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Abstract: Denial of Service (DoS) attacks are an increasing threat for Multiprocessor System-on-Chip
(MPSoC) architectures. By exploiting the shared resources on the chip, an attacker is able to prevent
completion or degrade the performance of a task. This is extremely dangerous for MPSoCs used in
critical applications. The Network-on-Chip (NoC), as a central MPSoC infrastructure, is exposed
to this attack. In order to maintain communication availability, NoCs should be enhanced with
an effective and precise attack detection mechanism that allows the triggering of effective attack
mitigation mechanisms. Previous research works demonstrate DoS attacks on NoCs and propose
detection methods being implemented in NoC routers. These countermeasures typically led to a
significantly increased router complexity and to a high degradation of the MPSoC’s performance.
To this end, we present two contributions. First, we provide an analysis of information that helps
to narrow down the location of the attacker in the MPSoC, achieving up to a 69% search space
reduction for locating the attacker. Second, we propose a low cost mechanism for detecting the
location and direction of the interference, by enhancing the communication packet structure and
placing communication degradation monitors in the NoC routers. Our experiments show that our
NoC router architecture detects single-source DoS attacks and determines, with high precision, the
location and direction of the collision, while incurring a low area and power overhead.

Keywords: denial of service attacks; network-on-chip; distributed online monitoring; multi-processor
system-on-chip; security

1. Introduction

The extensive use of Internet-of-Things (IoT) will be the driver of the ongoing digitization in
many application domains, as in smart living and working environments, smart cities, health care
industry automation, automotive, and avionics. IoT is a pervasive technology that increasingly
captures the attention of researchers, industry, and governments. Computational tasks are mapped
on a larger number of distributed IoT nodes, having increased connectivity through device-to-device
communication. Operations can be deployed into a sea of devices, their execution time can be reduced
and smart behaviors can be established in such distributed systems. Three characteristics turn the IoT
paradigm relevant in modern systems:

(i) Number of connected devices: it is estimated that by 2021, 28 billion devices will be part of
IoT [1];
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(ii) Economical impact: by introducing automated and smart processes, the IoT is foreseen to achieve
the mark of 11 trillion US Dollars by 2025 [2]; and

(iii) Integration: IoT devices will integrate into a broad spectrum of markets, including different
industry and service markets.

Increasingly complex and powerful Systems-on-Chips (SoCs), connected via wireless communication
technologies as WLAN, WPAN, Bluetooth, or 5G networks, form the basis of the IoT. Multi-Processors
System-on-Chips (MPSoCs) are considered as an increasingly important key enabler technology for
the implementation of IoT nodes. They are composed of two main structural types of components:

(i) the computation structure, composed of Processing Elements (PEs) such as: processors, hardware
accelerators, memories, peripherals, and other Intellectual Property (IP) hardware cores to process
and store information; and

(ii) the MPSoC internal communication infrastructure, which performs the data exchange among the
IP cores.

Networks-on-Chip (NoCs) are the communication structure choice for MPSoCs that integrate a
large amount of IP cores. NoCs integrate routers and links to exchange information being wrapped
as packets.

NoC-based SoCs allow a very flexible task deployment onto the MPSoC’s computational nodes.
This flexibility also enables enhanced dependability concepts [3,4], providing fault-tolerance and,
with this, a high-level of reliability in case of wear-out of some of the chip’s nano-scaled structures.
In order to detect deviations in the system health state, critical resources (as routers) have to be
equipped with local health monitoring technology (hardware fault checkers). Since these put a certain
linear overhead on the hardware size, the routers should be designed as minimalist as possible. This
goes well along with the requirement of energy-efficient and sustainable operation of the MPSoC-based
IoT component.

Security is a major requirement for all IoT domains. The configurability and hyper-connectivity
of these devices represent a risk to the system. Since these systems are connected to the internet, it is
more convenient for the developers to enable them to download software code and firmware updates
remotely. However, the downloaded software may be malicious. This can lead to retrieving secret
information (secret keys and intellectual property), modifying the system’s operation or disrupting
its services. One of the approaches for disrupting the services in NoC-based MPSoCs is by means of
Denial of Service (DoS) attacks. Since the NoC is a shared communication medium, any disruption of
or obstruction to the efficient computation or communication services will affect other system services.
The goal of the attacker is to prevent the completion of a sensitive task (e.g., data encryption, trigger of
an alarm), so that users decide to turn off the encryption or to migrate tasks to an alternative infected
neighbor device (when tasks are deployed in the IoT infrastructure).

In NoC-based MPSoCs, Denial of Service (DoS) attacks typically originate from infected IP cores,
which execute malicious software. The goal of the attacks is to interfere with and degrade the sensitive
data communication by injection of malicious traffic, thus communication time-line constraints are
missed. The Worldwide Infrastructure Security Report classifies DoS attacks into three categories [5]:

(i) Volumetric: the objective is to cause congestion at a single injection point in order to overwhelm
the NoC’s bandwidth;

(ii) State-exhaustion: the goal is to try to use up all available NoC connections; and
(iii) Connection-based (Application-Layer Attacks): exploitation of priority-based NoCs in order to

monopolize the NoC communication.

These three classes can be directly applied in NoC infrastructures, which result in an increase in
the end-to-end communication latency of the sensitive packet flows [6]. Previous published research
outlines the possibility of executing DoS attacks in NoCs and propose new router architectures to
mitigate them. However, this protection countermeasures usually have a heavy impact on network
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communication and/or router complexity. Moreover, in order to create effective countermeasures
that neutralize threats, as well as to enable dynamic and customized DoS protection methods, the
attacker’s location needs to be identified. However, identifying the attacker’s location is a complex
task, especially when considering minimalist hardware requirements for NoC routers design.

In this work we analyze the size of the attack suspect search space (i.e., the number of nodes to be
checked based on the detection information) using the information about the collision location and the
direction of the attacker packets. We show that by knowing not only the collision location, but also the
input direction of the malicious packets, the search space can be reduced a maximum of 69%. Later
we propose two online monitoring mechanisms able to provide the above mentioned information to
the NoC’s system manager. Subsequently, we present an analysis of different attack configurations,
showing their effectiveness. The experimental results show the proposed approaches’ efficacy and
efficiency to detect the DoS attacks, identify the collision point of malicious and sensitive data, and
find the direction from which the malicious packets enter the sensitive path.

