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Abstract: Existing works on the influence of spatial effects on flux and permeation of proteins in
microfiltration (MF) have focused on ceramic membranes. There is little information on spiral-wound
membranes (SWMs). Since the inner core of a SWM is practically inaccessible by non-destructive
techniques, three different prototypes were constructed in this study to optimize suitability for the
investigation of spatial effects on filtration performance. To measure the pressure drop, shortened
SWMs 0.25, 0.50, and 0.75 times the length of a standard industrial SWM (0.96 m) were designed.
Second, a sectioned membrane (0.96 m) with separated compartments on the permeate side was
constructed to analyze spatial effects on flux and protein permeation along the flow path of a SWM.
Three different features characterized this sectioned module: sectioned permeate pockets, a sectioned
permeate collection tube, and sectioned permeate drain and measurement systems. Crossflow
filtration experiments showed that these modifications did not alter the filtration performance
compared to an unmodified control SWM. Thus, it can be applied to assess spatially-resolved filtration
performance in SWMs. The third prototype designed was a test cell with accessible flat sheet
membranes and spacer material, as in SWMs. The flow path in this test cell was designed to match
the characteristics of the channels between the membrane sheets in a standard SWM as closely as
possible. The flow path length and the combination of membrane material and spacer architecture
were the same as in the control SWM. This test cell was designed to assess the effects of length and
processing conditions on the formation of a deposit layer. The combined results of these test modules
can yield new insights into the spatial distribution of flux, permeation of target components, and
deposit formation.

Keywords: length dependency; prototype module; spiral-wound membrane; flat sheet test cell;
microfiltration; skim milk; fractionation

1. Introduction

Milk protein fractionation by means of microfiltration is still an emerging field in the dairy industry.
Up to now, ceramic membranes have primarily been used for this application, which have been studied
excessively [1–10]. Polymeric spiral-wound membranes (SWM) provide a possible alternative to
ceramic membranes [11–13] because of their higher specific membrane area per module and lower
filtration operating costs [14]. Filtration performance of both membrane types is affected and limited
by deposit layer formation [15–17]. The intensity of the deposit layer formation depends on, among
other factors, the process variables transmembrane pressure and crossflow velocity.

In crossflow applications, friction losses result in an unavoidable retentate pressure drop along
the membrane [18], which leads to a longitudinal reduction of the transmembrane pressure (∆pTM).
Since the mean ∆pTM for microfiltration applications is low in general (0.3–3.0 bar for this application),

Membranes 2019, 9, 80; doi:10.3390/membranes9070080 www.mdpi.com/journal/membranes

http://www.mdpi.com/journal/membranes
http://www.mdpi.com
https://orcid.org/0000-0002-7877-2479
http://www.mdpi.com/2077-0375/9/7/80?type=check_update&version=1
http://dx.doi.org/10.3390/membranes9070080
http://www.mdpi.com/journal/membranes


Membranes 2019, 9, 80 2 of 19

retentate pressure drop has a strong impact on the deposit layer formation and filtration performance
along the membrane. It is known that fouling is more pronounced at higher ∆pTM values [17], as well
as at a lower crossflow velocity [19]. This means that the higher ∆pTM at the membrane inlet causes a
more intense deposit layer formation compared to the outlet [20]. These effects have been studied in
detail for tubular membranes and flat sheet membranes by Riesmeier [21], and for ceramic membranes
by Piry et al. [4,8]. To be able to study the length effects in ceramic membranes, Piry et al. [4] divided
a membrane into four sections in axial direction and studied microfiltration-based fractionation of
milk proteins. They observed a flux decline along the module, whereas the permeation of the smaller
protein fraction increased. The authors concluded that the spatially dependent ∆pTM directly affects
deposit layer formation by the retained larger proteins (casein micelles) in ceramic tubular membranes,
and thus membrane performance. Based on results regarding length-dependent filtration performance
in tubular ceramic membranes, different concepts for better control of ceramic membranes were
developed. One concept is the uniform transmembrane pressure (UTP) principle, as studied by
Kersten [22]. Membranes with a gradient in membrane resistance, as used by Heidebrecht et al. [10],
are another possibility. Both systems provide an improved mass flow into the permeate, due to a more
homogeneous filtration behavior along the membrane.

Interpreting the observations on ceramic membranes, it seems logical that spatial effects also
influence filtration performance in SWMs, but this has not been investigated yet. Reasons for this are
most probably the difficulty of measuring spatial effects in SWMs, as the geometry includes complex
and narrow spacers which influence the feed flow [23–25], and the irregularly curved flow path [26,27].
A direct transfer of the observations from ceramic tubular membranes to SWMs is therefore hardly
possible. To assess spatial effects in SWMs, so far, computational fluid dynamics (CFD), test cells, and
direct observations have been used, which are helpful tools, but possess certain limitations.

