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Abstract— Due to the growing amount of data and processing
capabilities, machine learning techniques are increasingly
applied for the identification of dynamical systems. Especially
probabilistic methods are promising for learning models, which
in turn are frequently used for simulations. Although confidence
regions around predicted trajectories are of crucial importance
in many control approaches, few rigorous mathematical
analysis methods are available for learned probabilistic models.
Therefore, we propose a novel method to estimate confidence
regions for predicted trajectories, and assign them a confidence
level based on Monte Carlo random trajectory sampling. Since
the confidence level has a strongly nonlinear dependence on
the number of Monte Carlo samples, we derive a lower bound
on the number of samples that ensures a desired minimum
confidence level. The efficiency and flexibility of the proposed
method is demonstrated in simulations of a Bayesian hidden
Markov model and a Gaussian process state space model.

I. INTRODUCTION

With the ever growing amount of available data and con-
tinuously improving data processing capabilities, supervised
machine learning is becoming more and more popular in
system identification for control design and predicting system
behavior. Especially when the lack of knowledge about
the system structure prevents the application of classical
parametric system identification methods, modern regression
techniques, such as Gaussian processes and deep learning,
provide a flexible and efficient alternative. Probabilistic
machine learning methods [1] have been gaining increasing
attention, as they provide a measure of model fidelity, which
considers uncertainty sources such as noisy training data and
unknown model structures. Due to this beneficial property,
these methods have found many applications in control,
ranging from feedback linearization [2] to reinforcement
learning [3]. Especially in simulation-based (or prediction-
based) approaches, information about the model fidelity can
be included advantageously into control. For example, the
consideration of the uncertainty of learned models leads
to cautiousness in model predictive control [4], and can
be efficiently implemented using scenario approaches [5].
Furthermore, uncertainty awareness in model-based
reinforcement learning automatically balances system
identification and task execution [6], and allows to anticipate
the effect of online learning during policy optimization [7].

Despite of this prevalence of learned probabilistic models
in simulation-based control approaches, the uncertainty along

*A. L. gratefully acknowledges financial support from the German
Academic Scholarship Foundation 10.23919/ACC45564.2020.9147978.

1Armin Lederer and Sandra Hirche are with the Chair of
Information-oriented Control (ITR), Department of Electrical and
Computer Engineering, Technical University of Munich, Germany
{armin.lederer,hirche}@tum.de

the predicted trajectories is usually approximated without
any theoretical guarantees. While this is not a problem
when considering the uncertainty in cost functions, the lack
of guarantees prevents the straightforward computation of
confidence regions around predicted trajectories, which are
required to enforce constraints on the real system. To the
best of our knowledge, statistically sound confidence regions
for simulations with learned probabilistic models have not
been analyzed in general. One exception is [8], where a
multiple-step prediction error bound for Gaussian process
regression is derived. However, it is based on a uniform
error bound and deterministic uncertainty propagation,
which leads to conservative confidence regions, growing
almost exponentially over the prediction horizon. Therefore,
this approach is not suitable for long horizons typically
used in reinforcement learning or model predictive control.

The contribution of this paper is a novel method for
determining confidence regions around trajectories predicted
with models obtained by probabilistic machine learning tech-
niques. We propose a Monte Carlo method to sample from
generally unknown trajectory distributions, and prove that the
confidence of a set can be calculated based on the sampled
random trajectories. In order to facilitate the application of
our result, we derive a lower bound for the required number
of sample trajectories, such that the desired confidence
level is achieved. The flexibility and tightness compared to
existing methods is demonstrated in numerical simulations.

The remainder of this paper is structured as follows: After
the formal problem statement in Section II, we introduce
the basic Monte Carlo algorithm in Section III. Section IV
proposes the trajectory sampling approach and derives confi-
dence levels based on random samples. The confidence sets
and corresponding levels are evaluated for hidden Markov
models and Gaussian process models, in Section V.