The rest of this paper is organized as follows: Section 2 describes the state of the art in defense
against DoS attacks in NoCs. Sections 3 and 4 describe the baseline framework used for analysis and the
threat model considered for this work. Section 5 analyses the benefits of acquiring detailed information
about the point of collision during a DoS attack. Section 6 presents the proposed approaches to acquire
such information. Section 7 presents the experimental results and finally Section 8 concludes the paper.

2. Literature Review

The concept of DoS in the NoC context was introduced in [7]. Subsequently, approaches with
different mitigation strategies for these kinds of attacks have been proposed [7–18]. Such approaches
can be categorized in two main classes: DoS Avoidance and DoS detection and recovery. The first focuses
on providing an infrastructure to avoid such attacks altogether (see Section 2.1). On the other hand, the
second tries to identify the occurrence of such attacks and disabling them (see Section 2.2). The latter
can be divided into two sub groups: works which focus on techniques for detecting the occurrence of
the attack, but cannot detect the location of the node which runs malicious code, and works that can
also identify the location of the attacker.

2.1. DoS Attack Avoidance

In [8] a mitigation strategy based on the hybrid switching routing mechanism is proposed. Circuit
switching is used for sensitive traffic and packet switching is used otherwise. As a result, predictable
latency for sensitive traffic is guaranteed. The works of [9,11,12] mitigate DoS and timing attacks by
generation of security zones. Their proposal ensures that only the secure nodes can communicate into
a virtual and physical space, respectively. Security zones are built through dynamic routing. In [13]
non-sensitive traffic is deeply inspected in order to access to security zones. The works of [11,12]
reroute the traffic outside from the security zone. On the other hand, the authors of [7] propose the use
of separate virtual channels for secure and non-secure packets as a countermeasure for bandwidth
denial attacks in NoCs. However, this approach suffers from the hardware overhead of additional
buffers used for virtual channels.

2.2. DoS Attack Detection and Recovery

In [14], authors consider that DoS attacks are executed by a rogue third-party NoC architecture.
When a suspicious communication delay is detected between two nodes, the firmware tries to identify
if the attack is taking place at the source or at the destination by time-stamping the packets and
dividing into two communication paths. In [15], Fiorin et al. provide an overview of the attacks in
network on chips. The authors propose the use of buffer occupancy monitors to detect traffic anomaly
in the network but provide no details on the technique. Later, in [10], Fiorin et al. proposed the
implementation of denial of service probes in the Network Interface. This approach only covers the
DoS attacks from the Processing Elements connected to the network interface by detecting deviations
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from the average bandwidth usage expected at the design time. This approach does not actively
monitor the latency of the sensitive packets in the network. In [16], Diguet et al. tackle DoS attacks by
monitoring live-lock occurrence in the network. However, this approach utilizes source-routing, which
imposes considerable overhead to the packet size. In [17], Grammatikakis et al. target distributed
DoS attacks via a firewall in control of configurable access rules in the network interface. The security
risk is evaluated by the product of frequency and magnitude of losses (by dropping the packets at
the Network Interface). Although such a firewall does not allow the DoS attack to be effective, it was
designed to protect the destination PE (i.e., the on-chip memory), thus it does not detect the source of
the attach, nor does it kill the attack-related traffic congesting the network. In [18], Achballah et al.
target computation of occupation time of the physical links in number of clock cycles. The occupation
time of the physical link is compared to an expected value. In case of the link occupation exceeding
this value, the transaction will be stopped and a notification will be sent to the system’s manager. Here
the decision is made locally in the router, which may lead to undesirable packet dropping.

The evaluation of the related works shows that the DoS attack avoidance approaches require
significant additional hardware effort in the routers and the system. Since scalable NoCs need an
overall dependability management [19], the router size should be as minimal as possible (e.g., no virtual
channels).

Our proposed approaches can be classified under DoS Attack Detection and Recovery, since they
analyze communication degradation in order to detect DoS attacks. Additionally, once an attack is
detected, they proceed to reduce the attack suspects so that the attacker can be located and neutralized.

Even though the works listed in Section 2.2 seek the same objective as our approaches, they either
are limited to parameters defined at design time or to the source routing algorithm. In contrast, the
decision parameters of our approaches are controlled by the system manager, and, as explained along
the paper, our proposed diagnosis mechanisms can be of use for different routing algorithms, making
them more flexible when compared to the other approaches.

Furthermore, we propose an architecture of scalable distributed monitoring solutions for NoC
traffic, in order to diagnose DoS attacks and identify attack characteristics, that help to find the source
of the attack. These monitors transmit relevant performance information that is analyzed at the
endpoint of the communication. We considered two diagnosis mechanisms based on the approaches
for search space reduction mentioned above. The first, called Collision Point Router Detection (CPRD),
identifies the router where the attacker’s malicious packets collide with the sensitive packets. The
second approach, called Collision Point Direction Detection (CPDD), extends the CPRD by not only
identifying the point of collision, but also the input port through which the attacker’s flow intercepted
the sensitive path. The importance of such an extension is explained in Section 5, where the two
approaches are compared.

3. Router Architecture

Bonfire is an open-source framework for developing dependability mechanisms for NoC-based
Systems-on-Chip (SoCs). The target NoC architecture is a 2D mesh topology. Each network tile
consists of a wormhole switching router equipped with fault tolerance mechanisms and a Network
Interface (NI), which is connected to the local resource. The routers use credit-based flow-control and
support any turn-model-based minimal path adaptive routing algorithm [19,20]. Figure 1a shows a
block diagram of the credit-based router used in this work. This router contains input buffers and
routing units for each input port, one switch allocator that provides support for any turn-model based
adaptive, a minimal path routing algorithm, and a crossbar switch for each output port. In credit-based
flow-control, each upstream router keeps track of empty buffers in the downstream router and sends
the flits with the assumption that the downstream router can receive them. The FIFO unit utilizes a
4-flit deep circular buffer and is in charge of issuing a credit signal to the upstream router. The routing
logic is implemented using a Logic Based Distributed Routing (LBDR) mechanism [21], which is a
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lightweight distributed routing mechanism that supports any turn-model based routing algorithm
and provides the possibility of an in-system reconfiguration of the routing algorithm.