CFD has predominantly been applied to gain more insights into spatial effects in SWMs for reverse
osmosis (RO) and nanofiltration (NF) applications, and not for microfiltration [26,28–31]. The drawback
of CFD simulations of flow patterns in SWMs is that major assumptions and simplifications have
to be made [28] due to the complex three-dimensional distribution of feed flow velocities, deposit
layer formation, and filtration fluid characteristics. Thus, results are subject to uncertainty and
require experimental confirmation. For example, Koutsou and Karabelas [32] assumed that the
membrane is impermeable, thus, concentration effects were neglected. They proved that simulations
can satisfactorily approximate flow patterns. However, this technique cannot be used to assess deposit
layer formation and protein permeation. Furthermore, dead zones in SWMs [33] and fouling in the
feed channel, inevitable in skim milk microfiltration, lead to an inhomogeneous flow distribution.
Schwinge et al. [24] stated that these disparities are difficult to model and represent a major restriction
of simulations. Although continuous improvements enhance the accuracy of simulations, assumptions
are indispensable. Thus, the accuracy of results is still unsatisfactory, reducing the value of simulations
to predict the performance of SWMs, especially for microfiltration applications and low transmembrane
pressures without experimental validation.

Another approach is to derive the filtration performance of SWMs from observations in flat
sheet test cells [34–37]. Mo and Ng [35] created a test channel (1.00 m × 0.03 m) to measure protein
permeation, flux, and pressure drop along the feed channel in a reverse osmosis application. However,
an experimental comparison to the filtration performance of a SWM was not carried out. Siebdrath et
al. [37] developed a similar filtration test cell (0.91 m × 0.04 m) for reverse osmosis as well. Although
it was indicated that the hydrodynamics are comparable to a SWM, the authors also did not prove
that the filtration performance is similar to a real SWM. Due to the small channels, differing boundary
conditions occur in the flow channel of a SWM and a test cell. Therefore, a direct transfer of filtration
results from test cells to industrial-sized SWMs seems to be questionable. To overcome the issues of a
flat channel test cell, Bu-Ali et al. [38] used five short SWMs of 0.458 m length in series. They observed
a pronounced increase in concentration along the flow path, resulting in a longitudinal flux decline and
a higher salt concentration in the permeate during RO filtration. As inlet and outlet pressure drops
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occur in each module, an accurate prediction of filtration performance in SWMs cannot be guaranteed
using a series of shorter modules with multiple inlet and outlet flow effects. This can only be achieved
by investigating spatial effects in an industrial-sized module.

Even though test cells have some limitations, they are a helpful tool to understand the filtration
behavior of polymeric spiral-wound membranes better, or at least to derive filtration trends in full-size
SWMs. However, it remains unsolved whether test cells and small-scale applications can predict the
filtration performance of SWMs during skim milk MF in a satisfactory manner.

A third option to gain insights into spatial behavior of SWMs are direct and indirect observations.
By using nuclear magnetic resonance (NMR) microscopy, Vrouwenvelder et al. [39] showed that the
flow distribution in flat channels becomes increasingly inhomogeneous due to fouling. Feed flow
was limited to well-defined areas, whereas virtually no feed flow could be observed on the rest of the
membrane. Von der Schulenburg et al. [40] applied NMR to characterize flow distribution in SWMs.
They observed a heterogeneous distribution of the feed flow in radial direction after biofouling had
occurred. Thus, the flow distribution differs in radial and axial direction in a SWM, suggesting that a
test cell is not suitable for a precise prediction of the spatial and overall filtration performance of a SWM.
An additional measurement is field emission (FE) scanning electron microscopy (SEM), which can be
used to determine the deposit layer height in cross-sectioned membranes. Coupling SEM with energy
dispersive X-ray (EDX) analysis provides a method to analyze a deposit layer’s composition [41].
Bégoin et al. [41] observed a radial gradient in deposition in cleaned UF membranes after milk filtration
using FESEM. Fouling was most pronounced close to the permeate collection tube in the center of the
module, confirming an inhomogeneous radial flow distribution. Furthermore, other techniques, such
as confocal laser scanning microscopy (CLSM) [42], attenuated total reflection Fourier-transformed
infrared spectroscopy (ATR-FTIR) [43], and surface matrix assisted laser desorption ionization mass
spectrometry (Surface-MALDI-MS) [44] can be used to analyze the deposit layer. The direct and indirect
observation methods, however, cannot provide any insight into spatial flux and protein permeation.

It can be concluded that the filtration performance of SWMs is subject to spatial effects in the
radial and axial directions of the membrane sheets, which, however, has not directly been proven in an
industrial-sized SWM to date. Hence, the goal of this study was to develop new in situ test systems
for the investigation of spatial effects in SWMs, and to compare them in terms of which best reflected
reality. Two different setups of membrane prototypes were constructed: No.1: SWMs of different
lengths were used to measure the pressure drop along the flow path. No.2: To analyze flux and protein
permeation along a SWM, a standard SWM and the filtration plant were adapted by three modifications:
(i) a modification of the membrane itself by dividing the permeate pockets into four compartments to
avoid axial mixing; (ii) a modification of the permeate collection tube to collect four different permeate
streams; (iii) a modification of the filtration plant to monitor and control spatial effects.

With the membrane prototypes No.1 and No.2, a direct observation of deposit layer formation
can only be achieved by destroying the SWM without any chance of reuse. Therefore, a new test cell
was constructed and compared to the modified SWM. This needs to be done to assess whether the
uncertainty of results obtained by test cells can be eliminated, and whether a more suitable test cell
can be developed to overcome the weaknesses and limitations of currently used test cells. With these
membrane prototypes and the test cell, the prerequisite to investigate the spatial filtration behavior
in SWMs has been created. As with ceramic tubular membranes, the motivation of this study was
to create new tools for the generation of data useful for the development of advanced SWMs and/or
modes of operation with reduced spatial dependency and a better overall filtration performance.