II. PROBLEM FORMULATION

Consider a dynamical system1

xk+1 = f(xk) + εk (1a)
yk+1 = h(xk+1) + ηk (1b)

with state xk ∈ X, initial state x0 ∈ X, observation yk ∈ Y,
unknown functions f : X → X, h : X → Y, i.i.d. process
noise εk ∈ X defined on a probability space (X,Fε,Pε)

1Lower/upper case bold symbols denote vectors/matrices, R+ all non-
negative real numbers, N all integers, E[·] the expected value of a random
variable, P(·) a probability measure, and other blackboard bold symbols
subsets of R and N, respectively. The Gaussian distribution with mean µ
and standard deviation σ is denoted by N (µ, σ) and random samples are
symbolized by a superscript (n).



with σ-algebra Fε and probability distribution Pε, and i.i.d.
observation noise ηk ∈ Y with σ-algebra Fη and probability
distribution Pη . Depending on the considered problem, the
state and output spaces can be continuous, e.g., X,Y ⊂ Rd,
or discrete, e.g., X,Y ⊂ N. Based on measurements of the
dynamical system, probabilistic machine learning methods
can be applied to obtain a stochastic model in the form of
random fields {F (x,ω)}x∈X and {H(x,ψ)}x∈X. These
models are defined on probability spaces (Ω,Fω,Pω)
and (Ψ,Fψ,Pψ), such that the random variables ω and ψ
can be considered as (potentially infinite-dimensional)
vectors of uncertain model parameters. In order to be able
to provide guarantees for predictions with these stochastic
models, it is necessary that the stochastic models are well
calibrated. This is formalized in the following assumption.

Assumption 1: The unknown functions f(·) and h(·)
are realizations of the stochastic model {F (x,ω)}x∈X
and {H(x,ψ)}x∈X.

While it can be difficult to ensure a good calibration
in practice, bounds on the misspecification of stochastic
models have been derived for several probabilistic machine
learning methods, see, e.g., [9]. Therefore, possible model
errors can easily be integrated in any subsequent analysis if
Assumption 1 is violated.

We want to use the stochastic models {F (x,ω)}x∈X
and {H(x,ψ)}x∈X to predict the behavior of the state and
output trajectories xk, yk, k = 0, . . . ,K of the unknown real
world system (1) up to some horizon K∈N. The computa-
tion of the distributions p(xk), p(yk) can be computationally
demanding for large discrete state models and is generally
intractable for continuous state random dynamical systems.
Therefore, we have to approximate the exact distributions
leading to predictive distributions p̂(xk), p̂(yk), which can
usually provide only limited information about the true pre-
dictive distribution, see, e.g., [10]. However, in safety critical
applications, it is important to obtain reliable confidence
levels δ ∈ R+ of given confidence regions Sk ⊂ X, Tk ⊂
Y, k = 0, . . . ,K. Hence, our goal is the development of a
method to determine the minimum value of δ, such that

P (xk ∈ Sk,yk ∈ Tk, ∀k = 0, . . . ,K) ≥ 1− δ (2)

is guaranteed under the joint probability measure P.
In order to achieve this, knowledge of the involved distri-

butions is required. We distinguish two assumptions, which
are applied in a mutually exclusive fashion in the sequel.

Assumption 2: We can draw random samples from the
probability distributions Pω , Pψ , Pε and Pη .

Assumption 3: The probability measures Pε and Pη are
known and we can draw samples from the corresponding
distributions. Furthermore, we can draw random
samples from the Bayesian updates PFxk

|Fxk−1
,...,Fx0

and PHxk
|Hxk−1

,...,Hx0
of the random variables Fxk

:=

F (xk,ω) and Hxk
:=H(xk,ψ) for all k = 0, . . . ,K.

Assumption 2 is applied in case we have a model
parameterized by a finite number of random variables, as
outlined in Sec. IV-A. This is a suitable abstraction of
many models obtained from statistical machine learning,

e.g., probabilistic neural networks [11] and Bayesian hidden
Markov models [12]. Even when no analytical expression
for the distribution of the random variables ω, ψ can be
calculated, samples can often be drawn by applying Markov
Chain Monte Carlo methods [13]. However, Assumption 2
is not suited for non-parametric regression methods, such as
Gaussian process regression, because the resulting models
depend on infinite-dimensional random vectors [14]. In this
case, we apply Assumption 3, which allows to iteratively
update the conditional distributions PFxk

|Fxk−1
,...,Fx0

and PHxk
|Hxk−1

,...,Hx0
, and draw the next function values.

This approach is described in Sec. IV-B.