(a) (b)

Figure 1. Bonfire baseline frameworks: (a) router architecture and (b) packet structure [20].

The allocator unit utilizes a Round Robin arbitration, where each input direction can hold access
to an output port for the length of a single packet. This arbitration mechanism has an important impact
on the resilience of the network to DoS attacks, since it prevents the starvation of packets entering the
router through other input ports.

Figure 1b shows the packet format used by the Secure Bonfire variant of the Bonfire framework.
This packet format is designed to be compatible with the Open Core Protocol (OCP) and each body flit
carries a payload of 28 bits.

4. Threat Model

MPSoCs with a heterogeneous array of PEs provide programmability and parallelism, yielding
flexibility, processing performance and power efficiency, which can be leveraged for minimizing the
latency of communication links of the edge cloud [22]. An example of such a scenario is depicted
in Figure 2, where IoT devices, equipped with NoC-based MPSoCs, improve the performance of
conventional general-purpose computer execution environments by adding application specific circuits.
However, this junction brings new security vulnerabilities to the NoC-based MPSoC world, such as
susceptibility to DoS attacks, as will be explained in this section.

Figure 2. Multiprocessor System-on-Chip (MPSoC)-powered Internet-of-Things (IoT)
execution environment.

Attack Scenario: During a DoS attack, an attacker seeks to degrade the performance of a
processing/communication environment, which in the scope of this work is represented by a
NoC-based MPSoC. In an environment, such as the one illustrated in Figure 2, users submit their
applications for execution on MPSoC-powered IoT devices. Subsequently, a task scheduler in the
firmware of the IoT device, during its normal operation, maps the applications to the PEs of the
incorporated MPSoC. However, one or more of those applications could have been submitted by a
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user with the intention of performing a DoS attack to the NoC. Moreover, the most common DoS attack
method is network flooding, where a malicious application running on any PE of the MPSoC is able to
do by sending packets to another PE in the NoC. These additional packets compete for the crossbars
of the routers in their path, and, while successful, block the transmission of other packets. Blocked
packets experience an increment of their forwarding delays, which results in an overall additional
communication delay that will be unacceptable by time sensitive applications.

Attack Steps: A malicious user (a.k.a. an attacker), submits his/her application to the execution
platform as any other user. Subsequently, a task scheduler maps the application to the PEs of the
MPSoC in order to start its execution. A basic procedure being followed by a simple malicious
application, whose goal is to attempt a flooding DoS attack on a NoC, is depicted in Figure 3. First,
the malicious application sets its Packet Injection Rate (PIR) to an initial value. Then, packets are
transmitted to another PE in the NoC at the defined PIR. As the packets are transmitted, the application
calculates the Effective PIR (EPIR) in order to assess the congestion of the NoC, which reflects the
effectiveness of the attack [23]. If the NoC is still not congested (i.e., PIR = EPIR), the application
continues to send packets increasing the PIR value. Finally, once the application establishes that its
attack is being effective, it continues to send packets maintaining the current PIR until the end of
the attack.

Figure 3. Basic procedure of a malicious application.

Attack Success Conditions: For a successful attack to be launched on a NoC-based MPSoC,
the following conditions must be met:

• The attacker packets should be able to interfere with the flow of sensitive packets in at least one
location. This means that both traffic flows should compete for at least a single router output.
Assuming that the attacker might not have prior knowledge of the network segments used by
the sensitive traffic, setting long paths for the malicious traffic will increase the probability of
colliding with the sensitive traffic.

• The attacker can control its own packet injection rate into the network. The attacker then can
increase the injection rate and monitor its own throughput. Based on its throughput information,
an attacker can infer if its traffic has interfered with other traffic in the network [23]. Additionally,
depending on the router’s arbitration, a burst of packets can hold a crossbar grant, causing the
starvation of other packets.

• The attacker node should be able to control the length of the packets that it injects into the
network. In practice, a single input direction cannot hold an output longer than the duration
of a single packet (e.g., Bonfire that uses wormhole switching with round robin arbitration in a
per packet basis). Thus, longer packets occupy the crossbar longer and consequently generate a
longer inter-router forwarding delay to sensitive packets, which is reflected in the end-to-end
communication delay.

5. Analysis of Attack Suspects

In order to mitigate the DoS attacks, it is important that the system manager identifies the physical
location of the attacker. However, there is no straightforward approach for acquiring such information.
The system manager can only collect indirect or partial information regarding the incident in order
to infer the location of the attacker. Without any additional information, excluding the source and
destination of the sensitive traffic, the system will have N-2 suspects, where N is the number of
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nodes in the network. In this section, we assume that the location of the collision and direction of the
incoming attacking flow can be recovered during the transmission of a packet. Later we analyze how
this information, combined with details of the routing algorithm, can be leveraged towards narrowing
down the search space for finding the source of the attack.

This part of the analysis is performed by the use of Routing Graphs [3]. A Routing Graph,
RG(V, E), is a directed acyclic graph where V is the set of vertices that represent all network ports
(input and output ports of the routers including the local ports) and E is the set of all edges which
represent connections between the input and output ports. The connections in the set E in RG can be
of two types: (i) internal; inside a router, between the input and output ports (including turns and
other paths inside the router) and (ii) external; the physical link between neighbor routers. By setting
the internal connections, it is possible to model any turn-model-based routing algorithm. Moreover,
using routing graphs enables the tool to use graph algorithms for finding paths between any source
and destination.

Algorithm 1 provides python pseudo code for the steps required for finding all possible attacker
suspect nodes, by only considering the location of the router where the malicious and sensitive packets
collide. The main idea is to find all the output ports on every path between source and destination,
and subsequently to find out how many nodes can send packets to these output ports under minimal
path routing.

Algorithm 1: Attack suspects considering collision location.