2. Materials and Methods

2.1. Preparation of Skim Milk and Calculation of Protein Permeation

Skim milk was used as model fluid to validate the different test systems. Pasteurized skim milk
(74 ◦C, 28 s) was obtained from a local dairy (Molkerei Weihenstephan GmbH & Co. KG, Freising,
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Germany) and stored at 4 ◦C for up to four days. The individual casein and whey protein composition
of the samples was analyzed by reversed phase high performance liquid chromatography (RP-HPLC)
according to Dumpler et al. [45]. Protein permeation (P) was calculated from retentate concentration at
40 min (cr, 40 min) and the permeate concentration of a target component (cp) by Equation (1).

P =
cp

cr, 40 min
× 100% (1)

2.2. Membranes and Filtration Rigs

The membrane material for all test systems was polyvinylidene fluoride (PVDF) (V0.1, Synder
Filtration, Inc., Vacaville, CA, USA) with a nominal pore size of 0.1 µm. The material was either used
as flat sheets for the test cell or was manufactured into SWMs by CUT Membrane Technology GmbH
(Erkrath, Germany). Prior to the filtration, the membranes were conditioned with caustic Ultrasil 69
(0.4% vol/vol, Ecolab Deutschland GmbH) at 50 ◦C for 20 min. The cleaning procedure is described in
detail elsewhere [46].

2.2.1. Investigation of Spatial Effects on Pilot Scale

Figure 1 shows a simplified piping and instrumentation (P&I) flow chart of the pilot plant used to
investigate the SWMs. Details are described elsewhere [46].

  

Membranes 2019, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/membranes 

2. Materials and Methods 

2.1. Preparation of Skim Milk and Calculation of Protein Permeation 

Skim milk was used as model fluid to validate the different test systems. Pasteurized skim milk 

(74 °C, 28 s) was obtained from a local dairy (Molkerei Weihenstephan GmbH & Co. KG, Freising, 

Germany) and stored at 4 °C for up to four days. The individual casein and whey protein composition 

of the samples was analyzed by reversed phase high performance liquid chromatography (RP-HPLC) 

according to Dumpler et al. [45]. Protein permeation (P) was calculated from retentate concentration 

at 40 min (cr, 40 min) and the permeate concentration of a target component (cp) by Equation (1). 

P =
cp

cr,40 min
× 100% (1) 

2.2. Membranes and Filtration Rigs 

The membrane material for all test systems was polyvinylidene fluoride (PVDF) (V0.1, Synder 

Filtration, Inc., Vacaville, CA, USA) with a nominal pore size of 0.1 µm. The material was either used 

as flat sheets for the test cell or was manufactured into SWMs by CUT Membrane Technology GmbH 

(Erkrath, Germany). Prior to the filtration, the membranes were conditioned with caustic Ultrasil 69 

(0.4% vol/vol, Ecolab Deutschland GmbH) at 50 °C for 20 min. The cleaning procedure is described 

in detail elsewhere [46]. 

2.2.1. Investigation of Spatial Effects on Pilot Scale 

Figure 1 shows a simplified piping and instrumentation (P&I) flow chart of the pilot plant used 

to investigate the SWMs. Details are described elsewhere [46]. 

 

Figure 1. Simplified piping and instrumentation (P&I) diagram of the pilot plant for the investigation 

on 6338 spiral-wound membranes (SWMs) (modified according to [46]). 

In short, this unit consists of a receiver tank (250 L), a multistage centrifugal pump (adjustable 

from 5 to 20 m3 h−1 feed volume flow), a heat exchanger for temperature control, and a housing for 

the SWM. The feed volume flow corresponds to a mean crossflow velocity v between 0.15 and 

M

PIR

2

FIR

1

PIR

3

FRC

1

TRC

1

LIR

1

PIR

1

Figure 1. Simplified piping and instrumentation (P&I) diagram of the pilot plant for the investigation
on 6338 spiral-wound membranes (SWMs) (modified according to [46]).

In short, this unit consists of a receiver tank (250 L), a multistage centrifugal pump (adjustable
from 5 to 20 m3 h−1 feed volume flow), a heat exchanger for temperature control, and a housing for the
SWM. The feed volume flow corresponds to a mean crossflow velocity v between 0.15 and 0.60 m s−1

(referring to a 6338 module with a 31 mil spacer). This was calculated by Equation (2), with the feed
volume flow

.
V and the free cross-section of the membrane without spacer A.

v =

.
V
A

(2)
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In this configuration, the plant was used to measure the retentate pressure drop in the modules
with different lengths. To analyze flux and permeation of proteins along a SWM, a modification of the
plant was necessary, which is described in detail in the results section.

2.2.2. Design and Manufacture of Prototype SWM

Prototypes were constructed as 6338 modules with a diameter of 6.3 inches (0.16 m) and a permeate
collection tube length of 38 inches (0.96 m). A diamond shaped feed spacer (31 mil) was used and the
modules were enveloped in an outer wrap to enhance cleanability. The active membrane length and
filtration area were not proportional to the overall length of the modules due to the glue strips in the
permeate pockets. Hence, the active membrane area of the sectioned module had to be determined.
The total flux of a module is proportional to the active membrane area of a module. Thus, the active
membrane area of the sectioned membrane could be calculated by its module specific flux during
skim milk filtration at limiting flux conditions, and the corresponding specific flux of the unmodified
module at the same conditions. Table 1 summarizes the prototype characteristics.

