, Math-
Works, Natick, MA, USA) using the Signal Processing Toolbox and
the Hilbert-Huang transform (HHT) open-source package (Huang,
2014; Wu and Huang, 2009) for spectral analyses, and the Statis-
tics and Machine Learning Toolbox for exploratory data analysis,
hypothesis testing, ANOVA, PCA and classification.

3.2.1. Preparation of signals
Mechanical and acoustical data were taken into account for up

to 6mm deformation to avoid the influence of the initial sample
height. Machine noise was difficult to filter out as it depended on
the sample vibration and on abrupt, irregular breakage behaviors
(Sanahuja and Briesen, 2015). Further, the machine noise frequency
bands partly overlapped with several low-pitched frequency bands
below 3 kHz known to characterize crispiness (Drake, 1963;
Saeleaw and Schleining, 2011; Zampini and Spence, 2004); how-
ever, the isolation box dampened the background noise in com-
parison to the crushing sounds. In fact, high- and band-pass filters
such as Butterworth filters eliminated most of the machine noise
from the acoustical signals, although this also produced unnatural
sounds as too much background was removed and some compo-
nents belonging to the crushing sounds were modified. An anti-
alias filter with a 44 kHz (CD-quality) corner frequency could
have been used to reduce the memory-intensive acoustical data
without distorting the sound; however, it would have reduced the
data quality for spectral analysis. Another compression step could

have been used to down sample to the mechanical data sampling
frequency of 500Hz as it is done by Stable Micro System's acoustic
envelope detector (Chen et al., 2005; Saeleaw and Schleining,
2011); however, then it would no longer be possible to listen to
and characterize sound pitches (Saeleaw and Schleining, 2011).
Thus, to retain as much information as possible, both the me-
chanical and acoustical signals were used unchanged in the sensory
and in the machine learning analyses.

3.2.2. Texture parameters calculation
The following texture-related parameters were calculated:

hardness, fracturability, brittleness, low- and high-strain stiffness,
linear distance of the force-deformation curve, work, the force
mean and standard deviation, mean mechanical breakage fre-
quency, maximum acoustical magnitude total energy, and the
mean frequency and its standard deviation. Summary statistics,
represented graphically using the standard deviation and the 95%
confidence interval of the mean, were used to select the features to
include into machine learning.

3.2.3. Spectral transformations
Spectral characteristics were extracted from the mechanical and

acoustical data using Fourier analysis. Even though the use of this
technique on transient signals has been criticized, Fourier spectra
were used for further data compression because they were concise
and revealed the largest range of frequencies in comparison with
CWT, HHT and STFT, which were used to recognize the proportion
and dynamics of machine noise.

3.2.4. Selection and compression
Up to 70 features were extracted from the mechanical and

acoustical data: 10 and 4 temporal features, as well as 24 and 32
spectral features, respectively (Appendix H). Temporal features
were selected according to their trends and variability. The number
of spectral features in the power spectral density was reduced to
full, half- and third-octave bands by numeric integration (Drake,
1963; ISO, 1973) to see if using a high resolution (third octaves)
would yield better classification results than using a low resolution
(full octaves). To avoid the weight of certain features being influ-
enced by measurement units, all feature values were standardized
by variance before being fed into PCA and SVM, and normalized by
minimum and maximum values before executing ANN. PCA biplots
were generated to visually represent the contribution of the fea-
tures to the first principal components (length and direction of the
feature lines in a biplot), their linear relationships according to PCA,
and the grouping performance of PCA for the different sample
types. The initial PCA components explaining 80e98% of the vari-
ance (8 to more than 20) were also tested to replace the large
amount of features by a lower amount in machine learning
computation.

Table 2
Organization of qualitative sensory analysis over 4 weeks.

Training phase (D. E. ISO, 2014)
Ranking tests followed by personal comparison of performance with right answers

Rating phase

Week 1
easiest, highest differences
(fresh, 23%, 43% RH)

Week 2
moderate difficulty
(fresh, 11%, 33% RH)

Week 3
complete series
(5 RH levels)

Week 3
several hours break
between both tests

Week 4
1 test/day

Test 1
without a prior

description of
freshness/
crispiness

Test 2
looking for
descriptors
(discussion
afterwards)

Test 3
with hints
about
descriptors

Test 4
with
definition

Listening several times to reference samples (in
Supplementary sound data together with a 53%
RH sample)

Ranking
test
5 RH

Paired test
4 combinations
of two
neighbor RH

Ranking test in
triplicate, after
refreshing with
reference
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3.2.5. Classification
There were about 650 samples for each compression test ve-

locity available to train and test the classification algorithms,
comprising 150 samples for the reference fresh group and 100
samples for each of the five humidity-controlled groups. Decision
trees, discriminant analysis, nearest neighbor, ensemble classifiers,
support vector machines (SVM) and artificial neural networks
(ANN) were screened. Quadratic SVM and ANN were the most
successful and their settings were further optimized. Based on this,
an SVM algorithm with quadratic kernels was used (MathWorks,
2017). The kernel function is a mathematical trick that transforms
the training samples to a spacewhere they can be best separated by
a hyperplane. Finally, each sample was assigned to a specific
freshness group based on a quadratic combination of its features.
The five-fold cross-validation method (Domingos, 2012) was used
for SVM because it is well-suited for small data sets. Ten SVM
models were generated. Per model, the original sample was
randomly partitioned into five subsamples. Each submodel was
trained with the other four subsamples and tested with the
remaining subsample. Each complete model was the result of
training with the whole data set and its accuracy was estimated by
averaging the accuracies from the five-folds. The ANN used (Beale
et al., 2017) had one input layer for the features, one or several
hidden layers with a hyperbolic tangent sigmoid transfer function,
and one output layer with an exponential transfer function (soft-
max MATLAB function), which triggered the decision of the clas-
sification into freshness groups. Three hidden layer configurations
were tested: the first had one layer of 10 (MATLAB's default setting),
the other one had three layers of 20, and the last configuration
contained one layer of 250 hidden neurons, according to Srisawas
and Jindal (2003). Feed-forward computation used 65% of the
samples for training in back-propagation, 15% for validation, and
20% for testing. Ten ANN models were obtained, using random
training, validation and test samples, and random initial
coefficients.

Several combinations of features were tested using either me-
chanical, acoustical, or mechanical and acoustical data obtained
from the high- and low-velocity tests, their temporal or/and
spectral features (full, half-, or third-octave sets), and their com-
plete or selected feature sets (Appendix H, Table H.1). The perfor-
mance of the models was finally given by the classification accuracy
in percentage of the well-classified test samples for all groups and
for each group in a confusion matrix.

4. Results

4.1. Instrumental data

Typical toughening effects are shown in Fig. 4; breakage events
were less brittle, but stronger, and louder when humidity was
increased up to 53% RH. Nevertheless, time-domain representa-
tions do obviously not permit to distinguish easily between sam-
ples with neighboring humidity levels.

4.2. Sensory results

4.2.1. Qualitative ratings
The qualitative sensory panel perceived the crispiness levels

based on the instrumental crushing sounds in a similar way to that
reported for chewing sound studies (Liu and Tan, 1999). The first
ranking test showed significant differences between the freshness
groups (Friedman-Test, a¼ 0.01) and a significant ranking from
fresh to 53% RH (Page-Test, a< 0.05) according to the sum of the
ranks. Nevertheless, only two groups could be distinguished by
Fisher's least significant difference test (LSD, a¼ 0.05), namely

fresh to 23 and 33e44% RH. The paired test demonstrated that each
freshness level except fresh and 11% RH could be perceived as
significantly different (a¼ 0.01) according to the binomial distri-
bution law and the number of successes. The second ranking test
series gave even better results which could be induced via addi-
tional listening to references. Significant differences between the
freshness groups (a¼ 0.01) and ranking from fresh to 53% RH
(a¼ 0.01) could be achieved. Further, there were four groups, only
one of which was composed of two humidity levels, fresh and 11%
RH (a¼ 0.05). Thus, 23 and 11% RH samples differed significantly,
even though they were more difficult to distinguish using ranking
tests, which demand a higher concentration than paired tests.
Moreover, panelists confused definitions of crispiness and
crunchiness during their first training sessions, but unanimous
descriptors were finally settled upon (Fig. 5). This general lack of
consensus on definitions and descriptions is also visible in the
related literature (Dijksterhuis et al., 2007; Saeleaw and Schleining,
2011).

4.2.2. Hedonic ratings
Liking ratings varied and were spread across the whole scale

from 0 to 10, but generally, the low-humidity samples (fresh to 23%
RH) were preferred, while the liking of the sounds decreased until
44% RH (Fig. 6). Participants did not feel disturbedwhen listening to
the recorded sounds instead of chewing and tasting the samples,
but the unusual experience (limited to auditory perception) made
appreciation more challenging than during a full tasting experi-
ence. The different definitions of crispiness among the panelists
may explain the different preferences and while the mean results
were centered on the middle of the scale, sounds definitively
impacted preferences (Elder and Mohr, 2016). To experiment the
full pleasure of crispiness, additional mechanical or bone-
conducted vibrational components are probably needed (Drake,
1963; Saeleaw and Schleining, 2011; Vickers and Bourne, 1976a,
1976b), as well as interactions with taste and aroma. Further,
background noise could have influenced the sensory evaluation
(Pellegrino et al., 2015; Woods et al., 2011). However, background
noise levels were relatively low for all samples and the panelists
reported no disturbance, which was also reported in literature
when using a loud masking noise (Christensen and Vickers, 1981).

4.3. Features’ behavior and selection

Most of the traditional time-domain texture parameters, such as
mechanical hardness (Fig. 7a), significantly differentiated several,
but not all, freshness groups. The snack's brittleness (Fig. 7b) and
low-strain stiffness did not show any significant trend at different
humidity levels, as the variability was too high; thus, these features
were neglected in the “selected” features set for machine learning.
The final “selected” mechanical temporal features set contained all
the other traditional texture parameters, which could impact
slightly positively on the classification accuracy (Appendix H,
Table H.1), even though several of these features correlated with
one another (Appendix F), thus contributing to some redundancy.
The final mechanical features used were hardness, fracturability,
high-strain stiffness, as well as mean mechanical breakage fre-
quency, linear distance of the force-deformation curve, mechanical
work, and force mean and standard deviation. No acoustical tem-
poral feature or spectral feature that was extracted from the me-
chanics and acoustics was excluded from the final set of features, as
each feature contributed to a higher classification accuracy. More-
over, in the frequency domain (Appendices C, D, E and Figs. 8 and 9),
it was even more complicated to find trends among the numerous
features. Horizontal bands in the sound spectrograms (Appendix D)
and humps in the compressed octave representations (Fig. 9) were
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marked around 100e300 Hz, 1 and 4e16 kHz; however, sound
energy was also spread across the whole range of frequencies. The
breakage energies and pitches (Fig. D1 a and c in Appendix D) were
more homogeneously spread for the fresh samples, producing a
higher total acoustical energy (Appendix E) at specific octaves (such
as low pitches) than humidified samples, which produced a lower

number of breakage events with a higher energy, thus louder. Drake
(1963) and Saeleaw and Schleining (2011) also reported similar
spectral crispiness characteristics, depending also on the pitch
signature: louder samples were not necessarily crispier, in case of
moistening, in contrast with other crispiness studies (Zampini and
Spence, 2004). Thus, the whole frequency pattern, not only a few
frequency bands, was necessary to fully characterize the sounds
and to better classify freshness.

Thus, even though some features showed a positive linear cor-
relation (Appendix F), e.g., hardness and mechanical work, mean

Fig. 4. Representative time-domain mechanical and acoustical profiles of the high-velocity compression tests: (a) fresh; (b) 11%; (c) 23%; (d) 33%; (e) 44%, and (f) 53% RH.

Fig. 5. Summary of the crispiness descriptions by most of the panelists. Descriptors
above arrows represent food texture attributes, while those in the boxes refer to the
physical properties of the food.

Fig. 6. Mean liking of the crushing sounds, with 95% confidence intervals, identical
letters indicating non-significant differences between groups determined by a one-
way ANOVA and Turkey's honest significant difference criterion test, which is appro-
priate for multiple comparisons, with p¼ 1.9$10�7.
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force or standard deviation, or a negative correlation with me-
chanical frequency, most had nonlinear relationships. PCA (Fig. 10)
showed that there were some (albeit insufficient) linear relation-
ships between all the features because the freshness groups could
not be easily distinguished in two or more dimensions. In fact, the
two first principal components explained only 57%, and more than
eight components would be needed to explain at least 80% of the
data variance (Appendix G). Thus, linear combinations were too
weak, as was the case for principal component regression con-
sisting of a PCA followed by multiple linear regressions as per-
formed by Liu and Tan (1999). PCA preselection thus yielded much
worse results than the direct use of texture-related features for
machine learning. Nevertheless, relationships similar to the cor-
relation analysis (Appendix F) were nicely represented by PCA
(Fig.10). For example, mechanical work andmean force, or different
ranges of mechanical and acoustical frequencies, are represented
by lines of a similar length and direction in PCA. Mechanical
hardness, work, mean force, and its standard deviation, fractur-
ability, stiffness, and spectral energy as well as acoustical loudness
(of strongest event) and very high spectral energy were positively
correlated and increased, but mechanical spectral energy, total
loudness, and some very low acoustical spectral energy seemed to

decrease with humidity along the first principal component.
Hardness, work, and sound intensity also correlated negatively
with the sensory crispiness of specific foods (Seymour and
Hamann, 1988) or positively for other foods (Duizer, 2001). Inter-
mediate to high acoustical spectral energy bands characterized
better intermediate humidity along the second principal compo-
nent. Nevertheless, no spectral factors were fully redundant and
features spread on the whole range of frequencies seemed to
contribute to freshness characteristics (Saeleaw and Schleining,
2011). Thus, features had to be related by more sophisticated,
nonlinear combinations to try to extract an overall pattern for
freshness classification.