III. NUMERICAL INTEGRATION WITH MONTE CARLO
SAMPLING

Determining expectations and probabilities, such as those
arising in multiple-step predictions, typically requires the
computation of intractable integrals. Monte Carlo sampling
can be used to approximate integrals of the form

E =

∫
A
g(x)p(x)dx, (3)

where p : X → R+ is a predetermined probability density,
g : X→ R is an arbitrary function and A ⊂ X is a predeter-
mined set. The idea behind Monte Carlo sampling is to gen-
erate N i.i.d. random samples x(n), which follow the prob-
ability distribution corresponding to the density p(·). Then,
the exact integral is approximated by its empirical value [15]

Ê =
1

N

N∑
n=1

g
(
x(n)

)
. (4)

The strength of this approximation is its statistical
foundation. Due to the strong law of large numbers, Ê
is guaranteed to converge to the unknown integral almost
surely in the limit of infinitely many random samples, i.e.,

lim
N→∞

1

N

N∑
n=1

g
(
x(n)

)
= E a.s. (5)

Furthermore, the variance of this approximation is typically
used as a first order error estimate [16], which has been
shown to converge to zero in the order of 1√

N
. Therefore,

the convergence rate is independent of the state space
dimension. When approximating probabilities with (4), the
indicator function is employed [15]:

Definition 1: The indicator function IA : X→ {0, 1} for
a set A ⊂ X is defined as

IA(x) =

{
1 if x ∈ A
0 if x /∈ A.

(6)

Using this definition, the empirical probability of a set A
can be seen as a special case of (4) with g(·) = IA(·).

IV. CONFIDENCE REGIONS FOR TRAJECTORIES OF
LEARNED PROBABILISTIC MODELS

When a model of an unknown dynamical system is
known, it is possible to approximate the real system be-



Algorithm 1: Sampling from parameter distributions
1 Function sample P(N , Pε, Pη , Pω , Pψ , Px0):
2 for n = 1, . . . , N do
3 Sample ω(n) and ψ(n) from Pω and Pψ
4 Sample x(n)

0 from Px0

5 for k = 0, . . . ,K − 1 do
6 Sample ε(n)k and η(n)

k from Pε and Pη
7 Y

(n)

[k] ←H(x
(n)
k+1,ω

(n)) + η
(n)
k

8 x
(n)
k+1 ← F (x

(n)
k ,ψ(n)) + ε

(n)
k

9 Sample η(n)
K from Pη

10 Y
(n)

[K] ←H(x
(n)
K ,ψ(n)) + η

(n)
K

havior numerically by simulating sample trajectories of the
stochastic model. We present the trajectory sampling ap-
proach for known parameter distributions in Section IV-A,
while Section IV-B introduces our method for iteratively
sampling from the conditional distributions PFxk

|Fxk−1
,...,Fx0

and PHxk
|Hxk−1

,...,Hx0
. Finally, we derive confidence levels

for given confidence regions in Section IV-C.

A. Trajectory Sampling from Parameter Distributions
Since we consider an unknown deterministic

system f(·), h(·) perturbed by random noise ε,η, a
simulation of this system based on the random field
models {F (x,ω)}x∈X, {H(x,ψ)}x∈X should consider
this structure. In order to describe the procedure for a
suitable simulation of the model, we formally introduce the
concept of state trajectories, which can be directly extended
to output trajectories.

Definition 2: A trajectory X[0:K] is defined as a sequence
of states xk resulting from iterative evaluation of the dynam-
ical system (1) such that X[k] = xk, for all k = 0, . . . ,K.

This definition implies that a trajectoryX[0:K] is generated
by deterministic functions f(·), h(·), which are driven by
noise. Under Assumption 2, a simulation, which satisfies this
condition, can easily be performed as depicted in Alg. 1.
First, random parameters ω(n) and ψ(n) are drawn from
the parameter probability distributions Pω and Pψ . Substi-
tuting these samples in our stochastic model, we obtain
a deterministic system F (·,ω(n)), H(·,ψ(n)). In order to
initialize the simulation, we draw an initial state x0 from the
corresponding distribution Px0

. By iteratively drawing per-
turbations ε(n)

k , η(n)
k from Pε, Pη and computing a single pre-

diction step, sample trajectoriesX(n)
[0:K], Y

(n)
[0:K] of the random

field model {F (x,ω)}x∈X, {H(x,ψ)}x∈X are computed.
Finally, this procedure is repeated N ∈ N times in order to
increase the statistical significance of the simulations.