Table 1. Characteristics of prototype membranes.

Membrane Specification Length [m] Active Filtration Area [m2]

Membranes with different lengths

0.24 3.5
0.48 8.6
0.72 13.1
0.96 19.1

Sectioned membrane 0.96 14.3

2.2.3. Validation of SWM Prototypes

Experimental design and start-up procedure are described in detail elsewhere [46]. Filtration
experiments were conducted at 10 ◦C and a native milk pH of 6.8. The SWMs were mounted in a
housing (1.3 m) with two cartwheel-shaped anti-telescoping devices. During filtration experiments,
retentate and permeate were recirculated and a retentate pressure drop of 0.78 bar m−1 was applied
(corresponding to a mean crossflow velocity of 0.42 m s−1). A ∆pTM of 0.5 bar was held for 40 min
to ensure steady state filtration was achieved. Subsequently, a gradual increase of ∆pTM was carried
out in 0.5 bar increments to 3.0 bar, holding each ∆pTM level for 30 min. For the ∆pTM adjustment,
permeate and retentate outlet streams were throttled. Permeate samples were gathered prior to rising
the ∆pTM. Retentate samples were taken in duplicate after 40 min and at the end of the experiment.
Flux was measured 20 min after ∆pTM adjustment.

2.2.4. Investigation of Spatial Effects on Lab Scale

A sectioned flat sheet test cell (SIMA-tec GmbH, Schwalmtal, Germany) was constructed to
quantify the deposit layer on membranes. It was equipped with a receiver tank (3 L), a piston pump,
a snubber to create a continuous flow, a heat exchanger for feed tempering, and a filtration unit
(Figure 2).

The filtration unit was built up of five individual test cells (SIMA-tec) connected in series (Figure 3).
Therefore, spatial effects could be analyzed at different membrane lengths.

Prior to filtration, a flat sheet membrane piece was mounted in the test cell with the selective layer
of the membrane upside down. Before installation, the membrane was soaked in deionized water
at room temperature for 24 h. The channel height was designed to allow the placement of spacers
up to a height of 114 mil and, thus, was suitable for the investigation of highly viscous feeds. This
enhanced the operational area of the test cell compared to other simulators, which have a fixed spacer
height [34,35] or a lower range of applicable spacer heights [37]. For spacers with a lower height,
distance plates regulated the interspace. The active membrane area was 0.20 m × 0.04 m per test cell.
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By using five test cells with a length of 0.20 m each, a cumulative membrane length of 1.00 m was
achieved, which is similar to the length of one industrial sized SWM. Each of the five test cells was
equipped with an outlet to collect individual permeate samples. The retentate pressure before (pi) and
after (pi+1) each test cell plus the permeate pressure (pp) was determined using pressure gauges (WIKA
Alexander Wiegand SE & Co. KG, Klingenberg am Main, Germany). A mass flow measurement
system (Promass 80A01, Endress+Hauser Messtechnik GmbH+Co. KG, Munich, Germany) was used
to measure the permeate flux of each section either separately or combined. Therefore, permeates were
piped through the mass flow measurement system or through a bypass. Data were logged with an
Ecograph T (Endress+Hauser Messtechnik GmbH+Co. KG, Munich, Germany).Membranes 2019, 9, x FOR PEER REVIEW 3 of 20 
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Figure 3. Architecture of a single test cell (a). Detail B shows the different inlays in the test cell during a
filtration test (b).

2.2.5. Calculation of the Feed Volume Flow in the Test Cell

To create similar hydrodynamic conditions between the test cell and a standard SWM, the feed
flow was calculated on basis of a similar mean crossflow velocity by Equation (3). Therefore, the free
current cross-section of the SWM and the test cell were put in relation. In Equation (3), the feed volume
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flow of the test cell
.

Vtest cell, the total membrane area of the SWM ASWM (22.8 m2), the length of the
SWM lSWM (0.96 m), and width of the test cell btest cell (0.04 m) were used.

.
VSWM =

.
Vtest cell·ASWM

2lSWM·btest cell
(3)

Referring to a 6338 SWM (length 0.96 m, diameter 0.16 m), hydrodynamic conditions of feed
volume flows between 3.0 and 32.7 m3 h−1 can be depicted in the test cell by applying feed flows
between 10 and 110 L h−1. With regard to the 31 mil spacer, this corresponds to a mean crossflow
velocity between 0.09 and 0.97 m s−1.

2.2.6. Experimental Design

Prior to filtration trials, 2.5 L of skim milk were heated to a process temperature of 10 ◦C. To remove
the mixed phase, the plant was flushed with skim milk. Therefore, 0.5 L were drained before the
retentate was recirculated. Following this, the crossflow velocity was adjusted to create a pressure
drop of 0.78 bar m−1, permeate valves were opened, and ∆pTM was adjusted. According to Hartinger
et al. [46], ∆pTM was gradually increased in steps of 0.5 bar from 0.5 to 3.0 bar. The 0.5 bar ∆pTM step
was held for 40 min, and the following were held for 30 min to ensure that steady state conditions
were reached. The flux was measured 20 min after ∆pTM adjustment. Permeate samples were taken
prior to rising the ∆pTM to the next level and at the end of the experiment. Retentate samples were
collected at the end of the 0.5 bar and 3.0 bar steps.

