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Abstract: Grain nitrogen (N) uptake (GNup) in winter wheat (Triticum aestivum L.) is influenced
by multiple components at the plant organ level and by pre- and post-flowering N uptake (Nup).
Although spectral proximal high-throughput sensing is promising for field phenotyping, it was
rarely evaluated for such N traits. Hence, 48 spectral vegetation indices (SVIs) were evaluated on
10 measurement days for the estimation of 34 N traits in four data subsets, representing the variation
generated by six high-yielding cultivars, two N fertilization levels (N), two sowing dates (SD),
and two fungicide (F) intensities. Close linear relationships (p < 0.001) were found for GNup both in
response to cultivar differences (Cv; R2 = 0.52) and other agronomic treatments (R2 = 0.67 for Cv*F*N,
R2 = 0.53 for Cv*SD*N and R2 = 0.57 for the combined treatments), notably during milk ripeness.
Especially near-infrared (NIR)/red edge SVIs, such as the NDRE_770_750, outperformed NIR/visible
light (VIS) indices. Index rankings and seasonal R2 values were similar for total Nup, while the N
harvest index, which expresses the partitioning to the grain, was moderately estimated only during
dough ripeness, primarily from indices detecting contrasting senescence between different fungicide
intensities. Senescence-sensitive indices, including R787_R765 and TRCARI_OSAVI, performed
best for N translocation efficiency and some organ-level N traits at maturity. Even though grain N
concentration was best assessed by the red edge inflection point (REIP), the blue/green index (BGI)
was more suited for leaf-level N traits at anthesis. When SVIs were quantitatively ranked by data
subsets, a better agreement was found for GNup, total Nup, and grain N concentration than for
several contributing N traits. The results suggest (i) a good general potential for estimating GNup and
total Nup by (ii) red edge indices best used (iii) during milk and early dough ripeness. The estimation
of contributing N traits differs according to the agronomic treatment.

Keywords: high-throughput phenotyping; hyperspectral sensing; nitrogen uptake efficiency;
phenomics; precision farming; proximal sensing; fungicide; red edge; remote sensing; sowing date

1. Introduction

Although plant breeding in winter wheat traditionally focuses on the maximization of grain yield
(GY) at sufficient grain N concentration (GNC), the efficient use of nitrogen (N) for grain N uptake
(GNup) is gaining more attention for reducing N surplus and increasing the effective N uptake efficiency
(NupEff) of a cropping system [1,2]. Similar to GY, GNup strongly depends on the environment.
Moreover, interactions among agronomic treatment factors such as sowing date, fungicide intensity,
N fertilization, and genotypes are relevant [3–12]. Expensive field trials have to be conducted for
assessing the optimum treatment levels in different cropping environments, both for the selection of
N-efficient genotypes in plant breeding, and for optimizing agronomic treatment factors [13].
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However, being costly and time-consuming, the determination of plant traits is often restricted to
only a few traits, such as GY and yield components, or it relies on visual scoring, which is subjective
and expensive [14]. Non-destructive high-throughput proximal sensing has been developed for
optimizing N management in the vegetative phase, and has become an approved tool in precision
farming [15]. However, the generative phase is also important for maximizing GNup [16]. Post-anthesis
N uptake (PANup) and N translocation (NT) respond to agronomic treatments, differ among cultivars,
and influence total N uptake (Nup) as well as its partitioning to the grain [12,17]. Although vegetative
Nup is primarily allocated to leaves, the organs which are more visible to spectral sensors [18],
substantial amounts of N are allocated to stems and spikes until anthesis [19], and are predominantly
translocated to the grain during the influence of senescence [20,21].

The spectral in-season estimation of GY has been addressed as a tool in plant phenotyping in
various studies [22–25]. However, the estimation of GNup was evaluated less frequently, not to mention
the contributing traits at the organ-level or seasonal dynamics. Compared from simulated band
configuration, GNup was generally well estimated from red edge (RE) indices at milk ripeness, but also
stem elongation was well suited in the presence of different N fertilization levels [26]. For breeding
lines, Pavuluri et al. [27] reported better estimations of GNup and NupEff than those of GY, and better
estimations for multi-year data than those for individual years. Moreover, correlations were closer
under reduced N fertilization, ascribed to less saturation in thinner canopies. Using RE-based spectral
vegetation indices (SVIs) in winter wheat, Frels et al. [28] complemented the estimation of GNup with
that of PANup, total Nup, and the N harvest index (NHI). The estimation of PANup and NHI differed
more between years than that of NupEff and GNup. They recommended the RE Maccioni index
and identified the early grain filling stage as the most promising. Pavuluri et al. [27] suggested the
related simple ratio index R780/R740 [29] and recommended the heading stage, followed by booting,
stem elongation, and grain filling. For organ-level Nup in spring barley, Barmeier and Schmidhalter [18]
reported better correlations for leaf blades and culms than for spikes and leaf sheaths.

Nonetheless, knowledge on the use of spectral methods for GNup and its contributing traits
remains scarce, notably concerning high-yielding European conditions, as well as the impact of different
agronomic treatments, compared to the use for estimating genotypic differences. Therefore, this study
assesses the spectral estimation of the N traits previously compared in [12]. These traits include
plant- and organ-level N concentration (NC) and Nup and traits related to NT and N allocation as a
function of two levels of N fertilization, fungicide intensity and sowing dates for six winter wheat
cultivars. We evaluated the (i) estimation potential by trait, (ii) identified suitable vegetation indices
and (iii) optimum growth stages, and (iv) compared the differences in (i–iii) by underlying treatments.
Although based on hyperspectral phenotyping, the results could be transferred to the use of simpler
multispectral methods.

2. Materials and Methods

2.1. Experiment and Plant Sampling

The field trial, conducted as a split-split-plot design, comprised control (Cont)/reduced fungicide
(RF)/early sowing (sowing date 1: SD1) on the main plot (MP), N level (N) on the sub-plot (SP), and
cultivar (Cv) on the sub-sub-plot. It was conducted during the 2016/2017 growing season in southeastern
Germany (48.406◦ N, 11.692◦ E) on homogeneous Cambisol of silty clay loam. The average annual
temperature is approximately 8 ◦C and the annual precipitation approximately 800 mm. The previous
crop grass-clover resulted in high soil mineral N content of 83 and 92 kg N ha−1 in SD1 and 69 and
87 kg N ha−1 in Cont in autumn and after winter, respectively. Six morphologically and phenologically
differing cultivars (cv. Impression, JB Asano, Kerubino, Hybred, Hyland, Hystar) of winter wheat
(Triticum aestivum L.) were drilled at 350 kernels m−2 in plots of 1.5 m in width and 6.4 m in length.
Cultivars differed in anthesis date by up to six days, in plant height by 11 cm, in average plant density
from 571–728 spikes per m2, and reacted differently to the agronomic treatments [12]. The sowing date
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was September 28 for SD1 and October 23 for Cont and RF. Within each MP, each cultivar was treated in
two N levels, with N1 corresponding to 60 kg N ha−1 and N2 to 120 kg N ha−1, applied as ammonium
nitrate in two equally split doses at tillering and stem elongation, respectively. The trial comprised
four replicates for each factor combination (MP*N*Cv). Foliar fungicide was applied twice in Cont
and SD1 plots, but not in RF plots. Fungicide was effective against the dominant pathogens Erysiphe
graminis, Septoria tritici, and Puccinia striiformis, which showed only moderate incident in RF due to
favorable weather conditions [12]. Above-average temperature and global radiation in March, May,
and June together with high soil N supply resulted in strong vegetative growth, whereas below-average
precipitation in May and June resulted in mild drought stress and accelerated senescence in some
cultivars. Refer to [12] for details on the field trials, weather conditions, and treatment effects on the
plant traits.