B. Trajectory Sampling from Conditional Distributions
If we cannot draw samples from the parameter distribu-

tions Pω , Pψ , e.g., in the case of Gaussian process models
with infinitely many parameters, we have to sequentially
draw the samples of the random variables Fxk

=F (xk,ω),
Hxk

=H(xk,ψ) in each prediction step k. Since this prob-
lem is identical for the state transition model {F (x,ω)}x∈X
and the observation model {H(x,ψ)}x∈X, we focus on the
state transition model in the following.

Algorithm 2: Sampling from conditional distributions
1 Function sample C(N , Pε, Pη , PFx0

,...,FxK−1
,

PHx0
,...,HxK

, Px0):
2 for n = 1, . . . , N do
3 Sample x(n)

0 from Px0

4 for k = 0, . . . ,K − 1 do
5 Sample F (n)

xk from P
Fxk

|F (n)
xk−1

,...,F
(n)
x0

6 Sample H(n)
xk from P

Hxk
|H(n)

xk−1
,...,H

(n)
x0

7 Sample ε(n)k and η(n)
k from Pε and Pη

8 Y
(n)

[k] ←H
(n)
xk + η

(n)
k

9 x
(n)
k+1 ← F

(n)
xk + ε

(n)
k

10 Update P
Fxk

|F (n)
xk−1

,...,F
(n)
x0

, P
Hxk

|H(n)
xk−1

,...,H
(n)
x0

11 Sample H(n)
xK from P

HxK
|H(n)

xK−1
,...,H

(n)
x0

12 Sample η(n)
K from Pη

13 Y
(n)

[K] ←H
(n)
xK + η

(n)
K

The state transitions Fxk
cannot be drawn independently

in general, since they follow the joint distribution

F (x0,ω), . . . ,F (xK−1,ω) ∼ PFx0
,...,FxK−1

(7)

with

PFx0 ,...,FxK−1
(S1, . . . ,SK) :=

Pω(ω∈Ω: F (x0,ω)∈S1 ∧ . . . ∧ F (xK−1,ω)∈SK) (8)

for any sets Sk ⊂ X, k = 1, . . . ,K. Hence, independent
sampling would lead to an inconsistent behavior with respect
to Assumption 1, as the computed sequence of states would
not be generated by a system of the form (1). However, this
joint probability distribution can be expressed based on the
Bayesian updates PFxk

|Fxk−1
,...,Fx0

through

PFx0
,...,FxK−1

=

K−1∏
k=0

PFxk
|Fxk−1

,...,Fx0
. (9)

Therefore, we can iteratively sample Fxk
from the condi-

tional probabilities PFxk
|Fxk−1

,...,Fx0
, such that the samples

satisfy (7). Furthermore, we can pursue the same procedure
to obtain samples for the observation model {H(x,ψ)}x∈X
due to the equivalence of both sampling problems.

Under Assumption 3, we can exploit this iterative sam-
pling in Alg. 2 to sample N random trajectories Y (n)

[0:K]. In
contrast to Alg. 1, Alg. 2 takes as input the joint probability
distributions PFx0

,...,FxK−1
, PHx0

,...,HxK
. Based on these

densities, it iteratively samples F (n)
xk , H(n)

xk from the con-
ditional distributions P

Fxk
|F (n)

xk−1
,...,F

(n)
x0

, P
Hxk

|H(n)
xk−1

,...,H
(n)
x0

at every prediction step k. By adding random noise to these
values, the next state xk+1 and output yk are obtained.
Finally, it computes the Bayesian updates of the conditional
distributions. Thereby, Alg. 2 iteratively constructs trajecto-
ries X(n)

[0:K], Y
(n)

[0:K], which are consistent with Assumption 1.

C. Probabilistic Error Bounds for Trajectory Simulation

We want to exploit the sample trajectories introduced
in the previous sections to derive confidence levels of



sets Sk and Tk, k = 0, . . . ,K, for trajectories of the
unknown system (1). We interpret each sample trajectory
as a single sample and approximate the probability (2)
empirically using (4). Since this estimate depends on
random trajectories, it is a random variable itself, and we
need to bound the deviation of the estimate from the true
probability. However, we first define the set analogue of
trajectories in order to have an intuitive notation.