2.3. Data Regression and Statistical Analysis

Data were plotted using OriginPro 2017G (OriginLab Corporation, Northampton, MA, USA).
Error bars represent the standard deviation of two individual experiments performed with milk from
different lots.

3. Results and Discussion

3.1. Construction of Membranes with Different Lengths

The retentate pressure drop directly affects the transmembrane pressure along the membrane,
and thus affects the length-dependent deposit layer formation and filtration performance [4]. In order
to understand the retentate pressure drop along a complex SWM and compare it to the sectioned
module, it is necessary to measure the pressure at different positions along the membrane. In an
industrially-sized module (length 0.96 m), it is only possible to measure the pressure at the membrane
inlet and outlet. Thus, we constructed SWMs with different membrane lengths (0.24, 0.48, 0.72, 0.96 m)
(Figure 4) and installed them in a standard SWM housing.

In order to achieve flow conditions at the feed inlet similar to a full-length module, the
membrane-covered parts of the permeate tube pointed to the feed inlet. The permeate collection tubes
had the same length (0.96 m) for each membrane to ensure a correct positioning of the modules in the
pressure housing. However, drill holes for the permeate passage into the permeate tube were only
present in the active filtration area of the membrane sheets. Apart from that, the membrane prototypes
with different lengths were similar to standard SWMs, resulting in an active membrane area of 3.5, 8.6,
13.1, and 19.1 m2 for the respective membranes with lengths of 0.24, 0.48, 0.72, and 0.96 m.

3.2. Sectioned Membrane Prototype for the Space-Resolved Recording of Flux and Protein Permeation along
the Membrane

Aside from the retentate pressure drop, the length-dependent filtration behavior is of particular
interest for the evaluation of SWMs. Three independent modifications were necessary to monitor flux
and protein permeation along a SWM: a modification of the membrane pockets, the central permeate
collection tube, and the filtration plant itself.
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Figure 4. Membranes with different lengths (0.24; 0.48; 0.72; 0.96 m). For all modules, the permeate
collection tube has a length of 0.96 m.

3.2.1. Modification of the Membrane Pockets

A modification of the permeate channel was necessary to avoid axial mixing of permeates
originating from different positions in the SWM. Therefore, the permeate pockets were sectioned into
four compartments in axial direction prior to winding the membrane sheet around the permeate tube.
The sectioning was realized by three equidistant, radially oriented glue strips in each permeate pocket
(Figure 5). Thereby, the same technique was applied as for tightening flat sheets to form the permeate
pockets. The glue strips reduced the active filtration area of the sectioned SWM by approximately
25% to 14.3 m2. However, the glue strips offer another advantage in addition to the avoidance of
permeate stream mixing: since no volume can be exchanged between the different compartments,
no pressure equalization can take place. Thus, the permeate pressure can be regulated separately in
each section. This means that a length-dependent ∆pTM adjustment can be carried out by controlling
the permeate pressure. Furthermore, the retentate pressure specific to the section can be measured.
When the permeate throttles are closed, the pressure in the permeate sections corresponds to the mean
pressure on the retentate side, and therefore becomes accessible.
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Figure 5. The sectioned module with modified permeate pockets and a modified permeate collection tube.
The retentate side is unmodified. For comparison, an unmodified SWM can be found in the supplementary.
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To summarize, the glue strips in the permeate pockets prevent mixing of permeate in axial
direction and enable an assessment of the length-dependent filtration performance. By preventing the
exchange of liquids between the pockets, permeate pressure and thus ∆pTM can be controlled in axial
direction in the sectioned SWM.

3.2.2. Modification of the Central Permeate Collection Tube

Since the permeates of the four compartments would mix in the central permeate collection tube,
it was additionally necessary to modify the tube. This was implemented by a plug system (Figure 6)
with three plugs. Each plug has two O-ring gaskets to divide the collection tube into four compartments
sealed against one another. The plugs were positioned at the location of the glue strips. Furthermore,
the drill holes in the permeate collection tube were left out in these areas to ensure a homogenous seal
face. In order to guarantee a correct positioning of the plugs, they were connected to one another to
form a single device.
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Figure 6. Axial cross-section of a SWM sectioned by glued strips in the permeate pocket, and the plug
system integrated into the sectioned SWM. Shaded areas mark the active filtration area.

In this configuration, the plugs would prevent permeate of sections 2 and 3 from draining.
Therefore, the outer plugs hold a drill hole in axial direction. Since the permeate of the inner sections
(2 and 3) would mix with the permeate of the outer sections (1 and 4), the outer plugs were connected
to pipes. This allowss the permeate of the inner sections to flow through the pipes by creating a
“tube-in-tube” system. This ensurs that the different permeate streams becomes accessible outside of
the SWM. Streams of sections 1 and 2 can be collected on the feed inlet side, streams of sections 3 and 4
on the retentate outlet side.