Biomass was sampled at anthesis (Zadok’s growth stage 65) and at physiological maturity
(growth stage 95). For each genotype within each subplot, sampling dates were determined by visual
scoring. In total 30 and 60 randomly selected shoots were cut per plot at the stem base at anthesis
and maturity, respectively. Plant samples were manually separated into flag leaves, flag leaves–1
(second leaf from above), ‘other leaves’ (remaining leaves), culms including all leaf sheaths, and spikes.
Plant samples were oven-dried at 50 ◦C for 2–4 days until no further weight loss was observed for
subsequent determination of dry matter (DM) weight. After plant sampling at maturity, all plots
were harvested (1–2 August 2017) using a combine harvester, to determine moisture-corrected grain
yield (0%) for each plot. After grinding, the N concentration (NC) was determined by near-infrared
spectroscopy (NIRS) using a FOSS NIRS 6500 (Foss, Silver Spring, MD, USA) and a Fourier-Transform
-NIRS (Bruker, Billerica, MA, USA), whereas grains were analyzed as complete kernels. The calculation
of ‘derived’ plant traits [20] comprised the N harvest index (NHI), post-anthesis N uptake (PANup),
N translocation efficiency (NTEff), N translocation (NT), the contribution of PANup to total Nup
(CPostNup), and the N uptake efficiency (NupEff), both at anthesis and at maturity. See [12] for details
and Table S1 for a list of included traits.

2.2. Spectral Measurements and Data Preparation

Spectral measurements were performed on 10 measurement days, covering all main growth
stages from leaf development at the end of March until soft dough ripeness in July (Figure 1a; Table 1),
using the mobile sensor platform PhenoTrac 4 [18]. It was equipped with a hyperspectral bidirectional
passive point sensor spectrometer (tec5, Oberursel, Germany), measuring at a nominal resolution
of 3.3 nm between 300 and 1000 nm at a frequency of 5 Hz. Plot boundaries were excluded and
the distance to the canopy was ≈80 cm. The driving speed was ≈5 km h−1, resulting in a sampling
distance of ≈28 cm at the top of the canopy and typically 15–20 registered spectra per target plot area,
which allowed gapless sampling in a longitudinal direction in the middle of the plots. The resulting
measurement strip was approximately 30–35 cm wide. Measurements were localized via a real-time
kinematic global positioning system (RTK-GPS; Trimble, Sunnyvale, CA, USA). Based on polygons
drawn to the core target plot area, the spectra were averaged to the plot level using custom-made
LabView applications. Refer to Figure S1 for an example of the trial measurements. Spectra were
smoothed using a 5 band moving average filter [30] for removing spectral noise. A total of 48 spectral
vegetation indices (SVI) were calculated based on a literature review of related previous studies
(Table 1). The SVIs were grouped by the included spectral range (visible light (VIS), red edge (RE),
and near-infrared (NIR)), with VIS < 700 nm, ‘extended’ RE 700–765 nm, and NIR > 765 nm (Table 2;
Figure 1b). In order to include SVIs with a NIR or RE band closer to the RE than that of the normalized
difference vegetation index (NDVI; NIR = 780 nm), the upper boundary of the RE was higher than the
common definition since the reflection still increased in region until approximately 770 nm.
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Table 1. Dates of spectral measurements (month/day) with days after sowing (d.a.s) in control (Cont)
and reduced fungicide (RF) plots and dominant growth stages.

Date (Month/Day) d.a.s. Growth Stage

03/31 159 leaf development
04/13 172 tillering
05/17 206 stem elongation
05/25 214 booting
06/01 221 ear emergence
06/08 228 anthesis
06/21 241 early milk
06/26 246 late milk
07/01 251 early dough
07/04 255 soft dough
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Figure 1. (a) Seasonal index development of the NDRE_770_750 colored by the main plot (Cont: Control; RF: reduced fungicide; SD1: sowing date 1) and N fertilization
treatments (N1; N2). The last measurement date was not included in the analysis due to advanced senescence. Gray labels indicate growth stages; colored background
bars indicate the reference plant sampling at anthesis and maturity. Days after sowing refer to the Cont and RF plots. (b) Plot-level spectra acquired on 21 June 2017
with band position of the tested spectral vegetation indices, colored by index groups: near-infrared (NIR: >765 nm), visible (VIS: <700 nm), and the extended red edge
(RE: 700–765 nm). The spectra are colored by the values of grain nitrogen uptake (yellow: low, blue: high). The dashed line represents the coefficient of variation of the
reflectance. Refer to Figure S2 for spectra of selected dates.
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Table 2. List of spectral vegetation indices considered in this study. ‘R’ denotes the reflection in indicated wavebands.

Index Full name Spectral Equation Reference

NWI-1 Normalized water index 1 NIR (R970−R900)/(R970 + R900) [31,32]

NWI-2 Normalized water index 2 NIR (R970−R850)/(R970 + R850) [31,32]

NWI-3* Normalized water index 3 NIR (R970−R920)/(R970 + R920) [31]

NWI-4* Normalized water index 4 NIR (R970−R880)/(R970 + R880) [31]

NWI-5 Normalized water index 5 NIR (R970−R930)/(R970 + R930) [26]

WBI Water band index NIR R900/R970 [33]

EVI Enhanced vegetation index NIR,VIS 2.5 ∗
(R864−R670)

(R864 + 6 ∗R670− 7.5 ∗R420 + 1)
[34]

GNDVI Green NDVI** NIR,VIS (R780−R550)/(R780 + R550) [35]

MCARI1 Modified chlorophyll absorption in reflectance index 1 NIR,VIS 1.2 ∗ (2.5 ∗ (R800−R670) − 1.3 ∗ (R800−R550)) [36]

MCARI2 Modified chlorophyll absorption in reflectance index 2 NIR,VIS
1.5 ∗ (2.5 ∗ (R800−R670) − 1.3 ∗ (R800−R550))/

