
Scenario Factory: Creating Safety-Critical Traffic Scenarios
for Automated Vehicles

Moritz Klischat*, Edmond Irani Liu*, Fabian Höltke, and Matthias Althoff

Abstract— The safety validation of motion planning algo-
rithms for automated vehicles requires a large amount of
data for virtual testing. Currently, this data is often collected
through real test drives, which is expensive and inefficient,
given that only a minority of traffic scenarios pose challenges
to motion planners. We present a workflow for generating a
database of challenging and safety-critical test scenarios that
is not dependent on recorded data. First, we extract a large
variety of road networks across the globe from OpenStreetMap.
Subsequently, we generate traffic scenarios for these road
networks using the traffic simulator SUMO. In the last step,
we increase the criticality of these scenarios using nonlinear
optimization. Our generated scenarios are publicly available
on the CommonRoad website.

I. INTRODUCTION

Virtual testing is an important tool for validating the
safety of automated vehicles, as it exposes potential defects
of the algorithms under test. Having a large variety of
challenging traffic scenarios is vital for effective and efficient
testing of motion planning algorithms. While carrying out
simulations using data recorded from test drives provides us
with realistic scenarios, the required data collection is often
overly expensive and time-consuming [1]. Even though the
number of publicly-available datasets has increased over the
last few years, e.g., [2]–[5], they usually feature only a small
number of maps and require much effort to record.

Our framework generates a database of safety-critical
scenarios for scenario-based testing [6] of motion planing
algorithms for automated vehicles. It consists of

1) Extracting interesting road intersections worldwide
from OpenStreetMap (OSM) [7] by using our Globe-
trotter tool (see Sec. III).

2) Generating safety-critical test scenarios by first pop-
ulating the extracted intersections with traffic partici-
pants through the traffic simulator SUMO [8].

3) Optimizing the criticality of the obtained scenarios by
using a generalizable criticality criterion (see Sec. IV).

A. Related Work

Below, we concisely review related works on approaches
towards automatically creating virtual representations of road
networks and generating critical test scenarios for automated
vehicles.

*The first two authors have contributed equally to this work.
All authors are with the Department of Informatics, Technical University

of Munich, 85748 Garching, Germany.
{moritz.klischat, edmond.irani, fabian.hoeltke,

althoff}@tum.de

1) Creating road networks: Generative approaches con-
struct road networks, e.g., based on abstract specifications
[9]. Moreover, a suite of road networks with a defined cover-
age of road curvatures is generated in [10] using satisfiability
modulo theories. Road networks that lead to the failure of
lane-keeping assistants are generated procedurally in [11]
through mutating road networks using genetic algorithms.

Alternatively, road networks can also be created from
external sources. In [12]–[16], the authors extract road
networks from aerial and satellite images with the help of
computer vision techniques. These works are capable of ex-
tracting high-level geometric information of road networks;
however, lane-level information concerning motion planners
of automated vehicles is not reconstructed. Promising works
towards the reconstruction of road networks with lane-level
detail from aerial images can be seen in [17], [18]. Similarly,
while creating road networks for single lanes from OSM data
is straightforward [19], creating those with lane-level detail
is a more challenging problem [20].

2) Generating critical test scenarios: Creating test sce-
narios for automated vehicles using traffic simulators is
proposed, e.g., in [21], [22]. Realistic scenarios can be
obtained by calibrating their simulations through real-world
measurements. By using criticality metrics, safety-critical
scenarios are filtered [22]; however, these situations occur
only rarely, in the main.

To efficiently obtain critical scenarios, importance sam-
pling from large databases of recorded traffic data is pro-
posed [23]. Criticality metrics are combined with the occur-
rence rates to efficiently sample critical scenarios representa-
tive of real-world driving conditions [24]. Other approaches
use optimization to create critical scenarios based on these
metrics [25], [26]. Similarly, falsification methods can detect
scenarios that falsify a motion planner with respect to a given
safety specification [27], [28]. Parameter regions for critical
scenarios based on constraint satisfaction are computed in
[29]. In our previous work, we presented an optimization-
based method to increase the criticality of initially uncritical
traffic scenarios [30], [31] by decreasing the space of possible
solutions for the vehicle under test, called the drivable area.

