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Science, my lad, is made up of mistakes,
but they are mistakes which it is useful to
make, because they lead little by little to
the truth.

— Jules Verne (1828–1905)

Vieles hätte ich verstanden – hätte man es
mir nicht erklärt.

— Stanis law Jerzy Lec (1909–1966)

Most people say that it is the intellect
which makes a great scientist. They are
wrong: it is character.

— Albert Einstein (1879–1955)





Abstract

Bayesian inverse problems constitute an important methodological part of parameter studies
in predictive modeling. Since high-dimensional parameter spaces often require a huge compu-
tational effort, approaches for cost reduction are of fundamental importance. For example, the
costs can be substantially reduced by exploiting low-dimensional structure in the form of active
subspaces. In this work, we derive new generalized bounds, develop an iterative algorithm, and
demonstrate computational benefits with models from various applied disciplines.

Zusammenfassung

In der prädiktiven Modellierung stellen Bayes’sche inverse Probleme einen wichtigen me-
thodischen Bestandteil von Parameterstudien dar. Da hierbei in hochdimensionalen Parame-
terräumen oft ein großer Rechenaufwand entsteht, sind Methodiken zur Kostenreduktion von
fundamentaler Bedeutung. Eine Möglichkeit besteht darin, niederdimensionale Strukturen in
der Form von aktiven Unterräumen auszunutzen. In dieser Arbeit werden neue verallgemei-
nerte Schranken hergeleitet, ein iterativer Algorithmus entwickelt und die Robustheit und
Flexibilität der vorgestellten Methodik anhand von Modellen aus verschiedenen Anwendungs-
disziplinen demonstriert.
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Preface

Journey as a PhD candidate

My supervisor Prof. Dr. Barbara Wohlmuth accepted me as a PhD candidate at the TUM Chair
for Numerical Mathematics in late September 2016 such that I was able to start in mid-
October 2016 with a third-party position.

In the first 8–10 months, I was looking for a topic which is 1) interesting enough to stay
concentrated over a longer period, 2) challenging from a scientific and mathematical perspec-
tive, and 3) doable for me with my skills. Such a crucial decision is not easy to make, especially
being a finished but only half-baked Master’s student. Since I was totally free in my choice,
basically each project at the chair at that time could provide a potential topic. After some
time, I decided for a topic at the interface of, say, statistics, scientific computing, mathematical
modeling, and applications from other scientific disciplines like engineering or physics.

I have received a lot of support in getting familiar with the contents by my main technical
mentor Steven (“Steve”) Mattis (former postdoc at TUM) who provided significant guidance
and extraordinary patience for the first 2.5 years of my time at the chair; but also Jonas
(“Jones”) Latz (former PhD student at TUM, now postdoc at University of Cambridge),
with his broad but at the same time deep knowledge, has considerably contributed to my
understanding.

Each PhD student at TUM is part of the TUM Graduate School and has to announce an
official mentor who should be fairly independent of the structure at the department. In my
case, it is Prof. Gerta Köster (University of Applied Sciences Munich) who agreed to take this
responsibility. Although it was not necessary to get in contact with her to talk about serious
issues, I know that she would have been open to meet and discuss at any time.

From July 2017 on, Barbara Wohlmuth offered a position of the department which also
includes teaching and (IT) administrative tasks at the chair. Of course, I accepted since
teaching can be an asset in many ways; also the IT administration that I have done together
with Prof. Rainer Callies (TUM Chair for Numerical Mathematics) suited my competence due
to my background as a software developer.

Teaching mainly encompassed preparing exercise sheets and giving tutorials for students.
On the one hand, it was a welcome balancing factor to compensate frustration from cumber-
some research topics and it often made me feel like having the opportunity of a direct influence
on students and their mathematical education. On the other hand, (good) teaching is time
consuming and it was sometimes difficult to make a compromise that satisfies both, teaching
and research. Courses that I taught were Numerical Linear Algebra, Numerics of ODEs, and
ODEs/PDEs for engineering students. Also, Barbara Wohlmuth and I have been part of a two
week summer school in South-Tirol for students from different universities in September 2018,
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where our group worked on several aspects of computer simulation and modeling.

In addition to the everyday life as a PhD student, I was allowed to take part at a long term
(∼1.5 years) teaching course offered by TUM ProLehre for teachers from the math department.
I was really enjoying working with this group of PhD students and postdocs that also joined
for the lessons. It has always been informative, educating, and fun, especially due to the
huge effort of the organizers Rudolf Aichner, Emil Ratko-Dehnert, Vanessa Landgraf (former
Krummeck), and Pit Forster.

In March 2018, I joined the International Graduate School of Science and Engineering
(IGSSE) for the project UNMIX (Uncertainties due to boundary conditions in predicting
mixing in groundwater) that was initiated in cooperation with the TUM Chair of Hydrology
and River Basin Management and the Oden Institute Computational Hydraulics Group from
the University of Texas at Austin (UT Austin). The IGSSE qualification program consists
of several science-related and soft skill trainings. One mandatory element is an international
research phase in which a PhD student is supposed to gain experience at another (or several)
research institution(s) abroad for a longer period.

The first stay was at UT Austin for six weeks in February and March 2019 with my project
partners Mónica Basilio Hazas, Pablo Merchan Rivera, and Daniel Bittner (all TUM Chair of
Hydrology and River Basin Management). We were all able to get insight into the academic
environment of a big U.S. American university and the scientific work of the research group
lead by Prof. Clint Dawson. It was a personal challenge for me to stay away from home for a
longer period, but, in retrospect, it was a great experience with several positive memories.

Shortly after coming home from Austin, in early April 2019, I was allowed to be part of
hydrological field measurements in Trento (Italy). For me as a mathematician, it was very
interesting to see how hydraulic heads are practically measured in cooperation and agreement
with local authorities. So far, the measured quantities have only been of abstract mathematical
type in my mind.

I did the second stay abroad at the Department of Statistics from Lund University in
Lund (Sweden) under the supervision of Prof. Krzysztof Podgórski. It was split into two parts;
the first was end of May 2019 and the second took place in August 2019. I learned a lot about
statistical thinking and really enjoyed the time there, especially because I felt very welcome at
the department over the whole period.

Science

The topic of my PhD project is (very) broadly speaking from the field of Uncertainty Quantifi-
cation (UQ) and combines two facets of modern scientific computing. It investigates Bayesian
inverse problems, i. e., the derivation and computation of (informed and informative) proba-
bility distributions on model inputs, and their low-dimensional structure in the form of linear
subspaces gained by a technique called the active subspace method.

Many inverse problems of practical relevance have several input parameters and can suffer
from the curse of dimensionality describing a substantial growth of computational complexity
in the number of model inputs. This phenomenon can be tackled by reducing the actual
dimension of the problem in the sense that computations focus only on its intrinsic structure.

The collection of my scientific contributions can be found in the preceding listings above.
However, I would like to briefly mention (what I see as) the milestones of my work. The
first publication, in cooperation with Shubhangi Gupta (former GEOMAR Helmholtz Cen-
tre for Ocean Research Kiel, now postdoc at TUM) and Christian Deusner (GEOMAR),
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approximately solves a Bayesian inverse problem involving a complex model for the behav-
ior of methane hydrates by investigating lower-dimensional active subspaces. We submitted
a manuscript in January 2018 which was accepted in August 2018 by the Springer journal
Computational Geosciences.

In the UNMIX project, we worked on a Bayesian calibration of a karst hydrological model,
developed by Daniel Bittner and Gabriele Chiogna (TUM Chair of Hydrology and River Basin
Management), paired with a global sensitivity analysis. A manuscript with our results was
submitted in January 2019 and accepted in July 2019 by the Wiley journal Water Resources
Research.

Both of the mentioned milestones forced me to work interdisciplinary which was interesting
and educating on the one hand but on the other hand also challenging in the sense that
communication across disciplines needs time, patience, and persistence.

In contrast, the third main contribution focused on a purely mathematical topic. To-
gether with Jonas Wallin (Lund University) and the acknowledged support of Prof. Krzysztof
Podgórski, we studied an interesting case in which we were able to prove that common error
bounds of the active subspace method are not able to be obtained, but one rather has to fall
back to generalized bounds. A corresponding manuscript was submitted in October 2019 and
accepted in February 2020 by the Electronic Journal of Statistics (Institute of Mathematical
Statistics, IMS).

With huge anticipation, I planned to take part at the SIAM Conference on Uncertainty
Quantification (UQ20) on the TUM campus in Garching and contribute in the form of an
already accepted talk in a minisymposium. The conference was scheduled for March 24–27,
2020 but unfortunately got canceled on March 7, 2020 due to the outbreak of SARS-CoV-2.

A final topic that I spent a lot of time and dedication on concerns an iterative construction
of active subspaces that promise to fit better to a given Bayesian problem than subspaces
computed with standard initial quantities. In particular, this can, for instance, be seen as a
preconditioning step for further subsequent inference procedures in higher (but not full) dimen-
sions. A corresponding computational experiment is conducted with an epidemiological model
for the 2014 Ebola virus outbreak in West Africa. I want to sincerely thank Maria Vittoria
Barbarossa (former Heidelberg University, now Frankfurt Institute for Advanced Studies),
who is one of the modelers, for her patient correspondence and for providing subtle, crucial
information about the model without which a successful implementation would not have been
possible.

Infrastructure

All mentioned topics and projects involved a large amount of programming. The main part
was developed in the form of scripts using the Python scripting language in version 3.7 [270],
a documentation of which is available at https://docs.python.org/3.7/, and the Python
distribution Anaconda [1].

In particular, I have made extensive use of popular Python libraries for scientific comput-
ing (NumPy [205], SciPy [271]), statistics/machine learning (scikit-learn [210]), data analysis
(pandas [191]), and visualization (Matplotlib [131], seaborn [281]). For parallel computations,
I employed the shell script launcher [5] which distributes batch jobs on a predefined number
of processor cores. I want to express my reverence and thank all the developers of these high
quality, freely available software packages and their (financial) supporters. In my opinion, their
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Figure 1: Dependencies among all chapters.

appreciation and contribution is highly underrated in the scientific community. My source code
can be found in a repository at

https://bitbucket.org/m-parente/uq-tools/.

The methane hydrate model of Shubhangi Gupta is developed in the programming language
C++ with the DUNE PDElab library [20, 76]. Daniel Bittner implemented the karst hydrological
model “LuKARS” in the statistical scripting language R [10]. Wolfram Mathematica [285]
notebooks and code to generate plots for the article with Jonas Wallin can be found at

https://bitbucket.org/m-parente/asm-poincare-pub/.

As a development environment, I used Microsoft’s highly extensible and customizable edi-
tor Visual Studio Code [3] and a corresponding Python extension [2].

The personal workstation that was kindly provided by the TUM Chair for Numerical Math-
ematics is a Dell Precision Tower 7810 equipped with an Intel(R) Xeon(R) CPU E5 (consisting of
8 logical cores each running at 3 GHz) and 32 GB RAM. The parallel computations involving
the expensive methane hydrate model were conducted on one of the chair’s workstations which
is also a Dell Precision Tower 7810 but equipped with two Intel(R) Xeon(R) CPU E5 (consisting
of a total of 36 logical cores each running at 2.3 GHz) and 256 GB RAM.

This document, as well as most of my scientific notes and manuscripts, was created with
the LATEX distribution TeX Live [4] and the editor TeXstudio [6].

Structure

The content is logically divided into chapters, sections, subsections, and appendices; the depth
of the subsequent table of contents is the section level. Definitions, assumptions, theorems,
propositions, lemmata, and corollaries are all numbered within the same logical group on the
section level. Equations, figures, and tables are numbered on chapter level. Algorithms are
numbered consecutively in whole numbers.

It follows a description of the chapters’ contents. The dependencies among all chapters
are illustrated in Fig. 1. Chapter 1 provides an introduction to UQ by explaining different
ways to define “uncertainty” and by describing several tasks that are commonly assigned to
the field. In Chapter 2, we give a motivation for the consideration of inverse problems in
a statistical setting and lay the mathematical foundation for the (approximate) solution of
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Bayesian inverse problems. Active subspaces are introduced in the context of related dimen-
sion reduction approaches in Chapter 3. We study this technique from theoretical, as well as
from practical perspectives. Chapter 4 is concerned with bringing Bayesian inverse problems
and the active subspace method formally and methodologically together. It forms the basis for
subsequent investigations. An efficient parameter estimation via active subspaces involving the
mentioned complex methane hydrate model is conducted in Chapter 5. Chapter 6 describes
our approach to calibrate the karst hydrological model from the UNMIX project involving a
high-dimensional parameter space and provides a corresponding global sensitivity analysis. Fi-
nally, Chapter 7 proposes an iterative scheme for the computation of active subspaces which is
more robust to distributional assumptions on input parameters and thus can serve as a precon-
ditioning/preprocessing step for further studies. Appendix A contains well-known, common
results and definitions that are used and referred to throughout the document. Appendix B
rigorously shows the invariance (w.r.t. orthogonal transformations) of Poincaré constants for
multivariate normal distributions which is required in Ch. 3. Appendix C provides the model
equations for the karst hydrological model “LuKARS” from Ch. 6. Appendix D includes a
proof concerning a formal statement on the iterative algorithm from Ch. 7. The last two
chapters contain a list of used Notation and all References.
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Chapter 1
Quantification of uncertainties

The field of Uncertainty Quantification (UQ) is a recent, modern, and still emerging scientific
discipline. Several attempts to “define” UQ had already been undertaken, but it seems that
there is not a suitable unique definition every involved scientist agrees on. A possible reason
for this type of ambiguity is the fact that scientists, who have backgrounds from different fields,
may have different focuses or even disagree already on such a fundamental interpretation of
what an uncertainty actually is; a topic that is discussed below in Sec. 1.1. UQ can, however,
be seen as the interaction of fields like probability theory, statistics, mathematical modeling,
experiments, numerical analysis, and computer simulations. Many models and predictions,
e. g., from disciplines like medicine, geology, hydrology, engineering, and many more, are sub-
ject to uncertainties and, hence, there is a need for structured approaches on how to manage
them within a suitable framework. For example, risk engineers need reliable guarantees for
statistical properties of their models in order to justify a basis for important decisions. Since
the mathematical formalism provides a natural context for a rigorous treatment of the quantifi-
cation of uncertainties, UQ therefore utilizes concepts and methods from applied mathematics,
e. g., from mathematical analysis, linear algebra, functional analysis, approximation theory, or
perturbation theory.

A main goal of scientists or engineers applying UQ is the identification, quantification, and
reduction of uncertainties related to models, computer algorithms, experiments, and predictions
of quantities of interest (QoI) [243]. This rather generally formulated problem can and must
be subdivided into subtasks of which the most common are presented in Sec. 1.2.

For a more general overview and broader discussion of goals, fundamentals, and interpre-
tations of UQ, see the books in [243, 253] and the review article of [204].

1.1 Types of uncertainties

The definition of the notion uncertainty is as fundamental as a definition can be for UQ.
Although there exist several philosophical debates about a possible definition, we prefer to
approach it by describing two types of common classifications for uncertainties.

The classes of epistemic (or systemic) and aleatoric (or statistical) uncertainties is well
explained by a story about an important decision that Barack Obama had to make during
his presidency in 2011 [93]. On April 29, 2011 Barack Obama had to decide whether or
not to attack a compound Osama bin Laden was suspected to hide in. As Obama admitted
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2 1 Quantification of uncertainties

afterwards, this extraordinary situation put a lot of stress on him. This stress can be attributed
to two different sources: First, although it has been a fact that either bin Laden was in the
compound or not, Obama was still not certain about this fact. This type of uncertainty is called
epistemic and is often described to be a lack of knowledge. Secondly, even if Obama had given
the command for an attack, it was not certain that the operation would be successful. This
uncertainty, not being a fact, is of statistical or probabilistic nature and thus called aleatoric
(from the Latin word ālea meaning dice). It is still an open debate among philosophers
and scientists from different fields if this classification is appropriate, or if it is even possible
to uniquely attribute a particular uncertainty to one of the two mentioned categories. For
example, “an aleatory assessment that the military operation would succeed most of the time
may also entail some epistemic uncertainty due to a lack of confidence in the assumptions
underlying that assessment.” [93, p. 2]

A second way of classification is more of conceptual type and seems to be more accessible
compared to the two categories from above. In [204], all uncertainties appearing during the
development and assessment of mathematical models in the context of UQ are assigned to one
of the following classes of uncertainties:

• Uncertainty in the system of reasoning or mathematical framework: There are
several frameworks and theories in which it is possible to express problems concerning
the quantification of uncertainties. Examples are (different types of) probability theory
or, according to [204], possibility theory, fuzzy sets, Dempster–Shafer theory, or interval
arithmetic. It is, however, difficult to quantify this type uncertainty.

• Data uncertainty: Field experiments and measurements collecting data for, e. g., sta-
tistical inferences, are often subject to errors and uncertainties due to imprecise mea-
surement devices or imperfect environmental conditions. Either there exist justified as-
sumptions on the distribution of experimental errors, or particular models for this type
of error are applied; see, e. g., [46, 236].

• Model uncertainty: A famous quote of George E.P. Box from 1978 in [37] is: “All
models are wrong, but some are useful.” Almost always, building a model for a partic-
ular phenomenon automatically includes model errors that constitute a discrepancy in
a model’s prediction and the actual phenomenon. This type of error, or uncertainty,
is elusive and hard to grasp. However, there exist statistical approaches in the field of
model adequacy checking on how to quantify model uncertainty; see, e. g., [197, Ch. 4].

• Parameter uncertainty: Many physical or mathematical models depend on parametric
input values that directly impact the output of the model. Input parameters can be
scalar- or function-valued and are often not clearly determined but uncertain. Examples
are birth and death rates in a predator-prey model or initial/boundary conditions in a
Navier-Stokes simulation. Most of the following content is dedicated to the statistical
quantification of this type of uncertainty.

• Discretization uncertainty: A numerical implementation of models in efficient com-
puter codes needs to discretize in space and time. For example, the numerical solution of
a partial differential equation (PDE) is often computed on a discrete mesh in space and
at discrete points in time. This uncertainty (or, more suitable, error) can be quantified
by, e. g., a priori or a posteriori error estimates known from prominent discretization
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Figure 1.1: Forward propagation of a standard normal distribution to a normal distribution
with mean µ = 2 and standard deviation σ = 0.2 through the map G(x) := 0.2x+ 2.

methods like the finite difference method [175] or the finite element method [39]. Tradi-
tional approaches employ deterministic error estimates, but there are recent advances in
a probabilistic or Bayesian treatment of discretization errors; see, e. g., [124, 203].

1.2 Some tasks in UQ

UQ is a wide field with a lot of different problems. The variety is partly caused by the
different types of uncertainties mentioned above. The following enumeration of common UQ
tasks is certainly not complete but is supposed to give a broad overview making it easier to
integrate the main investigations later. Note that these tasks mainly aim to solve problems
related to parameter uncertainty. Uncertainty is, especially in this case, modeled by probability
distributions known from statistics and probability theory.

In the following, let G(x) denote the output or QoI of a model or computation for some
input parameter or variable x.

Forward UQ

Forward uncertainty quantification comprises tasks like uncertainty/forward propagation and
the computation of moments of QoIs.

Forward propagation deals with the computation or estimation of a probability distribution
on the space of outputs. The (known or assumed) uncertainty of inputs x propagates to an
(unknown) uncertainty of corresponding outputs d := G(x). Mathematically, given a distribu-
tion PX on the space of inputs, i. e., let X ∼ PX denote a random input variable, the task is
to compute the so-called push-forward distribution of D := G(X) which is PD := PX(G−1(·)).
For example, if we assume that our input X ∼ N (0, I) with values in Rn, n ∈ N, then this
uncertainty propagates through the map G(x) := σx + µ, where µ ∈ Rn and σ > 0, to a
normal distribution with mean µ and covariance matrix σI. Fig. 1.1 illustrates the case in 1D
for σ = 0.2 and µ = 2. Of course, more complex problems do often not allow to analytically
compute the propagated distribution. Hence, for such scenarios, more sophisticated methods
must be applied; see, e. g., [172].
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Figure 1.2: A perturbation in the input x0 can have large effects on the corresponding out-
put d0 = G(x0) depending on the derivative dG(x0)/dx.

Multilevel Monte Carlo methods are often applied for estimating the expectation of a com-
putationally expensive QoI, i. e., E[G] = E[G(X)], if the distribution of the input X is given
or can be assumed. Suppose there exists a sequence of approximations G0, . . . ,GL of G (on
so-called levels 0, . . . , L) such that the evaluation of G`1 is cheaper than that of G`2 if `1 < `2
and such that GL → G as L → ∞. The linearity of the expectation operator allows to write
E[GL] as a telescoping sum,

E[GL] = E[G0] +

L∑
`=1

E[G` − G`−1]. (1.1)

Since variances Var(G` − G`−1)→ 0 as `→∞, it is not necessary to have a lot of (expensive)
evaluations of G` for larger ` which can considerably save computational costs. Only a few
expensive samples have to be computed, but, on the other hand, even more so on lower
(cheaper) levels are needed. More details, for example on convergence rates or the number of
samples on each level, can be found in [51, 98].

Sensitivity analysis (SA)

Similar to forward UQ, SA studies how the uncertainties in the output can be assigned to
different origins of uncertainties in inputs. For example, if a model is sensitive w.r.t. to some
of its parameters, it is important to infer/know these parameters sufficiently accurately since,
otherwise, the model output/prediction would not be reliable. There exist several approaches
on how to define and quantify sensitivities. Here, we look at local and global sensitivity analysis.

Local SA uses partial derivatives of the forward model G at a given nominal value x0,
i. e., we have to compute ∂G(x0)/∂xi for each i = 1, . . . , n. That means, if the local sensitivity
of G at x0 is large, a small perturbation or uncertainty in x0 can have large effects on the
corresponding output G(x0); see Fig. 1.2 for illustration. In general, the nominal values, at
which to compute the partial derivatives, are not known a priori. Also, local SA does neither
intend to explore the whole input space nor systematically study perturbations in combinations
of different input components.
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For these reasons, there is a need for strategies and metrics analyzing global sensitivities.
Here, “global” means that sensitivities are computed at several different locations to build an
average sensitivity. These locations are sometimes chosen by a given underlying probability
distribution. An overview of the most common techniques for global SA is provided in [232].
We present a particular approach, probably the most common in modern SA, called variance-
based SA or Sobol indices [245, 246]. We assume w.l.o.g. that our forward map G is real-valued
and its inputs are independently uniformly distributed. In the vector-valued case, we can
apply the following steps component-wise, and if the input space is not the unit cube, it can
be transformed to be. Then, according to [245], G(X) can be decomposed in

G(X) = G0 +
n∑
i=1

Gi(Xi) +
n∑

i,j=1
i<j

Gi,j(Xi, Xj) + · · ·

+ G1,2,...,n(X1, . . . , Xn),

(1.2)

where G0 is a constant and Gi1,...,is are functions of Xi1 , . . . , Xis (for appropriate indices
i1, . . . , is, s ≥ 1). A condition on every function Gi1,...,is is that∫ 1

0
Gi1,...,is(xi1 , . . . , xis) dxik = 0 (1.3)

for each k = 1, . . . , s, which implies that all terms in (1.2) are orthogonal. Functions Gi1,...,is
are computed by taking suitable (conditional) expectations, e. g.,

E[G(X)] = G0,

E[G(X) |Xi] = G0 + Gi(Xi),

E[G(X) |Xi, Xj ] = G0 + Gi(Xi) + Gj(Xj) + Gi,j(Xi, Xj).

(1.4)

That is, we have

G0 = E[G(X)],

Gi(xi) = E[G(X) |Xi = xi]− G0,

Gi,j(xi, xj) = E[G(X) |Xi = xi, Xj = xj ]− Gi(xi)− Gj(xj)− G0.

(1.5)

The remaining functions are derived by analogous steps. Using the orthogonality of the terms
in (1.2), the variance of G(X) can be decomposed similarly, i. e.,

Var(G(X)) = E[G(X)2]− G2
0

=

n∑
i=1

Vi +

n∑
i,j=1
i<j

Vi,j + · · ·+ V1,2,...,n, (1.6)

where

Vi = Var(E[G(X) |Xi]),

Vi,j = Var(E[G(X) |Xi, Xj ])− Vi − Vj .
(1.7)

The other terms in (1.6) are again defined analogously. Hence, (1.6) shows that the variance
of G(X) can be decomposed into variances related to each input variable and interactions
among them. There exist two common notions of sensitivity indices:
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1. first-order indices [245],

2. total-effect indices [128].

A first-order index measures how much the variance caused by an interaction of certain input
variables contributes to the total variance. This also includes variances caused by single (or
marginal) input variables. For input variables Xi1 , . . . , Xis , it is defined by

Si1,...,is :=
Vi1,...,is

Var(G(X))
. (1.8)

Note that
n∑
i=1

Si +
n∑

i,j=1
i<j

Si,j + · · ·+ S1,2,...,n = 1. (1.9)

Since it can be computationally expensive to evaluate every single first-order index (the number
of different first-order indices is 2n− 1), it is cheaper to compute the total-effect indices which
measure sensitivities w.r.t. a certain input variable, i. e., these indices include the variance
caused by the variable itself and each of the variances caused by its interactions. For an input
variable Xi, the total-effect index is defined by

Stot,i :=
E[Var(G(X) |X∼i)]

Var(G(X))
, (1.10)

where X∼i means all variables unless Xi. Note that there are only n total-effect indices to
compute. Also, it holds that

n∑
i=1

Stot,i ≥ 1, (1.11)

since variances caused by interactions are counted multiple times in this sum. For the compu-
tation of first-order and total-effect indices, we refer to [232, Ch. 4.6].

In Ch. 6, we will see that the active subspace method allows for another way to define a
global sensitivity metric. In fact, these indices are comparable to Sobol indices as was shown
in [53].

Data assimilation

Originally developed in the fields of weather forecasts, climate studies, and oceanographic
sciences, data assimilation stands for the incorporation of noisy data in the estimation of
the state of a dynamical, i. e., time-varying, system which describes the state’s evolution or
dynamics. For the specification of a mathematical setup, we follow [165] and only regard the
discrete-time case although the continuous-time setting is also treated therein.

With indices j representing time, the dynamical state is modeled by a sequence of random
variables (Sj)j∈N0 with values in Rn, n ∈ N, and the dynamics by a map Ψ ∈ C(Rn,Rn),
i. e.,

Sj+1 = Ψ(Sj) + ξj , j ∈ N0,

S0 ∼ N (m0, C0),
(1.12)
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Figure 1.3: Depending on the relation of the time for the state estimate and the time data
is available up to (gray), the corresponding tasks of estimation have different names in the
literature.

where (ξj)j∈N0 is a sequence of i.i.d. random variables modeling stochasticity in the dynamics
(then called stochastic dynamics). The initial Gaussian distribution of S0 is assumed to have
mean vector m0 ∈ Rn and covariance matrix C0 ∈ Rn×n. For simplicity, it is assumed that
all ξj are independent of S0. If the dynamics is not stochastic, i. e., ξj is not used in (1.12),
the dynamics is called deterministic dynamics.

Observable quantities of the system (QoIs), for which measurements are assumed to be
available, are computed from the state and hence also evolve over time. Since measure-
ments (Dj)j∈N for these QoIs (with values in Rm, m ∈ N) are often corrupted by noise,
they are modeled by

Dj = O(Sj) + ηj , j ∈ N, (1.13)

where (ηj)j∈N is a sequence of i.i.d. random variables representing observational noise and
assumed to be independent of all Sj and all ξj . Often, it is assumed that the noise is Gaussian.
The map O ∈ C(Rn,Rm) is the so-called observation operator and maps an element from the
state space to the data space.

In this setup, the actual goal, from a Bayesian perspective, is to find the posterior distribu-
tion PSj |D1:k

(·|d1:k), j, k ∈ N, i. e., we look for a distribution on the state space for the state at
step j using measurement data d1:k ∈ Rm×· · ·×Rm, i. e., observations at time steps 1, . . . , k.
Depending on the relation between j and k, there are different notions for the corresponding
task; see Tab. 1.1 or Fig. 1.3.

Table 1.1: The task of finding the posterior distribution PSj |D1:k
(·|d1:k) is named depending

on the relation of j and k.

Relation Notion

j > k Prediction
j = k Filtering
j < k Smoothing

Remark. The Bayesian formulation of these problems also allows to incorporate the estimation
of model parameters in this setting; see, e. g., [234]. Parameter studies are, however, not
mentioned here but in the following subsection.
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Figure 1.4: Illustration of the common setup in parameter calibration.

Much more mathematical details for filtering and smoothing, including their relation and
well-posedness questions, can be found in [165, 234] and references therein.

The success story of filtering (based on a least squares approach) is due to the seminal article
of Kalman in 1960 [148], who developed the so-called Kalman filter for linear problems, which
impresses with its mathematical simplicity and generality. Kalman’s approach was able to be
easily transferred into the Bayesian context covered by [136]. Although a more comprehensive
treatment of the most common algorithms and methodology is out of scope here, we refer
to two important extensions of the classical Kalman filter: the Extended Kalman filter (for
non-linear problems) [144] and the Ensemble Kalman filter (for larger problems by an efficient
estimation of covariances) [88, 129].

Parameter calibration and validation

Given a (stationary) model G : X → D, that maps an element from a normed parameter
space (X , ‖·‖X ) into a normed space of QoIs (D, ‖·‖D) (the data space), and experimental
data d ∈ D, a common goal among engineering and applied disciplines is to find/infer a suitable
set of parameters or a distribution on them that explains the measured data sufficiently well.
This task is generally known as parameter calibration (also referred to as an inverse problem)
and depicted in Fig. 1.4.

For a certain input parameter x ∈ X , the output G(x) is computed through the model
and compared with experimental data via ‖d− G(x)‖D. This information is used in turn to
further continue and improve the inference of input parameters that are likely to explain the
data. This gives a general circular inference process.

After calibration, the calibrated parameters x∗ should be tested on a new data set d′ ∈ D
or, if possible, with a new QoI, i. e., a new forward operator G′ : X → D′. For example, the
difference ‖d′ − G′(x∗)‖D′ could be studied and interpreted in a suitable manner depending on
the context of the application. Other metrics are also possible. This general method is called
parameter validation. It is important to note that validation is based on a purely new data set
which is not supposed to be used for calibration purposes.

We keep the exposition on calibration and validation here rather simple because the next
chapter, dedicated to present the Bayesian perspective on parameter calibration, is fairly com-
prehensive as it also explains the differences with other methods as, e. g., classical inverse
problems.



Chapter 2
Bayesian inverse problems

In the following, we present the formulation of inverse problems, particularly Bayesian inverse
problems. This chapter constitutes a central role for the remaining results and discussions as it
contains a consistent mathematical setup, basic theory, and examples that form a foundation
for later chapters.

The structure is as follows. A comparison with classical inverse problems, as a motivation
for Bayesian inverse problems, is provided in Sec. 2.1. Sec. 2.2 develops the basic mathe-
matical setup for Bayesian inverse problems; an example for illustration is given in Sec. 2.3.
Subsequently, well-posedness results are discussed in Sec. 2.4. Sec. 2.5 introduces strategies
for posterior sampling that are rather basic but necessary to discuss in order to provide a
self-contained exposition.

2.1 Motivation

Inverse problems frequently arise in applied sciences. They provide a context for the inference
or reconstruction of input variables in a mathematical model which should explain given exper-
imental data sufficiently well. Imagine, for example, an image that needs to be reconstructed
but for which only a blurred version is available. Or, consider the average walking speed of a
person in a model for pedestrian and evacuation dynamics. Pedestrian data that is measured,
e. g., at a festival or at a supermarket, may be informative for the (distribution of the) walking
speed of persons which itself is an input parameter for a corresponding model explaining the
behavior of pedestrians in certain situations.

Before we concentrate on the Bayesian perspective on inverse problems, let us first regard
classical inverse problems and see why a Bayesian formulation can be advantageous and at-
tractive. Classical inverse problems require two objects: 1) Experimental data d (also called
observational or measured data) and 2) a model G with a predefined input x and output G(x)
that is supposed to explain the measured data. The relationship between data, model, and
input variables is given by

d = G(x). (2.1)

Note that d and G are given and x is unknown. For a mathematical treatment of a classical
inverse problem, we assume that both inputs and data are elements of Banach spaces. Hence,
for Banach spaces (X , ‖·‖X ) and (D, ‖·‖D), we have that x ∈ X , d ∈ D, and G : X → D.

9
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The task in a classical inverse problem is to find x ∈ X such that (2.1) holds. Let us look
into questions regarding well-posedness of such a problem. The notion of well-posedness that
we use here originates from an article of Hadamard in 1902 [115] and was set to the following
definition during the last century.

Definition 2.1.1 (Well-posedness). A problem is called well-posed if and only if

1. a solution exists,

2. the solution is unique,

3. the solution depends continuously on the given context, i. e., a small perturbation in the
given data does not cause a huge change in the solution.

Otherwise, the problem is called ill-posed.

Applying this definition to classical inverse problems, we immediately see that they are
ill-posed in general, for example if d 6∈ ran(G). In such a case, we can reformulate the problem
to finding a minimizer x† ∈ X such that

x† = arg min
x∈X

1

2
‖d− G(x)‖2D. (2.2)

However, it is known that (2.2) is still ill-posed since there might exist minimizing sequences
(xn)n∈N that do not converge in X , the solution is not unique, or does not depend continuously
on the data d.

To reduce the effect of these issues, we can formulate a so-called regularized problem. There
are several approaches on how such a regularization can be achieved, see e. g., [146, 253]. We
present Tikhonov-regularization named after its originator A. N. Tikhonov [262, 263]. In
this approach, the minimization functional gets an additional term, also called penalty or
penalization term, that penalizes deviations from a given value x0 ∈ E , where (E , ‖·‖E) is a
Banach space contained in X that we need to introduce here in order to be mathematically
correct in this abstract setting. The problem is thus modified to

x† = arg min
x∈E

1

2

(
‖d− G(x)‖2D + ‖x− x0‖2E

)
. (2.3)

The penalty term ‖x− x0‖2E fulfills three objectives:

1. It adds a type of prior information to the problem specifying that we look for a solution
“near” x0. This could also make the problem uniquely solvable.

2. It avoids that the data d is fit to closely. If this situation occurs, the continuous depen-
dence on d, which is one of the required properties of the well-posedness definition in
Def. 2.1.1, can be circumvented.

3. It can help numerical optimization algorithms to be more stable since it avoids the
solution x† getting arbitrarily large in size.

However, although this type of regularization helps to reduce the issue of ill-posedness, it
cannot completely avoid it.
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The instability of classical inverse problems can also be understood intuitively. For example,
since Newton, Leibniz, and others, many physical laws are described by differential equations.
They contain not only aspects of locality in the sense that the dependence of a function,
describing a physical phenomenon, and its derivatives at a given point is expressed based on
physical conditions at this point, and only at this point. But also, physical laws are causal
in nature, i. e., a later state of the described physical quantity depends on previous states. In
contrast, inverse problems are most often non-local and non-causal. For non-causality, consider
heat diffusion as an example. Small perturbations of the initial conditions disperse over time
which makes their inference and reconstruction from temperatures observed at a final time
rather difficult. We may find that starting the simulation with sufficiently different initial
conditions lead to a similar final temperature within the accuracy of our measurements.

In order to avoid such unfavorable circumstances, it is important to incorporate as much
a priori information (i. e., information we have before (prior) the observations) as possible
since this increases the chance to get a well-posed problem. Statistical inversion (also known
as stochastic inversion or statistical/stochastic inference), in a Bayesian context, provides a
setting in which such prior information can be included in a proper and consistent way. This
approach regards all involved quantities as random variables and defines a so-called posterior
distribution giving a probabilistic description of unknown variables while taking observational
data into account. It is also called Bayesian updating since the prior is “updated” to the
posterior distribution.

The next sections in this chapter concentrate on stochastic inversion and a Bayesian view-
point in particular. The topics covered there constitute the fundamentals for later approaches
and discussions.