(((2* R800 + 1)2
−

(
6 ∗R800− 5 ∗R6700.5

)
− 0.5)0.5)

[36]

MSAVI Modified soil-adjusted vegetation index NIR,VIS (2 ∗R800 + 1− (((2 ∗R800 + 1)2
−

8 ∗ (R800−R670))0.5))/2
[37]

MSR(MSR_670) Modified simple ratio 670 NIR,VIS
(R800/R670− 1)

((R800/R670 + 1)0.5)
[38]

MTVI2 Modified triangular vegetation Index 2 NIR,VIS
1.5(1.2 ∗ (R800−R550) − 2.5 ∗ (R670−R550))/

(
(
(2 ∗R800 + 1)2

−

(
6 ∗R800− 5 ∗ (R670)0.5

− 0.5
))

0.5)
[36]

NDVI1 Normalized difference vegetation index 1 NIR,VIS (R864−R670)/(R864 + R670) [39]

NDVI2 Normalized difference vegetation index 2 NIR,VIS (R780−R670)/(R780 + 670) [19,40]

NDVI3 Normalized difference vegetation index 3 NIR,VIS (R900−R670)/(R900 + R670) [41]

OSAVI Optimized soil-adjusted vegetation index NIR,VIS
(1 + 0.16) ∗ (R800−R670)
(R800 + R670 + 0.16)

[42]

PSSR Pigment specific simple ratio NIR,VIS R800/R500 [43]
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Table 2. Cont.

Index Full name Spectral Equation Reference

R780_R550 NIR,VIS R780/R550 [44]

R780_R670 NIR,VIS R780/R670 [45]

WDRVI Wide dynamic range vegetation index NIR,VIS
(0.1 ∗R780−R670)
(0.1 ∗R780 + R670)

[46]

ARI Anthocyanin reflectance index VIS 1/R550− 1/R700 [47]

BGI Blue green pigment index VIS R450/R550 [48]

BRI Blue red pigment index VIS R450/R690 [48]

PRI Photochemical reflectance index VIS (R531−R570)/(R531 + R570) [49]

VARIgreen Visible atmospherically resistant vegetation index green VIS (R550−R670)/(R550 + R670−R470) [50]

NDRE Normalized difference NIR/red edge index NIR,RE (R790−R720)/(R790 + R720) [51]

R780_R740 NIR,RE R780/R740 [29]

NDRE_770_750 NIR,RE (R770−R750)/(R770 + R750) [26]

R787_R765 NIR,RE R787/R765 [52]

LCI Leaf chlorophyll index NIR,RE,VIS (R850−R710)/(R850 + R680) ***

Maccioni Maccioni index NIR,RE,VIS (R780−R710)/(R780−R680) [53]

REIP Red edge inflection point NIR,RE,VIS 700 + 40 ∗

(
R670+R780

2

)
−R700

(R740−R700)
[54]

TCARI_OSAVI NIR,RE,VIS 3*((R700-R670)-0.2*(R700-R550)* R700/R670)/
(1 + 0.16) ∗ (R800−R670)/(R800 + R670 + 0.16) [55]

HVI Hyperspectral vegetation index RE R750/R700 [56]

R760_R730 RE R760/R730 [30,57]

RVSI Red edge vegetation stress index RE (R714 + R752)/2−R733 [58]
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Table 2. Cont.

Index Full name Spectral Equation Reference

VOG1 Vogelmann 1 RE R740/R720 [59]

VOG2 Vogelmann 2 RE (R734−R747)/(R715 + R726) [59]

DD Double difference index RE,VIS (R749−R720) − (R701−R672) [60]

MCARI Modified chlorophyll absorption in reflectance index RE,VIS ((R700−R670) − 0.2 ∗ (R700−R550)) ∗ (R700/R670) [61]

MND_750_705 Modified normalized difference 750/705 RE,VIS
(R750−R705)

(R750 + R705− 2 ∗R445)
[62]

MSR_705_445 Modified simple ratio 705/445 RE,VIS (R750−R445)/(R705−R445) [62]

MTCI MERIS**** terrestrial chlorophyll index RE,VIS (R750−R710)/(R710−R680) [63]

NDVI4 Normalized difference vegetation index 4 RE,VIS (R750−R705)/(R750 + R705) [64]

PSRI Plant senescence reflectance index RE,VIS (R680−R500)/R750 [62]

R730_R670 RE,VIS R730/R670 [30]

R760_R670 RE,VIS R760/R670 [65]

* The equations of NWI−3 and NWI−4 are used as in the original publication [31] whereas the names are interchanged amongst others in [66–69]; ** Normalized difference vegetation
index; *** www.indexdatabase.de; **** MEdium Resolution Imaging Spectrometer.

www.indexdatabase.de
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2.3. Statistical Analysis

SVIs were tested in simple linear regression analysis with the N traits for each sampling date,
using the lm-function in R 3.4 (R Core Team, 2017). Relationships were compared by coefficient of
determination (R2) and the root mean square error (RMSE) derived from the deviations between fitted
and measured values. The relationships were compared for (i) the full data, (ii) across the combined
Cont and SD1 data (Cont_SD1), (iii) across the combined Cont and RF data (Cont_RF), and (iv) within
the six main plot*N level (MP*N) combinations (Figure 2) to assess the influence of the underlying
treatments on the trait estimation. The MP*N blocks were considered as possible trial environments.
Therefore, the results of these blocks were averaged and compared for the aggregated, averaged results.
This approach can simulate conditions for phenotyping genotypic variation as relevant for plant
breeding, whereas (i–iii) are referred to as ‘agronomic’ conditions. The relationships were compared
with respect to estimation potential by trait, index ranking, and optimum measurement stages.
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Figure 2. Datasets used for evaluating trait–index relationships. Three ‘agronomic’ datasets correspond
to data of the whole trial (‘full data’), the combined main plots (MP) control (Cont) and reduced
fungicide (RF; Cont_RF), as well as the combined MPs Cont and sowing date 1 (SD1; Cont_SD1). MP*N
represents the testing within the six subplots as the interaction of main plots (MP) and N fertilization
level (N; N1: 60 kg N ha−1; N2: 60 kg N ha−1). In SD1, five plots were removed due to missing data or
plot damage.

The indices were quantitatively ranked by their normalized performance for each trait in
each dataset in order to overcome the influence of differing growing conditions as well as the
date-specific index ranking. Therefore, within each of the three ‘agronomic’ datasets and the MP*N
data, the across-date mean and maximum coefficients of determination (R2) of each index/trait
combination were normalized to the trait-specific average mean and maximum R2 from all SVIs.
In order to achieve a more robust ranking across underlying treatments, both the within-dataset
mean and maximum rankings were summed up across the three ‘agronomic’ datasets. Consequently,
the mean- and maximum-based rankings were combined through summing up both rankings (i) for
the agronomic approach and (ii) for the MP*N approach. Considering a selection of indices robust
towards date-specific suitability as more important, the mean-based ranking was double-weighted.
These weighted mean/maximum-rank sums (WMMRS) were compared between the agronomic and
the MP*N approach. WMMRS values were used for identifying one trait-specific optimum index from
the ‘agronomic’ approach. A WMMRS < 9 indicates below-average and WMMRS > 9 indicates
above-average index performance for a specific trait. The performance of this WMMRS-based
best indices was compared over time both in the agronomic and the MP*N datasets. Additionally,
the ‘agronomic’ rankings were compared to the WMMRS rankings of the MP*N approach by Spearman’s
rank correlation coefficient.