Definition 3: A trajectory of sets S[0:K] ⊂ X × . . . × X
is defined such that S[k] = Sk for all k = 0, . . . ,K and a
sequence of confidence regions Sk. Furthermore, we extend
the element notation ”∈” such that

X[0:K] ∈ S[0:K] ⇔ X[k] ∈ S[k] ∀k = 0, . . . ,K. (10)

Although not stating it here explicitly, we can equivalently
define set trajectories for output confidence sets Tk.
Moreover, the extension of the element notation directly
extends the indicator function defined in (6), such that
we can express (2) via trajectories. We exploit this in the
following lemma.

Lemma 1: Consider a dynamical system (1) and
a stochastic model {F (x,ω)}x∈X, {H(x,ψ)}x∈X
satisfying Assumption 1. If the model is used to sample N
trajectories X

(n)
[0:K], Y

(n)
[0:K], then, for all trajectories of

confidence regions S[0:K], T[0:K] with S[k] ⊆ X, T[k] ⊆
Y, k = 0, . . . ,K, and parameters t ∈ [0, 1], an unknown
system trajectory X[0:K], Y[0:K] satisfies

P
(
X[0:K] ∈ S[0:K],Y[0:K] ∈ T[0:K]

)
≥ 1− δ (11)

with confidence level

δ = 1−
(
P̂−t

)(
1−e−2Nt2

)
(12)

P̂ =
1

N

N∑
n=1

IS[0:K],T[0:K]

(
X

(n)
[0:K],Y

(n)
[0:K]

)
. (13)

Proof: For notational convenience, we denote the true
probability of confidence sets S[0:K] and T[0:K] as

P := P
(
X[0:K] ∈ S[0:K],Y[0:K] ∈ T[0:K]

)
. (14)

The approximate probability P̂ , which is defined analogously
to (4), is a random variable, as it depends on the randomly
sampled trajectories X(n)

[0:K], Y
(n)

[0:K]. However, it is well
known that its expectation equals the true probability P , i.e.,

E
[
P̂
]

= P.

Therefore, we can apply Hoeffding’s inequality to obtain

P
(
P ≤ P̂ − t

)
≤ e−2Nt2 (15)

for all t ∈ [0, 1]. Furthermore, we can express the true
probability P through conditional probabilities as

P =P
(
X[0:K]∈S[0:K],Y[0:K]∈T[0:K]

∣∣P >P̂−t)P(P >P̂−t)
+P
(
X[0:K]∈S[0:K],Y[0:K]∈T[0:K]

∣∣P ≤ P̂−t)P(P ≤ P̂− t).

If we employ the trivial bounds

0 ≤ P
(
P ≤ P̂ − t

)
P̂ − t ≤ P

(
X[0:K] ∈ S[0:K],Y[0:K] ∈ T[0:K]

∣∣P > P̂ − t
)

and express P(P > P̂ − t) through (15) using the
complimentary event, then we obtain

P ≥ (P̂ − t)
(

1− e−2Nt2
)
.

Lemma 1 allows to calculate the probability of all confidence
set trajectories S[0:K], T[0:K] based on N random trajectories.
However, it contains a parameter t, which has to be tuned for
maximum probability. Furthermore, it gives no information
about the number N of sample trajectories required to
achieve a desired probability δ. This is addressed in the
following theorem.

Theorem 1: Consider a dynamical system (1) and a
stochastic model {F (x,ω)}x∈X, {H(x,ψ)}x∈X satisfying
Assumption 1, as well as a desired confidence level δ̄ ∈
(0, 0.19]. If we sample more than

N ≥
(

11

10
√

2δ̄

)3

(16)

trajectories X(n)
[0:K],Y

(n)
[0:K] and if the chosen trajectories of

confidence regions S[0:K], T[0:K] with S[k] ⊆ X, T[k] ⊆
Y, k=0, . . . ,K, satisfy

1

N

N∑
n=1

IS[0:K],T[0:K]

(
X

(n)
[0:K],Y

(n)
[0:K]

)
= 1, (17)

then we can guarantee that (11) holds with δ ≤ δ̄.
Proof: Define

t(N) =
1√
2
N−

1
3 .