2.2 Mathematical setup

We mainly follow [73, 252] for the mathematical setup presented here but add some technical
details.

Since later chapters only require a finite dimensional setting, we assume from now on
that X = Rn and D = Rnd with n, nd ∈ N. The starting point for Bayesian inverse problems
is similar to the relation given in (2.1). The first difference in the Bayesian setting is that we
can also include measurement errors, a type of uncertainty that was mentioned in Ch. 1 as
data uncertainty. This results in the relation

D = G(x) + η, (2.4)

where the observational noise η ∼ Pη is modeled probabilistically. Note that the left hand
side of (2.4) (the data) automatically becomes a random variable and is thus written with a
capital letter. What makes the inference truly statistical is the fact that the variable x can be
also regarded as a random variable. Hence, (2.4) becomes

D = G(X) + η, (2.5)

where all involved random variables are assumed to be continuous and elements of a common
probability space (Ω,A,P). In addition, we assume that X and η are independent. Analo-
gously to Sec. 2.1, X, D, and η are random variables with values in X and D, respectively,
and G is a map from X to D. As usual, we equip the spaces X and D with corresponding
Borel σ-algebras B(X ) and B(D), respectively, in order to get measurable spaces.
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Remark. The forward operator G does not necessarily need to be defined on the whole
space Rn. It can also be assumed that X ⊆ Rn with PX(X ) = 1, i. e., G needs only to
be defined on a set with PX -measure one.

Remark. We implicitly assume in (2.5) that the model G is adequate for the data and can
be evaluated exactly. Most often, especially when solving differential equations, this is not the
case and thus we can only compute an approximation G̃ ≈ G instead. Note that these two error
sources were already mentioned in Ch. 1 as model and, respectively, discretization uncertainty.
Including both errors, (2.5) would become

D = G̃(X) + ε+ η, (2.6)

where the total error ε := G(X)−G̃(X) could also be modeled with a probability distribution.
Actually, it is often modeled to be part of the measurement error η which can, however, be
misleading. Indeed, it is difficult to find a probabilistic model for ε since it has non-zero mean
and depends on the (random) input X. For these reasons, we assume in the remainder that G
is adequate and exactly computable. It is, however, important to make such an assumption
explicit.

In a Bayesian inverse problem, we are interested in the distribution of the random vari-
ableX|D = d for a given realization of the data d ∈ D. This distribution is called the posterior
distribution (of X given D = d). The distribution PX , also called prior distribution in this
context, represents the distributional information on X before any observation of data. This
information is updated by the knowledge contained in the data d in a consistent way.

We get a more explicit expression of the posterior distribution by applying Bayes’ Theorem
(also known as Bayes’ rule). Bayes’ rule, in a first version, states that for two events E1, E2 ∈ A
with P(E1) > 0, it holds that

P(E2 |E1) =
P(E1 |E2)P(E2)

P(E1)
. (2.7)

This can be proven easily by using the definition of a conditional probability. A second version
that is more useful for our purposes makes a similar statement about the involved distributions
and their densities. For this, we need to develop a more formal context in order to make precise
statements that are necessary for the remainder.

Let PX := P(X ∈ ·) and PD := P(D ∈ ·) denote probability distributions of X and D,
respectively. Moreover, let the joint probability distribution for (X,D) be given by PX,D :=
P((X,D) ∈ ·). It can be shown (see, e. g., [30, p. 430] or [168]) that there exists a Markov
kernel K : D × B(X )→ [0, 1] (see Def. A.2.12) such that

PX,D(A,C) =

∫
C
K(d∗, A) PD(dd∗) (2.8)

for all A ∈ B(X ) and C ∈ B(D). For d ∈ D, the measure K(d, ·) is PD-a.s. unique and
called the (regular) conditional probability distribution of X given D = d. We denote it in the
following by

PX|D(·|d) := P(X ∈ · |D = d) := K(d, ·). (2.9)

The finite-dimensional setting allows us to assume that the distributions of random vari-
ables X and D, i. e., PX and PD, have densities w.r.t. the Lebesgue measure which we
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denote by ρX and ρD, respectively. Let x ∈ X and d ∈ D be defined almost surely. We know
that the joint density of PX,D, denoted by ρX,D, satisfies

ρX(x) =

∫
D
ρX,D(x,d∗) dd∗ and ρD(d) =

∫
X
ρX,D(x∗,d) dx∗. (2.10)

This leads to the fact that we can represent the conditional distribution PX|D by its Lebesgue
density ρX|D explicitly. Indeed, it holds that

ρX|D(x|d) =

{
ρX,D(x,d)/ρD(d) if ρD(d) > 0,

0 otherwise.
(2.11)

Note that we can use an analogous construction to get an explicit Lebesgue density ρD|X
for PD|X , i. e., we have

ρD|X(d|x) =

{
ρX,D(x,d)/ρX(x) if ρX(x) > 0,

0 otherwise.
(2.12)

With this setup given, we can formulate a version of Bayes’ Theorem that is suitable for our
context; see, e. g., [164, Thm. 2.5].

Theorem 2.2.1 (Bayes’ Theorem). Let d ∈ D be defined PD-almost surely. If ρD|X(d|·) is
in L1(X ,PX) and strictly positive, then it holds that ρD(d) > 0 and

ρX|D(x|d) =
ρD|X(d|x)ρX(x)

ρD(d)
(2.13)

for λ-a.e. x ∈ X .

Let us look again at the terms involved in (2.13):

• ρX|D(x|d): Density of posterior distribution PX|D(·|d).

• ρD|X(d|x): This expression is called the likelihood function (in x), or just likelihood. Note
that it is not a probability density function in x but in d for λ-a.e. x ∈ X . Let x ∈ X
such that ρX(x) > 0. Using the relation above in (2.5), we get that

ρD|X(d|x) = ρη(d− G(x)), (2.14)

where ρη is the Lebesgue density of the noise distribution Pη. The likelihood is commonly
written as

ρη(d− G(x)) = exp(−Φ(x,d)) (2.15)

for the negative log-likelihood Φ (also called potential). It is also known as data misfit
function and denoted by

fd(x) := Φ(x,d). (2.16)

• ρX(x): Density of the distribution of X, i. e., of PX . This density (or distribution)
is called prior density (or prior distribution). It should contain all information that is
available prior to any data measurements.
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• ρD(d): Density of the distribution of D, i. e., of PD. It is the normalizing constant for
the posterior distribution, also called model evidence. Thus, it holds that

ρD(d) =

∫
X
ρD|X(d|x∗)ρX(x∗) dx∗ (2.17)

for λ-a.e. d ∈ D. Note that ρD(d) has to be greater than zero since the ratio in (2.13)
would be undefined otherwise. This case is, however, excluded by the assumptions of
Bayes’ Theorem (Thm. 2.2.1). For example, more exotic noise models like uniform or
Dirac type distributions do not satisfy these assumptions and could therefore cause such
problems.

Remark. Bayes’ Theorem can be applied in a more abstract setting including infinite-di-
mensional parameter and data spaces under rather weak assumptions. For details, we refer
to [73, 252, 253]. However, since the theory then gets more technical and we are not regarding
infinite-dimensional spaces in this text, we focus instead on the finite-dimensional case.

In the remainder, we abbreviate the notation of the prior and posterior distribution and
their densities with

µ0 := PX , ρ0 := ρX (2.18)

and
µd := PX|D(·|d) = P(X ∈ · |D = d), ρd := ρX|D(·|d) (2.19)

for d ∈ D. Summarizing, for the density of the posterior distribution it holds that

ρd(x) =
ρη(d− G(x))ρ0(x)

ρD(d)

∝ ρη(d− G(x))ρ0(x).

(2.20)

for λ-a.e. x ∈ X and d ∈ D.
In the following, we assume that the observational noise is Gaussian distributed with zero

mean and covariance matrix Γ ∈ Rnd×nd . Then, we get that

ρη(d− G(x)) ∝ exp

(
−1

2
‖Γ−1/2(d− G(x))‖22

)
, (2.21)

i. e., fd(x) = 1
2‖d− G(x)‖2Γ in (2.16) with ‖·‖Γ := ‖Γ−1/2·‖2. Note that the expression on the

right hand side in (2.21) is defined for every x ∈ X and d ∈ D (and not only λ-a.s.).

Remark. From a statistical perspective, we perform parametric inference in a Bayesian set-
ting, also called Bayesian inference, with the statistical model

(S, {Pθ}θ∈Θ) := (D, {N (G(x),Γ)}x∈X ), (2.22)

where S is the set of possible observations and {Pθ}θ∈Θ is a parametrized family of distributions
with parameter θ from a set Θ.

If we additionally suppose that the prior distribution is also Gaussian distributed with
meanm0 ∈ Rn and covariance matrix Σ0 ∈ Rn×n, the corresponding posterior density becomes

ρd(x) ∝ exp

(
−1

2
‖d− G(x)‖2Γ −

1

2
‖x−m0‖2Σ0

)
. (2.23)
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Figure 2.1: Multimodal posterior distribution with a non-unique MAP estimator and a mean
value as a local minimum.

Note that the expression in the exponential is the same (up to the sign) as the objective of
the optimization for a Tikhonov-regularized classical inverse problem in (2.3). That is, the
minimizer x† from (2.3) maximizes the posterior density from (2.23).

Such a point estimate for the input variable x is generally called a maximum a posteriori
estimator (or MAP estimator), i. e.,

xMAP := arg max
x∈X

ρd(x). (2.24)

It is also a mode of the posterior distribution. Also, we can regard the mean value of the
posterior distribution, i. e.,

x̄post := E[X |D = d]. (2.25)

However, note that these estimators can be misleading in general (non-unique MAP estimator,
mean value as a local minimum) as the situation in Fig. 2.1 shows.

Another alternative point estimate from frequentist statistics is the maximum likelihood es-
timator (MLE) [202, 228]. This approach is not using Bayes’ Theorem at all, and thus no prior
information, but instead it is interested in the estimate of a point of maximum likelihood xMLE,
i. e.,

xMLE := arg max
x∈X

ρD|X(d|x) = arg min
x∈X

Φ(x,d) (2.26)

for given d ∈ D.

Related literature

As mentioned, the main references for our setting are [73, 252]. Further general introductions
to the Bayesian approach to statistical inverse problems are provided in [23, 146].

The discretization error ε from (2.6) and the noise term η can also be modeled separately;
see, e. g., [146, Ch. 7] and [104, 132, 151, 206, 208]. It is also possible to model this error type
by extending the variable X to include model aspects as, e. g., missing physics; see [63].

We also give some references for large-scale computations in Bayesian inverse problems. For
highly expensive models, linear approximations of the forward operator G are often computed in
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order to make the resulting Bayesian inverse problem computationally tractable. A framework
for corresponding infinite-dimensional inferences is provided in [42, 44]. In [89], the authors
suggest algorithms using low-rank Hessian approximations of the data misfit function fd for lin-
ear problems. For general large-scale problems, [43] proposes an adaptive algorithm employing
Gaussian processes [283] for a Hessian-based approximation of posterior densities.

Finally, we refer to [280] for Bayesian inverse problems involving priors that rely on the
`1 norm of the parameters including distributions with regularity less than Gaussian distribu-
tions allowing for, e. g., discontinuities and blockiness.

2.3 An example

A first example should provide some intuition for the behavior of the involved quantities
in Bayesian inverse problems. We regard a basic situation in which the parameter-to-QoI
operator G is linear, i. e., G(x) := Ax for some matrix A ∈ Rnd×n, and the prior as well as
the observational noise is Gaussian, i. e., X ∼ N (m0,Σ0) and η ∼ N (0,Γ) for covariance
matrices Σ0 ∈ Rn×n and Γ ∈ Rnd×nd . Remember that

D|X = x ∼ N (Ax,Γ) (2.27)

according to (2.4). Also, note that the random vector (X,D) is jointly Gaussian (which is not
true in general for dependent Gaussian random variables). This can be seen, for example, by
computing the joint density of (X,D). Indeed, if we define b := (x,d), we get

ρX,D(x,d) = ρD|X(d|x)ρX(x)

∝ exp

(
−1

2
‖d−Ax‖2Γ −

1

2
‖x−m0‖2Σ0

)
= exp

(
−1

2
ψ(x,d)

) (2.28)

for

ψ(x,d) =
∥∥(−A I

)
b
∥∥2

Γ
+
∥∥(I 0

)
(b− b0)

∥∥2

Σ0

= b>Σ1b+ (b− b0)>Σ2(b− b0),
(2.29)

where

Σ1 :=
(
−A I

)>
Γ−1

(
−A I

)
, Σ2 :=

(
I 0

)>
Σ−1

0

(
I 0

)
, (2.30)

and b0 := (m0, ∗). The ∗ means that it does not matter which values are at its place; see (2.29).
Completing the squares with the help of Lem. A.2.5 gives

ψ(x,d) = (b−M−1v)>M(b−M−1v) +R, (2.31)

where

M := Σ1 + Σ2, v := Σ2b0, (2.32)

and R is a constant value independent of b. Note that M is a square matrix with full rank and
is thus invertible. Hence, ρX,D can be written as a Gaussian density implying that (X,D) is
jointly Gaussian.
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Using basic properties of covariance operators (see Def. A.2.1) and the independence of X
and η, we get that

Cov(D) = Cov(AX) + Cov(η) = AΣ0A
> + Γ,

Cov(X,D) = Cov(X, AX + η) = Cov(X, AX) + Cov(X,η) = Σ0A
>,

Cov(D,X) = Cov(X,D)> = AΣ0.

(2.33)

That is, we have that (X,D) ∼ N
(
m̄, Σ̄

)
with

m̄ = (m0, Am0) and Σ̄ =

(
Σ0 Σ0A

>

AΣ0 AΣ0A
> + Γ

)
. (2.34)

By Thm. A.2.6, it follows that X|D = d ∼ N (m,Σ) with

m = m0 + Σ0A
>(Γ +AΣ0A

>)
−1

(d−Am0),

Σ = Σ0 − Σ0A
>(Γ +AΣ0A

>)
−1
AΣ0

= (Σ−1
0 +A>Γ−1A)

−1
.

(2.35)

The last equation is an application of the Woodbury matrix identity (Lem. A.1.2), also known
as Sherman–Morrison–Woodbury formula.

If d = Am0, the posterior mean m is not updated what makes sense intuitively. For the
posterior covariance matrix Σ, the prior covariance matrix Σ0 is updated by subtracting a
symmetric positive semi-definite matrix which is “informative” for the posterior in the sense
that (co-)variances get smaller. Also, if the noise in the data gets larger, then, by the last
line in (2.35), we see that Σ stays more similar to Σ0. It is also interesting to note that the
posterior covariance Σ does not depend on the realization of data d that we condition on. This
is a special property of conditional Gaussian distributions; see Thm. A.2.6.

Let us continue with a special case to gain even more intuition. Since we want to regard a
one-dimensional case, we denote all variables with normal (thin) letters and denote variances
with σ2 and γ2 instead of Σ and Γ, respectively. So, suppose we have n = nd = 1, X ∼ N (0, 1),
η ∼ N

(
0, γ2

)
, A = a ∈ R, and d = ax0 for some x0 ∈ R. Recall that the relationship between

data and parameters is
D = aX + η. (2.36)

By (2.35), we get that

m =
a2x0

γ2 + a2
and σ2 = 1− a2

γ2 + a2
=

γ2

γ2 + a2
. (2.37)

For a = 0.2, x0 = 2, and multiple γ2 ∈ {0.01, 0.02, 0.05, 0.1}, we get posterior distributions
depicted in Fig. 2.2. We see that smaller noise levels cause more concentrated posterior distri-
butions with means approaching the “true” value x0. This matches the intuition since smaller
noises mean more accurate data, and more accurate data mean that we can be more certain
about our estimation.

However, if we transfer this simple example into a more general one with higher dimensions,
the results can change. In general, the so-called small noise limit of the posterior depends on
whether the problem is under- or overdetermined and on the rank of the linear operator A. If we
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Figure 2.2: In the described one-dimensional case, smaller noises give a more concentrated and
informed posterior distribution.

assume that A has full rank, then in the small noise limit the prior can play an important role
in the (frequently occurring) underdetermined case, whereas in the overdetermined case the
prior loses his influence on the posterior which would become a Dirac measure in this situation.
For more details that also include all the assumptions, we refer to [252, Example 2.1, 2.2 and
Thm. 2.3, 2.5].

2.4 Well-posedness

In Sec. 2.1, we mentioned that classical inverse problems and also their regularization are
generally ill-posed, i. e., one or more points listed in Def. 2.1.1, which are necessary for a
problem in order to be well-posed, are not fulfilled. This fact changes for Bayesian inverse
problems. Since it is not a point estimate for the parameters that we are looking for but
rather a (posterior) distribution on the space of parameters, the corresponding problem seems
to contain a sort of “natural regularity.” Indeed, inverse problems formulated in a Bayesian
setting, as we did in Sec. 2.2, can be shown to be well-posed in the sense of Def. 2.1.1.

In finite dimensions, only the assumptions of Bayes’ Theorem (Thm. 2.2.1) are necessary
in order to have a unique (more precisely, λ-a.s. unique) posterior density ρX|D(x|d). These
include, for example, a positive density of the data d that we condition on, i. e., ρD(d) > 0.
However, the continuous dependence of the posterior w.r.t. the data (measured with the
Hellinger distance; see Def. A.2.8) requires additional assumptions on the forward operator G.

Assumption 2.4.1 ([252, Assumption 2.7]). The forward operator G : X → D satisfies the
following properties:

(i) For every ε > 0, there is an M = M(ε) ∈ R such that for all x ∈ X it holds that

‖G(x)‖Γ ≤ exp(ε‖x‖2X +M). (2.38)

(ii) For every r > 0, there is a K = K(r) > 0 such that for all x1,x2 ∈ X with

max{‖x1‖X , ‖x2‖X } < r (2.39)
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it holds that

‖G(x1)− G(x2)‖Γ ≤ K‖x1 − x2‖X . (2.40)

The first assumption requires G to satisfy a type of local bound, whereas the second one is
a Lipschitz property. Applying [252, Corollary 4.4], we have the following continuity result.

Theorem 2.4.2. Assume G : X → D satisfies Assumption 2.4.1. Also, assume that the
prior µ0 is Gaussian. Then, the posterior µd, defined in (2.19), is Lipschitz continuous in the
data w.r.t. the Hellinger distance, i. e., if µd and µd

′
denote two posterior measures corre-

sponding to d,d′ ∈ D, respectively, then for every r > 0 there is a constant C = C(r) > 0 such
that for all d,d′ with max{‖d‖Γ, ‖d′‖Γ} < r it holds that

dHell(µ
d, µd

′
) ≤ C‖d− d′‖Γ. (2.41)

Proof. We refer to the proof of a more general result for infinite-dimensional parameter and
data spaces; see [252, Thm. 4.2]. �

Remark. Note that Thm. 2.4.2 gives Lipschitz continuity in the data, which is a rather strong
property. Therefore, the corresponding proof uses a tail property of the prior distribution µ0

according to Fernique’s theorem (Thm. A.2.7). The assumption on the prior µ0 to be Gaussian,
which is sufficient for satisfying the mentioned tail property, can actually be generalized. In
fact, each distribution with tails not heavier than Gaussian tails can be used as a prior such
that the results of Thm. 2.4.2 still hold. In particular, this includes any distribution with
compact support as, e. g., uniform distributions.

Although it is not part of the original well-posedness definition given in Def. 2.1.1, we also
comment on a stability property of posterior measures. Suppose that there is a sequence of
forward operators (G`)`∈N converging to a limit G in some sense to be described later. A
natural question is whether the sequence of corresponding posterior distributions (µd` )`∈N is
also converging to a limit µd that is related to G (for a suitable fixed d ∈ D). That is, we want to
translate the approximation of G into a statement regarding the corresponding approximation
of µd.

Recall that G and hence Φ(x,d) := 1
2‖d− G(x)‖2Γ induce a posterior distribution µd with

density

ρd(x) ∝ exp(−Φ(x,d))ρ0(x). (2.42)

For an approximation of the exact forward operator G, denoted by G`, we define

Φ`(x,d) :=
1

2
‖d− G`(x)‖2Γ. (2.43)

According to (2.42), Φ` induces a posterior distribution µd` with density

ρd` (x) ∝ exp(−Φ`(x,d))ρ0(x). (2.44)

The following theorem shows that the approximation quality of G` translates to the posterior
approximation quality in the Hellinger distance; see [252, Corollary 4.9].
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Theorem 2.4.3. Let ` ∈ N. Assume that the posterior densities given in (2.42) and (2.44)
are well-defined and that for any ε > 0 there is K ′ = K ′(ε) > 0 such that

|G(x)− G`(x)| ≤ K ′ exp(ε‖x‖2X )ψ(`) (2.45)

for all x ∈ X , where ψ : N → R such that ψ(`) → 0 as ` → ∞. If, additionally, G and G`
satisfy Assumption 2.4.1(i) uniformly in `, there is a constant C ′ > 0, independent of `, such
that

dHell(µ
d, µd` ) ≤ C ′ψ(`). (2.46)

Remark. Consequently, if the sequence of forward operators (G`)`∈N converge to G in the
sense made precise in (2.45), then the corresponding posterior approximations also converge
to the posterior distribution µd corresponding to G. In fact, this result can be derived as a
corollary from a stronger result involving infinite-dimensional data; see [252, Thm. 4.6].

Related literature

To study well-posedness of a Bayesian inverse problem as it is done above, it is necessary to
decide for a certain concept of continuity that is supposed to be investigated. The conventional
setting from [73, 252], which we also apply above, is based on Lipschitz continuity which might
however be difficult to verify in practice.

The author of [164] studies well-posedness regarding the standard form of continuity and
also provides a proper measure-theoretic setup which is used above for Thm. 2.2.1 (Bayes’
Theorem). Note that respective continuity results do not need to assume a tail property
on the prior distribution according to Fernique’s theorem as above. However, these weaker
assumptions “only” yield continuity instead of Lipschitz continuity in the data as above.

Furthermore, local Lipschitz stability of Bayesian inverse problems is investigated in [248].

2.5 Sampling the posterior

In most cases, it is not trivial to create samples that follow a posterior distribution in Bayesian
inverse problems. In contrast to the example discussed in Sec. 2.3, the posterior distribution
is often not cheaply available, i. e., the posterior density

ρd(x) ∝ exp

(
−1

2
‖d− G(x)‖2Γ

)
ρ0(x) (2.47)

can be computationally expensive to evaluate. Note that most of the computational cost
usually lies in the execution of the model which is hidden in the parameter-to-QoI map G.

Many algorithms, methods, and techniques for the generation of posterior samples were
proposed in recent decades. In Subsec. 2.5.1, we first look at rather straightforward techniques
that underlie simple ideas, are easy to implement, and are suitable to gain intuition for sam-
pling from a distribution. As we will see, these fundamental approaches are too primitive for
more computationally expensive and high-dimensional Bayesian inverse problems. Therefore,
we subsequently investigate Markov chain Monte Carlo (MCMC) methods in more depth in
Subsec. 2.5.2 since we will use a particular one in later chapters.
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2.5.1 Fundamental strategies

We first describe a class of strategies that sample from a different distribution than the one
of actual interest. The constructed samples are then corrected in order to follow the target
distribution. For example, rejection sampling (see, e. g., [184, Sec. 2.2] or [222, Sec. 2.3]) and
importance sampling (see, e. g., [184, Sec. 2.5] or [222, Sec. 3.3]) belong to this type of class.

Rejection sampling

In rejection sampling, we create samples following a distribution that is easier, or cheaper,
to sample and subsequently reject or accept these samples according to a certain probability
involving the density of the actual target distribution.

Assume that we are given a target density ρ and that we want to create samples from the
distribution induced by ρ. The simple idea behind rejection sampling is based on the identity

ρ(x) =

∫ ρ(x)

0
1 du =

∫ ∞
0

1{u′ | 0<u′<ρ(x)}(u)︸ ︷︷ ︸
=:h(x,u)

du (2.48)

for all x ∈ X . Note that this identity allows to interpret ρ as the marginal density of the uniform
distribution under the area of the curve of ρ (denoted by h(x,u)). Thus, we can generate a
sample according to ρ by sampling uniformly from the area under ρ, i. e., {(x,u) | 0 < u <
ρ(x)}, and then keeping the x part of the pairs.

In general, it is not easy to sample uniformly from the mentioned area. However, we can
take a second density q, the so-called proposal density inducing a proposal distribution from
which we can easily sample, such that its area is wrapping (up to a multiplicative constant) the
area under ρ. Uniform samples from the area under q are then rejected or accepted according
to their position relative to the curve of ρ.

The idea is illustrated in Fig. 2.3 showing a target density ρ of a Beta(2, 2) distribution
and a scaled uniform density q around ρ. This example, however, uses the bounded support
of the target density. In fact, it is sufficient to find a proposal density q and a constant M > 1
such that ρ(x) < Mq(x) for all x ∈ X .

The steps for rejection sampling can be found in Alg. 1. It can be shown that they refer
back to the situation in (2.48) and Fig. 2.3. The algorithm is justified by the following theorem.

Algorithm 1: Rejection sampling

Input : Target distribution with density ρ, proposal density q, and constant M > 1
such that ρ(x) < Mq(x) for all x ∈ X .

Output: Samples following the distribution induced by ρ.

We generate a sample according to the target density ρ by the following two steps.

1. Draw a sample Y from the proposal distribution induced by q.

2. Accept Y with probability
ρ(Y )

Mq(Y )
, (2.49)

otherwise go back to step 1.
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Figure 2.3: Illustration of the idea behind rejection sampling. The filled green dots are accepted
uniform samples under the area of the density of a Beta(2, 2) distribution with bounded support
in [0, 1]. The orange area shows the area under the curve of a scaled uniform (proposal) density
on [0, 1].

Theorem 2.5.1. Given a target density ρ, a proposal density q, and a constant M > 1 such
that ρ(x) < Mq(x) for all x ∈ X , Alg. 1 generates samples from the target distribution induced
by ρ.

Proof. Define

Z := Bernoulli

(
ρ(Y )

Mq(Y )

)
. (2.50)

So, we have that {Y is accepted} = {Z = 1} and {Y is rejected} = {Z = 0}. For the sake of
clearness of this proof, we set ρY := q, denote the density of Z with ρZ , and the joint density
of (Y , Z) with ρY ,Z .

We have to show that

P(Y ∈ A |Y is accepted) = P(Y ∈ A |Z = 1) =

∫
A
ρ(y) dy (2.51)

for each A ∈ B(X ). Let A ∈ B(X ). Using the definition of conditional probabilities, we get
that

P(Y ∈ A |Z = 1) =
P(Y ∈ A,Z = 1)

P(Z = 1)
. (2.52)

We compute

P(Y ∈ A,Z = 1) =

∫
A
ρY ,Z(y, 1) dy

=

∫
A
ρY (y)ρZ|Y (1|y) dy

=

∫
A
q(y)

ρ(y)

Mq(y)
dy

=
1

M

∫
A
ρ(y) dy.

(2.53)
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Also,

P(Z = 1) = P(Y ∈ X , Z = 1)

=
1

M

∫
X
ρ(y) dy =

1

M
.

(2.54)

Hence, we get the equality from (2.51) by combining (2.53) and (2.54). �

Remark. The steps of the proof can also be carried out if the target density ρ is only known
up to a constant, i. e., we only know ρ̄, where ρ = Cρ̄, C > 0, provided it still holds that ρ̄(x) <
Mq(x) for all x ∈ X . The acceptance probability is then

ρ̄(Y )

Mq(Y )
. (2.55)

Importance sampling

Importance sampling, on the other hand, corrects samples from a simpler distribution not by
accepting or rejecting but by (re-)weighting. We are again given a target density ρ induc-
ing a distribution which is difficult to sample, and a proposal density q inducing a proposal
distribution which is simple to sample.

For a random variableX distributed according to the distribution induced by ρ, importance
sampling is based on the identity

P(X ∈ A) =

∫
A
ρ(x) dx =

∫
A

ρ(x)

q(x)
q(x) dx =

∫
A
w(x)q(x) dx (2.56)

for arbitrary A ∈ B(X ) and w(x) := ρ(x)/q(x). Note that q(x) has to be greater than zero
for λ-a.e. x ∈ X with ρ(x) > 0.

Denoting

Eπ[g(X)] :=

∫
X
g(x)π(x) dx (2.57)

for a measurable function g and a probability density π, we can derive a generalization of the
identity from (2.56). Indeed, it holds that

E[h(X)] =

∫
X
h(x)ρ(x) dx =

∫
X
h(x)w(x)q(x) dx = Eq[h(X)w(X)] (2.58)

for a real-valued ρ-integrable function h. Here, we need to assume that q(x) > 0 for λ-
a.e. x ∈ X with h(x)ρ(x) 6= 0.

For random variables X1, . . . ,XN which are independently identically distributed (i.i.d.)
according to q, by the strong law of large numbers (Thm. A.2.11) we get that

1

N

N∑
i=1

h(Xi)w(Xi)
a.s.−−−−→

N→∞
Eq[h(X)w(X)] = E[h(X)] (2.59)

provided that Eq[|h(X)w(X)|] exists. This means that we can estimate µ := E[h(X)] by

µ̂N :=
1

N

N∑
i=1

h(Xi)w(Xi). (2.60)
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However, note that the weights w(Xi), i = 1, . . . , N , do not sum up to N in general. Hence,
we might want to use a normalized version µ̂w of µ̂N to estimate µ with

µ̂w :=
1∑N

i=1w(Xi)

N∑
i=1

h(Xi)w(Xi). (2.61)

The steps of importance sampling are summarized in Alg. 2.

Algorithm 2: Importance sampling

Input : Function h, target density ρ, and proposal density q such that the
assumptions from above are fulfilled.

Output: Estimator for Eρ[h(X)].

1 Draw samples X1, . . . ,XN from q.
2 Set w(Xi) = ρ(Xi)/q(Xi) for i = 1, . . . , N .
3 Return either µ̂N (2.60) or µ̂w (2.61).

Statistical properties like bias and variance of the two described estimators µ̂N and µ̂w are
proven in the following theorem.

Analogously to the definition of Eπ above, we set

Varπ(Z1) := Eπ[(Z1 −Eπ[Z1])2] (2.62)

and
Covπ(Z1, Z2) := Eπ[(Z1 −Eπ[Z1])(Z2 −Eπ[Z2])] (2.63)

for random variables Z1 and Z2.

Theorem 2.5.2 (Bias and variance of importance sampling, [184, Sec. 2.5]). The following
identities hold:

a)
Eq[µ̂N ] = µ, (2.64)

b)

Varq(µ̂N ) =
1

N
Varq(h(X)w(X)), (2.65)

c)

Eq[µ̂w] = µ+
1

N

(
µVarq(w(X))−Covq(w(X), h(X)w(X))

+ µ2Varq(w(X))
)

+O(N−2),
(2.66)

d)

Varq(µ̂w) =
1

N

(
Varq(h(X)w(X))− 2µCovq(w(X), h(X)w(X))

+ µ2Varq(w(X))
)

+O(N−2).
(2.67)
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The theorem above has some implications. First, we note that the estimator µ̂N is unbiased
whereas µ̂w is biased; see Thm. 2.5.2a) and c). However, µ̂w might have a smaller variance
than µ̂N ; see Thm. 2.5.2b) and d). Secondly, we can see that the normalized estimator µ̂w has
another advantage over µ̂N . The estimator µ̂w requires that we know the target density ρ only
up to a constant, i. e., it suffices to know ρ̄ such that ρ = Cρ̄ for some constant C > 0. Indeed,
for w(Xi) = Cρ̄(Xi)/q(Xi) we compute that

µ̂w =
1∑N

i=1
Cρ̄(Xi)
q(Xi)

N∑
i=1

h(Xi)
Cρ̄(Xi)

q(Xi)

=
1∑N

i=1
ρ̄(Xi)
q(Xi)

N∑
i=1

h(Xi)
ρ̄(Xi)

q(Xi)
,

(2.68)

i. e., we only need ρ̄ to compute µ̂w. This can be a huge advantage, especially in Bayesian
contexts where the normalization constant of a posterior distribution (see (2.17)) is often not
available due to intractable computational costs.

A final important question is whether there exists an optimal proposal density q∗ in the
sense that q∗ minimizes the variance of the estimators. For the unbiased estimator µ̂N , it was
shown in [145] that there exists such an optimal proposal density.

Theorem 2.5.3 (Optimal proposal density for µ̂N ). The proposal density

q∗(x) :=
|h(x)|ρ(x)∫

X |h(x′)|ρ(x′) dx′
, (2.69)

for x ∈ X , is optimal, i. e., it minimizes q 7→ Varq(µ̂N ).

Proof. We refer to [145]. �

Remark. The optimality result is rather formal and not directly applicable in practice. In
fact, we would need to know the normalization constant from (2.69) which is (up to the absolute
value in the integral) exactly the quantity that we want to estimate. So, since the proposal
distribution was assumed to produce cheap samples, the optimal proposal density from above
is not usable. However, an important implication of this result is that we should choose a
proposal density that is similar in shape to x 7→ |h(x)|ρ(x).

The two described sampling strategies are rather fundamental and only served as introduc-
tory examples to get a feeling what it means to create samples of an arbitrary distribution.
There exist several versions and combinations among these two and other strategies. We refer
to [184, 222] for additional approaches and their details.

However, many fundamental sampling methods share a disadvantage that prevents their
application in more complex scenarios. They suffer from the so-called curse of dimensionality,
i. e., from a huge growth of complexity in the number of unknowns, i. e., in the dimension of
the problem; see, e. g., [176]. That is, if we want to create samples in, for example, n = 1000
dimensions with one of the described sampling approaches, we would need a very large amount
of proposal samples in order to sample from the correct high-dimensional distribution. If we
aim to construct samples from a posterior distribution, then every proposal also means an
execution of the (potentially expensive) forward model, which might be rather costly; hence,
these methods are not appropriate for advanced applications. For this reason, we introduce
sampling strategies that have shown to be more suitable for purposes of larger scale, Markov
chain Monte Carlo (MCMC) methods.
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2.5.2 Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC) methods [184, 222] also aim to produce samples following
a given target density or target distribution. These approaches construct a Markov chain,
according to a prescribed transition function, from which the components, or states, are then
taken as samples from the target distribution. Before we introduce and discuss two of the
most common MCMC algorithms, the Random Walk Metropolis algorithm and the Metropolis–
Hastings algorithm, we give a proper theoretical probabilistic setup regarding Markov chains,
i. e., we recall a couple of definitions and fundamental theoretical results. This is necessary in
order to be able to provide evidence for the applicability and usability of the two mentioned
algorithms.

Markov chains

The class of Markov chains is a particular class of discrete-time stochastic processes [30, 79, 221]
that possess the so-called memorylessness property, also known as Markov property. The states
of a stochastic process with this property do only depend on the previous state and not on the
path that lead to the previous state. This idea is formalized in the following definition.

Definition 2.5.4 (Markov chain). A stochastic process (Xj)j∈N0 , consisting of random vari-
ables Xj with values in X ⊆ Rn, is called a (discrete-time continuous-space) Markov chain
if

P(Xj+1 ∈ A |X0 = x0, . . . ,Xj = xj) = P(Xj+1 ∈ A |Xj = xj) (2.70)

for all j ∈ N0, A ∈ B(X ), and x0, . . . ,xj ∈ X .

Such a chain is also called a general state space chain since it can take on an uncountable
number of states. If X was a finite set (equipped with a suitable σ-algebra), we would speak of
a finite state space chain. We present most of the theory for general state space chains, since
the algorithms that we apply construct Markov chains with values in Rn.

