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Abstract

The combination of high tides with extreme sea level events jeopardizes our

coasts and our society. Therefore, the ability to model and predict ocean tides

is crucial for coastal management. Despite the latest striking improvements,

the coast still remains a challenging zone for tide modeling. Satellite altimetry

data play a key role in ocean tidal estimation, as they provide precise infor-

mation on sea level, which is regularly integrated in most of the modern tide

models, dramatically enhancing their performance. Coastal regions are chal-

lenging environments for satellite altimetry as well, however the recent large

efforts in these areas brought to the development of several dedicated altimet-

ric products, which improved sea level estimations up to few kilometers from

the shore. The purpose of this thesis is to illustrate the work done to update

the DGFI-TUM’s EOT11a ocean tide model, with specific focus on accuracy

improvement at coastal areas. For this reason, the latest altimetric products

dedicated to coastal applications are exploited, such as the ALES retracker.

The potential of coastal altimetry to improve tidal estimates is tested in a spe-

cific study that shows that the use of ALES along track can reduce errors on

individual tidal constituents of more than 2 cm at single tide gauge sites. The

updated EOT model, the EOT19p, is derived using 27 years of altimetry data

and it is based on a multi-mission weighted least-squares approach. EOT19p

is currently available on limited regions, and the assessment against in situ

data shows an improvement of 35.39% in the North Sea, and 20.07% in the

Malay Archipelago with respect to EOT11a, and the lowest median absolute

differences occur for single tidal constituents against the state-of-the-art tide

models.
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Chapter 1

Introduction

Ocean tides are a phenomenon familiar to many. They can be generally defined as periodic

oscillations of sea level, caused by the gravitational attraction between the Earth and the

Sun and Moon. These oscillations are characterized by different amplitudes and phases

according to their location in the world. Tides are severely affected by the ocean bottom

topography and coastal geometry, and therefore the description of their movements is more

complex than its standard definition. The first mathematical descriptions of ocean tides

were formulated in the first half of the XVIII century by Bernoulli, MacLaurin, and Euler,

who based their theories on Newton’s gravitation law, developed fifty years earlier (Treccani,

2017). With its static theory of tides, also called the Equilibrium theory, Bernoulli associated

the Earth to a perfect sphere, and its deformation due to tides as a prolate spheroid, and he

provided the first predictions of tides in ports with predominant semi-diurnal phenomena

(Cartwright, 1999). The introduction of fluid dynamics by Laplace in the late XVIII century

made the description of tides more sophisticated. Nowadays, hydrodynamic tide models are

still based on Laplace’s differential equations of tides. Another approach to derive tidal

parameters is the harmonic analysis of sea level timeseries, introduced by Lord Kelvin in

the XIX century, and further extended by Darwin, 1899 and Doodson, 1921. Tides are

described by sinusoids that are associated to a linear function of astronomical frequencies,

that change according to the time of their observation. In 1966 an alternative concept has

revolutionised tidal computation: Munk and Cartwright, 1966 theorised that the response

of the ocean to gravity is a slow-varying function that allows to describe tidal movements

of similar frequencies with a single function.

With the advent of satellites in the XX century, the description of tides further improved,

as they allow regularly sampled observations in space and time, with a quasi-global cover-

age. The harmonic analysis and the responsive method are applied to satellite observations

to derive another tide model category: the so-called empirical or semi-empirical models.

With satellite onboard altimeters it is possible to observe the sea level with an accuracy
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of few centimeters (Bonnefond et al., 2011), and it has been shown that since 1992 (which

corresponds to the launch of TOPEX/Poseidon, the first long-lived altimetry mission with

an unprecedented accuracy for sea-level measurements) tide models got an enhancement of

approximately 5 cm over the previous models (Shum et al., 1997). Tide models represent

a critical feature for altimetry itself, as altimetric measurements need to be corrected for

tidal signal in order to separate the tidal-related variability of sea level from the anomalies

coming from the ocean dynamic topography. Therefore, more accurate tide models result

in more reliable altimetric sea level retrievals.

But above all, the ability to predict tides represents a crucial matter for our society. Millions

of people live and work at the coast, and are everyday exposed to hazards coming from the

sea. In certain regions, tidal events combined with extreme meteorological conditions are

responsible for severe flooding and consequent safety and environmental issues. At present,

ocean tide models have a high performance in open ocean, while at coastal and shallow areas

significant errors are still found, as the complexity of bathymetry and littoral geometries re-

main still a challenge. Large efforts focused on improving tide description in these areas have

been made throughout the last decade, and brought a dramatic progress for shallow-water

tides, with a consequent larger agreement among different models, and a clear improvement

on the single tidal constituents. However, a lower performance is still observed at the coast,

resulting in large discrepancies between models and in situ observations. For models assim-

ilating satellite measurements, such situation may be due to a poor availability and quality

of altimetric data, that are also highly influenced by the presence of land (Gommenginger

et al., 2011), patches of water at very low sea state within the altimeter footprint (Passaro

et al., 2014), or ice, at higher latitudes (Andersen and Piccioni, 2016). In these areas, the

returned altimetry echo assumes shapes that are considerably different from the typical open

ocean radar return, and therefore the signal needs to be fitted with a dedicated algorithm

(called retracker). With the exploitation of these recent advances in data pre-processing,

dedicated coastal products are now available and are able to improve sea level estimations

up to few kilometers from the shore (Cipollini et al., 2017).

In this thesis it is illustrated the research carried out by the author throughout the last

three years, which was aimed to update and improve the DGFI-TUM’s Empirical Ocean

Tide (EOT) model with respect to its latest version EOT11a. The version derived in this

thesis is called EOT19p where p stands for preliminary. In EOT11a information from a

hydrodynamic model is combined with tidal estimates obtained through harmonic analysis

of multi-mission altimetric data. EOT11a is known to have high performance on a global

scale, but showed still issues in shelf and coastal waters (Savcenko and Bosch, 2012). It

became a natural consequence to focus this research on such critical regions, and study the

impact of coastal altimetric data on tidal estimates. So, this work have been summarized
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in three main research questions:

• What is the impact of altimetric coastal dedicated products on tidal estimates?

• Which alternative solutions to EOT11a algorithm focused on coastal tides are relevant

in terms of computational-time and tidal-estimation performance?

• What is the performance of the best algorithm found with respect of in situ data,

EOT11a and state-of-the-art models?

Structure of the dissertation

The thesis is divided in three main parts. The first one is dedicated to the theoretical

background: in chapter 2, the mathematical principles behind ocean tides are illustrated,

together with the methods for tide modeling and the state of the art of ocean tide models;

chapter 3 describes the fundamentals of satellite altimetry, the way how the sea level is de-

rived from altimetric measurements, the issues related to coastal observations, and the ones

related to retrieve ocean tide signals. The second part is about the theoretical algorithms

and considerations made to derive the EOT tide model and its validation routines. In par-

ticular, in chapter 4 the method used to derive the EOT model is explained in detail, and

additional studies supporting the final version of the models are presented; chapter 5 shows

how the validation dataset and methods were derived. In the last part, results are shown

and discussed: in chapter 6, tide models are analysed and compared. The main section (6.2)

regards the regional analysis of EOT model, however, results on additional studies, and the

analysis of state-of-the-art global models are also included. Conclusions can be found in

chapter 7.
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Chapter 2

Ocean tides

Ocean tides are an effect of gravitational forces exerted between the Earth and other celestial

bodies. The Sun and the Moon are the main responsible of tides on Earth, and cause sea level

variations according to their position in the sky. These variations are the result of periodic

phenomena, that can be described by sinusoidal signals and astronomical expressions. In this

chapter the bases of ocean tides are illustrated, with highlights on the main expressions used

nowadays in many tidal estimation algorithms. In section 2.1, the expression of Equilibrium

tide is derived from the tide generating potential. The spherical harmonic expansion of the

Equilibrium Tide is used to build the periodic signals that describe tidal movements; in order

to understand how the Equilibrium tide is related to these signals, one example is given in

section 2.2. Sections 2.1 and 2.2 are based on notes taken from (Pugh and Woodworth,

2014a), which is cited herein once, for an easier reading. Finally, in section 2.3, different

methods for tidal estimation are listed and illustrated.

2.1 Tide generating potential and Equilibrium Tide

The principle behind ocean tides is the Newton’s law of universal gravitation. A particle

of mass m1 attracts a particle of mass m2 with a force that is directly proportional to the

product of their masses, and inversely proportional to the square of their distance R:

F = G ⋅
m1m2

R2
(2.1)

with G the gravitational constant of value 6.674 ⋅ 10
−11

m
3 ⋅ kg−1 ⋅ s−2

. This principle can

be extended to two celestial bodies, such as the Earth and the Moon, and whose distance is

the distance between their center of mass. In figure 2.1 a sketch of the Earth-Moon system

is shown, with O and Q the respective centers of mass, that correspond to the center of the

celestial bodies for simplification. The tide-generating force is defined as differential force, as

it corresponds to the difference between the force exerted on a point on the Earth’s surface
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Figure 2.1: The Earth-Moon system.

and the force exerted at the center of the Earth (Doodson and Warburg, 1941). Therefore,

the force exerted at point P1 can be expressed as):

FP1 = G ⋅m1m2 [
1

(R − a)2
−

1

R2
] (2.2)

FP1 = G ⋅
m1m2

R2
[ 1

1
R2 (R − a)2

− 1] (2.3)

FP1 = G ⋅
m1m2

R2
[ 1

(1 − a
R
)2
− 1] (2.4)

And with 1
(1− a

R
)2 ∼ 1 + 2 a

R
because a, the mean Earth Radius is circa 6371 km, which is

very small with respect to the distance Earth-Moon R, of 384400 km:

FP1 = 2G ⋅
m1m2a

R3
(2.5)

The same formula can be used to calculate the tidal force at P2:

FP2 = G ⋅m1m2 [
1

R2
−

1

(R + a)2
] (2.6)

that results as the opposite force:

FP2 = −2G ⋅
m1m2a

R3
(2.7)

The same expressions can be applied to the system Earth-Sun. It is worth to mention

that the gravitational effect of the Moon is around twice the one of the Sun. This can be

easily checked by knowing the basic information about these celestial bodies (listed in table

(2.1); for example, at P1 the tidal force due to the Moon is 6.57 ⋅ 10
18

N, which is 2.2 times

larger than the one due to the Sun, with FP1 = 3.02 ⋅ 10
18

N.

Tidal forces are also expressed in terms of gravitational potential, which is defined, as

the work needed to attract a particle of unit mass located in P (figure 2.1) towards the Moon

(with mass ml) that has a distance QP :

ΩP = −
Gml

QP
= −

Gml

R2
[1 − 2

a

R2
cosφ +

a
2

R2
]
− 1

2

(2.8)
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Datum Value

Earth mass 5.9722 ⋅ 10
24

kg

Moon mass 7.35 ⋅ 10
22

kg

Sun mass 1.9884 ⋅ 10
30

kg

Distance Earth-Moon 384400 km

Distance Earth-Sun 149600000 km

Table 2.1: Mass and distances of Earth, Moon and Sun.

being the term in square brackets the result of the cosine law to derive the distance

QP , divided by R
2
. The location P forms an angle (the lunar angle, φ) with respect to the

Earth-Moon line OQ. The term in brackets can be expanded using the Legendre polynomials

P1(cosφ) = cosφ and P2(cosφ) = 1
2
(3 cos

2
φ − 1):

ΩP = −
Gml

R2
[1 +

a

R
P1(cosφ) + a

3

R3
P2(cosφ) + ...]

− 1
2

(2.9)

(higher terms of the expansion are neglected because a
R
<< 1); φ depends on astronomical

variables, that are the declination of the Moon, the latitude of P, and the hour angle of the

Moon (respectively Dl, φP , and CP ):

cosφ = sinφP sinDl + cosφP cosDl cosCp (2.10)

The tidal potential is used to derive the expression of the so-called Equilibrium Tide, that

is defined as: the sea surface elevation due to tidal forces if the Earth were ideally covered

by only water with a depth that allows instantaneous response. Despite its ideal condition,

the Equilibrium Tide represents an important element to derive expressions needed in tidal

analysis. The tidal force needed to move a particle of mass m towards the Moon can be

expressed as the derivative of the potential along the x direction:

−m
δΩP
δx

= mg tanα (2.11)

where α is the angle of the force with respect to the gravity force that is normal to the Earth

(see figure 2.2).

The displacement due to this force can be defined as δζ

δx
= tanα, that can be equalized

to 2.11:

δΩP
gδx

+
δζ

δx
= 0 (2.12)

which is, integrating on a finite area whose volume is conserved:

ζ = −
ΩP
g =

Gml

gR2
[1 +

a

R
P1(cosφ) + a

3

R3
P2(cosφ)]

− 1
2

(2.13)
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Figure 2.2: Scheme of displacement of equilibrium water surface related to tide-generating

force and the normal of the Earth’s gravity force. Credit: (Pugh and Woodworth, 2014a).

and replacing G =
ga

2

me
(from the gravitational force on a particle of mass m on Earth’s sur-

face, with me the Earth’s mass: mg = Gmme

a2
), and cosφ from equation 2.10, the expression

of the Equilibrium Tide is:

ζ = a
ml

me
( a
R
)

3
[C0(t) (

3

2
sin

2
φP −

1

2
) + C1(t) sin 2φP + C2(t) cos

2
φP ] (2.14)

with:

C0(t) = ( a
R
)

3
(3

2
sin

2
Dl −

1

2
)

C1(t) = ( a
R
)

3
(3

4
sin

2
Dl cosCP −

1

2
)

C2(t) = ( a
R
)

3
(3

4
cos

2
Dl cos 2CP −

1

2
) (2.15)

the coefficients that depend on astronomical coordinates that vary with time, and define

the long-period, diurnal, and semi-diurnal tidal species i.e. the occurrence of high-water (or

low-water) per day due to tides. Diurnal tides have one episode per day, semi-diurnal have

two, and long-period tides can occur with periods that last for days or months.

2.2 Tidal constituents as periodic signals

Tides are a periodic phenomenon that can be represented as a sum of N sinusoidal signals

with amplitude Hn, phase gn, and frequency ωn:

N

∑
n=1

Hn cos(ωnt − gn) (2.16)

Each signal is caused by a defined effect, called constituent, of the Sun, the Moon, or their

combination, and their position with respect to the Earth. The frequency ωn of the single

constituent can be represented by a sum of similar frequencies, called basic astronomical
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frequencies (ω1...6), that are the rate of change of six astronomical arguments (Tamura,

1987): the time angle in lunar days, the Moon’s geocentric mean ecliptic longitude, the

Sun’s geocentric mean ecliptic longitude, the longitude of lunar perigee, the mean longitude

of the ascending node, and the longitude of the perihelion (τ , s, h, p, N , and p
′
respectively):

ωn = i1ω1 + i2ω2 + i3ω3 + i4ω4 + i5ω5 + i6ω6 (2.17)

Integers i1...6 (often called Doodson numbers, e.g. Foreman and Henry, 1989) and the basic

astronomical frequencies needed to describe each constituent are derived from the harmonic

expansion of the Equilibrium Tide’s coefficients. For instance, the semi-diurnal tidal species

coefficient C2(t), can be expanded in combination with astronomical coordinates:

C2(t) = ψ [cos(2ω0t + 2h − 2s) + 7

2
e cos(2ω0t + 2h − 3s + p)

+
1

2
e cos(2ω0t + 2h − s − p + 180

◦)]
(2.18)

where ψ is a coefficient dependent on Dl, a and the mean lunar distance; ω0 is the rate of

change of the mean solar day, and e is the Earth’s orbit eccentricity. The cosine arguments

in square brackets represent three tidal constituents, called M2, N2 and L2. The first term:

(2ω0t+ 2h− 2s), tells us that M2 changes in time according to frequencies: 2(ω0+ω3−ω2),
that correspond to twice the rate of change of τ , 2ω1 = 28.9842

◦/hour (cfr. table 3.2 in

Pugh and Woodworth, 2014a). With similar reasoning, one can derive also the frequencies

of constituent N2:

2ω1 − ω2 + ω4 = 28.4397
◦/hour

and L2:

2ω1 + ω2 − ω4 = 29.5285
◦/hour

For M2 it is thus easy to see that the Doodson numbers are: [2 0 0 0 0 0 0]; for N2:

[2 − 1 0 1 0 0], and for L2: [2 1 0 − 1 0 0]. Integer i1 defines the tidal species, i2 the group

within the species, and i3 the tidal constituent. In general, i2...6 vary between -5 and 5,

but sometimes they can be summed by 5 units to avoid negative numbers (Doodson, 1921).

Another convention is related to the use of time in solar days, instead of lunar days, which

brings to [2 − 2 2 0 0 0 0] for M2 (Schureman, 1971). Another observation to be done is

that the L2 cosine argument contains also the 180
◦

term, which is called Doodson extended

number, and it is used as correction, so that cosine and sine terms are all positive. The

symbols used to name tidal constituents are called Darwin symbols (Darwin, 1889), and

are always a combination of numbers and letters. The numbers indicate the constituent’s

tidal species, while the letters are used since the last decades of the XIX century, and are

related to the old concept of ”phantom satellites” introduced by Laplace to describe the

effect of the Moon, the Sun, and their combined effect on tidal movements (Cartwright,

1999). Doodson numbers, frequencies, and Doodson extended numbers of tidal constituents
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are listed in tidal catalogues, together with their tidal potential coefficients. An example

is the HW95 catalogue (Hartmann and Wenzel, 1995), that contains the tidal potential of

12935 waves due to the Moon, the Sun and other planets like Venus, Jupiter, Mars, Mercury

and Saturn.

2.2.1 Astronomical arguments

Tide generating potential has been computed over decades by several researchers. Among

the most famous examples, it is worth to mention Doodson, 1921, Cartwright and Tayler,

1971, Wenzel, 1997, and Tamura, 1987. In their works, the six aforementioned astronomical

arguments are derived according to different conventions. In this project, the formulae used

are based on the MERIT standards (e.g. Teisseyre, 2013), and illustrated in Tamura, 1987:

τ = GMST + π − s

s = 218.3166 + 4812678.8119 ⋅ tMJD − 0.1466 ⋅ t2MJD + 0.00185 ⋅ t3MJD − 0.000153 ⋅ t4MJD

h = 280.4664 + 360007.6974 ⋅ tMJD + 0.0303 ⋅ t2MJD + 0.00002 ⋅ t3MJD + 0.000065 ⋅ t4MJD

p = 83.3532 + 40690.1363 ⋅ tMJD − 1.0321 ⋅ t2MJD − 0.0124 ⋅ t3MJD + 0.00052 ⋅ t4MJD

N = −(234.9554 + 19341.3626 ⋅ tMJD − 0.2075 ⋅ t2MJD − 0.00213 ⋅ t3MJD + 0.000165 ⋅ t4MJD)

p
′
= 282.9373 + 17.1945 ⋅ tMJD + 0.04568 ⋅ t2MJD − 0.0000177 ⋅ t3MJD − 0.000033 ⋅ t4MJD

It can be noticed that the mean longitude of the ascending node of the Moon, N , has a nega-

tive sign. This is because this formula refers to the negative mean longitude of the ascending

node. The astronomical arguments are represented by a constant angle and other three terms

that indicate the linear, and higher-order variations in time tMJD of the single coordinates

(here, decimals are truncated for better visualization). The variable tMJD is the time ex-

pressed in millennia of Modified Julian Days (MJD). This expression differs with respect

to Tamura, 1987, who used centuries of MJD. MJD is defined as MJD = JD − 2400000.5,

where JD is the Julian Day, that starts at 12:00 on the 1st of January 4713 B.C. (Petit and

Luzum, 2010). The Greenwich Mean Sidereal Time (GMST) used to compute τ is defined

as the ”Greenwich hour angle of the mean equinox defined by a conventional relationship to

Earth Rotation Angle or equivalently to Universal Time (UT1)” (Petit and Luzum, 2010).

In this work GMST is derived using the relationship with UT1, according to e.g. (Seidel-

mann et al., 1992). Starting from the time of interest in JD, the Greenwich Mean Sidereal
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Time in seconds is calculated at first for UT1 = 0:

GMST0 = 24110.54841 + 8640184.812866 ⋅ T + 0.093104 ⋅ T
2
− 0.0000062 ⋅ T

3
(2.19)

with T the integer time in Julian centuries (I(JD)) starting from 12:00 on the 1st of January

2000 (i.e.: T =
I(JD)−2451545

36525
). In order to compute the elapsed time between UT1=0 and

the event of interest, the ratio of the mean sidereal time to UT1:

r = 1.002737909350795 + 5.9006 ⋅ 10
−11

⋅ T − 5.9 ⋅ 10
−15

⋅ T
2

(2.20)

should be multiplied to the fraction of the day of interest:

GMSTmod = r(MJD − I(MJD)) (2.21)

so that the difference of few minutes between UT1 and the mean sidereal day is accounted.

GMST is obtained by adding equation 2.21 to equation 2.19 in days:

GMST =
GMST0

84600
+GMSTmod (2.22)

Finally, it is worth to mention that the coefficients used to describe the astronomical

arguments change according to a defined epoch of reference, and are periodically recalculated

to account for variations in Earth’s rotation.

2.2.2 Nodal corrections

The Moon’s declination has a modulation over a period of 18.61 years that affect all lunar

tidal constituents. An example is shown in figure 2.3 for M2; the amplitude at Newlyn station

is computed every year through 80 years of data, and shows clear periodic variations due to

the 18.61-year nodal cycle. Such issue can be accounted for by using two corrections, namely,

nodal corrections, for amplitude and phase of the tidal signal (fn and un respectively).