4.4. Classification results

Quadratic SVM with disabled PCA preselection resulted in the
highest accuracy. Quadratic combinations of features probably
better represented underlying physical phenomena and psycho-
physics than linear fitting (Peleg, 2006). In fact, subjective
perception was not only linked to the logarithm, but also to the

Fig. 7. Traditional texture parameter values of the high-velocity mechanical signals:
(a) hardness and (b) brittleness. Thin and thick error bars represent the standard
deviation and the 95% confidence interval of the mean, respectively.

Fig. 8. Third-octave frequency bands of the high-velocity mechanical signals with the
band-center values on the abscissae and the power spectrum density integral values
on the ordinate for all groups of relative humidity (RH): (a) fresh; and (b) 23% RH. Thin
and thick error bars represent the standard deviation and the 95% confidence interval
of the mean, respectively. Results for both velocities and all RH levels are shown in
Appendix C.
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power of the stimulus intensity in psychophysics studies (Bourne,
2002; DIN, 1997). Unlike expected (De Belie et al., 2003; DIN,
1997; Vickers, 1988), the logarithm of the mechanical feature
values did not yield results that were more similar to sensory an-
alyses. Examples of quadratic SVM classification results are illus-
trated in Fig. 11, which contains confusion matrices showing
percentages of true and false test sample predictions per humidity
class. An overview of the overall classification accuracies of all
feature combinations is given in Appendix H together with more
confusion matrices for group-specific classification details. SVM
trained with selected high-velocity temporal mechanical features
(corresponding to traditional texture parameters) enabled the
classification of high-humidity groups from 44 to 53% RH to a good
degree (above 86% respective accuracies); however, it poorly clas-
sified low-to mid-humidity groups from fresh to 33% RH (62e14%
respective accuracies), resulting in a low overall classification ac-
curacy of 57.9± 0.7%. Selected high-velocity temporal acoustical
features (Fig. 11a) allowed an overall classification of 79.7± 0.9%
accuracy to be reached; this way fresh samples as well as samples
above 33% RH could bewell classified (�80% respective accuracies);
however, samples at 11 and 23% RH were classified insufficiently

(�71% respective accuracies). The combination of the mechanical
with the acoustical temporal features improved the classification
accuracy of almost every group, in particular for intermediate hu-
midity levels. High-velocity spectral mechanical features
(Appendix H, Fig. H.2 b) did not aid in the classification except for
the 53% RH group (>89%); extreme humidity levels could be clas-
sified better than intermediate humidity levels (respective accu-
racies from 66 to 28%). Meanwhile, overall accuracies (Appendix H,
Table H.1) decreased as the octave complexity increased (56.5± 0.6,
54.2± 0.9, and 53.4± 0.9% for the full, half-, and third-octave sets,
respectively). The spectral acoustical features (Fig. 11b) were the
most precise in the critical range of fresh to 23 %RHwhere their use
was more successful than the use of mechanical temporal and
spectral features; however their use yielded worse results than
temporal acoustical and mechanical features above 33% RH, while
the overall accuracy increased along with the octave's complexity
(66.8± 0.9, 69.9± 0.8, and 74.8± 0.7% for the full, half-, and third-
octave sets, respectively). Thus, the combination of the spectral
mechanical with the spectral acoustical or of the spectral acoustical
with the temporal acoustical feature sets (Appendix H, Fig. H.2 e
and f) could improve the classification accuracy of the high and low
RH groups, respectively. Indeed, the combined mechanical and
acoustical spectral features increased the overall classification ac-
curacy (77.2± 0.9, 78.7± 0.9, and 84.3± 0.7% for the full, half-, and
third-octave sets, respectively), with more precise results at almost
every RH level. The combined temporal and spectral mechanical
features barely yielded better results with low-velocity features
and no improvement with high-velocity features compared with
sole temporal or spectral mechanics. In contrast, the combination
of temporal with spectral acoustical features greatly improved the
overall classification accuracy (87.0± 1.1, 87.2± 0.7 and 90.1± 0.6%
for the full, half-, and third-octave sets, respectively). This combi-
nation performed very well for extreme humidity levels (>90%),
well at 23% RH (>80%), but failed to differentiate 11 and 23% critical
humidity levels (Appendix H, Fig. H.2f). Finally, the combination of
all selected temporal and spectral mechanical and acoustical fea-
tures (Fig. 11c and d) allowed for sufficient distinction of critical
humidity ranges, 11 and 23% RH (91 and 85% respective accuracies
at high velocity versus 90 and 88% at low velocity), which was
difficult using traditional texture analysis methods. There, the best
overall classification accuracy was reached using the feature set
with the highest resolution (third octaves) and highest complexity
(mechanical and acoustical, temporal and spectral), resulting in
91.8± 0.7 and 91.2± 0.6% at high and low velocities, respectively
(Fig. 11c and d). Low velocity features better distinguished inter-
mediate humidity samples, but the high-velocity results may suf-
fice; they may also allow for time savings in the lab, as they can be
measure 30 times quicker (Fig. 11c and d). Finally, the learning
curve (Appendix H) demonstrated that it is worth increasing the
number of training samples to increase the model's accuracy. By
doubling their number, one could extrapolate an accuracy of �98%,
but it is difficult to conceive that in food industry 1000 or more
samples (for six groups) would be tested for each newly developed
product before establishing a control method.

The ANN provided less accurate, stable and reproducible results
than SVM (Appendix I). The variability of the classification accuracy
among the different repeated model constructions was primarily
the result of the initial set of random coefficients, which were more
or less efficient in converging on the optimal fit. Increasing the
number of hidden neurons did not increase the accuracy because 10
neurons already produced a high complexity of derived feature sets
with the tendency to overfit, obtaining up to 100% classification
accuracy on the training set but about 82e90% on the test set.
Nevertheless, themodel's accuracymay increase if a higher number
of samples is available for training (Domingos, 2012).

Fig. 9. Third-octave frequency bands of the high-velocity acoustical signals with the
band-center values on the abscissae and the power spectrum density integral values
on the ordinate for all groups of relative humidity (RH): (a) fresh; and (b) 23% RH. Thin
and thick error bars represent the standard deviation and the 95% confidence interval
of the mean, respectively. Results for both velocities and all RH levels are shown in
Appendix E.
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5. Discussion

5.1. Comparison of classification models with the literature

The results of the present study can be compared with those of
the following studies, which differ in their methodologies and

results. Liu and Tan (1999) used STFT and auto-correlation calcu-
lations to extract co-occurrence matrix features from the crushing
sounds of fresh and wet (but still brittle) food samples from five
different snack types. They selected 32 features using ANOVA and
correlation screenings to avoid any redundant features (e.g., cor-
relations above 80%), where simple acoustical features were

Fig. 10. PCA multivariate condensed biplot representation of all data and features (with third octaves) in the two first principal components explaining 57% of the variance. PCAwith
less features and the corresponding Pareto diagrams are illustrated in Appendix G for details. M and A stand for mechanical and acoustical features, respectively, while f stands for
frequency band and the number appended for the central frequency of the third octaves. Other feature abbreviations are: MHard (hardness, N), MFract (fracturability, N), MBrittl
(brittleness, N), MStiff_ls and MStiff_hs (low- and high-strain stiffness, N/mm), MFreq (mean mechanical breakage frequency, Hz), MLinDist (linear distance of the force-
deformation curve), MWork (mechanical work, N$mm), MMean (mean force, N), MStd (force standard deviation), Aloud and AloudTot (maximal acoustical magnitude, V, and
total energy or loudness, V$s), AFreq (mean acoustical frequency, Hz), and AStd (acoustical standard deviation). The contribution of mechanical features to each principal component
is represented by the length and direction of the purple lines. Acoustical features, that contribute more to the second principal component, are represented by the gray lines. Each
sample is then represented by a point whose position is relative to the principal components. Circles highlight features that have similar behavior. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 11. Test set confusion matrices of five-fold cross-validated quadratic SVM models representative of the mean classification results: (a) high-velocity temporal acoustical; (b)
high-velocity third-octave spectral acoustical; (c) optimized selected temporal with third-octave spectral mechanical and acoustical features at high velocity and (d) at low velocity.
Samples that were classified into the correct group are indicated in the green diagonal (in percent). Samples that were predicted by mistake in other groups than the true one are
indicated in the orange boxes. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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removed. A back-propagation feed-forward network optimized to
two layers of 5 and 3 hidden neurons reached a classification ac-
curacy of 90%. Nevertheless, the result should be interpreted
carefully because no repetition of the classification was demon-
strated and only five samples were measured for each group; the
test set thus consisted of one sample per group. Srisawas and Jindal
(2003) used STFT with Hanning windows to extract 102 spectral
energy features of constant bandwidth up to 7 kHz from the sounds
of snacks being cut. They did not filter the sounds, nor did they
consider the whole human hearing range (Bourne, 2002; Luyten
and Van Vliet, 2006); they also did not take into account that
humans do not distinguish between linearly changing pitches. They
classified crispiness corresponding to significantly different sen-
sory scores at 4e5 dry basis water contents (not as critical as the
11e23% RH range for puffed snacks). Their back-propagation feed-
forward network containing three layers of 20 hidden neurons
classified puffed snacks less well than our model with fewer neu-
rons, with an overall (training þ validation set) classification ac-
curacy of about 70% (44e92% group-specific accuracies). Their one-
layered 250 hidden neurons probabilistic network achieved about
96% overall accuracy ranging from 85 to 98.7. However, these ac-
curacy values were obtained from the predictions based on the
training data set. In comparison, the classification results in the
present study were expressed for the test set, which is independent
of the training phase and typically results in lower prediction rates
than the training and the complete set of samples, giving for
example 89.1, 99.5, and 96.4% classification accuracies, respectively,
with ANN (Appendix I). Good results on the training data give the
illusion of success, but typically hide overfitting problems and
generalize poorly on new data (Domingos, 2012). This is why the
present model provides a realistic estimation of the expected
classification accuracy of new samples for routine quality control.
Moreover, the present study permits to classify six humidity
groups, unlike the study of Srisawas and Jindal (2003), which
classified four crispiness groups. When focusing on four groups by
combining fresh with 11% RH samples (which cannot be distin-
guished by acoustical sensory panels) and 23 with 33% RH, the
present study allows to find group-specific accuracies of 96.4, 90.6,
93.9, and 96.0% using the optimized SVM with high-velocity
selected and third-octave features.

De Belie et al. (2003) obtained classification accuracies of
82e86% for different snack sound spectra using multiway alterna-
tives to PCA. Recently, a study extracted spectral features from the
Hilbert spectra of carrot crushing sounds (Liu et al., 2015). Despite
some correlations between sensory crispiness and temporal
acoustical features, any accurate classification according to the nine
constant-width frequency bands using either multiple linear
regression or neural networks failed. Moreover, relationships be-
tween sound and liking are not straightforward (Elder and Mohr,
2016), which make direct interpretations of models difficult. To
conclude, further studies on dry and wet crispy or crunchy foods
and the combination of multimodal features are needed to estab-
lish machine learning in food sensory sciences. The transformation
of air-borne into bone-conducted sounds via a transfer function
modeled according to the filtering through human tissue between
the teeth and the inner ear could be a way to improve the psy-
choacoustical analysis of instrumental data. Moreover, an alterna-
tive to the laborious feature extraction could be deep learning
performing automatic pattern recognition (LeCun et al., 2015).

5.2. Summary of freshness

The present study was aimed to classify crispy food samples
according to their freshness in a similar way humans do, but using
machines. The developed classification models were able to

distinguish between very small differences in freshness for samples
equilibrated at 11 and 23% RH. Those freshness groups could be
differentiated in paired tests, but not in the more tedious ranking
tests using the trained sensory panel. Higher humidity samples of
up to 53% RH were incorporated into the model to identify trends
and guarantee differentiation among different samples at freshness
extremes. In fact, radical changes occur at humidities higher than
23% RH that are difficult to interpret; above this humidity level,
toughness and loudness both increase and then decrease non-
linearly with respect to humidity (Duizer et al., 1998; Katz and
Labuza, 1981; Luyten et al., 2004). They can be explained by anti-
plasticization toughening effects between 23 and 53% RH, as
observed by Sanahuja and Briesen (2015). Higher humidities above
75% RH, where plasticization softening effects occur, were not
considered for further classification, as no brittle behavior can be
observed then.

6. Conclusion

The sensory discrimination of puffed snacks freshness was
driven by auditory components, which also impacted liking. Using
traditional texture features permitted to distinguish between
extreme humidity levels and had a significant impact on classifi-
cation. However, this was insufficient to obtain a high classification
accuracy. To the best of the authors’ knowledge, this study presents
the first crispiness classification tools that can be generalized well
across test sets. Multimodal classification with increasing feature
complexity enabled the critical humidity levels at which crispiness-
related freshness sensations can be distinguished by humans to be
distinguished by machines. Mechanical as well as acoustical data
and their corresponding temporal and spectral characteristics bore
valuable information for the control and optimization of food
products quality. The use of octave bands respected known prin-
ciples of psychophysics. Measuring with high test velocities was
sufficient to establish very good classification models with up to
92% accuracy. Once calibrated, these models trained with many
data can be reused for routine quality control. In practice, users only
need to measure the mechanics and acoustics of five samples per
batch, feed the raw data into the feature extraction code, and use
the generated feature sets to directly classify the samples. Ac-
counting for the worst-case group-specific classification error of
20% found in themodels of the present study, at least three samples
out of five classified in the same freshness group should ensure that
the product is well classified. To conclude, the obtained models
permit significant measurement time and data analysis savings.