We consider only time-homogeneous, or stationary, Markov chains which means that the
conditional probabilities, and hence the transitions between states, do not depend on the time
index, i. e., it holds that

P(Xj+1 ∈ A |Xj = x) = P(Xj+m+1 ∈ A |Xj+m = x) (2.71)

for each pair of indices j,m ∈ N0, measurable set A ∈ B(X ), and state x ∈ X .
It is particularly convenient to describe the transitions between states in a Markov chain

by a so-called kernel function. In fact, the law of a Markov chain for any finite number of
steps can be specified by a starting distribution µ, i. e., X0 ∼ µ, and a Markov kernel K :
X × B(X ) → [0, 1] (see Def. A.2.12) which does not depend on the time index due to the
time-homogeneity. Indeed, we have that

P(X0 ∈ A0,X1 ∈ A1, . . . ,Xj ∈ Aj) =

=

∫
A0

∫
A1

· · ·
∫
Aj−1

K(xj−1, Aj)K(xj−2, dxj−1) · · ·K(x0,dx1)µ(dx0)
(2.72)

for all sets A0, A1, . . . , Aj ∈ B(X ). Reversely, we can construct a Markov chain for any Markov
kernel K and starting distribution µ [221]. In other words, the kernel K describes the transition
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probabilities in the Markov chain in the sense that

K(x, A) = P(Xj+1 ∈ A |Xj = x) (2.73)

for all x ∈ X , A ∈ B(X ), and j ∈ N0.
It will be useful to define a p-step ahead (p ∈ N) conditional distribution, i. e., we consider

for arbitrary j ∈ N0, xj ∈ X , p ∈ N, and A ∈ B(X ),

P(Xj+p ∈ A |Xj = xj) =

=

∫
X
· · ·
∫
X
K(xj+p−1, A)K(xj+p−2,dxj+p−1) · · ·K(xj ,dxj+1)

=

∫
X p−1

K(xj+p−1, A)

j+p−2∏
i=j

K(xi, dxi+1)

=: Kp(xj , A).

(2.74)

Note that we have K1 = K according to (2.73). The p-step ahead conditional distribu-
tion Kp(x, A) specifies how likely it is for the chain to get into a set A ∈ B(X ) in exactly
p steps starting from some point x.

The kernel K can also be described, or induced, by a transition function k. In the literature,
these two terms (kernel and transition function) are often used interchangeably since they are
equivalent.

Definition 2.5.5 (Transition function). A transition function is a map

k : (X × X ,B(X )⊗ B(X ))→ R≥0 (2.75)

that induces a Markov kernel K : X × B(X )→ [0, 1] by

K(x, A) =

∫
A
k(x,y) dy (2.76)

for all x ∈ X and A ∈ B(X ).

Remark. (i) Note that, for x ∈ X , k(x, ·) is the (Lebesgue) density of the distribution K(x, ·).
(ii) In the following, we assume that a transition function k is, by notation, associated with
the Markov kernel K by (2.76).

A natural question at this point is if the marginal distributions of the Markov chain get
stationary after a certain amount of steps. In other words, we want to know if there exists a
distribution π and an index j such that

Xj ∼ π ⇒Xj+1 ∼ π. (2.77)

Definition 2.5.6 (Invariant/stationary distribution). A distribution π is invariant or station-
ary for a Markov kernel K if

π(A) =

∫
X
K(x, A) π(dx) (2.78)

for each A ∈ B(X ).
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To ensure the uniqueness of an invariant distribution, we require a certain sufficient prop-
erty.

Definition 2.5.7 (Irreducibility). A Markov chain with kernel K is called ψ-irreducible for a
distribution ψ if for all x ∈ X and sets A ∈ B(X ) with ψ(A) > 0, there exists some p ∈ N
such that

Kp(x, A) > 0. (2.79)

A Markov chain is called irreducible if there exists a distribution ψ such that the chain is
ψ-irreducible.

A Markov chain being ψ-irreducible means that we can reach any set A ∈ B(X ) with ψ(A) >
0 in a finite number of steps from an arbitrary starting point. In particular, this property
implies uniqueness.

Theorem 2.5.8 (Uniqueness of invariant distribution, [222, Ch. 6]). If an irreducible Markov
chain admits an invariant distribution π, then π is unique.

The existence of an invariant distribution is implied by the Markov chain, or, more exactly,
the associated transition function, satisfying a certain sufficient condition.

Theorem 2.5.9 (Detailed balance condition). If a transition function k satisfies the detailed
balance condition for a distribution π with Lebesgue density ρ, i. e.,

ρ(x)k(x,x′) = ρ(x′)k(x′,x) (2.80)

for all x,x′ ∈ X , then π is the invariant distribution of the Markov chain associated with k.

Proof. The result follows by noting that, for any A ∈ B(X ), it holds that∫
X
K(x, A)π(dx) =

∫
X

∫
A
k(x,x′) dx′ π(dx)

=

∫
X

∫
A
k(x,x′)ρ(x) dx′ dx

=

∫
X

∫
A
k(x′,x)ρ(x′) dx′ dx

=

∫
A

∫
X
k(x′,x) dx︸ ︷︷ ︸

=K(x′,X )=1

π(dx′)

= π(A).

(2.81)

The change of the order of the integrals is justified by the joint measurability of k and Fubini’s
theorem. �

Remark. (i) The detailed balance condition is also sufficient for a Markov chain (associated
with k) to be reversible; see Def. A.2.13. (ii) The detailed balance condition is not a necessary
condition for π to be an invariant distribution.
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The detailed balance condition asks for a kind of symmetry in the sense that getting to a
state x and transitioning to a next state x′ is equally likely as getting to x′ and transitioning
to x. In addition to the irreducibility property, it is this condition that we will check later for
the transition functions specified by the particular MCMC algorithms.

Note that, so far, we only know that there exists a unique invariant distribution for an
irreducible Markov chain satisfying the detailed balance condition. It remains to show that a
Markov chain is indeed converging to this distribution in a prescribed sense. In order to ensure
this convergence, we additionally need to introduce two sufficient properties in the next two
definitions.

Definition 2.5.10 (Positive Harris chain). A Markov chain is called positive Harris if

1. there is a distribution ψ such that the chain is ψ-irreducible,

2. it admits an invariant distribution,

3. for all A ∈ B(X ) with ψ(A) > 0, A is Harris recurrent, i. e., the probability of the Markov
chain returning infinitely many times to A starting from x is one for each x ∈ A.

Definition 2.5.11 ((A)periodicity for finite state space chains). Let X be a finite set and
regard (finite state space) chains with values in X . The natural number

τx := gcd({m ∈ N |P(Xm = x |X0 = x) > 0}) (2.82)

is called the period of the state x ∈ X , provided the above set is not empty. If τx = 1, the
state x is called aperiodic, otherwise periodic with period τx.

A Markov chain with values in X is called aperiodic if each state in X is aperiodic.

Remark. In fact, if one state from X is aperiodic for an irreducible (finite state space) Markov
chain, then all states in X are aperiodic.

Note that this definition of (a)periodicity is for finite state space chains. A corresponding
generalization for general state space chains exists with so-called (d-)cycles (see [222, Sub-
sec. 6.3.3] or [193, Subsec. 5.4.3]) but is rather technical and exceeds the scope of this section.

We now have all the ingredients for a convergence result of aperiodic and positive Harris
Markov chains.

Theorem 2.5.12 (Convergence of aperiodic and positive Harris chains, [193, Thm. 13.3.3]).
If a Markov chain is aperiodic and positive Harris, it converges to its invariant distribution π
in the total variation norm (see Def. A.2.9) for any initial distribution µ, i. e.,

lim
p→∞

∥∥∥∥∫
X
Kp(x, ·) µ(dx)− π

∥∥∥∥
TV

= 0. (2.83)

The remainder of this section is devoted to present the two mentioned MCMC algorithms.
We start with the Random Walk Metropolis (RWM) algorithm [192] which is actually a special
case of the Metropolis–Hastings (MH) algorithm [123] described later.
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Random Walk Metropolis algorithm

The aim is still to compute samples that follow a given target distribution π with density ρ.
The RWM algorithm was proposed by Metropolis et al. in [192]. Starting from an arbitrary
point in X , it successively constructs elements of a Markov chain by proposing a potentially
new stateX ′ that is accepted or rejected according to a certain acceptance probability involving
the actual target density.

The proposed new state, called the proposal, is sampled from a distribution, the proposal
distribution, that is symmetric around the current state of the Markov chain. The formal
steps of this approach are given in Alg. 3. Note that the proposal distribution, and hence the

Algorithm 3: Random Walk Metropolis algorithm

Input : Starting point X0 := x0 ∈ X , target distribution π with density ρ,
symmetric distribution Q.

Output: Samples approximately following π.

Iterating for j = 1, 2, . . ., the j-th step is:

1. Draw ε ∼ Q independently of Xj−1 and define the proposal

X ′ = Xj−1 + ε. (2.84)

2. Compute acceptance probability

α(X ′|Xj−1) := min

{
1,

ρ(X ′)

ρ(Xj−1)

}
. (2.85)

3. Set Xj = X ′ with probability α(X ′|Xj−1), otherwise set Xj = Xj−1.

Markov kernel corresponding to the resulting Markov chain, is not depending on the current
step, i. e., it is time-homogeneous.

In (2.85), the acceptance probability is defined in terms of the ratio ρ(X ′)/ρ(Xj−1) which
implies that the target density has to be known only up to a constant. This is particularly
advantageous when applying the RWM algorithm in the context of Bayesian inverse prob-
lems. Indeed, the normalizing constant of the posterior density from (2.20), which can be
computationally expensive or even intractable, does not need to be calculated.

After accepting or rejecting the proposal, the elements of the constructed Markov chain
are then taken as samples of the target distribution π. Investigations that theoretically justify
this algorithm are carried out later in the context of the more general MH algorithm.

Since we will use the RWM algorithm in later chapters, we should discuss different as-
pects as performance measures, how they can be controlled, and well-known pitfalls and their
diagnostics.

The main performance indicator for a (realization of a) Markov chain is its effective sample
size (ESS). For example, in theory, given independent samples, the central limit theorem
bounds uncertainty in the estimates with the number of samples. If we have dependent or
correlated samples, this number is replaced by the ESS denoted by Neff. The number Neff

of uncorrelated samples has the same estimation potential as the number of all correlated
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samples.

Definition 2.5.13 (Effective sample size [40]). Let (xn)n=1,...,N be a realization of a Markov
chain with N ∈ N elements. The effective sample size in the i-th component of the realization,
i. e., of ((xn)i)n=1,...,N , is defined as

Neff,i :=
N

1 + 2
∑∞

τ=1 r
(i)(τ)

, (2.86)

where r(i)(τ) denotes the auto-correlation with lag τ ∈ N in the i-th component. We conser-
vatively define the effective sample size of the (whole) realization as

Neff := min
i=1,...,n

Neff,i. (2.87)

In practice, Neff,i is often not analytically available and thus has to be estimated. The

infinite sum from above is approximated by
∑Ki

τ=1 r
(i)(τ), Ki ∈ N, such that r(i)(τ) is negligible

for τ > Ki.

For a definition of auto-correlation, the resulting Markov chain is viewed as a component-
wise discrete-time signal.

Definition 2.5.14 (Auto-correlation function of a discrete-time signal). The auto-correlation
function of a real-valued discrete-time signal (xn)n=1,...,N with N ∈ N elements is defined as

r(τ) = rx(τ) :=

N−τ∑
n=0

xnxn+τ , (2.88)

where τ ∈ N denotes the lag.

The auto-correlation function can be computed efficiently using fast Fourier transforms;
see [38].

Note that the ESS increases when the auto-correlations decrease. The auto-correlation
is mainly affected by the choice of the proposal variance, i. e., the variance of the proposal
distribution, which also directly controls the acceptance rate, i. e., the ratio of accepted and
total samples. That is, the goal is to find an “optimal” proposal variance (or, equivalently,
acceptance rate) that minimizes the auto-correlation of the chain.

On the one hand, we could choose a large proposal variance since this would decrease
auto-correlation if samples are accepted. However, on the other hand, if it is too large, the
proposals get rejected and the chain does not move which in turn increases auto-correlation.
This ambivalence is a well-known conflict of interest. For general target distributions, it is
difficult to find the optimal proposal variance; but there are results that yield useful heuristics.

Suppose we want to create samples from a one-dimensional standard normal distribu-
tion N (0, 1) using the RWM algorithm and study the influence of the proposal variance σ2

when choosing Q = N
(
0, σ2

)
. A first guess for a corresponding optimal value would be σ2 = 1.

However, it turns out that this is not the case. Fig. 2.4 shows sample paths of four Markov
chains with different proposal variances σ2 ∈ {0.12, 1, 2.382, 52}. We see that the number of
rejected proposals (orange circles) increases with an increasing proposal variance. But, at the
same time, we also recognize a higher auto-correlation caused by smaller proposal variances.
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Figure 2.4: Sample paths of four Markov chains with different proposal variances. The orange
circles depict rejected samples.
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Figure 2.5: Auto-correlation functions of three Markov chains constructed with the RWM al-
gorithm to sample from N (0, 1) using different proposal variances σ2. The plot confirms the
result of [96] proving that σ2

opt = 2.382 in this example.
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Figure 2.6: (a) The plot shows a Markov chain starting at x0 = (2, 2)>, a point with small
probability. During the burn-in period (dashed blue lines), the chain is moving towards a region
with higher probability (solid orange lines). (b) We see how the corresponding acceptance rate
evolves. It takes about 200 steps for the chain to stabilize its rate of acceptance which is also
an indicator of the burn-in period.

It was shown in [96] that the optimal variance for this example is σ2
opt = 2.382. This is sup-

ported by Fig. 2.5 which depicts the auto-correlation functions corresponding to the proposal
variances σ2 ∈ {1, 2.382, 52}.

Under an i.i.d. assumption on the target density, the optimal acceptance rate for the
RWM algorithm was proven to be 0.234 [223]. More recent investigations can avoid the re-
strictive i.i.d. assumption and generalize this optimality result to a larger class of target
distributions [289]. However, [22] shows that these results are not the end of the story and
demonstrates that the optimal acceptance rate can be smaller in more general cases.

A common rule of thumb is that a “good” acceptance rate lies around 0.2 − 0.4. In any
case, a practitioner, who would like to check the quality of a certain realization of a Markov
chain, is recommended to calculate its ESS.

There is one additional pitfall that we need to comment on since it can highly mislead
the interpretation and diagnostics of resulting Markov chains. Thm. 2.5.12 from above gives
a convergence result for Markov chains under certain assumptions. We will see below that
a Markov chain generated by the RWM algorithm (or, more general, the MH algorithm)
satisfies these assumptions and, hence, converges. This is, however, an asymptotic result.
Unfortunately, there is not much known about the pre-asymptotic period of a Markov chain
in general. In our case, it might take some steps for the Markov chain to get into regions
with higher probability in order to produce samples that follow the target distribution. That
means that very often the first elements of the Markov chain are not sampled from the correct
distribution and thus should not be taken as samples for a subsequent estimation of some
quantity.

This period, that a Markov chain needs to produce valuable samples, is called the burn-in
period. Fig. 2.6 illustrates that a Markov chain might need an initial amount of steps not only
to reach a region with higher probability but also to get a “stable” acceptance rate. In practice,
it is not easy to determine the end of the burn-in period. Heuristically, we can remove the
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first Nburn-in ∈ N samples (with Nburn-in < N) from the chain and use the remaining elements
as the final set of samples. This is often done in a generous way, i. e., there are scenarios
with Nburn-in ≈ 105 or even more depending on the concrete application and its complexity.

As a concluding remark, the RWM algorithm is often also subject to the curse of dimen-
sionality, meaning that a lot of steps are necessary in order to get a sufficiently large ESS,
since the symmetric proposal distribution cannot exploit much structure of an arbitrary target
distribution. For example, a target distribution can be asymmetric or informative for only a
subset of components or linear combinations of them, i. e., informative on a low-dimensional
subspace. As we will see in Ch. 4, we nevertheless employ this algorithm in our applications for
reasons becoming clear later. However, the next paragraphs discuss a popular generalization
of the algorithm and provide theoretical results that justify its usage.

Metropolis–Hastings algorithm

Hastings [123] generalizes the RWM algorithm to the MH algorithm in the sense that the
proposal distribution can be an arbitrary Markov kernel. This allows a lot of flexibility that
can be used to create more informative proposals following a distribution similar to the target.

Choosing the proposal distribution, however, remains to be an art. If it is done in an
advantageous way, then the resulting algorithm yields better mixing (see, e. g., the Metropolis-
adjusted Langevin algorithm (MALA) [24, 224, 226]) or even circumvents the curse of dimen-
sionality (see, e. g., the preconditioned Crank-Nicolson algorithm [64, 118]). For an overview
and history of MCMC methods and their convergence properties, we refer to [27].

The formal steps of the MH algorithm, which are similar to the RWM algorithm (Alg. 3),
are made precise in Alg. 4. The only difference to the RWM algorithm is the more flexi-

Algorithm 4: Metropolis–Hastings algorithm

Input : Starting point X0 := x0 ∈ X , target distribution π with density ρ, Markov
kernel Q : X × B(X )→ [0, 1] such that Q(x, ·) has density q(·|x) for
each x ∈ X .

Output: Samples approximately following π.

Iterating for j = 1, 2, . . ., the j-th step is:

1. Draw proposal X ′ ∼ Q(Xj−1, ·).

2. Compute acceptance probability

α(X ′|Xj−1) := min

{
1,

ρ(X ′)

ρ(Xj−1)

q(Xj−1|X ′)
q(X ′|Xj−1)

}
. (2.89)

3. Set Xj = X ′ with probability α(X ′|Xj−1), otherwise set Xj = Xj−1.

ble choice of the proposal distribution as a Markov kernel Q and the adjusted acceptance
probability in (2.89). For x ∈ X , let q(·|x) denote the (Lebesgue) density of the probability
measure Q(x, ·), i. e.,

dQ(x, ·)
dλ

= q(·|x). (2.90)
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In the following, a Markov chain generated by the MH algorithm is called a “Metropolis–
Hastings chain”, or just “MH chain”.

Let us define

a(xj) :=

∫
X
α(x′|xj)q(x′|xj) dx′ (2.91)

for any xj ∈ X as the probability that the algorithm accepts a proposal given that Xj = xj ,
j ∈ N0. Then, we can derive the following transition function of a MH chain.

Proposition 2.5.15 (Transition function of the MH algorithm). The transition function of
(the Markov kernel of) a MH chain is

k(xj ,xj+1) = α(xj+1|xj)q(xj+1|xj) + (1− a(xj))δxj (xj+1) (2.92)

for any xj ,xj+1 ∈ X , where δxj denotes the Dirac measure at xj.

Remark. Note that we make use of an abuse of notation here. In fact, there is no density
function δy(x), x ∈ X , for the Dirac measure δy(A), A ∈ B(X ). However, we can always
equivalently argue with the corresponding Markov kernel K induced by k, where everything
is defined rigorously, and so we accept this abuse of notation for the sake of convenience and
clearness.

Proof. Let A ∈ B(X ) and xj ∈ X . Note that

P(Xj+1 ∈ A, X ′ is accepted |Xj = xj) =

∫
A
α(x′|xj)q(x′|xj) dx′ (2.93)

and

P(Xj+1 ∈ A, X ′ is rejected |Xj = xj) =

= P(Xj+1 ∈ A |X ′ is rejected, Xj = xj) ·P(X ′ is rejected |Xj = xj)

= 1A(xj) · (1− a(xj))

=

∫
A

(1− a(xj)) δxj (dxj+1).

(2.94)

The result (2.92) follows by

P(Xj+1 ∈ A |Xj = xj) = P(Xj+1 ∈ A, X ′ is accepted |Xj = xj)

+ P(Xj+1 ∈ A, X ′ is rejected |Xj = xj).
(2.95)

�

The existence of an invariant distribution of a MH chain is implied by the transition function
satisfying the detailed balance condition. In particular, the following result also implies that
the invariant distribution is actually equal to the target distribution π.

Theorem 2.5.16. The transition function of a MH chain from (2.92) satisfies the detailed
balance condition (2.80) for the target distribution π with density ρ.
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Proof. It suffices to show that (xj ,xj+1) 7→ α(xj+1|xj)q(xj+1|xj) satisfies the detailed balance
condition for π since the steps in the proof of Thm. 2.5.9 can then be carried out similarly to
show that π is the invariant distribution.

For arbitrary xj ,xj+1 ∈ X , we compute

α(xj+1|xj)q(xj+1|xj)ρ(xj) = min

{
1,
ρ(xj+1)

ρ(xj)

q(xj |xj+1)

q(xj+1|xj)

}
q(xj+1|xj)ρ(xj)

= min{ρ(xj)q(xj+1|xj), ρ(xj+1)q(xj |xj+1)}

= min

{
ρ(xj)

ρ(xj+1)

q(xj+1|xj)
q(xj |xj+1)

, 1

}
q(xj |xj+1)ρ(xj+1)

= α(xj |xj+1)q(xj |xj+1)ρ(xj+1).

(2.96)

�

The π-irreducibility would give the uniqueness of π as the invariant distribution. An
immediate sufficient condition for π-irreducibility is positivity of the conditional density q,
i. e.,

q(x′|xj) > 0 for every xj ,x
′ ∈ supp(ρ), (2.97)

since then every subset of the support of ρ with positive Lebesgue measure can be reached in
a single step.

In fact, irreducibility of a MH chain implies Harris recurrence (point 3 in Def. 2.5.10) which
is needed to show convergence.

Lemma 2.5.17 ([222, Lem. 7.3]). If a MH chain is π-irreducible, then it is Harris recurrent.

Hence, with the condition (2.97), we get a π-irreducible, Harris-recurrent MH chain that
admits an invariant distribution, i. e., the chain is positive Harris according to Def. 2.5.10.

We still require aperiodicity to apply the convergence result from Thm. 2.5.12. A MH chain
is ensured to be aperiodic if the probability that the chain remains in the same state is positive,
i. e.,

P(Xj+1 = Xj) > 0 (2.98)

for all j ∈ N0. In particular, this is the case if the probability of accepting a new proposal is
less than one, that is, if

P
(
ρ(X ′)q(X ′|Xj) < ρ(Xj)q(Xj |X ′)

)
< 1 (2.99)

for each j ∈ N0.

However, the two conditions from (2.97) and (2.99), yielding convergence, seem to be rather
restrictive. Although most of the common proposal distributions, like multivariate Gaussian
distributions, fulfill these conditions, there is a weaker and more general condition that gives π-
irreducibility and aperiodicity at the same time. In fact, it is sufficient to require that there
exists a uniform radius for a neighborhood of the states x ∈ X such that the probability of
transitioning within this neighborhood is uniformly bounded from below. It is easy to imagine
that this property allows the Markov chain to reach every state starting from an arbitrary
starting point in a finite number of steps, hence yielding irreducibility.
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Lemma 2.5.18 ([222, Lem. 7.6]). Let ρ be bounded and positive on every compact subset of
its connected support supp(ρ). If there exist real numbers ε, δ > 0 such that

q(x′|xj) > ε if ‖xj − x′‖2 < δ (2.100)

for each pair xj ,x
′ ∈ X , then the corresponding MH chain is π-irreducible and aperiodic.

Summarizing, the MH algorithm (and particularly the RWM algorithm) yields a Markov
chain that converges to its unique invariant target distribution π under rather mild assumptions
on the proposal distribution (or Markov kernel) Q.

Referring back to the Bayesian context, the MH algorithm can be applied to create samples
of the posterior by running the algorithm for

π = µd (2.101)

and a suitable proposal distribution Q. As already indicated, the proposal distribution is the
component which mainly determines the performance (burn-in period, auto-correlation, and
convergence) of the overall algorithm. In the case of high-dimensional posterior distributions
involving potentially expensive models, it is especially important to find proposal distributions
that are dimension-robust and similar to the posterior.

Our approach is, however, different since we do not solve a certain Bayesian inverse problem
in the full space but employ a dimension reduction technique which allows to run a Markov
chain in a space of reduced dimension. This improves the performance without the need of
a complex proposal distribution. Actually, we use a symmetric proposal distribution, i. e., we
run the RWM algorithm. The mentioned technique is explained in the next chapter, Ch. 3.
Its connection to Bayesian inverse problems is then presented in Ch. 4.

Related literature

As mentioned, the standard MCMC algorithms presented above are rather elementary. When
it comes to posterior sampling, there are more sophisticated approaches, a few of which we
refer to in this subsection.

A concept called delayed rejection (DR) [107, 194, 261] waits until a (first-stage) rejected
proposal is finally rejected to avoid that it and its corresponding expensive forward com-
putations are rejected “accidentally.” The Delayed Rejection Adaptive Metropolis (DRAM)
algorithm [111] combines DR with the Adaptive Metropolis (AM) algorithm [112, 113]. Here,
adaptivity means that the covariance matrix of the Gaussian proposal distribution is selected
on the basis of the whole history of the Markov chain. A discussion of examples of adaptive
MCMC methods is provided in [225].

Contrarily, delayed acceptance waits until a (first-stage) accepted proposal is finally ac-
cepted. Corresponding approaches and applications comprise, e. g., [66, 67, 105, 219, 239].

The authors of [50] demonstrate how to formulate an accelerated MCMC algorithm when
a cheap approximation or surrogate model is available which can be especially beneficial in the
context of expensive PDE models.

When dealing with parameterized PDE models, one way to construct a surrogate or
reduced-order model and, hence, speed up computations is to build a so-called reduced ba-
sis [229]. In [71], a data-driven reduced basis, combined with a delayed acceptance approach,
is used to define an MCMC algorithm that adaptively refines the reduced basis in areas with
high posterior probability.
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We indicated that a particular problem of MCMC methods is their deteriorating behavior
in high dimensions. In order to avoid bad mixing times and high auto-correlations, e. g., when
refining a time or spatial mesh in a PDE model, we mentioned that it is necessary to choose a
good proposal distribution. For this, the authors of [186] build a local Gaussian approximation
based on gradient and Hessian information of the data misfit function to propose samples with
higher posterior probability. Other similar approaches that also exploit second order curvature
information are given in [100, 166].

An MCMC algorithm for infinite-dimensional inference is proposed in [64], where carefully
chosen time meshes of stochastic dynamical systems are used to result in a dimension-robust
speed of convergence. Another dimension-robust MCMC method from [48] relies on hierarchical
models and samplers for latent Gaussian processes. In [201], formulating a “localized” problem,
i. e., enforcing local structure of the prior distribution and the observations, speeds up MCMC
while retaining similar posterior moments. More recently, [264] studies a MALA-within-Gibbs
sampler for high-dimensional distributions with sparse conditional structure from theoretical
and practical viewpoints.

Finally, recent approaches exploit so-called transport maps [188] for an adaptive Metropolis–
Hastings algorithm [209] as well as to construct more informative proposal distributions, which
use a low-fidelity (cheap) model, for “preconditioning” an MCMC algorithm that evaluates the
high-fidelity (expensive) model [211].



Chapter 3
Active subspaces

Reference. The content of Sec. 3.3 and 3.4 as well as the definition of Poincaré constants
as a supremum in Sec. 3.2 is based on our article in [257].

The previous chapter introduced a context for Bayesian inverse problems in a self-contained
manner. We do the same in this chapter for a dimension reduction technique that also builds
a basis for later chapters. In particular, we need the contents of this chapter for the study of
low-dimensional structures in Bayesian inverse problems which is introduced in Ch. 4.

Many modern computational problems, e. g., in engineering disciplines or earth sciences,
consist of computationally expensive physical models with a large number of unknown param-
eters which often makes them subject to the curse of dimensionality, a phenomenon charac-
terized by a huge growth of complexity in the number of unknowns [265, 266], i. e., in the
dimension of the problem.

Dimension reduction techniques are a common way to make otherwise intractable problems
solvable. For a given function f : X → R, X ⊆ Rn, we want to find maps g : Y → R, Y ⊆ Rk,
k ≤ n, and h : X → Y such that

f ≈ g ◦ h. (3.1)

Depending on the type of the map h, we distinct between three (nested) classes of dimension
reduction approaches.

The smallest class, called index-based or subset-based, consists of techniques that choose a
certain subset of input variables that are most important to reconstruct the behavior of the
original function f . They can also be called coordinate-aligned. This class consists of sensitivity
analysis methods [232] (see Sec. 1.2) and a variety of other approaches described in, e. g., [282].

The next level is called subspace-based dimension reduction. In this class, h is a linear
function, represented by a matrix A> ∈ Rk×n, that maps a high-dimensional vector to a
low-dimensional one. Note that the columns of the matrix A span a subspace, consisting of
important directions, on which most of the behavior of f can be explained. That is, we are
interested in linear combinations of input variables instead of just a subset of them. The active
subspace method (ASM), or short, active subspaces [52, 54], which we explain in detail below,
belongs to this type of dimension reduction.

Finally, the most general class allows h to be a function of arbitrary type and is called
nonlinear dimension reduction; see, e. g., [171] for a variety of corresponding approaches. Tech-

39
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niques and also intuition for this general class enormously differ from their linear counterpart.
For this reason, we do not cover them in this text.

As already mentioned, we are interested in subspace-based dimension reduction approaches,
particularly in ASM. Since these techniques allow for linear combinations of variables and not
only for certain coordinates, they promise to be applicable for many practical situations. This
advantage comes, however, with two drawbacks compared to subset-based approaches as de-
scribed in [52, Ch. 2]. First, it is more difficult to interpret results from a practical perspective.
For a practitioner, a result of the type “Parameter 1 is important, but parameter 2 can be
neglected” is easy to interpret and evaluate. On the other hand, saying “the combination of
0.4×parameter 1 and 0.6×parameter 2 is dominating” is more difficult to interpret, especially
if the parameters appearing in important combinations do not have an obvious relationship
or different units. Secondly, fixing a coordinate while varying others is simpler than fixing or
varying linear combinations. We have to be careful here, especially if the domain for the input
variables is bounded.

In Sec. 3.1, this chapter starts with an explanation of the idea behind subspace-based
dimension reduction which also includes a short description of related approaches. We continue
in Sec. 3.2 by giving a formal setup of ASM and derive first upper bounds for the mean square
error of a given function of interest and a low-dimensional approximation constructed by ASM.
Concrete bounds for compactly supported and multivariate normal distributions are provided
in Sec. 3.3. Subsequently, we derive generalized bounds for more general situations and show
that a practitioner needs to be careful when using distributions with exponential tails (Sec. 3.4).
Eventually, we discuss how to perform ASM in practical situations in Sec. 3.5 and thus prepare
for the application of ASM in the context of Bayesian inverse problems described in Ch. 4.

3.1 Idea

Imagine that we are standing in the middle of a landscape with transparent mountains de-
scribed by a function of interest f : X → R, X ⊆ Rn, and want to turn around until we do
not see much of variation in height of the landscape anymore. Once we find such a position,
we know that the corresponding direction can be rather neglected for further analyses since
it provides little information about the function f . At the same time, we might also look for
(orthogonal) directions in which the landscape is varying much more. Of course, we hope that
the amount of negligible directions is (much) larger than the amount of important ones to
allow for a reasonable reduction of the dimensionality.

In mathematical words, consider, for example, the function f to be a so-called ridge func-
tion [216], i. e.,

f(x) = g(A>x) (3.2)

for each x ∈ X , a profile function g : Y → R, Y ⊆ Rk, k ≤ n, and a matrix A ∈ Rn×k with
full rank. Choosing x ∈ X and v ∈ ker(A>) such that x+ v ∈ X , we see that

f(x+ v) = g(A>(x+ v)) = g(A>x) = f(x). (3.3)

That is, the ridge function f does not change along the null space of A> and thus has an
intrinsic dimension of k instead of n.

Fig. 3.1 depicts two two-dimensional examples of ridge functions. The left plot (Fig. 3.1a)
shows the contour lines of the function f1(x1, x2) := exp(0.7x1 + 0.3x2) which was already
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Figure 3.1: (a) Contour plot of the ridge function f1(x1, x2) := exp(0.7x1 + 0.3x2). (b) 3D
surface plot of the ridge function f2(x1, x2) := sin(−2x1 + 2x2). Both cases demonstrate that
a ridge function contains directions along which the function is constant.

used as an example in [52, 54]. Regarding (3.2), we have g(y) = exp(y) and A> =
(
0.7 0.3

)
in this case. The right part (Fig. 3.1b) plots the 3D surface of the function f2(x1, x2) :=
sin(−2x1 + 2x2) for which it holds that g(y) = sin(y) and A> =

(
−2 2

)
. We can see in both

cases that there is always one direction along which the function is constant and a perpendicular
direction along which all of the variation occurs.

In practice, we cannot assume that a given function f is a ridge function. However, we can
try to approximate f by a ridge function. This process is called ridge approximation. That is,
our aim is to find a ridge profile g and a matrix A such that

f(x) ≈ g(A>x) (3.4)

for each x ∈ X . The quality behind “≈” above is determined by the actual approximation
approach and will be clearer later. Note that, if the columns of A are orthogonal, then this
process can also be interpreted as a rotation of the coordinate system such that f can then be
represented low-dimensionally in the rotated coordinate system.

If a technique finds a ridge function as an approximation to a general function f , it can be
verified by, for example, a sufficient summary plot [58]. A sufficient summary plot depicts a
finite amount of function evaluations from f on the axes representing the important directions.
That is, the samples are projected on the important subspace (spanned by the columns of A)
and plotted together with the corresponding function value. Of course, this is only possible
if the important subspace has dimension 1 or 2. Fig. 3.2 shows sufficient summary plots for
the ridge function f2 from above. The left part (Fig. 3.2a) plots the function on the original
coordinate axis x1 and does not show a one-dimensional behavior as expected. However, the
right plot (Fig. 3.2b) shows the function values on the important axis as a one-dimensional
representation. We will use this type of plot later to demonstrate low-dimensionality in more
complex scenarios.
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Figure 3.2: Sufficient summary plots for the ridge function f2 from above. The samples are
randomly picked. We see that f2 does not have a one-dimensional behavior along the original
coordinate axis x1 (a), but along the important axis (b).

Related literature

Let us conclude this section with a short literature review emphasizing the two main branches,
or perspectives, of subspace-based dimension reduction: statistics and approximation theory.

In the context of statistics, important subspaces are exploited to reduce the dimension of
random variables and, particularly, of regression models [58, 59]. This process is called suffi-
cient dimension reduction and, in the context of regression, aims to find linear combinations,
represented by a rectangular matrix A (see above), of predictors x such that the conditional
distribution of the regression function, given A>x, is equal to the conditional distribution,
given all predictors x. It has motivated several advances and techniques in the field like sliced
inverse regression (SIR) [61, 179, 279], sliced average variance estimation (SAVE) [57], and
contour regression (CR) [178, 177]; see also, e. g., [60, 180, 287]. For a detailed review, we refer
to [185].

Ridge approximation, already mentioned above, is the approximation theoretic approach to
subspace-based dimension reduction. For example, a gradient-free compressed sensing method
for ridge approximation is investigated in [92]. Two other techniques based on Gaussian Pro-
cess Regression (GPR) [283], i. e., fitting a low-dimensional Gaussian process to given function
evaluations, are discussed in [238, 267], where the former describes an algorithm that alternates
the optimization of the important subspace spanned by A (see above) and the hyperparameters
of the Gaussian process, and the latter regards the important subspace itself as a hyperpa-
rameter of the Gaussian process and bases the decision for the dimension of the subspace,
i. e., the natural number k, on a Bayesian information criterion [237, 284]. The authors of [292]
provide an extension of gradient-based ridge approximation, as it is used in this chapter, for
vector-valued functions.

Note that, despite the differences of these two perspectives, there is a connection as was
shown in [103]. For SIR and SAVE, [103, Thm. 6] proves that if and only if there exists a
conditional independence of inputs and outputs of a function from the approximation setting,
then the function is indeed a ridge function.
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For dimension reduction in Bayesian and statistical inverse problems, we refer to [56, 69,
181, 293] at this point and come back to them later in Ch. 4.

Finally, the PhD thesis of Russi in [230] demonstrates that using a function’s gradient
at randomly picked locations and computing a singular value decomposition with them gives
directions along which the function is only mildly changing, on average. The term “active
subspace” is actually adopted from this thesis since the idea behind ASM is similar. In the
following, we concentrate on ASM for which we give a formal setup in the next section.

3.2 Common setup

Recall that we want to approximate a given function of interest f : X → R, X ⊆ Rn, by a
ridge function, i. e., find a ridge profile g and a matrix A ∈ Rn×k, k ≤ n, such that

f(x) ≈ g(A>x) (3.5)

for each x ∈ X . For the setup and description of ASM, we follow the two main sources [52, 54].