B. Contributions

In contrast to previous work on generating test scenarios
through simulation, our approach is particularly efficient
since we combine the automatic extraction of road networks
from OSM with a traffic simulation followed by an increase
of its criticality. By exploiting the large variety of road
networks around the world, we create complex, yet realistic

road networks which currently no procedural map generator
is capable of producing. In contrast to existing work, our
approach does not rely on test drives nor other real-world
traffic data, thus it is able to efficiently create many traffic
scenarios at low costs. The resulting scenarios are indepen-
dent of the vehicle under test, due to our criticality metric
based on the drivable area.

II. OVERVIEW

An overview of our approach is presented in Fig. 1. In the
following subsections, we introduce each component.

Fig. 1. Our pipeline for generating safety-critical scenarios.

A. Platforms

1) CommonRoad: The CommonRoad (CR) benchmark
suite1 is an open-source framework that provides a collection
of traffic scenarios for motion planning algorithms. Scenarios
in CommonRoad consist of road networks, static obstacles,
and dynamic obstacles that represent all possible types of
traffic participants. In this work, we focus on cars, trucks,
and bicycles. Road networks in CommonRoad are described
by lanelets [32] (see Fig. 2). Lanelets are defined by their left
and right bounds, which are modeled by polylines. Further-
more, lanelets are connected through successor-predecessor
and lateral-adjacency relations and contain additional in-
formation such as the speed limit. Additionally, we define
forking points as the points on the centerlines of lanelets
where lanelets split or multiple lanelets merge.

2) OpenStreetMap: OSM is an open-source project that
provides geographic data worldwide. The main structure
of OSM data is defined by three elements: nodes, ways,
and relations. Nodes are geographic points defined by their
latitude and longitude; ways are tuples of nodes and represent
elements such as roads and boundaries of areas; relations are
groups of nodes, ways and other relations. Fig. 3a shows a
map taken from OpenStreetMap.

1https://commonroad.in.tum.de/

Fig. 2. Lanelet network representation.

3) GeoNames: GeoNames2 is a free geographic database
which covers all countries and contains over 11 million
placenames of cities from all over the world. The provided
geographical information includes global coordinates, postal
codes, population, etc.

4) SUMO: This open-source microscopic traffic-
simulation package is designed to handle large road
networks. SUMO models individual vehicles and their
interactions using models for car-following, lane-changing,
and intersection behavior.

B. Converters

Since most of the software platforms mentioned above
have individual formats and map representations, we use
different converters and interfaces to bridge these platforms.

1) OSM2CR converter: It converts OSM maps to Com-
monRoad lanelet networks. While OSM provides map data
for almost any place in the world, their level of detail is
not yet suited for automated vehicles: The motion planners
of automated vehicles and traffic simulators typically require
lane-level information. To resolve this issue, in the first step,
the topology of the lanelet network, i.e., the connections at
intersections, needs to be estimated. Next, spatial information
of individual lanes is deducted accordingly. Fig. 3b shows a
converted lanelet network via this converter.

2) CR-SUMO interface: It enables the communication
between CommonRoad and SUMO by a) converting the CR
road network to SUMO format, b) generating configuration
files for the simulation, and c) converting simulated vehicle
trajectories to the CR format. We refer the interested reader
to [33] for more details regarding this interface.

III. GLOBETROTTER

To automatically extract interesting road networks from
all over the world, we have developed the Globetrotter
tool, which takes the road network data from OSM as its
underlying input. As we want to create scenarios on distinct
road networks, we mainly focus on extracting intersections.
Below, we explain the major steps for extracting the inter-
sections from OSM.

2https://www.geonames.org/

https://commonroad.in.tum.de/
https://www.geonames.org/

(a)

(b)

Fig. 3. (a) Map of Encamp, Andorra taken from OSM. (b) Conversion
result into CommonRoad lanelet network via the OSM2CR converter.