One current limitation of the approach is the validation of the
classification model using only one type of puffed snack under
specific measuring conditions. The same classification accuracy of a
model trained with data generated under different measurement
conditions is not guaranteed. The generalization to other types of
crispy or crunchy foods needs to be investigated.
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Appendix A. Details to the instrumental measurements 

 

Acoustical Set-up. The NT5 stereo set of two low-noise cardioid condenser microphones (20Hz-20kHz, Rode, Silverwater, 

Australia) was mounted on “the t.bone SSM-4” shock mounts on Millenium MS-2003 stands (Thomann, Burgebrach, Germany). 

A kidney-shaped cardioid has a polar pattern or unidirectional characteristic which enables to focus on the sound in front of the 

microphone, rejecting sounds from other directions, from the side and rea. A sound-isolation box was built from 5 mm thick 

Plexiglas (Evonik, Essen, Germany) with a cylindrical shape, of 145 mm diameter and 130 mm height, to avoid sound waves 

resonance in corners. It was cut into 2 halves to place the sample easily, and closed using a strong Velcro® fastener. The inside 

walls were covered with a soundproofing Tapetec KR-20 honeycomb polyester-polyurethane foam mat (Sahlberg, Feldkirchen, 

Germany) of 18 mm thickness for the absorption of high-pitched tones; with a flat compacted bitumen and adhesive layer of 2.5 

mm for the absorption of low-pitched tones. A cap of the same isolating materials was glued on the top with a hole in the middle 

enabling the probe to move without contact with the box but still as small as possible to avoid the penetration of too much noise. 

One microphone was placed as near to the sample as possible, at 25 mm from the sample center and with an optimal angle of 45° 

across a side-gap following the recommendations of previous studies (Chen, Karlsson, & Povey, 2005; Salvador, Varela, Sanz, & 

Fiszman, 2009) to record the crushing sounds. The second microphone recorded mainly the machine noise and room noise during 

texture analysis with the purpose of later help for noise filtering. There, two problems arose: the loudest crushing sounds were able 

to cross the isolation box, reaching the second microphone, and the distance together with the filtering capacity of the box have to 

be taken into account to evaluate the proportion of noise in the crushing sound signal. A solution for the synchronized approximation 

of the sound machine noise would necessitate to establish a transfer function model for the isolation box, and then use the signals 

recorded by the microphone placed near the machine outside the box to denoise the crushing sounds, which could not be performed 

in the present study. 

Recording Settings. An R-44 field recorder (Roland, Los Angeles, US) was used at a 192 kHz sampling rate, for the best audio-

quality, with 24-bit depth linear uncompressed recording to capture more detailed tonal character and ambience than with a sample 

size of 16-bit. To produce files which need less memory, the CD-quality of 44.1kHz or a twice as high sampling rate such as 96 

kHz combined with a 16-bit sample size could suffice. In this way, according to the Shannon-Nyquist sampling theorem (Sanahuja 

& Briesen, 2015) postulating that the maximal signal frequency that can by recognized by Fourier transformation is the half of the 

sampling frequency, the maximal audible frequency of about 20 kHz (Bourne, 2002; Luyten & Van Vliet, 2006) would still be 

possible to calculate. But it is also known that the precision of the frequency bands depends on the number of points available, so 

that higher sampling frequencies can be useful for exact evaluation, in particular for high-pitched records. 

Moreover, none of the possible settings available on the R-44 to enhance sound were used, such as special effects adjusting the 

“color” of the sound. The “Low Cut” function, with a cut off frequency of about 100 Hz to avoid for example breathing or wind 

noise, was switched off to preserve the whole spectrum of the real sound. The “Limiter” function was also deactivated to avoid the 

compression of the input level preventing distortion when it is too high. Thus real crushing sounds could be preserved but therefore 

the risk of clipping noise could not be totally excluded when sudden loud sounds occurred, which are typical for crispy sounds. 

When strong clipping effects occurred, the records presented distortion or crackly noises, which were displayed on the monitor. 

Those sample data were not analyzed further. But the number of those incidents was kept down by optimizing the input level 

settings: gain (“level”) and sensitivity (“sens”). If the recording level is too low, quiet sounds will not be recorded at all, but if it is 

too high, clipping occurs. So, first the optimal input level was evaluated for repeated preliminary tests using the “Auto Sens” 

function during crushing of low and high-RH samples. Then, the level was centered on 0 dB (control knob on step 64) for all sample 

types to keep a neutral gain, useful for the comparison of sample and machine noise loudness. The appropriate level-dependent 

volume sensitivity was then checked, according to all possible input signal strengths, finding a consensus at -26 dBu for crushing 

sounds (microphone 1) and -56 dBu for machine noise (much louder on microphone 2) where clipping effects were kept minimal. 

Acoustical signal. It is not easy to recover exact sound pressure level (SPL) values, but they are proportional to the voltage signals 

(Duizer, 2001) because of the coupling with the microphone properties. Total loudness evaluation in time of single breakage events 

would need to transform the voltage signals into SPL signals and then calculate the root mean square of the down-sampled signal, 

for example to obtain loudness peaks at 500 Hz (or every 2 s) like it is done by the acoustic envelope detector (AED) of Stable 

Micro Systems. But loudness signals would not differentiate different frequency contents and thus sound pitches, nor distinguish 

the different contribution to loudness of all frequency bands (Chen et al., 2005; Saeleaw & Schleining, 2011). When interested in 

the sound pitches characterizing crushing phenomena, the best is to handle with the raw signal recorded by the R-44 and compare 

relative magnitudes of each sample type to evaluate which are the loudest ones. Relative loudness is then related to energy content 

of the signal. Moreover, recorded signals were audible sounds of WAVEform (.wav) audio file format enabling to listen to the 

sounds, which would not have been possible with the AED adapted to the Stable Micro Systems texture analyzers. In fact, AED 

records are automatically compressed before being stored to save memory (Chen et al., 2005; Saeleaw & Schleining, 2011). One 

advantage of the AED which could not be obtained with our set-up is the automatic synchronization with the mechanical test, as 

the Exponent control unit could not trigger the on/off switch of the field recorder. This is why sound signals had to be cut afterwards.  



Automated classification of crispiness 

2 
 

 

Fig. A.1. Sorption isotherms at 22.2±0.9 C of the corn starch extrudates with the 95% confidence intervals of the mean values for 13 replicates. 

The water content of the fresh samples, directly taken out of a new puffed snack bag, could be measured; but their mean relative 

humidity (RH) was estimated. In previous study (Sanahuja and Briesen, 2015), the RH of the fresh samples could be extrapolated 

using the sigmoid fit function typical for such sorption isotherms; however, a good fit necessitated to measure RH values from about 

0 to 100 %, which were not available in the present study.  

In comparison to previous study, the use of 13 instead of only four replicates reduced the size and overlapping of the error bars. 

Nevertheless, the measurement of water content is not reliable enough with this method to distinguish samples at 11 and 23% RH. 

 

 

 

Appendix B. Summarized information of the questionnaires for sensory panelists evaluation 

 

Trained panel. Most of the panelists were between 20 and 30 years old and German, 5 between 40 and 55, 1 French, 1 Swiss, 1 

Greek, 1 Bolivian and 1 Columbian, with about as many men as women, none having hearing problems. Most did not consume 

crispy snacks or rarely but liked them. 

Hedonic panel. One fourth of the participants was 15-20, half 20-25 and one fourth 25-30 years old, thus having ideal listening 

abilities. All but 2 were German, with 31 men and 47 women. Only two admitted to have tinnitus sometimes, but not during the test 

and they did not deliver abnormal results. 60 participants globally liked snacks, 5 declared having the habit to eat flips several times 

a week, 44 at least once per month and 28 almost never. 

About general consumption of crispy snacks, main reasons for liking reported were that they are addicting, in particular because of 

their crispiness and tastiness (aromatic spiciness and saltiness), which would make happy. They are also easily available, work 

against boredom, and are perfect for TV, cinema, parties and munchies, being well combined with beer aroma. Reasons for rejecting 

crispy snacks were their unhealthy, poor nutritional balance and that they were too fatty and difficult to digest. Some participants 

reported also their allergy against ingredients or that they sometimes unpleasantly stick to the teeth. Some also preferred sweet 

snacks such as chocolate or candies when to calm hunger. As food oral processing influences sensation and liking, participants were 

asked to tell if they usually chewed or sucked chips, flips and crispy snacks. 3 of them liked to suck those types of foods, less than 

overall consumption preferences statistics reported by Americans (Chaker, 2013). 
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 Appendix C. Compressed frequency bands of mechanical signals 

  

 

Fig. C.1. Third-octave frequency bands of the high-velocity mechanical signals with the band-center values in abscissae and the power spectrum 

density integral values in ordinate for all groups of relative humidity: (a) fresh; (b) 11%; (c) 23%; (d) 33%; (e) 44% and (f) 53% RH.  Thin error 

bars represent the standard deviation and thick error bars the 95% confidence interval of the mean.  
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Fig. C.2. Third-octave frequency bands of the low-velocity mechanical signals with the band-center values in abscissae and the power spectrum 

density integral values in ordinate for all groups of relative humidity: (a) fresh; (b) 11%; (c) 23%; (d) 33%; (e) 44% and (f) 53% RH.  Thin error 

bars represent the standard deviation and thick error bars the 95% confidence interval of the mean. 
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Appendix D. Spectrograms of acoustical signals 

 

 

 

Fig. D.1. Spectrograms of high-velocity acoustical signals with time in abscissae, frequency in ordinate and power spectrum density in the colorbar: 

(a) and (b) fresh; (c) and (d) 53% RH short-time Fourier (STFT) and Hilbert-Huang (HHT) transforms representations, respectively. STFT used 

zero-padded 50% overlapping Hanning windows of respective width 213 = 8192 data points. 
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Appendix E. Compressed frequency bands of acoustical signals   

 

Fig. E.1. Third-octave frequency bands of the high-velocity acoustical signals with the band-center values in abscissae and the power spectrum 

density integral values in ordinate for all groups of relative humidity: (a) fresh; (b) 11%; (c) 23%; (d) 33%; (e) 44% and (f) 53% RH.  Thin error 

bars represent the standard deviation and thick error bars the 95% confidence interval of the mean. 
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Fig. E.2. Third-octave frequency bands of the low-velocity acoustical signals with the band-center values in abscissae and the power spectrum 

density integral values in ordinate for all groups of relative humidity: (a) fresh; (b) 11%; (c) 23%; (d) 33%; (e) 44% and (f) 53% RH.  Thin error 

bars represent the standard deviation and thick error bars the 95% confidence interval of the mean. 
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Appendix F. Linear correlation between features  

 
Fig. F.1. Correlation scatter plots and distribution histograms in diagonal of high-velocity temporal mechanical and acoustical features. MHard: 

hardness; MFract: fracturability; MBrittl: brittleness; MStiff_ls: low-strain stiffness; MStiff_hs: high-strain stiffness; MFreq: mean mechanical 

breakage frequency; MLinDist: linear distance of the force-deformation curve; MWork: mechanical work; MMean: mean force; MStd: force 
standard deviation; Aloud: maximal acoustical value (loudness); AloudTot: acoustical energy (total loudness); AFreq: mean acoustical frequency; 

AStd: acoustical standard deviation. 

 
Fig. F.2. Correlation coefficient matrix of high-velocity temporal mechanical and acoustical features. 

Mechanical hardness, for example in figure F.1, is clearly defining a trend depending on relative humidity (RH), but the freshness 

group histograms overlap too much to be used alone for classification. It correlates much with mechanical work, mean force and 

standard deviation which could be redundant, but each brought a valuable detail into classification. Fracturability and brittleness 

have one-sided queued distributions but fracturability still permits to distinguish significantly some freshness groups as it was 

revealed by confidence intervals. Some fresh sample outliers are visible in the acoustical measurements, showing the variability 

due to changing lab or machine noise, which influence can be weighed by classifying using the combination of multiple 

characteristics. Mechanical mean frequency and acoustical mean frequency are respectively correlating negatively and positively 

with hardness, work, mean force and standard deviation as well as with acoustical mean frequency (fig. F.2). Such information 

helps find relations between different texture features but they are not redundant enough to be omitted into the classification model. 



Automated classification of crispiness 

9 
 

 

 

Fig. F.3. Correlation scatter plots and distribution histograms in diagonal of high-velocity spectral mechanical features. M stands for mechanical 

feature, f for frequency band and the number stands for the central frequency of the third octaves. 

 
Fig. F.4. Correlation coefficient matrix of high-velocity spectral mechanical features. 

Figure F.4 shows a more or less high positive correlation between all mechanical third octave bands. In three zones, third-octave 

bands energy highly correlate: at very low, low and very high frequencies. Very low frequencies energy also correlate with very 

high frequencies, which should have toughening effects at high humidity as a physical basis. The number of breakages clearly 

decreases with humidity but the magnitude of the breakages can grow with humidity, producing higher energy (fig. F.3). 
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Fig. F.5. Correlation scatter plots and distribution histograms in diagonal of high-velocity spectral acoustical features of lowest third-octaves. A 

stands for acoustical feature, f for frequency band and the number stands for the central frequency of the third octaves. 

 
Fig. F.6. Correlation coefficient matrix of high-velocity spectral acoustical features. 
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Fig. F.7. Correlation scatter plots and distribution histograms in diagonal of high-velocity spectral acoustical features of highest third-octaves.  

Neighboring acoustical third octave bands correlate positively (fig. F.5 and F.7), in particular at grouped very low, intermediate, 

high and very high frequencies (fig. F.6). Nevertheless, detail is not fully redundant as their correlation coefficient rarely exceeded 

0.9. 
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Appendix G. Principal component analysis of the complete set of features at high velocity 

 

 

 

 

 

Fig. G.1. Pareto diagram of the variance explained by principal components representing the whole set of features at high velocity. Much more 
than 3 principal components are needed to explain at least 80% of variance induced by data and represented by linear combinations of their 

multiple features. 
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Fig. G.2. Pareto diagram of the variance explained by principal components representing: (a) temporal mechanical, (b) acoustical, (c) mechanical 
and acoustical; (d) third-octave spectral mechanical, (e) acoustical and (f) mechanical and acoustical features at high velocity. 