Then, we have

δ =
1√
2
N−

1
3 + e−N

1
3 − 1√

2
N−

1
3 e−N

1
3

≤ 1√
2
N−

1
3 + e−N

1
3 , (18)

where the second line follows from the nonnegativity of all
summands. If we ensure N≥N̄ with N̄ implicitly defined by

100e−N̄
1
3 ≤ 5

√
2N̄−

1
3 , (19)

then (18) simplifies to 100δ ≤ 55
√

2N−1/3 for all N ≥ N̄ .
Therefore,

N ≥

(
55
√

2

100δ̄

)3

implies δ ≤ δ̄, if N ≥ N̄ . It remains to explicitly
determine N̄ and transfer it to a condition for the allowed
range of δ̄. For the derivation of N̄ we rewrite (19) as

−N 1
3 e−N

1
3 ≥ −5

√
2

100
.



The left-hand side corresponds to the definition of the
Lambert W function, such that we obtain

N̄ ≥

(
−W−1

(
−5
√

2

100

))
.

Finally, we substitute this value into (18), which results in

δ̄ ≤ 0.19 ≤ 55
√

2

100
N̄−

1
3 .

We fixed the estimated probability P̂ in Theorem 1 in order
to simplify the presentation. It is also possible to calculate
the required number N̄ of sampled trajectories for P̂ < 1.
However, the interval for the worst case confidence level δ̄
must be adapted accordingly. Furthermore, the parameter t
is not chosen optimally in the proof of Theorem 1, but such
that it allows the computation of a sufficient lower bound for
the required number of samples N̄ . Therefore, we can expect
that there exists a better value of t for each N than the
one used in the proof. Although there is no simple analytic
expression for the optimal t, it is possible to obtain it through
convex optimization as shown in the following theorem.

Theorem 2: Consider a fixed N ∈ N. Then, the global
minimum of (12) with respect to t can be obtained through
convex optimization constrained to the interval [t, 1] with

t =
((1−

√
−3)(−4NP̂ 2−9))

12 3
√
θ

− (1+
√
−3) 3
√
θ

12N
+
P̂

3
(20)

θ = 8N3P̂ 3+

√
27
(
−16N5P̂ 4−36N4P̂ 2−27N3

)
. (21)

Proof: It is trivial to derive that the second derivative
of (12) with respect to t equals zero only if

P̂ − 3t− 4P̂Nt2 + 4Nt3 = 0.

Applying Cardano’s method to this problem, we find that the
only zero t in the interval [0, 1] is given by (20). Since the
second derivative of (12) is positive at t= 1, it follows that
it is nonnegative on the whole interval [t, 1]. Hence, (12) is
convex with respect to t on the interval [t, 1]. It remains to
show that the global optimum indeed lies in this interval. This
holds, because the first derivative of (12) with respect to t
equals 0 at t=0. Due to concavity in the interval [0, t), the
derivative cannot become 0 at any other point in this interval.
Since t=0 leads to the local maximum δ=1, the global min-
imum cannot be in the interval [0, t) concluding the proof.

V. NUMERICAL EVALUATION

A. Bayesian Hidden Markov Models

We demonstrate the flexibility of our approach by
applying it to hidden Markov models.2 For this reason, we
decompose a discrete state Markov system into the structure
of (1), learn a hidden Markov model with Bayesian methods
following [17], and construct confidence intervals for this

2The code is available at https://gitlab.lrz.de/alederer/MC4LPM
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Fig. 1. Trajectories of confidence regions for the learned HMM (hatched)
are only slightly larger than those for the exact system (red).

model. We consider an unknown hidden Markov system
with state transition matrix

A =


0.05 0 0 0 0.95
0.95 0.05 0 0 0

0 0.95 0.05 0 0
0 0 0.95 0.05 0
0 0 0 0.95 0.05

 (22)

and conditional normal output data y|x ∼ N (2x − 5, σ)
with σ = 0.5. We can equivalently express this system as

f(x) = mod(x− 2, 5) + 1 (23)
h(x) = 2x− 5 (24)

with process noise

Pε(ε) =

{
0.95 if ε = 0

0.05 if ε = 1
(25)

and observation noise η∼N (0, σ). We follow the approach
introduced in [17] to define the prior distribution and to
train the Bayesian hidden Markov model with 1000 training
samples. We directly learn A, i.e., a joint model for f(·)
and Pε. The calculation of posterior distributions is per-
formed numerically using Markov chain Monte Carlo, where
the first 1000 samples are discarded as burn-in phase [17].