3.2.3. Modification of the Filtration Plant

In order to be able to analyze, monitor, and control the filtration performance of each section
separately, the membrane filtration plant (Figure 1) had to be modified too (Figure 7). For the analysis
and quantification of the individual permeate composition of each section, each permeate stream
was forced into a separate flow path including a sampler. Four pressure gauges were installed in
the four different flow paths to monitor the pressure in each of the four sections. To control the
permeate pressure, and thus ∆pTM, a throttle was integrated in each section. The permeates were
directed to either collector 1 or 2 via a three way valve, connected to the flow meter or a bypass. Thus,
a selective permeate flow measurement could be performed. After the individual flow measurement,
all permeates were merged to a combined permeate stream, which could again be throttled. This
design also made it possible to monitor and control the total permeate pressure, and not only the
individual sections.
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Figure 7. Modified pilot plant, x1–x4 refer to the set of components and their interconnection, as depicted
in the top right box.

The combined modification of the permeate pockets, the permeate collection tube with the
tube-in-tube system, and the filtration plant enables an assessment of length-dependent filtration
performance in SWMs.

3.3. Validation of the Sectioned Membrane Prototype

The next step after the complex set up of the different modifications was to verify that the
modifications did not alter the filtration behavior, compared to an unmodified SWM. To monitor the
influence of the sectioning, the flux of both SWMs (length of 0.96 m each) as a function of ∆pTM was
compared (Figure 8). With increasing ∆pTM, the flux during skim milk filtration increased until the
limiting flux of 19 L m−2 h−1 was reached for both membranes at the same ∆pTM of 1.0 bar. Limiting
flux conditions were reported in previous studies on skim milk filtration [2,4,46], and were caused by
more intense fouling at higher ∆pTM values.
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Figure 8. Flux as a function of the transmembrane pressure (∆pTM) for the sectioned and a non-sectioned
SWM (length of 0.96 m) during filtration of water and skim milk at a mean crossflow velocity of 0.42 m s−1.
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Below the limiting flux, there was a slight difference between the two SWMs. In this pressure
range (0.5 bar), the filtration performance was rather controlled by the membrane than by the deposit
layer, as was the case for the limiting flux. A possible explanation for the deviation is that a pressure
alignment appeared in the permeate pocket of the non-sectioned module. More permeate was produced
close to the membrane inlet, due to the higher ∆pTM [4]. Therefore, permeate flowed to the rear part of
the membrane (in axial direction) inside the permeate pocket, and thus increased permeate pressure in
the rear of the module. On that account, ∆pTM was slightly lower in the rear part compared to the
sectioned membrane, where this effect could not occur due to the glued separations. Furthermore, the
variability of membrane performance in one batch is known for polymeric membranes. This explains
the differences in water flux values between the modified and the unmodified membrane. Overall,
however, the deviation was considered acceptable.

Next to the flux, permeation of the major whey protein β-lg as reference for the whey proteins
and casein was determined (Figure 9). As known from literature, protein permeation decreases with
increasing ∆pTM [4,46] and with increasing size of the proteins [10]. Thus, the permeation of both
proteins decreased with the ∆pTM. Further, the casein permeation (size of casein micelles 182 nm [47])
was lower compared to β-lg (4.19 nm [47]), independent of the ∆pTM. However, accordingly to the
flux, the protein permeation was identical for both membranes for both caseins and β-lg. At 0.5 bar,
again, a slight difference between the two membranes was observed. The results confirm that filtration
performance was practically unaffected by the sectioning.
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Figure 9. Protein permeation as a function of the ∆pTM for the sectioned and the non-sectioned SWM
(length of 0.96 m) at a mean crossflow velocity of 0.42 m s−1.

The conclusion is that both modules give similar results, and thus the sectioned test module can
be used to investigate length effects in SWMs.

3.4. Spatial Dependency of the ∆pTM in SWMs

Even though it was expected that the retentate pressure would drop linearly along the membrane,
this has not yet been proven by data at different positions in an industrial-sized SWM. The pressure
drop was studied in the sectioned membrane by closing the permeate valves of each section. Hence,
permeate pressure was equal to the average retentate pressure in each section, and thus became
measurable via the permeate pressure gauges. Figure 10 shows that the retentate pressure in the
module decreased linearly both with water and skim milk. For skim milk, the pressure dropped from
an average of 1.94 bar in section 1 to 1.30 bar in section 4. This was due to constant friction in the spacer
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filled retentate channels [18]. The slope is steeper for milk because its higher viscosity compared to
water causes an increase in friction losses.
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Figure 10. Pressure drop in the sectioned SWM (length of 0.96 m) at a mean crossflow velocity of
0.42 m s−1.

From the slope of the pressure curve (−0.85 bar m−1 for skim milk), the module’s pressure drop
was determined to be 0.82 bar at a feed flow of 14 m3 h−1 (mean crossflow velocity of 0.42 m s−1).

In order to prove the validity of this approach, the pressure drop was also studied via membranes
with different lengths (Figure 11) at a fixed crossflow velocity of 14 m3 h−1 (mean crossflow velocity
of 0.42 m s−1). In accordance with the results from the sectioned membrane, the pressure decreased
linearly, with a slope of −0.83 and −0.69 bar m−1 for skim milk and water, respectively. Since the slope
corresponds to the data shown in Figure 10, pressure drop in SWMs can be assessed with both kinds of
prototypes, as no effect of the module shape was observable.Membranes 2019, 9, x FOR PEER REVIEW 10 of 20 
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Figure 11. Pressure drop in SWMs of different lengths (red circles: shortened modules; black squares:
sectioned membrane) at a mean crossflow velocity of 0.42 m s−1.