The shoulder method or the 80% variance limit permit to choose a minimal number of 3, 2, 4, 1 or several principal components 

necessary to represent well the feature combinations a, b, c, d, e and f, respectively in figure G.1. Thus 2-D representations of the 

first principal components show grouping trends corresponding to linear combinations of the initial features, but none suffice to 
delimitate clearly characteristic regions because of too much overlapping (fig. G.3). 
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Fig. G.3. 3-D principal component representation of: (a) temporal mechanical, (b) acoustical, (c) mechanical and acoustical; (d) third-octave spectral 

mechanical, (e) acoustical and (f) mechanical and acoustical features at high velocity. 
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Appendix H. Detailed support vector machine classification results 

 

Fig. H.1. Learning curve with standard deviation obtained from 10 random experiments of quadratic SVM tested with 20% and trained with 

varying numbers of data from 6 to 511 corresponding to about 1 to 85 samples per group, at high-velocity with selected temporal and third-octave 
spectral mechanical and acoustical features.  

 

Table H.1. Overall accuracies [%] of the quadratic SVM classification models (mean and standard deviation of 10 five-fold models for each feature 

combination). Unless specified as “selected”, the complete set of features extracted by temporal and/or spectral analysis of mechanical and/or 

acoustical signals was used. In the “selected” features sets, brittleness and low-strain stiffness were neglected. 

Domain Features 
Octave    

bands 

Number of 

features 

Test velocity 

10 mm/s 0.33 mm/s 

Time 

Mechanics complete 

 

10 57.5 ±0.8 68.2 ±0.8 

Mechanics selected 8 57.9 ±0.7 69.3 ±1.1 

Acoustics 4 79.7 ±0.9 72.1 ±0.6 

Combined complete 14 78.5 ±0.7 77.5 ±0.7 

Combined selected 12 80.2 ±0.9 78.9 ±0.7 

Frequency 

Mechanics 

1 9 56.5 ±0.6 67.3 ±1.0 

1/2 16 54.2 ±0.9 66.8 ±0.8 

1/3 24 53.4 ±0.9 66.6 ±1.0 

Acoustics 

1 11 66.8 ±0.9 65.7 ±0.9 

1/2 21 69.9 ±0.8 74.0 ±0.8 

1/3 32 74.8 ±0.7 77.1 ±1.0 

Combined 

1 20 77.2 ±0.9 80.4 ±0.9 

1/2 37 78.7 ±0.9 84.4 ±0.9 

1/3 56 84.3 ±0.7 86.1 ±1.0 

Time & 

Frequency 

Mechanics complete 

1 19 57.7 ±1.0 70.1 ±0.8 

1/2 26 57.3 ±1.0 69.4 ±1.0 

1/3 34 56.0 ±1.9 69.4 ±0.8 

Mechanics selected 

1 17 58.8 ±1.2 71.7 ±1.3 

1/2 24 57.4 ±1.5 69.5 ±1.2 

1/3 32 56.0 ±0.9 71.0 ±1.0 

Acoustics 

1 15 87.0 ±1.1 82.6 ±0.7 

1/2 25 87.2 ±0.7 85.0 ±1.0 

1/3 36 90.1 ±0.6 86.8 ±0.8 

Combined complete 

1 34 85.6 ±1.0 86.8 ±0.6 

1/2 51 87.1 ±0.6 89.3 ±0.6 

1/3 70 91.5 ±0.5 90.5 ±0.5 

Combined selected 
1 32 85.7 ±1.1 87.8 ±0.6 

1/2 49 87.7 ±0.9 90.2 ±0.5 
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1/3 68 91.8 ±0.7 91.2 ±0.6 

 

Fig. H.2. Test set confusion matrices of five-fold cross-validated quadratic SVM models representative of the mean classification results at high 

velocity: (a) selected temporal mechanical; (b) third-octave spectral mechanical; (c) selected temporal with third-octave spectral mechanical; (d) 

selected temporal mechanical and acoustical; (e) third-octave spectral mechanical and acoustical and (f) temporal with third-octave acoustical 

features. Samples which were classified in the right group are indicated in the green diagonal (in percent). Samples which were predicted by mistake 

in other groups than the true one are indicated in the orange boxes. 
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Appendix I. Artificial neural networks classification of high-velocity, selected features 

 

Table I.1. Overall accuracies [%] on the test sets of the ANN classification models (mean and standard deviation of 10 models for the optimized 

selected temporal with third-octave spectral mechanical and acoustical features at high velocity): (a) 1 layer of 10 hidden neurons; (b) 3 layers of 

20 hidden neurons and (c) 1 layer of 250 hidden neurons. 

Domain Features 
Octave    

bands 

Number of 

features 
Test velocity 

ANN model 

(a) (b) (c) 

Time & 

Frequency 
Combined selected 1/3 68 10 mm/s  85.8±3.8 85.1±4.9 80.9±5.8 

 

 

Fig. I.1. Confusion matrices of one of the best ANN models with 1 layer of 10 hidden neurons using the high-velocity selected temporal combined 

with third-octave spectral mechanical and acoustical features: training, validation, test and complete sets of samples. Plots are rotated in comparison 

to SVM confusion matrices, with the true class in abscissa and the predicted class in ordinate. Numbers given inside the central matrix are the 

number of samples and the percentage they represent from the input sample set. Group-specific true and false predicted test sample classification 

rates are given in green and red at the bottom, with overall classification accuracy and error given at the right bottom corner. 
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Abstract
“Oral” tribology has become a new paradigm in food texture studies to understand complex texture

attributes, such as creaminess, oiliness, and astringency, which could not be successfully character-

ized by traditional texture analysis nor by rheology. Stick-slip effects resulting from intermittent

sliding motion during kinetic friction of oral mucosa could constitute an additional determining factor

of sensory perception where traditional friction coefficient values and their Stribeck regimes fail in

predicting different lubricant (food bolus and saliva) behaviors. It was hypothesized that the

observed jagged behavior of most sliding force curves are due to stick-slip effects and depend on

test velocity, normal load, surface roughness as well as lubricant type. Therefore, different measure-

ment set-ups were investigated: sliding velocities from 0.01 to 40 mm/s, loads of 0.5 and 2.5 N as

well as a smooth and a textured silicone contact surface. Moreover, dry contact measurements were

compared to model food systems, such as water, oil, and oil-in-water emulsions. Spectral analysis

permitted to extract the distribution of stick-slip magnitudes for specific wave numbers, characteriz-

ing the occurrence of jagged force peaks per unit sliding distance, similar to frequencies per unit

time. The spectral features were affected by all the above mentioned tested factors. Stick-slip cre-

ated vibration frequencies in the range of those detected by oral mechanoreceptors (0.3–400 Hz).

The study thus provides a new insight into the use of tribology in food psychophysics.

Practical applications
Dynamic spectral analysis has been applied for the first time to the force-displacement curves in

“oral” tribology. Analyzing the stick-slip phenomenon in the dynamic friction provides new infor-

mation that is generally overlooked or confused with machine noise and which may help to

understand friction-related sensory attributes. This approach allows us to differentiate samples

that have similar friction coefficient, but are perceived differently in the mouth. The next step of

our research will be to combine spectral attributes, such as the magnitudes of specific wave num-

ber bands and possibly their evolution during sliding, together with friction coefficient and

viscosity values of foods with sensory results. The highest potential lies in predicting smoothness

in opposition to roughness of a surface, such as a rough tongue when eating astringent or dry

foods, or of particles when eating grainy foods. The effects of food ingredients at the nano to mac-

roscales can then be used to optimize a specific lubrication behavior.

K E YWORD S

food texture, friction, lubrication, oral tribology, stick-slip

1 | INTRODUCTION

1.1 | “Oral” tribology

Tribology is utilized to measure and understand the underlying physical

principles of thin-film lubrication and friction between two interacting
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surfaces in relative motion (Dresselhuis, De Hoog, Cohen Stuart, & van

Aken, 2008a; Prakash, Tan, & Chen, 2013; Rossouw, Kamelchuk, &

Kusy, 2003). “Oral” tribology simulates the shearing of food and saliva

mixtures between oral surfaces to predict sensory perception of com-

plex texture attributes (Chen & Stokes, 2012). It has become a new

paradigm in food texture studies for a decade (Chen & Stokes, 2012,

Stokes, Boehm, & Baier, 2013). In fact, during chewing and swallowing,

food is manipulated by the lips, the teeth, and the tongue, pressed and

sheared against the cheeks, the palate and the throat wall mucosa, all

oral and pharyngeal tissues containing mechanoreceptors (Chen &

Engelen, 2012, van Aken, 2010). Creamy, smooth, oily, slippery, fatty,

gritty, rough, or astringent are thin-film related mouthfeel attributes of

liquid or semisolid foods and boli resulting from chewed solid foods

(Chen & Engelen, 2012; Chen & Stokes, 2012). For example, mouth-

coating substances and particles from unripe fruit polyphenols or

red wine tannins produce an astringent afterfeel after swallowing,

which is still not well understood (Brossard, Cai, Osorio, Bordeu, &

Chen, 2016; Upadhyay, Brossard, & Chen, 2016).

1.2 | Tribometry and concepts

Tribometers are standardized in the metal and machinery industries

and recently being adapted to food materials (Pradal & Stokes, 2016;

Prakash et al., 2013). Normal load, horizontal shearing, and/or rolling

velocity are controlled while sliding force is measured, resulting in

force-displacement curves (Figure 1). Two regions can be distinguished

lying on the basic principles of Coulomb’s law (Liang & Feeny, 1995;

Rossouw et al., 2003). Static friction is characterized by a high rise in

force until it exceeds the sliding resistance limit. The onset of sliding is

thus analogous to the yield point in rheology where a fluid begins to

flow. Then, overall dynamic friction is characterized by almost constant

sliding forces produced by the moving interacting surfaces. The tradi-

tional way to evaluate friction is to calculate the friction coefficient

from the mean sliding force in the dynamic friction domain divided by

normal load. Stribeck curves represent the friction coefficient at differ-

ent test velocities, often divided by the normal load and multiplied by

the lubricant’s viscosity to produce master curves depending on the

gap (Chojnicka-Paszun & de Jongh, 2014; Stokes, Macakova,

Chojnicka-Paszun, de Kruif, & de Jongh, 2011). Three domains of lubri-

cation can be defined. At high velocities and in the hydrodynamic

regime, the sliding force increases with velocity because of hydrody-

namic fluid pressure, separating fully the tongue from the palate or

other interacting surfaces. At low velocities, high frictional forces are

produced in the boundary regime because of direct contact and possi-

ble interlocking of surface asperities. At intermediate velocities in the

mixed regime, asperities begin to be separated by a lubricant film of

similar thickness as the asperities.

1.3 | Challenges and stick-slip phenomena

Several attempts failed to correlate rheological or bulk texture proper-

ties with thin-film related texture attributes (Bourne, 1975; Stokes

et al., 2013). Friction coefficient values at specific velocities were

related to fattiness, smoothness (Kokini, 1987; Malone, Appelqvist, &

Norton, 2003), creaminess (Morell, Chen, & Fiszman, 2017; Sonne,

Busch-Stockfisch, Weiss, & Hinrichs, 2014), and astringency (Brossard

et al., 2016). Sonne et al. (2014) demonstrated that in-mouth creami-

ness of yoghurt result from a multisensory experience of combined

assessments of rheology, particle size, and tribological characteristics.

However, the actual challenge is to relate a reliable instrumentally

measured tribology data to sensory mouthfeel when the friction coeffi-

cient is still unable to predict, for example, astringency, roughness, or

graininess (Morell et al., 2017; Pradal and Stokes, 2016; Sonne et al.,

2014; Upadhyay et al., 2016). The present study postulates that jagged

force patterns should contain valuable information for oral sensory per-

ception studies (Figure 1).

FIGURE 1 Important phenomena in tribology: traditional friction characterization versus new stick-slip approach
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It was hypothesized that stick-slip effects could be responsible for

vibrations detected by mechanoreceptors in the mouth, which influ-

ence mouthfeel. Stick-slip effects are repeated sticking and sliding

events which reflect intermittent static and dynamic friction phases in

jagged sliding force curves (Derler & Rotaru, 2013; Rossouw et al.,

2003; Scherge & Gorb, 2013). In reality, the overall dynamic friction

domain is often composed of repeated static-dynamic phases, forming

sliding force oscillations (Rossouw et al., 2003). Stick-slip effects are of

considerable interest in many fields because of the possible damaging

effects of their vibrations (Baum, Heepe, & Gorb, 2014; Bhandari,

2013; Rossouw et al., 2003) or their whished effects, such as controlled

wear (Asamura, Yokoyama, & Shinoda, 1998; Baum et al., 2014; Ros-

souw et al., 2003; Shao, Childs, & Henson, 2009). Stick-slip effects are

also classified to recognize surface texture using dynamic tactile array

sensors (Heyneman & Cutkosky, 2016) for intelligent robots, which are

based on neurologic studies of skin mechanoreceptors stimulation.

Nevertheless, stick-slips are still not systematically investigated, as their

characterization and understanding of their underlying physico-

chemical processes are challenging (Derler & Rotaru, 2013; Rossouw

et al., 2003). Even though it is known that friction definitively influen-

ces tactile perception (Derler & Rotaru, 2013, Guest et al., 2013), for

example, mice use whiskers stick-slip motion to evaluate surface tex-

tures (Chen et al., 2015). Vibrations of adequate magnitude and fre-

quency in the range of 0.3–400 Hz can stimulate oral mucosa

mechanoreceptors (Asamura et al., 1998; Shao, Childs, Barnes, & Hen-

son, 2010; Upadhyay et al., 2016; van Aken, 2010). However, in food

texture studies, stick-slip effects are rarely mentioned (Chen, Liu, &

Prakash, 2014; Krzeminski, Wohlh€uter, Heyer, Utz, & Hinrichs, 2012;

Prinz, de Wijk, & Huntjens, 2007).