Therefore the periodic function that describes the tidal height due to one n constituent

becomes: fnHn cos(Vn + ωnt + un − gn), with Vn the argument or phase of the equilibrium

tide, i.e. the constant term in the astronomical argument equations. In fact, according to

(Le Provost, 2001), one can rewrite Vn + ωnt as:

ωnt + Vn = i1τ + i2s + i3h + i4p + i5N + i6p
′

(2.23)

The nodal corrections can be derived from the orbital elements N and p, and can be

easily found in literature for the main constituents (see examples in table 2.2). However, in

case of overtides or compound tides, these corrections must be calculated following rules,

illustrated in e.g. the International Hydrographic Organization (IHO, 2006). Overtides are

constituents that occur at multiples times with respect to their base frequency, like M4 or

M6, that have double and triple the frequency of M2; compound tides are constituents with
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Figure 2.3: M2 18.61-year amplitude modulation at Newlyn station. Credit: (Pugh and

Woodworth, 2014a)

frequencies that are a linear combination of interacting tides - for example, MS4 is given by

the interaction between M2 and S2 (Andersen et al., 2006). For these constituents, un is

the result of a sum of all tidal contributors, while fn comes from their multiplication. For

example, let’s consider the compound tide 3MS2, that is generated by interaction between

M2 and S2 constituents, and has frequency 26.952313
◦/hour, that is the difference between

tidal frequencies of 3 times M2 and twice S2: 3 ⋅ 28.984104 − 2 ⋅ 30. The value of nodal

corrections is then:

f3MS2 = f
3
M2 ⋅ f

2
S2 = f

3
M2

u3MS2 = 3 ⋅ uM2 − 2 ⋅ uS2 = 3 ⋅ uM2

because fS2 = 1 and uS2 = 0. The same principle applies for overtides.

Constituents fn un

M2, N2, µ2 1.000 − 0.037 cosN −2.1
◦

sinN

K1 1.006 − 0.115 cosN −8.9
◦

sinN

S2 1.000 0.0
◦

Q1, O1 1.009 − 0.187 cosN 10.8
◦

sinN

K2 1.024 − 0.286 cosN −17.7
◦

sinN

Mm 1.000 − 0.130 cosN 0.0
◦

Mf 1.043 − 0.414 cosN −23.7
◦

sinN

Table 2.2: Examples of nodal corrections for main constituents. Credit: (IHO, 2006).

2.3 Methods of tidal estimation

Tides can be derived by solving inverse and direct problems. With empirical models, the

inverse problem is solved when tidal harmonic constants are found, starting from a set of

observations (usually sea level measurements). This is the case of harmonic and responsive
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methods. Hydrodynamic models instead, find tidal constants by solving the direct problem

of Laplace Tidal Equations (LTE). In this section a summary of the aforementioned methods

is summarized.

2.3.1 Harmonic method

The harmonic method is based on the principle that sea level timeseries contain information

on tides, that can be described as a sum of sines and cosines. In section 2.2 it has been

shown that the tidal height ζ(t) can be expressed as a sum of N tidal constituent signals:

ζ(t) =
N

∑
n=1

fnHn cos(ωnt + Vn + un − gn) (2.24)

This equation can be rewritten, according to the sum of trigonomeric functions, as:

ζ(t) =
N

∑
n=1

[An ⋅ fn cos(ωnt + Vn + un) +Bn ⋅ fn sin(ωnt + Vn + un)] (2.25)

where:

An = Hn cos(gn) (2.26)

Bn = Hn sin(gn) (2.27)

are the unknown in-phase and quadrature coefficients that can be derived using the least-

squares. Hn and gn can be then obtained from:

Hn =

√
A2
n +B

2
n (2.28)

gn = tan
−1 (Bn

An
) (2.29)

This method is used in this project, and it is illustrated in more detail in chapter 4.

2.3.2 Response method

The response method is based on the principle that tides are the part of sea level that

respond to a gravitational unit impulse V (t− s∆t) at time t (Munk and Cartwright, 1966):

ζ(t) =
S

∑
s=−S

w(s)V (t − s∆t) (2.30)

where ∆t is a certain time lag increment and s is the number of lags; w(s) are weights

that represent the remaining effect at time t of the ocean’s response to a unit impulse at

time (t− s∆t) (Smith, 1999). The Fourier transform of w(s) is called admittance, and it is

defined as the ratio between impulse and response in the frequency domain f , which is the

frequency expressed in cycles per day, (Munk and Cartwright, 1966):

Z(f) = ∫
∞

0
w(∆t)e−2πif∆t

d∆t =
H(f)
G(f)

12



Where H and G in this case are respectively the sea level response and the gravitational

impulse in the frequency domain:

H(f) = ∫
∞

−∞
ζ(t)e−2πift

dt

G(f) = ∫
∞

−∞
c(t)e−2πift

dt

and the complex function c(t) = a(t) + ib(t) represents the coefficients of the spherical

harmonic expansion of gravitational potential V (t)/g. Z(f) is a complex function ad it is

also defined by coefficients Z(f) = X(f) + iY (f):

X(f) =
S

∑
s=−S

u(s) cos(2πfs∆t) + v(s) sin(2πfs∆t)

Y (f) =
S

∑
s=−S

u(s) cos(2πfs∆t) − v(s) sin(2πfs∆t)

where u(s) and v(s) are the complex coefficients of weights: w(s) = u(s) + iv(s), and

are relative to a certain tidal band tb and not for e.g. single constituents. In fact, the

fundamental assumption of the response method is the so-called credo of smoothness, that

states that the oceanic response to tidal forcing at adjacent frequencies within a certain tidal

band are nearly the same. This is especially true in deep oceans where tides within diurnal

and semi-diurnal bands have 30% of correlation on a 10-degree resolution (Smith, 1999). So,

for each tidal band, it is found only one complex admittance defined by w(s). w(s) can be

derived through least squares from equation 2.30, that can be rewritten in terms of complex

coefficients (Munk and Cartwright, 1966):

ζ(t) =∑
tb

S

∑
s=−S

utb(s)a(t − s∆t) + vtb(s)b(t − s∆t)

Finally, the amplitude and phase can be derived from: ((Cartwright and Ray, 1991)):

H(f) = H̃(f)
√
X2
tb(f) + Y 2

tb(f)

g(f) = ∣π ⋅ tb∣ − tan
−1 ( Ytb(f)

Xtb(f)
)

where H̃(f) are the known amplitudes associated to the tide potential illustrated in (Cartwright

and Tayler, 1971) and (Cartwright and Edden, 1973). With this approach, amplitude and

phase of the major tidal constituents of each tidal band – usually M2, S2, N2, K2, 2N2 for

the semi-diurnal, and K1, O1, Q1 for the diurnal bands – are derived (Le Provost, 2001).

Minor tidal constituents can be inferred through admittance interpolation (usually linear,

or quadratic) of major constituents:

Zn =

p

∑
k=1

α
n
kZk
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where Zn is the complex admittance of a minor constituent n, Zk the complex admittances

of major constituents and p the interpolation order; α
n
k is the interpolation coefficient that

varies according to p. For instance, constituent J1 can be inferred through linear admittance

estimates based on O1 and K1; α
J1
k are :

α
J1
1 =

fJ1 − fO1

fK1 − fO1
α
J1
2 =

fK1 − fJ1

fK1 − fO1

Zn can be decomposed in real and imaginary parts, and expressed in terms of tide potential

and tidal height coefficients. Following (Petit and Luzum, 2010) (equation 6.16), one can

derive the in-phase and quadrature coefficients of minor tides. And for J1 the formulae

become:

AJ1 =
fJ1 − fO1

fK1 − fO1

H̃J1

H̃O1

AO1 +
fK1 − fJ1

fK1 − fO1

H̃J1

H̃K1

AK1

BJ1 =
fJ1 − fO1

fK1 − fO1

H̃J1

H̃K1

BO1 +
fK1 − fJ1

fK1 − fO1

H̃J1

H̃K1

BK1

In this work, the admittance method has been applied to derive the height of minor con-

stituents, which was added to major constituent heights according to equation 2.25, in order

to predict the total tidal height. The total tidal height is the quantity used as tidal correc-

tion for altimetry data. More details about ocean tide correction for altimetry can be found

in section 3.2.6.

2.3.3 Laplace tidal equations

The Laplace method is based on Laplace equations on the motion of a fluid subject to

gravity. In 1779, Laplace calculated also the tide-producing force, that is intended as a

gravitational force whose effect on the Earth is symmetrical about the line of attraction

between the Earth and the attracting body (Moon or Sun), and pulls the ocean into an

ellipsoidal shape with major axis along this line (Gill, 2016). LTE are solved numerically

to derive ocean tides, and are the basis for hydrodynamic tide models. Usually, LTE are

solved on a mesh, and are coupled with other drivers that describe the ocean environment,

such as friction or wind forcing. LTE standard mathematical expressions are displayed here

for completeness, however no further details are given, as the author’s work was focused on

harmonic method (and admittance, for what concerns tidal prediction). LTE are derived

from the continuum equations of mass and momentum conservation, under the following

assumptions (Hendershott, 1981): a perfect fluid, uniform rotation that causes small dis-

turbances, a spherical Earth, geocentric gravitational field and uniform horizontally and in

time, rigid ocean bottom, and shallow ocean in which both the Coriolis acceleration the

vertical component of the particle acceleration are neglected. LTE expressions according to

(Hendershott, 1981) are:

∂u

∂t
− 2Ω sin θv = −

∂

∂φ

⎛
⎜
⎝
ζ − Γ

g

a cos θ

⎞
⎟
⎠
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∂v

∂t
− 2Ω sin θu = −

∂

∂θ

⎛
⎜
⎝
ζ − Γ

g

a

⎞
⎟
⎠

∂ζ

∂t
+

1

a cos θ
[∂uD
∂φ

+
∂vD cos θ

∂θ
] = 0

where φ ad θ are longitude and latitude with corresponding velocity components (u, v),

ζ the ocean surface elevation, Γ the tide-generating potential, D the ocean depth, a the

Earth’s spherical radius, g the gravitational attraction, and Ω the Earth’s angular rate of

rotation. The first two equations represent the horizontal acceleration of the water mass on

a rotating Earth as a consequence of the tidal disturbance Γ, while the third equation is the

mass continuity equation, which shows that a net flux of water for a certain area of height

D must be in balance with the variation of water level (Smith, 1999). LTE are extended to

shallow water, using the assumption that motions have large horizontal scales compared to

water depth and therefore lie in hydrostatic balance (Arbic et al., 2012).

2.4 State of the art of ocean tide models

The last, and most comprehensive, assessment on global ocean tide models was made by

Stammer et al., 2014 (henceforth St14), and contains a review of global ocean tide mod-

els available at that time, with assessment exercises on global and regional scales. St14

takes in consideration 15 tide models, divided according to their common features: 7

data-constrained models, 2 historical models, and 6 purely hydrodynamic models. Data-

constrained models involve data exploitation, and are divided into semi-empirical models,

i.e. based on prior models and adjusted with data (usually altimetry), and barotropic hydro-

dynamic models, that are based on hydrodynamic expressions (like purely hydrodynamic

models) constrained by assimilated data from e.g. altimetry or tide gauges. The global

differences between models for M2 constituent showed that data-constrained models have

similar behaviour in open ocean (below 3 mm), but high disagreement at coastal, shelf, and

Polar regions, with values larger than 1 cm. Differences are mainly due to interpolation

techniques, missing data in critical regions (the Arctic Sea, because covered by ice, and

the coast), and eddy energy aliasing. Comparisons with tide gauge data showed root sum

squares (RSS) errors around 1 cm in deep ocean, 5 cm in shelf waters, and 6 cm at the coast.

These results have dramatically improved since the assessment of Shum et al., 1997 (hence-

forth Sh97), in which the disagreement between models for M2 was 2-3 cm in deep ocean,

and their best RSS was of 2.5 cm in the same area. Large improvements were observed for

shallow water results, going from 23 cm in Sh97 to 3.5 cm for M2 constituent. Part of these

improvements are coming from the more and more frequent use of altimetry as tide model

constraint. A clear evidence are the purely hydrodynamic models, that, despite advances in

understanding the ocean physics and in numerical strategies, still remain much less accurate
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than data-constrained models (for M2 constituent, the best purely hydrodynamic model

gives 4.27 cm error, against 0.5 cm of data-constrained models). As St14 authors argue, it

must be specified that these improvements in models are also given by more accurate in situ

data and databases. Ray, 2013 shows that data selection criteria and processing choices, can

reduce the difference between in situ data and tide models. He compares a newly compiled

bottom pressure gauge dataset (later used in St14), with the ST102 dataset used in in Sh97,

obtaining a difference of 0.51 cm with GOT4.8 tide model M2 constituent, against 1.45 cm

obtained with ST102. Another consideration must be done for coastal results in St14. RSS

are obtained using 56 tide gauges distributed on global scale. Certainly, the number of in

situ data was the best possible at that time, but unfortunately not enough, as large areas

like South America, South East Asia, and India are left out. Also, as a consequence of data

scarcity in critical regions, it can happen that few locations with large errors may affect the

final assessment through RSS errors. In September 2018, during the ”25 Years of progress

in radar altimetry” Symposium, F. Lyard, in his review about tide models, pointed out that

model improvements have a different pace according to the constituent. For example, it is

expected that improvements of constituents with long aliasing period (e.g. K1 with 6 or

12 months aliasing, see section 3.5) may be smaller than constituents whose aliasing period

lasts for few days. By studying the sea level anomaly variance reduction, he showed that

large errors are still found in front of Bangladesh coast, in Indonesia, around Antarctica

for M2 and K1, and in the Gulf of Mexico for K1. Apart from the Polar regions, where

altimetry data are scarce or poor, Lyard found out that tide models in the Western Pacific

remain still noisier than the Atlantic, probably because signals coming from internal tide are

not separated from the barotropic tidal signal
1
. Current studies on tide models are mainly

focused on two aspects: the improvement of coastal and polar tidal estimation, and a better

description of internal tide signals. For the first issue, modelists work on the enhancement of

bathymetry and coastline resolution, as well as assimilation techniques (e.g. Cancet et al.,

2016). On the other side, the current studies in internal tides have shown that baroclinic

tide models can be used as altimetry corrections, in order to remove short-scale tidal vari-

ability (this concept has been illustrated by R. Ray, during the ”25 Years of progress in

radar altimetry” Symposium 2018). However, improvements in tide models are still affected

by intrinsic limitations due to altimetry data, whose instrumental noise, orbit determination

and repetition, are problematic for tide determination.

1
Strictly, ”barotropic” means that the pressure is constant on surfaces of constant density (Gill, 2016).

When we speak about barotropic (or surface) tides, it is intended tides associated with the sea surface.

Internal, or baroclinic tides are forced by barotropic tidal currents that move water layers of different

density, according to the topography of the ocean (Pugh and Woodworth, 2014a).
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Existing models

Since St14, new versions of ocean tide models were released. In this section a short de-

scription on current models available (and eventually mentioned in this thesis) is given.

Tide models are usually released as a set of regular grids, with different resolutions that

can go from 1/2 to 1/30 degree in both longitude and latitude directions. Pairs of grids

give information on harmonic constants (amplitude and phase, or in-phase and quadrature

coefficients) of single constituents - generally grids for the main 8 constituents (M2, S2, N2,

K2, K1, O1, Q1, P1) are available. At each grid point (or node) one finds information

on longitude, latitude, and e.g. amplitude. It is possible that hydrodynamic models (e.g.

FES2014) are computed on a mesh, characterized by an irregular distribution of grid points,

that guarantees a finer resolution at coastlines or in critical areas. However, because the

exploitation of such grids is computationally demanding, these models are often released on

a regular grid. Figures 2.4 and 2.5 show an example of tidal grids of model FES2014, for

M2 tidal constituent.

Figure 2.4: Amplitude of M2 tidal constituent, from FES2014 model.

The currently existing models, that will be mentioned throughout this thesis are:

• DTU16: it is the latest version of the Danish Technical University (DTU) tide model

series. It is a semi-empirical model based on altimerer data provided by the Radar

Altimeter Database System (RADS) for missions TOPEX/Poseidon (T/P), Jason-

1, Jason-2, SARAL/AltiKa in the Arctic, and ERS-1 to improve the model at high

latitudes. FES2012 ocean tide model is used as background model (Cheng and Ander-

sen, 2017). The residual tidal signal is estimated along track through the responsive

method, and then interpolated onto FES2012 grid using the dynamic interpolation
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Figure 2.5: Phase of M2 tidal constituent, from FES2014 model.

method (Andersen, 1999), that takes into account the water depth. The latter, is

defined according to DTU10 bathymetry model. DTU16 provides grids for 8 major

tidal constituents: M2, S2, N2, K2, K1, O1, Q1, and P1.

• EOT11a: the Empirical Ocean Tide model has been released in 2012 by (Savcenko and

Bosch, 2012) and it is the latest global version of DGFI-TUM EOT series. The model

has a resolution of 1/8 degree, and harmonic constants for constituents: M2, S2, N2,

K2, 2N2, K1, O1, Q1, P1, S1, Mf, Mm and M4. Tides are estimated through least-

squares harmonic analysis performed on altimetric residuals of FES2004 tide model.

Multi-mission altimetry data are interpolated on FES2004 grid, and the least-squares

is combined with a Variance Component Estimate (VCE) so that missions are weighted

according to their performance (more details about EOT technique can be found in

chapter 4).

• GOT4.10: in the Goddard Ocean Tide (GOT) series tidal constituents are estimated

with standard harmonic analysis for constituents Q1, O1, S1, K1,N2, M2, S2, K2, and

M4. Smaller constituents are inferred from admittances. The tidal analysis is com-

puted on altimetry residuals relative to a combined background model, that includes

several global, regional, and local tide models (Ray et al., 2011). The latest version is

GOT4.10, in which only data from Jason-1 and Jason-2 were used, with no T/P data.

In shallow areas, it is recommended to use version 4.8 (R. Ray, personal communica-

tion). However, because of their coarse spatial resolution of 1/2 degree, GOT models

are not considered to be the best option to investigate tides in shallow seas or coastal
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areas.

• HAMTIDE11a: the Hamburg direct data Assimilation Methods for TIDEs (HAMTIDE)

model has spatial resolution 1/8 degree and it is a global model based on the general-

ized inverse methods for tides developed at the University of Hamburg (Zahel, 1995).

Solutions are constrained by 15 years of satellite altimeter data (missions: T/P and

Jason-1) compiled by DGFI-TUM (Bosch et al., 2009). The constituents provided are:

M2, S2, N2, K2, K1, O1, Q1, P1, and 2N2.

• OSU12v1.1: OSU12 ocean tide model is an empirical barotropic model, with spatial

resolution of 1/16 degree. The model computes response tidal analyses on multi-

missions radar altimeter data, including T/P, Jason-1, Geosat Follow On (GFO) and

Envisat, with time coverage between October 1992 and January 2009. Version 1.0 of

this model has no empirical solutions beyond ±66 degree latitude bounds, therefore

GOT4.7 is patched at higher latitudes (Fok, 2012). Version 1.1 was kindly provided

by H. Fok, with the help of C. K. Shum, and they explained that this new version still

needs to be updated with new data, and corrected for errors found in the prior model.

• FES2014: it is the last version of the FES (Finite Element Solution) tide developed

by LEGOS, NOVELTIS and CLS, within a CNES funded project. FES2014 is based

on the T-UGO model, which solves tidal barotropic equations through spectral con-

figuration. In addition, the model assimilates altimeter observations and in situ data.

Altimetry data are assimilated as along-track and crossover timeseries, from missions:

T/P, Jason-1, Jason-2, ERS-1, ERS-2, and Envisat. The in situ dataset used in the

model comprises 600 stations, among which: the WOCE coastal database, open ocean

bottom-pressure recorders (BPR) used in St14, open ocean BPR in Antarctica from

LEGOS, Arctic database by Kowalik and Proshutinsky, 1993, BHI and LEGOS, 4 tide

gauge stations of R. Ray’s shelf dataset located in Florida (Mathilde Cancet, personal

communication). FES2014 is characterized by an accurate bathymetry and a refined

mesh (a total of ∼ 2.9 million nodes) useful to describe coastlines and shallow-water

regions. FES2014 is released as global regular grids with 1/16 degree resolution of 34

tidal constituents: 2N2, EPS2, J1, K1, K2, L2, La2, M2, M3, M4, M6, M8, Mf, MKS2,

Mm, MN4, MS4, MSf, MSqm, Mtm, µ2, N2, N4, ν2, O1, P1, Q1, R2, S1, S2, S4, Sa,

Ssa, T2.

• TPXO8: TPXO is a series of ocean tide fully-global models derived using the representer-

based variational scheme (Egbert and Erofeeva, 2002) to assimilate altimetry and in

situ data into a global shallow-water model. Harmonic constants are computed from

along-track observations from 685 T/P and Jason cycles (up to 2011), and 114 cycles

of T/P on its interleaved orbit; at high latitudes ERS/Envisat data were also used to
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improve lunar tides (St14). In the same area, tide gauge data were also assimilated,

including 83 around Antarctica by King and Padman, 2005 and 289 in the Arctic by

Kowalik and Proshutinsky, 1993. TPXO8 tidal grids are the result of a combination

of a basic global solution, with resolution of 1/6 degree, and local solutions, with 1/30

degree resolution. The global grids are provided with a final resolution of 1/30 degree,

for tidal constituents: M2 S2 N2 K2 K1 O1 P1 Q1 M4. Grids of minor constituents

(MF, MM, MN4, and MS4) are also provided, with a resolution of 1/6 degree.

• STORMTIDE: this purely hydrodynamic model has been developed within the frame-

work of the German consortium project STORM, whose aim is to develop a high-

resolution ocean circulation and tide model (Müller et al., 2014). STORMTIDE has a

horizontal resolution of 5-10 km (it is released as tripolar grid with 0.1 degree resolu-

tion) and it provides grids for 8 tidal constituents: M2, N2, S2, K2, K1, Q1, P1, O1,

and P1. Tides are derived by lunisolar tidal potential of second degree, described by

analytical ephemerides. The global model is forced by climatological wind stress and

heat fluxes. Tides are forced by an ephemeral forcing, where the positions of the sun

and moon are computed at each time step of model simulation.