# Dictionary of all attackers
1 all_attackers = { };
2 for all paths P in {all minimal paths between Ss and Sd in RG} do

# list of all output ports on the path
3 O = [ ];

# for each path find all unchecked output ports
4 for all outports in P do
5 if outport not in all_attackers.keys() then
6 O.append(outport);

# for each outport find all attacker candidates
7 if len(O) != 0 then
8 for all outports in O do
9 A = [ ];

10 for local node L in RG do
11 if L has minimal path to outport in RG then
12 A.append(L);

13 all_attackers[outport] = A;

14 return all_attackers

Algorithm 2 provides python pseudo code for the steps required to find all possible attacker
suspect nodes by considering the collision router location and the input direction of the malicious
packets. The main idea is to find all the output ports on every minimal route path from the source to
destination. Subsequently, for each output port, all the possible input ports that can forward packets
to this port are checked. Finally, all the local nodes that can send packets to that port via minimal path
routing are found, under the current routing algorithm.

In the next subsection, we will describe the process via three examples using the XY routing
algorithm for the sake of simplicity. Later we will show the results for adaptive routing as well.
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Algorithm 2: Attack suspects considering collision location and input direction of interference.

# Dictionary of all attackers
1 all_attackers = { };
2 for all paths P in {all minimal paths between Ss and Sd in RG} do

# list of all input that can reach output ports on the path
3 I = [ ];

# list of all nodes that can reach output ports on the path
4 A = [ ];
5 for all outports in P do

# for each outport find all attacker candidates and all connected inports
6 I = RG.predecessors(outport);
7 for all local nodes L in RG do
8 if L has minimal path to outport in RG then
9 A.append(L);

# Checking if the nodes in A can reach inports
10 if len(I) != 0 then
11 for all inports in I do
12 for all local nodes L in A do
13 if (L has minimal path to inport in RG) and (L not in all_attackers[inport]) then
14 all_attackers[inport].append(L);

15 return all_attackers

5.1. Example Using XY Routing Algorithm

In this section we explore a simple example based on the XY routing algorithm [24]. This example
is taken due to the simplicity of the routing algorithm. In the next section adaptive routing algorithms
will be considered as well.

Figure 4 shows the first scenario considered for this exercise. The sensitive path is represented
by the green arrow, which begins in router 12 and ends in router 3, going through routers 13, 14,
15, 11, and 7. In case the system manager labels node 13 as the collision point, it has only a single
candidate for the attacker, namely node 13, since no other node’s traffic (excluding node 12 as the
sensitive source) can request node 13’s east output. However, in more sophisticated cases, the set
of candidates is enlarged (as listed in Table 1). It is important to note that the manager excludes the
nodes that have higher chance of collision in their own tile. For example, if the reports label node 14 as
the collision point, the manager will not include node 13 as a suspect since it has a better chance of
interference on node 13’s east output. This assumption might not hold for coordinated distributed
denial of service attacks.

Figure 4. Sensitive path 1.
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Table 1. Attack suspects for Sensitive path 1.

Collision Suspects with Collision Detected Suspects with Collision
Point Point Router Detection Direction Point Direction Detection

13 13 L 13

14 14 L 14

15 15 L 15

11 8, 9, 10, 11 W 8, 9, 10
L 11

7 4, 5, 6, 7 W 4, 5, 6
L 7

3 0, 1, 2 W 0, 1, 2

Figure 5 describes a scenario where the source and destinations of the sensitive path are nodes 8
and 2, respectively. This example is different from the previous example in one important aspect: the
sensitive path can be interfered with from both sides. This in turn will increase the search space for the
possible suspects dramatically. As it can be seen in Table 2, node 10 is a descriptive example of such a
situation. However, knowing the direction of the interference will further decrease the search space
(from 6 nodes to worst case number of 4 nodes, and in best case scenario down to a single node).

Figure 5. Sensitive path 2.

Table 2. Attack suspects for Sensitive path 2.

Collision Suspects with Collision Detected Suspects with Collision
Point Point Router Detection Direction Point Direction Detection

9 9 L 9

10 10, 11, 12,
13, 14, 15

E 11
S 12, 13, 14, 15
L 10

6 4, 5, 6, 7
E 7
W 4, 5
L 6

2 0, 1, 3 E 3
W 0, 1

The scenario depicted in Figure 6 shows a more extreme case than Scenario 2, where a single node
(node 5) has a search space of 11 suspect nodes (refer to Table 3). Further investigation shows that
knowing the direction of interference reduces the number of suspects, in the worst case to 8 nodes and
in the best case to 1 node (3.6 nodes on average).
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Figure 6. Sensitive path 3.

Table 3. Attack suspects for Sensitive path 3.

Collision Suspects with Collision Detected Suspects with Collision
Point Point Router Detection Direction Point Direction Detection

5
5, 6, 7 , 8,

9, 10, 11, 12,
13, 14, 15

E 6, 7

S
8, 9, 10, 11,

12, 13, 14, 15
L 5

1 0, 2, 3 E 2, 3
W 0

5.2. Discussion

When applying the same method on different routing algorithms, the gain of the proposed
mechanisms becomes more clear. Figures 7–9 depict the minimum, maximum and average number of
attack source suspects to be checked for the three scenarios (i.e., Sensitive paths 1 to 3), for different
minimal-path turn-model based routing algorithms. In this analysis the following routing algorithms
have been considered: XY [24], YX [25], West-First [26], East-First [27], North-First [28], North-Last [26],
Negative First [26], and South-First [28]. In this work, the SocDep2 [3] framework has been used for
modeling the routing graphs for the above mentioned turn models and for evaluating the presented
Algorithms 1 and 2 for different scenarios.

Figure 7. Average number of nodes to be checked under different routing algorithms (Sensitive path 1).

Figure 8. Average number of nodes to be checked under different routing algorithms (Sensitive path 2).
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Figure 9. Average number of nodes to be checked under different routing algorithms (Sensitive path 3).

Compared to oblivious search (marked in orange in Figures 7–9), the use of router locations will
reduce the search space in the worst case effort by 52%, 42%, and 21% for the previously illustrated
sensitive paths 1, 2, and 3. Similarly the use of directions will further reduce the worst case effort by
63%, 69%, and 56%. The use of collision direction in locating the attacker source reduces the maximum
effort of the location based solution by 24%, 48%, and 44% for paths 1, 2, and 3 respectively and the
average effort by 30.6%, 40%, and 39%.