Dry contact studies demonstrated that stick-slip patterns are influ-

enced by contact surfaces’ roughness and topology at nano to macro-

scales (Baum et al., 2014) and by the mechanical properties of the bulk

materials and asperities (Rossouw et al., 2003). The state of scientific

knowledge is less advanced in soft than in hard mechanics tribology,

where several issues about stick-slip remain unclear (Liang & Feeny,

1995; Rossouw et al., 2003). Moreover, sweating on skin (Derler &

Rotaru, 2013) or saliva secretion in mouth (Stokes et al., 2013) make

the understanding of surface interactions even more difficult because

stick-slip behavior is also influenced by lubricant chemical constitution,

surface tension, and viscosity (Rossouw et al., 2003). Thus, food scien-

tists have to deal with highly deformable and visco-elastic oral tissues

(Dresselhuis et al., 2008a) as well as with the influence of complex

lubricants, mainly inhomogeneous and non-Newtonian. In the field of

foods, stick-slip effects were examined in milk powder conveying

machines (Bagga, Brisson, Baldwin, & Davies, 2012). Nevertheless, to

the best of our knowledge, the stick-slip behavior of food materials

between oral-like surfaces is not yet investigated and related to food

texture.

1.4 | Stick-slip characterization

The overall pattern, for example, repeated regular or irregular oscil-

lations (Baum et al., 2014; Motchongom-Tingue, Djuidj�e Kenmo�e, &

Kofan�e, 2011) and the mean amplitude and frequency, calculated

from the height and number of force peaks shown in Figure 1 (Bagga

et al., 2012; Scherge & Gorb, 2013; Seo et al., 2015) can character-

ize stick-slip effects. Spectral analysis is useful to account for multi-

scale patterns composed of repeated events of different frequencies

and magnitudes (Dalbe, Cortet, Ciccotti, Vanel, & Santucci, 2015;

Rubinstein, Cohen, & Fineberg, 2009). The Fourier transform is tra-

ditionally used to calculate the frequency components and their cor-

responding magnitude distribution (Sanahuja & Briesen, 2015). The

obtained frequency spectrum may characterize the overall dynamics

of friction systems (Baum et al., 2014). However, abrupt changes

during displacement can only be highlighted by dynamic spectral

analysis. For example, the short-time Fourier transform produces

time-frequency-magnitude spectrograms (Heyneman & Cutkosky,

2016). The wavelet transform, an alternative to the classical Fourier

transform for the analysis of transient signals, was already used by

several physicians and mechanical engineers to evaluate stick-slip

features in the time-frequency domain (Basu and Gupta, 2000; Liang

& Feeny, 1995; Rubinstein et al., 2009).

1.5 | Summary of the exploration topics

The goal of the present study was to extract new characteristics from

tribology data to gain deeper insights into “oral” tribology and food

lubrication as well as to propose new tools for the evaluation of com-

plex textures. Thus, following questions were addressed:

� Are the zigzags in dynamic friction force curves machine noise or are

they stick-slip effects influenced by measurement settings (sliding

velocity, normal load, and surface roughness) mimicking oral condi-

tions and food lubricants?

� Which spectral analysis methods permit the extraction of useful

sticks-lip characteristics and the best graphical representation?

� Are stick-slip effects stronger in the boundary regime than in the

mixed and the hydrodynamic regimes?

� Are stick-slip effects potentially relevant for mouthfeel according to

oral mechanoreceptors sensitivity for vibrations?

Dry contact analysis was necessary to acquire basic knowledge about

test settings and contact partners used in food tribology studies as

compared with sticks-slip studies in other fields, before trying to inter-

pret the complex effects of food lubricants. Model foods, such as water

and oil, were used to evaluate the extreme boundaries between which

spectral stick-slip characteristics of oil-in-water emulsions may evolve.

Existing literature about sensory perception of friction-related attrib-

utes, such as astringency and creaminess, was reviewed and the possi-

ble role of stick-slip effects on oral mechanoreception was discussed to

appreciate the potential use of their spectral characteristics in differen-

tiating samples which are perceived as different. Nevertheless, only

simple model systems were selected, which do not reflect typical

astringent or creamy sensations, because they provided a simpler basis

for first interpretations of stick-slip phenomena in foods.
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2 | MATERIALS AND METHODS

2.1 | Oil-in-water emulsification

Oil-in-water (o/w) emulsions with different oil mass fraction (/) of 0.3

and 0.05 but the same droplet size were produced following a pub-

lished procedure (Dresselhuis, Hoog, Cohen Stuart, Vingerhoeds, &

Aken, 2008b). Pre-emulsions containing 30 or 5 wt % winterized sun-

flower oil phase (Arawana Brand, Shanghai Jiali Food Company, Shang-

hai, China) in deionized water (Ultrapure type 1 quality, Merck

Millipore, Darmstadt, Germany) and stabilized with 1 wt % whey pro-

tein isolate (WPI, Glanbia Nutritionals, Shanghai, China) were made

using an Ultra-Turrax (T25, IKA, Switzerland) for 2 min. 50 ml of pre-

emulsion was then homogenized with a Sonic Ruptor 400 Ultrasonic

homogenizer equipped with an OR-T-375 bar (OMNI International,

Kennesaw, Georgia) at a constant pulse mode at 70% of the maximal

power of 400 W for 4 min. Emulsions were stirred with a magnetic stir-

rer during sonication as it was optimized in a pre-study. After homoge-

nization, the emulsions were kept on ice for several hours before

storing overnight at 4C. The protein-stabilized emulsions were then

further diluted with the continuous phase containing 1 wt % WPI.

2.2 | Physical measurements of the emulsions

The evaluation of the droplet size distributions of the o/w emulsion

was realized with a Mastersizer 3000 HydroMV (Malvern Instruments,

MS 3000, MAL1114945). The emulsion droplet size was measured in

terms of Sauter mean diameter and was the same for both emulsions

(D3,25 [160.05] mm), similar to fat micelles in milk (Nguyen, Bhandari,

& Prakash, 2016a). The droplet detection was based on the refractive

indexes of sunflower oil (1.467) and the dispersant, deionized water

(1.33). Viscosity was measured at 25C with double wall concentric steel

cylinders (DHR-2 rheometer, TA Instruments, New Castle) from 0.01

to 1,000 s21.

2.3 | Physical measurements of the

polydimethylsiloxane sheets

Soft elastomers often simulate human skin (Derler & Rotaru, 2013;

Shao et al., 2009) or oral mucosa (Chojnicka-Paszun & de Jongh, 2014).

Oral surface analogs, such as polydimethylsiloxane (PDMS), a silicone

elastomer, can be used as one of the contacting surfaces in food “oral”

tribology (Chen et al., 2014). The thickness and the size of the surface

structure details of smooth and textured PDMS sheets (NDA engineer-

ing Equipment Ltd., Kempston, UK) were evaluated from microscopy

images at 53, 103, and 203 magnification (Leica DMC 2900, Leica

Microsystems Ltd., Heerbrugg, Switzerland). The sheets were com-

pressed with a 5-mm diameter stainless steel cylinder (P/5) at 0.1 mm/

s with a TA-XT Plus texture analyzer (Stable Micro Systems, Surrey,

UK). Two types of elastic moduli were evaluated from more than 15

stress-strain curves: the initial elastic modulus, mostly used in mechani-

cal engineering, was calculated from the slope in the linear domain of

stress from 0 to 1% strain whereas the high strain elastic modulus,

more often used in food texture studies, was calculated from the slope

in the linear domain from 0 to 40–90% of maximal stress.

2.4 | Tribological measurements

The TA-XT Plus texture analyzer was equipped with a “500-g” high

resolution load cell and the accessories designed by Chen et al. (2014)

for the tribology measurements: three stainless steel balls of 10 mm

diameter in a triangular arrangement embedded into a stainless steel

base dragged on two different PDMS sheets by the texture analyzer

laid to its side. “Low” and “high” normal loads, 0.569 and 2.514 N, were

obtained by additional copper cylinders on the top of the disc probe.

Temperature was controlled at 25C by a water circulation system for

simplicity because oral temperature is more complex than body tem-

perature (Engelen & de Wijk, 2012). Five milliliter of demineralized

water, sunflower oil or o/w emulsions were spread on the PDMS

sheet. Sliding motion tests were run for 10 mm displacement at three

velocities per decade between 0.01 and 40 mm/s. An evaporation

blocker avoided air convection and drying because of room humidity

variations (30–50%). Force-displacement data were recorded at the

highest possible sampling rate of 500 Hz by the Exponent software.

Dry contact measurements were performed additionally without lubri-

cant to try determining the influence of test settings, PDMS surfaces,

and lubricants. The main squared structure direction of the textured

surface was positioned perpendicular to dragging, but handling cannot

ensure perfect positioning, which may induce variability at the micro-

scopic scale. Moreover, according to Liang and Feeny (1995), machine

dynamics can dominate if the impulse-dependent machine response is

not filtered from the frequency response of the frictional system. To

distinguish the contribution of both components, pretests should be

run at controlled oscillation magnitudes, and frequencies. Unfortu-

nately, required devices were not available and the precise response of

the combined T.A., force sensor and mounted disc probe could not be

evaluated because the mount was not stiff, but loosely attached and

machine noise depends on the irregular behavior of the measured sam-

ple (Sanahuja & Briesen, 2015). Moreover, filtering of high frequencies

in the case of abruptly changing signals may introduce erroneous low-

frequency components due to the Gibbs phenomenon (Liang & Feeny,

1995). Thus, machine noise was measured without probe to identify

the main intrinsic vibrations of the machine, but no filtering was

performed.

2.5 | Spectral analysis

Data were imported into MATLAB 8.5 (release R2015a [Mathworks,

Natick, MA]). Prior to spectral analysis, the overall dynamic friction

force segment from 3 to 8 mm was detrended by subtracting the mean

force to center data around 0 while keeping the overall trend. Three

main algorithms were used to find the optimal calculation and repre-

sentation of the time-frequency-magnitude spectrograms. The short-

time Fourier transform (STFT) and the continuous wavelet transform

functions were taken from the Signal Processing toolbox. STFT was

performed with 50% overlapping Hanning windows of optimized width
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for each velocity to produce satisfactory accuracy in both time and fre-

quency domains. Morlet wavelets were used for continuous wavelet

transformation. Hilbert-Huang transform (HHT) functions were

obtained from an open-source package (2014) of RCADA (Wu &

Huang, 2009), where the empirical mode decomposition algorithm fol-

lowed by the Hilbert transform resulted in HHT spectrograms. Advan-

tages, drawbacks and settings of these methods for the analysis of

jagged curves were discussed by Sanahuja and Briesen (2015). Even

though these dynamic spectral transforms detect single events, the

spectrograms revealed no particularly interesting magnitude-frequency

changes during displacement. Thus, the nondynamical Fourier trans-

form was also used because it was much faster than wavelets and it

better extracted low-frequency components than STFT and HHT. Cal-

culated magnitudes were expressed in power spectral density (PSD) in

logarithmic Decibel units (dB). Moreover, instead of using frequencies

in Hz corresponding to the inverse of an oscillation period in the time-

domain, spatial frequencies called wave numbers where used in mm21

to be directly related to the wavelength of displacement components.

Consequently, spectral characteristics could be compared at any test

velocity and quickly converted to typical length scales correlating with

surface microstructure or lubricant droplet/particle sizes. The Fourier

spectra revealed characteristic and precise wave number band peaks

for each analyzed system, but this representation kept a too high

degree of complexity for interpretation. The integration of the magni-

tude distribution in subdecade wave number bands condensed infor-

mation into bar-plots while losing details. This is why both the full

spectra and the condensed bar-plot were mostly represented together.

2.6 | Simple parameters analysis

The number of force peaks divided by 5,000 mm distance (from 3 to

8 mm dynamic friction) approximated the mean stick-slip wave number.

The mean force peak amplitude was calculated from the height or

prominence relative to the baseline of the peaks and divided by two to

be compared with a sinusoidal-like wave amplitude definition.

2.7 | Friction coefficient analysis

The friction coefficient (mean force divided by normal load) was calcu-

lated in the segment from 3 to 8 mm displacement, corresponding to

the overall dynamic friction domain, thus avoiding the first static fric-

tion force peak and the deceleration segment, particularly pronounced

at high velocities. The friction coefficient was then represented

depending on sliding velocity.

2.8 | Statistical analysis

At least three replicates were measured at the lowest velocities and up

to five or more at higher velocities because of higher variability. Mean

and standard deviation (represented by error bars) of the simple spec-

tral parameters and the friction coefficient were calculated from the

available replicates. The most representative samples, with a friction

coefficient near to the mean value, were selected for spectral analysis

and plotting of their spectra.

3 | RESULTS AND DISCUSSION

3.1 | Measurement set-up characteristics

3.1.1 | Contact surface properties

The smooth and the textured PDMS sheets were 0.71–0.73 and 0.97–

1.03 mm thick, respectively (Figure 2). Periodic grooves of 283.6–

363.6 mm width (L) and 59.7–90.9 mm depth (H) produced a shaggy

topology, similar to lingual papillae, (Dresselhuis et al., 2008a; Nguyen,

Nguyen, Bhandari, & Prakash, 2016b; van Aken, 2010) on the textured

PDMS surface. It had also repeated asperities of 29.8–106.1 mm width

(l) and 7.5–37.3 mm depth (h), and singular ones of about 6.1–21.2 mm

width and 4.5–15.2 mm depth. On the smooth PDMS surface, only sin-

gular asperities were present, with a root-mean-square roughness of

8006100 nm (Chen et al., 2014). Even though its roughness is not

similar to lingual papillae, this material is still used in many tribology

studies. The steel balls had a roughness of about 10 nm, thus asperities

of the ball could not interlock with those of the PDMS sheets as they

do not have a similar length scale. The diameter of the balls did not

permit either to penetrate fully into the main cavities of the textured

PDMS. In analogy, to regular sinusoidal waves, the wavelength of the

main cavities would be about 300 mm (L), corresponding to a wave

number of 0.003 waves/mm or 0.003 mm21 of amplitude H/2, about

40 mm. Figure 3 helps finding correspondences between spatial and

spectral length scales for comparisons of the possible influence of

roughness on stick-slip effects.