• HYCOM: tidal estimates obtained from the HYbrid Coordinate Ocean Model simula-

tions have a nominal horizontal resolution of 1/12.5 degree, distributed on a tripolar

grid (St14). HYCOM simulation was done simultaneously to resolve barotropic tides,

baroclinic tides, and an eddying general circulation on a horizontally uniform two-

layer stratification with only tidal and surface seawater (buoyancy) forcing (Arbic

et al., 2010).

• HIM: the Hallberg Isopycnal Model is a isopycnal coordinate, primitive equation ocean

model whose simulations employ a parameterized topographic wave drag that represent

tidal energy loss in regions of rough topography (St14). Tidal estimates are released

with resolution of 1/8 degree and latitude coverage between 86 degrees South and 82

degrees North.

In chapter 6 the aforementioned models are compared.
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Chapter 3

Sea level from satellite altimetry

3.1 The basic principle of radar altimetry

With the radar altimeter it is possible to measure the distance between its position and an

intercepted target. The physical principle behind this instrument is based on the simple

relationship between speed, time and space: the altimeter emits an electromagnetic signal

that interacts with the target - in this case, the surface of the Earth - and it is reflected

back to the instrument. The distance (or range) R between the altimeter and the target is

computed with the following equation:

R =
cT

2
(3.1)

T is the time that the signal needs to travel from the altimeter to the target and its way back

to the altimeter. The signal has a speed c which is equal to the speed of light in vacuum

(∼ 3 ⋅ 10
8

m/s). Altimeters illuminate the target producing a footprint that varies in shape

and extent according to both instrument and ground features. Most of the altimeters have

a pulse-limited footprint, with exception of laser altimeters, that are beam-limited, and the

latest Delay-Doppler altimeters (Raney, 1998 and Cipollini and Snaith, 2015). In figure

3.1 the three types of footprints used in altimetry are shown. A beam-limited footprint is

defined by the choice of the beamwidth, which is inversely related to the antenna diameter

(cfr. equation 22 in Fu and Cazenave, 2001). In order to resolve smaller ground features,

a narrow beamwidth is needed, and consequently a larger antenna diameter of few meters,

which is unfeasible for practical reasons. That’s why microwave altimeters operate with a

pulse-limited design, that require a smaller antenna (e.g. 1.5 m for T/P, Fu and Cazenave,

2001), and the size of the footprint is defined by the pulse length of the emitted signal. A

short pulse of duration τ (a few nanoseconds), illuminates the ground according to figure

3.2. At time t1 the signal is emitted, and it reaches the ground at time t2, forming a small

circle that expands at t3. At time t4 the last part of the signal is reflected back. The
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Figure 3.1: Design of radar footprints.

total footprint can be reconstructed by sampling individual echoes at the different time

steps. In reality, the extent of pulse-limited footprints is of 3-5 km diameter, but at high

sea states, it can reach values above 10 km (Chelton et al., 1989). The latest missions such

𝒕𝟏 𝒕𝟐 𝒕𝟑 𝒕𝟒

Figure 3.2: Pulse-limited footprint at different times t1, t2, t3, t4. The red area is the

illuminated area on the ground at a certain time step. Modified from: https://www.aviso.

altimetry.fr/en/techniques/altimetry/principle/pulses-and-waveforms.html.

as CryoSat-2 and Sentinel-3, can operate with a Doppler-limited design, which is effectively

beam-limited along-track, with footprint dimension determined by signal processing (Raney

and Phalippou, 2011), and pulse-limited across-track. Along-track, there is an independence

on sea state, because the footprint size is narrowed down to circa 300 m, while across-track
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the size is of around 5 km. The author wants to specify that for experiments discussed in this

thesis, only data from missions with conventional (pulse-limited) altimeters were exploited;

details about the missions used can be found in paragraph 3.4.

Altimeters usually work at microwave frequencies, that allow signal transmission through

atmosphere, with penetration of clouds and haze. The microwave spectrum goes from 300

GHz to 300 MHz (or from 1 mm to 1 m wavelength, e.g. Hitchcock, 2004); in particular,

altimeters operate between 2 and 18 GHz, encompassing S, K, X, and K bands (Fu and

Cazenave, 2001). Despite atmosphere’s lower opacity for microwaves, the signal is still

attenuated by different factors that affect the final range value. These propagation effects

are due to the presence of dry gases, water vapour, and ionospheric electrons. R depends

also on other drivers, such as ocean and Earth tides, and atmosphere loading on water

targets. In paragraph 3.2 the range computation and all the aforementioned geophysical

effects are discussed in more detail. Usually altimetry data are transmitted to the ground

at 20 Hz (e.g. Cipollini et al., 2017), with exceptions for few missions like Envisat and

SARAL/AltiKa, that work at 18 Hz rate. This means that, given the satellite speed of

∼7 km/s, observations occur every ∼350 m. Data are then released with a 20 Hz rate, or

averaged every 20 measurements and made available at 1 Hz. The latter solution requires

less memory storage and it is more convenient to handle; however, for coastal or inland water

applications, high-rate solutions are preferred even if they provide noisier measurements than

1-Hz data, as they provide denser spatial coverage and allow to get closer to the shore.

3.2 From range to sea level

Satellite altimeters fly over the Earth with an orbital height hsat, referenced to an ellipsoid

whose characteristics may slightly change according to the mission. For example, ERS

missions are referenced to WGS84 ellipsoid, while Jason missions are based on T/P ellipsoid,

and their radii differ of 0.7 m (Rosmorduc et al., 2016). The difference between hsat and R

(corrected for all the geophysical effects previously mentioned before), gives the sea surface

height (SSH). The sea level, as intended in climatic analyses such as Stocker et al., 2013,

is the SSH referenced to the Mean Sea Surface (MSS) and it is called Sea Level Anomaly

(SLA) or sea level height anomaly, see figure 3.3. SLA is represented according to Andersen

and Scharroo, 2011:

SLA = hsat −R −∑hgeo − hMSS (3.2)

where hgeo is the sum of the heights of all geophysical corrections and hMSS is the MSS

height. In the following sections the single terms used to derive SLA values are described.
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Figure 3.3: Sketch of fundamental geophysical heights in altmetry.

3.2.1 Range

The radar antenna collects the returning echoes from the ground as a timeseries of signal

power, which is called waveform (see figure 3.4). For most of the missions, the timeseries

is divided in discrete samples of 3.125 ns called gates (Passaro et al., 2014). The waveform

contains geophysical information of the target that can be retrieved using retracking algo-

rithms (Passaro, 2015). Retracking is a process that fits the waveform using algorithms that

can be empirical (e.g. based on statistical properties of the waveform), or derived from the

physical knowledge of the signal. The type of signal received by the satellite changes accord-

Figure 3.4: Altimeter measurement principle. Credit: https://www.aviso.altimetry.fr/

en/techniques/altimetry/principle/pulses-and-waveforms.html.

ing to the target observed, and therefore retracking algorithms (or retrackers) must adapt

according to the type of waveform to be analyzed. For example, over the open ocean, most

waveforms are fitted using the Brown-Hayne model (Brown, 1977). In figure 3.5 an ideal
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Brown waveform is shown; waveforms are characterized by a first rising part (leading edge),

and a descending part, the trailing edge. Both provide information about the external envi-

ronment - for instance, the slope of the leading edge is related to the significant wave height

(SWH) - or other instrumental parameters, e.g. the altimeter mispointing (Gommenginger

et al., 2011). The leading edge is important to derive the range. It must be clarified that

a first estimate of the range is already given by the onboard tracker (whose purpose is to

keep the reflected signal within the altimeter analysis window (Gommenginger et al., 2011)),

but for higher accuracy, the waveform is analyzed on the ground and retracked. With the

retracker, the mid-point of the leading edge, that represents the sea surface mean position

at nadir (Passaro, 2015), is retrieved. The position of the mid-point of the leading edge

with respect to the tracking reference point is called epoch. Finally, the retracked range R

is found by adding the epoch to the tracking reference point.

Figure 3.5: Ideal Brown ocean waveform. Credit: Gommenginger et al., 2011.

3.2.2 Dry troposperic correction

This correction is used to compensate the signal refraction due to dry gases in the atmo-

sphere, and it can be derived by relating the air density to pressure at sea level P0 (Andersen

and Scharroo, 2011):

hdry ≈ −0.2277P0(1 + 0.0026 cos2ϕ) (3.3)

there is also dependence on latitude ϕ, due to gravity. The mean magnitude of hdry is circa

2 metres, with small variations (few cm) in time and space (Scharroo, 2018), and negligible

changes in proximity of land. The values of this correction are determined by meteorological

(operational) models, such as ECMWF and NOAA/NCEP, or reanalysis models, such as the

ERA-Interim, all characterized by a temporal resolution of 6 hours. Despite different spatial

resolution (16 km, 2.5-by-1.25 degrees) operational models show same accuracy, confirming
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a low variability of the dry troposphere (Andersen and Scharroo, 2011). However, reanalysis

models are often preferred over operational models because of their long-term stability, with

neither parametrisation nor variation in algorithms.

3.2.3 Wet troposperic correction

The wet tropospheric correction hwet is applied to account for the atmospheric refraction

due to water vapour. hwet is described as Scharroo, 2018:

hwet ≈ −6.36IWV (3.4)

with IWV the vertically Integrated Water Vapour density, dependent on the atmospheric

temperature (for more details, please see Obligis et al., 2011). The wet tropospheric cor-

rection is highly variable in space and time: it goes from few mm in cold, dry air, to 50

cm in hot, wet air. The correction can be derived using operational and reanalysis mod-

els (the same as for the dry tropospheric correction), but also exploiting observations from

microwave radiometers mounted aboard satellite payloads. Onboard radiometers allow to

instantaneously monitor rapid changes in the wet troposphere; however, this correction is

affected by radiometer’s drift and calibration errors (Scharroo et al., 2004), and because

of their large footprint (10-40 km, Scharroo, 2018) observations are contaminated by the

presence of the coast, already within a distance of 30 km (Cheng et al., 2015).

3.2.4 Ionospheric correction

The presence of free electrons and ions in the ionosphere delays the altimeter radar pulse

through the whole atmosphere column between the satellite and the Earth’s surface (An-

dersen and Scharroo, 2011). The magnitude of the correction is proportional to the vertical

Total Electron Content (TEC), and inversely proportional to the altimeter frequency f

(Scharroo, 2018):

hion ≈ −0.4025
TEC

f2
(3.5)

The ionospheric correction can be derived from altimeter data: since T/P mission, most

of altimeters operate dual-frequency, so that with the second frequency band (generally a

C-band), one can measure the ionospheric path delay. Alternatively, models based on other

observations like GPS or DORIS are used, such as NIC09 (Scharroo and Smith, 2010) or

GIM (Jee et al., 2010). The ionosphere correction has an average magnitude of 8 cm, with

variations that depend on the position of the Earth with respect to the Sun - in fact, the

largest values are encountered around the geomagnetic equator - and the Solar activity itself,

with highest variations occurring during the day.
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3.2.5 Dynamic Atmospheric correction

The atmospheric pressure causes the movement of the sea surface, that reacts as an ”inverse

barometer”. The wind and other dynamic atmospheric changes - including the loading due

to solar atmospheric tides S1 and S2 (Ray and Ponte, 2003, Ray and Egbert, 2004) - generate

additional effects that are all included in the Dynamic Atmospheric Correction (DAC). The

current AVISO DAC series are models based on the combination of an inverse barometer

model at low resolution with a barotropic model (the 2 Dimensions Gravity Waves model,

MOG-2D) forced by pressure and wind at high spatial and temporal resolution (0.25 by 0.25

degrees per 6-hour resolution).

3.2.6 Ocean tide correction

Altimetric tide corrections are expressed as heights, that are the sum of effects of single tide

constituents at a certain location and time (equation 2.25). In general, tide corrections are

derived from tide constituent grids interpolated on the location of each altimetry observation,

and predicted using, for instance, the astronomical expressions shown in chapter 2. Tidal

corrections are usually smaller in open ocean, along open ocean coastlines and in close seas

like the Mediterranean; high tides occur at in semi-enclosed seas, funnel-shaped entrances

of bays and estuaries, and continental shelves (Haigh, 2017). An example of ocean tide

correction can be seen in figure 3.6, that shows values obtained with FES2014 tide model

for the complete cycle 40 of Jason-1 mission. In the last years, models were known to have

a global accuracy of 1-2 cm (Andersen and Scharroo, 2011), while at shelf and coastal areas,

errors were still between 10-to-20 cm (Ray, 2008). However, more recent global models,

such as FES2014, has shown dramatic improvements at critical areas, reaching an accuracy

of few cm at the coast (Carrère et al., 2015).

3.2.7 Load tide correction

The load tide is an effect sensed by altimeters, and it is defined as the loading of the water

column on Earth’s crust. It is approximated as the 4% of the ocean tide signal (Cheng and

Andersen, 2011), and can reach values of 10 cm (Ray and Sanchez, 1989). Tidal loading

effects can be computed with formalisms like the one described in Francis and Mazzega,

1990, that use the Green’s function approach. An alternative method is illustrated in Ray

and Sanchez, 1989 and Cartwright and Ray, 1991, and exploits the concept of admittance

(section 2.3.2).
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Figure 3.6: FES2014 ocean tide correction for cycle 40 of Jason-1 mission.

3.2.8 Solid Earth and Polar tide correction

The solid Earth tide is the response of the Earth to gravitational forces, and it is proportional

to the tidal potential as described in Cartwright and Tayler, 1971. Its magnitude is around

±20 cm (Andersen and Scharroo, 2011), and it is described by highly accurate models

that account for diurnal and semi-diurnal gravitational effects of Sun and Moon (Scharroo,

2018). The Pole tide correction accounts for the variation of the centrifugal force caused

by changes in the Earth’s axis (Polar motion), and it reaches its maximum at 45 degrees

latitude (Scharroo, 2018). Also in this case, the models (e.g. Wahr, 1985) predicting this

effect are highly accurate (Andersen and Scharroo, 2011).

3.2.9 Sea State Bias

The Sea State Bias (SSB) correction accounts for three different contributions: the electro-

magnetic bias, due to higher reflections of wave troughs, causing an overestimation of the

range; the skewness bias due to the assumption that the targets in the illuminated area have

a Gaussian distribution, while in reality it is characterized by a non-zero skewness (Passaro

et al., 2018); and the tracker bias, related to the way returning echoes are tracked (Pires

et al., 2019). The SSB correction can be modeled using parametric and non-parametric

techniques dependent on wind and significant wave height; it has a mean value of 5-10 cm,

with variations of 1 cm, at low- and mid-latitudes, and 20 ±5 cm at high latitudes (Andersen

and Scharroo, 2011).

28



3.2.10 Mean Sea Surface

The MSS is defined as the height of the sea surface averaged in time. MSS models (like

DTU18MSS, CLS15) are generally based on several years of multi-mission altimetric obser-

vations that are averaged and filtered in order to remove the sea surface variability, while

maintaining the highest spatial resolution possible (Andersen and Knudsen, 2009). The

current models achieve 1/60 degree resolution, and exploit at least 20 years of altimetry

data (e.g. Andersen and Scharroo, 2011, and Schaeffer et al., 2016). The MSS values range

between -105 m in India and 85 m in the North East of New Guinea, with an accuracy of

10-20 cm (Andersen et al., 2018).

3.3 Issues at the coast

Coastal dynamics are highly variable at scales much lower than in the open ocean, and

thus extremely complex to model. For this reason, pure ocean models are often combined

with remote sensing (e.g. altimetry and radar imagery) or in-situ observations to improve

their solutions at the coast (Wilkin et al., 2005). The advantage of using altimetry is to

have a global coverage, also in areas hard to reach with in-situ instrumentation. However,

observing the coast with altimeters remains still a challenge. As the satellite approaches

shallow waters, waveforms resemble no more to a typical Brown ocean waveform, and change

according to two main drivers (Gómez-Enri et al., 2010):

• the sea state: unbroken wave crests, white caps, and calm water patches, are char-

acterized by high reflectance that cause peaky waveforms; these phenomena are not

constant in space and time, and occur close to the shore (Scozzari et al., 2012).

• the presence of land: in transition between ocean and land, waveforms can be contam-

inated by land returns, while the satellite nadir is still over the ocean. Land echoes are

registered at certain gates, causing irregular sampling at the trailing edge, figure 3.7.

Land samples increase toward the leading edge while the satellite gets closer to the

coast. Land echoes depend on the nature of the terrain and the geometry of the coast,

which make this issue highly variable and difficult to describe by retracking algorithms

Gommenginger et al., 2011.

Other drivers, such as the presence and the condition of sea ice or leads, are related to Polar

regions, and are not the focus of this work. More information can be found in e.g. Müller

et al. (2017). An example of coastal waveforms is described in Gommenginger et al., 2011 (see

figure 3.8), and compares Brown ocean waveforms detected by ERS-2 mission (3.8a) with the

ones found when both ocean and land surfaces are illuminated (3.8b-f). Peaky waveforms,

due to highly reflective water patches, have similar shapes as 3.8h. It is clear that with such
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Figure 3.7: Scheme of altimetric observation in proximity of the coast. Credit: Gommengin-

ger et al., 2011.

waveform variety, typical retracking algorithms are prone to fitting errors, and consequently

in range estimation. In the last decades, major focus on coastal issues led to development

of ad-hoc retracking algorithms, that are able to derive ranges with higher accuracy than

ordinary retrackers, or from waveforms that would be discarded when severely affected by

land returns. A successful example, is the Adaptive Leading Edge Subwaveform (ALES)

retracker (Passaro et al., 2014), which restricts the application of Brown-Hayne model to

only a portion of the fitted radar echo (selected according to a first estimation of the sea

state) in order to guarantee the precision of the measurement also in the open ocean, while

avoiding spurious reflections typical of the coastal zone. The fact that ALES can be used

homogeneously over open ocean and coastal areas is crucial, as it avoids potential internal

bias that can be introduced with using different retracking methods (Passaro, 2015). The

reliability of this retracker has been proven in a number of applications such as the regional

estimation of the seasonal cycle and trend of the sea level (Passaro et al., 2015 and Passaro

et al., 2016). With reliability, it is meant a higher amount of data, while maintaining high

quality open ocean standards of precision and accuracy at locations as close as possible

to the coast. In figure 3.9, an example is shown for Jason-1, track 161 of its interleaved

orbit, processed with different retracking algorithms and compared with a tide gauge in the

North Adriatic (Passaro et al., 2014). The plot compares the percentage of cycles that have

correlation ≥ 0.9 with respect to in situ timeseries (left y-axis), obtained with ALES (in

red), SGDR standard product (in blue), and CTOH 1 Hz product (cyan round markers),

against the distance to the coast (green curve, referenced to the right y-axis), and along
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Figure 3.8: Waveforms at coastal areas observed with ERS-2 mission. Credit: Deng, 2004.

Figure 3.9: Percentage of Jason-1 cycles with ≥ 0.9 correlation with tide gauges. Results

are for ALES (red), SGDR standard product (blue), and CTOH 1 Hz product (cyan round

markers). Land areas are in grey and the distance to coast is in green. Credit: Passaro

et al., 2014.
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the latitude (x-axis); the grey areas represent land. From this plot it is possible to see that

within 5 km from the coast of the island,located at 45.5N, ALES maintains an amount of

cycles with high-quality data above 70% over 89 cycles analyzed; while with the standard

product, the number of good-quality cycles is rapidly reduced below 7 km to the coast.

A similar situation occurs between 45.5N and 45.7N. At the coast, also single altimetry

corrections are problematic, as they are characterized by higher variability and magnitude

than in open ocean, and during years, dedicated solutions have been proposed to mitigate

coastal issues. In table 3.1 the variability in time of the main geophysical corrections in

open ocean is compared with the ones at the coast. The wet tropospheric correction is

one of the largest sources of error in coastal altimetry, as higher variations at coastal areas

are not properly described by models, or observed (because of large radiometer footprints

that are contaminated by the presence of land, Fernandes et al., 2015). A valid solution,

provided by Fernandes and Lázaro, 2016 as GNSS Derived Path Delay Plus (GPD+) model,

is to combine different sets of data, coming from onboard radiometers or GNSS coastal and

island stations, with ECMWF operational and reanalysis models, in order to guarantee, and

give the best estimate of wet tropospheric values at the coast. Other difficulties are found

in SSB modeling at coastal areas, where issues are related to changing wave shapes and

wind propagation, and the interaction with bathymetry and coastal geometry (Andersen

and Scharroo, 2011); particular attention is dedicated nowadays on this topic (for example,

see PISTACH and WaveWatch3 projects, or Tran et al., 2006). Ocean tides are the most

significant parameter to correct at the coast, as they can reach magnitudes with several

meters, and are subject to non-linear phenomena related to water depth, that causes signal

resonance, and therefore overtides and compound tides (Andersen, 1999). Tide corrections

are the result of tidal heights predicted from tide models that lose accuracy of several cm at

the coast - for instance, M2 constituent from a gridded tide model has an accuracy of around

0.5 cm in open ocean, against 4.5 cm at the coast (St14). However, substantial improvements

have been achieved since St14; an example is the FES2014 model, that refined its finite

element mesh for a better description of bathymetry and coastal geometry, or the EOT

model described in this work, that exploits coast-dedicated altimetry products to improve

residual tidal estimation (more details about this topic are given in chapter 4). Other

solutions to coastal issues came from progress in instrumentation; the Synthetic Aperture

Radar (SAR), exploits the Doppler-limited design already mentioned in 3.1, that improves

resolution along track, resulting in a valuable solution close to the coast. However, it must be

mentioned that this advantage occurs according to satellite orientation with respect to the

coast, as across-track SAR footprint remains pulse-limited. SAR technology is also combined

with across-track interferometry to derive the location from where the scatter originated

(this configuration is named SARIn; more details and applications about this technique
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Correction Open Ocean Coast

Dry troposphere 0-2 0-2

Wet troposphere 5-6 5-8

Ionosphere 2-5 2-5

DAC 5-15 5-15

SSB 1-4 2-5

Tides 0-80 0-500

Table 3.1: Time variability of geophysical corrections in open ocean and at the coast. Values

in cm. Credit: Andersen and Scharroo, 2011.

can be found in Di Bella, 2019). Both SAR and SARIn configurations, together with the

ordinary pulse-limited mode, operate aboard CryoSat-2 mission. A further improvement in

the SAR concept is the fully focused coherent processing of its returned signal, that allows to

distinguish specific targets within highly heterogeneous scenes, like in case of coastal zones

(Egido and Smith, 2017). Finally, in September 2021 the Surface Water Ocean Topography

(SWOT) mission will be launched. Its payload will carry a wide-swath interferometric

altimeter, that consists of a nadir-looking altimeter and two SAR antennas. The mission

will provide high-resolution observations between 250 m to 2 km, that allow coastal current

and storm surge monitoring (Morrow et al., 2018).