Consider a random variable X distributed according to PX with (Lebesgue) density ρX .
Define X := supp(ρX) ⊆ Rn as the support of ρX . Furthermore, assume that f ∈ C1(X ,R)
with partial derivatives that are square-integrable w.r.t. PX . We denote the gradient of f
w.r.t. x by ∇xf = ∇f ∈ Rn. The starting point for ASM to investigate important and
dominant directions of f is the matrix

C := E[∇f(X)∇f(X)>]

=

∫
X
∇f(x)∇f(x)>ρX(x) dx,

(3.6)

which is the average outer product of the gradient of f with itself. Note that this matrix is
similar to a covariance matrix of the random vector ∇f(X) and actually equal to the auto-
correlation matrix (see Def. A.2.2) of ∇f(X).

Since C ∈ Rn×n is symmetric, we can choose orthonormal eigenvectors wi ∈ Rn, i =
1, . . . , n, and the positive definiteness of C gives that corresponding eigenvalues λi are non-
negative. Hence, we can get the eigendecomposition

C =: WΛW>, (3.7)

where

W =:

 | |
w1 · · · wn

| |

 ∈ Rn×n (3.8)

is orthogonal and Λ =: diag(λ1, . . . , λn) with λ1 ≥ · · · ≥ λn ≥ 0.

The reason why we build and eigendecompose C according to (3.6) and (3.7) becomes clear
by the equality

λi = w>i Cwi = E[(w>i ∇f(X))2] (3.9)

holding for each i = 1, . . . , n. This means that an eigenvalue of C indicates the averaged
sensitivity of the function f in the direction of the corresponding eigenvector. In the extreme
case that there exists a zero eigenvalue, i. e., λi = 0 for some i, f does not change along the
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direction of wi at all; that is, f is a ridge function. We emphasize that all the sensitivities of f
described by (3.9) are averaged sensitivities (weighted w.r.t. PX).

The equality in (3.9) also suggests to study f on a different coordinate system that is
aligned with the sensitive and insensitive directions given by the eigenvector matrix W . That
is, we can define a new transformed variable v := W>x and continue the investigation of f
w.r.t. this variable.

However, we still need to decide for a suitable reduction of the dimensionality. If the
eigenvalues of C decay quickly enough, then we can split the n-dimensional input space corre-
spondingly into a low-dimensional and a remaining higher-dimensional space. This is formally
done by splitting the eigenvector matrix

W =:
(
W1 W2

)
, (3.10)

where W1 ∈ Rn×k and W2 ∈ Rn×(n−k) for some k ∈ {1, . . . , n− 1}. We call the column space
of W1, i. e., ran(W1) := {W1y |y ∈ Rk}, the active subspace (of f) and the column space of W2

the inactive subspace (of f). Note that both spaces are subspaces of Rn, but their dimensions
are k and n− k, respectively. The new variable v is also split correspondingly, i. e.,

v =:

(
y
z

)
, (3.11)

where

y = W>1 x ∈ Rk and z = W>2 x ∈ Rn−k. (3.12)

Analogously, we define
Y := W>1 X and Z := W>2 X. (3.13)

The variables y and Y are called active variables; variables z and Z are called inactive
variables.

Another way to (equivalently) derive the new coordinates y and z is through

x = WW>x = W1W
>
1 x+W2W

>
2 x = W1y +W2z (3.14)

for arbitrary x ∈ Rn. This also gives a direct relation between x and (y, z) and motivates the
following notation,

x = Jy, zK := Jy, zKW := W1y +W2z. (3.15)

We can note already at this point that y = W>1 x, as a low-dimensional linear combination
of x, suggests to choose A = W1 in (3.5).

For convenience, we also define the sets

Y := W>1 X and Z := W>2 X , (3.16)

where MX := {Mx |x ∈ X} for a matrix M ∈ Rp×n, p ∈ N. The sets contain values for
active and inactive variables originating from X , the support of PX .

In addition, the transformation induces joint, marginal, and conditional densities, and
distributions, for random variables Y and Z; see, e. g., [30] for a formal probabilistic setup or
compare with the construction in Sec. 2.2. The joint density of (Y ,Z) is

ρY ,Z(y, z) = ρX(Jy, zK) (3.17)
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and the marginal densities are given by

ρY (y) =

∫
Z
ρY ,Z(y, z) dz and ρZ(z) =

∫
Y
ρY ,Z(y, z) dy. (3.18)

For a conditional density ρZ|Y (·|y), which becomes important below, we need to define

Y+ := {y ∈ Rk | ρY (y) > 0} (3.19)

as the set of all values for the active variable y with a positive ρY -density value. Then, we
have that

ρZ|Y (z|y) =
ρY ,Z(y, z)

ρY (y)
(3.20)

for all y ∈ Y+.
In the remainder, we make use of the well-known tower property of conditional expectations,

i. e., for any function h : Rn → R which is integrable w.r.t. PX , it holds that

E[h(X)] = E[h(JY ,ZK)] = E[E[h(JY ,ZK) |Y ]]. (3.21)

As the formal setup is now complete, we can continue with the actual goal of finding a
low-dimensional representation of f in the form of a ridge function. As already mentioned,
we decide to choose A = W1 for the ridge approximation in (3.5). Hence, it remains to find a
ridge profile g which is defined for y = W>1 x on Rk (or Y).

Informally, given a value y = W>1 x ∈ Y for some x ∈ X , we need to find an approximation
of f(x). It is a well-known fact that, if E[f(X)2] < ∞, the conditional expectation of f(X),
given Y = y, minimizes the mean square error to f , i. e.,

E[(f(X)−E[f(JY ,ZK) |Y ])2] ≤ E[(f(X)−R)2] (3.22)

for any square-integrable random variable R which is measurable w.r.t. the σ-algebra generated
by Y [156, Corollary 8.17]. Hence, we define

g(y) := E[f(JY ,ZK) |Y = y]

=

∫
Rn−k

f(Jy, zK) ρZ|Y (z|y) dz
(3.23)

for y ∈ Y+. Finally, we can define the desired ridge function as

fg(x) := g(W>1 x) (3.24)

for x ∈ X ◦, where X ◦ denotes the interior of X . The function fg is well-defined since W>1 X ◦ ⊆
Y◦ ⊆ Y+. Also, note that PX(X ◦) = 1 for non-degenerate sets X .

Remark (Orthogonal invariance). We want to mention an important and interesting concept
that we call orthogonal invariance. It refers to the fact that we are actually not interested in
a particular basis W1 for the active subspace, but rather in the subspace itself that is spanned
by the columns of W1. Indeed, the function g from (3.23) is invariant under an orthogonal
transformation of the active subspace. Let Q ∈ Rn×n be orthogonal and define

Y := Q>W>1 X = Q>Y (3.25)
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as the corresponding active variable in the transformed subspace; the inactive variable Z is
not transformed. We compute

ρZ|Y (z|y) =
ρX(W1Qy +W2z)∫

Rn−k ρX(W1Qy +W2z′) dz′
(3.26)

=
ρX(W1y +W2z)∫

Rn−k ρX(W1y +W2z′) dz′
(3.27)

= ρZ|Y (z|y) (3.28)

and hence get that

gQ(y) := E[f(W1QY +W2Z) |Y = y] (3.29)

= E[f(W1Y +W2Z) |Y = y] (3.30)

= g(y). (3.31)

In [55], this property is used to justify the investigation of the optimization problem

min
W1

E[(f(X)− fg(X))2] such that W1 ∈ G(k, n), (3.32)

where G(k, n), called the Grassmann manifold, consists of all k-dimensional subspaces of Rn

and fg = fg(W1) is viewed as a function of W1. Note that the minimizing function in (3.32)
is not convex in general; however, we can look for stationary points. For a Gaussian distri-
bution PX , it is shown in [55, Thm. 3] that the particular W1 computed by ASM above is a
near-stationary point in the sense that the Frobenius norm of the gradient on the Grassmann
manifold (of the minimizing function) is bounded. For more details, see [55].

At this point, we have a ridge approximation for f , but do not know the approximation
quality yet. As mentioned above, we determine the quality behind “≈” in (3.5) by the mean
square error between f and its approximation fg, i. e., E[(f(X) − fg(X))2]. Anticipating,
we are interested in proving an upper bound on the mean square error involving eigenvalues
corresponding to the neglected inactive subspace, i. e., we aim to show that

E[(f(X)− fg(X))2] ≤ CP,W (λk+1 + · · ·+ λn) (3.33)

for a Poincaré constant CP,W = CP,W (W,PX) > 0, the origin of which gets clear below and
which is indeed a central aspect in Sec. 3.4.

Note that CP,W particularly depends on the orthogonal transformationW = W (f) from (3.8)
and hence also indirectly on f . If necessary, we could get rid of this dependence by considering
the supremum of CP,W over all orthogonal matrices, i. e.,

CP := sup
W orth.

CP,W , (3.34)

and get
E[(f(X)− fg(X))2] ≤ CP(λk+1 + · · ·+ λn), (3.35)

provided the constant CP = CP(PX) exists. Deriving such an upper bound for a certain class of
distributions would allow to choose PX independently of f . Note that [292, 293], which regard
a related dimension reduction technique in the context of Bayesian inverse problems, based
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on logarithmic Sobolev inequalities [108], also control the Poincaré constant for any orthogonal
matrix W , but for a particular class of distributions; see Sec. 3.4.

The derivation of (3.33) starts with

E[(f(X)− fg(X))2] = E[E[(f(JY ,ZK)− g(Y ))2 |Y ]] (3.36)

≤ E[CY ·E[‖∇zf(JY ,ZK)‖22 |Y ]], (3.37)

where we applied a probabilistic Poincaré inequality (see Def. A.2.14) in (3.37) w.r.t. the condi-
tional distribution PZ|Y (·|Y (ω)), ω ∈ Ω, with (random) Poincaré constant CY = CY (W,PX) >
0.

Remark. Above, we assume continuous differentiability on f which is common in the liter-
ature. This assumption is, however, much too strong since it suffices to assume that ∇f ∈
L2(X ,PX). Indeed, it implies that

∇zf(Jy, ·K) ∈ L2(Rn−k,PZ|Y (·|y)) (3.38)

for PY -a.e. y which also permits the step in (3.37); see [14, Def. 4.2.1]. This weaker assumption
makes ASM applicable to much more scenarios of practical interest since it allows for functions
being only differentiable PX -a.e.

If the random Poincaré constant CY is bounded, more exactly, if ess supCY <∞, then we
get that

E[(f(X)− fg(X))2] ≤ CP,W E[E[‖∇zf(JY ,ZK)‖22 |Y ]]

= CP,W E[‖∇zf(X)‖22],
(3.39)

where CP,W = CP,W (W,PX) = ess supCY < ∞. The following result finally yields the upper
bound in (3.33).

Lemma 3.2.1 ([54, Lem. 2.2]). The mean-squared L2 norm of gradients of f w.r.t. y and z
is

E[‖∇yf(X)‖22] = λ1 + · · ·+ λk (3.40)

and, respectively,
E[‖∇zf(X)‖22] = λk+1 + · · ·+ λn. (3.41)

Proof. We only prove (3.40) since the proof for (3.41) is similar.
Note that for x ∈ X such that x = Jy, zK = W1y +W2z for suitable y ∈ Y and z ∈ Z, it

holds that
∇yf(x) = W>1 ∇xf(x). (3.42)

It follows that

E[‖∇yf(X)‖22] = E
[
trace

(
∇yf(X)∇yf(X)>

)]
= trace

(
E[∇yf(X)∇yf(X)>]

)
= trace

(
W>1 E[∇xf(X)∇xf(X)>]W1

)
= trace

(
W>1 CW1

)
= trace

(
W>1 W

>ΛWW1

)
= trace (Λ1)

= λ1 + · · ·+ λk.

(3.43)
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Note that we make two assumptions in the derivation of (3.39) above:

1. We are allowed to apply a probabilistic Poincaré inequality w.r.t. PZ|Y in (3.37).

2. The random Poincaré constant CY is bounded (has compact support), i. e.,

ess supCY <∞. (3.44)

The explicit indication of these assumptions is a main difference compared to the original
exposition in [52, 54]. Whether the assumptions are satisfied indirectly depends on PX and
directly, non-trivially on the related conditional distribution PZ|Y induced by the orthogonal
transformation from x to (y, z) explained above. We emphasize that it is not sufficient that PX
satisfies a probabilistic Poincaré inequality; it is the conditional distribution PZ|Y (·|y), y ∈
Y+, and, additionally, it has to allow for a bounded Poincaré constant Cy in the sense described
above.

The next two sections investigate the upper bound for distributions PX (and PZ|Y ) that
are known to satisfy the assumptions above (Sec. 3.3) and for distributions that do not follow
the derivation above (Sec. 3.4) and thus only allow for generalized bounds [257].

3.3 Bounds for compactly supported and normal densities

Reference. This section follows [257, Sec. 3].

We look at two kinds of distribution classes for PX that are well-known to satisfy a probabilistic
Poincaré inequality (see Def. A.2.14) and pass this property to a corresponding conditional
distribution PZ|Y (·|y), y ∈ Y+, which, most importantly, allows for a Poincaré constant Cy
that is uniform in y implying that CP,W = ess supCY <∞ as desired.

The uniform distribution PX = U(X ) on a Borel set X is the canonical case for distributions
with compact support. It has a Lebesgue density ρX(x) = 1X (x)/λ(X ), x ∈ Rn. We know
that it satisfies a probabilistic Poincaré inequality on its own but also implies the same for
conditional distributions PZ|Y which are also uniform. Note that, in this case, the probabilistic
Poincaré inequality coincides with a regular Poincaré inequality; see Thm. A.1.3 for functions
in H1.

The following theorem from [257], which is actually a more general statement as it includes
more compactly supported distributions than just the uniform one, proves that the two as-
sumptions from above are indeed fulfilled. In order to allow for explicit Poincaré constants, we
additionally assume convexity of X ◦, the interior of X . Recall that the Poincaré constant for
a convex domain with diameter d > 0 is d/π [21].

Theorem 3.3.1 ([257, Thm. 3.1]). Assume that X ◦ is a bounded and convex domain. If
0 < δ ≤ ρX(x) ≤ D <∞ for all x ∈ X ◦, then

E[(f(X)− fg(X))2] ≤ CP(λk+1 + · · ·+ λn) (3.45)

for a constant

CP = CP(δ,D,X ) =
diam(X )

π
· D
δ
> 0. (3.46)
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Proof. Define

Z◦y = {z ∈ Rn−k | Jy, zK ∈ X ◦} ⊆ Z (3.47)

and note that it is convex for y ∈ Y+. It holds that

diam(Z◦y) ≤ diam(Z) ≤ diam(X ). (3.48)

Note that
δ

ρY (y)
≤ ρZ|Y (z|y) ≤ D

ρY (y)
(3.49)

for y ∈ Y+ and z ∈ Z◦y. This justifies the following lines of computation for y ∈ Y+,

E[(f(JY ,ZK)− g(Y ))2 |Y = y]

=

∫
Z◦y

(f(Jy, zK)− g(y))2 ρZ|Y (z|y) dz

≤ D

ρY (y)

∫
Z◦y

(f(Jy, zK)− g(y))2 dz

≤
diam(Z◦y)

π

D

ρY (y)

∫
Z◦y
‖∇zf(Jy, zK)‖22 dz

≤ diam(X )

π

D

δ

∫
Z◦y
‖∇zf(Jy, zK)‖22 ρZ|Y (z|y) dz

=
diam(X )

π

D

δ
E[‖∇zf(JY ,ZK)‖22 |Y = y].

(3.50)

Then, combining (3.43) with (3.50) yields the result in (3.45). �

Remark. Note that the Poincaré constant in (3.45) does not depend on W .

The (multivariate) normal distribution also passes the property of satisfying a probabilistic
Poincaré inequality to the conditional distribution PZ|Y . It was shown in [47, Corollary 3.1]
that the multivariate standard normal distribution has Poincaré constant 1. Shifting and
scaling arguments used in [47, Corollary 3.2] give that, if PX = N (µ,Σ) for a mean vector µ ∈
Rn and a covariance matrix Σ ∈ Rn×n,

Var(h(X)) ≤ E[∇h(X)>Σ∇h(X)] (3.51)

for any continuously differentiable function h. If we continue the computation with

E[∇h(X)>Σ∇h(X)] = E[‖Σ1/2∇h(X)‖22]

≤ ‖Σ1/2‖22 E[‖∇h(X)‖22]

≤ λmax(Σ) E[‖∇h(X)‖22],

(3.52)

we get that the Poincaré constant is λmax(Σ) in the case of general multivariate normal distri-
butions.

However, the derivation is only for PX , but we need the conditional distribution PZ|Y to
satisfy the probabilistic Poincaré inequality. Fortunately, normal distributions are invariant
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under orthogonal transformations meaning that PZ|Y is also normally distributed. This prop-
erty is exploited to show that also CP = CP,W = λmax(Σ). The details for this derivation are
given in Appendix B.

In fact, λmax(Σ) as the Poincaré constant for multivariate normal distributions can also
be deduced from a much more general framework involving so-called α-uniformly log-concave
distributions covered in Sec. 3.4 which handles distributions with heavier (exponential) tails
than discussed in this section.

3.4 Generalized bounds

Reference. This section strongly follows [257, Sec. 4].

So far, we only studied the two types of distributions from Sec. 3.3 (compactly supported and
normal distributions) w.r.t. their applicability to ASM. Here, we investigate the large class of
log-concave probability measures which have Lebesgue densities of the form

ρX(x) = exp(−V (x)) (3.53)

for a convex function V : Rn → (−∞,+∞] and x ∈ Rn. Note that +∞ is included in the
codomain of V . The conditional density ρZ|Y (·|y) for a given y ∈ Y+ is then given by

ρZ|Y (z|y) =
exp(−V (Jy, zK))

ρY (y)
= exp(−Ṽy(z)), (3.54)

where Ṽy(z) := V (Jy, zK) + log(ρy(y)). Note that Ṽy inherits convexity (in z) from V .
Bobkov [34] shows that log-concave distributions satisfy a Poincaré inequality and gives lower
and upper bounds on the corresponding Poincaré constant.

First, we discuss the special case of α-uniformly convex functions V (Subsec. 3.4.1) for
which the corresponding distribution PX is known to satisfy a Poincaré inequality with uni-
versal Poincaré constant 1/α. However, the assumption on PX being of uniformly log-concave
type is somewhat restrictive since it excludes distributions with heavier tails as, for example,
exponential or Laplace distributions. For this reason, we secondly investigate general log-
concave distributions (Subsec. 3.4.2) and show that there might arise problems with this class
due to arbitrary large Poincaré constants CY . In particular, the problems and their proposed
solution are exemplified on independent exponential distributions in n ≥ 2 dimensions.

3.4.1 α-uniformly convex functions V

Definition 3.4.1 (α-uniformly convex function). A function V ∈ C2(Rn) is said to be α-
uniformly convex, if there is an α > 0 such that for all x ∈ Rn it holds that

u>V ′′(x)u ≥ α‖u‖22 (3.55)

for all u ∈ Rn, where V ′′ denotes the Hessian matrix of V .

In [269, p. 43–44], it was shown that there is a dimension-free Poincaré constant 1/α for
α-uniformly log-concave PX . Note that this says nothing about the special case α = 0. The
existence of a dimension-free Poincaré constant for this special case is actually a consequence of
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the famous Kannan-Lovász-Simonovits conjecture; see, e. g., [11, 173]. However, since we need
a Poincaré inequality for PZ|Y (·|y), y ∈ Y+, we have to prove the following lemma similar
to [293, Subsec. 7.2]

Lemma 3.4.2. If PX is α-uniformly log-concave, then PZ|Y (·|y) is α-uniformly log-concave
for each y ∈ Y+.

Proof. Let y ∈ Y+. Recall that ρZ|Y (z|y) = exp(−Ṽy(z)) for a convex function Ṽy(z) :=

V (Jy, zK) + log(ρy(y)). The Hessian matrix Ṽ ′′y (z) (w.r.t. z) computes to

Ṽ ′′y (z) = W>2 V ′′(Jy, zK)W2. (3.56)

Choose w ∈ Rn−k arbitrarily. Then, for every z ∈ Rn−k, it holds that

w>Ṽ ′′y (z)w = (W2w)>V ′′(Jy, zK) (W2w) (3.57)

≥ α‖W2w‖22 = α‖w‖22. (3.58)

�

Since PZ|Y (·|y) inherits the universal Poincaré constant 1/α from PX , the result in (3.35)
also holds for α-uniformly log-concave distributions with CP = 1/α (independent of W ) which
is similar to [293, Corollary 2].

For example, α-uniformly log-concave distributions comprise multivariate normal distribu-
tionsN (m,Σ) with meanm and covariance matrix Σ (α = 1/λmax(Σ)). However, distributions
that satisfy the assumption only for α = 0 as, e. g., Weibull distributions with the exponential
distribution as a special case or Gamma distributions with shape parameter β ≥ 1, only belong
to the class of general log-concave distributions.

3.4.2 General convex functions V

Since we cannot make use of a universal dimension-free Poincaré constant involving general
convex functions V : Rn → (−∞,+∞], we look at them more closely in this subsection.
Recall that ρZ|Y (z|y) = exp(−Ṽy(z)), y ∈ Y+, for a convex function Ṽy. We have to deal
with the fact that the essential supremum of the random Poincaré constant CY = CY (ω) of
PZ|Y (·|Y (ω)) does possibly not exist. A corresponding example is given in Subsec. 3.4.3.

In the step from (3.37) to (3.39), we have applied Hölder’s inequality with Hölder conjugates
(p, q) = (+∞, 1). Since this is not possible for unbounded random variables CY , we can only
show a weaker result.

Lemma 3.4.3. Let ε > 0. If ‖∇f(X)‖22 ≤ L P-a.s. for some constant L > 0, then

E[(f(X)− fg(X))2] ≤ CP,ε,W (λk+1 + · · ·+ λn)1/(1+ε), (3.59)

where

CP,ε,W = CP,ε,W (ε, n, k, L,W,PX) := Lε/(1+ε)E[C
(1+ε)/ε
Y ]ε/(1+ε). (3.60)

Proof. The assumed boundedness of ∇f implies that also

E[‖∇zf(JY ,ZK)‖22 |Y ] ≤ L P-a.s.
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Choosing a weaker pair of conjugates (p, q) = ((1 + ε)/ε, 1 + ε), ε > 0, we compute

E[CY E[‖∇zf(JY ,ZK)‖22 |Y ]] (3.61)

≤ E[CpY ]1/p E[E[‖∇zf(JY ,ZK)‖22 |Y ]q]1/q (3.62)

= E[C
(1+ε)/ε
Y ]ε/(1+ε) E[E[‖∇zf(JY ,ZK)‖22 |Y ]1+ε]1/(1+ε) (3.63)

≤ Lε/(1+ε) E[C
(1+ε)/ε
Y ]ε/(1+ε) E[E[‖∇zf(JY ,ZK)‖22 |Y ]]1/(1+ε) (3.64)

≤ Lε/(1+ε) E[C
(1+ε)/ε
Y ]ε/(1+ε) (λk+1 + · · ·+ λn)1/(1+ε) (3.65)

= CP,ε,W (λk+1 + · · ·+ λn)1/(1+ε). (3.66)

The step in (3.65) uses Lem. 3.2.1. The result follows by (3.36) and (3.37). �

Remark. The previous lemma requires the gradient of f to be uniformly bounded PX -a.e.,
an assumption that is not needed in [54] and [293].

However, first, applying ASM, in the sense that the matrix C from (3.6) is estimated by
a finite Monte Carlo sum, requires an even slightly stronger assumption to prove results on
corresponding approximations of eigenvalues λi and eigenvectors wi; see Assumption 3.5.1 in
Sec. 3.5.

Secondly, this assumption can be weakened by applying another Hölder’s inequality anal-
ogous to (3.62). Indeed, for ε ∈ (0, 1), we would get

E[E[‖∇zf(JY ,ZK)‖22 |Y ]1+ε]1/(1+ε) (3.67)

≤ E[E[‖∇zf(JY ,ZK)‖22 |Y ]1/(1−ε)](1−ε)/(1+ε) (3.68)

·E[E[‖∇zf(JY ,ZK)‖22 |Y ]]ε/(1+ε). (3.69)

Since

E[E[‖∇zf(JY ,ZK)‖22 |Y ]1/(1−ε)] (3.70)

≤ E[E[‖∇zf(JY ,ZK)‖2/(1−ε)2 |Y ]] (3.71)

≤ E[‖∇xf(X)‖2/(1−ε)2 ], (3.72)

we would only require ‖∇xf(X)‖2/(1−ε)2 to be integrable. What we, however, would have to
accept in this case, is the resulting weaker order ε/(1 + ε) in the eigenvalues belonging to the
inactive subspace.

The L- and PX -dependence of CP,ε,W is notationally neglected in the following. If possible,

we can choose a suitable ε > 0 to get E[C
(1+ε)/ε
Y ] < ∞ and thus a finite constant CP,ε,W .

Note that we lose first order in the eigenvalues from the inactive subspace, but have instead
order 1/(1 + ε) < 1. Of course, the constant CP,ε,W could get arbitrarily large as ε → 0, but
this strongly depends on W and the moments of CY ; see the example given in Subsec. 3.4.3.

It is known by Bobkov [34, Eqs. (1.3), (1.8) and p. 1906] that there exists a (dimension-
ally dependent) Poincaré constant Cy for a general log-concave distribution PZ|Y (·|y) that is
bounded from below and above by

E[(‖Z − z0‖2 −E[‖Z − z0‖2 |Y = y])2 |Y = y] ≤ Cy
≤ K E[‖Z − z0‖22 |Y = y]

= K
n−k∑
i=1

Var(Zi |Y = y),

(3.73)
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where z0 := E[Z |Y = y] and K = 432 [34, Eqs. (1.8) and (3.4)] is a universal constant.
To the authors’ knowledge, the constant Cy is the best available. We provide a scenario in
Subsec. 3.4.3 (“Rotation by θ = π/4”) in which the lower bound viewed as a random variable
has no finite essential supremum implying the same for CY .

However, to make use of Lem. 3.4.3, we need to investigate the involved constant CP,ε,W (ε, n, k).

Lemma 3.4.4. It holds that

E[C
(1+ε)/ε
Y ]ε/(1+ε) ≤ K(n− k)1/(1+ε)CVar,W , (3.74)

where

CVar,W = CVar,W (ε, n, k,W ) :=

(
n−k∑
i=1

E[Var(Zi|Y )(1+ε)/ε]

)ε/(1+ε)

. (3.75)

Proof. Using Jensen’s inequality for weighted sums, it follows that

E[C
(1+ε)/ε
Y ] ≤ K(1+ε)/ε(n− k)(1+ε)/ε 1

n− k
n−k∑
i=1

E[Var(Zi|Y )(1+ε)/ε] (3.76)

= K(1+ε)/ε(n− k)1/ε
n−k∑
i=1

E[Var(Zi|Y )(1+ε)/ε]. (3.77)

The result follows. �

Eventually, we get

CP,ε,W (ε, n, k) ≤ Lε/(1+ε)K(n− k)1/(1+ε)CVar,W (ε, n, k). (3.78)

As before, we can remove the dependence of CVar,W on W = W (f) by considering the supre-
mum over all orthogonal matrices. That is, we define

CP,ε := sup
Worth.

CP,ε,W (3.79)

and
CVar := sup

Worth.
CVar,W , (3.80)

and get
E[(f(X)− fg(X))2] ≤ CP,ε(λk+1 + · · ·+ λn)1/(1+ε), (3.81)

provided the constant CP,ε = CP,ε(ε, n, k, L,PX) exists.
For CVar, we argue that it is actually enough to take the supremum only over the set

of rotation matrices. Indeed, any orthogonal matrix W is either a proper (detW = 1) or an
improper (detW = −1) rotation which is the combination of a proper rotation and an inversion
of the axes; see, e. g., [153, 198]. However, since the constant CVar,W from (3.75) is invariant
to inversions of the axes, it holds that

sup
W orth.

CVar,W = sup
R rot.

CVar,R. (3.82)

This equality is exploited in the next subsection.



54 3 Active subspaces

3.4.3 Independent exponential distributions

In this subsection, we use the lower bound of Bobkov from (3.73) to show that there exists
a scenario, involving independent exponential distributions in n ≥ 2 dimensions, in which
the random Poincaré constant CY does not have an essential supremum implying that CP

from (3.34) does not exist. Therefore, the quantity CVar from (3.80) is studied to derive a
(finite) upper bound for CP,ε from (3.79) in this case.

We regard a random vector X = (X1, . . . , Xn)> whose components are independently
exponentially distributed with unit rates νi = 1, i = 1, . . . , n, and will see that investigations
with unit rates are sufficient to derive statements also involving other rates. The distribution
of X has the density

ρX(x) =

{
exp(−x1 − · · · − xn) if x = (x1, . . . , xn)> ∈ Rn

≥0,

0 otherwise.
(3.83)

That is, in this case X = Rn
≥0 and

V (x) =

{
x1 + · · ·+ xn if x = (x1, . . . , xn)> ∈ Rn

≥0,

+∞ otherwise.
(3.84)

Note that V is convex.
Since we are interested in CVar as a supremum over all orthogonal matrices, we assume

that, in this subsection, W =
(
W1 W2

)
is an arbitrary orthogonal matrix not depending

on f and PX . Indeed, as the equality in (3.82) motivates, we can further assume that W is a
rotation matrix.

2 dimensions

The joint density of two independently exponentially distributed random variables X1 and X2

both with unit rate is

ρX(x1, x2) =

{
exp(−x1 − x2) if x1, x2 ≥ 0,

0 otherwise.
(3.85)

First, let us regard a rotation of the two-dimensional Cartesian coordinate system by a
general angle θ ∈ [−π, π) to a coordinate system for (y, z), i. e.,(

x1

x2

)
= Rθ

(
y
z

)
(3.86)

for a rotation matrix

W = Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
. (3.87)

That is, in two dimensions, it holds that

CVar = sup
θ∈[−π,π)

CVar,Rθ . (3.88)

Subsequently, we look at the special case θ = π/4 as an example for an unbounded Poincaré
constant Cy of Pz|y(·|y). Variables are written in thin letters in this subsection since they
denote real values and not multidimensional vectors.
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Figure 3.3: Rotations of the coordinate system with a positive (a) and a negative (b) angle.
The orange lines depict contour lines in the support of ρX . The red lines show the values
of (y, z) for a given y. Their solid parts mark regions within the support of ρX , whereas the
dashed parts identify values with density zero.

Note that the bound from (3.74) in this two-dimensional setting becomes

E[C
(1+ε)/ε
Y ]ε/(1+ε) ≤ KCVar,W (ε, 2, 1) (3.89)

with

CVar,W (ε, 2, 1) = E[Var(Z|Y )(1+ε)/ε]ε/(1+ε). (3.90)

Rotation by general θ

Let θ ∈ [−π, π). Then, the joint density of (Y,Z) is

ρY,Z(y, z) = exp(−(y cos θ − z sin θ)− (y sin θ + z cos θ)) (3.91)

= exp(−(cos θ + sin θ)y − (cos θ − sin θ)z). (3.92)

for (y, z) with Jy, zK ∈ R2
≥0 and zero otherwise. If we define a+

θ := cos θ + sin θ and a−θ :=
cos θ − sin θ, we have

ρY,Z(y, z) =

{
exp(−a+

θ y − a−θ z) if Jy, zK ∈ R2
≥0,

0 otherwise.
(3.93)

Fig. 3.3 illustrates the situation for a positive (Fig. 3.3a) and a negative (Fig. 3.3b) angle θ.

The interval of investigation for θ ∈ [−π, π) can be reduced by reasons of periodicity and
symmetry. First, note that the map

Qε(θ) := CVar,Rθ(ε, 2, 1), (3.94)

is π-periodic in θ since an additional rotation by π corresponds to changing signs of y and z
which is not important for integrals in Qε. Hence, it suffices to consider θ ∈ [−π/2, π/2).
Secondly, from Fig. 3.3 it can be deduced that Qε, as a map of θ, is symmetric around −π/4
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Figure 3.4: Illustration of symmetries in θ of the map Qε(θ) for several ε > 0.

in [−π/2, 0] and symmetric around π/4 in [0, π/2). This fact is also shown in Fig. 3.4. That
is, it is enough to investigate angles θ ∈ [−π/4, π/4].

For the computation of integrals in Qε(θ), θ ∈ [−π/4, π/4], it is necessary, for a given y,
to determine boundaries `0(y) and `1(y) of intervals for z that lie in the support of the joint
density ρY,Z(y, z) (see the thick solid lines in Fig. 3.3). The integrals in Qε(θ) are computed
using the computer algebra system Wolfram Mathematica [285]. The computation requires to
treat the cases θ ∈ [−π/4, 0) and θ ∈ [0, π/4] differently (see Fig. 3.3).

For negative θ ∈ [−π/4, 0) and arbitrary y ∈ R, we have that

`0(y) =

{
|y| cot(|θ|) if y < 0

y tan(|θ|) if y ≥ 0

}
= |y| tan(|θ|)sgn(y) (3.95)

and `1(y) =∞, i. e.,

ρY,Z(y, z) = exp(−a+
θ y − a−θ z) · 1[`0(y),`1(y)](z). (3.96)

We compute that

Var(Z |Y = y) = (cos(|θ|) + sin(|θ|))−2 (3.97)

which is constant in y and yields

Qε(θ) = CVar,Rθ(ε, 2, 1) = (cos(|θ|) + sin(|θ|))−2. (3.98)

Note that this explains the left part of the graph of Qε(θ) in Fig. 3.4 which shows that Qε(θ)
does not depend on ε for θ ∈ [−π/2, 0).

For non-negative θ ∈ [0, π/4] and a given y ≥ 0, the boundaries are computed to `0(y) =
−y tan(θ) and `1(y) = y cot(θ), i. e.,

ρY,Z(y, z) = exp(−a+
θ y − a−θ z) · 1[0,∞)(y) · 1[`0(y),`1(y)](z). (3.99)

We compute that

Var(Z |Y = y)
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Figure 3.5: (a) The log-log plot of the map y 7→ Var(Z |Y = y) shows that it is bounded
for angles θ ∈ [0, π/4), but approaching the unbounded function y2/3, which corresponds
to θ = π/4, as θ → π/4.
(b) The plot shows the map ε 7→ Qε(θ) for several angles θ. Also, it illustrates the fact
that θ = π/4 is a special case for which Qε(θ) can get arbitrarily large.

=
aθ
8b2θ

(
1− 2 exp(bθy) + exp(2bθy)− 8 exp(bθy)y2(1− dθ)

(exp(bθy)− 1)2
− cθ

)
(3.100)

for aθ := csc(θ)4 sec(θ)4, bθ := sec(θ)− csc(θ), cθ := cos(4θ), and dθ := sin(2θ). Var(Z |Y = y)
can actually be bounded in y for θ ∈ [0, π/4). Indeed, since dθ ∈ [0, 1), it holds that 1− dθ ∈
(0, 1] implying that 8 exp(bθy)y2(1− dθ) > 0. It follows that

Var(Z |Y = y) ≤ aθ
8b2θ

(
1− 2 exp(bθy) + exp(2bθy)

(exp(bθy)− 1)2
− cθ

)
(3.101)

=
aθ
8b2θ

(
(exp(bθy)− 1)2

(exp(bθy)− 1)2
− cθ

)
(3.102)

=
aθ(1− cθ)

8b2θ
. (3.103)

Fig. 3.5a illustrates the boundedness of Var(Z |Y = y) and additionally shows that it ap-
proaches the unbounded function y 7→ y2/3 as θ → π/4. Hence, for θ ∈ [0, π/4), it holds
that

Qε(θ) = CVar,Rθ(ε, 2, 1) ≤ aθ(1− cθ)
8b2θ

. (3.104)

This bound is itself unbounded in θ since bθ → 0 and aθ(1 − cθ) → 32 as θ → π/4 implying
that we can see θ = π/4 as a special case. This assessment is also supported by Fig. 3.5b. In
particular, note that

CVar = CVar,Rπ/4 . (3.105)
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x1
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yz

θ

Figure 3.6: Exponential distribution in 2 dimensions with a coordinate system rotated by 45◦.
The orange lines depict the contour levels of the distribution in the support of ρX . The solid
red line marks the interval of the uniform distribution of Z |Y = y for y > 0.