The initial elastic moduli of the smooth and the textured PDMS

were (8206280) kPa and (139639) kPa, respectively, similar to the

Young’s moduli of soft to hard PDMS reported by Dresselhuis et al.

(2008a), measured at a higher velocity of 5 mm/s and up to 5% strain.

The high strain elastic moduli were (7.960.3) MPa and (1260.8)

MPa, respectively, similar to the Young’s moduli of hard to soft sili-

cones reported by Chojnicka-Paszun and de Jongh (2014), measured at

nonspecified velocity and strain. Thus, at very low strains, smooth

PDMS was stiffer than the compliant asperities of textured PDMS. At

higher strains, textured PDMS was stiffer when asperities were flat-

tened and compressed, probably because of strain hardening

FIGURE 2 Optical microscopy of transversal views of the smooth
(a) and the textured (b) PDMS sheet top surfaces
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(Dresselhuis et al., 2008a). Dresselhuis et al. (2008a) reported Young’s

moduli of pig’s tongue, lower by two orders of magnitude, but their

samples were chemically and thermally manipulated, not alive nor

fresh. The lower moduli resulted in much lower point contact pressure,

which could influence friction forces and maybe stick-slip effects.

Nevertheless, other sources reported elastic moduli of muscles in the

range of those found by Dresselhuis et al. (2008a), but in the rest posi-

tion, and values in the range of the initial elastic modulus of our PDMS

materials for contracted muscular tissues (Payan & Perrier, 1997).

Moreover, both PDMS sheets had thickness and elasticity in the same

order of magnitude, thus, it is their roughness which was expected to

produce the main differences in friction and stick-slip effects.

3.1.2 | Analytical limitations

Atomic roughness causes nanoscale stick-slip effects (Scherge & Gorb,

2013), which may play a role in friction-related mouthfeel to be ana-

lyzed in further investigations. The texture analyzer sampling frequency

of 500 Hz limited the maximal calculable signal frequency to 250 Hz

according to the Shannon-Nyquist theorem (Sanahuja & Briesen,

2015), corresponding to a wave number of 25 mm21 at 0.01 mm/s

down to maximally 0.0063 mm21 at 40 mm/s when calculated from

force-time data, and to wavelengths of minimally 0.04 mm and 160 mm,

respectively. Wave numbers calculated from force-displacement data

would limit to maximally 0.5 mm21 due to the 1 mm displacement sen-

sor resolution. This is why spectral analysis was conducted first on

temporal data to access higher frequencies, assuming a constant veloc-

ity for the estimation of wave numbers. Finally, stick-slip spectral com-

ponents in the range of the main cavities could be analyzed at any

velocity, but micro-scaled effects could be analyzed only at low veloc-

ities. Therefore, wave numbers below 1 mm21 only were taken into

account. In this way, the tribological set-up does not cover the full

range of oral mechanoreception at every test velocity (Asamura et al.,

1998; Upadhyay et al., 2016). But, at the lowest velocities, vibrations

stimulating fast-adapting Meissner corpuscles (3–40 Hz) and slowly

adapting Merkel receptors (0.3–3 Hz), as well as the lowest frequencies

for Ruffini-like corpuscles (15–400 Hz) could be detected. Detected

stick-slip forces were also above the detection threshold of these

receptors (van Aken, 2010). Moreover, the force sensor calibration

should be done according to higher accuracy standards (Supplement A)

for the detection of low-magnitude stick-slip effects. The recording

interval of 0.01 mN was sufficient to give an idea of stick-slip behavior

which showed significant trends. In fact, spectral machine noise com-

ponents were several orders of magnitude lower than in measurements

with probes and samples and thus negligible (Supplement A), even

though their adaptation to oscillating measurements could not be

estimated.

3.2 | System-dependent Stribeck regimes

Figure 4 gives an overview of the Stribeck curves obtained for the dif-

ferent test settings and lubricants combinations.

3.2.1 | Effects of velocity

Most of the measurements in dry and lubricated condition were limited

to the boundary regime. This observation may be due to the use of rel-

atively low sliding velocities (De Hoog, Prinz, Huntjens, Dresselhuis, &

van Aken, 2006), where friction is dominated by direct contact

between the interacting surfaces. Moreover, only the boundary regime

was present at any velocity in dry contact conditions. In dry hard con-

tact tribology, the Coulomb law postulates that the friction coefficient

is independent of velocity (Cross, 2005), but in Figure 4 it increased

with velocity. This phenomenon was observed in soft contact tribology

(Cross, 2005; Krzeminski et al., 2012; Nguyen et al., 2016b) and could

be due to velocity strengthening effects (Rossouw et al., 2003). More-

over, the friction coefficient was almost constant or only slightly

increasing at the lowest velocities, which could be due to velocity-

weakening effects reported for some materials at very low velocities

where the Coulomb law can be approximated (Rossouw et al., 2003).

3.2.2 | Effects of roughness

Friction was lowered by roughness in dry contact (Scherge & Gorb,

2013) as well as with water, in particular at low velocities (Figure 4),

which was also observed by Krzeminski et al. (2012). This could be

explained by the smaller contact area between the asperity tips and

the steel balls in comparison to the smooth PDMS. Moreover, asper-

ities can deform more softly than bulk material. Indeed, roughness can

be used to minimize wear and energy loss (Baum et al., 2014). Rough-

ness can also increase wear magnitude in comparison to smooth surfa-

ces depending on the materials in contact and on the friction

conditions (Rossouw et al., 2003). In fact, resistance to sliding created

by interlocking, which is considered in “surface topography models”

(Rossouw et al., 2003), would probably have increased friction. This is

why further studies mimicking oral mucosa should rub textured surfa-

ces against each other.

3.2.3 | Effects of lubrication

Lubricants generally lowered the friction coefficient at any load and

velocity (even in the boundary regime) in comparison to dry contact,

which can be explained by the presence of a thin lubricant film

(Nguyen et al., 2016a). On smooth surface, the friction coefficient in

FIGURE 3 Correspondence of wavelengths (spatial distances) with
wave numbers (spectral lengths)
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dry contact was higher than with water, low, followed by high oil mass

fraction emulsions, and finally sunflower oil. Oil would adsorb better

than water to the surfaces in contact and create a lubricating film in

boundary lubrication (Nguyen et al., 2016a). Nevertheless, the interpre-

tation is more complicate on textured surface, where lubricants

decreased the friction coefficient less significantly. Water showed even

increasing friction with velocity, similar to dry friction, as was also

found by Nguyen et al. (2016b) on structured ethylene propylene diene

monomer rubber. This demonstrates the low and velocity-dependent

lubrication power of water depending on the substrate despite its con-

stant, low viscosity (Chojnicka-Paszun & de Jongh, 2014; Malone et al.,

2003). Moreover, the emulsions had adverse effects at low velocities

during boundary regime, producing higher friction than dry contact and

water, which was also observed elsewhere for low- to full-fat yoghurts

and milks (0.1 and 3.5–3.8 wt % fat) on structured surfaces (Krzeminski

et al., 2012; Nguyen et al., 2016b). One explanation could be the

entrapment of air pockets between the fluid and the solid substrate

asperities, preventing wetting and producing suction forces (Nguyen

et al., 2016b) at low velocities but released at higher velocities. Or fluid

squeezed between the asperities produced higher resistance to defor-

mation of the PDMS asperities depending on the presence of the 1 mm

oil droplets which could fill the larger main asperities of the textured

PDMS, several orders in magnitude (Dresselhuis et al., 2008a). The 1

wt % WPI emulsions were stable during one week storage and coales-

cence could not be observed on the dark PDMS surfaces. However, lit-

erature reported different sensitivities of emulsions to coalescence in

the mouth depending on the oil and emulsifier used and their volume

fraction (Dresselhuis et al., 2008b), and an uneven surface could addi-

tionally protect more droplets from coalescence. Even though the used

normal loads created pressures similar to those in the mouth (Supple-

ment H), coalescence, if it occurred, could explain lower friction coeffi-

cients on the textured surface under high load than under low load.

Also higher velocities could increase coalescence and lead to decreased

friction because of an oil layer coating the surfaces (De Hoog et al.,

2006; Oppermann, Verkaaik, Stiegera, & Scholten, 2016).

The mixed regime, where the friction coefficient decreased with

velocity as a result of partial lubrication, began at higher velocities for

the less lubricating fluids. At low load on smooth surface, it was pres-

ent above 5 mm/s for water and the 5 wt % oil emulsion, similarly to

full-fat milk on smooth silicone rubber in Nguyen et al. (2016b), and

above 0.05 mm/s for the 30 wt % oil emulsion and oil. Nevertheless,

water had a lower viscosity than the 5 wt % oil emulsion (2.1 mPa�s at
50 s21) and the 30 wt % oil emulsion was similar to pure sunflower oil

(about 5 mPa�s). Thus, the Stribeck curves of higher-viscous fluids

would be shifted to the right in a representation, when taking viscosity

into account (Chen & Stokes, 2012). Mixed lubrication began at lower

FIGURE 4 Overview of the Stribeck curves with friction coefficients versus test velocity for different lubricants on smooth and textured
PDMS with low (�0.5 N) and high (�2.5 N) normal loads
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velocities under higher load for both emulsions as was observed by

Nguyen et al. (2016a), which may be explained by droplet disruption

and the formation of a lubricating oil film. The emulsion droplets may

undergo more shear-induced coalescence on smooth than on textured

PDMS, which could explain the beginning of the mixed regime at lower

velocities on smooth PDMS. The beginning of a hydrodynamic regime

could only be observed on smooth surface at any load with the 30 wt

% oil emulsion and on textured surface under high load with the 5 wt

% oil emulsion. The lubricating behavior of oil was also observed by

other scientists: the interacting surfaces are completely lubricated by a

thin film and the friction coefficient is expected to increase only at

much higher velocities than diluted o/w emulsions, depending on the

rheological properties of the lubricating film (Krzeminski et al., 2012;

Malone et al., 2003).

3.2.4 | Effects of load

Load hardly impacted the friction coefficient trends, aside from some

shifts in critical boundary lubrication velocities, with values in the same

range as the experiments of Nguyen et al. (2016b) at 2 N with different

soft substrates. Nevertheless, load generally decreased the friction

coefficient values, which was already observed for deformable and

rough surfaces (Adams, Briscoe, & Johnson, 2007; De Hoog et al.,

2006; Krzeminski et al., 2012; Nguyen et al., 2016a; Prinz et al., 2007).

It could be explained by load-dependent visco-elasticity of the PDMS

polymer. Krzeminski et al. (2012) also suggest a smoothening effect of

load on soft uneven surfaces, which would reduce friction. Moreover,

in the contrary to hard metals, the friction force is not directly propor-

tional to normal load for soft contact partners, such as polymers, in par-

ticular when the surfaces are not smooth or if one partner is a sphere,

because the contact area follows the Hertz model (Cross, 2005). This

could explain that the friction coefficient is not independent of normal

load as it would be expected by Coulomb’s law (Cross, 2005, De Hoog

et al., 2006), but the exact physical reasons of a decrease in friction

with increasing load remain unclear. In lubricated conditions, one more

parameter can be the fluid film thickness, which is also influenced by

load (De Hoog et al., 2006; Malone et al., 2003). These effects are

expected to be radical using much higher loads than those in the pres-

ent study, because used loads rather correspond to very low and rela-

tively low loads (Hamilton & Norton, 2016) in particular in nonfood

tribology (Cross, 2005; Derler & Rotaru, 2013; Rubinstein et al., 2009).

However, it is the contact surface between the contact partners which

determine the local pressure. In fact, food tribologists use different

measurement geometries and thus it is more appropriate to discuss

about the produced pressures, as discussed later.

3.2.5 | Lubrication regime and sensory perception

The tribometer settings used in the present study revealed mostly fric-

tion trends in the boundary and mixed regimes, which could be the

most important for the prediction of several friction-related texture

attributes (Pradal & Stokes, 2016). Wine astringency would be pre-

dicted around 0.075 mm/s in the boundary regime (Brossard et al.,

2016), even though astringency could often not be related to friction

coefficient values in other studies. Fat perception of food hydrocolloids

and emulsions would be mainly predicted from 1 to 30 mm/s or higher

velocities by the mixed regime friction coefficient (Malone et al., 2003)

in the range of velocities measured between tongue and palate (De

Hoog et al., 2006; Prinz et al., 2007). Creaminess would result from a

combination of surface sensations of the boundary regime with fluid

flow sensations of the hydrodynamic regime, from 0.01 to 10 mm/s

(Morell et al., 2017; Sonne et al., 2014). In the present study, it was

postulated that stick-slip could also depend on the lubrication regime

and thus on the food lubricant. Moreover, stick-slip effects are pre-

sumed to be a driving phenomenon of the boundary regime, but less of

the hydrodynamic regime where lubricant flow should separate more

the contact partners. This is why they could be decisive for the under-

standing of roughness sensations linked to astringency but opposite to

creaminess, when they cannot be predicted by the friction coefficient

(Morell et al., 2017; Pradal and Stokes, 2016; Sonne et al., 2014; Upad-

hyay et al., 2016). Friction measurements without pre-coating with

saliva could simulate dry mouth effects in case of lack of saliva produc-

tion. A tongue which is poorly lubricated or where mucosal saliva film

was disrupted by food components could be perceived as rough,

maybe astringent, or dry because of specific stick-slip vibrations. In this

study, the lubricating impact of simple model foods, water, oil and their

emulsions on stick-slip vibrations was evaluated to find out if they can

be distinguished from dry contact and whether they depend on the

type of lubricant. Correlations with sensory results involving more com-

plex foods such as containing astringent proteins, polyphenols or par-

ticles and their interactions with saliva will be investigated in a further

study.