A. Retrieving Candidate Regions

Clearly, there are intersections all over the globe, and they
mostly vary according to region. Given that only 29% of
the Earth’s surface is covered by land3, and that 10% of
these regions accommodate 95% of the human population4,
sampling the Earth’s surface with random coordinates is
not very efficient. Assuming that intersections mostly occur
near populated areas, we retrieve these populated candidate
regions from GeoNames. To speed up the processing in the
next steps, we can also divide the region into smaller subre-
gions if the area of the region exceeds a certain value. The
retrieved candidate (sub)regions are converted into lanelet
networks via the OSM2CR converter.

B. Extracting Intersections

We denote the n-th forking point and the tuple of all
forking points in a lanelet network as Pn and P , respectively.
For a given lanelet network, it is usually difficult to determine
beforehand the number of intersections to be extracted. For
this reason, instead of k-means-like algorithms [34], we
apply the hierarchical agglomerative clustering (HAC) algo-
rithm [35] to P . HAC only requires a distance threshold dth
to limit the distances between clusters: a higher dth entails
larger intersections. Alg. 1 describes how the intersections
are extracted from P .

1) Clustering forking points (Alg. 1, lines 2-4): Initially,
each forking point forms a cluster Cn with it being the only

3https://www.noaa.gov/
4https://ec.europa.eu/jrc/en

Algorithm 1 Extracting Intersections
Inputs: forking points P , distance threshold dth
Output: extracted intersections I

1: I ← ∅
2: . Clustering forking points
3: C ← INITIALIZE(P)
4: C ← HAC(C , dth)
5: . Creating intersections
6: for C ′ ∈ C do
7: I ← CUTLANELETS(C ′)
8: I ← POSTPROCESS(I)
9: I ← I ∪ {I}

10: end for
11: return I

member: Cn = {Pn}. We denote the tuple of clusters by
C := 〈C1, C2, . . . 〉, and the distance between two clusters
Ci, Cj with single-linkage setting [35] by di,j :

di,j = min{dist(a, b)|a ∈ Ci, b ∈ Cj},

where the operator dist(·) returns the Euclidean distance
between two given forking points. In each iteration, the two
clusters Ci, Cj with the minimum distance di,j < dth are
merged into a new cluster C ′ = Ci ∪ Cj . This process is
repeated until no more clusters can be merged. Fig. 4a-4b
show the dendrogram for clustering an exemplary lanelet
network and the clustered forking points.

2) Creating intersections (Alg. 1, lines 5-10): For each
remaining cluster C ′ ∈ C, we determine the minimum radius
rmin of a circle enclosing all forking points within the cluster.
We enlarge this radius by a user-defined margin rmgn to
span a region of interest. We cut out all lanelets from this
region, resulting in an intersection I , and additionally apply
the following steps:

1) Lanelets that are not within the region of interest are
removed.

2) Due to removed lanelets, we update the successor-
predecessor and lateral-adjacency relations.

Fig. 4c shows the extracted intersections I.

C. Selecting Interesting Intersections

Given the intersections I extracted from a lanelet network,
we only keep those that are particularly interesting or distinct
according to the following features:
• number of forking points;
• number of lanelets;
• number of crossing lanelets;
• number of predecessors and successors;
• area of lanelets;
• density of lanelets;
• angle between lanelets; and
• mean distance between forking points and their cen-

troid.
We associate the interestingness of intersections with

the dissimilarity between their features and those of other

https://www.noaa.gov/
https://ec.europa.eu/jrc/en

dth

0

10

20

30

40

50

60

70

5 6 7 2 0 31 4 15 16 11 12 13 14 10 8 9
ID of forking points

D
is

ta
nc

e
[m

]

(a)

0
1
3 4

2

5

6
7 8

10
11

12
13 14

15

16

radius = rmin radius = rmin + rmgn

9

(b)

(c)