We compare trajectories of confidence regions for the
exact system and the learned hidden Markov model over
a horizon of K = 9 steps, starting at a fixed initial
state x0 = 5. In order to determine the confidence region,
we sample 1000 trajectories with Alg. 1 and define S[0:9]

and T[0:9], such that they contain approximately 60% of
the trajectories. Based on Lemma 1 and Theorem 2, we
compute the confidence levels for the exact system and the
model as δexact = 0.39 and δ = 0.43 using N = 10000
sample trajectories. The confidence sets T[0:9], S[0:9], Sex

[0:9]

and mean trajectories X̂[0:9], Ŷ[0:9], Xex
[0:9], Y

ex
[0:9] of the

Bayesian hidden Markov model and the exact system are
depicted in Fig. 1. Note that the trajectory of confidence
regions of the exact system is only slightly tighter than
for the hidden Markov model. However, in the case of the
state trajectory, the confidence regions of the exact system
correspond to the mean trajectory Xex

[0:9], such that we
refrain from plotting the trajectory of confidence regions.



B. Gaussian Process Model of the Inverted Pendulum

In our second example we consider the inverted pendulum

f(x) =

[
x2

g
l sin(x1) + c

ml2x2

]
(26)

g(x) = x (27)

with parameters g = 9.81, l = 0.5, m = 0.15 and c = 0.1
as described in [8]. We consider a normally distributed
observation noise η∼N (0, σ) with standard deviation σ=
0.05 and no process noise ε = 0. We train two Gaussian
processes with squared exponential kernels independently
for each dimension based on 5 trajectories with 100 training
pairs (x, yi), i=1, 2. The Gaussian process hyperparameters
are obtained through log-likelihood maximization. Our
goal is the computation of confidence regions for
state trajectories X[0:100] generated by the deterministic
process f(·) over a prediction horizon K= 100. Therefore,
we assume T[k] =Y, ∀k=0, . . . , 100 in the following.

In order to determine a confidence region, we sample 100
trajectories with Alg. 2. Each set S[k] is defined such
that it robustly contains all states X(n)

[k] , n = 0, . . . , 100.
Assuming P̂ = 1 and setting δ̄ = 0.05, it is necessary to
sample N=3765 trajectories due to Theorem 1. The sample
trajectories X(n)

[0:100] led to an empirical probability of P̂ =1
in our simulations, such that we obtain a confidence level
of δ = 0.029 based on Lemma 1 and Theorem 2. The
resulting trajectory of confidence regions S[0:100] and mean
trajectory X̂[0:100] are illustrated for both states in Fig. 2.

We compare our sampling-based approach to the robust
model approach based on high probability uniform error
bounds in [8]. We set β2 = 2 because the ±2σ(x) interval
around the Gaussian process mean has probability of 0.95
for each fixed state x. While this choice of β is below the
theoretically required value to obtain confidence regions with
probability of at least 0.95, it is a less conservative choice.
Furthermore, we determine a Lipschitz constant Lf = 1.7
through numerical optimization, which also does not
correspond to a conservative choice. However, as clearly
shown in Fig. 2, the resulting confidence regions E[0:100]

grow quickly and are larger than our confidence sets S[0:100],
although the mean trajectory Xrob

[0:100] is almost equal to our
prediction X̂[0:100].

VI. CONCLUSION

In this paper, we present a novel method to determine
confidence sets and levels for trajectories predicted with
learned probabilistic models. Based on a Monte Carlo
simulation of the system, we calculate confidence levels
of sets containing the predicted trajectory. Due to the
highly nonlinear dependence on the number of random
samples, we derive a sufficient number of samples to
achieve a desired confidence level. The flexibility and
superior performance compared to existing approaches is
demonstrated in simulations of a Bayesian hidden Markov
model and a Gaussian process model.
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Fig. 2. Confidence regions obtained by our sampling method (hatched)
are significantly tighter than confidence regions based on the robust model
approach (red) introduced in [8].
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