3.3 | Stick-slip effects

3.3.1 | Stick-slip mean wave number and amplitude

Mean wave number (Supplement B) decreased drastically from low to

high velocity, as it could be apprehended from the force-displacement

curves (Figure 5), but not proportionally to the velocity factor, which

inherently limits the number of recorded data points at a constant sam-

pling rate. Thus, there might be an influence of velocity on the mean

wave number, but no clear trend could be observed even when con-

verted to mean frequencies in Hz. On the contrary, Scherge and Gorb

(2013) observed an increase of mean frequency with increasing veloc-

ity while using also silicone, but with interlocking asperities and at

much lower velocities. Moreover, the mean wave number does not

reflect the real influence of velocity on the stick-slip behavior when

the sliding instabilities are unsteady (Rossouw et al., 2003) or show dif-

ferent wave lengths and shapes (Baum et al., 2014), because the values

result from averaging different effects. However, it is possible to com-

pare different measurements at the same velocity. Load decreased

mean wave number values for almost all lubricants, PDMS surfaces and

velocities (Supplement B). This effect could result from the flattening

of asperities on textured PDMS or the penetration of the ball into poly-

mer inducing more resistance, but less jumps, resulting in higher mean

amplitudes (Supplement C and Figure 5). Roughness tended to increase

mean wave number, but not coherently for every sample and rather

under low load. Roughness decreased mean amplitude at 0.01 mm/s
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both under low and high loads, but it had the opposite effect at

0.5 mm/s and erratic behavior with high variability at higher velocities.

Lubricants seamed to increase mean wave number, but the observation

was not reproducible for all test settings, neither for mean amplitude.

Lubricants could in fact lower stick-slip amplitude through lubrication

and quick slipping, thus letting contact surfaces touch more frequently,

but with less energy accumulation. Nevertheless, this could not be con-

firmed. Finally, the authors suggest to use detailed spectral analysis

instead of simple mean stick-slip characteristics which lose most of the

information by averaging the dynamic effects. In the following discus-

sions, it is demonstrated that specific stick-slip frequency ranges carry

promising information for the characterization of the food model

systems.

3.3.2 | Velocity-dependent stick-slip characteristics

Figure 5a–b shows a typical initial instability of sliding force in dry fric-

tion when using smooth PDMS. In this example at 0.5 mm/s, stabiliza-

tion of the sliding force took place after a highly oscillating transition

FIGURE 5 Dry contact at 0.01 and 0.5 mm/s on smooth PDMS with low load: (a) raw sliding force data; (b) zoomed sliding forces in the
dynamic friction domain; STFT-spectrograms at 0.01 (c) and 0.5 mm/s (d) using large windows of 216 and respectively 210 data points to
show precision in time domain (notice that the plot at 0.5 is already limited to maximally 0.5 lm21); STFT-spectrograms zoomed on low-
wave numbers at 0.01 (e) and 0.05 mm/s (f) using small windows of 212 and respectively 28 data points to show precision in time and fre-
quency domains
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from static to overall dynamic friction, which could be related to a

nucleation phase (Rubinstein et al., 2009). This behavior became even

more pronounced at velocities higher than 1 mm/s, at which variability

increased and the probe sometimes hopped with instable contact of

the three balls. This could be caused by elastic relaxation of the wrin-

kled PDMS surface and to the sudden release when exceeding a sliding

force threshold, causing resonance phenomena and larger stick-slip

oscillations.

It is of interest to find out if stick-slip effects evolve with velocity

even in the same regime, which could explain differences in mouthfeel

for similar friction coefficient values. In the case of dry friction, the fric-

tion coefficient increased with velocity while characterizing boundary

friction (Figure 4). The problem when comparing different velocities is

that different amount of data points is available, limiting the range and

accuracy of spectral computation. This is illustrated by the STFT-

spectrograms obtained at 0.01 and 0.5 mm/s (Figure 5c,d), which cover

wave numbers up to 25 and 0.5 mm21, respectively. Nevertheless, the

influence of velocity could be distinguished from 1024 to 0.5 mm21

(Figures 5e–f and 6). Clear characteristic wave number bands were

present in the spectrograms, for example more energetic bands (of

higher PSD values and thus darker color bands in the spectrograms of

Figure 5e,f, higher magnitude peaks in Figure 6a and higher bar values

in Figure 6b) below 0.02 and at about 0.06–0.1 mm21 for 0.01 mm/s

than for 0.5 mm/s. Bands around 0.4 mm21 and around 0.44 mm21

characterized 0.01 mm/s and 0.5 mm/s, respectively (Figure 5e,f as

determined by zooming). However, spectrograms are not very precise

and easy to interpret. Characteristic wave number peaks can be deter-

mined more accurately in the Fourier spectra (Figure 6a) whereas sim-

plified information delivered by subdecade wave number bars helps

compare different samples (Figure 6b). Thus, it is clear that measure-

ments at both velocities follow a similar trend, but for almost all wave

numbers, the magnitude of the stick-slip effects is higher at lower

velocity, in particular at the lowest wave numbers, of 7.5�1022 and

1.5�1021 mm21. However, the 0.5 mm/s measurements produced char-

acteristic wave numbers of higher energy than lower velocities around

the hump in the spectrum centered on 3.5�1022 mm21, for example. It

is possible that higher velocities leave less time for the polymer mate-

rial to relax after each wrinkling of the surface, that can also be com-

bined with the effect of velocity-strengthening (Rossouw et al., 2003).

This would explain higher overall friction forces at higher velocities

(Figure 5a,b), but less deformation and thus lower magnitudes of each

stick-slip event. Also, spectral magnitudes increased strongly in the

range of lowest wave numbers at high velocities (10–40 mm/s), with

increasingly variable results observed because of irregularly happening

macroscopic stick-slip events. Moreover, the spectrum was strongly

limited by the available data points in the higher wave numbers, with

FIGURE 6 Dry contact at 0.01 and 0.5 mm/s on smooth PDMS with low load: (a) Fourier spectra; (b) power spectral density integral bar
plots with information condensed in subdecades wave number bands
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maximally 2�1022 mm21 at 10 mm/s and 7�1023 mm21 at 40 mm/s

(Supplement D).

The spectral distributions of water were similar to dry contact

revealing possible changes in stick-slip behavior within the same lubri-

cation regime (boundary regime at 0.01 and 0.5 mm/s). The same wave

numbers characterized water stick-slip effects, however, with slightly

overall lower magnitudes and notably higher magnitudes of the 1�1024

and 3�1024 mm21 wave numbers at 0.01 mm/s than in dry contact,

which could be due to irregular wrinkling of the smooth surface.

For sunflower oil, magnitudes were about 10 times lower for

almost every wave number band both at 0.01 and 0.5 mm/s than dry

contact, which can be explained by high lubrication power (Figure 7).

An energetic hump (Figure 7d) of accumulated high magnitudes of a

group of wave number bands from 1.5�1021 to 6.5�1021 mm21 at

0.01 mm/s, higher than dry contact, was characteristic for the oil-

lubricated boundary regime, where shearing energy was spread into

high-frequency microscopic oscillations rather than macroscopic stick-

slip oscillations. Moreover, these oscillations quasi disappeared at

FIGURE 7 Sunflower oil at 0.01 and 0.5 mm/s on smooth PDMS with low load: (a) raw sliding force data; (b) zoomed sliding forces in the
dynamic friction domain; (c) Fourier spectra; (d) power spectral density integral bar plots with information condensed in subdecades wave
number bands
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0.5 mm/s, demonstrating the possible influence of separating fluid in

the mixed regime. In fact, almost all stick-slip magnitudes at every

wave number band were lower at 0.5 mm/s in the mixed regime than

at 0.01 mm/s in the boundary regime.

Both emulsions were characterized in the boundary and mixed

regimes by spectral characteristics and magnitudes similar to oil at

low velocities (Supplement E-F). Nevertheless, the mixed regime of

the 30 wt % oil emulsion (Supplement F) was less pronounced at

0.5 mm/s than for sunflower oil, which could explain less differences

between 0.01 and 0.5 mm/s in stick-slip magnitudes at several wave

number bands than for sunflower oil. In the case of the 5 wt % oil

emulsion (Supplement E), differences in spectral magnitudes are

FIGURE 8 Dry contact at 0.01 mm/s on smooth versus textured PDMS under low load: (a) raw sliding force data; (b) zoomed sliding
forces in the dynamic friction domain; (c) Fourier spectra; (d) power spectral density integral bar plots with information condensed in
subdecades wave number bands
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even lower between both velocities, which could result from a non-

fully developed mixed regime at 0.5 mm/s, and thus both velocities

reflect rather two cases of boundary regimes. However, there are

already differences to see at different wave numbers. Interestingly,

the 30 wt % oil emulsion was characterized by higher spectral mag-

nitudes at 40 mm/s at the beginning of the hydrodynamic regime

than at 10 mm/s in the mixed regime (like in dry contact), and by

even similar or higher values than in the boundary and lower-

velocity-mixed regimes (Supplement F-G). This could account for

stronger low-wave number oscillations at high velocities because of

increasing overall friction (shown in the Stribeck diagram). Neverthe-

less, because of the sampling rate limitation, it is impossible to see if

the high-wave number stick-slip effect magnitudes are lowered by

hydrodynamic forces which should theoretically separate the rub-

bing surfaces. Moreover, because of the velocity limitations, only

the beginning of the hydrodynamic regime could be analyzed, but

the authors presume that effects may be more significant at higher

velocities.

3.3.3 | Load-dependent stick-slip characteristics

The maximal pressure at the contact point between a steel ball and a

polymer material can be evaluated according to the Hertz theory of

contact mechanics (Popov, 2010). Despite the fact that the low (0.5 N)

and high (2 N) normal loads used in our study perfectly fit to common

food tribology settings and to in-mouth forces of 0.01–10 N (Nguyen

et al., 2016b), the pressures obtained with the simplified Hertz model

(Supplement H) were a bit higher than the tongue contact pressures of

10–50 kPa reported by Chen and Engelen (2012) but all in the range of

4–290 kPa reported by Krzeminski et al. (2012). The settings most sim-

ilar to oral conditions were found under low load on textured PDMS,

where the ball exerted a pressure of about 27 kPa. However, punctual

pressure was not constant during motion because of the surface irregu-

larities and stick-slip effects, which makes it difficult to choose the best

settings only based on one evaluated pressure value. In the spectra,

the interpretation of load effects on stick-slip behavior was not

straightforward. In dry contact on smooth as well as on textured

PDMS, the link between normal load and friction force was not propor-

tional, with less than 5 to more than 10 times higher wave number-

specific magnitudes when using 2 N normal load in comparison to 0.5

N (Supplement I). The discrepancy between low and high loads was

even higher with emulsions on smooth PDMS, but, less on textured

PDMS, which could result from different squeezing of the lubricant out

of the flat or irregular contact area.

3.3.4 | Surface-dependent stick-slip characteristics

Roughness produced obvious changes in stick-slip behavior (Figure

8a,b), with a flatter sliding force trend producing low wave numbers

of lower magnitude than on smooth PDMS, and intermediate oscilla-

tions producing intermediate wave numbers of higher magnitude

(Figure 8c). In fact, textured surfaces can have an overall stabilizing

effect because several asperities deform at the same time

(Br€ormann, Barel, Urbakh, & Bennewitz, 2013) and release elastic

energy at different moments, which produces an average sliding

force with more intermediate stick-slip events, but dampened oscil-

lations, as it was presumed when observing the mean wave number

and mean amplitude trends. The averaging effect is also induced by

the use of a three-balls probe instead of an indenter, which is less

stable during sliding. In reality, the tongue is rubbed against the pal-

ate like two flat deformable surfaces, but where local vibrations acti-

vate the mechanoreceptors, which justifies the use of a few contact

points. Roughness effects, also observed by Baum et al. (2014) and

Br€ormann et al. (2013), were reflected by the subdecade wave num-

bers of dry contact under low load on textured PDMS, with much

lower magnitudes from 1�1024 to 4.5�1023 mm21 than on smooth

PDMS, less or adverse effects up to 7.5�1022 (a bit higher than the

inverse of the intermediate wavelengths observed in Figure 8b) and

again lower magnitudes in the high-wave number bands (Figure 8d).

These characteristics could be correlated directly with the high-

depth main cavities and the intermediate-depth asperities of the

textured surface (Figures 2 & 3). The main cavity effects were even

stronger at lower wave numbers under high load (Supplement J),

which may come from the compression and flattening of the main

FIGURE 9 WPI-stabilized 5 wt % o/w emulsion at 0.01 mm/s on smooth and textured PDMS with high load: power spectral density
integral bar plots with information condensed in subdecades wave number bands
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asperities and their stronger resistance due to strain hardening

(Dresselhuis et al., 2008a). Emulsions had a similar behavior under

high load on textured surface at intermediate and low wave num-

bers, but with markedly higher magnitudes at lower wave numbers,

in particular at about 9�1024 to 2.5�1022 mm21 for the 30 wt % oil

emulsion (Supplement K), and similarly for the 5 wt % oil emulsion

(Figure 9). Under low load, almost all stick-slip magnitudes increased

with roughness. Thus, the effects of roughness on stick-slip behavior

strongly depended on normal load and lubrication.