In order to validate the initial index grouping based on the included spectral bands, the indices
were grouped by a cluster analysis (Ward’s method) based on the coefficients of determination achieved
for the studied traits.

3. Results

3.1. Optimized Date Selection by Plant Trait and Index

The maximum coefficients of determination (R2) were calculated for each trait*date combination
from all SVIs as a measure of the potential to estimate the 34 plant traits (Figure 3 for full data;
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Figure S3 for other datasets). The relationships were low or moderate (R2 < 0.40) before anthesis
(06/08) but increased during grain filling. For most traits, relationships increased at stem elongation
and booting (05/17 and 05/25, R2

≈ 0.20–0.50), but decreased sharply around ear emergence (06/01).
Low relationships were found for post-anthesis Nup (PANup), the contribution of PANup to total
Nup (CPostNup), and Nup efficiency (NupEff). Regarding the N concentration (NC) traits, NC of flag
leaves and flag leaves–1 at maturity were best assessed, particularly on the late days (beginning of July,
dough ripeness). Among direct Nup traits, relationships were closest for grain Nup (GNup) and total
Nup. Similar seasonal maximum R2 patterns were found for the other ‘agronomic’ datasets, Cont_SD1
and Cont_RF (Figure S3). For several traits, higher R2 values were found in Cont_SD1 during stem
elongation (05/17 and 05/25) and during grain filling, as well as for various traits in MP*N.
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Figure 3. The influence of the measurement date (year/month/day) on the trait estimation in the full
data: Maximum coefficients of determination (R2) found from the 48 tested spectral vegetation indices
(SVIs). See Figure S3 for results of Cont_SD1, Cont_RF, and MP*N datasets.

3.2. Optimized Index and Date Selection Considering the UnderlyingTtreatments

3.2.1. Grain Nup

The estimation of GNup primarily relied on the assessment of its ‘accumulative component’
(i.e., total Nup at maturity), which was well assessed in all datasets with the best index based on the
weighted mean/maximum-rank sums (WMMRS), NDRE_750_770, always during milk ripeness (06/26;
R2 = 0.57–0.59 in the agronomic datasets and R2 = 0.35–0.78 in the individual MP*N datasets; Table 3).
In contrast, moderate relationships were observed for the ‘partitioning component’, N harvest index
(NHI), only for the full data, Cont_RF and some MP*N combinations (Figure 4; Table 3). The index
rankings were similar for GNup and total Nup with NIR/RE and NIR/RE/VIS combinations ranking
highest both in the agronomic and MP*N datasets (Figure 5). GNup was similarly detected seasonally
as total Nup (Figure 5a,b), with similar R2 values and the highest precision observed as well as milk
ripeness (RMSE = 9.7–16.7 kg N ha−1; Table 3; Figure 6). In contrast, the water band index NWI_2
ranked highest for NHI; however, the relationships were not consistent for the different datasets
(Figure 5c; Figure 6c). Weaker relationships were found for total Nup and GNup at booting/grain
filling than at stem elongation, and especially during grain filling.
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Figure 4. The index suitability by target trait: (a) full data; (b) average from the six MP*N datasets. Maximum
coefficients of determination (R2) found for each index*trait combination from 10 measurement dates.
Gray lines delimit index and trait groups. See Figure S4 for results of Cont_SD1 and Cont_RF.

Figure 5. Seasonal coefficients of determination (R2) reached from all indices for (a) grain N uptake
(GNup); (b) total Nup at maturity; and (c) the N harvest index (NHI) in the full data and the main
plot*N (MP*N) approach. Lines are colored according to the spectral regions included in the index
equations (Figure 1b). The results for the MP*N combinations are averaged from the results within
the six MP*N combinations. Horizontal gray lines indicate significance thresholds on different levels.
Thick lines and index labels indicate results of the best indices based on the WMMRS-ranking of the
‘agronomic’ approach. Refer to Figure S5 for results of the Cont_SD1 and Cont_RF datasets. d.a.s.: days
after sowing.
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Table 3. Best spectral vegetation indices (SVIs) based on the weighted mean/maximum-rank sums (WMMRS) from the ‘agronomic’ approach with its seasonally
highest R2 value with significance (*** p < 0.001; ** p < 0.01; * p < 0.05; n.s.: not significant) and lowest root mean square error (RMSE) reached on the optimum date
(month/day) in the different datasets: ‘Full data’, ‘Cont_SD1’, ‘Cont_RF’ as well as the six main plot*N level combinations (MP*N). Considering the six MP*N blocks as
different environments, the results for MP*N are based on the average R2 and RMSE values from the six MP*N subsets. Due to slightly differing n (number of data
points), the significance for MP*N was re-calculated based on the averaged thresholds in the six subsets. For nitrogen uptake (Nup), ‘Ant. Leaves’ and ‘Mat. Leaves’
refer to the aggregated values of all leaf layers. Abbreviations: NC: nitrogen content; Nup: nitrogen uptake; Ant.: anthesis; Mat.: maturity; PANup: post-anthesis N
uptake; CPostNup: contribution of PANup to total Nup; NT: N translocation; NTEff: N matter translocation efficiency; NHI: N harvest index. Refer to Figures 5, 7
and 8 for seasonal R2-values of selected traits in the full data and MP*N.