Rotation by θ = π/4

A rotation of 45◦, i. e., θ = π/4 and W = Rπ/4, is a limit case since a−π/4 from (3.93) becomes
zero. The joint density for Y and Z is then

ρY,Z(y, z) = exp(−
√

2y) · 1[0,∞)(y) · 1[−y,y](z). (3.106)

A graphical illustration of this case is given in Fig. 3.6. Consequently, the marginal distribution
of Y is

ρY (y) =

∫ ∞
−∞

ρY,Z(y, z) dz = 2y exp(−
√

2y) · 1[0,∞)(y) (3.107)

and the conditional density ρZ|Y (·|y) computes to

ρZ|Y (z|y) =
1[−y,y](z)

2y
(3.108)

for y > 0. Note that ρZ|Y (·|y) is the density of a uniform distribution on the interval [−y, y].
For y > 0, it follows that

Var(Z |Y = y) = (2y)−1

∫ y

−y
z2 dz = y2/3, (3.109)

which is the expression that variances of Z |Y = y for other angles θ∗ approach to as θ∗ → π/4
(see Fig. 3.5a).

Note that, since |Z| |Y = y ∼ U([0, y]), the lower bound from (3.73) for Cy in this case
becomes

E[(|Z| −E[|Z| |Y = y])2 |Y = y] = Var(|Z| |Y = y) = y2/12, (3.110)

which is unbounded in y implying that the distribution of CY is not compactly supported.
Therefore, we found a scenario in which the constants CP,W and CP indeed do not exist.

However, there is still a chance that the constants CP,ε,W and CP,ε from (3.60) and, respec-
tively, (3.79) exist. It holds that

CVar(ε, 2, 1) = CVar,Rπ/4(ε, 2, 1) =
1

3
E[Y 2+2/ε]ε/(1+ε) (3.111)
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implying that the constant CP,ε(ε, 2, 1) can be bounded from above by

CP,ε(ε, 2, 1) ≤ Lε/(1+ε)K

3
E[Y 2+2/ε]ε/(1+ε). (3.112)

For example, choosing ε = 2 would give

CP,ε(2, 2, 1) ≤ 2K

(
L2

3

)1/3

. (3.113)

n dimensions

This subsection aims to generalize the results of the previous subsection, i. e., we investigate
the constant CP,ε from (3.79) for n independent exponential distributions.

Motivated by the two-dimensional case, we regard the rotation of the coordinate system
by a matrix W = R∗ that rotates the vector (1, 0, . . . , 0)> ∈ Rn to (1/

√
n, . . . , 1/

√
n)> ∈ Rn.

Note that in the two-dimensional case, a rotation by θ = π/4 corresponds to a matrix rotating
(1, 0)> to (1/

√
2, 1/
√

2)>. This is the worst case in the sense that Zi |Y = y is uniformly
distributed for each component Zi in Z = (Z1, . . . , Zn−k)

> and hence, similar to the two-
dimensional case, the conditional variance of Zi |Y = y has no finite essential supremum. In
the context from above, it holds that

CVar(ε, n, k) = CVar,R∗(ε, n, k). (3.114)

The following theorem studies this case and investigates the dimensional dependence of the
involved constant.

Theorem 3.4.5. For ρX as in (3.83), it holds that

E[(f(X)− fg(X))2] ≤ Cexpn (λk+1 + · · ·+ λn)1/(1+ε) (3.115)

for a constant
Cexpn = Cexpn(ε, n, k, L,PX) ≥ CP,ε (3.116)

Proof. In the support of ρX , i. e., in X = Rn
≥0, ρX is greater than zero and constant on the

intersection of Rn
≥0 and planes

Pa := {x |x1 + · · ·+ xn = a} = {x | (1, . . . , 1)>x = a} ⊂ Rn, a > 0, (3.117)

i.e., on hypersurfaces Ta := Pa ∩Rn
≥0. The situation is illustrated by Fig. 3.7 for n = 3 dimen-

sions.
For x = Jy, zK ∈ Rn

≥0, the value of ρY ,Z(y, z) is only determined by y1 ≥ 0. Reversely,

if y1 < 0, then ρY ,Z(y, z) = 0. We know that the point at x0 := β(1, . . . , 1)> ∈ Rn with
‖x0‖2 = y1 is supposed to lie on Pa for some β > 0. It follows immediately that β = y1/

√
n.

Also, we determine a with

a = (1, . . . , 1)>x0 =
y1√
n
n =
√
ny1. (3.118)

Let us define T (y1) := T√ny1
. That is,

ρY ,Z(y, z) = exp(−√ny1) · 1[0,∞)(y1) · 1T (y1)(y, z). (3.119)



60 3 Active subspaces

x1

x2

x3

x′1

x′2

x′3

Ta

Figure 3.7: Exponential distribution in 3D with a rotated coordinate system.

T (y1), as a geometric figure, is a regular (n− 1)-simplex in n dimensions. T (y1) is intrinsically
(n− 1)-dimensional and has n corners which are

(
√
ny1, 0, . . . , 0), . . . , (0, . . . , 0,

√
ny1) ∈ Rn. (3.120)

It follows that the side length of T (y1) is
√

2ny1. Note that the coordinates y̌ = (y2, . . . , yk)
>

and z = (z1, . . . , zn−k)
> all move on T (y1).

We can rewrite T (y1) as

T (y1) = {x ∈ Rn
≥0 | (W>x)1 = y1} (3.121)

= {Jỹ, z̃K | Jỹ, z̃K ∈ Rn
≥0, ỹ1 = y1}. (3.122)

This motivates to view T (y1) as an (n− 1)-dimensional set in the rotated coordinate system,
i.e., we define

Ť (y1) := {(y̌, z) ∈ Rk−1 ×Rn−k | J(y1, y̌), zK ∈ T (y1)} ⊂ Rn−1. (3.123)

We observe that the conditioned random variable (Y̌ ,Z) |Y1 = y1 is uniformly distributed on
the regular (n− 1)-simplex Ť (y1).

The basic idea to get a bound for E[Var(Zi|Y )(1+ε)/ε] is based on the fact that zi, moving
as the (k + i − 1)-th coordinate inside Ť (y1), takes values in [0, hi(y1)], where hi(y1) is the
height of a regular (k+ i−1)-simplex with side length

√
2ny1 and is thus bounded. In general,

the height of a regular n-simplex is the distance of a vertex to the circumcentre of its opposite
regular (n− 1)-simplex. By [41, p. 367], it holds that

hi(y1) =

√
n(k + i)

k + i− 1
y1. (3.124)

We start the computation by noting that

ρY ,Z(y, z) = exp(−√ny1) · 1[0,∞)(y1) · 1Ť (y1)(y̌, z). (3.125)
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The marginal distribution of Zi |Y = y is given by

ρZi|Y (zi|y) =

∫
· · ·
∫
ρZ|Y (z|y) dz1 . . . dzi−1 dzi+1 . . . dzn−k. (3.126)

and so we get

ρY (y)ρZi|Y (zi|y) (3.127)

=

∫
· · ·
∫
ρY ,Z(y, z) dz1 . . . dzi−1 dzi+1 . . . dzn−k (3.128)

= exp(−√ny1) · 1[0,∞)(y1) (3.129)

·
∫
· · ·
∫

1T (y1)(y̌, z) dz1 . . . dzi−1 dzi+1 . . . dzn−k. (3.130)

Using Jensen’s inequality in a first step, we can continue with

E[Var(Zi|Y )(1+ε)/ε] ≤ E[E[Z
2(1+ε)/ε
i |Y ]] (3.131)

=

∫ (∫
z

2(1+ε)/ε
i ρZi|Y (zi|y) dzi

)
ρy(y) dy (3.132)

=

∫ ∞
0

exp(−√ny1)

(∫ ∫
z

2(1+ε)/ε
i · 1Ť (y1)(y̌, z) dz dy̌

)
dy1 (3.133)

≤
∫ ∞

0
exp(−√ny1) hi(y1)2(1+ε)/ε

(∫ ∫
1Ť (y1)(y̌, z) dz dy̌

)
dy1 (3.134)

=

∫ ∞
0

exp(−√ny1)

(√
n(k + i)

k + i− 1
y1

)2(1+ε)/ε √
nn

(n− 1)!
yn−1

1 dy1 (3.135)

=

(
n(k + i)

k + i− 1

)(1+ε)/ε √
nn

(n− 1)!

∫ ∞
0

y
n+1+2/ε
1 exp(−√ny1) dy1 (3.136)

=

(
n(k + i)

k + i− 1

)(1+ε)/ε √
nn

(n− 1)!

Γ(n+ 2 + 2/ε)

n(1+ε)/ε
√
nn

(3.137)

=

(
k + i

k + i− 1

)(1+ε)/ε Γ(n+ 2 + 2/ε)

(n− 1)!
. (3.138)

Note that an intermediate step of the previous calculation uses the fact that the volume of the
regular (n− 1)-simplex Ť (y1) with side length

√
2ny1 is (see [41, p. 367])∫ ∫

1Ť (y1)(y̌, z) dz dy̌ =

√
n
n

(n− 1)!
yn−1

1 . (3.139)

Remember from (3.74) and (3.75) that

E[C
(1+ε)/ε
Y ]ε/(1+ε) ≤ K(n− k)1/(1+ε)CVar(ε, n, k) (3.140)

with

CVar(ε, n, k) =

(
n−k∑
i=1

E[Var(Zi|Y )(1+ε)/ε]

)ε/(1+ε)

(3.141)
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Figure 3.8: The left plot shows curves of the map ε 7→ Cε(n, k = 1) for n ∈ {2, 5, 10, 20}.
Curves of n 7→ Cε(n, k = 1) for ε ∈ {0.02, 0.05, 0.1, 0.2} are displayed on the right.

≤
(

Γ(n+ 2 + 2/ε)

(n− 1)!

n−k∑
i=1

(
k + i

k + i− 1

)(1+ε)/ε
)ε/(1+ε)

. (3.142)

Defining

Cε(n, k) := (n− k)1/(1+ε)

(
Γ(n+ 2 + 2/ε)

(n− 1)!

n−k∑
i=1

(
k + i

k + i− 1

)(1+ε)/ε
)ε/(1+ε)

(3.143)

then yields

E[C
(1+ε)/ε
Y ]ε/(1+ε) ≤ KCε(n, k). (3.144)

Combining all bounds, we get that

CP,ε(ε, n, k) ≤ K · Lε/(1+ε) · Cε(n, k) =: Cexpn(ε, n, k, L), (3.145)

where CP,ε(ε, n, k) was defined in (3.79). We recall that n denotes the dimension of the prob-
lem, k the dimension of the active subspace, L is the upper bound on ‖∇f‖22, and K the
universal constant from (3.74).

The result follows by Lem. 3.4.3. �

Fig. 3.8 depicts the quantity Cε(n, k = 1) from (3.143) as a function of ε > 0 for some n ∈ N
(left plot) and as a function of n ≥ 2 for several ε > 0 (right plot). We set k = 1 since this
gives the maximum value for Cε over all k ≥ 1. As expected, the curves increase quickly as ε
approaches zero or, respectively, n becomes large.

Remark. In the previous theorem, the exponential distributions are assumed to have unit
rates. The computations can also be made for arbitrary rates νi, i = 1, . . . , n. However, some
modifications are necessary.

Let ν = (ν1, . . . , νn)> denote the vector of rates. To get again the worst case scenario as in
the previous subsection (uniform distribution on a simplex structure), the coordinate system
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has to be rotated in such a way that the vector (1, 0, . . . , 0)> rotates to ν/‖ν‖2. The structure
of a regular simplex that is used in the estimates above is not present in this more general
case. Instead, we get a general simplex whose heights are not as easy to compute as in the
regular case. However, rough estimates can be achieved by enclosing the general simplex with
a larger regular one.

3.4.4 Future work with MGH distributions

The generalized bound from Lem. 3.4.3 and the study of corresponding Poincaré type con-
stants CP,ε,W and CP,ε for independent exponential distributions in Subsec. 3.4.3 motivate
further similar investigations of more general distributions.

From a statistical perspective, a study of the class of multivariate generalized hyperbolic
distributions (MGH) (see, e. g., [17]) can be considered as a next step since it allows for
distributions with both non-zero skewness and heavier tails.

An MGH is a distribution of the random vector

X = µ+ βA+
√
AMV (3.146)

with location parameter µ ∈ Rn, skewness parameter β ∈ Rn, and a symmetric positive
definite matrix M ∈ Rn×n. The scalar random variable A, called the mixing variable, follows
a generalized inverse Gaussian distribution (GIG) [140], and V ∼ N (0, I) is independent
of A. As a particular example, for X to be Laplace distributed, we set β = 0 and let A be
exponentially distributed [157]. Note that, however, the example from Subsec. 3.4.3, assuming
independent exponential distributions, is not an MGH. In order to include this case, we would
have to extend A to a random positive definite matrix.

Nevertheless, MGH is a large class containing classical distributions like the normal-inverse
Gaussian, generalized Laplace, and Student’s t-distribution. In particular, these distributions
are interesting since they have been used in areas like, for instance, economics and financial
markets [18, 19, 85], spatial and Geostatistics [35, 36, 278], and linear mixed-effects [13, 182,
294] which are used, e. g., for linear non-Gaussian time series models in medical longitudinal
studies [13].

We mention that, under an assumption on a parameter, MGH distributions are log-con-
cave [290], i. e., we can use the bounds on Poincaré constants CY of Bobkov from (3.73).

In our opinion, it is preferable to start the investigation with the subclass of symmetric
MGH distributions, i. e., β = 0 in (3.146). The following lines demonstrate particular difficul-
ties that we already encounter in this smaller subclass. Let us choose µ = β = 0 and M = I
in (3.146) such that

X =
√
AV (3.147)

with V ∼ N (0, I). A common first step is to study X conditioned on A = a, a > 0,
i. e., X |A = a ∼ N (0, aI), and to use the tower property of conditional expectations. That
is, analogously to (3.6), we define

C := E[CA] = WΛW> (3.148)

with

Ca := E[∇f(X)∇f(X)> |A = a] = WaΛaW
>
a . (3.149)
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Choosing k ≤ n− 1 independent of A, we further set

Ya := W>a,1X and Za := W>a,2X. (3.150)

The computation starts, similar to (3.36), with

E[(f(X)− fg(X))2 |A = a] (3.151)

= E[E[(f(JYa,ZaKWa)− g(Ya))
2 |Ya] |A = a] (3.152)

≤ E[CYaE[‖∇zaf(JYa,ZaKWa)‖22 |Ya] |A = a] (3.153)

= a E[E[‖∇zaf(JYa,ZaKWa)‖22 |Ya] |A = a] (3.154)

= a trace (Λa,2) . (3.155)

In (3.154), we use the fact that the Poincaré constant of a normal distribution N (0, aI)
is λmax(aI) = a; see Sec. 3.3. The last step to (3.155) follows from Lem. 3.2.1. This yields

E[(f(X)− fg(X))2] = E[E[(f(X)− fg(X))2 |A]] (3.156)

≤ E[A · trace (ΛA,2)], (3.157)

where the random variable A · trace (ΛA,2) is assumed to have finite first moment.

At this point, as long as A is not compactly supported, we can only continue by applying
another Hölder’s inequality similar to the proof of Lem. 3.4.3. However, in any case, we have
to face the problem that E[trace (ΛA,2)] is, in general, not equal to trace (Λ2) which is the sum
of eigenvalues belonging to the inactive subspace that we actually aim for. Nevertheless, we
know that

E[trace (ΛA)] = trace (Λ) , (3.158)

but it is unclear whether, and how, this equality can be exploited for our purposes.

3.5 Practical considerations

In contrast to the last two sections, which treat rather theoretical aspects of ASM, this sec-
tion considers ASM from a practical perspective. We need the results described here for the
following chapters, where we apply ASM in the context of Bayesian inverse problems involv-
ing high-dimensional complex physical models. The general procedure of applying ASM in
Bayesian inversion is described in Ch. 4.

Here, we consider two kinds of issues that were neglected so far but frequently arise when
using ASM in practice. It is the approximation/estimation of

1. the auto-correlation matrix C from (3.6) determining the active and inactive subspace,

2. the ridge profile g from (3.23) for the approximation of f on a low-dimensional space.

Our exposition is based on the contents in [52].
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Estimation of C

The matrix C from (3.6) is estimated by a finite Monte Carlo sum, i. e.,

C ≈ C̃ :=
1

NC̃

NC̃∑
j=1

∇f(Xj)∇f(Xj)
>, (3.159)

where NC̃ > 0 and Xj
i.i.d.∼ PX , j = 1, . . . , NC̃ . Analogously to the steps from above, we get

the eigendecomposition
C̃ = W̃ Λ̃W̃> (3.160)

with eigenvectors w̃i ∈ Rn and eigenvalues λ̃i ≥ 0, i = 1, . . . , n.
A natural immediate question from practitioners is on the size of NC̃ , i. e., how many gra-

dient samples do we need to approximate C sufficiently accurate? And what does “sufficiently
accurate” mean?

First, we should note that we actually do not want to approximate C itself but rather its
eigenvalues and eigenvectors. The following paragraphs first present corresponding results for
the approximation of eigenvalues and subsequently results for eigenvectors, both under the
following assumption.

Assumption 3.5.1. The spectral norm of the gradient of f is uniformly bounded from above,
i. e.,

‖∇xf(x)‖2 ≤ L (3.161)

for some L > 0 and all x ∈ X .

The following theorem gives a probabilistic bound for the approximation quality of the
perturbed eigenvalues λ̃i.

Theorem 3.5.2 ([52, Thm. 3.3]). For ε ∈ (0, 1], it holds that

P
(
λ̃` ≥ (1 + ε)λ`

)
≤ (n− `+ 1) exp

(
−NC̃λ`ε

2

4L2

)
(3.162)

and

P
(
λ̃` ≤ (1− ε)λ`

)
≤ ` exp

(
−NC̃λ

2
`ε

2

4λ1L2

)
(3.163)

for ` = 1, . . . , n.

The proof for this theorem uses an eigenvalue Bernstein inequality for subexponential matri-
ces which is a concentration inequality for eigenvalues of a finite sum of random, independent,
and symmetric matrices satisfying a subexponential growth condition; see Thm. A.2.15.

The appearance of NC̃ in the negative exponential expressions in (3.162) and (3.163) is
the key to provide evidence for the practical usability of ASM. Gradient samples are generally
considered to be computationally expensive, but, actually, we do not need to compute many
of them as the following corollary shows.

Corollary 3.5.3 ([52, Corollary 3.5]). Let χ` := λ1/λ`. Then, for ε ∈ (0, 1], using

NC̃ = Ω

(
L2χ2

`

λ1ε2
log(n)

)
(3.164)
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samples in (3.159) implies that
|λ̃` − λ`| ≤ ελ` (3.165)

with high probability.

Note that the Ω notation means that NC̃ can be bounded from below by the expression in
the parentheses multiplied by a constant; see Def. A.1.1. The logarithm in the problem dimen-
sion n opens the possibility to approximate the eigenvalues “sufficiently accurate” without an
enormous amount of computational costs.

As a practical recipe, the author of [52] suggests to choose

NC̃ = βC̃ m log(n) (3.166)

gradient samples for the accurate estimation of the first m eigenvalues of C, where βC̃ > 0
represents the unknown constants in the bounds from above and is called a sampling factor.
It is recommended to choose βC̃ between 2 and 10.

Of course, the quality of the estimated eigenvalues λ̃i needs to be explicitly examined in
practice, i. e., we have to check if the number of samples NC̃ from (3.159) is large enough to
allow for an accurate estimate. This can be done by a bootstrap approach [86, 167], where
an ensemble of gradient samples itself is used to quantify the variability in the corresponding
estimated eigenvalues λ̃i, i. e., no further gradients need to be computed.

In the `-th iteration of the bootstrap algorithm, a predefined number of samples from
the ensemble is randomly picked, the matrix C̃(`) is built with the picked samples according

to (3.159), and the corresponding eigenvalues λ̃
(`)
i are computed. This process is done many

times such that we end up with an ensemble of eigenvalues λ̃
(`)
i , ` = 1, . . . , n, for every i =

1, . . . , n. Plotting the minimum and maximum value for each i, i. e.,

λ̃i,min := min
`
λ̃

(`)
i and λ̃i,max := max

`
λ̃

(`)
i (3.167)

on a logarithmic scale then provides a notion of the variability in each eigenvalue.
Fig. 3.9 shows the resulting plot for a synthetic toy example with f(x) := 1

2x
>Ax for

a given matrix A ∈ R20×20 with predefined eigenvalues and PX := N (0, I). It illustrates
two cases. The left plot depicts a scenario in which we take a small number of gradient
samples NC̃ = 10 resulting in a larger variability in the estimated eigenvalues. However, a
larger number of samples NC̃ = 100 allows for a more accurate estimation, i. e., the variability
is clearly reduced; see the plot on the right.

The quality of the estimated eigenvector matrix W̃ is measured by the distance between
the exact and perturbed subspace which is defined as

dist(ran(W1), ran(W̃1)) := ‖W1W
>
1 − W̃1W̃

>
1 ‖2; (3.168)

see [106, Sec. 2.6.3]. Note that [106, Thm. 2.6.1] gives that

dist(ran(W1), ran(W̃1)) = ‖W>1 W̃2‖2 = ‖W̃>1 W2‖2 (3.169)

and recall that W1, W̃1 ∈ Rk.
It is known that this distance has an informative upper bound. More concretely, for each ε >

0 small enough denoting the relative error ‖C̃ − C‖2/‖C‖2, there exists NC̃ = NC̃(ε) > 0 such
that

dist(ran(W1), ran(W̃1)) ≤ 4λ1ε

λk − λk+1
(3.170)
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Figure 3.9: For f(x) := 1
2x
>Ax with A ∈ R20×20 and PX := N (0, I), the variability in

the estimated eigenvalues λ̃i is approximated by a bootstrap approach. The left plot shows a
scenario with a small number of samples NC̃ = 10 causing a larger variability as the estimation
on the right where we take NC̃ = 100 gradient samples.

with high probability; see [52, Corollary 3.10] (especially for more concrete expressions for ε
and NC̃). Hence, for a large spectral gap between the k-th and (k + 1)-th eigenvalue, we get
a good estimate of the (corresponding) active subspace. On the other hand, since the result
is only an upper bound, a small or even zero spectral gap gives only a hint for an inaccurate
estimation; further analysis is necessary to confirm that the estimated active subspace is indeed
of bad quality.

In practice, a more direct assertion for the approximation of the subspace, that we follow
in the next chapters, can be done by a sufficient summary plot (see Sec. 3.1) and an evalu-
ation of the coefficient of determination (see Def. A.2.4) [81, 102] if the profile function g is
approximated with a polynomial surrogate; see Sec. 4.4 discussing this topic in the context of
Bayesian inverse problems.

Remark. In the context of Bayesian inverse problems, it is not clear whether a large spectral
gap is actually necessary for an accurate approximation of the posterior distribution. For
example, in [293], which has a similar context as ours but where the posterior approximations
are evaluated with the Kullback–Leibler (KL) divergence [159, 160] (see Def. A.2.10), a large
spectral gap is not discussed at all since the results are independent of it.

Remark. The authors of [127] also derive upper bounds similar to (3.170) for the subspace
estimation. They bound the sine of the principal angle [33] between ran(W1) and ran(W̃1),
denoted by ∠(ran(W1), ran(W̃1)), which is, however, equivalent to our notion of distance since

dist(ran(W1), ran(W̃1)) = ∠(ran(W1), ran(W̃1)) (3.171)

due to [106, Sec. 12.4.3]. The main difference of their results is that, instead of having a log(2n)
term in the number of samples NC̃ (as is the case in [52, Corollary 3.10]), it is enough to only
have the numerical rank of C, also called intrinsic dimension and defined as

intdim(C) :=
trace (C)

‖C‖2
≥ 1, (3.172)
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inside the logarithm. That is, we actually overestimate the number of samples NC̃ by the
practical recipe given in (3.166). Nevertheless, we follow this recommendation since it is still
acceptable in our context.

The estimated matrix W̃ , and hence W̃1, was a random quantity so far. In the following, we
fix W̃ = W̃ (ω), ω ∈ Ω, and interpret its deviation from the exact matrix W as perturbation. We
consequently agree on the following assumption related to this perturbation for an investigation
of its impact on the approximation of f .

Assumption 3.5.4. There exists an ε > 0 such that

dist(ran(W1), ran(W̃1)) ≤ ε. (3.173)

The perturbation also affects the active and inactive variables, i. e., we define

Ỹ := W̃>1 X and Z̃ := W̃>2 X. (3.174)

Consequently, we have

ρỸ ,Z̃(ỹ, z̃) = ρX(Jỹ, z̃KW̃ ) (3.175)

for ỹ ∈ Ỹ := W̃>1 X and z̃ ∈ Z̃ := W̃>2 X . The marginal densities ρỸ and ρZ̃ are given
analogously to (3.18). For the conditional density ρZ̃|Ỹ , which is defined analogously to (3.20),
we define

Ỹ+ := {ỹ ∈ Rk | ρỸ (ỹ) > 0} (3.176)

analogously to (3.19).
Finally, we are able to define the corresponding approximation to f on the perturbed active

subspace, i. e., for ỹ ∈ Ỹ+,

g̃(ỹ) := E[f(JỸ , Z̃KW̃ ) | Ỹ = ỹ] (3.177)

and

fg̃(x) := g̃(W̃>1 x) (3.178)

for x ∈ X with W̃>1 x ∈ Ỹ+.
For proving an upper bound on the mean square error of fg̃ approximating f , analogously

to (3.33), we have to additionally assume that the perturbed conditional distribution PZ̃|Ỹ
satisfies a probabilistic Poincaré inequality with bounded Poincaré constant CỸ in the sense
from above, i. e., ess supCỸ < ∞. For example, the distributions PX discussed in Sec. 3.3

fulfill this assumption, independent of the perturbation W̃ of W . The following result is a
slight variation of [52, Thm. 4.6], differing only in the additional assumption.

Theorem 3.5.5. Under Assumption 3.5.4, suppose the perturbed conditional distribution PZ̃|Ỹ
satisfies a probabilistic Poincaré inequality with bounded Poincaré constant CỸ in the sense
from above. Then, the mean square error of fg̃ approximating f is bounded from above by

E[(f(X)− fg̃(X))2] ≤ CP̃,W̃

(
ε(λ1 + · · ·+ λk)

1/2 + (λk+1 + · · ·+ λn)1/2
)2
, (3.179)

where CP̃,W̃ = CP̃,W̃ (W̃ ,PX) = ess supCỸ <∞.

Proof. The proof follows the same arguments as the proof of [52, Thm. 4.6]. �
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Approximation of g

The second type of perturbation is caused by the general unavailability of the ridge profile g
in closed form. At first glance, it appears to be computationally costly to approximate the
integral expression in (3.23). But since, by construction, the original function f is supposed
to vary only mildly when changing the inactive variable z, it is natural to estimate g also by
a Monte Carlo sum, i. e., we define

g(y) ≈ gN (y) :=
1

N

N∑
j=1

f(Jy,Zyj K) (3.180)

for y ∈ Y+, where N > 0 is the number of samples Zyj
i.i.d.∼ PZ|Y (·|y) for j = 1, . . . , N .

Note that gN is a random variable. We explicitly denote the samples Zyj with a superscript y
to emphasize that they are drawn from the conditional distribution PZ|Y depending on y.
Furthermore, if f is a ridge function, then N = 1 sample is enough for an exact approximation.
But also in many more general cases, it is enough to have only N = 1 sample; see, e. g., the
two complex scenarios described in Ch. 5 and 6.

In fact, it is not trivial to sample from PZ|Y in general. For example, if PX = N (0, I),
then, by the rotational symmetry of the standard normal distribution, we have that

Y ∼ N (0, I) and (Z |Y = y) = Z ∼ N (0, I), (3.181)

which makes sampling from PZ|Y rather simple. However, for such a common case as the
uniform distribution on a hypercube, i. e., if PX = U ([0, 1]n), the random variables Y and Z
are not independent in general and hence sampling from the conditional distribution becomes
difficult as briefly discussed in [52, Sec. 4.1]. Nevertheless, we see in Ch. 5 and 6 that the
corresponding scenarios are not affected by this issue since we have to take only N = 1 sample.
Ch. 4 explains why we can get this single sample “for free.”

It is natural to derive a bound on the mean square error also for this type of perturbation.
Defining

fgN (x) := gN (W>1 x) (3.182)

for x ∈ X with W>1 x ∈ Y+, we can prove a lemma that is central to prove an upper bound.
Strictly speaking, the corresponding derivation in [52] is not fully correct since it does not

consider gN as a random variable. Also, a similar exposition in [54], which is however formally
correct, does not provide much insight. As already mentioned, gN , and hence also fgN , is a
random variable. That is the reason why expressions like∫

X
(f(x)− fgN (x))2 ρX(x) dx (3.183)

are also random quantities, but the similar expression

E[(f(X)− fgN (X))2] (3.184)

is a deterministic real value.
The following lemma, which is the main step for deriving the upper bound and a standard

result from Monte Carlo theory [207], is based on the observation that

g(Y ) = E[gN (Y ) |Y ] P-a.s. (3.185)
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Lemma 3.5.6. It holds that

E[(fg(X)− fgN (X))2] =
1

N
E[(f(X)− fg(X))2]. (3.186)

Proof. We compute that

E[(g(Y )− gN (Y ))2 |Y ] = E[(E[gN (Y ) |Y ]− gN (Y ))2 |Y ]

= Var(gN (Y ) |Y )

=
1

N2

N∑
j=1

Var(f(JY ,ZK) |Y )

=
1

N
E[(g(Y )− f(JY ,ZK))2 |Y ],

(3.187)

where in each line we only have equality P-a.s. Applying the tower property of conditional
expectations, this yields

E[(fg(X)− fgN (X))2] = E[(g(Y )− gN (Y ))2]

= E[E[(g(Y )− gN (Y ))2 |Y ]]

=
1

N
E[(g(Y )− f(JY ,ZK))2]

=
1

N
E[(f(X)− fg(X))2].

(3.188)

�

This immediately gives the following result on the upper bound of the mean square error
of fgN approximating f .

Theorem 3.5.7. Suppose that PZ|Y satisfies a probabilistic Poincaré inequality with bounded
Poincaré constant CY in the sense from above. Then, the mean square error of fgN approxi-
mating f is bounded from above by

E[(f(X)− fgN (X))2] ≤ CP,W (1 +N−1/2)2 (λk+1 + · · ·+ λn), (3.189)

where CP,W = CP,W (W,PX) = ess supCY <∞.

Proof. The triangle inequality in L2(Ω,P) and Lem. 3.5.6 give that

E[(f(X)− fgN (X))2]1/2

≤ E[(f(X)− fg(X))2]1/2 + E[(fg(X)− fgN (X))2]1/2

= (1 +N−1/2) E[(f(X)− fg(X))2]1/2.

(3.190)

After squaring both sides, the assumption allows to use (3.39) and Lem. 3.2.1 yielding the
result in (3.189). �

The final result in this section concerns the approximation of f taking both types of per-
turbations into account. That is, we define

fg̃N (x) := g̃N (W̃>1 x) (3.191)
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for x ∈ X with W̃>1 x ∈ Ỹ+, where

g̃N (ỹ) :=
1

N

N∑
j=1

f(Jỹ, Z̃ ỹj KW̃ ) (3.192)

for ỹ ∈ Ỹ+ and samples Z̃ ỹj
i.i.d.∼ PZ̃|Ỹ (·|ỹ), j = 1, . . . , N . With the same reasoning for fg̃N

as for fgN , we apply the triangle equality to get the following final upper bound for the mean
square error.

Theorem 3.5.8. Under the same assumptions as in Thm. 3.5.5, the mean square error of fg̃N
approximating f is bounded from above by

E[(f(X)− fg̃N (X))2]

≤ CP̃,W̃ (1 +N−1/2)2
(
ε(λ1 + · · ·+ λk)

1/2 + (λk+1 + · · ·+ λn)1/2
)2
,

(3.193)

where CP̃,W̃ = CP̃,W̃ (W̃ ,PX) = ess supCỸ <∞.

As already mentioned, the two types of perturbations that we discussed in this section
frequently arise in practical applications of ASM. A particular kind of application is the com-
bination of ASM with Bayesian inverse problems (Ch. 2) which is the central topic of the next
chapter. Moreover, it is the foundation for Ch. 5 and 6.





Chapter 4
Active subspaces and Bayesian inverse
problems

Since both concepts, Bayesian inverse problems and ASM, were introduced separately in Ch. 2
and 3, respectively, we are looking at their combination in this chapter.

In Sec. 2.5, it is explained that rather primitive sampling strategies as rejection and im-
portance sampling suffer from the curse of dimensionality and thus must be excluded from
consideration as potential approaches to solve high-dimensional Bayesian inverse problems.
MCMC methods, in particular the MH algorithm (Alg. 4), provide a way to alleviate the im-
pact of the number of dimensions on the computational costs by proposing samples that reflect
the shape of the posterior distribution sufficiently well in order to decrease the auto-correlation
time between succeeding samples.

But still, out-of-the-box MCMC methods cannot completely eliminate deteriorating per-
formance that comes with increasing dimensions since they still operate in the full-dimensional
parameter space. Hence, it is natural to ask if there exists a certain structure of low dimension-
ality for a given Bayesian inverse problem on which the update from the prior to the posterior
distribution can be restricted without losing too much information that would actually be nec-
essary for a sufficiently accurate inference. For checking the existence of such a low-dimensional
structure and its exploitation, we can apply ASM introduced in the previous chapter, i. e., we
look for a low-dimensional subspace that can be used to perform the main parts of the overall
inference process.

Related literature

Before we provide the setup for performing ASM with Bayesian inverse problems, let us have
a look on related literature.

We mainly follow the approach from [56], where the authors describe how ASM can be
exploited for accelerating MCMC. Our surrogate construction, discussed in Sec. 4.4, is similar
to the study in [62].

ASM is, however, not the only approach to speed up MCMC by finding low-dimensional
structure. In [69], a likelihood-informed subspace (LIS) is studied for Bayesian inverse problems
with a Gaussian prior. In this case, it is the Hessian matrix of the data misfit function, i. e., a
second order instead of a first order quantity, that is used to construct a subspace in which the

73
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change from prior to posterior is dominant. A follow-up investigation of how a LIS-adjusted
MCMC algorithm can improve the performance of producing posterior samples is provided
in [68]. Also, LIS was lately used in the multilevel context (for Multilevel Monte Carlo; see
Sec. 1.2) [26, 65]. Large-scale Bayesian inverse problems, solved using likelihood-informed
parameter and state reduction, were studied in [70].

Recently, the certified approach from [293] finds bounds on the Kullback–Leibler divergence
(see Def. A.2.10) between a subspace-based posterior approximation and the exact posterior.
The constructed subspace is based on (probabilistic) logarithmic Sobolev inequalities [108] (in
contrast to Poincaré inequalities) involving gradients of the data misfit and likelihood func-
tion. Assuming α-uniformly log-concave distributions (see Subsec. 3.4.1), the authors provide
a simple way to choose the dimension of the subspace, here denoted by k, to get a particular
guarantee on the posterior approximation error. The authors also provide a comprehensive
comparison between several dimension reduction approaches for Bayesian inversion includ-
ing ASM and LIS.

We also refer to [25] which combines geometric MCMC methods (like Riemannian manifold
MALA [100]) on a low-dimensional subspace with mesh-independent infinite-dimensional ap-
proaches. ASM and LIS might be brought into the geometric setting as well, but this requires
further research.