6. Proposed Router Architecture

As explained in the previous section, knowing the location of the router where the malicious
packets collide with the sensitive packets and the direction from where they entered the sensitive
path drastically narrows down the attacker’s source search space. In this section we introduce
the two proposed approaches: One that targets the detection of the collision point router, and
another which also targets the detection of the direction from which the colliding packets enter
the sensitive path. Furthermore, both approaches are compatible with the same router architecture.
The proposed architecture extends the original (presented in Project Bonfire, Figure 1a), by the addition
of DoS monitors between the input ports and their corresponding FIFOs, as depicted in Figure 10.
Apart from the packets, the DoS monitors also receive information regarding all the output requests
and grants, which they process according to the chosen approach. The details of these methods are
explained in the following subsections.

Figure 10. Proposed router architecture with Denial of Service (DoS) detection.

6.1. Collision Point Router Detection (CPRD) Architecture

The goal of this approach is not only to detect a DoS attack, but also the router where the attacker’s
packets collide with the sensitive traffic. Hence, this architecture is called Collision Point Router
Detection (CPRD) (The code is available for download at [29]). We propose two main modifications to
the Bonfire NoC project [19]: (i) addition of the local and end-to-end delay and router information to
the packet’s tail, and (ii) introduction of the monitors in the routers.
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As shown in Figure 11a (in comparison to Figure 1b), the structure of the communication packets
has been modified by adding the packet generation time stamp to the Last Body Flit. This time-stamp
is introduced to enable the system to calculate end-to-end latency of each packet, in order to detect
the existence of a DoS attack. Additionally, the last flit of the packet (i.e., the Tail Flit) now carries the
address of the router where the packet waited the most, while its required output was busy (i.e., Max
Latency Router Address), and the amount of clock cycles it waited (i.e., Max Router Latency Value). This
information is evaluated on every router by a proposed DoS Monitor, and updated in case the waiting
time in the current router is longer than the one stored in the packet.

(a) CPRD packet structure (b) CPRD DoS monitor architecture

Figure 11. DoS detection using Collision Point Router Detection (CPRD).

Figure 10 depicts the addition of the proposed CPRD DoS Monitor to the router’s data path.
By adding the CPRD DoS monitor before each of the five FIFOs of each router, a NoC is able to
distributively monitor DoS attacks and to locate the router where the attacker’s traffic enters the
sensitive communication path. Figure 11b depicts the internal architecture of the proposed CPRD DoS
Monitor. Once a new Header flit arrives at the input of the FIFO, the CPRD monitor starts a 10-bit
counter, which is stopped when the Header flit leaves the FIFO’s output. The counter is incremented
on each clock cycle while a packet is waiting to be forwarded, however, only while other packets are
being forwarded through its required output port. This is achieved by monitoring the grants issued by
the router’s allocator circuit and filtered by the request sent by the LBDR circuit. Furthermore, once
the tail flit of the packet arrives, the counter value is compared against the Max Router Latency Value
stored in the tail flit. If the counter’s value is larger than the packet’s Max Router Latency Value, the
monitor replaces Max Router Latency Value and Max Latency Router Address with the new values and
updates the parity bit for the tail flit.

The firmware of the MPSoC-powered IoT device will calculate the packets’ end-to-end latency
upon their arrival using the packets’ generation time-stamp. Later, this value is compared with the
maximum expected network latency. If the calculated packet latency is out of the acceptable latency
range, the Max Latency Router Address and the Max Router Latency Value are also retrieved from the
packet and analyzed together with previous DoS suspicion reports. Finally, when decided that a DoS
attack is taking place, the firmware can localize and reset the PE identified as the source of the attack,
thus eliminating its malicious traffic generation.

6.2. Collision Point Direction Detection (CPDD) Architecture

The second monitoring architecture works similar to the CPRD monitor, but also extends it to
report the input direction of the malicious traffic through which it enters the collision point router. The
packet format has been slightly changed in order to include the inputs competing to enter the sensitive
path and the output for which they competed (see Figure 12a). Figure 12b shows the internal structure
of the CPDD DoS monitor. The router uses the same structure as the one shown in Figure 10. The
most important task is to filter the requests sent to the Arbiter based on the issued requests from the
input routing logic, once the requests from the other ports are identified. In case the latency value
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stored in the packet’s tail flit is less than the value of the local latency counter, the monitor updates
the tail flit not only with the router address and the waiting time, but also the competitors and the
output for which they compete. With the purpose of registering grants, given for the required output,
while a packet is waiting to be forward, the CPDD monitor is equipped with a 5-bit register (a.k.a. the
Competitors log).

(a) CPDD packet structure
(b) CPDD DoS monitor architecture

Figure 12. DoS detection using Collision Point Direction Detection (CPDD).

Once a sensitive packet reaches its destination, equal to the CPRD approach, the firmware of the
MPSoC-powered IoT device calculates the end-to-end delay based on the timestamp contained in the
packet. Provided that the calculated value exceeds the threshold, the collision point is determined.
However, for the CPDD approach, the firmware will also extract the direction information to narrow
down the suspects list and localize the compromised PE.

7. Experimental Results

In order to evaluate the performance of the proposed Distributed DoS Detection systems presented
in Section 6 (i.e., CPRD and CPDD), they have been implemented on the RTL level and integrated to
the Bonfire framework [19]. Traffic generators included in the Bonfire platform were leveraged for
simulating normal traffic and DoS attacks on 4 × 4 mesh NoC-based MPSoC scenarios. Moreover,
the network routers (applying either XY- or WestFisrt-routing algorithm) use a credit base flow control
with fair Round-Robin arbitration (on packet level) and utilize Wormhole switching with 4-flit deep
FIFOs. Furthermore, random traffic packets were transmitted with a length of 10 flits and a PIR of
0.01 (i.e., one packet every 100 clock cycles). The length and PIR of the sensitive and attacker packets,
as well as their source and destination, vary according to the purpose of each scenario. Details of the
scenario setup of the experiments and the results of simulations for CPRD are provided in Section 7.1
and for CPDD in Section 7.2. Additionally, an evaluation of the overhead of the proposed mechanisms
in terms of area, critical-path delay, and power is presented in Section 7.3.