Seasonally Best R2 Optimum Date (month/day) RMSE

Trait
Group Trait Best SVI WMMRS Full Data Cont_SD1 Cont_RF MP*N Full

Data Cont_SD1 Cont_RF MP*N Full
Data Cont_SD1 Cont_RF MP*N

NC (%)

Ant. spikes NDRE_770_750 13 0.16 *** 0.25 *** 0.09 ** 0.18 * 06/26 06/26 06/26 06/21 0.06 0.06 0.06 0.05
Ant. stems RVSI 19 0.34 *** 0.44 *** 0.30 *** 0.12 n.s. 07/01 06/26 05/17 05/17 0.10 0.09 0.10 0.08

Ant. flag leaf DD 17 0.25 *** 0.20 *** 0.20 *** 0.16 * 05/25 05/25 05/25 05/25 0.19 0.20 0.20 0.18
Ant. flag leaf–1 BGI 19 0.30 *** 0.30 *** 0.27 *** 0.28 ** 06/08 06/08 06/08 06/08 0.20 0.20 0.20 0.17

Ant. other leaves BGI 36 0.24 *** 0.27 *** 0.25 *** 0.29 ** 06/08 06/08 07/01 06/08 0.24 0.23 0.24 0.21
Mat. grain REIP 17 0.38 *** 0.41 *** 0.41 *** 0.26 ** 05/25 06/26 05/25 05/25 0.14 0.14 0.13 0.09
Mat. chaff TCARI_OSAVI 18 0.30 *** 0.21 *** 0.28 *** 0.17 * 07/04 07/04 06/26 06/08 0.05 0.05 0.06 0.05
Mat. stems TCARI_OSAVI 17 0.44 *** 0.36 *** 0.38 *** 0.17 * 07/04 07/01 06/26 07/01 0.04 0.04 0.04 0.03

Mat. flag leaf R787_R765 16 0.62 *** 0.08 * 0.69 *** 0.14 * 07/04 06/26 07/04 03/31 0.26 0.11 0.26 0.16
Mat. flag leaf–1 MCARI 17 0.49 *** 0.18 *** 0.59 *** 0.09 n.s. 07/04 07/01 07/04 07/01 0.16 0.08 0.16 0.09

Mat. other leaves MCARI 14 0.37 *** 0.15 *** 0.52 *** 0.13 n.s. 07/01 06/08 07/01 07/01 0.13 0.11 0.13 0.10

Direct Nup
(kg N ha−1)

Ant. spikes BRI 13 0.21 *** 0.32 *** 0.19 *** 0.28 ** 06/26 07/01 06/26 06/26 5.2 4.5 5.4 4.8
Ant. stems NDRE_770_750 15 0.33 *** 0.36 *** 0.33 *** 0.28 ** 05/25 05/25 04/13 05/25 10.3 9.3 10.3 9.4

Ant. flag leaf NDRE_770_750 13 0.30 *** 0.43 *** 0.22 *** 0.33 *** 07/04 07/04 07/04 07/04 5.6 4.8 6.2 4.9
Ant. flag leaf–1 REIP 14 0.40 *** 0.48 *** 0.43 *** 0.51 *** 05/25 06/21 06/08 06/08 3.8 3.5 3.5 3.1

Ant. other leaves ARI 14 0.16 *** 0.17 *** 0.30 *** 0.39 *** 06/26 05/17 04/13 04/13 4.4 4.3 3.8 3.3
Ant. leaves NDRE_770_750 14 0.38 *** 0.47 *** 0.33 *** 0.43 *** 06/08 06/08 06/08 06/08 10.0 9.3 10.7 9.1
Mat. grain NDRE_770_750 15 0.57 *** 0.53 *** 0.67 *** 0.52 *** 06/26 06/26 06/26 06/26 16.0 16.7 13.1 9.7
Mat. chaff REIP 14 0.25 *** 0.36 *** 0.24 *** 0.31 *** 06/26 06/26 04/13 06/26 1.5 1.3 1.5 1.3
Mat. stems TCARI_OSAVI 15 0.39 *** 0.27 *** 0.46 *** 0.18 * 06/26 07/01 06/26 07/01 3.1 2.7 3.0 2.6

Mat. flag leaf TCARI_OSAVI 19 0.39 *** 0.31 *** 0.43 *** 0.27 ** 07/04 07/04 07/04 07/01 2.2 0.8 2.4 1.2
Mat. flag leaf–1 TCARI_OSAVI 19 0.40 *** 0.22 *** 0.46 *** 0.14 * 07/04 07/01 07/04 07/01 0.8 0.5 0.8 0.5

Mat. other leaves R787_R765 19 0.30 *** 0.50 *** 0.30 *** 0.32 *** 05/25 06/08 07/04 06/08 0.9 0.7 0.9 0.8
Mat. leaves TCARI_OSAVI 20 0.37 *** 0.22 *** 0.46 *** 0.23 ** 07/04 06/26 07/04 07/01 3.6 1.9 3.7 2.1
Ant. total NDRE_770_750 14 0.32 *** 0.43 *** 0.27 *** 0.34 *** 05/25 06/08 06/08 06/08 23.4 20.6 24.4 21.3
Mat. total NDRE_770_750 16 0.59 *** 0.57 *** 0.58 *** 0.57 *** 06/26 06/26 06/26 06/26 17.5 19.0 16.9 11.7
Mat. straw TCARI_OSAVI 18 0.42 *** 0.27 *** 0.51 *** 0.22 ** 06/26 06/26 06/26 04/13 6.9 5.2 6.6 5.0
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Table 3. Cont.

Seasonally Best R2 Optimum Date (month/day) RMSE

Trait
Group Trait Best SVI WMMRS Full Data Cont_SD1 Cont_RF MP*N Full

Data Cont_SD1 Cont_RF MP*N Full
Data Cont_SD1 Cont_RF MP*N

Derived N

PANup (kg N ha−1) RVSI 17 0.09 *** 0.13 *** 0.11 ** 0.10 n.s. 06/26 05/17 06/26 07/04 23.9 22.4 24.1 19.6
CPostNup RVSI 16 0.07 ** 0.11 ** 0.09 ** 0.10 n.s. 04/13 07/04 06/26 07/04 0.11 0.10 0.11 0.09

NT (kg N ha−1) NDRE_770_750 13 0.28 *** 0.33 *** 0.26 *** 0.28 ** 06/08 06/08 06/08 06/08 21.1 19.2 21.7 19.7
NTEff R787_R765 20 0.42 *** 0.07 * 0.54 *** 0.08 n.s. 07/04 05/17 07/04 03/31 0.03 0.02 0.03 0.02
NHI NWI_2 15 0.32 *** 0.10 ** 0.46 *** 0.13 n.s. 07/04 06/08 07/04 06/01 0.03 0.02 0.03 0.02

NupEff Ant. RVSI 28 0.16 *** 0.23 *** 0.14 *** 0.33 *** 06/26 07/04 06/26 06/08 0.72 0.65 0.75 0.25
NupEff Mat. R787_R765 32 0.24 *** 0.49 *** 0.16 *** 0.33 *** 06/26 06/26 06/26 05/25 0.59 0.47 0.62 0.18
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3.2.2. Further Direct N traits

Index relationships for total Nup were weaker for anthesis Nup (Figure 7) than those for maturity
Nup (Figure 5), but the index rankings were comparable. Moreover, the seasonal pattern was comparable
for the full data, MP*N (Figure 7), and the other subsets (Figure S5 for total Nup). Both in the ‘agronomic’
and MP*N rankings, the index rankings for organ-level Nup were comparable with those for total
Nup at anthesis and maturity (Figure 9). The Nup of spikes (at anthesis) and chaff (at maturity) was
moderately detected by the WMMRS-based indices of the agronomic approach (R2 = 0.28–0.36) in
Cont_SD1 and MP*N treatments (Table 3). Among the anthesis Nup traits, the Nup of flag leaves–1
was best detected (R2 from the REIP = 0.40–0.51 at anthesis; Table 3; Figure 7), followed by the Nup of
flag leaves and stems (Table 3). In contrast, in spite of the good assessment of total Nup at maturity,
only moderate relationships were found for straw Nup, primarily in the full data and in Cont_RF
(R2 = 0.42 and 0.51, respectively), whereas the TCARI_OSAVI, the WMMRS-based best index in the
agronomic approach, failed in the MP*N dataset (Table 3). The same index ranked highest for maturity
Nup of stems, flag leaves, flag leaves–1, and the aggregated leaf Nup of all leaves, with moderate
relationships (R2 = 0.37–0.46) in the full data and Cont_RF but weaker relationships in the MP*N data
despite useful estimation of these traits from other indices (Figure 4).