Fig. 4. (a) Dendrogram of the clustering result. Three clusters are generated
with dth set to 35 meters. (b) Forking points within one cluster have the
same color. rmgn is set to 15 meters. (c) Intersections extracted from the
input lanelet network.

intersections. By doing so, we turn the selection of interesting
intersections into a multivariate outlier (anomaly) detection
problem. To solve this problem, we use the isolation forest
(iForest) algorithm [36], since it is unsupervised, capable
of efficiently handling multiple dimensions of features, and
requires limited effort to hand-tune its parameters. In the
training phase, a total of k isolation trees (iTrees) are trained
with sets of randomly-selected intersections; in the detection
phase, an anomaly score s ∈ [0, 1] is assigned to each
intersection by the iTrees [36], where an intersection with
a score above a threshold sth is considered an outlier. Fig. 5
presents a collection of distinct intersections. It should be
recalled that we divide the candidate region into subregions
if it is overly large, thus rendering the adopted iForest
algorithm computationally tractable.

IV. GENERATION OF SAFETY-CRITICAL SCENARIOS

On the extracted maps, we simulate traffic participants
using our previously-introduced CR-SUMO interface next.
Since scenarios simulated with SUMO often yield uncritical,
easy-to-solve motion planning problems, we subsequently

increase their criticality using our approach [30], [31] for
reducing the solution space. We first parametrize the initially
obtained trajectories of other traffic participants in Sec. IV-
B and, following that, formulate a nonlinear optimization
problem with a criticality criterion specified in Sec. IV-D.

A. Motion Planning Problem

The system dynamics of the ego vehicle is defined by

ẋe(t) = f(xe(t), u(t)),

where xe(t) ∈ Rn is the state vector and u(t) ∈ U is the
input vector with the set of admissible inputs U ∈ Rm.

The trajectories of ntp other traffic participants are given
by xi(t; p), i ∈ {1, ..., ntp} with parameters p ∈ Rnp ,
initial time t0, and final time tf . Initial candidates for these
trajectories are obtained from SUMO; their parametrization
is explained in more detail in Sec. IV-B. The occupied space
Oi(t; p) ⊂ R2 of a traffic participant is obtained through the
occ(·) operator, i.e., Oi(t; p) = occ(xi(t; p)). We define the
motion planning problem for the ego vehicle as a classical
reach-avoid problem: given an initial state xe,0 = xe(t0),
an input trajectory u(t) has to be found to steer the ego
vehicle into a goal region while not leaving the road surface
Wlanes ∈ R2 and avoiding the space O(t; p) occupied by all
obstacles, i.e.,

∀t ∈ [t0, tf] : occ(xe(t)) ⊆ Wlanes\O(t; p). (1)

We obtain a motion planning problem by deleting a
selected vehicle in a scenario simulated with SUMO and
storing the initial state xe,0 of this vehicle. Vehicles with
interesting maneuvers are automatically selected by using
thresholds on the velocity and acceleration profiles or by
identifying lane changes, turns or vehicles driving nearby.

B. Scenario Parametrization

In order to optimize the criticality of scenarios, we
parametrize trajectories by the parameter vector p. We de-
scribe trajectories in lane-based coordinate systems, in which
a state is defined as x = [sξ, ṡξ, sη, ṡη]

T . The subscripts ξ
and η denote the longitudinal and lateral coordinates with
respect to the centerline, respectively (see Fig. 2).

For the ntp traffic participants, we only parametrize the
longitudinal trajectory using translations ps ∈ Rntp , initial
velocity variations pv ∈ Rntp , and acceleration variations
pa ∈ Rntp , yielding p =

[
ps, pv, pa

]T
. The parametrized

longitudinal position trajectory is given by

sξ,i(t; pi) = ŝξ,i(t) + psi + pvi t+
1

2
pai t

2. (2)

From (2), the centerlines, and the dimensions of the vehi-
cle, we obtain the occupied space Oi(t, p) of each traffic
participant.

Fig. 5. Selected road intersections generated by Globetrotter (sth = 0.9).