3.3.5 | Comparison of lubricant stick-slip characteristics

Significant differences in spectral stick-slip characteristics could be

found at the logarithmic scale (Figure 10c,d) at 0.01 mm/s on smooth

PDMS and under low load, where all lubricants were in boundary lubri-

cation regime with very similar friction coefficient values (Figures 4 &

10a,b). Overall stick-slip effects were weakened by the use of lubri-

cants in comparison to dry contact, but, water was the least lubricant,

in particular at low wave numbers. Stronger low-frequency stick-slip

effects were also observed with smooth glass contact on wet skin in

FIGURE 10 Lubrication with demineralized water, o/w emulsions with 5 and 30 wt % oil fraction, and sunflower oil at 0.01 mm/s on
smooth PDMS under low load: (a) raw sliding force data; (b) zoomed sliding forces in the dynamic friction domain; (c) Fourier spectra; (d)
power spectral density integral bar plots with information condensed in subdecades wave number bands
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comparison to dry skin (Adams et al., 2007), and was explained by the

pH of water influencing repulsion forces and providing lubrication even

with a boundary film at low velocities in the absence of hydrodynamic

effects. The low-oil fraction emulsion with 5 wt % oil decreased the

most magnitudes at several low wave numbers in comparison to

higher-oil fraction emulsion and sunflower oil. This effect could result

from the complex interactions between the surface chemistry and the

spreading of a thin oil film, which need to be elucidated by fundamen-

tal studies (Pradal & Stokes, 2016). Magnitudes of the 30 wt % oil

emulsion were often between those of the 5 wt % emulsion and sun-

flower oil, which reinforces the idea of existing trends in the spectral

stick-slip behavior. At intermediate wave numbers, oil seemed to lower

the most stick-slip magnitudes, but this was difficult to observe in the

force curves. Then, oil produced even stronger stick-slip oscillations of

high wave numbers than water, which could be a result of smoother

transitions (Liang & Feeny, 1995) of reduced sticking and enhanced

slipping over the main asperities, creating stronger microscale vibra-

tions. However, the influence of model foods on stick-slip effects is

very complex and strongly depends on the combined effects of test

velocity, normal load, and surface roughness, as it was demonstrated

before. Finally, the friction experiments with and without food lubri-

cants created different stick-slip vibrations, for example at 0.01 mm/s,

between 1024 and more than 1 mm21, which correspond to frequen-

cies of 0.001–10 Hz. Frequencies higher than 250 Hz could be deter-

mined at higher sliding velocities. In particular, the highest frequencies

are in the range of oral mechanoreception and should thus be consid-

ered in further studies for correlating with sensory results. Only then it

will be possible to understand which stick-slip frequencies are responsi-

ble for a particular texture sensation. For example, high magnitude

vibrations of relatively low frequencies may increase roughness or

astringency and low magnitude vibrations of high frequencies may

increase smoothness and per extension oiliness or creaminess.

3.3.6 | Technical discussion

In practice, higher sampling rates than 500 Hz (Derler & Rotaru, 2013)

are necessary at high velocities to obtain detailed spectral results, and

a wider range of test velocities would permit to cover the Stribeck

domains up to full hydrodynamic lubrication. Moreover, one should

pay attention to humidity, temperature, corrosion, and erosion proc-

esses as well as the machine resolution and resonance, which influence

greatly in vitro measurements of stick-slip effects. Machine noise eval-

uation and filtering could be improved by parallel sound emission anal-

yses and mechanical records in response to well-defined oscillations,

such as resulting from controlled hammer impacts. Nevertheless, the

simple tribological set-up permitted to give a qualitative and quantita-

tive overview about the different impacts of test settings and model

food lubricants.

4 | CONCLUSION

We hypothesized that irregular friction force curves could hide some-

thing else than only highly variable data, thus reveal the presence of

stick-slip phenomena. The spectral representations of these vibrations

provided a new insight into the use of “oral” tribology in food psycho-

physics. Stick-slip effects could be measured and best characterized by

Fourier transforms; their spatial frequency (wave numbers) resolution

was sufficient to be related to a surface anatomy similar to oral mucosa

and their temporal frequency resolution was relevant for oral mecha-

noreception. Thus, stick-slip effects can definitively influence mouth-

feel and should be taken into account for further food texture studies.

It was demonstrated that stick-slip effects change with lubricant and

surface roughness, depending on sliding velocity and normal load. As

was expected, stick-slip magnitudes decreased from the boundary to

the mixed regime, implying that the boundary regime could be a key

focus for further food lubrication studies. Stick-slip magnitudes

decreased with increasing velocity also, even in the same boundary

regime where the friction coefficient was almost constant. Thus, stick-

slip analysis could reveal differences between samples which could not

be distinguished using friction coefficient values only. However, the

effects were wave-number specific, which demonstrates that spectral

stick-slip characteristics bear multiple valuable information which can

be lost by averaging when using simple mean frequencies and ampli-

tudes. The authors, thus, recommend to use spectral analysis for the

extraction of precise stick-slip characteristics to be correlated to sen-

sory data. Moreover, variability of results increased at high velocities,

which shows that the characterization of stick-slip behavior in the

hydrodynamic regime may be difficult and could necessitate higher

data sampling rates. Stick-slip effects indeed did not disappear in the

beginning of the hydrodynamic regime, but, limited velocities and accu-

racy prevented us from drawing reliable conclusions about this point.

Load increased stick-slip magnitudes (but not proportionally), which

was also shown by the mean magnitude values. When using the three-

balls set-up of this experiment, the authors recommend the use of low

loads around 0.5 N which is rather in the range of oral pressures than 2

N, as calculated in Supplement H. The textured surface generally low-

ered stick-slip magnitudes, but produced also intermediate stick-slip

wave numbers which could be related to the asperity widths, depend-

ing on load and lubrication. According to the elasticity and topology of

the PDMS materials, the textured surface better reflected oral condi-

tions than the smooth one and should thus be used even though the

interpretations of results is not straightforward. We had also hypothe-

sized that the stick-slip effects are characteristic of a food model sys-

tem and we have found these results through this manuscript.

Moreover, dry contact produced stronger stick-slip effects in compari-

son to lubricated surfaces, which could show that high-magnitude

vibrations could be a source of dry mouth or roughness. Many studies

will be necessary to clarify the influence of each factor separately as

well as combined, in particular when using additionally saliva to mimic

swallowing and because of the complexity of soft matter mechanics,

visco-elastic food properties and variability of food oral processing con-

ditions. Finally, wave number-specific magnitudes have to be correlated

with sensory results to find out which stick-slip wave numbers mainly

impact texture perception. These characteristics could represent the

missing parameter for complex friction-driven texture characterization.
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SPECTRAL ANALYSIS OF THE STICK-SLIP PHENOMENON 

1 
 

SUPPORTING INFORMATION 

 

SUPPLEMENT A. DISCUSSION ABOUT MACHINE ACCURACY & NOISE 

 
Machine accuracy. The magnitude of many oscillations in dry contact and lubricated tests was lower than the secured accuracy of 

the load cell of ±49 mN calibrated according to ISO 7500 and ASTM E4 standards. Thus a higher accuracy would be better to ensure 

validity of results of very low magnitudes. Anyhow, measurements were repeated to look for inconsistencies which demonstrated 

reproducible results at low velocities and higher variability at high velocities. Moreover, significant differences could be seen for 

different test settings and lubricants, thus it can be concluded that the main part of the measured vibrational response is not mainly 

produced by noise of the texture analyzer-sensor-probe system itself and is thus a characteristic of the dynamic friction behavior of the 

different test cases. Nevertheless, the influence of the sample vibrations on machine noise is difficult to predict, in particular with such 

irregular force-displacement behaviors caused by abrupt force peaks, influencing the electronic motor control. This is why even though 

machine noise is quasi non-detectable in measurements without any contact, one should keep in mind that there may be more complex 

effects of the machine vibrations resonance phenomena. 

Machine noise. There was no trend for higher machine noise oscillation amplitudes with growing test velocity in sliding force data. 

For each velocity the machine noise measurements were highly reproducible and different from other velocities, with a mean sliding 

force of 0.12±0.02 mN throughout the whole range of velocities. Spectral components were characterized by negligible energy, in 

particular for wave numbers above 1 µm-1: ≤ -20 to -40 mN²(dB)∙µm in the Fourier spectrum and ≤ 1∙10-3 to 1∙10-5 mN²(dB) in the sub-

decimal wave number bands plot.  

 

Figure 11. Machine noise at 0.01 and 0.5 mm/s: (a) Fourier spectra; (b) power spectral density integral bar plots with information 

condensed in sub-decades wave number bands.  
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SUPPLEMENT B. MEAN WAVE NUMBERS 

 
 

Figure 12. Mean wave numbers 

calculated for all lubricants at 

low and high loads, on smooth 

and textured surfaces and at 

selected velocities: (a) 0.01, (b) 

0.5, (c) 10 and (d) 40 mm/s at 

which some changes appear in 

Stribeck representations. Error 

bars represent standard 

deviations. Hollow bars are 

present when a sample type was 

not measured for corresponding 

settings. 
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SUPPLEMENT C. MEAN AMPLITUDES 

 
 

Figure 13. Mean amplitude 

calculated for all lubricants at 

low and high loads, on smooth 

and textured surfaces and at 

selected velocities: (a) 0.01, (b) 

0.5, (c) 10 and (d) 40 mm/s at 

which some changes appear in 

Stribeck representations. Error 

bars represent standard 

deviations. Hollow bars are 

present when a sample type was 

not measured for corresponding 

settings. 
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SUPPLEMENT D. DRY CONTACT SPECTRAL FEATURES AT HIGH VELOCITIES 

 

 

 

Figure 14. Dry contact at 10 and 40 mm/s on smooth PDMS with low load: power spectral density integral bar plots with information 

condensed in sub-decades wave number bands. 

 

 

SUPPLEMENT E. 5 wt% OIL-IN-WATER EMULSION AT LOW VELOCITIES 

 

 
 

Figure 15. WPI-stabilized 5 wt% o/w emulsion at 0.01 and 0.5 mm/s on smooth PDMS with low load: (a) raw sliding force data; (b) 

zoomed sliding forces in the dynamic friction domain; (c) Fourier spectra; (d) power spectral density integral bar plots with 

information condensed in sub-decades wave number bands.  
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SUPPLEMENT F. 30 wt% OIL-IN-WATER EMULSION AT LOW VELOCITIES 

 

 

 

 

Figure 16. WPI-stabilized 30 wt% o/w emulsion at 0.01 and 0.5 mm/s on smooth PDMS with low load: (a) raw sliding force 

data; (b) zoomed sliding forces in the dynamic friction domain; (c) Fourier spectra; (d) power spectral density integral bar plots 

with information condensed in sub-decades wave number bands.  
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SUPPLEMENT G. 30 wt% OIL-IN-WATER EMULSION SPECTRAL FEATURES AT HIGH 

VELOCITIES 

 

 
 
Figure 17. WPI-stabilized 30 wt% o/w emulsion at 10 and 40 mm/s on smooth PDMS with low load: power spectral density integral 

bar plots with information condensed in sub-decades wave number bands.  

 

 

SUPPLEMENT H. CONTACT PRESSURE CALCULATIONS 

The maximal pressure P at the center of the steel ball of radius R = 5 mm in contact with the flat PDMS polymer sheet can be evaluated 

thanks to the Hertz theory of contact mechanics (Popov, 2010). Nevertheless, many assumptions had to be taken into account for the 

calculations which do not correspond exactly to the studied cases: 

- Constant normal load F (in motion, stick-slip vibrations let the ball hop which produces variations in the surface in contact, 

also complicate to predict on textured surfaces) 
- Small strains (necessary for calculations in the elastic domain, but also to assume a Poisson ratio ν of 0.5 5 (Krzeminski et al. 

2012) for polymer materials) 
- Much lower elastic modulus E of the soft polymer materials in comparison to that of the hard metallic material (to neglect the 

contribution of the steel in the calculation of the combined elastic modulus E* of both contact partners): 𝑬∗ ≈  
𝟐∙𝑬

𝟏−ν2 

E* can be incorporated in following equation: 𝑃 =  (
6∙𝐹∙𝐸∗2

𝜋3∙𝑅2 )

1
3⁄

, resulting in: 𝑃 =  (
24∙𝐹∙𝐸2

𝜋3∙𝑅2∙(𝟏−ν2)2)
1

3⁄

. 

For example, under low load of 0.5 N and on the smooth PDMS of E = 820000 Pa, the ball of radius 0.005 m exerts a maximal 

pressure of 𝑃 =  (
24∙0.5∙8200002

𝜋3∙0.0052∙(𝟏−0.52)2)
1

3⁄

= 2.6 ∙ 105 𝑃𝑎, or 260 kPa. 

The calculated P values are divided by 3 because we used a three-balls contact experimental set-up. Results of one-point-contact 

pressures are summarized in following table: 

 Smooth PDMS [820 kPa] Textured PDMS [140 kPa] 

Low load [0.5 N] 87 kPa 27 kPa 

High load [2 N] 140 kPa 43 kPa 
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SUPPLEMENT I. DRY CONTACT ON SMOOTH SURFACE DEPENDING ON LOAD 

 

 

Figure 18. Dry contact at 0.01 mm/s on smooth PDMS with low versus high loads: (a) raw sliding force data; (b) zoomed sliding 

forces in the dynamic friction domain; (c) Fourier spectra; (d) power spectral density integral bar plots with information condensed in 

sub-decades wave number bands.  
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SUPPLEMENT J DRY CONTACT SPECTRAL FEATURES UNDER HIGH LOAD 

DEPENDING ON ROUGHNESS 

 

 
 
Figure 19. Dry contact at 0.001 mm/s on smooth and textured PDMS with high load: power spectral density integral bar plots with 

information condensed in sub-decades wave number bands.  

 

SUPPLEMENT K. EMULSIONS SPECTRAL FEATURES UNDER HIGH LOAD DEPENDING 

ON ROUGHNESS 

 

 
 
Figure 20. WPI-stabilized 30 wt% o/w emulsion at 0.01 mm/s on smooth and textured PDMS with high load: power spectral density 

integral bar plots with information condensed in sub-decades wave number bands. 
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