At 0.46 bar and 1.04 bar for the SWMs with the length of 0.24 and 0.96 m, respectively, the total
pressure drop of skim milk was significantly higher than expected from the slope (0.20 and 0.80 bar).
Extrapolated to a membrane length of 0.00 m, the pressure drop was still 0.25 bar. This can be explained
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as follows: the pressure gauges for the measurement of the overall pressure drop were located outside
the membrane. This means that inlet and outlet effects were inevitably included in the measurement at
different lengths. The effects are caused by energy dissipation due to a reduction or an enlargement of
the flow cross-section, when the feed is forced into or out of the spacer channel. By assessing the slope
of the pressure curve, an accurate determination of the pressure drop inside the module is possible.

The results show that the pressure drop inside a SWM is proportional to the length, in accordance
with theory. Retentate pressure in SWMs, and thus ∆pTM, can be approximated with a linear function,
as was done with ceramic tubular membranes (Equation (4)) by Piry et al. [4].

∆pTM,i = pinlet −
(2× i− 1)

2× n
×

(
pinlet − poutlet

)
(4)

Piry et al. [4] estimated the average ∆pTM in each section i by inserting the inlet pressure pinlet,
outlet pressure poutlet, and the total number of sections n. In SWMs, permeate pressure is not negligible,
and influences filtration performance [48]. However, the pressure drop in radial direction in the
permeate pocket can be assumed to be independent of the axial position. Close to the permeate
collection tube, where the highest permeate volume flow is to be expected, the mean crossflow velocity
during limiting flux conditions is 0.03 m s−1 (calculated by Equation (2)). As flux accumulates in radial
direction, the average permeate volume flow in the permeate pocket is lower, resulting in a lower
average mean crossflow velocity. Thus, the permeate pressure can be considered to be practically equal
in each section, due to the low crossflow velocity.

Considering the permeate pressure and the throttling of the permeate stream, Equation (4) has to
be modified by adding the permeate pressure pp (Equation (5)).

∆pTM,i = pinlet −
(2× i− 1)

2× n
×

(
pinlet − poutlet

)
− pp (5)

Furthermore, inlet and outlet pressure must be determined according to Equations (6) and (7),
using the retentate pressure inside the membrane pRet, the membrane length l, and distance from
membrane inlet x.

pinlet = pRet(x = 0) (6)

poutlet = pRet(x = l) (7)

Otherwise, inlet and outlet pressure drops would reduce the accuracy of Equation (5).
As expected, ∆pTM decreases linearly in a SWM (compare Equation (5)). By assuming a constant

permeate pressure along the module, ∆pTM is directly proportional to the retentate pressure. Using
Equation (5) allows the assessment of the filtration performance of each section, considering the
effective ∆pTM and spatial effects.

During filtration with permeate production, the retentate volume flow decreases slightly along the
membrane. Since a lower crossflow velocity reduces the pressure drop, it is not completely constant
along the membrane, but slightly lower in the rear part of the module. Therefore, the overall pressure
drop was insignificantly lower during permeate production, and Equation (5) yields somewhat higher
∆pTM values for the rear sections. However, the effect is negligible due to its low extent (max. deviation
0.1 bar m−1). Hence, Equation (5) is a suitable tool for the determination of the spatially resolved ∆pTM

in SWMs.

3.5. Comparison of the Test Cell and the Sectioned Membrane Prototype

It has been shown that the introduced prototypes are feasible tools to analyze spatial effects in
SWMs. However, SWMs are hardly accessible for investigation and quantification of the deposit layer.
For this purpose, a test cell is suitable, as membranes can be removed easily while the deposit layer
remains in its position for further analyses.
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In the designed test cell, axial disparities in filtration performance can be monitored in five
consecutive compartments. Identically to the sectioned SWM, the permeate streams can be collected
and controlled individually or collectively by merging the streams of the five sections. To verify
whether results of the deposit layer analyses can be related to the observations in a SWM, the two
systems were compared to one another.

Figure 12 shows the pressure drop in the sectioned SWM and the test cell. Increasing feed
volume flow, and thus crossflow velocity, caused the pressure drop in both systems to increase
disproportionately. Furthermore, the absolute pressure drop in the test cell was higher. With an
apparent volume flow of 14 m3 h−1 relating to the SWM (mean crossflow velocity of 0.42 m s−1), it was
1.39 and 0.85 bar m−1 for the test cell and the sectioned SWM, respectively. This can be explained as
follows: in the SWM, a bypass stream through the outer wrap, i.e., between the module housing and
the SWM body, reduced the real crossflow velocity and thus pressure drop, although the same apparent
feed flow was applied. This is not a weakness of the SWM prototypes, but rather a reflection of reality,
as it is also unavoidable in many industrial settings. Siebdrath et al. [37] reported that the pressure
drop of their test cell and a SWM matched during water filtration without permeate production. We
assume that no bypass occurred in their SWM. Thus, the match is probably not due to the test cell
reproducing the flow conditions in the SWM better compared to the test cell in this study, but due to
an identical crossflow velocity in the spacer channels.Membranes 2019, 9, x FOR PEER REVIEW 12 of 20 
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Figure 12. Pressure drop in the sectioned SWM (length of 0.96 m) and the test cell (channel length of
1.00 m) for different volume flows using skim milk.