C. Drivable Area

We denote a feasible solution to the motion planning
problem defined in Sec. IV-A as χ(t;x0, u(·)), where u(·)
refers to the entire trajectory instead of a particular value
u(t) at time t. To quantify the criticality of a scenario, we use
the solution space, which corresponds to the set of reachable
states for t ∈ [t0, tf] without collisions:

R(t;x0,O(· ; p)) =
{
χ(t;x0, u(·))

∣∣∣
∀τ ∈ [t0, tf] : u(τ) ∈ U ,

occ
(
χ(τ ;x0, u(·))

)
⊆ Wlanes\O(τ ; p)

}
.

By applying the projection operator proj(x) : Rn → R2,
which projects the state space to the position domain, we
obtain the drivable area

D(t;x0,O(· ; p)) =
⋃

x∈R(t;x0,O(· ;p))

proj(x). (3)

An example for the drivable area in presence of an obstacle
is depicted in Fig. 6.

drivable area D(t;x0,O(· ; p)) obstacle Oi(t)

initial state ego xe,0

feasible trajectory χ(t;x0, u(·))

Fig. 6. Example of a drivable area for the time interval [t0, tf].

To quantify the solution space, we introduce the function
area(X) returning the area of a set. We write

A(t; p) := area
(
D(t;x0,O(· ; p))

)
to obtain the area profile of the drivable area over time. We
compute the drivable area using our approach as in [37].

D. Optimization Problem
For increasing the criticality of the motion planning prob-

lem, we optimize the parameter vector p to obtain a desired,
critical area profile Acrit(t):

argmin
p

κ(p), κ(p) =

∫ tf

0

(
A(t; p)−Acrit(t)

)2
(4)

subject to ∀t, ∀i,∀j 6= i : Oi(t; p) ∩ Oj(t; p) = ∅.
(5)

The constraint in (5) ensures that no traffic participants
collide with each other. In this work, we use the drivable
area computed without any traffic participants and the scalar
γ ∈]0, 1[which quantifies the reduction of the drivable area:
Acrit(t) = γ · area(D(t;x0, ∅)).

Since the drivable area is highly nonlinear with respect
to the trajectories of other traffic participants and possibly
subjected to local minima, we use particle swarm optimiza-
tion [38] as in our previous work [30]. Furthermore, we
implement a repair algorithm that enforces the collision
constraint (5). To that end, we formulate the collision con-
straints as linear inequality constraints and correct infeasible
solutions by computing the closest feasible solution using
linear programming. A more efficient optimization is ensured
by an a priori computation of relevant parameter intervals as
presented in [30].

V. EVALUATION

We demonstrate our approach by generating scenarios
on a large variety of road networks from various places
across the world. First, we obtain 576 road networks from
8 countries and 46 cities from Globetrotter, for each of
which we simulate multiple scenarios using our CR-SUMO
interface. After selecting interesting ego vehicles, we obtain
1402 scenarios for which we optimize the criticality. The
resulting scenarios are added to our website5.

5https://commonroad.in.tum.de/

https://commonroad.in.tum.de/

In Fig. 7a we compare the area profiles A(t; p) of the
drivable area in the optimized scenarios against the initial
scenario obtained from SUMO: our approach is able to
significantly decrease the drivable area, and it thus increases
the criticality. Fig. 7b shows the distribution of the achieved
reduction of the critical area. For most of the optimized
scenarios, the drivable area ranges between 0.2 – 0.3 of its
initial size.

TABLE I
PARAMETERS FOR CRITICALITY OPTIMIZATION

Drivable area computation
max. acceleration ego vehicle |amax| 5.0 m/s2

time step size ∆t 0.1 s

time horizon tf 3.4 s

Constraints for optimization
initial velocity variation [−3, 3] m/s

acceleration variation [−5, 2] m/s2

0 1 2 3
time [s]

0

50

100

dr
iv

ab
le

ar
ea

[m
2
]

initial area
optimized area

(a)

0.00 0.25 0.50 0.75 1.00
relative size of the drivable area

0

100

200

300

fr
eq

ue
nc

y

(b)

Fig. 7. (a) Size of the drivable area A(t; p) over time, averaged over all
scenarios. (b) Histogram of the size of the drivable area in the optimized
scenarios relative to the initial scenarios.