3.2.3. Derived N Traits

Although the post-anthesis component PANup was not sufficiently assessed by any index,
moderate relationships (R2 = 0.26–0.33; Table 3) were found for the N translocation (NT) from the same
index which ranked highest for total Nup at anthesis, NDRE_770_750, always at anthesis (Figure 7).
In contrast, good relationships were observed from a few indices including the WMMRS-index
R787_765 at soft dough ripeness for N translocation efficiency (NTEff) only in the full data (R2 = 0.42)
and Cont_RF (R2 = 0.54) (Table 3; Figure 7)—driven mainly by the lower NTEff in the RF plots compared
with the Cont and SD1 plots. For the NupEff at maturity, which relates the Nup to the amount of
fertilized N, the WMMRS-based best index R787_765 primarily captured the influence of both N levels
irrespective of the main plot treatments in the agronomic datasets (Table 3).

3.2.4. N Concentration Traits

Organ-level N concentration (NC) was rarely detectable in the MP*N subsets with the exceptions
of flag leaves–1, and ‘other leaves’ at anthesis (06/08; R2 = 0.28 and R2 = 0.29 from the BGI), and grain
NC (GNC; 05/25; R2 = 0.26 from the REIP; Table 3). Driven by the positive effect of N fertilization on
GNC in all main plots, relationships for GNC were closer in the agronomic datasets than in most MP*N
except the RF-MPs (Table 3; Figure 8), with R2 peaks of the WMMRS-index REIP at booting and milk
ripeness. Since reduced fungicide use in RF affected the release of leaf nitrogen, leaf NC at maturity
was well detected in the full data and Cont_RF. However, this was based on few indices, including the
R787_765 and the MCARI, and restricted to late growth stages.
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Figure 7. Seasonal coefficients of determination (R2) reached from all indices for selected N traits in
(a) ther full data and in (b) the main plot*N (MP*N) data, as well as the trait–index relationships from
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the WMMRS-based best index/date (year/month/day) combinations. Lines are colored according to the
spectral regions included in the index equations (Figure 1b). The results for MP*N are averaged from
the results within the six MP*N combinations. Horizontal gray lines indicate significance thresholds
on different levels. Thick lines and index labels indicate results of the best indices based on the
WMMRS-ranking of the ‘agronomic’ approach. For the scatterplots, colored thin lines correspond
to linear regressions for the MP*N subsets, dashed blue and red lines correspond to Cont_SD1 and
Cont_RF, respectively, and the dashed gray lines indicate the full datasets. R2 values are colored
accordingly. d.a.s.: days after sowing.

Figure 8. Seasonal coefficients of determination (R2) reached from all indices for selected N concentration
(NC) traits in (a) the full data and in (b) the main plot*N (MP*N) data as well as the trait–index
relationships from the best index/date (year/month/day) combination. Lines are colored according to the
spectral regions included in the index equations (Figure 1b). The results for MP*N are averaged from
the results within the six MP*N combinations. Horizontal gray lines indicate significance thresholds
on different levels. Thick lines and index labels indicate results of the best indices based on the
WMMRS-ranking of the ‘agronomic’ approach. For the scatterplots, colored thin lines correspond
to linear regressions for the MP*N subsets, dashed blue and red lines correspond to Cont_SD1 and
Cont_RF, respectively, and the dashed gray lines indicate the full datasets. R2 values are colored
accordingly. d.a.s.: days after sowing.
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3.3. Index Rankings According to Trait and Dataset

The WMMRS are depicted in Figure 9 for the combined rankings from the three ‘agronomic’
datasets (‘full data’, Cont_SD1, and Cont_RF; Figure 9a), as well as for the rankings from the MP*N data
(Figure 9b). Owing to several upper outliers, values greater than 15 were colored with the same blue
shading to allow for better comparisons of the other values. Only rankings for trait*index combinations
that reached R2 values > 0.20 are shown. For the following traits, no index exceeded this threshold for
the agronomic datasets: NC of spikes at anthesis as well as the derived N traits PANup, CPostNup,
and NupEff at anthesis. The rankings for the NC traits were diffuse with several indices reaching
high rank values for each few traits, but on a low absolute R2 level (Figure 4). For most Nup traits,
a clear advantage of most RE-based indices is visible. The indices NDRE_770_750, R780_R740, REIP,
R760_R730, Maccioni, and RVSI excelled through high-rank sums for most of the Nup traits in both
rankings. R787_765 and TCARI_OSAVI reached higher rank sums (WMMRS >17) for maturity NC
and Nup traits as well as NTEff and NHI in the agronomic ranking, but not in the MP*N ranking.
In contrast, most NIR/VIS and VIS indices were not particularly useful for the assessment of any N
trait. Overall, only a few indices reached ‘relevant’ relationships (R2 > 0.20) in both rankings for most
NC traits and derived N traits. This was also the case for direct Nup traits in the agronomic approach,
while index rankings differed less in the MP*N approach.

To compare the possibility of transferring the optimized index selection between datasets,
the rankings of both matrices were correlated against each other (Table 4; Figure S6). Interestingly,
rankings were substantially more stable (Spearman’s ρ > 0.84 ***) for all traits of anthesis Nup, GNup
(Nup Mat. grain), and total Nup at both growth stages, whereas rankings for leaf Nup at maturity
were negatively correlated except for ‘other leaves.’ Rankings also differed substantially for most NC
traits but were stable for the NC of grains (ρ = 0.91 ***) as well as of flag leaf–1 at anthesis. Among the
other traits, stable rankings (ρ > 0.86 ***) were found for NT only.

Table 4. Spearman’s ρ and significance level (*** p < 0.001; ** p < 0.01; * p < 0.05; n.s.: not significant)
of the correlations between the agronomic and the MP*N index rankings (Figure 9) by target trait.
See Figure S6 for scatterplots between both rankings.