3.4 Altimetry missions

Altimetry missions are now operating since 41 years. It was in June 1978 when the first

altimetry mission, SeaSat, was launched. After this date, a sequence of missions, born

from the international collaboration through agencies, was developed to respond to differ-

ent scientific needs, and continuously monitor our planet through years. The NASA-CNES

Jason-series, starting with T/P mission, was built with the main purpose of improving

our understanding of oceans. It was launched in August 1992, and operated for over 13

years (until January 2006), delivering data with an accuracy of 4.2 cm (NASA, 2013). The

satellite flew on a near-circular, non- Sun-Synchronous orbit with altitude of 1336 km, cov-

erage of ±66 degrees, and a repeating period of 9.9156 days (AVI-NT-02-101-CN, 1996). In

September 2002, its orbit was shifted midway between the previous tracks (interleaved or

interlaced orbit). This operation allowed a cross-calibration with NASA’s Jason-1 satellite,

which replaced T/P in on its same former orbit (SALP-MU-M5-OP-13184-CN, 2016). (A

first calibration between the two missions took place during the tandem phase, in which

T/P and Jason-1 followed the same orbit separated by a short-time distance). After May

2012, Jason-1 moved into a geodetic orbit, after a tandem phase with Jason-2, that started
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in June 2008 in which the satellites flew on the same orbit, one after the other, with 1-

minute time distance (SALP-MU-M-OP-15815-CN, 2011). From October 2016 Jason-2 is in

an interleaved orbit, while the newer mission, namely Jason-3, continues operating on the

former ground-track (SALP-MU-M-OP-16118-CN, 2018). Jason-3 was launched in January

2016 (SALP-MU-M-OP-16118-CN, 2018), and is still ongoing. The Jason-series is currently

providing data at same locations with an uninterrupted timeseries of circa 27 years. Another

successful mission series was realized by ESA. The first European Remote-Sensing Satellite

(ERS-1) was launched in July 1991 and it was the most advanced European satellite for

the Earth observation. In particular, this mission provided information of ocean and atmo-

sphere in the microwave spectrum, and several applications were found also for ice and land.

ERS-1 is characterized by a Sun-synchronous near-circular polar orbit, with 98.55 degree

inclination (coverage of ±81.45 degrees) and altitude of 782 -785 km (ESA, 1993). During

the first phases of the mission, ERS-1 had a high-frequency repeat cycle of 3 days, which

changed to a 35-day repeating orbit during the mapping phase. ERS-1 ended in March

2000, after few additional phases. In 1995 ERS-2 replaced the satellite on its same nominal

track until September 2011 (REA-UG-PHB-7003, 2014). Like ERS-1, ERS-2 had a repeat

cycle of 35 days during the mapping phase. Since March 2002, the Environmental Satellite

(EnviSat) flew on the same orbit as ERS-2. EnviSat is the largest civilian Earth Observation

satellite ever built, and its mission objectives covered a wide range of disciplines, for both

meteorological and climatic studies: EnviSat gathered information on regional and global

scale phenomena, strongly contributing to a better understanding of oceans, atmosphere,

vegetation, Earth crust, hydrology, and ice processes (Batoula, 2009). In May 2012, EnviSat

mission was officially declared terminated. The ESA missions observed the Earth for circa

20 years. Besides these two mission blocks, many more satellites were launched after 2002,

such as ICESat and CryoSat-2 for cryosphere studies, Saral/AltiKa to monitor oceans in Ka

frequency band, and the latest Sentinel-series, part of the European Commission Copernicus

programme. In figure 3.10, all altimetry missions are represented in a timeline manner. The

missions used in this work are highlighted in red. All missions shown are available under

request on DGFI-TUM’s OpenADB online database (https://openadb.dgfi.tum.de/en/). In

OpnADB you can also find a more detailed description of the single missions (with similar-

ities with the current section, as it was written by the author of this thesis), and further

information about single mission phases. Some missions were not included in this work,

because of a combination of the following reasons:

1. pathological aliasing: the choice of Sun-synchronous orbits is convenient in terms of

energy efficiency; however, it makes impossible to derive information on Sun-related

tidal constituents such as S2 (further details in section 3.5).
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2. long- or non-repeating orbit: typical of missions’ geodetic phases, that are charac-

terized by long repeating periods of e.g. 406 days for Jason-1, or CryoSat-2, which

features a repeat period of 369 days.

3. lower data quality: this is the case of old missions like GeoSat or GFO.

4. the lack of ad-hoc data: particularly for the latest missions, some geophysical correc-

tions, or ALES range, were not available; this point often combines with point 1 (e.g.

Sentinel-3 and Saral/AltiKa).

a

1985  1987  1989   1991   1993  1995  1997  1999  2001  2003   2005  2007  2009   2011  2013  2015   2017  2019  2021  2023  2025

Figure 3.10: Timeline of altimetry missions available from OpenADB. The

missions used in this work are highlighted in red. Image modified from:

https://openadb.dgfi.tum.de/en/missions.

The missions chosen guarantee not only a significant coverage in time, but also in space, in

terms of observation density. In figure (3.11) Jason-series, both first-phase and interlaced-

phase, and ERS-series tracks, are shown for an ocean area chosen around the equator.

With only ∼1-degree distance between two consecutive tracks, ERS satellites compensate

the Jason coverage, whose tracks are around one 3 degrees apart. This is an aspect that

becomes crucial at coastal areas, where the presence land makes altimetry coverage more

difficult.

3.5 Monitoring tides with altimetry

With altimetry it is possible to reconstruct the tidal signal through the analysis of sea

level timeseries, regularly sampled in time at every repeating pass on the same location.

According to the Nyquist sampling theorem, a signal is correctly sampled if the sampling

frequency fs is at least twice than the maximum frequency of the signal fm (Chitode, 2008),
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Jason-series tracks

Jason-series 
interlaced tracks

ERS-series tracks

Figure 3.11: Example of altimetry track coverage Around the Equator. Image created using

CTOH nominal track data (http://ctoh.legos.obs-mip.fr/data/altimetry).

that is:

fs ≥ 2fm (3.6)

When this condition does not hold, the signal is aliased, i.e. not properly represented

(Stewart, 2004). With satellite altimetry, every location is observed with a repeat period of

9.9156 days for the Jason-type missions, and 35 days for the Envisat-type missions. It is then

clear that tidal signals of major constituents observed with altimeters are under-sampled,

and therefore aliased. However, the reconstruction of the full tidal signal with satellite

altimetry is still possible, if the observation period of the mission is long enough. The

minimum observation period to reconstruct tidal constituent signals is called alias period

Ta, and it is computed in the following way. First of all, we have to define the phase shift

of the tidal signal ∆φt, that gives information about the change of the signal phase in a

certain interval ∆t = t2 − t1. The value of ∆φt directly depends on ∆t and the frequency ω

of the signal:

∆φt = ω∆t (3.7)

If we want to sample the signal every ∆t (∆t would correspond to e.g. 9.9156 days for a

Jason-type mission), larger than the signal period:

Ts =
2π
ω (3.8)

we need to compute how much the signal has shifted between t1 and t2. This is done by

deriving the remainder (MOD) of Ts within ∆t (figure 3.12):

MOD(Ts) = ∆t − I(∆t

Ts
) (3.9)

With I(x) the integer of quantity x. And using the definition of equations 3.7 and 3.8 one

can write:

∆φa =
2π

Ts
MOD(Ts) (3.10)
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That is the phase shift of the aliased period:

Ta =
2π

∆φa
∆t (3.11)

In figure 3.13 an example of aliased signal (red curve) of M2 tidal signal with unitary

𝑻𝒔

𝚫𝐭

𝑴𝑶𝑫(𝑻𝒔)

𝐭

𝐭𝟏 𝐭𝟐

Figure 3.12: Schematic of signal shift between the first sample at t1 and the second sample

at t2.

amplitude (in light blue) is shown for T/P rate of sampling (the vertical black lines highlight

the time of sampling). It is easy to observe a much longer period for the aliased signal.

Because the alias period depends on both sampling and signal frequencies, Ta changes for

every mission type and tidal constituents. In table 3.2 alias periods of the main tidal

constituents are shown for Jason- and ERS-series missions. Another issue to face with
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Figure 3.13: Example of aliased signal. The light blue sinusoid is M2 constituent signal with

unit amplitude, while the red curve is the signal reconstructed with T/P-type satellites, with

sampling every 9.9156 days. The time of sampling is highlighted with vertical black lines.

altimetry, and related to aliasing is the separation of tidal constituent signals. According

to Rayleigh criterion, in order to be able to resolve two tidal signals, a minimum length of

timeseries is required, which is called Rayleigh (or synodic) period Tr (Godin, 1972). The

idea is that two signals can be separated from each other if the timeseries analysed is so

long that the signals differ in phase by one cycle (Smith, 1999):

∣ φa1 − φa2 ∣ ≥
2π

Tr
(3.12)
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Constituent Jason-series ERS-series

M2 62 94

S2 58 ∞

K2 86 182

N2 49 97

2N2 22 392

S1 117 ∞

O1 45 75

K1 173 365

P1 88 365

Q1 69 133

M4 31 135

Table 3.2: Aliasing periods of main tidal constituents for Jason- and ERS-type missions in

days, rounded to integers.

That becomes, according to equation 3.7:

∣ 1

Ta1
−

1

Ta2
∣ ≥

1

Tr
(3.13)

Of course, in order to separate tidal constituents with altimetry, we need to consider aliasing

phases and periods (φa1, φa2, Ta1, Ta2 respectively). In table 3.3 an example of Rayleigh

periods for Jason-type missions is shown. Talking about tide gauge tidal analysis, (Pugh

M2 S2 N2 K2 K1 O1 P1 Q1

M2 - 1084 245 220 97 173 206 594

S2 - - 316 183 89 206 173 384

N2 - - - 116 69 594 112 173

K2 - - - - 173 97 3355 349

K1 - - - - - 62 183 116

O1 - - - - - -6 94 134

P1 - - - - - - - 316

Table 3.3: Rayleigh periods of main tidal constituents for Jason-type mission in days,

rounded to integers. Credit: (Andersen and Knudsen, 1997).

and Woodworth, 2014b) argue that the Rayleigh criterion can be too restrictive, especially

when instrumental noise and the background meteorological noise are low. So, it is useful in

tidal analyses of continental shelf data from middle and high latitudes, but finer resolution is

feasible in ideal conditions such as tropical regions. This concept of noise has been extended
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also to satellite altimetry; in fact, (Foreman et al., 2009) propose another version of the

Rayleigh period expression that accounts for a signal-to-noise ratio (SNR):

∣ φa1 − φa2 ∣ ≥
2π

Tr
√
SNR

(3.14)

with SNR the ratio of the tidal variance to the non-tidal variance of the signal.
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Chapter 4

The creation of an improved

tidal model

The Empirical Ocean Tide model is a series of global tide model that provide harmonic

constants of tidal constituents, on grids with a typical resolution of 7.5 minutes of degree,

that can be changed according to the user’s need. The concept behind EOT (and all semi-

empirical models) is based on the assumption that SLA data, despite being already corrected

for tides with a so-called background (or prior) model, still contain residual tidal signals.

Amplitude and phase of residual signals can be computed from SLA timeseries, and then be

used to correct the background model (i.e. the SLA tide correction, cf. 3.2.6) and obtain

a better tidal estimation. In case of EOT, timeseries analysis is done through harmonic

analysis of multi-mission altimetry SLA values, derived using ocean and load tide corrections

provided by FES-series tide models. In this project, the EOT strategy has been followed,

with focus on improving tidal estimations at the coast. For this reason, the latest altimetric

data, dedicated to coastal applications are used. Besides altimetric data, the main novelties

introduced with respect to the last version of EOT (EOT11a), are: an updated background

model, FES2014, known for its high performances in shallow and coastal waters thanks to

an improved bathymetry model and refined mesh; a new grid for tidal residual computation,

whose advantage is to reduce computational time while maintaining a good resolution; a

latitude-variable radius of interest to select SLA observations, in order to mitigate the issue

of dense data distribution at high latitudes. The resulting model is a preliminary, regional

version, and it is called EOT19p. The EOT19p method follows few steps that are illustrated

in detail in this chapter: for each grid point (or node) SLA data are firstly collected and

weighted (section 4.1), then residual tidal constants are computed using weighted least-

squares (WLS) combined with Variance Component Estimation (VCE) (sections 4.2); finally,

FES2014 grids of tidal constants are corrected for the computed residuals (4.3). In section
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4.4 description and comments on the error computation is illustrated, and in section 4.5

additional studies for coastal issue mitigation are shown.

4.1 SLA collection and weighting

4.1.1 SLA data

■ Multi-mission observations at 1-Hz frequency were used to derive residual tidal estima-

tions. The data are taken from DGFI-TUM’s Open Altimeter Database (OpenADB: https:

//openadb.dgfi.tum.de) that contains the original Geophysical Data Records (GDR) and

derived higher-level products. In total, circa 27 years of data are exploited, from missions:

TOPEX/Poseidon, Jason-1, Jason-2, Jason-3, Jason-series extended missions, ERS-1 phase

C and phase G, ERS-2 and Envisat. SLA values are computed according to Andersen and

Scharroo, 2011, and coastal corrections are applied where available. In case of missing coastal

products, standard products are applied. ALES range and Sea State Bias are not provided

for the TOPEX/Poseidon mission, therefore the original Sensor Data Records (SDR) are

used. The Dynamic Atmospheric Correction based on the ECMWF ERA-INTERIM re-

analysis (DAC-ERA, Carrère et al., 2016) inverse-barometer model is missing in the last

cycles of Jason-2 (and its extended phase) and for Jason-3, and it is then replaced by DAC-

MOG2D (DAC - 2 Dimensions Gravity Waves model) model (Carrère and Lyard, 2003).

The parameters and the models used, together with their references, are listed in table 4.1

■. It must be added that the choice of the products is also a compromise between higher

coastal performance, and an improved compatibility among different missions. In fact, the

NOAA Ionosphere Climatology 2009 (NIC09,Scharroo and Smith, 2010) ionospheric correc-

tion and the Vienna Mapping Function version 3 (VMF3, Landskron and Böhm, 2018) dry

tropospheric correction were the most suitable models to exploit, as they are available for all

missions, and they have higher performance at the coast than observation-based corrections

(Denise Dettmering, personal communication). Finally, SLA data were corrected for radial

errors. Radial errors are systematic errors due to several causes such as oscillator drifts or

orbit errors, and affect altimeter range estimates (Bosch et al., 2014). With DGFI-TUM’s

multi-mission cross-calibration (described in detail in Dettmering and Bosch, 2010), it is

guaranteed further consistency between different missions.

4.1.2 SLA weighting

■ Instead of a regular grid, residual tidal estimates are computed on a triangular grid based

on the geodesic polyhedron (e.g. Wenninger, 2014). The grid nodes are therefore vertices

of triangles, and the distance between each other ranges between 27 and 33 km. This grid

type was preferred over a regular one, mainly to reduce computational time: the number
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Parameter Model Reference

Range and Sea State Bias ALES Passaro et al., 2014

Inverse barometer DAC-ERA Carrère et al., 2016

Wet troposphere GPD+ Fernandes and Lázaro, 2016

Dry troposphere VMF3 Landskron and Böhm, 2018

Ionosphere NIC09 Scharroo and Smith, 2010

Ocean and Load tide FES2014 Carrère et al., 2015

Solid Earth and Pole Tide IERS 2010 Petit and Luzum, 2010

Mean Sea Surface DTU18MSS Andersen et al., 2018

Table 4.1: List of corrections used to compute SLA for tidal estimation residuals.
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Figure 4.1: Distribution of grid nodes for a regular grid of 1/4 degree resolution (a) and a

grid based on the geodesic polyhedron, used to derive EOT19p (b).

of nodes involved is much smaller than a regular grid; in fact, a regular grid of 1/4 degree

resolution contains 684977 nodes excluding nodes on land, against the 463667 nodes needed

for the geodesic polyhedron. Also, the node distribution and mutual distance is such that

the coastline and high latitudes are better described. In figure 4.1 the two grid types are

compared. For each grid node SLA values are collected within a variable radius ψmax. The

radius changes linearly in function of latitude ϕ:

ψmax(ϕ) = 165 − 1.5 ∣ϕ∣ (4.1)

At the Equator the radius measures 165 km, while e.g. at ±66
o

(the inclination of Jason-

series missions) the radius is of ca. 66 km. This choice was inspired by Andersen and

Knudsen, 1997, to compensate a greater data density at high latitudes. Only SLA values

within ±2.5 m situated farther than 3 km from the coast are considered. Usually, with

standard products, it is suggested a minimum distance to the coast of 6 km. However, given

the already demonstrated results of ALES retracker and the other latest coastal products

(e.g. Fernandes and Lázaro, 2016), one could dare to get 3 km closer to the shore. A

weight is assigned to all accepted SLA values, so that observations far from the grid node
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Figure 4.2: Grid node with SLA Gaussian weighting representation using the radius at the

Equator of 165 km. The crosses represent the location of satellite observations at one-mission

track. Credit: Piccioni et al., 2019b

have smaller impact on the local tidal estimation. Weights wi of each observation i are

derived according to the Gaussian function illustrated in Savcenko and Bosch, 2012, which

is dependent on the distance to the node ψi :

wi = e
−βψ2

i (4.2)

β is defined as:

β =
ln 2

τ2
(4.3)

with τ = 0.4ψmax. The quantity τ is called half-weight width and determines the steepness

of the Gaussian function. Namely, it defines the distance from the node for which the weight

has value 0.5; in this case the value of τ is 66 km, as ψmax = 165 km. In figure 4.2 the

sketch of SLA collection and weighting is shown ■. It must be mentioned that in EOT11a,

τ was slightly smaller, as the factor multiplied with ψmax was 0.3 (τ = 49.5 km). A factor

of 0.4 makes the steepness of Gaussian function more gentle, so that data farther from the

node have higher weight - it has been tested that in certain cases, this may be helpful in

proximity of land, especially for coasts with complex geometry. The weights are used to

compute the weighted mean of SLA belonging to the same track, which are then exploited

to compute tidal constants via least squares. This method reduces the computational time

of the program with respect to the use of single SLA data, but it also mitigates correlation

issues in the least squares estimation (Savcenko and Bosch, 2012), (see section 4.2).
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4.2 The method of weighted least squares (WLS)

The least squares approach is widely used in several disciplines to solve inverse problems.

From a series of observations of a certain phenomenon, it is possible to reconstruct the causes

of such phenomenon. In tidal analysis, the least squares are applied to the harmonic for-

mulae, in order to derive information on single constituents (amplitude and phase), starting

from SLA observations. The method of least squares is based on the principle that re-

peated k measurements yi can be described as a linear combination of j unknown variables

multiplied by known scalars dj,k:

yi = d1,ix1 + d2,ix2 + . . . + dj,ixj + εi

so that the sum of the square errors εi is minimum (Brandt, 2014):

k

∑
i=1

ε
2
i =

k

∑
i=1

[yi − (d1,ix1 + d2,ix2 + . . . + dj,ixj)]2
= min

that can be written in the alternative matrix form :

k

∑
i=1

ε
2
i = (Y −DX)2

= min

with X, Y the vectors (x1, x2, . . . , xj) and (y1, y2, . . . , yk) respectively, and D is the

so-called design matrix that has dimension [j, k]:

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1,1 d2,1 . . . dj,1

d1,2 d2,2 . . . dj,2

. . . . . . ⋱ . . .

d1,k d2,k . . . dj,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The sum of the square errors (or residuals) can be rewritten as the scalar product between

two vectors (Heij et al., 2004):

k

∑
i=1

ε
2
i = e

′
e = (Y −DX)′(Y −DX) = −Y ′

DX −D
′
X
′
Y +D

′
X
′
DX = min

and rearranged as:
k

∑
i=1

ε
2
i = Y

′
Y − 2X

′
D
′
Y +D

′
X
′
DX = min

And the minimum of this function is found if its derivative is set to 0. Therefore:

∂(∑k
i=1 ε

2
i )

∂X
= −2D

′
Y + 2D

′
DX = 0

That gives the normal equation:

D
′
DX = D

′
Y

with the unknowns in X that can be then obtained from:

X = (D′
D)−1

D
′
Y
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The previous expressions represent the Ordinary Least Squares method (OLS). The

Gauss-Markov theorem states that, under certain conditions, OLS is the Best Linear Unbi-

ased Estimator (BLUE), that means that OLS estimators (unknowns X) are unbiased and

their variance is smaller than any other estimator. The five conditions to have a BLUE are

the following (Wooldridge, 2008):

1. Parameter linearity: the dependent variable Y can be described as a linear function

of the independent variables (or regressors) D

2. Random sampling: data must be randomly sampled from the population

3. Exogeneity: errors are independently distributed and are not correlated with the re-

gressors

4. Zero conditional mean: the expected value, or the mean, of the error is 0

5. Homoskedasticity: the variance of the error is constant for every observation

If we refer to this work, OLS can’t be a BLUE. In fact, exogeneity in geophysical data is not

often possible, as they are spatially correlated and errors are subject to autocorrelation, as

shown in e.g. Passaro, 2015. Also, observations are not homoskedastic, as their error may

not be constant (Marcos et al., 2011). In general, the first issue is mitigated by setting up an

error variance-covariance matrix whose off-diagonal elements are the covariance between two

observations. This approach is highly demanding in terms of computation power, because

this kind of matrices have dimension [k, k], which can be very large, if a multi-mission

dataset is used. Of course, optimization strategies and specific coding libraries (e.g. the

Fortran LAPACK library) are available for such purposes, however, the huge amount of

data to process - repeatedly at each node - still remains an issue. For example, for one

node located in open ocean, the cap size of 330 km can contain 47 1-Hz observations of

only one track; for the Jason series, 47 observations must be multiplied by 904 repetition

cycles (904 is the sum of cycles of: T/P, Jason-1, Jason-2, and Jason-3 missions), that gives:

42488 observations. For a cap size of such dimensions 2-to-4 Jason tracks, and 6-to-8 ERS-

like tracks may be included, the number of observations - and thus, the dimension of the

covariance matrix - increases considerably. therefore, an alternative was found by Savcenko

and Bosch, 2012, who computed the average of SLA observations along the same track and

cycle in order to reduce spatial and temporal correlation.