Let us present some concrete examples for demonstrating
our algorithm. The first example is an intersection from
the town Pula, Croatia. In Fig. 8, we compare the drivable
area of the initial scenario obtained from SUMO with the
optimized scenario. Note that we restrict the allowed road
surface Wlanes to lanelets that the ego vehicle is allowed
to drive in. In the initial scenario, the ego vehicle could
either turn freely to the right or drive straight. However, after
the optimization, two turning vehicles and a bicycle restrict
possible maneuvers of the ego vehicle.

The second example is a four-way intersection from the
town Putte, Belgium. In the optimized scenario, the ego vehi-
cle must either respect an oncoming vehicle when turning left
or a bicycle when driving straight. As a result, the drivable
area is split into two parts, as shown in Fig. 9.

VI. CONCLUSIONS

We present an approach to automatically generate a large
number of test scenarios for automated vehicles. Our results
show that we are able to extract a large number of distinct
road networks from OpenStreetMaps, for which we simulate
traffic scenarios using the traffic simulator SUMO. Our
approach subsequently yields challenging scenarios by de-
creasing the solution space for motion planning algorithms.

The generated, publicly-available scenarios render the
virtual testing of motion-planning algorithms in challenging

initial position
ego vehicle

t = 0.0 s

t = 1.5 s

drivable areavelocity

t = 3.2 s

(a) Initial scenario from simulation. (b) Optimized, more critical scenario.

Fig. 8. Example 1: Comparison of the drivable areas at different times.

t = 0.0 s

initial position
ego vehicle

t = 1.7 s

drivable area

velocity

t = 3.3 s

(a) Initial scenario from simulation. (b) Optimized, more critical scenario.

Fig. 9. Example 2: Comparison of the drivable areas at different times.

situations easier. In the future, the explicit consideration of
traffic rules during the generation of our critical scenarios
will further improve our test cases.

ACKNOWLEDGMENTS

The authors would like to thank Chuxuan Li for her
work on the SUMO interface and Maximilian Rieger for
his work on the OSM2CR converter. We gratefully ac-
knowledge the financial support from the Central Innovation
Programme of the German Federal Government under grant
no. ZF4086007BZ8 and the German Research Foundation
(DFG) within the Priority Programme SPP 1835 Cooperative
Interacting Automobiles under grant no. AL 1185/4-2.

REFERENCES

[1] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?”
Transp. Res. Part A: Policy Pract., vol. 94, pp. 182–193, 2016.

[2] W. Zhan, L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann,
J. Kümmerle, H. Königshof, C. Stiller, A. de La Fortelle, and
M. Tomizuka, “INTERACTION dataset: An INTERnational, Adver-
sarial and Cooperative moTION dataset in interactive driving scenarios
with semantic maps,” arXiv:1910.03088, 2019.

[3] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni, A. Fer-
reira, M. Yuan, B. Low, A. Jain, P. Ondruska, S. Omari, S. Shah,
A. Kulkarni, A. Kazakova, C. Tao, L. Platinsky, W. Jiang, and V. Shet,
“Lyft Level 5 AV dataset 2019,” https://level5.lyft.com/dataset/, 2019.

[4] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik,
P. Tsui, J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han,
J. Ngiam, H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao,
A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scala-
bility in perception for autonomous driving: Waymo Open dataset,”
arXiv:1912.04838, 2019.

[5] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highD
dataset: A drone dataset of naturalistic vehicle trajectories on German
highways for validation of highly automated driving systems,” in Proc.
of the IEEE Int. Conf. Intell. Transp. Syst., 2018, pp. 2118–2125.

[6] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer,
“Survey on scenario-based safety assessment of automated vehicles,”
IEEE Access, vol. 8, pp. 87 456–87 477, 2020.