7.1. Collision Point Router Detection (CPRD)

The experiments presented in this section target the analysis of the DoS attack from two sides:
(i) from the point of view of the attacker in order to maximize the effectiveness of the attack, and
(ii) from the point of view of the network protection, evaluating different metrics that can be leveraged
for detecting an attack and qualifying the effectiveness of the CPRD mechanism. Section 7.1.1 presents
both sides of the DoS attack, considering a scenario that combines different PIR values for the attacker
as well as for the sensitive traffic. Section 7.1.2 goes further and evaluates the effects caused by attacks
with different packet lengths and from different locations within the NoC.
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7.1.1. Effect of the Attacker’s PIR

In order to evaluate the effect of the attacker’s PIR value on the effectiveness of DoS attacks,
the scenario described in Figure 13 has been adopted. The sensitive packets go from router 12 (marked
in blue) to the router 3 (marked in green) directed by the XY routing algorithm. This flow is marked
with the blue arrow in the figure. The attacker, located on router 15 (marked in red), attempts to send
packets to the same destination (router 3). The attacker’s packets’ flow has been marked by a red
arrow on the figure. Moreover, the attacker’s and sensitive packets collide in router 15 (marked with
an orange circle), while attempting to be forwarded to their destinations through the north port of
the router.

Figure 13. Experiment scenario for attacker’s Packet Injection Rates (PIR) efficiency.

Within this analysis, simulations were done considering different packet injection rates (PIR) for
sensitive packets (PIR_S) and attack packets (PIR_A). The network’s random traffic was generated
with a PIR_R of 0.01 (one packet every 100 clock cycles). Each experiment was performed for
20 pseudo-random simulation seeds to provide uniform results. The network’s random traffic and the
sensitive node’s traffic have been generated with a packet length of 10 flits (named (PL_R) and PL_S
respectively). In the scenarios where an attack attempt was present, three different packet lengths were
considered for the attacker’s packets (PL_A): 10, 30, and 50 flits.

As mentioned in Section 4, an attacker can identify the success/effectiveness of the attack by
measuring its own throughput [23]. Table 4 lists results for different combinations of PIR_S and PIR_A
from the attacker’s point of view. The first and third column of Table 4, show the attacker’s intended
and effective PIR, respectively. It can be seen that as the attacker’s intended PIR value is increased, the
gap between the attacker’s intended and Effective PIRs widens. For example, in the case where the
attacker’s intended PIR is 0.01, the attacker is trying to send a 30-flit-length packet every 100 clock
cycles. However, the effective PIR shows an insertion rate of approximately one packet every 140 clock
cycles. The deviation of the attacker’s effective PIR from the intended value is expressed as a growth
percentage in the fourth column of Table 4. For the purpose of this work, we established that an
attacker’s PIR_A variation (fourth column of Table 4) of 10% is needed to consider the attack effective.

Table 4. Attack effectiveness (S_A: 15, PL_A: 30, PL_S: 10, PL_R: 10, PIR_R: 0.01).

Attacker Sensitive Attacker Attacker PIR_A Attack
PIR_A PIR_S Effective PIR_A Deviation (%) Effective

0.003 0.003 0.003 0 7

0.003 0.01 0.003 0 7

0.003 0.03 0.003 0 7

0.01 0.003 0.0071 29 3

0.01 0.01 0.0071 29 3

0.01 0.03 0.0070 30 3

0.03 0.003 0.0086 71.33 3

0.03 0.01 0.0085 71.67 3

0.03 0.03 0.0086 71.33 3

As mentioned in Section 6, each packet carries (in the last body flit) a time-stamp of the instant
when the packet is generated. This time-stamp is used for calculating the End-to-End communication
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latency upon arrival to the destination node. Table 5 lists the mean End-to-End delay values of the
sensitive packets for different PIR_S values in absence of an attacker. This mean value and the sample
standard deviation (SSD) are used for calculating a threshold T as shown in (1), and such a threshold
for diagnosing DoS attacks.

T = mean_delay + 0.5 × SSD (1)

Table 5. End-to-End delay under no attack (PL_S: 10, PL_R: 10, PIR_R: 0.01).

Sensitive Mean End-to-End Sample Standard Detection Threshold
PIR_S Delay (Clock Cycles) Deviation (Clock Cycles) (Clock Cycles)

0.003 88.9056 17.3167 97.5640
0.01 162.0356 43.6219 183.8466
0.03 915.5529 405.9398 1118.5228

Furthermore, Table 6 lists the results of the experiments from the network protection’s point of
view for the same scenario where the attacker is located at router 15 (Figure 13). Since a DoS attack was
present, the end-to-end delay reached values greater than the threshold T (see Equation (1) and Table 5),
enabling the diagnosis mechanism to detect the attack. However, for a PIR_A of 0.01, the collision point
was not determined. This because the traffic entering from other inputs and requiring the same output
was more or less equal to the one from the attacker. On the other hand, for PIR_A configurations, where
the attacker noticed success by monitoring its own throughput (i.e., PIR_A ≥ 0.01), the proposed DoS
CPRD mechanism managed not only to detect the attack, but also the point where the malicious traffic
intercepted the sensitive path. For the scenarios where the collision point router was found, the last
column of the table lists the detection confidence. In some cases the confidence is not complete due to
the randomness of the additional traffic.

Table 6. Attack detection (S_A: 15, PL_A: 30, PL_S: 10, PL_R: 10, PIR_R: 0.01).