The second issue is solved by introducing a weight matrix W :

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1,1 0 . . . 0

0 w2,2 . . . 0

. . . . . . ⋱ . . .

0 0 . . . wk,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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that is, a diagonal matrix, whose elements wi,i are usually the reciprocal of the variance of

each observation error, i.e. they are directly dependent on observations accuracy (Van de

Geer, 2005). In this case, wi,i are computed according to equation 4.2, and are the maximum

weights obtained for one track, relative to the averaged SLA value. The OLS can therefore

be extended in a more generalized form, that is, the Weighted Least Squares (WLS), whose

normal equation can be derived with similar steps as for OLS:

D
′
WDX = D

′
WY (4.4)

and the vector of unknowns can be obtained using:

X = (D′
WD)−1

D
′
WY (4.5)

In context of this work, the WLS is used to compute amplitude and phase of each

constituent, starting from SLA observations (here, one observation is called yi) and the time

ti of their acquisition. One SLA observation of mission m can be described by the linear

relation:

yi = zm + ati +
N

∑
n=1

[An ⋅ fn cos(ωnt + Vn + un) +Bn ⋅ fn sin(ωnt + Vn + un)] (4.6)

that is the combination of the tidal height (equation 2.25) with the linear trend a of the

timeseries and the mean sea level zm obtained for each mission. An and Bn are the unknown

in-phase and quadrature coefficients that give information on amplitude Hn and phase gn

of each tidal constituent (equations 2.28 and 2.29). An, Bn, a, and zm are the unknowns

to be estimated via least squares. Their number varies according to the number of missions

and constituents considered. The new EOT exploits data from 11 missions, and computes

amplitude and phase for 15 tidal constituents (M2, S2, N2, K2, 2N2, O1, K1, Q1, P1, S1,

M4, MM, MF, SA, SSA). Therefore, the number of unknowns, is 42 (11+ 1+ 2 ⋅ 15), which

is also the size of vector X, that has the form:

X = [zTP zJ1 . . . zEN a AM2 BM2 . . . ASSA BSSA]
′

With superscripts: TP , J1, and EN indicating missions T/P, Jason-1, and Envisat (the

other missions are left out in this expression for simplicity), while M2 and SSA represent

the tidal constituents. Finally, the design matrix D is:

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 t1 ΘM2(t1) ΨM2(t1) . . . ΘSSA(t1) ΨSSA(t1)
1 0 . . . 0 t2 ΘM2(t2) ΨM2(t2) . . . ΘSSA(t2) ΨSSA(t2)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 0 . . . 0 tk ΘM2(tk) ΨM2(tk) . . . ΘSSA(tk) ΨSSA(tk)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.7)

For simplification, Θn and Ψn in D represent:

Θn(ti) = fn cos(ωnti + Vn + un)
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Ψn(ti) = fn sin(ωnti + Vn + un)

The first columns of D contain factors (1 or 0) to be multiplied with the single zm

terms. The D matrix in equation 4.7 describes the linear operators of only one mission (i.e.

only the first column of zm elements has value 1). In fact, a normal equation is set up for

each mission, and then the WLS is solved in combination with the Variance Component

Estimation.

It is important to mention that the inverse of the matrix product D
′
WD (equation 4.5) is

actually a Moore-Penrose pseudo-inverse matrix (Penrose, 1955). This generalized approach

has been adopted because both D and W matrices may contain very small values (due to

small astronomical angles or data weights) that can give rank deficiency of matrix D
′
WD,

and consequently the WLS problem could have an infinite number of solutions. For this

reason, it is applied the minimum norm principle, that states that any complete orthogonal

factorization of matrix A = D
′
WD can give a numerical solution of X that minimizes the

sum of the square errors (or the norm-2 of the errors) and it is unique (Golub and Van Loan,

2013). The orthogonal factorization used in this work is the Singular Value Decomposition,

that decomposes matrix A as a product of matrices (Lauffenburger and Dedon, 2006):

A = UΣV
′

where U and V are orthogonal square matrices, whose columns are the eigenvectors of AA
′
of

and A
′
A respectively, and Σ is a diagonal matrix whose elements correspond to the singular

values of A (i.e. the square roots of eigenvalues of AA
′
or A

′
A) arranged in descending order.

(In general, if A had dimension j1 × j2 with j1 ≠ j2, U would have dimension j1 × j1 and

V j2 × j2. In this case, A is square and both matrices have same dimension as A). The

pseudo-inverse matrix is defined as:

A
+
= V Σ

+
U

where the elements of Σ
+

are the reciprocal of the non-zero elements of Σ.

Variance Component Estimation (VCE)

With VCE it is possible to combine different datasets from one or more techniques, with

using a relative weight according to the performance of the single dataset. An application

of this approach is found in Koch and Kusche, 2002, who combined data from two missions

with different measurements techniques (GOCE and GRACE) to derive information on the

Earth gravity field. Another example is given in Bosch et al., 2014, in which VCE is used to

compute a multi-mission cross-calibration of altimetric missions. In this section, the specific

VCE procedure used for EOT tidal estimation is described. More details about VCE and

its full mathematical discussion can be found in Teunissen and Amiri-Simkooei, 2008. Let’s
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start rewrite the WLS normal equation (equation 4.4) for one mission m as:

Nx,mXm = Ny,m

where Nx,m and Ny,m are:

Nx,m = D
′
mWmDm

Ny,m = D
′
mWmYm

The principle of VCE says that it is possible to combine observations from different datasets

in one normal equation (hereafter referred as main normal equation):

NxX = Ny

with terms Nx and Ny equal to the weighted sum:

Nx =
M

∑
m=1

1

σ2
m

Nx,m

Ny =
M

∑
m=1

1

σ2
m

Ny,m

M is the total number of missions involved, and 1
σ2
m

are the weights applied to each mission

dataset; σ
2
m are the variances of the least squares, generally defined as (e.g. Eicker, 2008):

σ
2
m =

ε
′
mWmεm
rm

where the numerator is the definition of WLS, i.e. the sum of the square errors of each

mission, with X, the solution obtained with the main normal equation:

ε
′
mWmεm = (DmX − Ym)′Wm(DmX − Ym)

and the denominator represents the partial redundancy of the system, defined as:

rm = km −
1

σ2
m

tr(Nx,mN−1
x )

The partial redundancy is a sort of partial degree of freedom of the system related to a

certain dataset. In fact, the sum of all rm gives the degree of freedom of the main normal

equation, which should be equal to (Koch and Kusche, 2002): ∑ rm = k − j. As it can be

observed, with computing σ
2
m, we are measuring how large is the error of X relative to the

normal equation of each mission. VCE is an iterative process, as both X and the term σ
2
m

are unknown. The iteration can be summarized as follows (figure 4.3, from left to right): a

random value is assigned to each σ
2
m. Here, the initial value of σ

2
m is set up as M , so that all

missions have equal weights 1
M

. Then the normal terms of the single missions are weighted

and summed together to form the main normal equation. The WLS is implemented, and

finally the new variance σ
2
m is computed for each mission. The new σ

2
m can be replaced
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Figure 4.3: Flowchart of VCE iteration.

to form the new weights and the new normal equations. After few iterations, the solution

converges, and the weight of the single mission is available. ■ The advantage of VCE is

that tidal estimates of single missions are weighted according to their performance: the

higher is the least-squares variance of one mission, the lower is its weight on the final tidal

estimation. This is important in case of a multi-mission approach, where sun-synchronous,

or short missions, (which can be problematic for tidal constituent resolution or separation),

have a lower impact on the final result. With VCE it is possible to see the contribution

of single missions at coastal areas; an example is shown in figure 4.4, where the weights of

Jason-1 are shown for the Malay Archipelago region. The weights are expressed in percentage

over a total of 11 missions. It can be observed that the highest impact of this mission is at

the coast, and around small islands or peninsulas. The track-shaped features in open ocean

are typical for the Jason-series missions, because of their lower coverage with respect to

e.g. ERS-type missions, and therefore tend to have lower weights, especially at Equatorial

latitudes. The fact that Jason-1 has more weight at the coast is not necessarily due to a

larger amount of available observations - as it may be justified by the inverse proportionality

between variance and number of observations - but to an actual higher performance of the

mission. This can be seen in figure 4.5, where the weights of Jason-1 at each node (round

markers) are plotted against the distance to coast, and the color of the markers represent

the number of observations. Within 200 km to the coast, the nodes with ∼ 500 observations

show weights larger than 10 − 15%, while nodes with > 700 observations can have weights

lower than 10% ■.

4.3 Reconstruction of full tidal signal

Residual in-phase and quadrature components are finally restored to FES2014 full tidal

signal. First of all, in-phase and quadrature components of FES2014 are derived according

to equations 2.26 and 2.27. Then, both FES2014 and residual components are interpolated

onto a common regular grid with resolution of 1/8 degree, which is the final grid with which

EOT is released. Residual in-phase and quadrature components are restored to FES2014

using the definition of the sum of two sinusoids with same frequency (Anderson, 2006), where
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Figure 4.4: Weights of Jason-1 mission according to VCE in percentage. Credit: Piccioni
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Figure 4.5: Weights in percentage for Jason-1 against distance to coast. The markers repre-
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node. Credit: Piccioni et al., 2019b.
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the total amplitude is:

Htotal =

√
(Hres cos gres +HFES cos gFES)2 + (Hres sin gres +HFES sin gFES)2

and the total phase is:

gtotal = tan
−1 (Hres sin gres +HFES sin gFES

Hres cos gres +HFES cos gFES
)

where subscripts res and FES represent residual and FES2014 elements respectively. Htotal

and gtotal can be rewritten in terms of in-phase and quadrature components as:

Htotal =

√
(Ares +AFES)2 + (Bres +BFES)2

and the resulting phase is:

gtotal = tan
−1 (Bres +BFES

Ares +AFES
)

4.4 The error of the fit

A purely statistical error is computed for the residual amplitude and phase, and it is based

on the standard error of the regression and the error propagation principles. With VCE the

vector of the standard deviations of elements in X, σx, can already be found in the diagonal

of the pseudo-inverse matrix:

σx = diag(N−1
x )

This is the VCE version of the expressions defined in (Heij et al., 2004), in which σx is

weighted with the standard error σ0 of the regression. With VCE instead, the weights are

already applied to the main normal equation, and so to the N
−1
x diagonal (Amiri-Simkooei,

2013). The standard deviation of amplitude and phase are derived following the general rule

of error propagation, that says that the error of a function f(q) is directly proportional to

the product of the error of q and the derivative of f in q (Taylor, 1997):

σf(q) = σq
∂f(q)
∂q

(4.8)

The standard deviation of the amplitude, σH of a certain constituent n, is defined as the

standard deviation of equation 2.28:

σH = σ [
√
A2 +B2]

The amplitude can be written as a function of K (f(K) =
√
K) so that:

σH = σ [
√
K] = σK

∂
√
K

∂K
= σK

1

2
√
K

The error σK is the sum in quadrature of two errors (Taylor, 1997):

σK =

√
(σ [A2])2 + ([B2])2
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that are computed as:

σ [A2] = σA
∂A

2

∂A
= σA2A

σ [B2] = σB
∂B

2

∂A
= σB2B

where σA and σB that are two elements of the standard deviation vector σx, and correspond

to the standard deviation of in-phase and quadrature coefficients A and B computed in X.

Note that here, A and B are intended for a certain constituent n, but the subscript for

An and Bn, and for their relative standard deviation, is avoided for simplification. So, σK

becomes:

σK =

√
(σA2A)2 + (σB2B)2

And the standard deviation of the amplitude is:

σH =

√
(σA2A)2 + (σB2B)2

2
√
A2 +B2

The same reasoning is done to compute the standard deviation of the phase σg:

σg = σ [tan
−1 B

A
] = σ [tan

−1
K]

So:

σ [tan
−1
K] = σK

∂ tan
−1
K

∂K
= σK

1

1 +K2

and according to the definition of the error of a quotient:

σK = σ [B
A
] =

»»»»»»»
B

A

»»»»»»»

√
(σA
A

)
2

+ (σB
B

)
2

That gives:

σg =
1

1 + (B
A
)2

»»»»»»»
B

A

»»»»»»»

√
(σA
A

)
2

+ (σB
B

)
2

Finally, the expressions of σH and σg can be further rearranged for a better reading as:

σH =

√
A2σ2

A +B
2σ2
B

A2 +B2
(4.9)

σg =

√
B2σ2

A +A
2σ2
B

A2 +B2
(4.10)

Considerations on the error of the fit

Tide model errors find an important application in gravimetry studies. An extensive research

has been carried out about the impact of tide model errors on gravity field measurements

(e.g. Ray et al., 2001, Knudsen and Andersen, 2002, and Ray et al., 2003), and the ongoing

TIDUS project is also focused on such issue. Tide model uncertainties are rarely released

with their tide models, and their computation is not often discussed in literature. Statisti-

cal errors that are generally derived from least-square-based tide models heavily depend on
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number of samples used for tidal estimates (k in this case), and are therefore not enough to

obtain realistic errors intended as the precision estimation of the models. These formulae

are too simplistic, and a high number of observations causes standard deviation values to

be too small, and therefore with no significance in terms of precision. The other problem

is that for a tide model like EOT, the error computation requires the sum of the errors

of FES2014 background model with the errors of the residual tides. Unfortunately, un-

certainties of FES2014 are not available globally, but only at locations where observations

are assimilated. Also, the derivation of the a posteriori covariance matrix on the whole

grid would demand new and substantial developments in the assimilation code, and then

a supplementary assimilation process (M. Cancet, personal communication). Cancet has

explained that this procedure is not planned for the moment, but she suggested to use the

approach of tide model differences, which has been extensively used to derive global tide

uncertainties. This method is illustrated in Andersen, 1995 and St14, and it is a sort of

computation of standard deviation (SD) between models:

SD =
1

N

N

∑
i=1

√
1

2
[(Hn cos gn −H cos g)2

+ (Hn sin gn −H sin g)2] (4.11)

where Hn and gn are the amplitude and phase of each model n, and H and g are the average

amplitude and phase computed over the N models. This would give an approximation of the

model uncertainties, with optimistic values in regions where models are based on the same

altimetric dataset, and pessimistic values everywhere else Ray et al., 2003. This method may

be problematic, for example when differences between models are due to artefacts contained

in other models (see section 6.1 where along-track features appear in open ocean due to

OSU12 model). Also, these differences are generally computed onto a common grid with

coarser resolution and therefore the error map may not have same resolution as the model.

Moreover, the models involved may not provide the same number of constituents, reducing

the available amount of error estimates.

Another suggestion comes from R. Ray, and it is similar to what Pugh and Woodworth,

2014a illustrate. Uncertainties are considered as a sort of signal-to-noise ratio of the tidal

constituent of interest, with respect to its tidal band. In the frequency domain, the tide of

interest and its neighbour frequencies are selected. The variance density of the background

noise of the tidal band selected, S
2

defines the standard error of the amplitude and phase:

σH =
S√
2

σg =
S

H
√

2

S
2

depends on the width of the tidal band considered ∆ω, the timeseries length T, and the

variance of the noise of the tidal band S
2
∆ω:

S
2
=
S

2
∆ω

T∆ω
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It must be said that this approach is generally applied to tide gauge data, from which it is

easier to distinguish between tidal signal and noise than altimetry data. However, it would

be worth to test a similar approach for empirical tide models.

4.5 Additional studies

Improvements of tidal estimates in coastal areas are the main focus of this work. Different

algorithms and datasets were tested, in order to achieve the wanted results. In this section,

the author has collected few examples of failed attempts and an in-between exercise that have

been carried out through these years. The failed attempts are alternative cap size choices;

the in-between exercise is a test of EOT algorithm applied along track, that demonstrates

that the use of a coast-dedicated altimetric product, i.e. ALES retracker, improves tidal

estimates at the coast. This experiment is crucial, in the sense that, it justifies the further

use of coastal altimetric products for EOT. In this section, the theory behind these studies

is shortly summarized. In chapter 6 few results are also discussed for completeness.

4.5.1 The cap size choice: innovative failures

The first tests for EOT grids were done on a fixed cap size of 330 km. Before reaching the

empirical conclusion that a latitude-dependent cap size was the best solution found so far,

other approaches have been implemented - and later discarded - in favour of algorithms with

better computation and error performance. In this section, two solutions are summarized:

the variable cap size according to ocean depth, and the coastal cap with selective mask.

Variable cap size according to ocean depth

The idea behind an alternative cap size is based on the fact that tides in shallow and coastal

waters are affected by more local regimes, that can’t be described by tide models because of

their too-coarse resolution. Moreover, it has been observed that the standard error σ0
1

of the

least squares algorithm is highly correlated with bathymetry. In figure 4.6 the geographical

distribution of σ0 can be visually compared with the bathymetry in the North Sea
2

area,

while in figure 4.7, σ0 is plotted against the depth. Below 400 m depth, σ0 increases fast,

reaching values above 10 cm.

As already mentioned, the increase of σ0 is also justified by its strict dependency on

the number of observations, which become sparser at coastal areas (e.g. figure 4.8). One

hypothesis for a better description of the tidal local behaviour was to reduce the cap size of

1
σ0 for VCE is defined as: σ0 = (∑M

m=1 ε
′
mWmεm

∑M
m=1 km−j

)
1
2

2
In this thesis the North Sea is intended as the area surrounding the United Kingdom and Ireland, which

includes the western part of the North Sea and the northern part of the North West European Shelf.
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(a) (b)

Figure 4.6: Visual comparison between the internal error σ0 (in cm) of the weighted least

squares (a) and the bathymetry map of the North Sea (b).

each node according to a linear depth-dependence. Among all the solutions tested, the best

was:

ψmax = 100 + 0.575Z (4.12)

where Z is the ocean depth. The choice of the numbers are the result of a compromise

between the cap-size reduction and the collection of enough number of observations that

could allow constituent resolution. From figure 4.9, it can be observed that a variable cap

size do not affect the values of σ0 at shallow depths despite the lower number of observations

involved at each node. Some accuracy tests were also run, showing a lower performance with

respect to a fixed cap-size choice (chapter 6).

Cap with selective mask

Large cap sizes close to land may include different tidal regimes that belong to coasts oriented

in different directions. For example, over the extremes of peninsulas, or around large islands.

Therefore, also in this case the idea was to isolate a more local behaviour of tides, using a sort

of directional mask, that includes only observations that are not separated from the node

with land. In figure 4.10 the concept of selective masks is illustrated. The algorithm first

finds the nearest land point to the node within a search radius of 330 km (a). All observations

found within this minimum distance are all accepted. The remaining observations undergo

a selection process, that checks whether along a straight line between the node and each

observation there is a land point (b). If yes, the observation is discarded. In figure 4.11 two

examples of selective masks are shown for Jason-series tracks. The yellow asterisk represents

the grid node of interest, the white dots mark the location of CTOH track observations, and

the red markers represent the observations accepted within the mask. It is easy to see that

all observations ”not seen” by the node because ”behind” land are discarded.
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(a) (b)

Figure 4.7: The internal error σ0 plotted against ocean depth (a), with zoom on depths

below 400 m (b).

Figure 4.8: Number of observations of Jason-series missions plotted against depth in the

North Sea.

4.5.2 Focus on the coast: the along-track test

The choice of altimetry products plays a crucial role in sea level determination at the coast,

with consequent impacts on coastal tide estimation. The purpose of this test is to assess

the influence of a tailored coastal retracking method on the quality of an ocean tide model.

● In other words, we want to quantify the difference at the coast between tidal constituents

estimated with a dedicated coastal retracker and the same constituents derived with an

ordinary open ocean retracker (based on the MLE4 algorithm which adopts the Brown-Hayne

functional form, Brown, 1977, Hayne, 1980). The coastal retracker used for this experiment

is ALES retracker (Passaro et al., 2014). For such aim, an along-track solution was preferred

compared to the classical grids, in order to study the evolution of the performances and the

impact of the retrackers with respect to the distance to the coast. The method used to
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Figure 4.9: Comparison between σ0 values obtained with fixed cap size (in red) and the ones

computed with depth-dependent cap size (green).
Scheme to select tracks according to their position wrt node and land
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(b)

Figure 4.10: Schemes of the algorithm (a) and wanted result (b) of selective mask. In (b) the

yellow shaded area represent the mask within all observations are accepted for that node.