NC Nup Derived N
Ant. spikes −0.29 * Ant. spikes 0.85 *** PANup 0.06 n.s.
Ant. stems 0.02 n.s. Ant. stems 0.89 *** CPostNup −0.03 n.s.

Ant. flag leaf 0.30 * Ant. flag leaf 0.90 *** NT 0.97 ***
Ant. flag leaf–1 0.92 *** Ant. flag leaf–1 0.92 *** NTEff −0.22 n.s.

Ant. other leaves 0.45 ** Ant. other leaves 0.84 *** NHI −0.37 *
Mat. grain 0.91 *** Ant. leaves 0.98 *** NupEff Ant. 0.35 *
Mat. chaff 0.54 *** Mat. grain 0.94 *** NupEff Mat. 0.17 n.s.
Mat. stems −0.12 n.s. Mat. chaff 0.78 ***

Mat. flag leaf −0.03 n.s. Mat. stems 0.60 ***
Mat. flag leaf–1 0.09 n.s. Mat. flag leaf −0.34 *

Mat. other leaves 0.58 *** Mat. flag leaf–1 −0.53 ***
Mat. other leaves 0.80 ***

Mat. leaves −0.33 *
Ant. total 0.95 ***
Mat. total 0.89 ***
Mat. straw 0.63 ***
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Figure 9. Weighted mean/maximum rank sums (WMMRS) for all evaluated trait*index combinations. (a) The combined WMMRS rankings from the three agronomic
datasets (‘full data’, Cont_SD1, and Cont_RF). (b) WMMRS rankings from the six MP*N subsets, which were multiplied by three for direct comparison on the same
numeric level. Rankings based on mean R2 across dates were double-weighted. For each trait, the value of nine corresponds to the average ranking across all indices.
Blue cells indicate WMMRS values >15. Blue lines delimit index and trait groups, respectively. Rankings for trait*index combinations that did not exceed the threshold
of maximum R2 values of 0.20 are not shown (white cells), being considered irrelevant.
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3.4. Re-Assessing the Index Grouping

A cluster analysis was conducted based on the coefficients of determination for all trait*index*date
combinations for comparing the initial index grouping according to the spectral regions with the
grouping on the basis of the effective performance for all considered plant traits. For the full data,
the clustering grouped the indices into two first-order branches. The NIR-based water band indices
formed the most homogeneous group with a uniform second-order branch in the full data (Figure 10).
The VIS indices were grouped in the second branch within the same first-order branch as the NIR
indices, together with TCARI_OSAVI, R787_765, MCARI, DD, and PSRI as well as the NIR/VIS indices
EVI, MCARI1, MCARI2, and MTVI2. The second first-order branch was subdivided into two branches
as well: One dominated by most NIR/VIS indices, in addition to the R730_R670 and R760_R670,
and the other branch containing most red edge-based indices as well as the NIR/green indices GNDVI
and R780_R550. The grouping into four main groups was similar in all four datasets (not shown).
In addition to the consistent groupings of the water-band indices, some indices were consistently
grouped closely together: PRI + BRI, MCARI2 + MTVI2, TCARI_OSAVI + R787_R765, NDRE_770_750
+ REIP + R780_R740, GNDVI + R780_R550, MND_750_705 + MSR705_445, R760_R730 + NDRE +

VOG2 as well as HVI + VOG1+ LCI + NDVI4.
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Figure 10. Cluster analysis based on Ward’s method on index kinship based on the performance for all
dates and traits in the full data (n = 10*34 -> 340). Colors indicate initial index groups based on the
included spectral regions (Figure 1b).

4. Discussion

This study evaluated the influence of the selection of measurement stages/dates and spectral
vegetation indices (SVIs) on the estimation of various GNup-related N traits.

4.1. In-Season Estimation of Grain N Uptake and Contributing N Traits

Similar to grain yield (GY), GNup is formed over time but relies substantially more on the
pre-anthesis component—Nup until anthesis—and its efficient translocation (NTEff). The resulting
N translocation (NT) contributed on average ≈96% to GNup in RF and ≈91% in Cont and SD1,
respectively, in the present data [12]. Although GNup was reduced by ≈9% in RF and increased by 5%
in SD1, compared with Cont, NTEff (−8%), and NT (−5%, not significant) which were affected only
in RF. The N harvest index (NHI) varied little between cultivars but was substantially higher than
the DM harvest index (NHI ≈0.78 in RF, 0.84 in Cont and 0.85 in SD1). However, total Nup differed
substantially both in the ‘agronomic’ datasets and between cultivars within the MP*N combinations.
The fact that GNup was not closely related to GNC (R2 = 0.38 ***) in the full data [12] explains that
the seasonal R2 patterns and the index rankings of GNup and GNC differed substantially. However,
considering the high contribution of NT to GNup [12], high R2 values were reached for GNup already
at stem elongation, the phase of maximum Nup [70]. The ear emergence stage was not suitable
for detecting GNup and total Nup, which is likely an effect of phenological shifts that impact the
spectral signal [71]. Although the seasonal pattern is consistent with previous years in the same
environment [26], other studies recommend ear emergence for wheat [28] or anthesis for spring



Sensors 2019, 19, 4640 21 of 27

barley [72], indicating that the variation in ear emergence should be accounted for, depending on the
underlying treatments.

Both the similar temporal R2 patterns and index rankings for total Nup as for GNup are
in accordance with the close relationship between both traits (R2 = 0.88 *** in the full data and
R2 = 0.64–0.97 within the MP*N datasets; [12]), whereas NHI was poorly (R2 = 0.17 * in the full data)
or not (in MP*N) related to GNup. The estimation of NHI—only driven by its lower values in RF
compared with Cont and SD1—may relate to the detection of differences in leaf senescence. Testing
the spectral estimation of various biomass and N traits for phenotyping breeding lines, Frels et al.
found useful relationships for NHI only in one of two years from the TCARI_OSAVI. In contrast to the
present study, they also reported moderate, yet year-dependent, correlations for PANup; however,
for a substantially broader data range in both traits.

The clear advantage of most red edge (RE)-based indices for most Nup traits is well in line
with previous findings regarding the higher sensitivity of the RE reflection for overcoming saturation
in the red region and for estimating the N status [27,54,73–75]. Thus, in particular NIR/RE indices
that replaced the VIS band with a RE band [76] performed well. In contrast, the placement of the
right-sided band appeared to be less crucial as indicated by the similarity in rankings from the
R760_R730, R780_R740, NDRE, and NDRE_770_750 as well as of the LCI and the Maccioni index. Thus,
the Maccioni index was previously recommended for GNup and NupEff [28], the NDRE_770_750 [26]
and the REIP [77] for GNup, and the R780_740 for total Nup and for N use efficiency [27]. In contrast,
some RE/VIS indices—notably the NDVI4, MTCI, MSR_705_445 and MND_750_705—ranked similarly
to each other, but rarely best for any of the traits.