Finally, we mention the approaches in [89, 247] as these developments can also be seen
as dimension reduction in Bayesian inverse problems. They exploit low-dimensional structure
in linear Bayesian inverse problems by a low-rank Hessian approximation of the data misfit
function.

Setup

Recall from Ch. 2 that the data D and parameters X of a Bayesian inverse problem are
regarded as random variables and we assume that

D = G(X) + η (4.1)

for a parameter-to-observation map G : X → D and a term η ∼ N (0,Γ) modeling observational
noise with zero mean and covariance matrix Γ.

Starting from a prior distribution µ0 on the space of parameters, the ultimate goal is to
compute samples from the posterior distribution µd := PX|D(·|d) incorporating the informa-
tion given by a particular realization d ∈ D of the data. The mathematical setup as well as
arguments for the well-posedness of this problem are addressed in Sec. 2.2 and 2.4, respectively.

By Bayes’ Theorem (Thm. 2.2.1), the density of the posterior distribution, denoted by ρd :=
ρX|D(·|d), is given (up to a normalizing constant) by

ρd(x) ∝ exp(−fd(x)) ρ0(x) (4.2)

for x ∈ X , where

fd(x) :=
1

2
‖d− G(x)‖2Γ (4.3)

is the data misfit function measuring the (Γ-weighted) deviation between a forward run with
parameter x and the given data d.
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As mentioned above, the idea is to perform Bayesian inversion on a low-dimensional sub-
space, provided it is present. That is, we apply ASM by setting

f(x) = fd(x) and PX = µ0 (4.4)

in the context of Ch. 3.
The following section, Sec. 4.1, presents a simple toy example that motivates the low-

dimensional approach to Bayesian inverse problems. Subsequently, Sec. 4.2 and 4.3 provide
details for the general application of ASM to the solution of Bayesian inverse problems by an
MCMC method in the low-dimensional subspace. The construction of a cheap surrogate for
saving computational costs while performing MCMC is addressed in Sec. 4.4.

4.1 An example

To illustrate that there might be cases in which we do not necessarily need to perform Bayesian
inversion, i. e., in our case Markov chain Monte Carlo, in the full parameter space, we present
a rather simple example that, however, provides the basic idea exploited in more complex
scenarios later.

We regard again a linear forward model G(x) := Ax for a square matrix A ∈ R4×4 and
random parameters X ∼ N (0, I) = µ0 (implying that X = R4). For the sake of simplicity, let
us assume that the true underlying parameter is x0 = 0 and the data are d = 0. The covariance
matrix of the observational noise is set to be diagonal with Γii = σ2 := 1/22, i = 1, . . . , 4.

To really have an example of low-dimensionality, we manually choose an orthogonal eigen-
vector matrix U ∈ R4×4 and a diagonal eigenvalue matrix S ∈ R4×4 to determine the dominant
directions of the linear forward model which is then set to

A = USU>. (4.5)

The matrix U is randomly sampled but ensured to be orthogonal and the eigenvalues are set
to

S = diag((3 · 101, 101, 0, 0)>) (4.6)

to have only two dominant directions (the first two columns in U).
In this case, the data misfit function becomes

fd(x) =
1

2σ2
‖Ax‖22 =

1

2σ2
x>A>Ax (4.7)

for x ∈ X . The corresponding matrix C from (3.6) can then be analytically computed to

C =
1

σ4
US4U>, (4.8)

which means that

W = U and Λ =
1

σ4
S4 (4.9)

referring to (3.7).
We run the RWM algorithm (Alg. 3) for the full model in the full (untransformed) four-

dimensional space to compute a sequence of approximate posterior samples Xd
i ∼ µd, i =

1, . . . , 105. Their realizations are denoted by xdi in the following. The first 2 · 104 samples are
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Figure 4.1: Marginal posterior distributions of the variables transformed according to (4.10).
We observe that only the linear combinations which are dominant for the action of the
map G(x) := Ax, x ∈ X , are informed during the inference process. Note that the x-axes
of the four subfigures are different. The remaining components in the inactive subspace stay
uninformed as the huge variance of their marginal posterior distribution indicates.

regarded as part of the burn-in period and removed from the final sequence. Subsequently,
we transform the final sequence to the coordinate system based on the columns in W = U ,
i. e., we set (

ydi
zdi

)
= U>xdi , (4.10)

where ydi , z
d
i ∈ R2.

The marginal distributions of the two components of ydi = (ydi,1, y
d
i,2)> and zdi = (zdi,1, z

d
i,2)>

are depicted in Fig. 4.1. Noting that the x-axes are different, we can see clearly that only the
components of ydi are informed whereas the components of zdi are not. That means, in this
admittedly simple case it is actually enough to run the inference in a two- rather than in the
full four-dimensional space. In more complex scenarios, the information about such a hidden
low-dimensional structure can lead to a substantial reduction in computational expenses.

The description of a general procedure for performing MCMC in the low-dimensional sub-
space is the subject of the next section.

4.2 MCMC in the active subspace

As described in Ch. 3, we formally need to compute

C = E
[
∇fd(X)∇fd(X)>

]
(4.11)

and its eigendecomposition C = WΛW> according to (3.7) and (3.8). The gradient of the
misfit function fd is

∇fd(x) = ∇G(x)>Γ−1(G(x)− d) (4.12)

for arbitrary x ∈ X .
Once we decided for a particular subspace spanned by the columns of the submatrix W1

from (3.10), the low-dimensional approximation to the misfit function, also called the low-
dimensional misfit function, is given by

gd(y) := E[fd(JY ,ZK) |Y = y] (4.13)
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for each y ∈ Y+.

We can now be clearer about what we mean by performing Bayesian inversion in the low-
dimensional subspace. Since the misfit function fd is only mildly varying on the inactive
subspace (spanned by the columns of the submatrix W2) by construction, it is justified to
interpret that the parameters are only negligibly informed along the inactive subspace which
suggests that we focus the Bayesian update on the complementary directions. That is, we want
to create samples of the posterior distribution µd only in the active subspace and the remaining
part from the inactive subspace is conditionally sampled from the prior distribution µ0.

Formally, this means that, for x ∈ X , y ∈ Y, and z ∈ Z with x = Jy, zK, we decompose
the density of the posterior distribution by

ρd(x) ∝ exp(−fd(x)) ρ0(x)

≈ exp(−gd(W>1 x)) ρY (W>1 x) ρZ|Y (W>2 x |W>1 x)

= exp(−gd(y)) ρY (y) ρZ|Y (z|y).

(4.14)

Recall that ρY and ρZ|Y are marginal and, respectively, conditional densities of the prior
distribution µ0 in this chapter. Defining new densities (up to a normalizing constant)

ρdg,Y (y) :∝ exp(−gd(y)) ρY (y) (4.15)

and

ρdg (x) :∝ ρdg,Y (W>1 x) ρZ|Y (W>2 x |W>1 x), (4.16)

we get a posterior distribution on the active subspace, denoted by µdg,Y , induced by ρdg,Y and a

corresponding approximation µdg to the full posterior induced by ρdg , i. e., we have that

dµdg,Y
dλ

:= ρdg,Y and
dµdg
dλ

:= ρdg . (4.17)

Similar to the bounds derived in Ch. 3, we can make a statement on the approximation
quality of µdg w.r.t. the Hellinger distance involving the eigenvalues of C. The following result
is a slight variation of [56, Thm. 3.1], differing only by an assumption on the conditional
distribution PZ|Y shown to be necessary for the application of the theorems in Ch. 3.

Theorem 4.2.1. Suppose that PZ|Y satisfies a probabilistic Poincaré inequality with bounded

Poincaré constant CY in the sense from Sec. 3.2. Then, the Hellinger distance between µd

and µdg is bounded from above by

dHell(µ
d, µdg )2 ≤MCP,W (λk+1 + · · ·+ λn), (4.18)

where

M =
1

8

(
E[exp(−fd(X))] · exp(−E[fd(X)])

)−1/2
(4.19)

and CP,W = ess supCY <∞.

Proof. The proof follows the same steps as the proof of [56, Thm. 3.1] with a correct incorpo-
ration of the additional assumption on PZ|Y . �
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Remark. Recall that we actually only have perturbations of the exact quantities available,
i. e.,

C̃ :=
1

NC̃

NC̃∑
j=1

∇fd(Xj)∇fd(Xj)
> = W̃ Λ̃W̃>, (4.20)

where NC̃ > 0 and Xj ∼ PX , and

g̃dN (ỹ) :=
1

N

N∑
j=1

fd(Jỹ, Z̃jKW̃ ) (4.21)

for ỹ ∈ Ỹ+, N > 0, and Z̃j ∼ PZ̃|Ỹ (·|ỹ). However, similar to the bounds shown in Sec. 3.5,
we can derive a bound on the Hellinger distance between the exact posterior distribution and
corresponding approximations. Indeed, under the same assumptions as in Thm. 3.5.5, we get
that

E[dHell(µ
d, µdg̃N )] ≤√

MCP̃,W̃ (1 +N−1/2)
(
ε(λ1 + · · ·+ λk)

1/2 + (λk+1 + · · ·+ λn)1/2
)
,

(4.22)

where M is from (4.19) and CP̃,W̃ = ess supCỸ <∞.

This result is a variation of [56, Thm. 3.1, (3.13)], differing by the expectation value on the
left side of the inequality in (4.22) which is missing in the reference but necessary since µdg̃N is
a random measure [147].

For the remaining presentation in this section, however, we use exact quantities for the
sake of a clear notation and readability.

The former results suggest a two-step approach for the construction of samples following
the posterior approximation µdg :

1. Run a RWM algorithm (see Sec. 2.5) in the active subspace to create samples distributed
according to µdg,Y .

2. Take the low-dimensional samples from step 1 and (conditionally) complete them to
samples in the full-dimensional space.

The adjusted RWM algorithm in step 1 is given in Alg. 5. It inherits the convenient fact from
the original RWM algorithm that it is enough to know the target density ρdg,Y only up to a
constant.

In Subsec. 2.5.2, we claim that running a RWM algorithm instead of the more advanced
MH algorithm allowing for more general proposal distributions is enough in our case. At this
point, we are finally able to provide an argument for this statement.

What makes the MH algorithm more powerful than the RWM algorithm is the possibility
to have a proposal distribution that incorporates parts of the structure of the target distribu-
tion as, for example, sensitivities, low-dimensional behavior, or its local and global geometry,
which can lead to more effective proposals [40, 99]. In contrast, the approach we are following
makes the construction of a more advanced proposal distribution unnecessary since the coor-
dinate system the Markov chain is moving in, i. e., the coordinate system transformed by the
eigenvector matrix W from (3.8), is itself already aligned with the directions dominant for the
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Algorithm 5: Random Walk Metropolis algorithm in the active subspace

Input : Starting point Y0 := y0 ∈ Y, target distribution µdg,Y with density ρdg,Y ,
symmetric distribution Q to create proposals.

Output: Samples approximately following µdg,Y .

Iterating for j = 1, 2, . . . , NRWM-AS, the j-th step is:

1. Draw ε ∼ Q independently of Yj−1 and define the proposal

Y ′ = Yj−1 + ε. (4.23)

2. Compute acceptance probability

α(Y ′|Yj−1) := min

{
1,

ρdg,Y (Y ′)

ρdg,Y (Yj−1)

}

= min

{
1,

exp(−gd(Y ′)) ρY (Y ′)

exp(−gd(Yj−1)) ρY (Yj−1)

}
.

(4.24)

3. Set Yj = Y ′ with probability α(Y ′|Yj−1), otherwise set Yj = Yj−1.

behavior of the target distribution, i. e., the posterior distribution. For this reason, it is then
enough to propose symmetric samples which are simple to compute.

Details for the computation of suitable samples in the full parameter space in step 2 are
provided in the next section.

4.3 Construction of samples in the full space

We assume that step 1 from above is executed successfully such that we have samples Yj ,
j = 1, . . . , NRWM-AS, that approximately follow the distribution µdg,Y , available.

The fact that these samples originate from a Markov chain implies that they are correlated.
However, we can hope for a small correlation since the Markov chain is low-dimensional and
hence mixes faster provided the proposal variance is chosen in a way to get a suitable acceptance
rate.

Sec. 2.5 mentions two additional important parameters for the evaluation of the sam-
ples Yj besides the acceptance rate. First, we have to remove the first Nburn-in samples in the
Markov chain since they might belong to the burn-in period and thus can introduce bias in
corresponding estimations. The concrete number of samples regarded as part of the burn-in
period strongly depends on the application; we comment on it in Ch. 5 and 6 at the right
places. Secondly, we need to regard the number of effective samples Neff. Instead of “all”
NRWM-AS−Nburn-in samples Yj , we might want to keep only the subset of “effective” samples,
for example, if the post-processing of these samples is computationally expensive.

Technically, as already indicated in Sec. 2.5, we can keep only every K-th sample to reduce
the number of samples and their correlations, where K is the (estimated) auto-correlation time
of the Markov chain. The samples in the resulting reduced set are then supposed to be nearly
uncorrelated. This technique is also called thinning in the literature [183]. However, in general
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thinning is not necessary since the effects of correlations can average out if the chain is long
enough. The important point actually is to check the chain’s effective sample size Neff.

In the following, we keep the notation Yj for samples according to µdg,Y even if they were
reduced by thinning as described in the previous paragraph.

The main task we need to accomplish at this point is the construction of samples in the
original full-dimensional space with the samples Yj from the active subspace. Motivated by
the lines in (4.14) and (4.16), we “complete” a sample Yj by sampling Zj from the conditional
prior distribution, i. e.,

Zj ∼ PZ|Y (·|Yj), (4.25)

and a subsequent re-transformation of the coordinate system to get a sample Xj ∼ µdg , i. e.,

Xj := JYj ,ZjK. (4.26)

Note that in the case of a standard normal prior distribution µ0, it is easy to sample
from PZ|Y since Y ,Z ∼ N (0, I) are independent. In general, however, it is not straightforward
and obvious how to sample from the conditional distribution PZ|Y . For this general case, we
explain two alternatives.

A first option is to run another MCMC algorithm. Fortunately, the density of PZ|Y ,
i. e., ρZ|Y , has only to be known up to a constant. Thus, we can use that

ρZ|Y (z|y) ∝ ρ0(Jy, zK) (4.27)

for y ∈ Y+ and z ∈ Z such that Jy, zK ∈ X . This expression is computationally cheap to
evaluate if we choose one of the common well-known continuous distributions for the prior, as,
e. g., a uniform distribution.

A second alternative which is, however, only feasible for small dimensions of the active
subspace, i. e., for k ≤ 3, is to use a pre-computed set X̂ of prior samples X̂j ∼ µ0, j = 1, . . . , J ,
such that, for a given y ∈ Y and tolerance ε ≥ 0 with ε� 1, we uniformly sample Xy,ε from
the discrete finite set

Xy,ε := {X̂j ∈ X̂ | ‖y −W>1 X̂j‖2 ≤ ε}. (4.28)

and set

Zy := W>2 Xy,ε. (4.29)

Consequently, the sampleZy only approximately follows the conditional distribution PZ|Y (·|y).
Assuming that ε is chosen sufficiently small, we argue that this does not significantly affect
further analyses since the inactive part of the posterior samples does not dominate the data
misfit function by construction. Of course, the number of samples J in the set X̂ has to get
larger with an increasing dimension of the active subspace and a decreasing tolerance to obtain
a non-empty set Xy,ε. Also, in many cases J has to be large if y is located near the boundary
of Y. Admittedly, this approach is somewhat ad hoc but can give reasonable samples that
approximately follow PZ|Y .

4.4 Surrogate for the low-dimensional misfit

The previous sections describe that we perform the Bayesian update via an adjusted MCMC
algorithm (Alg. 5) only in the low-dimensional active subspace. This algorithm needs to
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evaluate the low-dimensional misfit function gd from (4.13) for which we often only have a
perturbation g̃dN available.

Recall that g̃dN is a random variable in general and thus the MCMC algorithm would
have to produce samples from a random distribution which is not theoretically covered by our
explanation in Sec. 2.5. Although there exist investigations for this case [15], we rather decide
to construct a (deterministic) surrogate model for g̃dN .

If the number of samples N in (4.21) is large enough, the random fluctuations around
the exact function gd are negligible such that we can assume that a surrogate is not only a
reasonable approximation but also increases the performance of the MCMC algorithm since
we do not need to evaluate the full forward map for the misfit function fd at every single step.

Note that each computation of a gradient ∇fd(Xj), j = 1, . . . , NC̃ , from (4.12) for the

approximation C̃ of C in (4.20) also computes a forward evaluation G(Xj) that we can reuse
“for free” in the construction of a surrogate for g̃dN .

There are two standard approaches for such a surrogate in the context of ASM. In Ch. 5
and 6, we make use of a polynomial regression which is explained in Alg. 6 and was already
described in [52, Alg. 4.1]. Basically, we project the samples Xj from (4.20) on the active

Algorithm 6: Construction of polynomial surrogate for gd on the active subspace

Input : Samples Xj ∼ µ0 and corresponding misfit values fj := fd(Xj),
j = 1, . . . , NC̃ , approximation to active directions stored in W̃1.

Output: Polynomial surrogate gpoly.

1 Project each sample on the active subspace by

Ỹj = W̃>1 Xj . (4.30)

2 Fit a polynomial gpoly with degree p to the pairs (Ỹj , fj).

3 For arbitrary x ∈ X , evaluate the surrogate with

gpoly(W̃>1 x) ≈ f(x). (4.31)

coordinate and use corresponding function evaluations

fj := fd(Xj) =
1

2
‖d− G(Xj)‖2Γ, (4.32)

where we reuse the forward evaluations G(Xj) as mentioned above, to construct a polynomial
surrogate denoted by gpoly.

We emphasize that gpoly is actually a surrogate for g̃dN=1, i. e., for N = 1 sample of the
conditional distribution PZ̃|Ỹ in (4.21). Note that we also get this single conditional sample
“for free” since it is inherited from the full samples Xj . This approach is suitable for scenarios
in which it is enough to have only N = 1 sample of PZ̃|Ỹ . The appropriateness (in statistics

referred to as goodness of fit) of the polynomial surrogate model can be checked qualitatively
with a sufficient summary plot (see Sec. 3.1) and quantitatively by the corresponding coefficient
of determination (see Def. A.2.4) denoted by r2, also known as r2 score [81, 102]; we use both
opportunities later.
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A second alternative with Gaussian Process Regression (GPR) [283], which we employ
in Ch. 7, is regularly used in the literature and briefly discussed in this paragraph. Here, a
prior Gaussian process with a predefined mean function m(ỹ) and covariance operator K(ỹ, ỹ′),
ỹ, ỹ′ ∈ Ỹ, for the low-dimensional misfit function is updated with the (noisy) value pairs (Ỹj , fj)
that are also used above for the polynomial fit. We refer to [249, 283] for details on GPR and
to [54] for their first application in the context of ASM. We also mention that we make use of a
GPR implementation from the scikit-learn library [210] called GaussianProcessRegressor. On the
one hand, GPR provides a lot of flexibility, i. e., the free choice of the covariance structure allows
to approximate a large class of functions. On the other hand, however, this freedom also comes
with some responsibility meaning that the user has to decide for a certain covariance structure
a priori which creates assumptions that are rather hard to verify in practice. More recent
developments investigate so-called Deep Gaussian Processes [72, 82] which are constructed to
learn the covariance structure by given data. But these approaches were not applied for ASM
so far.



Chapter 5
Parameter estimation for a methane hydrate
model

Reference. The content of this chapter is based on our article in [256].

Methane gas hydrates are crystalline solids formed when water molecules enclatharate methane
molecules [242]. Gas hydrates are stable at low temperatures and high pressures and occur
naturally in permafrost regions and marine off-shores [74]. If warmed or depressurized, gas
hydrates destabilize and dissociate into water and gas. It is estimated that the energy content
of methane occurring as hydrates exceeds the combined energy content of all other conven-
tional fossil fuels [212]. Natural gas hydrates are, therefore, deemed a promising future energy
resource.

Several methods have been proposed for gas extraction from hydrate reservoirs, such as
thermal stimulation, depressurization, and chemical activation [199, 200]. Application of these
methods at large scales is, however, very challenging due to the inherent geotechnical risks
associated with gas hydrate destabilization such as rapid consolidation, seafloor subsidence,
well collapse, uncontrolled sand migration, and local and regional slope instability [254, 255].

In order to quantify these risks under various production scenarios and to make realistic
assessments regarding the viability of these production methods, a number of multiphysics
models (e. g., [110, 133, 152, 154, 155, 231]) have been developed in the recent years. It is
known that the gas hydrate-bearing sediments (GHBS) are very complex geomaterials which
show a wide range of geomechanical behaviors depending on their distribution, saturation,
morphology, formation, and consolidation history, etc.

The predictive capability of these models, therefore, depends heavily on the accuracy of
the input constitutive model and parameters. A number of constitutive models have been
proposed so far to describe the geomechanical behavior of GHBS [94, 213, 215, 268]. One
common feature of these models is their large number of empirical parameters, often exceeding
ten. The models themselves are highly complex, and traditional techniques of estimating
the model parameters not only require large experimentation effort but also very large (often
even prohibitive) computational efforts from solving multi-dimensional nonlinear optimization
problems which may be ill-posed.

In this chapter, we formulate a Bayesian inverse problem that involves a constitutive model
for methane hydrates and approximately solve it by the use of ASM described in Ch. 3 and 4.

83
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That is, we look for a low-dimensional subspace on which the data misfit function fd is dom-
inant, i. e., an active subspace that is mostly informed by given experimental data d. In this
manner, ASM speeds up the computations necessary for parameter inference which would oth-
erwise be computationally expensive or even intractable when applying standard techniques.

In Sec. 5.1, we explain the experimental setting and give details on the constitutive model.
The setup for the corresponding Bayesian inverse problem, i. e., a definition of calibration
parameters, quantities of interest, etc., is provided in Sec. 5.2. Sec. 5.3 presents the computa-
tional results of applying ASM to the given Bayesian inverse problem. Finally, a discussion in
Sec. 5.4 relating the results to the model complements this chapter.

5.1 Case study

Reference. Subsec. 5.1.1 follows [256, Sec. 2] and is included for the sake of completeness.
The experiments were organized, carried out, and kindly provided by Christian Deusner
(GEOMAR Helmholtz Centre for Ocean Research Kiel) and his colleagues; see [77].

The description of the model in Subsec. 5.1.2 is taken from [256, Sec. 3]. It was
developed by Shubhangi Gupta and her colleagues at TUM and GEOMAR; see [109, 110].

5.1.1 Experimental study

Experimental data were obtained in a controlled triaxial compression test with gas hydrate-
bearing sand (GHBS). GHBS was formed under controlled isotropic effective stress using the
excess-gas-method [49, 218]. In the excess-gas-method, gas hydrates are formed in partially
water saturated porous or granular media by supplying gas within gas hydrate stability bound-
aries, i. e., at high pressure and low temperature. The use of the excess-gas-method enables the
formation of homogeneously distributed gas hydrates in the porous matrix and adjustment of
well-defined gas hydrate saturations (Sh) as a consequence of the limited availability of water.

Further, due to initial phase distributions and wetting behavior, gas hydrates are prefer-
entially formed on grain surfaces and in pore throats. This microscale phase distribution is
recognized to result in mechanical strengthening of the bulk sediment [134, 189]. After com-
pletion of methane hydrate formation, drained triaxial compression tests were performed at
controlled axial strain rates under quasi-static loading and constant confining effective stress.

Experimental setup and measurements

Experiments were carried out in the custom-made high pressure apparatus NESSI (Natural
Environment Simulator for Sub-seafloor Interactions) [77] (see Fig. 5.1), which is equipped
with a triaxial cell mounted in a 40 l stainless steel vessel (APS GmbH Wille Geotechnik,
Rosdorf, Germany). The sample sleeve is made from FKM. Other wetted parts of the setup
are made of stainless steel. Axial and confining stresses and sample volume changes were mon-
itored throughout the overall experimental period using high-precision hydraulic pumps. Pore
pressure was measured in the influent and the effluent fluid streams close to the sample top
and bottom. Pressure control was achieved using automated high-pressure piston pumps (Tele-
dyne ISCO, Lincoln, USA). The experiment was carried out under constant temperature con-
ditions, temperature control was achieved with a thermostat system (T1200, Lauda, Lauda-
Königshofen, Germany).
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Figure 5.1: Experimental setup

Experimental control and process monitoring was carried out using high-precision piston
pumps which individually control pressure and volumes of hydraulic (axial and confining)
and pore fluids. During triaxial compression, pressure and fluid volumes were measured and
recorded at 1 s intervals. The accuracy of the individual pressure measurements is ±0.5% at
constant temperature. Random errors resulting from temperature changes or leakage of fluids
can be neglected due to the short duration of the compression tests and large thermal buffer
capacity of the high-pressure systems. The accuracy of volume and strain measurements is
related to pressure measurements since system volume changes are calibrated depending on
the system pressure. Thus, erroneous pressure measurements can result in an overall error of
volume measurement of 4 ml, which converts to 0.4% of volumetric strain.

The sediment sample was prepared from quartz sand (initial sample porosity: 0.35, grain
size: 0.1− 0.6 mm, G20TEAS, Schlingmeier, Schwülper, Germany), which was mixed with de-
ionized water to achieve a final water saturation of 0.2 relative to the initial sample porosity.
The partially water-saturated and thoroughly homogenized sediment was filled into the triaxial
sample cell to obtain final sample dimensions of 160 mm in height and 80 mm in diameter.
The sample geometry was assured using a sample forming device. The sample was cooled to
4◦ C after the triaxial cell was mounted inside the pressure vessel.

Experimental procedure

Prior to the gas hydrate formation, the partially water-saturated sediment sample was isotrop-
ically consolidated to 1 MPa effective stress under drained conditions. The sample was flushed
with CH4 gas and, subsequently, pressurized with CH4 gas to obtain a pore pressure of approx-
imately 10 MPa. During pressurization with CH4 gas, and throughout the overall gas hydrate
formation period, isotropic effective stress was controlled to remain constant at 1 MPa using an
automated control algorithm. The formation process was continuously monitored by logging
the CH4 gas pressures. Mass balances and volume saturations were calculated based on CH4

gas pressure to confirm that available pore water was fully converted into gas hydrates.

After completion of gas hydrate formation, the triaxial compression test was conducted
at a controlled axial strain rate of 0.1 mm/min. During axial loading and compression, the
confining effective stress was controlled to remain constant by adjusting the confining hydraulic
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fluid volume in the pressure vessel. Accumulated volumetric strain was calculated based on
changes of axial and confining volumes, which are monitored by the hydraulic pumps.

5.1.2 Model

From a geomechanics point of view, the gas hydrate-bearing sands (GHBS) are cohesive-
frictional granular materials. The most important features of the mechanical behavior of
GHBS include plastic deformations and the onset of critical state (i. e., isochoric deformations),
pressure-dependence, and shear-volumetric strain coupling (or dilatancy). The strength and
the stiffness of GHBS are strongly influenced by gas hydrate saturation and hydrate mor-
phology (i. e., pore-filling, load-bearing, cementing, etc.), as well as the hydrate formation
method [277, 291]. In general, the higher the gas hydrate saturation, the higher is the bulk
compressive strength of the GHBS. The gas hydrate saturation also enhances the cohesive
strength, frictional resistance, and dilatancy of GHBS.

We model the geomechanical behavior of GHBS within an incremental elasto-plasticity
framework, and for simplicity we assume infinitesimal strains. This subsection presents the
main elements of our elasto-plastic material model for GHBS, including the yield function,
plastic flow directions, and hardening and softening evolution laws.

Notation. For any second order tensors a∼ and b∼, the inner product is given by a∼ : b∼ = aijbij ,
and the dyadic product is given by

(
a∼ ⊗ b∼

)
= aijbkl. The tensor product between a fourth order

tensor A
≈

and a second order tensor b∼ is given by A
≈

: b∼ = Aijklbkl. The Euclidean norm of a∼ is

given by ‖a∼‖ = (a∼ : a∼)1/2. The second order unit tensor is given by I∼ = δij , where δij denotes
the Kronecker delta function. The fourth order unit tensor is given by I

≈
= 1

2 (δikδjl + δilδjk).
The trace of a∼ is given by Tra∼ = I∼ : a∼. Any second order tensor a∼ can be decomposed into
a dilational (or volumetric) part, dila∼, and a deviatoric part, deva∼. In 3D, dila∼ = 1

3Tra∼ and
deva∼ = a∼ − 1

3Tra∼.

Preliminaries

Let σ∼ be the Cauchy stress tensor and ε∼ = 1
2

(
∇u +∇u>

)
the infinitesimal strain tensor. The

vector u denotes the displacement field. Both σ∼ and ε∼ are symmetric second order tensors. The
total infinitesimal strain ε∼ is decomposed additively into the elastic strain ε∼

e and the plastic
strain ε∼

p, i. e., ε∼ = ε∼
e + ε∼

p.

In classical plasticity [138], the state of stress depends on the loading-unloading history and
is calculated incrementally. The stress and the strain rate tensors (i. e., σ̇∼ , ε̇∼, ε̇∼

e, and ε̇∼
p) are ap-

proximated using an implicit Euler finite difference method, i. e., for any time interval [ti, ti+1],
the stress or strain rates are approximated as

˙[·]
∼

=
[·]
∼
− [̄·]
∼

ti+1 − ti
, (5.1)

where [̄·]
∼

denotes the state at time ti, and [·]
∼

denotes the state at time ti+1.

We define the plasticity relationships in terms of the following stress invariants,

p =
1

3
Trσ∼ and q =

√
3

2
‖dev σ∼‖, (5.2)
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where p denotes hydrostatic or mean stress, and q denotes shear stress. Corresponding invari-
ants of strain rate are

ε̇v = Trε̇∼ and ε̇s =

√
2

3
‖dev ε̇∼‖, (5.3)

where ε̇v denotes the volumetric strain rate, and ε̇s denotes the shear strain rate. The invariants
of elastic and plastic strain rates are defined similarly.

Elasticity

In the elastic range, we assume linear isotropic material behavior, i. e., the stress σ∼ is related
to the elastic strain ε∼

e through a linear Hooke’s law,

σ∼ = C
≈
e : ε∼

e, (5.4)

where C
≈
e is the elastic stiffness of the material which is a symmetric positive definite fourth

order tensor,

C
≈
e = L1I∼⊗ I∼+ 2L2I≈. (5.5)

L1 and L2 are the Lamé coefficients,

L1 =
νE (Sh)

(1 + ν) (1− 2ν)
and L2 =

E (Sh)

2 (1 + ν)
, (5.6)

where E is the elastic Young’s modulus and ν is the Poisson’s ratio of the GHBS, respectively.
Sh denotes the gas hydrate saturation. It is observed that the Young’s modulus of GHBS
increases with increasing Sh, while the Poisson’s ratio does not vary much over a wide range of
Sh and can be assumed constant [169, 195]. In [233], the authors have proposed an empirical
relationship for E of the form

E = Es (σc) + Smh Eh, (5.7)

where Es and Eh denote the Young’s modulus of the sand and gas hydrates, respectively, and σc
is the confining stress. The exponent m varies over a wide range. In their experiment and
modeling study in [109], the authors found that the effect of Sh on E was linear (m = 1) during
hydrate formation, while during hydrate dissociation the effect of Sh on E was stronger (m = 3).

Yield function

There exists a yield surface F in the stress space that encompasses the elastic region. The
stress states lying inside the yield surface produce elastic deformations, while the stress states
lying on the surface produce plastic deformations. The stress states outside the yield surface
are inadmissible.

We consider a Drucker-Prager yield criterion where the yield function is given as

F
(
σ∼ ,χ

)
:= q + α (χ) p− c (χ) = 0. (5.8)

The function F describes a conical surface in the principal stress space (see Fig. 5.2a). The
parameter α indicates the mobilized frictional resistance at any given stress state. The param-
eter c indicates the cohesive strength of the granular material. χ denotes the vector of internal
plastic variables which affect the hardening-softening behavior of GHBS due to changes in
internal structure or grain contacts, packing density of the sand grains, hydrate saturation,
hydrate pore habit, etc.



88 5 Parameter estimation for a methane hydrate model

−σ1

−σ2

−σ3

σ 1
=σ 2

=
σ 3

Hydrosta
tic

 ax
is

F=0

tensile failure

(a)

q , ϵ̇s

p , ϵ̇v

F=0

G=0

ϵ̇ s=λ̇
∂G
∂σ

(b)

Figure 5.2: (a) Drucker-Prager yield surface in principal stress space. (b) Potential surface
and plastic strains in p− q space.

Plastic strains

Similar to the yield surface F , there exists a plastic potential surface G in the stress space such
that the plastic flow occurs in a direction normal to this surface (see Fig. 5.2b). The incremental
plastic strains (i. e., the plastic strain rate) can be derived from the plastic potential G as

ε̇∼
p = λ̇

∂G

∂σ∼
, (5.9)

where ∂G/∂σ∼ describes the normal to the surface G, and λ̇ is a proportionality constant
indicative of the magnitude of the plastic strain increment. It can further be shown that the
invariants of the plastic strain rate can be written as

ε̇pv = λ̇
∂G

∂p
and ε̇ps = λ̇

∂G

∂q
. (5.10)

We consider a non-associative flow rule, i. e., G 6= F ,

G
(
σ∼ ,χ

)
:= q + β (χ) p = 0, (5.11)

where β < α. The parameter β denotes the dilatancy of the material. Dilatancy is a charac-
teristic property of frictional granular materials. It contributes to the strength of the mate-
rial and effectively couples the deviatoric and volumetric components of plastic deformation.
From (5.10) and (5.11), dilatancy can be written as β = ε̇pv/ε̇

p
s. Depending on the relative pack-

ing density of the grains, it can allow for macroscopic contraction or dilation of the material
under external loads.

Loading-unloading conditions

Along any process of loading-unloading, if F < 0, the stress state is elastic and λ̇ = 0, while,
if F = 0, the stress state is plastic and λ̇ > 0. These nonlinear inequality constraints can be
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reformulated as the following Karush-Kuhn-Tucker [158] optimality conditions,

F
(
σ∼ ,χ

)
≤ 0, λ̇ ≥ 0, and λ̇F = 0. (5.12)

To confine the stress trajectory to the yield surface during plastic loading, an additional plastic
consistency condition is considered [75],

λ̇Ḟ = λ̇

(
∂F

∂σ∼
: σ̇∼ +

∂F

∂χ
: χ̇

)
= 0. (5.13)

Evolution laws

Experiments have shown that an increase in gas hydrate saturation tends to increase the
initial frictional resistance, apparent cohesive resistance, peak strength, and peak dilatancy of
GHBS [134, 170, 189]. It is also observed that GHBS show a distinct strain hardening-softening
behavior [195, 196]. In [268], this behavior is explained in detail, and strain dependent evolution
laws are presented to capture the observed strain hardening-softening. Other strain dependent
evolution laws have also been presented in [154, 214, 215], among others. In our experiments, in
addition to strain hardening-softening, we additionally observe a distinct secondary hardening
phase in the stress-strain response of the GHBS samples.

Assuming that the frictional resistance of any geomaterial can be expressed as a sum of
dilatancy and some residual frictional resistance [286], i. e.,

α = β + αres, (5.14)

where, at critical state, β = 0 and α = αres, we hypothesize that the primary hardening
occurs due to the dilatancy of the sample, while the secondary hardening occurs due to an
increase in residual frictional resistance under plastic loading. This is likely the result of
internal damage and hydrate redistribution in the pore spaces causing higher particle density,
increased interlocking of grains, and higher friction at the grain contacts. This effect becomes
dominant when the material has spent all its dilatancy and has achieved a critical state. We
ignore the contribution of the cohesive strength on the observed strain dependent hardening-
softening-hardening behavior.