Accepted observations are in red and discarded observations in black.

compute the tidal constants is based on the EOT model, however, the nodes are selected

along Jason-1 and Jason-2 tracks, and correspond to the 1 Hz points of CTOH nominal

tracks. Each node represents the center of the circular cap. In this case, ψmax measures 15

km. Within ψmax 20 Hz observations are used (version SGDR-E for Jason-1 and SGDR-D

for Jason-2). High-rate data allow a ground spatial resolution of circa 350 m along-track,

which is preferred over 1 Hz products for this dedicated investigation along-track and at

coastal areas. SLA values are flagged with the following criteria:

• −2.5 m ≤ SLA ≤ 2.5 m ((Savcenko and Bosch, 2012))

• SWH < 11 m ((Picot et al., 2012))

• 7 dB < BS < 30 dB ((Picot et al., 2012))
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(a) (b)

Figure 4.11: Results of selective cap in the North Sea. The yellow star is the node. The

white markers represent observations along Jason nominal tracks and the red markers are

the observations included in the selective mask.

• Distance to coast > 3 km

where SWH is the Significant Wave Height and BS is the backscatter coefficient. Note that

the backscatter coefficient is commonly defined in literature as σ0, however in this case BS

is used to avoid ambiguities with the standard error of the least-squares algorithm. The

harmonic constants resulting from the along-track model are compared against in situ data,

selected according to the following criteria:

• Maximum distance to satellite track: 50 km

• Tide gauge data already assimilated in FES2014 model (Cancet, personal communi-

cation) are discarded

• Stations near estuaries are discarded. Exceptions for fjords (e.g., Finnish and Canadian

coasts)

• Final manual screening on the selected stations: tide gauges with timeseries shorter

than one year are discarded while part of the timeseries containing doubtful offsets are

not considered

For each site, one or two crossing tracks were found, obtaining a total of 85 tracks for 70

tide gauges. In chapter 6 results of this experiment are summarized ●. More details can be

found in Piccioni et al., 2018.
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Chapter 5

Validation: data and methods

Data and statistical methods used to validate and compare EOT with other tide models

are illustrated in this chapter. The validation approaches used for tide models follow the

standard procedures that can be found in literature (e.g. St14, Ray, 2013, Cheng and

Andersen, 2011, etc.), and are summarized in section 5.1. In section 5.2 the in situ validation

dataset created ad hoc for tide model validation is described, and the validation of the dataset

itself is also discussed.

5.1 Evaluation methods

The performance of tide models is usually assessed through comparison with harmonic con-

stants of in situ data. The statistical quantities found in literature are mainly two. For each

constituent n, one can compute:

• the Root Mean Square (RMS) error, which compares the in-phase and quadrature

coefficients of one model (Amod, Bmod) and one tide gauge station p (Ap, Bp) for a

constituent n:

RMSn,p =
√
(Amod −Ap)2 + (Bmod −Bp)2 (5.1)

that becomes, when averaged for all P in situ stations considered:

RMSn =

√
∑P
p=1RMS2

n,p

2P 2
(5.2)

• the Median Absolute Differences (MAD), which are less sensitive to outliers and can be

useful at coastal areas, where poor model performance at few stations may affect the

entire result (St14). In this work, geometric MAD are used, which follow the formula:

MADn =

√
< ∣Amod −Ap∣ >2 + < ∣Bmod −Bp∣ >2 (5.3)

where the symbol < x > represents the median value of quantity x over all in situ

stations and ∣x∣ the absolute value of x.
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For an overall performance, the Root Sum Square (RSS) error of the available n constituents

is also calculated:

RSS =

√
√√√√√⎷

n

∑
k=1

En
2 (5.4)

where En can be RMSn or MADn values.

In addition, for pairwise differences between models (identified as mod1 and mod2), the

relative RMS is calculated as:

∆RMSn[%] = ∆RMSn
RMSn,mod1

⋅ 100 (5.5)

where ∆RMSn = RMSn,mod1 −RMSn,mod2. ∆RMSn[%] is used to quantify the improve-

ment of one model relative to another - in this case, of mod2 relative to mod1; if ∆RMSn[%]
is positive, it means that the RMS error of mod2 is smaller, thus shows an improvement

with respect to mod1.

Finally, the tidal elevation differences (equation 4.11) are used to derive the global error of

the models, as already discussed in section 4.4.

5.2 Construction of a validation dataset

It is a standard practice to derive tide model accuracy from comparisons with in situ data

such as tide gauges or bottom pressure gauges. For this reason, it is essential to have a

reliable, validated, and extensive dataset, and possibly easy to use. For this reason, an

up-to-date validation dataset with documented sources has been created (Piccioni et al.,

2019a). Part of the dataset was computed with an in-house algorithm starting from an

existing tide gauge project (see section 5.2.1). The dataset has been then integrated using

data from other sources, which are shortly described in section 5.2.3.

5.2.1 TICON

▲ The TIdal CONstants (TICON) dataset was created at DGFI-TUM using tide gauges

of the Global Extreme Sea Level Analysis (GESLA) project. It contains information on 40

harmonic constants computed from 1145 sites. The latest version of GESLA (GESLA-2)

contains 1355 harmonized records, collected among 30 different sources, such as national au-

thorities, research institutions, and international projects. An exhaustive description of the

different datasets involved, together with the corresponding source reference, can be found

in (Woodworth et al., 2017). 1276 of these records are publicly available and were used to

build the TICON dataset. The remaining 77 ”private”records were not used, as the intention

of TICON authors was to guarantee a free and public access to the data. GESLA public

stations have a quasi-global extent, with a higher data coverage in the Northern Hemisphere,

in particular: North America, Europe and Japan. A preliminary screening was performed
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on all records to analyze the average duration of the measurements and the distribution of

the temporal gaps. It was observed that the records span from a minimum of 150 days, to

a maximum of 168.6 years, with a median length of 22.2 years, and distribution shown in

figure 5.1. The TICON algorithm developed at DGFI-TUM computes tidal constants for all

the records. At first, the program exploits information on GESLA data quality to remove

single corrupted observations. GESLA flags characterize the quality and the possible usage

of the individual measurements. Only measurements assigned as ”correct” or ”interpolated

value” were selected as valid. In addition, data gaps due to missing physical observations

can occur. After flagging, 417 records have missing data less than 2% of the total number of

observations, 624 records contain missing data between 2% and 25%, 170 records between

25% and 50%, and only 65 records have gaps above 50% (figure 5.2). Because of the different

nature of these temporal gaps, their lengths may also vary, ranging between a few samples

(in general some hours) and years. The algorithm performs a first selection of records
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Figure 5.1: Overview of the length (in years) of the GESLA time series
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Figure 5.2: Overview of missing data in GESLA records

suitable for least-squares harmonic analysis, that is: the period of the observations of each

record must be larger than one year. The choice of this minimum duration is based on the

Rayleigh criterion for tidal constituent separation (Pugh and Woodworth, 2014a). The time
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series length is measured after rejecting individual observations for unsuitable flags. This is

done because temporal gaps due to flagging may occur at time series extremes, shortening

their extent. In figure 5.3 a comparison of the length of time series before and after flag-

ging rejection is shown. 513 files show no difference after flagging, 625 are reduced up to

one year and 138 records are shorter by more than one year. Two extreme cases occur for

the Canadian stations of Port Hardy and New Westminster, whose time series, despite a

reduction of 10 and 19 years after flagging, are still respectively 50.7 and 45.7 years long.

44 records - which correspond to 3.45% of the public GESLA dataset - do not reach the

minimum time span required and are discarded from the tidal analysis and the final dataset.

A second selection is made in relation to the amount of missing data within each record.

The distribution of missing data for time series longer than one year is shown in figure 5.4.

After removing flagged values at record extremes, the amount of missing data for more than

500 records is below 3%. In the scatter plot of figure 5.5 the percentage of missing data is

plotted against the time series length. The maximum length of temporal gaps is represented

by the marker color. In general, records below 50 years duration do not show large gaps, and

in the majority of cases missing data are below 30%. Few long records are characterized by

extensive temporal gaps that exceed 20 years, that may cause a loss of data larger than 40%.

The authors wanted to select the full original records with the longest time series possible.

For this reason, a threshold of 70% of valid observations was set, above which the records

are processed for their full length. This criterion is used to compute tidal harmonics for the

full time series, reducing the risk of processing records with highly scattered observations.(A

similar method was used by Ruiz Etcheverry et al., 2015 to sort and compare the annual and

semi-annual signal of tide gauge observations against satellite data). In total, 1145 records

were processed with this condition, while 87 were excluded from the dataset. The overall

number of discarded records (due to short time series or missing observations) is 131, that

corresponds to 10.3% of the full GESLA dataset. In figure 5.6 the geographical distribution

of TICON data is shown. It was chosen to compute harmonic constants for 40 tidal con-

Record number

Figure 5.3: Difference of timeseries length before and after flagging rejection. The record

numbers on the x-axis are sorted according to the length of the original timeseries, from the

shortest to the longest.
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Figure 5.4: Overview of missing data in GESLA records after removing the flagged data.
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Figure 5.5: Percentage of missing data plotted against the time series length. The maximum

gap length is color-coded. The plot shows the records after the removal of flagged data at

each end of their time series.

stituents because this dataset was made to evaluate ocean tide models. Generally, modern

tide models include no more than 15 tidal constituents; however, there are exceptions such

as FES2014 model, that provides 34 constituents Carrère et al., 2015). Thus, providing the

40 most important constituents should be sufficient for an adequate model evaluation. The

harmonic constants were derived using the least-squares approach, which is often preferred

over the spectral analysis because it allows to perform tidal estimation on incomplete time

series (Ponchaut et al., 2001). A matrix system, and the fitting error computation, was set

up according to equations illustrated in chapter 4. It is important to say that the error of

the fit calculated in TICON is related to the number of observations analyzed (because of

the degrees of freedom in the standard error of the regression), and therefore for long time

series too small errors are computed. Considerations of section 4.4 are also valid in this

case.

Finally, the results are merged and saved in a user-friendly text file, together with sup-

plementary information relevant to the tide gauge station and the time series. TICON
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Figure 5.6: Geographical distribution of TICON data.

algorithm is fully described in Piccioni et al., 2019a and the dataset is stored in the PAN-

GAEA public repository as a text/ASCII format, and it is freely available for any research

purpose (PANGAEA identifier: https://doi.pangaea.de/10.1594/PANGAEA.896587 ). The

dataset is a single file that contains the harmonic constants of 40 tidal constituents and their

related errors. An example of part of the TICON file is shown in table 5.1 for the station

of Port Angeles, Washington, USA. The file has a tab-separated column structure and the

columns display information on: left to right you have latitude and longitude (with domain

0 to 360) of the station’s location, constituent’s name, amplitude of the tidal constituent

in cm, phase lag (Greenwich lag) of the tidal constituent in degrees, percentage of missing

data within the time series analyzed, number of observations used for the least-squares es-

timation, length in days of the largest gap found in the record, date of the first and the last

observation, and a code that corresponds to the source of the record. The constituents are

sorted in ascending order, according to their frequency ▲.
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5.2.2 TICON validation

While tide models are validated through comparison with in-situ data, in-situ data are

validated with tide models (Woodworth, personal communication). n order to validate the

TICON tidal constants, a comparison with FES2014 was performed. Additional comparisons

are shown between two or more ”duplicate” records, i.e. records at the same location coming

from different GESLA-2 sources, but are not shown in this thesis. The results are described

in detail in Piccioni et al., 2019a. The validation exercise followed the methods used in St14

to compare modern tide models and tide gauge data in terms of RMS and RSS differences.

Not all TICON tide gauges were used for this validation: tide gauges assimilated in FES2014

were discarded, in order to have an independent comparison; in total 923 tide gauges were

used. FES2014 was chosen because it is the model with highest performances over complex

areas. However, it is expected to see larger differences between FES2014 and TICON close

to large rivers (e.g. Amazon River, Bay of Bengal), shelf seas (e.g. North Sea, Argentinian

Shelf), and areas with complex bathymetry and/or geometry of the coast (e.g. Indonesian

Sea). Figure 5.7 shows the geographical distribution of the RSS computed for the main

tidal constituents (M2, S2, N2, K2, K1, P1, O1, and Q1). For the same locations shown

in figure 1, computed the averaged RMS and RSS differences (table 3). These numbers are

relatively small, if compared to the coastal tide gauges in St14. This may be due to the

fact that TICON and FES2014 averaged differences are computed also for tide gauges in

open ocean, where stronger agreement between the two is expected. Also, in areas with low

tidal amplitudes such as the Baltic Sea and the Mediterranean Sea we expect smaller RMS

differences. These areas are densely populated by tide gauges, and this may overweight

the statistics, lowering the RMS differences. Because of the possibility of such overweight,

we also performed regional comparisons. Figures 5.8 and 5.9 show areas (coasts of North

Sea, and Indonesian region, respectively) where TICON and FES2014 constants show higher

disagreement. In particular, in the North Sea, large RSS are found in narrow areas, such

as the English Channel, in front of Northern Ireland, and inlets with river estuaries, like

the Bristol Channel, and the Humber estuary. The plots are coupled with tables 5.3a 5.3b

showing the regional average RMS and RSS, and the magnitude of the signal (St14) of each

constituent. Constituents M2 and S2 have large tidal signals that bring also the largest

differences between tide gauge and model results, with RMS of 11.72 and 5.37 cm in the

North Sea, and 2.39 and 1.51 cm in the Malay Archipelago respectively.

5.2.3 The complete DGFI-TUM in situ dataset

TICON data are only at the coast. In order to ensure the best in situ data coverage

possible, TICON was integrated with other datasets, with stations located at deep, shelf and

coastal waters. A deep-ocean dataset was kindly provided by R. Ray, and contains harmonic
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Differences Signal

M2 2.19 59.24

N2 1.04 11.72

S2 1.33 20.63

K2 0.73 5.85

K1 0.98 13.01

O1 0.84 9.39

P1 0.59 4.07

Q1 0.42 1.95

RSS 3.22

Table 5.2: RMS and RSS differences between TICON and FES2014 averaged on 923 tide

gauges. Values in cm.

(a) Differences Signal

M2 11.72 151.76

N2 2.63 28.43

S2 5.37 52.39

K2 1.54 15.06

K1 0.63 6.84

O1 0.56 6.44

P1 0.49 2.29

Q1 0.26 2.16

RSS 13.29

(b) Differences Signal

M2 2.39 37.36

N2 0.64 7.20

S2 1.51 18.56

K2 0.49 5.31

K1 0.99 19.28

O1 1.09 13.85

P1 0.44 6.11

Q1 0.22 2.75

RSS 3.33

Table 5.3: RMS and RSS differences between TICON and FES2014 averaged for tide gauges

in the North Sea (a) and Malay Archipelago (b). Values in cm.
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Figure 5.7: Geographical distribution of RSS differences between TICON and FES2014 for

923 tide gauges.

constants of 151 bottom-pressure gauges. In Ray, 2013, a detailed dataset description,

with validation tests and comparison with former data is found. Shelf-water gauge data

were also provided by R. Ray, and consist of harmonic constants of 195 stations located

at waters shallower than 200 m (coastline excluded). Both deep-ocean and shelf-water

datasets were used in St14. Finally, the World Ocean Circulation Experiment (WOCE) sea

level observation network is also included. This dataset contains 177 stations located at the

coast and on islands (Ponchaut et al., 2001). WOCE is already part of the GESLA (thus,

TICON) dataset. However, the WOCE harmonic constants available at DGFI-TUM are the

ones used in St14, and were added to the final dataset for completeness. All data are merged

into a file with same format as TICON (table 5.1).

70



Figure 5.8: RSS differences between TICON and FES2014 for tide gauges located in the

North Sea.

Figure 5.9: RSS differences between TICON and FES2014 for tide gauges located in the

Malay Archipelago.
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Chapter 6

Results and discussion

During the last decades, improvements in oceanographic models and observation techniques

brought remarkable results in tide models. In open ocean their accuracy has reached values

below 1 cm, while larger errors are still found in shallow waters (∼ 5 cm in shelf seas and > 6.5

cm at coastal areas, St14), where tidal constituents are highly dependent on bathymetry and

the shape of the oceanic shelf (Andersen, 1999). Such errors can be detected also from the

analysis of SD between models (cf. equation 4.11), that shows high discrepancies in these

areas (St14). With new tide models available after St14, the SD exercise has been reproduced

(section 6.1) and similar disagreement was found in the same regions, in particular: at high

latitudes, shelf seas, semi-enclosed seas, and coasts with complex geometries. In order to

assess the performance of EOT19p, two among these critical areas, individuated through

the analysis of the global SD, were selected: the Malay Archipelago and the North Sea. In

section 6.2, EOT19p is compared regionally with its previous version and other tide models.

Results of additional studies presented in 4.5 are shown in section 6.3.

6.1 Comparison of global models

A first analysis was made on semi-empirical and assimilative tide models. With SD maps we

have an overview of the spatial discrepancies of the tidal grids on a global scale. The global

models included in this comparison are FES2014, EOT11a, TPXO8, DTU16 ,OSU12v1.1

(henceforth OSU12), HAMTIDE11a, GOT4.8. Note that the purely hydrodynamic models

were not included in this comparison, because they are known to be less accurate than data-

constrained models. An example with these models will be shown later for completeness.

Figure 6.1 shows the results obtained for the major constituents N2, M2, S2, K2, Q1, O1,

P1, and K1. The SD appears higher than the one shown in St14, and it is especially visible

in open ocean, where the models are supposed to agree best. These higher values have

patterns due to altimetry tracks, which is a feature mainly contained in model OSU12. In
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figure 6.2 the SD is shown without OSU12 model for constituents M2 and K1: there is a

clear improvement in open ocean areas, in particular for constituent K1. These issues in

OSU12 may be related to the aforementioned errors found in the prior models, and the need

of updating altimetric data. However, track residuals are still visible for constituent M2 only,

and they can be attributed to DTU16 model (see figure 6.3 that shows SD without OSU12

and DTU16). This feature may be due to the fact that the harmonic constants in DTU16

are computed for bins along-track, and interpolated on a grid in a second moment. In open

ocean, residual current signals are still observed. In table 6.1 the total SD between models

is shown for results containing OSU12 (second column), and the ones without OSU12 (third

column), for all constituents analyzed. An SD larger than 8 cm is found when OSU12 is used.

This indicates that the model’s disagreement is not only in open ocean, where the maximum

SD observed is of ∼ 0.5 cm, but also at coastal areas, where heavy differences with other

models can give such high total values. SD values without DTU16 are not displayed, as they

are similar to the ones without OSU12. Results without OSU12 show SD lower than the cm,

and an RSS of 1.14, against the one obtained in St14 of 2.46 cm; these improved agreements

may be justified by the presence of FES2014 and DTU16, instead of their previous versions

(FES2012 and DTU10) used in St14, which have similar behavior at coastal areas.

The purely hydrodynamic models are known to be less accurate than semi-empirical or

assimilative models (St14), as they are based solely on the mathematical description of

ocean phenomena, and are not constrained by altimetry or in situ observations. Also, the

level of agreement between models of the same type is much lower than the one shown for

the previous models. In figure 6.4, the SD of STORMTIDE, HIM, and HYCOM model is

shown for constituent M2. The SD range in this case goes from 0 to 18 cm, with values

up to 4 cm in the open ocean. In addition, high differences, of 9 to 12 cm are not only

observed at shelf areas (e.g. in Patagonia or West New Zealand), but also in regions where

e.g. large river inflow occur (like in the Amazonian delta). The weighted average of the SD

for these models is 13.03 cm, which is not comparable to the one obtained with constrained

models. (Note that for HD models the common latitude range used to compute SD values

is ±80 degrees, because of HYCOM model ranges ±80.48 in latitude). It was expected to

see that both model types show high differences in shelf, coastal and polar areas, which are

challenging for purely HD models and HD-based models, because the physics of the models

alone is still not enough to fully describe the ocean dynamics, especially in these areas, where

complex phenomena occur. Another issue is related to bathymetry information, that can be

insufficient due to coarse resolution grids. This becomes problematic especially in shallow

waters, where tidal motion is not linear, and in some cases overtides and compound tides can

reach 15 mm (Andersen et al., 2006). For constrained models, it is important to remember

that in certain areas, altimetry observations may not complement the tidal description of
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Figure  XX:  standard  deviations  for  the major  tidal  constituents  from  semiempirical  and  assimilative 
hydrodynamic models.  
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Figure 6.1: SD of major tidal constituents from semi-empirical and assimilative hydrody-

namic models.
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Figure  2:  standard  deviations  for M2  and  K1  tidal  constituents  from  semiempirical  and  assimilative 
hydrodynamic models, OSU12 excluded. 
 
 
 
 

 

 

 

 
 
 
Figure XX:  standard deviations  for M2  and K1  tidal  constituents  from  semiempirical  and  assimilative 
hydrodynamic models, OSU12 and DTU16 excluded.

 

 

 

 

 

 

 

 

Table XX:  global  SD of modern models  in  cm, with OSU12  (first  column)  and without OSU12  (second 
column). 

Tidal Constituent 
SD with 
OSU12 

SD without 
OSU12 

M2  8.50  0.88 

N2  8.39  0.21 

S2 8.44 0.46

K2  8.34  0.19 

K1  8.42  0.38 

O1  8.40  0.23 

Q1  8.31  0.08 

P1  8.35  0.20 

RSS  23.74  1.14 
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Figure 6.2: SD of M2 and K1 tidal constituents from semi-empirical and assimilative hydro-

dynamic models, OSU12 excluded.
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Table XX:  global  SD of modern models  in  cm, with OSU12  (first  column)  and without OSU12  (second 
column). 

Tidal Constituent 
SD with 
OSU12 

SD without 
OSU12 

M2  8.50  0.88 

N2  8.39  0.21 

S2 8.44 0.46

K2  8.34  0.19 

K1  8.42  0.38 

O1  8.40  0.23 

Q1  8.31  0.08 

P1  8.35  0.20 

RSS  23.74  1.14 
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Figure 6.3: SD of M2 and K1 tidal constituents from semi-empirical and assimilative hydro-

dynamic models, OSU12 and DTU16 excluded.