Attacker Sensitive End-to-End Attack Detected by Attack Detected Collision Point
PIR_A PIR_S Delay (Clock cycles) System Manager by Attacker Detection Confidence

0.003 0.003 181.331 3 7 7

0.003 0.01 765.047 3 7 7

0.003 0.03 2679.22 3 7 7

0.01 0.003 656.859 3 3 1
0.01 0.01 3346.42 3 3 0.8
0.01 0.03 4336.19 3 3 0.7
0.03 0.003 308.823 3 3 1
0.03 0.01 2937.8 3 3 1
0.03 0.03 4318.1 3 3 0.95

7.1.2. Effect of the Attacker’s Packet Length and the Location

In order to find configurations that would maximize the success of an attack, experiments were
done for four different PL_A values (i.e., 10, 20, 30, and 50 flits), as well as placing the attack source in
different routers of the NoC (router connected to the infected PE) and for the three scenarios presented
in Section 5.1; Figure 14a–d shows some of the scenarios with different sources of attacks (symbolized
with the red router, and specified in the label of each sub-figure). The malicious traffic runs from the
scenario specific source to the same destination as the sensitive traffic (router 3); as in the scenario
from the previous section, the red arrow connecting these two routers represents such a path and the
orange circle indicates the collision point, where DoS traffic collides with the path of the sensitive
traffic. Finally, as depicted in Figure 14e, depending on the selected attack source, the malicious path
length and the collision point to the sensitive path vary. In the cases where the attack source is directly
in the sensitive path, the source and collision point routers are the same. For such experiments, PL_S
and PL_R were set to 10 flits, and all the PIRs were set to 0.01 (i.e., PIR_A = PIR_S = PIR_R = 0.01).
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(a)
AL: 13

(b)
AL: 15

(c)
AL: 9

(d)
AL: 7

(e)

Figure 14. Experimental examples (a–d) for attack scenario 1 and (e) illustration of different malicious
path length and the collision point based on the location of the attacker.

End-to-End mean delay values of the sensitive packets for each of the scenarios are depicted
in Figure 14 and more, are presented in Figure 15. As expected, the results show that the trend of
End-to-End delay of the sensitive packets rises proportionally to the PL_A value, achieving in most
cases the highest mean delay values for the 50-flit PL_A configurations. This is due to the fact that
longer packets manage to retain the grant of a router output longer, preventing other packets of
being forwarded. Regarding the location of the attacker, as shown in Figure 15, the highest sensitive
End-to-End transmission delays were caused when injecting the malicious traffic into the routers
closest to the sensitive destination. This is due to the propagation of arbitration fairness of each
router. Consider that the attacker can block 50% of the traffic on the point of insertion (in case its
only competing with one other input direction). If this point of insertion is close to the source of the
sensitive data, the attacker can successfully block 50% of the sensitive packets. However, if the attacker
is close to the destination node, it can block 50% of the destination stream where the sensitive data
flow is a part of it. Hence, the effect of the attack gets amplified by the distance of the attacker from
the source.
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Figure 15. End-to-End latency vs attacker’s packet length for different attack sources (XY Routing) for
(a) Scenario 1, (b) Scenario 2, and (c) Scenario 3.

7.2. Collision Point Direction Detection (CPDD)

Section 5 explained the benefit of identifying the port through which malicious traffic intercepts
the sensitive path. This section presents the direction detection success and misses of the CPDD
mechanism for the scenarios described in Section 5.1. Simulations were executed considering a PIR_A
value of 0.03 and PIR_S = PIR_R = 0.01. Each experiment was performed for 20 pseudo-random
simulation seeds to provide uniform results. Additionally, four attacker packet lengths were adopted
(i.e., 10, 20, 30, and 50 flits), while the network’s random traffic and the sensitive node’s traffic
generated packets with the length of 10 (i.e., PL_R = PL_S = 10). Moreover, experiments were executed
considering not only a deterministic routing algorithm, but also an adaptive routing algorithm. Results
for each routing algorithm are presented separately in Sections 7.2.1 and 7.2.2, respectively.
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7.2.1. Analysis of the Proposed Method under Deterministic Routing

Figure 16 summarizes the obtained detection results for scenarios depicted in Figures 4–6 under
XY routing. Each row lists the detection effectiveness of the collision point router and input direction
of the malicious packets for every possible attack source. Also, each pair of columns group the router
and direction detection results for each of the attacker packet length values.

APL = 10 APL = 20 APL = 30 APL = 50
AS CPRD CPDD CPRD CPDD CPRD CPDD CPRD CPDD
0 7 – 7 – 3 3 3 3

1 7 – 7 – 3 3 3 3

2 7 – 7 – 3 3 3 3

3 – – – – – – – –
4 7 – 3 3 3 3 3 3

5 3 3 3 3 3 3 3 3

6 3 3 3 3 3 3 3 3

7 3 3 3 3 3 3 3 3

8 3 3 3 3 3 3 3 3

9 3 3 3 3 3 3 3 3

10 3 3 3 3 3 3 3 3

11 3 3 3 3 3 3 3 3

12 – – – – – – – –
13 7 – 7 – 3 3 3 3

14 7 – 7 – 3 3 3 3

15 7 – 7 – 3 3 3 3

(a)

APL = 10 APL = 20 APL = 30 APL = 50
AS CPRD CPDD CPRD CPDD CPRD CPDD CPRD CPDD
0 7 – 7 – 3 3 3 3

1 7 – 7 – 3 3 3 3

2 – – – – – – – –
3 7 – 7 – 3 3 3 3

4 7 – 7 – 3 3 3 3

5 7 – 7 – 3 3 3 3

6 7 – 7 – 3 3 3 3

7 7 – 3 3 3 3 3 3

8 – – – – – – – –
9 7 – 7 – 7 – 3 3

10 3 3 3 3 3 3 3 3

11 3 3 3 3 3 3 3 3

12 3 3 3 3 3 3 3 3

13 3 3 3 3 3 3 3 3

14 3 3 3 3 3 3 3 3

15 3 3 3 3 3 3 3 3

(b)

APL = 10 APL = 20 APL = 30 APL = 50
AS CPRD CPDD CPRD CPDD CPRD CPDD CPRD CPDD
0 7 – 7 – 3 3 3 3

1 – – – – – – – –
2 7 – 7 – 3 3 3 3

3 7 – 7 – 3 3 3 3

4 – – – – – – – –
5 3 3 3 3 3 3 3 7

6 3 3 3 3 3 3 3 3

7 3 3 3 3 3 3 3 3

8 3 3 3 3 3 3 3 3

9 3 3 3 3 3 3 3 3

10 3 3 3 3 3 3 3 3

11 3 3 3 3 3 3 3 3

12 3 3 3 3 3 3 3 3

13 3 3 3 3 3 3 3 3

14 3 3 3 3 3 3 3 3

15 3 3 3 3 3 3 3 3

(c)

Figure 16. Effectiveness of the proposed architecture in establishing the attacker search space for XY
routing of (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3.