[7] M. Haklay and P. Weber, “OpenStreetMap: User-generated street
maps,” IEEE Pervasive Comput., vol. 7, no. 4, pp. 12–18, 2008.

[8] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO–
simulation of urban mobility: an overview,” in Proc. of Int. Conf. Adv.
Syst. Simul., 2011, pp. 63–68.

[9] C. Campos, J. M. Leitão, J. P. Pereira, A. Ribas, and A. F. Coelho,
“Procedural generation of topologic road networks for driving simu-
lation,” in Iberian Conf. Inf. Syst. Technol., 2015, pp. 1–6.

[10] B. Kim, A. Jarandikar, J. Shum, S. Shiraishi, and M. Yamaura, “The
SMT-based automatic road network generation in vehicle simulation
environment,” in Proc. of the ACM Int. Conf. Embed. Softw., 2016,
pp. 1–10.

[11] A. Gambi, M. Mueller, and G. Fraser, “Automatically testing self-
driving cars with search-based procedural content generation,” in Proc.
of the 28th ACM SIGSOFT Int. Symposium on Software Testing and
Analysis, 2019, pp. 318–328.

[12] G. Máttyus, W. Luo, and R. Urtasun, “DeepRoadMapper: Extracting
road topology from aerial images,” in Proc. of the IEEE Int. Conf.
Comput. Vision, 2017, pp. 3438–3446.

[13] M. Maboudi, J. Amini, M. Hahn, and M. Saati, “Road network
extraction from VHR satellite images using context aware object
feature integration and tensor voting,” Remote Sens., vol. 8, no. 8,
2016.

[14] P. Li, Y. Zang, C. Wang, J. Li, M. Cheng, L. Luo, and Y. Yu, “Road
network extraction via deep learning and line integral convolution,” in
Proc. of the Int. Geosci. Remote Sens. Symp., 2016, pp. 1599–1602.

[15] Y. Zang, C. Wang, Y. Yu, L. Luo, K. Yang, and J. Li, “Joint enhancing
filtering for road network extraction,” IEEE Trans. Geosci. Remote
Sens., vol. 55, no. 3, pp. 1511–1525, 2016.

[16] Y. Y. Chiang and C. A. Knoblock, “Automatic extraction of road
intersection position, connectivity, and orientations from raster maps,”
in Proc. of the ACM Int. Symp. Adv. Geogr. Inf. Syst., 2008, pp. 183–
192.

[17] P. Fischer, S. M. Azimi, R. Roschlaub, and T. Krauß, “Towards HD
maps from aerial imagery: Robust lane marking segmentation using
country-scale imagery,” Int. J. Geo-Inf., vol. 7, no. 12, 2018.

[18] A. Zang, Z. Li, R. Xu, and D. Doria, “Lane boundary extraction from
satellite imagery,” in Proc. of the ACM SIGSPATIAL Workshop High-
Precis. Maps Intell. Appl. Auton. Veh., 2017, pp. 1–8.

[19] A. Artunedo, J. Godoy, and J. Villagra, “Smooth path planning for
urban autonomous driving using OpenStreetMaps,” in Proc. of the
IEEE Intell. Veh. Symp., 2017, pp. 837–842.

[20] D. Krajzewicz, G. Hertkorn, and J. Ringel, “Preparation of digital
maps for traffic simulation; part 1: approach and algorithms,” in Proc.
Ind. Simul. Conf., 2005, pp. 285–290.

[21] D. Nalic, A. Eichberger, G. Hanzl, M. Fellendorf, and B. Rogic,
“Development of a co-simulation framework for systematic generation
of scenarios for testing and validation of automated driving systems,”
in Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2019, pp. 1895–
1901.

[22] P. Riegl, A. Gaull, and M. Beitelschmidt, “A tool chain for generating
critical traffic situations for testing vehicle safety functions,” in IEEE
Int. Conf. on Vehicular Electronics and Safety, 2019, pp. 1–6.