Tidal Constituent SD with OSU12 SD without OSU12

M2 8.50 0.88

N2 8.39 0.21

S2 8.44 0.46

K2 8.34 0.19

K1 8.42 0.38

O1 8.40 0.23

Q1 8.31 0.08

P1 8.35 0.20

RSS 23.74 1.14

Table 6.1: Global SD of modern models in cm, with OSU12 (first column) and without

OSU12 (second column).
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Figure XX: SD of models FES2012, DTU10 (a) and models FES2014, DTU16 in the North Sea. 
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Figure XX: SD between STORMTIDE, HIM, and HYCOM models for M2 constituent.  
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Figure 6.4: SD of M2 tidal constituent between STORMTIDE, HIM, and HYCOM models.

a model, as the quality and quantity of the data may decrease due to the presence of ice,

or complex coastal geometry. Also estuarine coastlines are hard to model, as the effects of

frictional distortion, sediment transport, and intertidal storage in tidal flats and marshes

lead to non-linear tidal distortions (Friedrichs and Aubrey, 1988 and Dronkers, 1986).

In particular, high discrepancies are observed in the Patagonian Shelf, which is a macrotidal

region where single-constituent tides like M2 can reach heights of 2.5 m. In this area, it

is observed an additional intermittent semi-diurnal signal that cannot be represented by

the linear combination of tidal constituents and still remains unpredictable by models (Lago

et al., 2017). Another shelf sea characterized by high tidal amplitudes is the North Sea. With

a predominant semi-diurnal regime, the lunar component M2 has an average amplitude of

1 m (Huthnance, 1991), and it can reach 3 m in extreme cases. Tides in this area are

mainly affected by co-oscillation with the Atlantic, and their complexity is due to the highly

variable shape and depth of the basin (Roos et al., 2011). The disagreement between models

is primarily in tidal amplitudes of single constituents, especially at distances close to the

coast. A similar situation occurs in the semi-enclosed Yellow Sea, which is characterized by

shallow depths ranging 90-20 m within 50 km from the coast, high tide ranges along the

west coast of Korea, dominant semi-diurnal waves, and three amphidromic systems (Teague

et al., 1998). The high tidal amplitudes in this region are hard to model, and altimetry data

(especially T/P and Jason-series tracks, which do not have a pathological aliasing) are not

helpful in model constraint, as they completely miss the crucial features of this area (Ray

et al., 2011). In the Malay Archipelago, diurnal components are strong and predominant at

the coast (Ray et al., 2005), and the combination of shallow water, the presence of many

islands, and complex ocean dynamics, makes tide modeling challenging. Often, altimetry

assimilation in this area is not enough to compensate model errors, as difficult coastal

features may hinder the data quality. A special situation occurs in the deep Okhotsk Sea,
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where tide models have to face not only large tidal sea-level oscillations that can reach 13

m, but also the presence of pack ice during winter (Kowalik and Polyakov, 1998). Finally,

another high disagreement between models is found at coastal areas surrounding Amazon

river mouth. The Amazon is defined as a tidal river, i.e. a fluvial environment subject to

dynamic tidal action (Freitas et al., 2012), which probably affects models with tidal signal

distortion.

These areas are all characterized by specific physical phenomena and complexities, and

dedicated regional studies would be of high interest for tide model research and assessment.

In this thesis, the author focused on two areas, the North Sea and the Malay Archipelago,

where a suitable number of in situ data is available for tide model assessment and comparison.

6.2 Regional analysis of EOT19p model

The EOT algorithm is able to estimate up to 15 tidal components (M2, S2, N2, K2, 2N2,

O1, K1, Q1, P1, S1, M4, MM, MF, SA, SSA). However, in this work only the performance

for eight major constituents (M2, S2, N2, K2, O1, K1, Q1, P1) is evaluated, in order

to compare only constituents in common with other models. Comparisons with EOT11a,

FES2014, GOT4.8, and TPXO8 are based on exercises presented in St14, and focus on the

agreement analysis between the models and in situ data. Results are displayed in two areas:

the North Sea, with geographical extension from -12 to 4 degrees in longitude, and between

49 and 61 degrees latitude; and the Malay Archipelago, ranging between 90 and 150 degrees

in longitude, and -15 to 15 degrees in latitude. The choice of performing regional tests on

EOT19p, instead of global ones, is justified by one practical limitation: a global solution

requires considerable computational time, that makes it difficult to test different approaches

within an acceptable time frame.

6.2.1 Tidal elevation differences

Since St14 (and at the time of this study), only three models are available with their new

version: FES2014, DTU16, and the regional EOT19p. ■ The SD between these models

(henceforth SD2019) has been computed on a common grid of 1/8 degree resolution for all

major constituents, and it is compared with the one obtained with their former versions

(SD2014), namely FES2012, DTU10, and EOT11a. Figure 6.5 and figure 6.6 show the SD

for constituent M2 in the North Sea and the Malay Archipelago respectively. In both regions

higher agreement is found for SD2019 at coastal areas, with heavy improvements in complex

areas such as the English Channel, or the Java Sea. The SD found in these regions were also

computed with respect to the distance to coast: SD grid points within 100 km to the coast

were divided and averaged in bins ranging 10 km. Results comparing SD2014 and SD2019
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Figure 6.5: SD2014 (a) and SD2019 (b) for M2 tidal constituent over North Sea in cm.

for M2 tidal constituent are displayed in figure 6.7. Lower disagreement occur with SD2019

in both areas, especially at 15 km to the coast, where there is maximum improvement of

1.6 cm in the North Sea and 0.8 cm in the Malay Archipelago. In tables 6.2 and 6.3 the

average of SD computed for both the areas of interest are shown for eight of the major tidal

constituents, and the associated Root Sum Squared (RSS) values. The SD is reduced for all

constituents in both areas, showing that higher agreement is achieved with the new models.

The largest improvements can be observed for M2 and S2 constituents: model agreement for

M2 has improved of 2.8 cm in the North Sea and 1.3 cm in the Malay Archipelago, while for

S2 there is an improvement of ∼1 cm in both regions. SD2019 RSS values show an overall

agreement of 0.70 cm in the North Sea and of 1.44 cm in the Malay Archipelago, reducing the

differences of 3 cm and 1.6 cm with respect to SD2014 respectively. It must be said that such

higher agreement between the new models was expected. Both EOT19p and DTU16 are

semi-empirical models, that means that they apply a correction to their background models -

FES2014 and FES2012 respectively - by computing residual tidal estimations from altimetric

data. FES2014 and FES2012 have not only an enhanced performance with respect to their

former version FES2004, but they are also able to estimate a higher number of constituents,

most likely reducing the tidal residual signal that can be detected using altimetry. It is thus

possible that the residual correction applied by EOT19p and DTU16 is much smaller than

in EOT11a and DTU10, making the models more similar to each other, and to FES2014,

which is the third model involved in SD2019.

6.2.2 Comparison against in situ data

Tide models are evaluated using tide gauge and shallow water gauge stations. The original

grids of every model are bilinearly interpolated at each station, and their performance is

compared for eight major tidal constituents.
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Figure 6.6: SD2014 (a) and SD2019 (b) for M2 tidal constituent over the Malay Archipelago

in cm.
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Figure 6.7: SD2014 (orange) and SD2019 (blue) averaged values with respect to distance to

coast for M2 tidal constituent, in the North Sea (a) and in the Malay Archipelago (b).

Constituent SD2014 [cm] SD2019 [cm]

M2 3.33 0.57

N2 0.66 0.19

S2 1.23 0.28

K2 0.41 0.12

K1 0.17 0.09

O1 0.15 0.10

P1 0.91 0.10

Q1 0.12 0.06

RSS 3.75 0.70

Table 6.2: Comparison of SD2014 and SD2019 in the North Sea.
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Constituent SD2014 [cm] SD2019 [cm]

M2 2.37 1.12

N2 0.52 0.25

S2 1.34 0.49

K2 0.48 0.23

K1 0.81 0.46

O1 0.61 0.39

P1 0.40 0.30

Q1 0.20 0.15

RSS 3.02 1.44

Table 6.3: Comparison of SD2014 and SD2019 in the Malay Archipelago.

Comparison between EOT19p and EOT11a against in situ data

The performance of EOT19p is tested against its former version, EOT11a, through the geo-

metric MAD of in-phase and quadrature components (cf. equation 5.3) and their percentage

of relative improvement. In figure 6.8 and figure 6.9 the relative improvement of RSS val-

ues, obtained from the RMS of major constituents are shown for both areas of interest.

The red markers represent improvements for EOT19p with respect to EOT11a. In general,

EOT19p has better performance at the coast, with few exceptions. In the North Sea, strong

improvements are observed at gauges located in the English Channel, the Bristol Channel,

and the Irish Sea. The shallow water gauge in proximity of Cork shows a worsening with

EOT19p, and this is due to a lower accuracy in the phase estimation of S2 and K2 con-

stituents in that area. In the Malay Archipelago moderate improvements are seen below the

Equator. The best estimates are found in the Malay Peninsula; however, larger model errors

occur in the Malacca Strait where issues for K1 constituent are found for both EOT19p and

its background model FES2014. At tide gauges located in Bintulu (113.07E, 3.22N) and

Jolo (121E, 6.07N) a lower performance is due to an underestimation of M2 phase. These

problems can be attributed to different factors. For example, Jolo station is located in an

area where M2 phase changes rapidly between -90 and +70 degrees (Ray et al., 2005), and

probably the resolution of the model is not enough to estimate the same phase as the tide

gauge. In addition, the quality and the quantity of altimetry data in narrow channels such

as the Malacca Strait may not be adequate to resolve tidal residuals - and thus correct

the background model. In tables 6.4 and 6.5, MAD values and their relative improvement

∆RMS are displayed for single constituents. MAD values were preferred over averaged

root mean square errors because they are less sensitive to outliers, which may occur more

often when tide models are compared at coastal areas (St14). In the North Sea, ∆RMS
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Figure 6.8: RSS relative improvement of EOT19p with respect to EOT11a at single in situ

stations in the North Sea.
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Figure 6.9: RSS relative improvement of EOT19p with respect to EOT11a at single in situ

stations in the Malay Archipelago.

values are all positive, indicating better performance of 35.39% for EOT19p with respect to

EOT11a, especially for K2 and M2 constituents, with improvements of 51.93% and 32.65%

respectively. A similar situation is observed also for the Malay Archipelago. However, a

lower performance is observed for K1 constituent, confirming the issue seen at single tide

gauge stations.

Performance of EOT19p in comparison with other models

The regional MAD values of EOT19p are compared with the latest version of other existing

models in tables 6.6 and 6.7. Note that version 4.8 of GOT model was used instead of

its latest release (GOT4.10, Ray, 2013) because of its better performance in shallow water

and near coasts (Richard Ray, personal communication). The lowest MAD value of each

constituent, and the best RSS are highlighted in bold. In the North Sea DTU16, EOT19p

and FES2014 models show best values for single constituents and RSS values. EOT19p
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Constituent EOT11a [cm] EOT19p [cm] ∆RMS [%]
M2 3.40 2.29 32.65

N2 1.13 0.85 24.78

S2 1.81 1.36 24.86

K2 3.89 1.87 51.93

K1 3.15 2.23 29.21

O1 2.22 1.51 31.98

P1 0.95 0.79 16.84

Q1 1.15 1.00 13.04

RSS 6.95 4.49 35.39

Table 6.4: Comparison of MAD for EOT19p and EOT11a in the North Sea.

Constituent EOT11a [cm] EOT19p [cm] ∆RMS [%]
M2 2.44 1.63 33.26

N2 0.74 0.65 12.51

S2 1.27 1.20 5.37

K2 0.69 0.28 60.42

K1 1.38 1.62 -17.68

O1 1.08 0.58 46.19

P1 0.73 0.47 35.85

Q1 0.27 0.23 16.65

RSS 3.50 2.79 20.07

Table 6.5: Comparison of MAD for EOT19p and EOT11a in the Malay Archipelago.
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improves its background model, for single constituents such as M2, of ∼ 0.7 cm, and for

the total error, with RSS of 4.49 cm. In the Malay Archipelago EOT19p shows a similar

behaviour, and larger improvements are observed for M2 and K2 constituents. DTU16 shows

lower performance, in comparison with the North Sea, and this is mainly due to a MAD of

4.04 cm for M2. It is worth to notice that the best model for K1 constituent is GOT4.8 with

a MAD below the centimetre. The other models range between 1.34 and 2.09 cm, indicating

a possible common problem for this particular constituent. Andersen and Knudsen, 1997

showed that issues with K1 occur for altimetry-based tidal models because of the correlation

between K1 alias period and the semi-annual and annual cycles. This may also be a reason

why EOT19p does not improve its background model in both areas ■. Problems with K1 in

Indonesia were also highlighted in Lyard’s presentation for 25 years of altimetry, as already

mentioned in section 2.4.

Constituent EOT11a EOT19p FES2014 TPXO8 DTU16 GOT4.8

M2 3.40 2.29 2.98 3.02 2.26 5.01

N2 1.13 0.85 0.96 1.50 1.04 1.77

S2 1.81 1.36 1.32 1.34 1.29 2.34

K2 3.89 1.87 1.86 3.08 2.66 4.36

K1 3.15 2.23 2.05 2.41 2.27 3.25

O1 2.22 1.51 1.66 1.51 1.58 2.87

P1 0.95 0.79 0.73 1.16 0.94 1.07

Q1 1.15 1.00 0.98 1.08 1.09 1.12

RSS 6.95 4.49 4.84 5.77 4.97 8.59

Table 6.6: MAD comparison between existing models in the North Sea. Values are in cm.

6.3 Additional studies

6.3.1 The along-track test

Results form the along-track test illustrated in section 4.5.2 are shown in this paragraph. ●

One of the most advantageous features of ALES retracker is the large amount of valid coastal

measurements available along track. This benefit is shown in terms of observations available

for each node. In Figure 6.10 the difference between the number of observations of ALES

and the ones retrieved with SGDR are displayed. This difference is expressed as: ∆obs, i.e.,

observations of ALES minus observations of SGDR. Each dot represents a node along the

tracks, plotted against the distance to the coast. The red markers highlight the positive

values, that is, the nodes for which ALES provides a larger amount of data with respect to
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Constituent EOT11a EOT19p FES2014 TPXO8 DTU16 GOT4.8

M2 2.44 1.63 1.98 2.71 4.03 2.95

N2 0.74 0.65 0.52 0.84 1.29 1.35

S2 1.27 1.20 1.05 1.53 1.60 1.81

K2 0.69 0.28 0.42 0.49 1.34 0.83

K1 1.38 1.62 1.34 2.09 1.95 0.91

O1 1.08 0.58 0.78 1.85 0.98 1.29

P1 0.73 0.47 0.50 0.61 1.55 0.86

Q1 0.27 0.23 0.23 0.48 0.34 0.33

RSS 3.50 2.79 2.86 4.36 5.44 4.22

Table 6.7: MAD comparison between existing models in the Malay Archipelago. Values are

in cm.

SGDR. The blue dots are used for the negative values. An interesting, yet expected behavior

is observed for values below 20 km from the coast: far more observations are available with

ALES while approaching the coast, with some exceptions for few points.
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Figure 6.10: Difference in the number of observations between ALES and SGDR at each

node against the distance to coast. The blue dots show the cases for which less observations

are available for ALES, while the red dots correspond to a larger amount of data for ALES.

An analogous comparison is shown for the variable σ0, that represents the quality of the

least squares fit. In Figure 6.11 a the difference at each node between the σ0 computed for

the SGDR solutions and σ0 obtained from ALES is shown. A positive value on the y-axis

(highlighted with red dots) corresponds to a larger fitting error for the SGDR solutions, and

negative values (blue dots) for the contrary. From the plot it is clear that in most cases

an improvement for σ0 is achieved with ALES, with exception for few coastal points. The

dependence of σ0 on the number of observations may explain the smaller errors for ALES.

However, from Figure 6.11b one can notice that large improvements in σ0 are reached also for

a lower amount of data. On the other hand, the few cases with larger internal errors may be
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found at nodes with more data availability. These special cases, which account for only the

1.5% of the cases, may be justified by residual erroneous estimations in the ALES data, which

were not identified by the outlier analysis. In Figure 6.12, the spatial distribution of the
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Figure 6.11: Difference of σ0 values between SGDR minus ALES at each node against the

distance to coast (a), and against difference in number of observations between ALES and

SGDR (b).

∆RSS is shown. The differences are computed using the closest along-track node to the tide

gauge (CNTG) that interest each of the 85 tracks. In general, improvements are found for 66

tracks, with an average of 0.4 cm and a maximum value of 1.9 cm. The red dots indicate the

highest improvements for the ALES solutions, which are located unevenly between Europe

and the American continent. These higher values may be due to improvements to only few

single constituents. This can be observed in Figure 6.13, where the absolute ∆RMS of the

closest nodes to the tide gauge of interest are plotted against the longitude of the in situ

site. The plot is divided in three rows for an easier visualization, and the ∆RMS of each

tidal constant is color-coded according to the legend. An example of large improvements

for single constituents can be seen at Prince Rupert, western Canada, or Ringhals, Sweden

(respectively longitudes: −130.32
◦

and 12.11
◦
), where the values of ∆RMS for M2 and S2 for

Prince Rupert, or Q1 and O1 are larger than 2.5 cm. In contrast, there are locations such as

La Union, El Salvador, and Swansea, UK (longitudes −87.82
◦

and −3.98
◦
) where the ALES

solution shows a loss in performance—again differences larger than 2.5 cm—for constituent

M2. The RMS differences for all the 85 tracks are summarized in Table 6.8. The average

values were computed using the single RMS values obtained at each site, at the CNTG. A

mean improvement of 2 mm can be measured for the ALES solutions with respect to SGDR.

It is important to stress that in the global average, results based on ALES are superior to

results based on SGDR for every constituent. For K2, O1 and P1 the improvement is over

10%. For Q1, the improvement is over 25%. For larger RMS (such as M2 and S2) a minor
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effect of ALES is observed for the relative differences.

Constituents RMSALES [cm] RMSSGDR [cm] ∆RMS %

M2 8.0 8.2 2.4

N2 2.1 2.3 8.7

S2 3.5 3.7 5.4

K2 1.4 1.6 12.5

K1 2.1 2.2 4.5

O1 1.4 1.6 12.5

Q1 0.8 1.1 27.3

P1 1.2 1.4 14.3

Table 6.8: Average of RMS for major constituents for the closest points to the tide gauges.

The values are expressed in cm. The last column shows the relative difference between the

two solutions.

Figure 6.12: Geographical distribution of the ∆RSS (in cm) for the closest nodes to the tide

gauge of interest.

Study of the Dependencies

Also in this section, the CNTGs are used to study the performances of the two retracker

solutions. It must be pointed out that the CNTGs may not coincide with the closest points

to the coast, as they depend on the position of the track with respect to land. For this reason,

it was chosen to analyze the ∆RSS values against the distance to coast (Figure 6.14a) as

well as against the distance to the tide gauge of interest (Figure 6.14b). The first plot shows

not only that the nodes are mostly concentrated within 10 km to the coast, but also that

improvements with ALES larger than 0.5 cm occur for nodes closer than 5 km. On the other
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Figure 6.13: Difference of RMS for major constituents at the CNTG. The values are plotted

against the longitude of their location.

hand, no visible dependency is observed between the values of ∆RSS and their distance from

the tide gauge: in fact, the same improvements over 0.5 cm appear also for distances above

20 km. The dependency on the distance to the coast is also shown for the ∆RMS of the

single constituents, Figure 6.15. Within 10 km from the coast, improvements below 2 cm can

be found for all constituents. Larger variability is observed for the major constituents, and

single values can reach e.g., ±5 cm for M2 and ±3 cm for S2. Another aspect analyzed is the

influence of the track direction on the results, because the performance of a retracker may

change whether the satellite approaches land from ocean or flies from ocean to land, as well

as if there is a bay (case: land-ocean-land) or the coast is parallel to the track (case: parallel

to land). These results are shown in Table 6.9. The four main headers indicate the track

position and the number of tracks used for the RMS average. The RSS computed from the

RMS averages for each case are also displayed in the last row of the table. In general, lower

values are found for the ALES solution, with exception of few constituents. An interesting
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Figure 6.14: Difference of RSS against distance to coast (a) and tide gauge (b) in km. The

values are shown for the closest nodes to the tide gauge of interest.

result regards the transition land/ocean (i.e., the first four columns): both SGDR and ALES

solutions show a higher performance for all constituents for the case ocean-to-land, against

the land-to-ocean results, reaching differences larger than 1 cm for single constituents. This

can be seen also from the averaged RSS, which show discrepancies of 26 mm between the

ALES solutions and 21 mm for SGDR. This situation may be justified by a different behavior

of the on-board tracker according to the flight direction, which may consequently influence

the performance of the retrackers (Passaro et al., 2014). A clear example is presented in

Figure 6.16, where the RMS of constituent M2, computed for the ALES solution, is plotted

for the nodes of tracks 111 and 92. Track 111 is ascending, and it goes from ocean to land,

while track 92 is descending, going from land to ocean. It can be observed, that even though

few nodes at track 92 are closer to the tide gauge, they still show a larger RMS with respect

to nodes belonging to track 111. Moreover, larger discrepancies are found between ALES

and SGDR for the case ocean-to-land, for which RSS values differ of 6 mm against 1 mm

in the land-to-ocean case. Unfortunately, for the cases land-ocean-land and parallel-to-land

only few tracks were available. However, from both the single RMS and the RSS values

similar performance is found between ALES and SGDR solutions. Finally, the sea state

dependency is shown for the absolute ∆RSS. It was chosen to represent the sea state as

the average of the SWH at each node, plus its standard deviation. The SWH values are

taken from the ALES product. While the improvement of the ALES data for calm sea

states (<2.5 m) is expected (Passaro, 2015), the available literature concerning data quality

in comparison with SGDR for wavy seas is still scarce. Indeed, from Figure 6.17, relevant

improvements (>0.5 cm) are observed for sea states within 2.5 m, while only few examples

are available for high states. However, ∆RMS > 1 cm are found above 3 m, showing no

sensitive relation between the sea state and the data analyzed ●.
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Figure 6.15: Absolute ∆RMS of major constituents at the CNTG. The values are plotted

against the distance to the coast (in km).