Results showed that the CPDD managed to detect the input direction for almost all the scenarios
where the collision point router was found. Also, once again, due to the wormhole switching, that as
the packet length of the attacker was increased, it became easier to detect the collision point router.

7.2.2. Analysis of the Proposed Method under Adaptive Routing

A similar analysis to the one shown in the previous section has been performed on the system
adopting the West-First adaptive routing algorithm. Figure 17 summarizes the obtained detection
results when adopting the West-First routing in the scenarios depicted in Figures 4–6. Each row lists
the detection effectiveness of the collision point router and input direction of the malicious packets
for every possible attack source. Also, each pair of columns group the router and direction detection
results for each of the attacker packet length values.

APL = 10 APL = 20 APL = 30 APL = 50
AS CPRD CPDD CPRD CPDD CPRD CPDD CPRD CPDD
0 3 3 3 3 3 3 3 3

1 3 3 3 3 3 3 3 3

2 3 3 3 3 3 3 3 3

3 – – – – – – – –
4 3 3 3 3 3 3 3 3

5 3 3 3 3 3 3 3 3

6 3 7 3 3 3 3 3 3

7 3 7 3 3 3 3 3 3

8 3 3 3 3 3 3 3 3

9 3 3 3 3 3 3 3 3

10 3 7 3 3 3 3 3 3

11 3 3 3 3 3 3 3 3

12 – – – – – – – –
13 3 3 3 3 3 3 3 3

14 3 7 3 3 3 3 3 3

15 3 7 3 3 3 3 3 3

(a)

APL = 10 APL = 20 APL = 30 APL = 50
AS CPRD CPDD CPRD CPDD CPRD CPDD CPRD CPDD
0 3 3 3 3 3 3 3 3

1 3 3 3 3 3 3 3 3

2 – – – – – – – –
3 3 3 3 3 3 3 3 3

4 3 3 3 3 3 3 3 3

5 3 3 3 3 3 3 3 3

6 3 3 3 3 3 3 3 3

7 3 3 3 3 3 3 3 3
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9 3 3 3 3 3 3 3 3

10 3 7 3 3 3 3 3 3

11 3 3 3 3 3 3 3 3

12 3 3 3 3 3 3 3 3

13 3 3 3 7 3 3 3 3

14 3 3 3 3 3 3 3 3

15 3 7 3 3 3 3 3 3
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1 – – – – – – – –
2 3 3 3 3 3 3 3 3

3 3 3 7 – 3 3 3 3

4 – – – – – – – –
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Figure 17. Effectiveness of the proposed architecture in establishing the attacker search space for
West-First routing of (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3.

The results for this set of experiments show a better detection efficiency of the attacker’s location
compared to a system using XY routing, however, since traffic between two routers may have more
than one minimal path, the size of the search space for the attacker is much larger (please refer
to Figures 7–9).
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7.3. Overhead Evaluation

The proposed architectures (CPRD and CPDD Routers) were synthesized using the 0.18 µm AMS
library and Synopsys design vision at 200 MHz. Area overhead and critical path delay of the proposed
architecture compared to the baseline architecture are reported in Table 7. The critical path delay
overhead of the CPRD method is negligible and the proposed CPRD monitors only add 17% area
overhead to the minimalist router area (each CPRD monitor only adds 3.4% overhead to the router’s
area). Its important to note that the main contribution to area overhead is from the inclusion of the
counter register. The width of the counters can be adjusted based on the application. The CPDD router
applies 23.2% area overhead to the baseline router. In order to put the area overheads into perspective,
we will consider the overheads on a 4 mm2 chip. For an SoC using a 4 × 4 mesh NoC, the CPRD and
CPDD would impose 0.4% and 0.5% overhead to the system respectively.

Table 7. Area and critical path delay overhead.

Area

Sequential Combinational Total Overhead Critical PathRouter
(µm2) (µm2) (µm2) (%) Delay (ns)

Baseline 48378.7 42669.0 91047.8 – 4.82
CPRD Router 52033.7 55129.9 107163.7 17.7% 4.8
CPDD Router 58313.6 53873.9 112187.5 23.2% 4.79

Power analysis: the power consumption of the proposed methods (CPRD and CPDD routers) and
the baseline architecture have been evaluated for random uniform traffic with a packet injection rate
of 0.01 (without presence of attacker). The results of these experiments are reported in Table 8. The
results show that the CPRD approach induces 5% power overhead and the CPDD approach adds 9.4%
to the baseline router.

Table 8. Power overhead.

Switching Internal Leakage Total TotalRouter Power (mW) Power (mW) Power (mW) Power (mW) Overhead (%)

Baseline 0.151 3.663 0.261 3.814 –
CPRD Router 0.273 3.374 0.327 4.008 5%
CPDD Router 0.269 3.905 0.346 4.174 9.4%

8. Conclusions

Network-on-Chip solutions have become the central communication infrastructure of the modern
MPSoCs. However, Denial of Service (DoS) attacks have been shown as an important threat to NoC
integrity. Hence, it is of utmost importance to detect the occurrence of such attacks in the system,
and also to localize the attacker in order to neutralize its effects. To this end, this paper provides two
main contributions. First we analyze the effect of obtaining additional information about the collision
location and the incoming direction of the attacker’s flow in the collision point with the sensitive data
on localizing the attacker. Second we propose two distributed DoS detection schemes for measuring
the performance degradation of sensitive data transmissions under Denial of Service attacks and for
detecting the collision point and direction of the collision of the DoS packets into the sensitive path.
We perform an exploration of the effect of different attack configurations targeting the sensitive traffic
including different packet lengths, packet injection rates, and attack sources. Our experimental results
show that longer attacker packets, intercepting the sensitive path closer to its destination, cause a
greater effect of the attack. We have also shown that we can almost in all cases identify the direction of
incoming attack flows.
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