[23] D. Zhao, H. Lam, H. Peng, S. Bao, D. J. LeBlanc, K. Nobukawa,
and C. S. Pan, “Accelerated evaluation of automated vehicles safety
in lane-change scenarios based on importance sampling techniques,”
IEEE Trans. Intell. Transp. Syst., vol. 18, no. 3, pp. 595–607, 2017.

[24] S. Feng, Y. Feng, C. Yu, Y. Zhang, and H. X. Liu, “Testing scenario
library generation for connected and automated vehicles, part I:
Methodology,” arXiv:1905.03419, 2020.

[25] F. Hauer, A. Pretschner, and B. Holzmüller, “Fitness functions for
testing automated and autonomous driving systems,” in Proc. of the
Int. Conf. Comput. Safety, Rel., Security, 2019, pp. 69–84.

[26] H. Beglerovic, M. Stolz, and M. Horn, “Testing of autonomous
vehicles using surrogate models and stochastic optimization,” in Proc.
of the IEEE Int. Conf. Intell. Transp. Syst., 2018, pp. 1129–1134.

[27] C. E. Tuncali, T. P. Pavlic, and G. Fainekos, “Utilizing S-TaLiRo as
an automatic test generation framework for autonomous vehicles,” in
Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2016, pp. 1470–1475.

[28] M. Koschi, C. Pek, S. Maierhofer, and M. Althoff, “Computationally
efficient safety falsification of adaptive cruise control systems,” in
Proc. of the IEEE Int. Conf. Intell. Transp. Syst., 2019, pp. 2879–
2886.

[29] A. Nonnengart, M. Klusch, and M. Christian, “CriSGen : Constraint-
based generation of critical scenarios for autonomous vehicles,” in
Proc. of the Int. Workshop on Formal Methods for Autonomous
Systems, 2019.

[30] M. Klischat and M. Althoff, “Generating critical test scenarios for
automated vehicles with evolutionary algorithms,” in Proc. of the IEEE
Intell. Veh. Symp., 2019, pp. 2352–2358.

[31] M. Althoff and S. Lutz, “Automatic generation of safety-critical test
scenarios for collision avoidance of road vehicles,” in Proc. of the
IEEE Intell. Veh. Symp., 2018, pp. 1326–1333.

[32] P. Bender, J. Ziegler, and C. Stiller, “Lanelets: Efficient map repre-
sentation for autonomous driving,” in Proc. of the IEEE Intell. Veh.
Symp., 2014, pp. 420–425.

[33] M. Klischat, O. Dragoi, M. Eissa, and M. Althoff, “Coupling SUMO
with a motion planning framework for automated vehicles,” in SUMO:
Simulating Connected Urban Mobility, 2019.

[34] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
Recognit. Lett., vol. 31, no. 8, pp. 651–666, 2010.

[35] F. Murtagh and P. Legendre, “Ward’s hierarchical agglomerative
clustering method: which algorithms implement Ward’s criterion?” J.
Classif., vol. 31, no. 3, pp. 274–295, 2014.

[36] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proc. of
the IEEE Int. Conf. Data Mining, 2008, pp. 413–422.

[37] M. Klischat and M. Althoff, “A multi-step approach to accelerate the
computation of reachable sets for road vehicles,” in Proc. of the IEEE
Int. Conf. Intell. Transp. Syst., 2020.

[38] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. of the Int. Symp. Micro Mach. Human Sci., 1995, pp.
39–43.

	Introduction
	Related Work
	Creating road networks
	Generating critical test scenarios

	Contributions

	Overview
	Platforms
	CommonRoad
	OpenStreetMap
	GeoNames
	SUMO

	Converters
	OSM2CR converter
	CR-SUMO interface

	Globetrotter
	Retrieving Candidate Regions
	Extracting Intersections
	Clustering forking points (Alg. 1, lines 2-4)
	Creating intersections (Alg. 1, lines 5-10)

	Selecting Interesting Intersections

	Generation of Safety-Critical Scenarios
	Motion Planning Problem
	Scenario Parametrization
	Drivable Area
	Optimization Problem

	Evaluation
	Conclusions
	References