89



C
on

st
it

u
en

ts
L

an
d

to
O

ce
an

:
30

O
ce

a
n

to
L

a
n

d
:

3
4

L
a
n

d
-O

ce
a
n

-L
a
n

d
:

1
5

P
a
ra

ll
el

to
L

a
n

d
:

6

R
M
S
A
L
E
S

R
M
S
S
G
D
R

R
M
S
A
L
E
S

R
M
S
S
G
D
R

R
M
S
A
L
E
S

R
M
S
S
G
D
R

R
M
S
A
L
E
S

R
M
S
S
G
D
R

M
2

6.
6

6.
9

4
.8

5
.0

1
9
.3

1
9
.2

4
.6

4
.7

N
2

1.
7

1.
8

1
.3

1
.6

4
.8

5
.2

1
.4

1
.4

S
2

3.
1

3.
2

2
.1

2
.4

7
.7

7
.8

2
.6

2
.5

K
2

1.
2

1.
3

1
.0

1
.3

2
.8

2
.9

1
.7

1
.7

K
1

1.
9

1.
9

1
.4

1
.5

3
.8

4
.2

2
.2

2
.2

O
1

1.
2

1.
3

1
.0

1
.3

2
.5

2
.7

1
.6

1
.6

Q
1

0.
8

0.
9

0
.7

1
.0

1
.3

1
.8

0
.9

1
.0

P
1

1.
5

1.
7

0
.7

0
.9

1
.9

1
.9

1
.1

1
.2

R
S

S
8.

4
8.

5
5
.8

6
.4

2
2
.1

2
2
.8

6
.5

6
.6

T
ab

le
6.

9:
A

ve
ra

ge
of

R
M

S
co

m
p

u
te

d
fo

r
m

a
jo

r
co

n
st

it
u

en
ts

a
t

th
e

cl
o
se

st
p

o
in

ts
to

th
e

ti
d

e
g
a
u

g
es

.
T

h
e

av
er

a
g
es

a
re

co
m

p
u

te
d

a
ft

er
d

iv
id

in
g

th
e

tr
a
ck

s

ac
co

rd
in

g
to

th
ei

r
p

os
it

io
n

w
it

h
re

sp
ec

t
to

th
e

co
as

t.
T

h
e

va
lu

es
a
re

in
cm

.

90



Figure 6.16: RMS values for M2 constituent computed with ALES solutions for tracks

111 (ascending) and 92 (descending). The diamond-shape marker represent the tide gauge

station of Helsinki. The round markers are the along-track nodes and the RMS with respect

to the tide gauge is color-coded.

6.3.2 Tests with alternative cap size choice

At the time of these tests, the algorithm was not yet optimized, and therefore compu-

tation of tidal estimates was highly time-demanding. For this reason, these alternative

solutions on grid node caps were tested on a limited area in the North Sea, between 10E

and 2E longitude and 50N and 52N in latitude. In this area, shelf-water and coastal gauges

were available for the assessment. Results obtained with fixed cap size at each grid node

(EOTFC), are compared with alternative solutions derived from node cap size that vary

according to bathymetry (EOTV C) and from node caps with selective mask (EOTSM ), cf.

4.5.1. In table 6.10 the RMS and RSS errors of EOTFC , EOTV C , and EOTSM against in

situ stations are shown, together with results got from EOT11a and FES2014 global models.

The value < RSS > represents the average of RSS values obtained at single stations. All

solutions computed with the EOT algorithm presented beforehand, have a lower error than

the former EOT11a, with large differences for constituents M2 and M4, and improve both

RSS values of 1.5–2 cm. Improvements are also observed against their background model,

which shows a higher error for M2 constituent. This result holds at single in situ stations

(figure 6.18), where all solutions clearly outperform EOT11a im most locations. However,

EOTV C and EOTSM alternative solutions have still higher errors than EOTFC , which out-

performs all models for constituents M2 and S2, with a consequent improvement of RSS

values. A possible explanation for a lower performance of these alternative solutions may

be related to the use of a lower amount of altimetry data at each node. Less data could give

problems with aliasing or constituent separation. Also, smaller (or selective) cap sizes may

cut out Jason tracks, that have lower spatial resolution than ESA missions. Jason tracks

are by construction more suitable for tide observation, and if left out, constituents like S2

may not be well represented with only ESA data, characterized by tide-pathological orbits.
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Figure 6.17: ∆RSS absolute values for the closest node to the tide gauge against the sea

state, represented as the averaged SWH computed at each node plus its standard deviation.

Constituent EOTFC EOTV C EOTSM EOT11a FES2014

M2 3.84 3.94 3.88 5.29 4.43

N2 2.04 2.04 2.03 2.02 1.82

S2 1.67 1.69 2.08 2.38 1.80

K1 1.06 0.99 1.17 0.91 0.89

O1 0.73 0.75 0.78 0.69 0.68

Q1 0.74 0.73 0.75 0.88 0.84

M4 0.57 0.59 0.73 2.22 0.39

RSS 4.92 5.00 5.16 6.62 5.32

< RSS > 6.14 6.23 6.51 7.97 6.68

Table 6.10: Comparison of RMS and RSS values of EOTFC , EOTV C , and EOTSM results

with EOT11a and FES2014 models in Bristol Channel area. Results in cm.

(a) (b)

(c)

Figure 6.18: ∆RSS values at in situ stations. EOTFC −EOT11a in (a), EOTV C −EOT11a

in (b), and EOTSM − EOT11a (c). The green markers represent in situ stations where

EOTFC , EOTV C , and EOTSM improve EOT11a. Colorbar in cm.
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Chapter 7

Conclusion and future work

7.1 Conclusion

This work was dedicated to the research of improved solutions for tide estimation at coastal

areas. It has been demonstrated that coast-dedicated products can make the difference, at

both along-track and grid points, and results at regional scales showed that the algorithm

presented can improve tide model performances with respect to state-of-the art models. In

particular, the research questions formulated in chapter 1 have been addressed throughout

this thesis, and can be summarised in the following points:

• The impact analysis of dedicated coastal products on tide estimation has been focused

on retrackers, and especially on the ALES retracker. In this experiment, ALES has

been compared against the SGDR ocean retracker. The experiment shows that the

largest improvements obtained with ALES are detected at distances within 10 km to

the coast, independently from the geographical location and the sea state. In addition,

no evident dependency is found for the RMS improvements to the distance to tide

gauges. The results over the track nodes showed an average improvement of 0.4 cm

for 66 tracks. Also, the averaged RMS suggest a mean impact of few mm for all tidal

constants. The ∆RMS highlighted a positive impact of ALES for single constituents,

which can reach values >2.5 cm. In conclusion, improvements independent from the

node position, together with a lower fitting error and a large data availability, make

ALES a favorable choice for coastal tidal analysis. Indeed, the retracker has been

exploited within the EOT19p algorithm.

• The research towards improved solutions for coastal tide estimates with respect to the

former algorithm started with the choice of a new, coast-dedicated altimetric dataset.

After assessing the impact of ALES coastal retracker, other coastal products have

been used to build this new dataset. In particular, the FES2014 hydrodynamic model
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was used as background correction, in order to exploit its higher performance at shelf

and coastal areas. Together with the VCE, these specific corrections are crucial at

the coast, where sea level observations are often scarce or poor. Also, instead of a

regular grid, it has been adopted a special grid for tidal residual computation, which

was a compromise between computational time reduction and resolution; finally, a

latitude-variable radius of interest for each grid node was chosen rather than a fixed-

size radius, so that the selection of SLA observations at high latitudes is not affected

by denser data distribution. Other solutions were researched to improve coastal tide

estimates: variable node cap sizes depending on the ocean depth, and on the presence

of land, were also tested, but they didn’t show significant improvements and remained

particularly time-demanding in comparison with other solutions.

• The new algorithm has been tested on regional scales, in particular in the Malay

Archipelago and in the North Sea. It shows higher performance with respect to

EOT11a with RSS relative improvements of 35.39% in the North Sea and 20.07%

in the Malay Archipelago. Heavy improvements occur at gauges located in complex

coastal areas, such as the English Channel or the Irish Sea. With this algorithm is

it possible to obtain the lowest error compared to the latest models, and improve-

ments for single constituents with respect to its background model, in particular for

M2 constituent, in both regions (improvements of 0.7 cm and 0.35 cm in the North

Sea and the Malay Archipelago respectively), and the final RSS values. The results

obtained with EOT19p algorithm in such challenging regions are clearly supported by

an enhanced performance of its background model. However, the improvements of the

model with respect to FES2014 indicate that the use of updated altimetric products,

specific for coastal purposes, represent an asset for tidal estimation in complex areas.

This conclusion is further encouraged by the results obtained in the along-track study,

where tidal estimates at single tracks could improve up to ∼1.5 cm.

7.2 Future work

The improvements shown in this study were found despite the ALES retracking strategy

was only applied in the residual analysis of the EOT procedure, while the original FES2014

model, which corrects for most of the tidal variability, is still based on SGDR data. It is

therefore expected that the use of ALES data could bring a decisive improvement in coastal

tide modeling if used as a data source to estimate the full tidal component of the sea level

variability. Also, it is important to highlight that sea level residuals were derived using the

FES2014 values interpolated on a regular grid with 1/16 degree resolution. Nevertheless,

the original FES2014 model is characterized by a much higher resolution, that becomes finer
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at coastal zones. The use of this mesh would be of great benefit for coastal altimetry, which

could also be exploited at higher resolution itself (at 20 Hz instead of 1 Hz). Further inves-

tigations in this direction, and those aimed to quantify the impact of additional altimetric

corrections on the tidal estimation at the coast, are highly recommended by the author.

Moreover, a further study about the impact of EOT19p on the reduction of SLA variances is

recommended. This test would tell whether the predicted tidal corrections effectively reduce

the noise of altimetry measurements. However, SLA variance reduction close to the coast

shall be analysed carefully, because other signals typical of these areas may be removed,

and the noise is systematically reduced. In fact, this kind of test shall be coupled with a

global analysis of ground-track crossover residuals, which is a standard practice used as key

indicator of data quality (Passaro, 2015).

An additional validation could be extended to the exploitation of EOT19p in synergistic

ocean products, in order to evaluate its performance within ocean models.

The author’s considerations about the calculation of the error of the model have been al-

ready summarized in chapter 4. However, it is important to stress that at the moment,

ocean tide models are provided without associated error estimates. However, a precision

measurement of ocean tides is highly desirable, especially for the different applications in

which tides are involved, such as operational forecasts.

In addition, few words must be spent about the fact that in this work the loading component

has not been considered. Altimeters observe the elastic tide, which is the result of ocean

and loading tides. These components are separated in a second moment after processing the

tide model, through the spherical harmonic analysis. For this step, it is necessary that the

tide model (or its residual part) has a global coverage. At the moment EOT19p is available

only at regional scale and it was not possible to remove the loading residuals from the elastic

residual. At this point one can make the following considerations: first, we are working on

tidal residuals that can be assumed to be small, as the main tidal signal should be already

removed with FES2014 model; secondly, the loading tide is generally between 4− 6% of the

elastic tide (Cheng and Andersen, 2011). This means that for a residual tide of 1 cm, the

value of the loading tide should be around ∼0.5 mm, which is negligible with respect to the

pure ocean tidal signal. So, the global version of EOT19p would be beneficial also in terms

of loading tide determination, which is not only needed in altimetry corrections, but also for

the update of geodetic products, such as the International Terrestrial Reference Frame.

Another issue to be faced is the computation of S1 tidal constituent. S1 is classified as

”radiational” tide, as its main cause is the daily insolation of the atmosphere, that entails a

variation of the atmospheric pressure, and a consequent variation of sea level. The gravita-

tional component of S1 also exists, however, it has been shown that its contribution to the

total signal is of no significance (Ray and Egbert, 2004). For this reason, nowadays GOT
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tide models (namely, versions 4.8a and 4.10a) contain an ad-hoc correction for radiational

tides based on global barometric models, such as the one illustrated in Ray and Ponte, 2003.

This correction is generally no higher than 1.4 mm (Ray, 2013), however, it represents a

critical aspect in geodetic applications which nowadays require a high level of precision from

tide models (Ray and Egbert, 2004). Therefore such correction would be crucial in current

tide models.

Finally, it is worth to mention that the interest of the tide community is currently moving

toward the concept of internal tides, river-driven tides, and tidal currents. Investigations

on these specific phenomena shall be considered, as they would have a crucial role in the

next years, with the launch of the SWOT mission. Therefore, it is hoped that the promising

results obtained with EOT19p will encourage the community to improve and exploit the

model for further studies in specific tidal applications and coastal oceanography.
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Appendix A

Acronyms and Abbreviations

ALES Adaptive Leading Edge Subwaveform

BPR Bottom Pressure Recorders

CLS Collect Localisation Satellites

CNES Centre National d’Études Spatiales

CNTG Closest Point to Tide Gauge

CTOH Center for Topographic studies of the Ocean and Hydrosphere

DAC Dynamic Atmospheric Correction

DTU16 Technical University of Denmark tide model

ECMWF European Centre for Medium-Range Weather Forecasts

EOT Empirical Ocean Tide model

EOT19p EOT 2019 preliminary version

ERA ECMWF Re-Analysis

ERS European Remote Sensing mission

FES Finite Element Solution tide model

GDR Geophysical Data Records

GESLA Global Extreme Sea Level Analysis

GOT Goddard Ocean Tide model

HAMTIDE Hamburg direct data Assimilation Methods for TIDEs

HICOM HYbrid Coordinate Ocean Model

HIM Hallberg Isopycnal Model

LEGOS Laboratoire d’Études en Géophysique et Océanographie Spatiales

LTE Laplace Tidal Equations

MAD Median Absolute Differences

MOG2D 2D Gravity Waves model

NIC09 NOAA Ionosphere Climatology 2009

NOAA National Oceanic and Atmospheric Administration

OpenADB Open Altimetry DataBase
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OSU Oregon State University tide model

PISTACH Prototype Innovant de Système de Traitement pour

les Applications Côtières et l’Hydrologie

RMS Root Mean Square

RSS Root Sum Squared

SD Standard Deviation

SDR Sensor Data Records

SLA Sea Level Anomaly

SWOT Surface Water and Ocean Topography mission

TICON TIdal CONstants dataset

TPXO8 TOPEX/Poseidon Crossover (XO) solution 8

T-UGO Toulouse Unstructured Grid Ocean model

VCE Variance Component Estimation

VMF Vienna Mapping Function

WLS Weighted Least Squares

WOCE World Ocean Circulation Experiment
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Frontiers in Operational Oceanography, pages 191–226. GODAE OceanView.

Müller, F. L., Dettmering, D., Bosch, W., and Seitz, F. (2017). Monitoring the arctic

seas: How satellite altimetry can be used to detect open water in sea-ice regions. Remote

Sensing, 9(6).

Müller, M., Cherniawsky, J. Y., Foreman, M. G. G., and von Storch, J.-S. (2014). Seasonal

variation of the M2 tide. Ocean Dynamics, 64(2):159–177.

Munk, W. H. and Cartwright, D. E. (1966). Tidal Spectroscopy and Prediction. Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,

259(1105):533–581.

NASA (2013). Topex/poseidon fact sheet.

Obligis, E., Desportes, C., Eymard, L., Fernandes, M., Lázaro, C., and Nunes, A. L.

(2011). Tropospheric corrections for coastal altimetry. In Vignudelli, S., Kostianoy, A. G.,

Cipollini, P., and Benveniste, J., editors, Coastal Altimetry, chapter 6, pages 147–176.

Springer-Verlag.

Passaro, M. (2015). Design, validation and application of a new coastal altimetry strategy.

PhD thesis, Faculty of Natural and Environmental Sciences School of Ocean and Earth

Science, Southampton, UK.

Passaro, M., Cipollini, P., and Benveniste, J. (2015). Annual sea level variability of the

coastal ocean: The Baltic Sea- North Sea transition zone. Journal of Geophysical Research:

Oceans, pages 3061–3078.

Passaro, M., Cipollini, P., Vignudelli, S., Quartly, G. D., and Snaith, H. M. (2014). ALES:

A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry.

Remote Sensing of Environment, 145:173–189.

Passaro, M., Dinardo, S., Quartly, G. D., Snaith, H. M., Benveniste, J., Cipollini, P., and

Lucas, B. (2016). Cross-calibrating ales envisat and cryosat-2 delay–doppler: A coastal

altimetry study in the indonesian seas. Advances in Space Research, 58(3):289 – 303.

Passaro, M., Nadzir, Z. A., and Quartly, G. D. (2018). Improving the precision of sea level

data from satellite altimetry with high-frequency and regional sea state bias corrections.

Remote Sensing of Environment, 218:245 – 254.

Penrose, R. (1955). A generalized inverse for matrices. Mathematical Proceedings of the

Cambridge Philosophical Society, 51(3):406–413.

105



Petit, G. and Luzum, B. E. (2010). IERS Conventions. Verlag des Bundesamts für Kar-

tographie und Geodäsie, Frankfurt, Germany.

Piccioni, G., Dettmering, D., Bosch, W., and Seitz, F. (2019a). TICON: TIdal CONstants

based on GESLA sea-level records from globally located tide gauges. Geoscience Data

Journal, 6(2):97–104.

Piccioni, G., Dettmering, D., Passaro, M., Schwatke, C., Bosch, W., and Seitz, F. (2018).

Coastal improvements for tide models: The impact of ALES retracker. Remote Sensing,

10(5).

Piccioni, G., Dettmering, D., Schwatke, C., Passaro, M., and Seitz, F. (2019b). Design and

regional assessment of an empirical tidal model based on FES2014 and coastal altimetry.

Advances in Space Research, in press.

Picot, N., Case, K., Desai, S., Vincent, P., and Bronner, E. (2012). AVISO and PODAAC

User Handbook. IGDR and GDR Jason Products; SALP-MU-M5-OP-13184-CN (AVISO),

JPL D-21352 (PODAAC); Physical Oceanography Distributed Active Archive Center:

Pasadena, CA, USA.

Pires, N., Fernandes, M. J., Gommenginger, C., and Scharroo, R. (2019). Improved sea

state bias estimation for altimeter reference missions with altimeter-only three-parameter

models. IEEE Transactions on Geoscience and Remote Sensing, 57(3):1448–1462.

Ponchaut, F., Lyard, F., and Le Provost, C. (2001). An analysis of the tidal signal in the

WOCE Sea Level Dataset. Journal of Atmospheric and Oceanic Technology, 18(1):77–91.

Pugh, D. and Woodworth, P. (2014a). Sea-Level Science: Understanding Tides, Surges,

Tsunamis and Mean Sea-Level Changes. Cambridge University Press, Cambridge.

Pugh, D. and Woodworth, P. (2014b). Tidal analysis and prediction. In Sea-Level Science:

Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes, pages 60–96. Cam-

bridge University Press, Cambridge.

Raney, R. K. (1998). The delay/doppler radar altimeter. IEEE Transactions on Geoscience

and Remote Sensing, 36(5):1578–1588.

Raney, R. K. and Phalippou, L. (2011). The future of coastal altimetry. In Vignudelli, S.,

Kostianoy, A. G., Cipollini, P., and Benveniste, J., editors, Coastal Altimetry, chapter 20,

pages 535–560. Springer-Verlag.

Ray, R., Egbert, G., and Erofeeva, S. (2011). Tide predictions in shelf and coastal waters:

status and prospects. In Vignudelli, S., Kostianoy, A. G., Cipollini, P., and Benveniste,

J., editors, Coastal Altimetry, chapter 8, pages 191–216. Springer-Verlag.

106



Ray, R. D. (2008). Tide corrections for shallow-water altimetry: a quick overview. Oral

presentation at the 2nd Coastal Altimetry Workshop, Pisa, Italy, 6–7 November 2008.

Ray, R. D. (2013). Precise comparisons of bottom-pressure and altimetric ocean tides.

Journal of Geophysical Research: Oceans, 118(9):4570–4584.

Ray, R. D., Eanes, R. J., Egbert, G. D., and Pavlis, N. K. (2001). Error spectrum for the

global m2 ocean tide. Geophysical Research Letters, 28(1):21–24.

Ray, R. D. and Egbert, G. D. (2004). The Global S1 Tide. Journal of Physical Oceanography,

34(8):1922–1935.

Ray, R. D., Egbert, G. D., and Erofeeva, S. Y. (2005). A brief overview of tides in the

indonesian seas. Oceanography, 18.

Ray, R. D. and Ponte, R. M. (2003). Barometric tides from ECMWF operational analyses.

Annales Geophysicae, 21(8):1897–1910.

Ray, R. D., Rowlands, D. D., and Egbert, G. D. (2003). Tidal models in a new era of

satellite gravimetry. Space Science Reviews, 108(1):271–282.

Ray, R. D. and Sanchez, B. V. (1989). Radial Deformation of the Earth by Oceanic Tidal

Loading. NASA Technical Memorandum, pages 1–51.

REA-UG-PHB-7003 (2014). REAPER Product Handbook for ERS Altimetry Reprocessed

Products. Mullard Space Science Laboratory (MSSL), University College Londo.

Roos, P. C., Velema, J. J., Hulscher, S. J. M. H., and Stolk, A. (2011). An idealized model of

tidal dynamics in the north sea: resonance properties and response to large-scale changes.

Ocean Dynamics, 61(12):2019–2035.

Rosmorduc, V., Benveniste, J., Bronner, E., Dinardo, S. Lauret, O., Maheu, C., Milagro,
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