Let us consider the plastic internal variables χ = (ε̇ps, ε
p
s, Sh)

>
. From (5.10) and (5.11), we

get ε̇ps = λ̇ and εps =
∫ ti+1

ti
λ̇ dt = λ. To capture the macroscopic stress-dilatancy behavior of

GHBS observed during our triaxial compression experiments, we describe smooth empirical
evolution laws for the properties α, β, and c in (5.8) and (5.11) as

c = c (Sh) , (5.15)

β = β∗ (Sh) · λ̄ · exp
(
1− λ̄mβ

)
, (5.16)

αres = αl
res (Sh) + ∆αres (Sh) ·

(
1 + 1/ ˙̄λ

)−1
· λ̄mα , (5.17)

where λ̄ = λ/λ∗ (Sh) and ˙̄λ = λ̇/λ̇∗ (Sh). The functional dependence of the parameters c,
β∗, λ∗, αl

res, ∆αres, and λ̇∗ on Sh can be derived through empirical correlation by repeating
these experiments over a range of hydrate saturations. In this work, we consider only a single
GHBS sample with a constant hydrate saturation. So, the exact functional dependence of the
plasticity parameters on Sh is not of direct relevance for the purpose of presenting our use of
ASM and will not be discussed further.
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ϵ̇a

σ c

Figure 5.3: One element triaxial setup.

(5.16) and (5.17) are extensions of the evolution functions proposed in [12]. The parame-
ter β∗ denotes the peak dilatancy and λ∗ denotes the corresponding accumulated plastic shear
strain. The parameter αl

res denotes the minimum frictional resistance of the intact material
before loading. It is interesting to note that in (5.17), when ε̇s → 0, we get αres = αl

res. Phys-
ically, this implies that, under quasi-static loading conditions, the material does not undergo
microscopic damage and the residual frictional resistance of the material remains constant. At
higher loading rates (ε̇s > 0), however, the effects of microscopic damage, sand and hydrate
grain rearrangement, friction at grain contacts, etc. become progressively larger, resulting in
an overall increase in the macroscopic residual frictional resistance.

Finite element implementation

We solve the global nonlinear equilibrium equation using a Galerkin finite element formulation
defined on Q1 elements. The nonlinearities are resolved iteratively using a full Newton-Raphson
method with a continuum tangent matrix [296]. Within each global Newton iteration step, a
local problem is solved at each Gauss point to determine the new stress state. The local problem
involves the integration of the material model (see previous paragraphs) over the load increment
of the current global step. We use an implicit return mapping algorithm [130, 240] to solve
the local problem. The implicit algorithm uses the final point in the stress space to evaluate
the relevant derivatives and variables. Since this point is not known in advance, a Newton-
Raphson method is used to advance the solution iteratively toward the final solution. In a
more generalized solution method, the nonlinear equilibrium equation as well as the inequality
constraints can be treated within a single Newton iteration, which can be implemented as a
primal-dual active set strategy (e. g., [116, 117]). We have implemented our numerical scheme
in C++ based on the DUNE PDELab framework [20, 76].

Numerical simulation of the triaxial compression experiments

We consider a one element triaxial setup with unit dimensions as shown in Fig. 5.3. Load
is applied in two stages. In the first stage, an isotropic load equal to the confining stress
of σc = 1 MPa is applied. This corresponds to the initial stress state of the GHBS sample in the
triaxial compression experiment. In the second stage, the strain-controlled triaxial compression
of the GHBS sample is simulated by specifying an axial strain rate of ε̇a = −1.04167×10−5 s−1,
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Table 5.1: Prior intervals of the eight model parameters.

No. Parameter Min Max Unit

1 c 1.8× 106 2.4× 106 Pa
2 αl

res 0.5 0.6 –
3 ∆αres 0.2 0.3 –

4 λ̇∗ 1.6× 10−3 1.9× 10−3 –
5 mα 0.75 1.05 –
6 β∗ 0.3 0.45 –
7 λ∗ 0.01 0.011 –
8 mβ 0.67 0.74 –

which corresponds to a vertical displacement rate of 0.1 mm/minute in the −z direction. The
strain-controlled load is applied incrementally in 1350 steps with a step size of 10 s.

5.2 Setup

For the formulation of a Bayesian inverse problem, as described in Sec. 2.2, we need to specify
some necessary quantities as the set of parameters, quantities of interest, the data d, the
covariance matrix Γ of the noise distribution, and the prior distribution.

Model parameters

The parameters for the model described in Subsec. 5.1.2 are(
c αl

res ∆αres λ̇∗ mα β∗ λ∗ mβ

)> ∈ R8. (5.18)

Note that ∆αres := αh
res − αl

res and that the inference is done in an 8-dimensional space,
i. e., n = 8. The parameters in (5.18) are called model parameters; prior intervals for them
are given in Tab. 5.1. These intervals were pre-determined by engineering knowledge.

Calibration parameters

Since ASM prefers centered inputs with normalized variances, we actually do not infer the
model parameters above but corresponding so-called calibration parameters, i. e.,

x =
(
c αl

res ∆αres λ̇∗ mα β∗ λ∗ mβ

)>
∈ R8. (5.19)

The prior distribution µ0 for Bayesian inversion is given on the space of these calibration
parameters which, in this case, is chosen to be

µ0 = PX = U
(
[−1, 1]8

)
(5.20)

implying that X = [−1, 1]8. Particular prior samples of calibration parameters are then mapped
to their corresponding counterpart in the space of model parameters and vice versa which is
just a linear transformation.
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Figure 5.4: Given volumetric strain and shear stress data (orange dots) for 23 given axial strain
values.

Quantities of interest

In the context of this chapter, the quantities of interest are values of volumetric strain ε and
shear stress σ each for 23 given axial strain values which yields the corresponding forward
operator

G(x) := (Gε(x), Gσ(x))> ∈ Rnd , (5.21)

where x ∈ X , nd = nε +nσ = 46; the values of Gε : R8 → Rnε and Gσ : R8 → Rnσ are ordered
according to the given axial strain values. The measured volumetric strain and shear stress
data

d := (dε, dσ)> ∈ Rnε+nσ , (5.22)

that is needed as a conditioning argument for the posterior distribution µd, are depicted in
Fig. 5.4. Following Ch. 2, the experimental noise η is Gaussian distributed with mean zero
and covariance matrix Γ ∈ Rnd×nd . We assume that

Γ =

(
Γε

Γσ

)
, (5.23)

where Γε ∈ Rnε×nε and Γσ ∈ Rnσ×nσ are diagonal matrices corresponding to a 2% noise level
in the measurements, i. e.,

Γii = (0.02× di)2 (5.24)

for i = 1, . . . , nd, where di denotes the i-th component of d. The data misfit function can thus
be written as

fd(x) =
1

2
‖d− G(x)‖2Γ (5.25)

=
1

2

(
‖dε − Gε(x)‖2Γε + ‖dσ − Gσ(x)‖2Γσ

)
(5.26)

for x ∈ X .
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Figure 5.5: (a) Estimated eigenvalues of C and their bootstrap intervals. (b) First six estimated
eigenvectors of C.

5.3 Computational results

Computational costs

Using ASM, we need to approximate the matrix C from (3.6) with a finite Monte Carlo sum
as described in Sec. 3.5, i. e., we need to compute gradients of the misfit function; see (4.12).

Since the model is not readily capable of an adjoint formulation which would make gradient
computations easier, central finite differences are used to approximate partial derivatives of
the forward operator, i. e.,

∂Gi(x)

∂xj
≈ Gi(x+ hej)− Gi(x− hej)

2h
(5.27)

for i = 1, . . . , nd, j = 1, . . . , n, h > 0 small enough, and x ∈ X ◦. Hence, a single sample
of ∇fd requires 2 × n + 1 = 17 forward evaluations. Following the heuristic from (3.166)
with choosing pessimistic parameters, we need at least NC̃ = d10× 8× log(8)e = 167 gradient
samples. However, we decide to use NC̃ = 250 samples to be sure.

Since the gradient samples used for the Monte Carlo sum are statistically independent, it is
possible to parallelize their computation. The 17×250 = 4, 250 forward evaluations were com-
puted on 35 cores within 15.12 h, i. e., in 529.2 core hours. That is, a single forward computation
took 7.47 min on average. The additional calculations required for the eigendecomposition and
corresponding bootstrap intervals are negligibly cheap.

Active subspace for the inference

We take the NC̃ = 250 gradient samples and approximate the matrix C with them according
to (3.159). Fig. 5.5a shows the estimated eigenvalues of C and corresponding bootstrap inter-
vals which indicate that the number of samples are enough since they are reasonably small. To
find a suitable active subspace, we look for spectral gaps due to (3.170) which can indeed be
observed after the second and fifth eigenvalue. The first gap is about 1.5 orders of magnitude
in size whereas the second is about one order of magnitude. This suggests to choose a 2D



94 5 Parameter estimation for a methane hydrate model

1.5 1.0 0.5 0.0 0.5 1.0 1.5
w1 x

4000

6000

8000

10000

12000

14000

16000

18000

Da
ta

 m
isf

it

(a)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
w̃⊤
⊤x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

w̃
⊤ 2
x

4000

6000

8000

10000

12000

14000

16000

18000

(b)

Figure 5.6: (a) 1D sufficient summary plot on the axis w̃>1 x and the corresponding quadratic
surrogate giving r2

1D = 0.8434. (b) Sufficient summary plot in two dimensions on the axes w̃>1 x
and w̃>2 x. Here, the quadratic surrogate yields r2

2D = 0.9776.

or a 5D subspace. In the following, we investigate both options for comparison. The first
six eigenvectors (associated with the largest six eigenvalues) that are taken to span the active
subspace are depicted in Fig. 5.5b. Recall that the active subspace, in this context, consists of
directions in the original space of calibration parameters that are dominantly informed by the
given data d, on average.

For a given subspace, it remains to find a surrogate for the low-dimensional misfit func-
tion gd, or, more accurately, g̃dN (with N = 1); see Sec. 4.4. We decide to fit a regression-based
polynomial

gpoly ≈ g̃dN (5.28)

as described by Alg. 6 by taking samples Xj and fd(Xj), j = 1, . . . , NC̃ , that were already
computed for the approximation of C. We emphasize that there is no need for further forward
evaluations, we instead reuse samples fd(Xj) that came out of the computation of gradients;
for details see Sec. 4.4.

The 1D sufficient summary plot in Fig. 5.6a shows a quadratic surrogate (a parabola) in
one dimension. Recall from Sec. 3.1 that a sufficient summary plot projects the samples Xj

on the axes of the active subspace and then plots function values corresponding to these axes.
Since the number of coefficients in a general parabola is only 3, we can be sure to avoid the
issue of overfitting. The coefficient of determination, as an indicator for the quality of an active
subspace, is r2

1D = 0.8434.

However, we see that there are some outliers that are not fitted sufficiently well by the
surrogate which means, and confirms, that a 1D subspace is not enough. Correspondingly,
Fig. 5.6b depicts a sufficient summary plot in two dimensions; the color of the dots stand for the
function value (see the colorbar on the right). The color gradient in this figure looks reasonably
smooth and does not contain huge jumps, i. e., there is a good chance to approximate fd by
a two-dimensional surrogate. In this case, a quadratic surrogate can be chosen to obtain a
coefficient of determination of r2

2D = 0.9776 which is quite good. The number of coefficients
here is 6, so we also avoid overfitting here.
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Finally, if we choose a 5D subspace and a corresponding quadratic surrogate, resulting in
only 21 degrees of freedom, then r2

5D = 0.9824.

Such polynomial regression-based surrogates are extremely cheap to evaluate, also in higher
dimensions. While a larger dimension of the active subspace brings less error in the final
posterior approximation, a smaller dimension accelerates mixing in the MCMC algorithm and
thus needs less time to produce a particular amount of effective samples that are necessary for
the inference of calibration parameters.

Inference with MCMC in the active subspace

After the surrogate gpoly to the low-dimensional misfit function is computed, we can exploit
it for constructing samples that approximately follow the posterior distribution on the active
subspace

µd
gpoly,Ỹ

≈ µdg,Y (5.29)

from (4.17).

Remark. We neither have the exact variables Y , Z nor the exact function gd available due to
the finite approximation of C explained above. That is, we instead need to use Ỹ , Z̃, and gpoly,
respectively.

As mentioned, we compare results for 2D and 5D subspaces. However, we expect that the
posterior approximation using a 5D subspace is more accurate since more calibration param-
eters (through linear combinations) are taken into account. Also, the bound on the Hellinger
distance between the exact posterior distribution and its low-dimensional approximation in
Thm. 4.2.1, which is proportional to the sum of eigenvalues belonging to the inactive sub-
space, supports our expectation.

Recall that the density ρd
gpoly,Ỹ

of µd
gpoly,Ỹ

from (4.15) depends on the prior density ρỸ

which is the prior density ρ0 marginalized on the active variable Ỹ . That is, in order to
run the MCMC algorithm in the active subspace (Alg. 5), we need to estimate ρỸ . In the
case of our uniform prior distribution, it is generally difficult to find analytical expressions
for ρỸ which means that we have to approximate it numerically. We produce a sufficiently
large amount of prior samples, project them on the active subspace, and run a kernel density
estimation using the Python library scikit-learn [210].

In order to actually start the MCMC algorithm, we still have to decide for a particular
(symmetric) proposal distribution Q. We choose Q = N

(
0, γ2I

)
with a so-called proposal

variance γ2 > 0. The actual proposal variances for the 2D and 5D case have to be chosen such
that the corresponding algorithm produces reasonable acceptance rates between 0.2 and 0.4; see
Sec. 2.5. For this, we run a few trial runs with different proposal variances to observe whether
they result in the mentioned acceptance rates. We emphasize that this trial and error approach
is cheap in our case because of the polynomial surrogate. However, recall from Sec. 2.5 that,
in general, there exist more complex techniques to find suitable proposal distributions.

For the 2D subspace, choosing γ2
2D = 0.02 results in an acceptance rate of approxi-

mately 35%. The corresponding Markov chain consists of 106 steps with a chosen burn-in
period of 105 samples. Using the formula from (2.87) to compute the effective sample size, we
get that Neff,2D ≈ 75, 000 samples.
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Figure 5.7: (a) Auto-correlations rk with lag k of the second component Ỹ2 in the resulting 2D
and 5D chain. (b) The top row shows histograms of the marginal prior distributions of the
active variable Ỹ . The middle and bottom rows depict the approximate marginal posterior
distributions of µd

gpoly,Ỹ
computed in the 2D and 5D subspace, respectively.

For comparison, a proposal variance of γ2
5D = 0.0017 for the 5D case also gives an acceptance

rate of about 35% in a run with 107 steps and a burn-in period of 106 samples resulting in
Neff,5D ≈ 21, 000 effective samples.

Fig. 5.7a plots the auto-correlation rk with lag k of the second component in both the 2D
and 5D chain. We observe that the autocorrelation of the 5D chain decreases much slower than
in the 2D case which is a common behavior. However, we argue that choosing the 5D subspace
is nevertheless preferable since it yields a better posterior approximation with acceptable com-
putational costs due to the cheap surrogate. According to the calculated auto-correlations, we
finally apply thinning (see Sec. 4.3) to reduce the set of all samples to only (approximately
uncorrelated) “effective” samples.

Histograms for the marginal prior distributions of the active variable Ỹ (top row) and the
approximate marginal posterior distributions of µd

gpoly,Ỹ
for the 2D and 5D case (middle and

bottom row) are displayed in Fig. 5.7b. It is worthwhile to first take a look at the marginal
prior distributions in the top row. The distribution of Ỹ3 = w̃>3 X is still quite uniform which
is reasonable. Indeed, regarding the third eigenvector w̃3 in Fig. 5.5b, we see that almost only
the fourth component contributes, i. e., Ỹ3 ≈ X4 ∼ U ([−1, 1]). All the other histograms in the
top row show distributions that are more concentrated around the mean zero which is typical
for linear combinations (with sufficiently large weights) of uniform random variables. For the
marginal posterior distributions, note that the x- and y-axes in each row have different scales.
This difference confirms that the active variables Ỹ are dominantly informed by the data as
their posterior variances are greatly reduced compared to the prior variances. Moreover, note
that the variables Ỹ1 = w̃>1 X and Ỹ2 = w̃>2 X are further informed from the 2D to the 5D
case.

Eventually, we need to construct full samples in Rn with the “effective” samples Ỹj ∈ Rk

which approximately follow µd
gpoly,Ỹ

and result from the RWM algorithm explained above.

Recall from Sec. 4.3 that this means to construct samples Z̃j ∼ PZ̃|Ỹ (·|Ỹj). Since Ỹ and Z̃
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Figure 5.8: Univariate posterior histograms are shown on the diagonal. Bivariate posterior
correlations are depicted on the lower triangular with corresponding correlation coefficients
(see Def. A.2.3b)) reflected on the upper triangular. Higher coefficients (in absolute value)
result in darker red color. (a) 2D case, (b) 5D case.

depend in a quite nontrivial manner due to the uniform prior distribution, we run another
MCMC algorithm for each Ỹj to approximately sample from

ρZ̃|Ỹ (z̃|Ỹj) ∝ ρ0(JỸj , z̃KW̃ ), (5.30)

viewed as a density in z̃, as described in Sec. 4.3. In fact, we compute a whole set of samples

{Z̃j,` | Z̃j,`
approx.∼ PZ̃|Ỹ (·|Ỹj), ` = 1, . . . , NZ̃} (5.31)

for every Ỹj while ensuring that NZ̃ does not depend on Ỹj , i. e., the amount of samples Z̃j,`
is the same for each Ỹj . Then, the final set of samples approximately following the posterior
on the full parameter space is

{JỸj , Z̃j,`KW̃ | j = 1, . . . , Neff, ` = 1, . . . , NZ̃}. (5.32)

The set in (5.32) is computed for both the 2D and 5D active subspace. The resulting
pairwise bivariate posterior relationships are plotted in Fig. 5.8. The left plot (Fig. 5.8a)
shows the 2D and the right plot (Fig. 5.8b) the 5D case.

So far, the results shown are all related to the calibration parameters from (5.19). To actual
derive quantitative statements for the model parameters, which are particularly interesting for
the practitioner, we need to re-transform the samples from the set in (5.32) to the space of
model parameters. Recall that relationship between model and calibration parameters is linear.
The resulting approximate posterior means and standard deviations, in both the 2D and 5D
case, are provided in Tab. 5.2.
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Table 5.2: Approximate posterior means (µ̃post) and standard deviations (σ̃post) for each model
parameter using both the 2D and 5D subspace.

c αl
res ∆αres λ̇∗

2D
µ̃post 2.169× 106 0.551 0.251 1.749× 10−3

σ̃post 1.165× 105 2.850× 10−2 2.882× 10−2 8.668× 10−5

5D
µ̃post 2.183× 106 0.548 0.246 1.812× 10−3

σ̃post 1.148× 105 2.874× 10−2 2.724× 10−2 2.626× 10−6

mα β∗ λ∗ mβ

2D
µ̃post 0.903 0.343 1.049× 10−2 0.706
σ̃post 8.639× 10−2 2.427× 10−2 2.864× 10−4 1.946× 10−2

5D
µ̃post 0.827 0.332 1.053× 10−2 0.701
σ̃post 4.361× 10−2 7.745× 10−3 2.830× 10−4 7.248× 10−3

5.4 Discussion

Fig. 5.8a shows that the 2D case greatly informed the correlation between X1 = c and X2 =
αl

res, and between X6 = β∗ and X8 = mβ which is reasonable since these components have
larger weights/contributions in the first two eigenvectors w̃1 and w̃2. This implies that the
cohesion parameter c and the initial residual friction parameter αl

res are dominant for the data
misfit and thus constitute a central role for the methane hydrate model. Actually, this matches
very well with the expectation that the initial yield surface, i. e.,

q + αl
res − c = 0, (5.33)

controls the onset of plasticity in any Coulomb-type plasticity model. Since the parameters c
and αl

res can even technically be estimated with relatively high confidence through triaxial test-
ing, we could perform an additional analysis of low-dimensional structures for other parameters
for which we do not have straightforward estimation procedures.

Furthermore, looking at the 5D case in Fig. 5.8b, we see that additional uni- and bivariate
relationships are informed as expected. In particular, this can be seen by the darker red
colored upper triangular denoting the actual correlation coefficients. Also, the smaller standard
deviations demonstrate that running the inversion in the 5D subspace leads to more informed
posterior distributions compared to the 2D subspace which can also be observed in Tab. 5.2.
We mention once more that the inference in the 5D subspace indeed requires more steps in the
MCMC algorithm; but this computational overhead is acceptable due to the cheap polynomial
surrogate, especially if the result is a more accurate posterior approximation.

Finally, we look at forward runs corresponding to the posterior means of both the 2D and
the 5D case; see Tab. 5.2. That is, in both cases we compute

G( ˜̄µpost) =

(
Gε( ˜̄µpost)
Gσ( ˜̄µpost)

)
, (5.34)

where ˜̄µpost denotes the corresponding posterior mean in the space of calibration parameters.
The outcomes are plotted in Fig. 5.9. We observe that all curves match the experimental
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Figure 5.9: Volumetric strain (top) and shear stress (bottom) computed for posterior means
of the 2D (˜̄µ2D

post) and 5D (˜̄µ5D
post) case.

data relatively well which particularly demonstrates that our inference procedure does not
produce unreasonable posterior estimates. Also, while the 2D and 5D case give different
posterior approximations, the deviation of the curves for both cases is rather small which can
be explained by the fact that the data misfit function does not change significantly when we
enlarge the subspace as is shown above (the coefficient of variation of the polynomial surrogate
is almost equal for both cases). We conclude that, hence, both cases yield reasonable posterior
approximations for the given quantity of interest.

In future work, we might consider alternative Bayesian inverse problems with different
quantities of interest, noise levels, and parameters yielding results that better reflect other
important physical characteristics of the volumetric strain and shear stress as, for example,
the second hardening phase and peak locations and heights.





Chapter 6
Calibration and sensitivity analysis for a
karst hydrological model

Reference. The content of this chapter is based on our article in [258]. It is an
outcome of the interdisciplinary project UNcertainties due to boundary conditions in pre-
dicting MIXing in groundwater (UNMIX) supported by Deutsche Forschungsgemeinschaft
(DFG) through TUM International Graduate School for Science and Engineering (IGSSE),
GSC 81.

Models are commonly used in karst systems to investigate the dominant hydrological pro-
cesses and the quantity and quality of water resources in well-defined surface or subsurface
catchments. Karst systems represent heterogeneous groundwater aquifers that are formed over
longer periods of time due to an extensive dissolution of their dominantly carbonate bedrock,
e. g., limestone, dolomite, or gypsum [91]. The formed dissolution channels constitute prefer-
ential flow paths in the underground which interact with the rock matrix and may outcrop as
springs on the ground surface.

Various karst modeling approaches exist, ranging from black-box models [142, 161, 162],
i. e., transferring an input signal to a desired output signal, over lumped parameter models
(gray-box) [90, 190, 241] to distributed process-based models [97, 125, 220, 235]. Given their
ability to represent the physical characteristics of a catchment in detail, distributed process-
based models are usually the first choice in water resources research. In the particular case
of karst aquifers, however, acquiring the relevant data for these models is challenging due to
the heterogeneous nature of karstic systems and their mostly unknown subsurface drainage
systems [288]. Also, past studies have shown that even if physical parameters may be obtained
from field observations, the fact that they mostly represent point measurements can lead to a
severe mismatch when using these parameters in distributed hydrological models [126, 227].

For these reasons, lumped process-based models are commonly accepted modeling ap-
proaches in karst water resources research [122, 141, 143]. The parameters of such lumped
modeling approaches are typically not directly measurable in the field and need to be esti-
mated in the framework of model calibration [119]. This leads to a decisive trade-off: on the
one hand, lumped models based on a low number of calibration parameters, e. g., 4 to 6, are
less prone to non-uniqueness in parameter identification [28, 135], i. e., different parameter
combinations lead to the same result. However, the representation of the dominant hydrolog-

101
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ical processes in karst systems may be too simple and not sufficiently represented by this low
number of parameters [121]. In contrast, by including more calibration parameters to better
represent relevant processes in the model structure, such as the effect of land use changes on
spring discharges, the parameters may become unidentifiable, which can reduce the prediction
accuracy of the model [120]. To tackle the challenge of applying lumped parameter models
with a high-dimensional parameter space for karst hydrological research studies, there is a
need to perform comprehensive parameter studies to avoid model overparametrization and to
reduce model parameter and output uncertainties.

Approaches for inverse problems in hydro(geo)logy [45, 295] increasingly adopted the Bayes-
ian viewpoint (Ch. 2) during the last two decades [87, 150, 259], especially due to the rise
of available computational power. A particular popular MCMC approach in the hydrology
community is the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm; see [163,
272, 273, 274, 275] for its definition, variants, and extensions; for a related discussion regarding
questions on equifinality [28], see [29, 276]. The DREAM algorithm runs multiple chains in
parallel and adaptively adjusts the scale and orientation of the proposal distribution according
to differential evolution [250, 251] as genetic algorithm for population evolution. The algorithm
was proven to maintain the detailed balance condition from (2.80) and demonstrated to be
valuable for parameter inferences of high-dimensional hydrological models [163]. However,
DREAM still performs inferences in the full space, although a variant based on “self-adaptive
randomized subspace sampling” reduces the influence of dimensionality [273].

Similar to the previous chapter, the following sections present our approach to solve a
Bayesian inverse problem involving a particular karst hydrological model by techniques de-
scribed in Ch. 3 and 4. In addition, we provide a global sensitivity analysis giving insight in
parameter-to-output relationships for almost no further computational costs. We again study
dominant directions in the parameter space that drive the change from the prior to the pos-
terior distribution and hence target the mentioned challenge of unidentifiable parameters in
high-dimensional spaces. We mention that ASM was already applied to another hydrological
model [137] which is, however, not suitable for karst systems.

The structure of the chapter is as follows. Sec. 6.1 gives details on the investigated spring
recharge area and the hydrological model with its parameters. The setup for the corresponding
Bayesian inverse problem is provided in Sec. 6.2. In Sec. 6.3, we describe how to derive
global sensitivity metrics from the eigenvalues and eigenvectors computed for ASM. Finally,
the computational results are presented in Sec. 6.4.

6.1 Case study

Reference. The description of the spring recharge area in Subsec. 6.1.1 is taken
from [258, Subsec. 2.1] and included for the sake of completeness.

Subsec. 6.1.2 follows [258, Subsec. 2.2] for details on the model which was developed
by Daniel Bittner (TUM) and his colleagues in [31].

6.1.1 Kerschbaum Spring Recharge Area

The karst spring that we investigate in the present study is the Kerschbaum spring located
about 10 km south of the city of Waidhofen a.d. Ybbs (Austria); see Fig. 6.1a,b. Its recharge
area was delimited in a former study by [114] and comprises about 2.5 km2. This pre-alpine
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Figure 6.1: Overview of the characteristics of the Kerschbaum spring recharge area and its
geographical localization. a) An orthophoto and the boundary of the recharge area with the
location of the Kerschbaum spring. b) The geographical position of Waidhofen a.d. Ybbs in
Austria. c) The dominant presence of dolomitic basement rocks in the catchment [95]. The
isolines represent different elevation levels.

catchment is part of the eastern-most foothills of the Northern Calcareous Alps with the
lowest elevation of 435 m at the Kerschbaum spring and a maximum elevation of 868 m on the
summit of the mountain Glashüttenberg. The climate of the study area can be described as
warm-moderate, with an annual mean temperature of 8◦ C and an annual mean precipitation
of 1379 mm, both determined from daily measuring data recorded at the Hinterlug weather
station between 1981 and 2014. Forests represent the dominant land cover in the study area
with beeches as primary tree species. Moreover, parts of the recharge area are used for dolomite
mining.

From a geological point of view, the entire recharge area of the Kerschbaum spring is domi-
nated by a lithologic sequence of Triassic dolostones; see Fig. 6.1c). Apart from the absence of
significant sinkholes in the regarded recharge area, leading to the fact that diffuse infiltration
plays a key role for groundwater recharge, [114] also provided evidence for a deep karstified
aquifer system with a well-connected drainage system through fractures and conduits in the
Kerschbaum spring aquifer. It is important to note that the Kerschbaum spring represents the
most important source for the freshwater supply of the city and the surroundings of Waidhofen
and is thus of particular interest for water resources research studies [31].

6.1.2 Model

The LuKARS model was recently proposed by [31] with the aim to investigate the hydrolog-
ical effects of land use changes in karst systems. LuKARS therefore considers the dominant
hydrotopes in a defined recharge area, i. e., areas characterized by homogeneous soil and land
cover properties, as distinct spatial units. The sum of the individual hydrotope responses to a
given input signal (e. g., precipitation) plus the contribution of a shared linear baseflow storage
is then the total spring discharge that should be modeled at a catchment’s outlet.

As input data, the model itself needs a precipitation time series as well as the hydrotope
soil information to run. If further processes affecting the effective precipitation are considered,
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such as interception and evapotranspiration, further input data is required. In our case, we
also take into account snow melt and accumulation, interception, and evapotranspiration, for
which we further need a temperature time series with a daily resolution.

Moreover, a measured discharge time series is needed from the spring of interest to cali-
brate and validate the model. In the particular case of the Kerschbaum spring, the discharge
is measured with a flowmeter directly in the spring. The discharge, precipitation, and temper-
ature time series with a daily resolution for our model period from 2006 to 2008 were kindly
provided by the water works Waidhofen a.d. Ybbs.

The LuKARS model for the Kerschbaum spring in Waidhofen a.d. Ybbs was set up in [31]
and includes four spatially lumped dominant hydrotopes in the considered recharge area. Hy-
drotopes 1–3 have beeches as dominant tree species; however, they differ in terms of their
individual soil characteristics and spatial shares. While the first hydrotope (denoted by Hyd 1)
covers 13% of the recharge area and is characterized by shallow soils with mostly coarse-grained
soil particles, hydrotope 3 (denoted by Hyd 3), in contrast, covers 27% of the catchment and
is defined by deeper and fine textured soils. Hydrotope 2 (denoted by Hyd 2) has the largest
spatial share in the Kerschbaum spring recharge area (56%) and represents a transition hy-
drotope between Hyd 1 and Hyd 3 with moderate soil thicknesses and coarse to fine-textured
soils. Hydrotope Q (denoted by Hyd Q) characterizes the dolomite quarries, which covered
about 4% of space in the recharge area during the model period (2006–2008) in this study.

From a hydrological point of view, the areas of the dolomite quarries are drained by surface
runoff and do not contribute to the Kerschbaum spring discharge. As an obligation to avoid
a possible contamination of the aquifer from the quarry areas, a protective layer consisting
of fine material prevents infiltration into the groundwater system. Thus, Hyd Q is excluded
from model calibration and will not be mentioned hereafter. Also, [31] derived the baseflow
coefficient kb to match the relatively constant baseflow discharge of the Kerschbaum spring
with its low temporal variability. For this reason, as well as to put the focus on calibrating the
hydrotope parameters, kb was chosen as calibrated by [31]. More details about the LuKARS
model, i. e., a description of the equations used in LuKARS and the relevant parameters, are
provided in Appendix C. In the following, we use an index i ∈ {1, 2, 3} to denote specifications
for Hyd i.

Each hydrotope is modeled as an independent bucket that has three different discharge
components. The first, representing quickflow (Qhyd,i) occurring via preferential flow paths
(e. g., conduits), is described by a non-linear hysteresis function that is activated once a de-
fined storage threshold (emax,i) is reached and stops after the storage value falling below a
predefined minimum storage value (emin,i). The second and third discharge components are
both implemented by a linear discharge function and represent the discharge to a shared base-
flow storage (Qis,i) as well as secondary spring discharge (Qsec,i), i. e., a discharge component
that transfers water out of the catchment and does not contribute to the spring discharge.

All together, seven parameters need to be calibrated for the implementation of each sin-
gle hydrotope. These are the discharge parameter khyd,i and the dimensionless exponent αi
for Qhyd,i, the storage thresholds for the quickflow activation emin,i and emax,i, parameter kis,i

as the discharge coefficient of Qis,i and, finally, ksec,i and esec,i as the discharge coefficient and
the activation level for Qsec,i, respectively.

Given the different physical characteristics of all defined hydrotopes, the parameters of one
hydrotope need to follow some constraints with respect to the parameters used for the imple-
mentation of other hydrotopes. From a practical point of view, this means that a hydrotope
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with shallow and coarse-grained soils (e. g., Hyd 1) needs to have a lower storage capacity
and higher discharge coefficient as compared to a hydrotope with deep and fine-textured soils
(e. g., Hyd 3). For the particular case of the three hydrotopes in the Kerschbaum spring
recharge area, the parameter constraints are given as

khyd,1 ≥ khyd,2 ≥ khyd,3,

emin,1 ≤ emin,2 ≤ emin,3,

emax,1 ≤ emax,2 ≤ emax,3,

α1 ≥ α2 ≥ α3,

kis,1 ≥ kis,2 ≥ kis,3,

ksec,1 ≥ ksec,2 ≥ ksec,3,

esec,1 ≤ esec,2 ≤ esec,3.

(6.1)

Also, it has to hold that

emin,i ≤ emax,i (6.2)

for each hydrotope i = 1, 2, 3. Although the introduced condition for the αi values is not
strictly necessary, we implemented it to further enhance the quick response of hydrotopes
with a low difference between emin,i and emax,i and a generally low value of emax,i during high
precipitation events.

The LuKARS model for the Kerschbaum spring recharge area was manually calibrated
in [31]. Based on this trial-and-error calibration, it was possible to reliably determine possible
ranges of all model parameters. These are shown in Tab. 6.1 and will be used as prior parameter
intervals for the presented study in a Bayesian setting.

6.2 Setup

The next subsections provide the setting for the Bayesian inference. In particular, we specify
the set of model and calibration parameters, the assumed prior distribution, the quantities of
interest, and the noise level that is assumed on the experimental data.

Model parameters

The model parameters are all the quantities appearing in (6.1), i. e.,

khyd,i, emin,i, emax,i, αi, kis,i, ksec,i, and esec,i

for each hydrotope i = 1, 2, 3. Intervals for the prior distribution that we assume on the space
of model parameters are provided in Tab. 6.1. We should mention that the bounds for emax,i

were derived by considering a given difference value between emin,i and emax,i, i. e., for each
hydrotope i = 1, 2, 3, we set

emax,i,lb = emin,i,lb +4ei,lb and emax,i,ub = emin,i,ub +4ei,ub, (6.3)

where the subscripts lb and ub denote lower and, respectively, upper bounds of emin,i and emax,i

values. The difference values are denoted by 4ei,lb and 4ei,ub.
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Table 6.1: Prior intervals for model parameters.

No. Model par. Lower bound Upper bound Unit Description

1 khyd,1 9 900 m2d−1 discharge parameter for Qhyd,1

2 emin,1 10 50 mm min. storage capacity Hyd 1
3 emax,1 15 75 mm max. storage capacity Hyd 1
4 α1 0.7 1.6 – quickflow exponent of Hyd 1
5 kis,1 0.002 0.2 m mm−1d−1 discharge parameter for Qis,1

6 ksec,1 0.0095 0.95 m mm−1d−1 discharge parameter for Qsec,1

7 esec,1 25 70 mm activation level for Qsec,1

8 khyd,2 8.5 850 m2d−1 discharge parameter for Qhyd,2

9 emin,2 40 80 mm min. storage capacity Hyd 2
10 emax,2 80 160 mm max. storage capacity Hyd 2
11 α2 0.5 1.3 – quickflow exponent of Hyd 2
12 kis,2 0.00055 0.055 m mm−1d−1 discharge parameter for Qis,2

13 ksec,2 0.0023 0.23 m mm−1d−1 discharge parameter for Qsec,2

14 esec,2 130 220 mm activation level for Qsec,2

15 khyd,3 7.7 770 m2d−1 discharge parameter for Qhyd,3

16 emin,3 75 120 mm min. storage capacity Hyd 3
17 emax,3 160 255 mm max. storage capacity Hyd 3
18 α3 0.2 0.7 – quickflow exponent of Hyd 3
19 kis,3 0.00025 0.025 m mm−1d−1 discharge parameter for Qis,3

20 ksec,3 0.0015 0.15 m mm−1d−1 discharge parameter for Qsec,3

21 esec,3 320 450 mm activation level for Qsec,3

Calibration parameters

Since we distinguish between model and calibration parameters, we need to specify the trans-
formation rules which are not as trivial as in the previous chapter.