Since crossflow velocity affects not only the pressure drop, but also deposit layer formation [19],
the same pressure drop of 0.78 bar m−1 was used for the assessment of flux (Figure 13) and protein
permeation (Figure 14). It was assumed that similar flow conditions could be achieved by equalizing
the axial pressure drop, and not the feed flow.

In both systems, the flux increased with ∆pTM until the limiting flux was reached at about 1.0 bar.
The flux of the sectioned test cell (18.3 L m−2 h−1) was slightly lower compared to the sectioned SWM
(19.0 L m−2 h−1) at limiting flux conditions. In the test cell, small dead zones occurred close to feed
inlet and retentate outlet. Therefore, the crossflow velocity was not fully developed, except for the area
between inlet and outlet. As deposit layer formation was much more pronounced in the boundary
areas, the flux was therefore reduced. Although these areas contribute to the active membrane surface,
the cumulated flux in the test cell was slightly reduced. However, this influence can be neglected
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due to its small extent, as flux performance of the sectioned test cell and the sectioned SWM were
practically the same.
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Figure 13. Comparison of flux obtained from the test cell (channel length of 1.00 m) and the sectioned
SWM (length of 0.96 m) at a mean crossflow velocity of 0.42 m s−1.

Contrary to that, protein permeation was considerably lower in the sectioned test cell compared
to the sectioned membrane (Figure 14). At 0.5 bar, permeation of β-lg was 32% and 60%, respectively.
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Figure 14. Protein permeation in the test cell (channel length of 1.00 m) and the sectioned membrane
(length of 0.96 m) at a mean crossflow velocity of 0.42 m s−1.

As for flux, dead zones close to feed inlet and retentate outlet, as well as boundary effects, reduced
filtration performance. Due to different in channel geometries and boundary effects, the test cell cannot
reproduce exact values for filtration performance of SWM. The absolute values of the pressure drop
between both systems differ, due to a bypass current through the outer space of the SWM between
housing and membrane body.

Considering this, filtration tests were executed at an equal pressure drop, and not at the same
apparent crossflow velocity. It was expected that in this case, the effective crossflow velocity in the
spacer filled channels and the flow pattern would be practically equal for both systems. Regarding
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filtration performance, the flux was similar at an equal pressure drop, whereas protein permeation was
lower for the sectioned test cell, due to boundary effects. Consequently, the test cell is not capable
of depicting exact performance values, but filtration trends are similar in both systems. Therefore,
spatial effects in SWMs and the influence of process variables on filtration performance of SWMs
can be monitored in the test cell. The advantage of the designed test cell compared to SWMs is that
membranes can be assessed immediately after filtration mitigating alterations in the deposit layer
structure. To our knowledge, no data exist on the time needed to extract membranes from existing flat
sheet test cells. The extraction process of the membrane from the test cell in this study took less than 5
min for the first membrane sheet, and about 1 min for each of the following 4 membrane sheets. Thus,
changes in the deposit layer due to diffusion are reduced to a minimum.

To conclude, the test cell system can provide additional information on the filtration process, since
it allows fast and non-destructive access to the membranes for further analyses, such as on the deposit
layer formation.

4. Conclusions

The main goal of this study was to develop and validate new concepts and membrane prototypes
suitable for analyzing, monitoring, and controlling spatial effects in SWMs. Shortened SWMs were
constructed with the purpose of measuring the pressure drop in SWMs. A second approach was
to construct a sectioned membrane to analyze spatial dependency of flux and protein permeation
along an industrial-sized SWM. The sectioning was realized by three modifications: sectioning of the
membrane pockets by glued strips on the permeate side, sectioning of the permeate collection tube,
and modifying the filtration plant. It was shown that sectioning a membrane does not practically affect
filtration performance compared to an unmodified SWM. Thus, the developed SWM can be used for
the spatially resolved investigation of the filtration performance, which has not been possible with
existing industrial SWMs.

For ceramic membranes, length-dependent filtration performance is directly related to the ∆pTM.
To assess spatial filtration performance in SWMs, retentate pressure drop was investigated with both
SWM prototype systems, proving that it decreases linearly in axial direction. Since the permeate
pressure is practically constant in each section, the spatially resolved ∆pTM can be determined in
SWMs, similarly to ceramic membranes. This facilitates the evaluation of filtration performance in
relation to the ∆pTM. To conclude, the designed membrane prototypes are valuable tools to further
analyze and understand spatial effects in SWMs, as the filtration performance can be assessed in situ.

However, one limitation of the prototype SWM is that direct access to the membrane sheets
after filtration is not possible without destruction of the modules. Thus, the deposit layer cannot be
analyzed directly. Therefore, a new test cell system was designed. This test cell allows access to the
membrane immediately after filtration. The system, thus, seems to be suitable for the analysis of
deposit layer formation relative to SWMs in areas with fully developed crossflow conditions. This has
to be investigated in a further study.

Apart from that, the test cell system cannot accurately predict filtration performance of SWMs,
confirming the need for the SWM prototypes for the assessment of spatial effects. As similar filtration
trends occur in the sectioned test cell and the SWM, the test cell can provide additional information on
the influence of process variables on the deposit layer formation during MF with polymeric membranes.
To conclude, the combination of the developed membrane prototypes and the test cell represents a
well-suited toolbox to understand the spatial dependency in SWMs.
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