The comparable seasonal R2 pattern and index rankings for GNup as for total Nup at anthesis
relates to the correlations between the traits (r = 0.48 ***; not shown). However, GNup was better
assessed than vegetative Nup, possibly owing to the stage-specific sampling at anthesis, including a
sampling interval of a few days, which reduced the variance in vegetative Nup. The mostly better
detection of Nup of leaves than that of stems and spikes/chaff confirms results on spring barley [18] and
is plausible, considering that the sensor predominantly detects the horizontally aligned leaf blades [78].
Thus, the observed detection of other organs may indicate rather indirect relationships via correlations
with leaf traits. In contrast to anthesis Nup, vegetative Nup at maturity was substantially influenced by
the reduced NTEff as introduced by reduced fungicide, which correlated with total leaf Nup at maturity
(full data: r = 0.79 ***; not shown). Thus, indices suited for NTEff as well as for NC (R787_R765 and
TCARI_OSAVI) were able to detect vegetative Nup at maturity in the agronomic data (Figure 7), but not
the cultivar differences in MP*N. The similarly high rankings of both indices for many organ-level NC
and Nup traits at maturity, NTEff, and NHI suggest a specific senescence sensitivity of these indices,
because all these traits were altered by fungicide and N level effects [12]. This is in line with previous
recommendations of these indices for retrieving NC in grassland [52] or chlorophyll [55], respectively.

4.2. Estimation of N Concentration Traits

The estimation of NC or chlorophyll content previously focused on leaf NC or NC of the total
plant for optimizing N fertilization before anthesis [15]. However, the resulting N status at anthesis and
grain filling is crucial for the formation of GY and GNup as well. Although RE/VIS indices previously
optimized for leaf NC or chlorophyll content including the DD [60], MND_750_705, MSR_705_445 [62],
and MTCI [63], ranked high for either one of the leaf layers, the VIS indices blue/red pigment index
(BRI) and BGI were more consistent over time, for all three leaf layers and both in the agronomic
and the MP*N approaches. Blue bands were less commonly used, but the BGI was also confirmed
for chlorophyll retrieval in barley [79] and vine [48], in contrast to the BRI which was found less
useful [48]. Such VIS indices are interesting because they are also available from simple red-green-blue
(RGB) cameras [80]. Similar to Nup, NC of vegetative organs at maturity relates to variation in NTEff.
Thus, the fungicide-related variation in the full data was captured by indices sensitive to senescence,
whereas in the MP*N data, cultivars may not have sufficiently differed in NTEff.
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4.3. Stability of Index Rankings by Datasets and Index Grouping

Year and treatment effects can be substantial, particularly on the derived N traits [20]; therefore,
the comparison of index rankings addresses the influence of the underlying treatments. Similarly as
for most Nup traits, the constant index rankings found for the important traits GNup and GNC
are promising (Table 4; Figure 11). In contrast, trait variation introduced by N fertilization and
differing fungicide intensities in the agronomic data may explain substantially differing index rankings
(correlations between rankings < 0.67; blue colored in Figure 11) for many maturity-related NC and Nup
traits. Mostly, those traits were not reliably assessed in MP*N but they were in the full data approach
(bottom right quadrant in Figure 11). While indices selected for green-colored traits (transferable
rankings) are promising for a more independent application, the index selection for blue-colored traits
would require more consideration of the underlying treatments and/or trial environments.

The SVI clustering confirms the similarity in the index rankings and indicates that most SVIs
grouped together by spectral bands gather similar canopy information. This is particularly the case for
the NIR-based indices, which include the same water absorption band, as well as for the VIS indices,
whereas the delimitation of RE-SVIs was less stringent. The similar grouping of the R787_R765 and the
TCARI_OSAVI with VIS indices is in line with their discussed sensitivity of senescence-related pigment
information. Similarly, RE/VIS indices, which were previously optimized for pigment detection
(DD, MCARI, and PSRI [43,61,62]), were grouped together with VIS indices. Some RE/VIS indices
based on the R670 band being grouped with the NIR/VIS indices support that choosing an upper band
left to the NIR plateau had little impact compared to NIR/VIS indices similar to the NDVI.

The hyperspectral data used in this study yields optimized narrow-band SVIs. The information of
relevant spectral bands used by these SVIs can be transferred to the band selection and the design
of optimum multispectral sensors. Such sensors are less expensive, more robust and therefore better
suited to be used by practitioners on tractors or drone platforms. Further aspects of view geometry,
sensor resolution, and illumination conditions need to be addressed in this context.

-

-

-

-

Figure 11. Relationship of trait-specific maximum relationships (R2; Figure 4) in the full data and the
MP*N approach. The data is colored by Spearman’s ρ (green: ρ > 0.67, blue: ρ < 0.67) on the correlations
between the WMMRS rankings of the ‘agronomic’ and the MP*N approach (Table 4). Dashed lines mark
the 1:1 line and arbitrary R2 thresholds (0.3) for categorizing the traits by R2 values in both approaches.
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5. Conclusions

Aiming at exploiting spectral proximal sensing for practical use in agronomic field trials,
optimizations are required in the selection of (i) vegetation indices depending on the sensor and (ii)
suitable growth stages for measurements, while a better understanding of the traits contributing to final
GNup and their treatment response is equally important [12] for understanding (iii) the trait detection.
With respect to (i), the results confirm the usefulness of NIR/red edge indices. For (ii), although
the milk ripeness stage was generally best suited, moderate relationships observed already at stem
elongation have the advantage of seasonally earlier estimations. In contrast, the ear emergence/anthesis
phase should be avoided, probably owing to phenological shifts among cultivars. With respect to
(iii), the results suggest that GNup is well estimated spectrally, similarly to total Nup under various
trial conditions, whereas partitioning to the grain is not generally visible to the sensor. Although leaf
information was better detected, N status of other organs could be moderately estimated as well,
however the mechanism of the organ-specific detection may be indirect and should be further evaluated.
The N translocation could be estimated in a similar manner as the closely related Nup at anthesis.
Several traits—including most vegetative NC and Nup traits at maturity, NHI, and NTEff—were
detected in the context of accelerated senescence without leaf fungicide in RF, but not for genotypic
variation in MP*N.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/21/4640/s1.
Table S1: List of plant traits considered in this study, grouped by trait groups. Figure S1: Field trial measurements
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The influence of the measurement date (year/month/day) on the trait estimation (Cont_SD1/Cont_RF/averaged
form the six MP*N datasets). Figure S4: The index suitability by target trait. Figure S5: Seasonal coefficients of
determination (R2) reached from all indices for grain N uptake (GNup), total Nup at maturity, and the N harvest
index (NHI) for the Cont_SD1 and the Cont_RF data. Figure S6: Consistency between WMMRS-index rankings
from the MP*N datasets (y-axis; Figure 9b) and the agronomic datasets (x-axis; Figure 9a) for all considered
plant traits.
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