First, all the k∗ parameters are calibrated on a log scale, i. e., we define

klog
∗ := log(k∗) (6.4)

for each k∗ ∈ {khyd,i, kis,i, ksec,i}, i = 1, 2, 3.
Secondly, we need to ensure that the constraints in (6.1) and (6.2) are fulfilled. In other

words, the dependence between the model parameters is removed by the definition of new
parameters that reflect the differences between two dependent parameters. We have two types
of dependencies in the present case:

1. cross-hydrotope dependencies according to (6.1),

2. dependency between emin,i and emax,i due to (6.2).

The first point concerns only parameters in hydrotope 2 and 3. We set

pi := pi,lb +4p(i−1,i)(min{pi,ub, pi−1} − pi,lb) (6.5)

or
pi = max{pi−1, pi,lb}+4p(i−1,i)(pi,ub −max{pi−1, pi,lb}), i = 2, 3, (6.6)

depending on whether the model parameter

pi ∈
{
klog

hyd,i, emin,i, αi, k
log
is,i, k

log
sec,i, e

log
sec,i

}
(6.7)

follows a decreasing or, respectively, increasing behavior; see (6.1). The fixed values for pi,lb
and pi,ub denote the lower and upper bound of the prior intervals for model parameters from
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Tab. 6.1. The quantities 4pi ∈ [0, 1], which are all independent, are included in the set
of calibration parameters. To meet the second dependency, we bring in parameters 4ei,
i = 1, 2, 3, that reflect the difference between model parameters emin,i and emax,i, i. e., we have
the relationship

emax,i = emin,i +4ei (6.8)

for each i = 1, 2, 3. Note that 4ei is independent of emin,i in contrast to emax,i. The minimum
and maximum values for 4ei are determined by respective lower and upper bounds from
Tab. 6.1, i. e.,

4ei ∈ [emax,i,lb − emin,i,lb, emax,i,ub − emin,i,ub] . (6.9)

As a last step, all calibration parameters have to be normalized, i. e., their original prior
interval is translated and scaled to the interval [−1, 1]. That is, the final (random) vector of
all normalized calibration parameters, which are denoted again with a bar, is

x = (klog
hyd,1, emin,1,4e1, α1, k

log
is,1, k

log
sec,1, esec,1,

4klog
hyd,(1,2),4emin,(1,2),4e2,4α(1,2),4klog

is,(1,2),4k
log
sec,(1,2),4esec,(1,2), (6.10)

4klog
hyd,(2,3),4emin,(2,3),4e3,4α(2,3),4klog

is,(2,3),4k
log
sec,(2,3),4esec,(2,3))

> ∈ R21.

The prior distribution is assumed on the space of these calibration parameters and we again
choose

µ0 = PX = U
(
[−1, 1]21

)
(6.11)

implying that X = [−1, 1]21. A particular sample X ∼ µ0 can be transformed to a model
parameter by the rules above to serve as input for a model run. Note that the (transformed)
prior distribution on the model parameters is not uniform since the transformations are non-
linear and “indirect,” in the sense that there is no direct analogue to, for example, 4ei in the
set of model parameters.

Quantities of interest

The hydrological model in this chapter maps a certain instance of model parameters to the
corresponding discharge values which constitute our quantities of interest. That is, all in all,
we have a forward operator G : X → Rnd , where nd = 1096. The actual measured discharge
values d ∈ Rnd , that we need as a condition argument for the posterior µd, are plotted in
Fig. 6.2.

Also here, we assume a zero-centered Gaussian distributed experimental noise at a level
of 5% for the used flowmeter as was suggested by the water works owner in Waidhofen
a.d. Ybbs. More concretely, the noise covariance matrix Γ becomes

Γij = (0.05× di)2 δij (6.12)

for i, j = 1, . . . , nd, where di denotes the i-th component of the data d. That is, Γ is diagonal.

6.3 Global sensitivity analysis

Approaches for global sensitivity analysis (GSA) are a standard tool in the field of UQ as is
already mentioned in the introductory chapter; see Sec. 1.2. Recall that we briefly introduced
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Figure 6.2: Measured discharge data for the calibration period 2006–2008.

total-effect Sobol indices as a technique to quantify the expected variance of a given function f
caused by a certain single input variable; see (1.10). We repeat and emphasize that this type of
sensitivity index is coordinate-aligned, i. e., it refers to a single original input variable Xi. This
is in contrast to sensitivities computed by ASM which are linear combinations of input variables
and thus yield sensitive directions in the input space. However, since sensitive directions
contain more information than just coordinate-aligned sensitivities, there is hope that the
former can be constructed by the latter. Indeed, the authors of [53] demonstrate that the
eigendecomposition of the matrix C in (3.6) can be exploited to compute sensitivity metrics
that are comparable to total-effect Sobol indices in most practical situations. But they also
mention that it is possible to construct scenarios which lead to different, non-comparable
results.

Particularly, in [53], the eigenvectors in W are weighted with corresponding eigenvalues
from Λ to derive global sensitivity indices on coordinates. These indices are stored in a vec-
tor s ∈ Rn in which the value of the i-th component reflects the global sensitivity of f w.r.t. Xi,
i. e., we define

si := si(nGS) :=

nGS∑
j=1

λj(wj)
2
i (6.13)

for i = 1, . . . , nGS, where nGS ≤ n. Since we set nGS = n in the following, we can write more
compactly that

s(n) = (W ◦W )λ, (6.14)

where λ = (λ1, . . . , λn)> ∈ Rn and ◦ denotes elementwise multiplication.

We should also mention at this point (again) that the exact quantities W and Λ are often
not available in practice meaning that we can only use approximations W̃ and Λ̃ to compute
an approximate vector of global sensitivities s̃ ≈ s. It is difficult to specify strict lower bounds
on the number of samples NC̃ in (3.159) in general to compute sufficiently accurate sensitivity
values s̃. For this reason, we follow the results in [53] and use as many samples as were shown
to be sufficient therein.
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Figure 6.3: Spectrum of the matrix C̃ for the karst hydrological model LuKARS.

6.4 Computational results

Computational costs

With a pessimistic sampling factor βC̃ = 10, we would need to compute about NC̃ = 250 gradi-

ent samples according to (3.166) to approximate the first m = 8 eigenvalues of C̃ from (3.159)
sufficiently accurately. Nevertheless, we decide to choose NC̃ = 1, 000 gradient samples since
we want to ensure that the global sensitivities, mentioned in Subsec. 6.3, are also approximated
well enough.

Recall from (4.12) that we need the Jacobian matrix ∇G of the forward operator G to
compute gradients of the data misfit function fd. Since the LuKARS model is not capable of
exact gradients, we need to approximate them by central finite differences analogous to the
previous chapter; see (5.27). Using seven CPU cores, each at 3 GHz, the required

NC̃ · (2n+ 1) = 1, 000 · (2 · 21 + 1) = 43, 000 (6.15)

forward runs for the computation of C̃ require about 4.3 hours with an average of about
2.5 seconds for a single model run.

Active subspace for the inference and global sensitivities

The resulting eigenvalues of C̃ are plotted in Fig. 6.3. The light blue band around the eigen-
values depicts the estimated variability due to the random nature of C̃ as described in Sec. 3.5.
We observe that there is a first spectral gap between the first and second eigenvalue, and a
second gap between the fourth and fifth eigenvalue which might be exploited for our purpose of
dimension reduction. However, these gaps are not as large as in the previous chapter, i. e., we
expect that the respective surrogates do not have such a remarkably high goodness of fit as
the polynomial response surface for the methane hydrate model.

Fig. 6.4 shows the corresponding first four eigenvectors w̃1, . . . , w̃4 of C̃ and the global
sensitivities computed according to (6.13). The colors of the bars visualize the different hydro-
topes. Note that we included all eigenpairs to compute the approximate vector of sensitivities s̃,
i. e., we have that nGS = n. The first three eigenvectors (Fig. 6.4a–c) are all dominated by
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Figure 6.4: a)–d): First four eigenvectors w̃1, . . . , w̃4 of C̃. The colors of the bars visualize the
different hydrotopes. (Blue: Hyd 1; Orange: Hyd 2; Green: Hyd 3) e): Approximate global
sensitivity values s̃ computed according to (6.13).
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the parameters X5, X12, and X19 which interestingly all involve the kis,i values for each of the
three hydrotopes. Recall that the eigendecomposition is performed for the calibration, and not
the model parameters. That is, in descending dominance, we have

1. 4klog
is,(1,2), 2. klog

is,1, 3. 4klog
is,(2,3),

which is, of course, also reflected in the global sensitivities; see Fig. 6.4e. The fourth eigenvector
(Fig. 6.4d) displays that also the parameters

X1 = klog
hyd,1 and X8 = 4klog

hyd,(1,2)

involving khyd values from hydrotopes 1 and 2 have some importance.
To actually start the inference using the RWM algorithm in the active subspace (Alg. 5),

we still need to construct a polynomial surrogate

gpoly ≈ g̃dN (6.16)

for the low-dimensional data misfit function with N = 1 by reusing the samples fd(Xj), that
were already computed for the approximation C̃ of C, for Alg. 6. This procedure is already
explained in Sec. 5.3 for the methane hydrate model.

We decide for a 4D subspace since we regard that

λ̃5 + · · ·+ λ̃n

λ̃1 + · · ·+ λ̃n
≈ 0.0475 = 4.75%, (6.17)

as the percentage share of the eigenvalues belonging to the inactive subspace to the sum of all
eigenvalues, is sufficiently small. The corresponding polynomial surrogate, having fourth order,
results in a coefficient of determination of r2

4D ≈ 0.77 which is assessed as sufficient but, as
expected, not as good as for the methane hydrate model. Since a fourth order polynomial with
four inputs already has 70 degrees of freedom, we compute another 20, 000 samples fd(X`),
where X` ∼ µ0, to ensure to avoid overfitting. The corresponding r2 score results in a very
similar value ≈ 0.77 confirming that we do not run into the mentioned issue.

Remark. For completeness, a fourth order polynomial on a 1D subspace yields a coefficient
of determination of r2

1D ≈ 0.23 which is certainly not good enough.

Inference with MCMC in the active subspace

The polynomial response surface gpoly is consequently exploited for running the adjusted
RWM algorithm in the active subspace (Alg. 5). Recall that we want to construct samples
approximately following the posterior distribution on the active subspace denoted by µd

gpoly,Ỹ
.

Note again that we only have perturbations Ỹ , Z̃, and gpoly available which implies that the
resulting posterior approximation is computed on the perturbed subspace with the polynomial
surrogate.

Since the general procedure in this subsection coincides with the methodology from the
respective subsection of the previous chapter, we only show the results that are related to the
present hydrological study case and do not repeat the explanations.

The variance of the proposal distribution Q ∼ N
(
0, γ2I

)
is adjusted to γ2 = 0.005 to result

in an acceptance rate of 35% which is reasonably good according to Sec. 2.5. We compute
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Figure 6.5: The top row shows histograms of the marginal prior distributions of the active vari-
able Ỹ . The bottom row depicts the approximate marginal posterior distributions of µd

gpoly,Ỹ
.

106 (correlated) samples and regard the first 105 as part of the burn-in period yielding an
effective sample size Neff ≈ 12, 000.

The marginal distributions of µd
gpoly,Ỹ

are shown in Fig. 6.5. The x- and y-axes, sub-

stantially changing from the prior (top row) to the posterior (bottom row), display that the
posterior distribution in the active subspace is considerably informed as expected and de-
sired. We adjusted the x-axes in the bottom row to make the variance visible; otherwise, the
distributions would have been very thin lines which display only little information.

In order to have samples in the full space following µdgpoly
≈ µdg , we follow the same approach

as in Sec. 5.3 to compute conditional samples

Z̃j,` ∼ PZ̃|Ỹ (·|Ỹj) (6.18)

for each Ỹj
approx.∼ µd

gpoly,Ỹ
from the reduced set of “effective” samples and subsequently put

them together as in (5.32).
These samples in the full space are then translated back to the space of model parameters

and give results shown in Tab. 6.2. On the left, we see the approximate posterior means
and standard deviations for each model parameter from Tab. 6.1. The means and standard
deviations of model parameters that are informed substantially are highlighted in bold. As
expected by the global sensitivity values from Fig. 6.4e, the kis,i parameters are mostly informed
by the discharge data d. For bivariate relationships, the right subtable displays the highest
(in absolute value) sample Pearson correlation coefficients (see Def. A.2.3b)) of the model
parameters. Note that the smallest negative correlations are smaller, in absolute value, than
the largest positive ones. The correlation of emin,i and emax,i values, as well as the correlation
of kis,1 and kis,2, is due to the constraints in (6.1) and thus already present in the prior on
the model parameters. Most of the other correlations, as e. g., of khyd,2 and ksec,2 or of khyd,2

and kis,2, are found by the actual inference. It is worth mentioning that the highest correlations
found by the inference only involve k∗ parameters.

As a kind of validation, we show a plot of the approximate prior and posterior push-forward
distributions, i. e., of

µ0({x ∈ X | G(x) ∈ ·}) and µdgpoly
({x ∈ X | G(x) ∈ ·}), (6.19)
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Table 6.2: Left: Posterior means and standard deviations of model parameters. (The informed
parameters are highlighted in bold.) Right: Highest 2D correlations for model parameters.
The smallest negative correlations are smaller, in absolute value, than the largest positive ones.

No. Model par. Mean Std.

1 khyd,1 3.07 × 102 2.34 × 102

2 emin,1 29.86 11.57
3 emax,1 44.49 12.90
4 α1 1.17 0.26
5 kis,1 5.18× 10−2 3.98× 10−3

6 ksec,1 0.17 0.22
7 esec,1 47.78 12.95

8 khyd,2 70.62 55.81
9 emin,2 60.46 11.27
10 emax,2 1.20 × 102 16.14
11 α2 0.82 0.21
12 kis,2 4.52× 10−3 1.61× 10−4

13 ksec,2 2.03 × 10−2 3.23 × 10−2

14 esec,2 1.76 × 102 25.99

15 khyd,3 25.94 21.75
16 emin,3 95.71 14.18
17 emax,3 2.06 × 102 20.23
18 α3 0.43 0.14
19 kis,3 6.35× 10−4 1.69× 10−5

20 ksec,3 6.21 × 10−3 1.07 × 10−2

21 esec,3 3.85 × 102 37.48

Model par. Corr. coef.

emin,1 emax,1 0.89
kis,1 kis,2 0.77
emin,3 emax,3 0.70
emin,2 emax,2 0.70
khyd,2 ksec,2 0.66
kis,1 khyd,2 0.64
kis,1 ksec,2 0.63
khyd,2 kis,2 0.59
ksec,1 kis,3 0.57
ksec,2 ksec,3 0.56
kis,2 ksec,2 0.52

which are measures on the data space. That is, we randomly take 1, 000 samples of both the
prior µ0 and the posterior µdgpoly

constructed by the RWM algorithm explained above and run
the forward operator G for each of them. Note that these computations are only possible since
the model is cheap to evaluate which is not the case for the methane hydrate model from Ch. 5.

Fig. 6.6 depicts the measured discharge values (blue lines) and the sample medians (orange
lines) and means (green lines) of both the prior (Fig. 6.6a) and the approximate posterior
(Fig. 6.6b) push-forward distribution for comparison over the whole study period. Also, Fig. 6.6
shows 95% quantile bands, i. e., the interval between the 2.5% and 97.5% quantile, of the data
(noise) distribution (light blue areas) and the two push-forward distributions (light orange
areas). It is apparent that the inference in the 4D subspace not only yields more suitable
means and medians but also substantially reduces the uncertainty on the data space as can be
seen by the smaller quantile band on the right in Fig. 6.6b.

6.5 Discussion

The following discussion on the most sensitive parameters is taken from [258, Sec. 5] to which
we also refer for a general hydrological interpretation of our results.

Parameters X5, X12, and X19 show the largest contributions in the first four eigenvectors
w̃1, . . . , w̃4 in Fig. 6.4a–d. These parameters correspond to kis,i model parameters, which
delimit the flow contributions from the hydrotopes to the linear baseflow storage. As derived
in [31], the baseflow storage exhibits a relatively constant discharge behavior with a small
temporal variability and its discharge coefficient kb was not changed within the presented
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Figure 6.6: Prior (a) and approximate posterior (b) push-forward distributions (defined
in (6.19)).

research study. Since the outflow from the baseflow storage is controlled by its variable storage
(eb) and its constant discharge coefficient (kb), the hydrotope discharge coefficients for the
groundwater recharge (kis,i) also affect the baseflow discharge and its temporal dynamics since
they control eb. Given that kb was not included as a calibration parameter, the kis,i parameters
are responsible to maintain the baseflow contribution as derived by [31] and are most informed
as displayed in the first eigenvector w̃1.

Although parameters X5, X12, and X19 have the same physical interpretation, we can
observe that they display different sensitivities for the different hydrotopes. This is due to
the fact that different hydrotopes cover areas which are different in extension (Hyd 1 — 13%,
Hyd 2 — 56%, and Hyd 3 — 27%). Therefore, the interpretation of the most important param-
eters occurring in an eigenvector, should both consider the physical meaning of the parameter
and the relative contribution of each single hydrotope to the total spring discharge, which is
highly affected by the relative area covered by the hydrotope. In this specific case, parame-
ter X12, associated with Hyd 2, displays the largest value since it covers the largest area in
the Kerschbaum spring catchment and thus has a significant contribution to the total spring
discharge. Parameter X5 has the second largest value although Hyd 1 ranks as third in terms
of coverage area. This is explained by the fact that Hyd 1 provides the most dynamic and
variable discharge behavior of all hydrotopes. Hence, the discharge contribution from Hyd 1 is
essential to reproduce the discharge dynamics observed in the Kerschbaum spring. Hyd 3 has
the smallest contribution in w̃1, which can be explained by its more constant and less variable
discharge behavior as compared to Hyd 1 and its smaller spatial share as compared to Hyd 2.
Hence, although Hyd 3 has a larger area covered than Hyd 1, parameter X19 is less dominant
than parameter X5.

We also comment on Fig. 6.6b. The sample medians and means of the approximate poste-
rior push-forward distribution computed with the 4D subspace match the low-flow conditions
reasonably well; also, the quantile band representing the uncertainty is reduced considerably.
However, the high-flow conditions stay uncertain and are not well matched by the median
and mean which means that they are not sufficiently reflected by the approximated posterior
distribution. To achieve this, we would have to adjust the data misfit function in the sense
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that deviations in high-flow conditions are weighted more than in low-flow-conditions, but this
would entail a re-formulation of the Bayesian inverse problem.

Finally, we refer to our follow-up investigation in [32] which contains an in-depth validation
of the model with further sensitivity analyses that are more interesting from a hydrological
point of view. In particular, we study the hydrological features that actually lead to the
dimension reduction presented in this chapter.





Chapter 7
Iterative active subspaces

This final chapter discusses an iterative approach for the construction of active subspaces in
Bayesian inverse problems. We start with a motivation in Sec. 7.1 and formulate two goals
that we aim to achieve by an iterative algorithm defined in Sec. 7.2. A corresponding analysis
with an illustrative case is provided in Sec. 7.3. Sec. 7.4 discusses an implementation of the
algorithm on a real scenario involving a model for the 2014 Ebola outbreak in West Africa.
Finally, conclusions are given in Sec. 7.5.

7.1 Motivation

A critical point of applying ASM for solving Bayesian inverse problems is the use of the prior
distribution as weighting for sensitivities (or gradients), i. e., so far we compute

C0 := E[∇fd(X)∇fd(X)>] =

∫
X
∇fd(x)∇fd(x)>ρ0(x) dx (7.1)

as it was done in (4.11) and also for the applications in Ch. 5 and 6.

Indeed, the active subspace, i. e., the column space of W1 from (3.10), computed w.r.t. the
prior can be crucially different from the one computed w.r.t. the posterior, especially if the
prior substantially differs from the posterior distribution in the sense that the support of the
prior contains relatively large regions with high misfit values. That is, we actually would like
to approximate

Cd := E[∇fd(X)∇fd(X)> |D = d] =

∫
X
∇fd(x)∇fd(x)>ρd(x) dx (7.2)

for given data d ∈ D instead of C0.

As an illustration, regard the sufficient summary plot in Fig. 7.1 referring to a scenario
that is discussed in Sec. 7.4. The orange dots depict the misfit values of samples Xj ∼ µ0

from (4.20) (projected on the axis of the first active variable by w̃>1 Xj) that are used to
approximate C0. Note that the y axis is set to a log scale. Although the orange dots follow
a one-dimensional behavior on the left part, we can see that they do not so near the high
posterior region, i. e., the region with lower data misfit values (given a reasonably flat prior),
which is around w̃>1 x = 0.5 in this example. This is confirmed by manually added samples X ′j

117
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Figure 7.1: A one-dimensional subspace (spanned by w̃1) that is not suitable for samples in
regions with high posterior probability, i. e., lower misfit values (given a reasonably flat prior).

(gray dots), which are randomly constructed such that w̃>1 X
′
j is near 0.5, as they do not show

a one-dimensional structure at all. The reason for this problem is the fact that the dominant
(active) directions are computed w.r.t. the prior distribution, i. e., all orange dots, and not
only the dots with a relatively low misfit value.

So, on the one hand, we want to approximate the posterior via ASM, as described in Ch. 4,
but on the other hand we need the posterior in order to approximate Cd. This constitutes a
circular task and suggests an iterative scheme. In the following, we formulate and discuss an
iterative algorithm that aims for constructing an active subspace that

1. is more aligned to regions with higher posterior probability and, hence,

2. can serve as a better starting point for further inference procedures as the subspace given
by C0.

Related literature

A related iterative approach is presented in [293, Subsec. 3.3.3 & Alg. 2] which employs a
sequential importance sampling framework. Remember that this work is already mentioned
in the related literature section of Ch. 3 and 4. It suggests an algorithm that, in each step,
chooses the dimension k of an active subspace such that a so-called reconstruction error falls
under a predefined threshold. This dimension can generally take on every value k ≤ n which,
on the one hand, might imply higher computational costs since cheap surrogates are not easily
available in higher dimensions but is, on the other hand, necessary in order to make importance
sampling for Cd function and useful.

In contrast, our approach does not aim to fully approximate Cd in each single step but
rather proposes a step-wise scheme which allows the computation of cheap surrogates and
targets the two goals from above. In particular, it is Goal 2 that constitutes a main difference
to the attempt undertaken in [293].



7.2 Iterative algorithm 119

7.2 Iterative algorithm

In the remainder, we set f := fd.
The iterative algorithm that we suggest as a solution to the problem mentioned above is

given by the steps in Alg. 7. Note that all quantities used in the definition of the algorithm
are exact. Of course, in practice (i. e., in Sec. 7.4) we have to fall back on estimations and
approximations as discussed in Sec. 3.5.

Most of the steps in the algorithm are straightforward to understand; however, some of
them need emphasis and clarification. At every iteration `, we compute an eigenvector ma-

trix W
(`)
1 containing directions that dominate (w.r.t. µ(`)) the behavior of the data misfit

function. In general, each active subspace (spanned by the columns of W
(`)
1 ) can have a

different dimension k(`) ∈ {1, . . . , n− 1}; see Step 3.
But the most important step to understand is Step 7. In (7.8), we decompose the density

of the next posterior approximation µ(`+1), denoted by ρ(`+1), into

1. ρ
(`)
g :∝ exp(−g(`)(·)) ρ0,Y ,W (`)(·), the posterior density on the active subspace spanned

by the columns of W
(`)
1 , and

2. ρZ(`)|Y (`) , the density corresponding to the subspace which is inactive w.r.t. µ(`).

It is important to note that the densities ρ0,Y ,W (`) and ρZ(`)|Y (`) are not derived from the same
“parent” density as it was the case so far in previous chapters. Actually, both share the same
parent density only in the first iteration when ` = 0 (which then is the prior density ρ0). The
density ρ0,Y ,W (`) , which can be named the prior density on the active subspace spanned by

the columns of W
(`)
1 , is always referring to the prior density ρ0. In contrast, the conditional

density ρZ(`)|Y (`) relates to ρ(`), the density of µ(`), in every iteration `. The reason for this
decomposition is that we aim for a gradual approximation of the posterior, which is proportional
to the product of the likelihood and the prior. Using ρZ(`)|Y (`) (instead of the conditional prior
density ρZ(0)|Y (0)) ensures that we do not lose information (in the form of informed directions)
that we already computed in previous iterations.

Referring back to the goals formulated at the end of Sec. 7.1 (Goal 1 and 2), we see that the
directions stored in W (`) are more aligned to regions with higher posterior probability already
from iteration ` = 1 on. Indeed, we see in Sec. 7.4 that it is enough there to perform only two
iterations (i. e., for ` = 0 and ` = 1) to meet the two goals mentioned above.

But before we investigate this more complex scenario, we continue with an analysis of
Alg. 7 by looking at a rather simple case which however provides insight into the evolution of
posterior approximations µ(`) driven by the iterations.

7.3 Analysis with an illustrative case

The analysis for Alg. 7 resumes the example from Sec. 2.3 that involves a Bayesian inverse
problem with a Gaussian prior µ0 := N (m0,Σ0), Gaussian observational noise η ∼ N (0,Γ),
and a linear forward map G(x) := Ax for some matrix A ∈ Rnd×n. For the sake of a clear
illustration, we further specialize this example by assuming that Σ0 = I, Γ = γ2I for γ > 0,
and d = G(m0) = Am0.

According to (2.35), we get a posterior µd ∼ N (m,Σ) with m = m0 and

Σ = I −A>(γ2I +AA>)
−1
A (7.10)
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Algorithm 7: Iterative active subspace construction

Input : Starting distribution µ(0) := µ0.
Output: A sequence of posterior approximations µ(`) and eigenvector matrices W (`)

containing (non-)dominant directions w.r.t. µ(`).

Let X(0) ∼ µ(0).

Iterating for ` = 0, 1, 2, . . ., the `-th step is:

1. Compute

C(`) := E[∇f(X(`))∇f(X(`))>]

=

∫
X
∇f(x)∇f(x)>ρ(`)(x) dx.

(7.3)

2. Eigendecompose C(`) =: W (`)Λ(`)W (`)>.

3. Decide for a dimension of the active subspace k(`) ∈ {1, . . . , n− 1} and split the active
directions accordingly, i. e.,

W (`) =:
(
W

(`)
1 W

(`)
2

)
, (7.4)

where W
(`)
1 ∈ Rn×k(`)

and W
(`)
2 ∈ Rn×(n−k(`)).

4. Define active and inactive (random) variables,

Y (`) := W
(`)
1

>
X(`) ∈ Rk(`)

, Z(`) := W
(`)
2

>
X(`) ∈ Rn−k(`)

. (7.5)

5. Compute

g(`)(y) := E[f(JY (`),Z(`)KW (`)) |Y (`) = y]

=

∫
f(Jy, zKW (`)) ρZ(`)|Y (`)(z|y) dz.

(7.6)

6. Compute the prior on the current active subspace,

ρ0,Y ,W (`)(y) :=

∫
ρ0(Jy, zKW (`)) dz. (7.7)

7. Define the next posterior approximation, i. e., for x ∈ X with x = Jy, zKW (`) , where

y = W
(`)
1

>
x and z = W

(`)
2

>
x, set

ρ(`+1)(x) :∝ exp(−g(`)(y)) ρ0,Y ,W (`)(y) ρZ(`)|Y (`)(z|y)

∝: ρ(`)
g (y) ρZ(`)|Y (`)(z|y)

(7.8)

and let µ
(`)
g be the distribution induced by ρ

(`)
g . For Y̊ (`+1) ∼ µ(`)

g and
Z̊(`+1) := (Z(`) |Y (`) = Y̊ (`+1)), we define

X(`+1) := W (`)

(
Y̊ (`+1)

Z̊(`+1)

)
∼ µ(`+1). (7.9)
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(0) = 0 (1) (2) = d

Figure 7.2: Evolution of posterior approximations for the described linear Gaussian Bayesian
inverse problem in n = 2 dimensions. The green/black contour lines indicate µ(`), whereas
the transparent red contour lines display the posterior. The color of an arrow shows if a
corresponding direction is already informed.

=

(
I +

1

γ2
A>A

)−1

. (7.11)

We do not intend to provide a formal analysis demonstrating that the two goals mentioned
above get achieved. The analysis (for the given simplified setting) rather aims for showing
desirable mathematical properties of the algorithm as the approximation of the true posterior
and consistency in the sense that µ(`) = µd for some ` ∈ N0 implies that also µ(`+1) = µd.

The evolution of the gradual posterior approximations µ(`) (described by Alg. 7) in the
given setting is illustrated for n = 2 dimensions in Fig. 7.2. In all three subfigures, the
green/black circles display the contour lines of µ(`), whereas the transparent red contour lines
indicate the posterior distribution. The arrows show the directions of active/inactive directions
which actually coincide with the principal components [139] of the posterior and stay constant
throughout the iterations in this example which is demonstrated later. The color of an arrow
indicates whether the corresponding direction is already informed. The iterations start on
the left with µ(0) = µ0. In the first iteration (` = 0) from the left to the middle subfigure,

we assume to have only one active direction (spanned by w
(0)
1 = (−1/

√
2, 1/
√

2)>) that gets
informed (red colored on the left but green in the middle). The second iteration (` = 1) from
the middle to the right subfigure then also informs the second direction such that µ(2) = µd.
The second direction becomes active for ` = 1 since the misfit function changes more in this
direction (w.r.t. µ(1)) than in the already informed one.

The visualization of the iterations above is formalized in the following statement.

Proposition 7.3.1. Let µ0 = N (m0, I) with m0 ∈ Rn. Suppose that G(x) := Ax for x ∈ X
with A ∈ Rnd×n, and η ∼ N

(
0, γ2I

)
for γ > 0. Furthermore, assume that d = G(m0).

Considering Alg. 7, set Λ := Λ(0) and W := W (0). Then, for every iteration ` ∈ N0, it
holds that

X(`) ∼ N
(
m0,Σ

(`)
)

(7.12)

with

Σ(`) = W

((
I + Λ

1/2

1:K(`)

)−1
0

0 I

)
W> (7.13)
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for some natural number 0 ≤ K(`) ≤ n.

Remark. (i) For a diagonal matrix D ∈ Rn×n, D1:K denotes the upper left submatrix of
dimension K × K for a natural number 0 ≤ K ≤ n. (ii) For real diagonal matrices D with
non-negative diagonal elements djj , the square root D1/2 is chosen to be the diagonal matrix
with positive square roots +

√
djj on the diagonal to get uniqueness. (iii) As mentioned above,

the posterior distribution in the given setting is µd = N (m0,Σ) with

Σ =

(
I +

1

γ2
A>A

)−1

. (7.14)

Note that Σ can also be rewritten as

Σ = W (I + Λ1/2)
−1
W> (7.15)

by using the Woodbury matrix identity; see Lem. A.1.2. Indeed, we get that

WΛW> = W (0)Λ(0)W (0)> = C(0) = E[∇fd(X(0))∇fd(X(0))>] =

(
1

γ2
A>A

)2

(7.16)

implying that
1

γ2
A>A = WΛ1/2W>. (7.17)

The proof of Prop. 7.3.1 can be found in Sec. D.1. Comparing Σ(`) from (7.13) and Σ
from (7.15), we see that the directions (stored as columns in W ) are gradually informed which
was illustrated in Fig. 7.2 for n = 2 dimensions. Depending on the sequence (K(`))`∈N0

approaching the full dimension n, the sequence of covariance matrices (Σ(`))`∈N0 can gradually
approach the posterior covariance matrix Σ.

7.4 Experiment with an Ebola spread model

The problem described in Sec. 7.1 is experimentally investigated in this section with a model for
the dynamics of the 2014 Ebola outbreak in West Africa which also accounts for intervention
strategies [16]. We employ Alg. 7 to meet the two goals from above (Goal 1 and 2) and will see
that one or two iterations are enough to improve the initial situation for a Bayesian inference
in this case.

Note that ASM was already applied for computing global sensitivity metrics in the context
of a similar model for the Ebola spread in West Africa to guide resource allocation [78].

Subsec. 7.4.1 describes the Ebola spread model that we use for the study in this section.
We do not provide full detail on the model and related existing work but rather give references
where appropriate. The setup for a corresponding Bayesian inverse problem is given in Sub-
sec. 7.4.2. Finally, the actual outcomes of our study, the computational results, are discussed
in Subsec. 7.4.3.

7.4.1 Model description

The 2014 Ebola Virus Disease (EVD) outbreak in Guinea, Liberia, and Sierra Leone is in
fact the largest and longest epidemic ever reported since the first identification of this disease
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Figure 7.3: Model compartments on the basis of [16, Fig. 1] including parameters for the
transitions between them.

from 1976 in Zaire (now the Democratic Republic of Congo). Beginning with the first case
reported on December 26, 2013 in Guinea, the virus rapidly spread to Liberia and Sierra Leone
causing a total of 28,616 reported cases and 11,310 reported deaths as of June 10, 2016 [7].

Mathematical modeling supported efforts of international organizations as the World Health
Organization (WHO) by, for example, estimating crucial quantities like the basic reproduction
number R0, an epidemiological metric that indicates the average number of secondary infections
caused by one infected host in a fully susceptible population over the whole time of the host’s
infection.

The model, which we employ for our experiment and call “the” model in the following,
was developed by the authors of [16]. It is a compartmental model, i. e., it divides a pop-
ulation into so-called compartments, and is based on simpler models like the SIR or SEIR
model that involve compartments for susceptible (S), exposed/latent (E), infectious (I), and
removed/recovered (R) subpopulations and describe suitable transitions among them. Sus-
ceptible persons get infected (with a certain average rate) and move to the compartment of
exposed ones. However, the exposed people are not yet infectious but do become after the
incubation period. As soon as they recovered from the corresponding disease, they are removed
from the chain of transmission.

In addition, the model extends the work of [174] which adds three more compartments to
account for hospitalized (H), dead (D), and buried (B) individuals. These additional compart-
ments play a central role in the model since the Ebola virus is transmitted not only by contact
with infectious hosts in the community but also often in hospitals and at funerals; see [9].
The difference of the model to the one from [174] lies in an inclusion of patients that abandon
healthcare facilities and return back to the community at their own (and others’) risk, as it
was reported several times by WHO [9]. For a more detailed review of related existing models
and work, we refer to [16, Introduction].

Parameters for a standard version of the model, as the transmission rates in the community,
in hospitals, and at funerals, are listed in the upper and middle part of Tab. 7.1. A transmission
diagram including the mentioned parameters is depicted in Fig. 7.3 for better visualization.
Without consideration of intervention strategies to prevent further spread of the virus, these
(pre-intervention) parameters would stay constant/stationary over the whole simulation period.

However, the model does account for the fact that control measures were initiated at a cer-
tain point in time. These efforts encompass, for example, surveillance, isolation of suspected
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Table 7.1: Parameters for the Ebola spread model; see [16, Tab. 1 and 2].

Par. Description Unit xfit [Range]

β Transmission rate in the community before intervention 1/week 0.532 [0.350–0.575]
θ Transmission rate in hospitals before intervention 1/week 0.328 [0.100–0.480]
ϕ Transmission rate at funerals before intervention 1/week 2.104 [1.402–2.475]
1/η Mean time from symptoms onset to hospitalization before intervention days 4.8 [4.8–5.3]
1/b Mean time from death to burial before intervention days 5.4 [4–6.6]

1/γ Mean duration of the infection days 10.4 [9.5–10.5]
1/α Mean duration of the incubation period days 10 [9.5–10.5]
1/γH Average permanence in the hospital days 4.6 [4.4–4.9]
δ Case fatality ratio in the community – 0.73 [0.69–0.73]
δH Case fatality ratio in hospitals – 0.61 [0.52–0.64]
κ Hospital leaving rate 1/week 0.0025 [0.0022–0.0028]

β̃ Transmission rate in the community after intervention 1/week 0.505 [0.425–0.532]

tβ Time to achieve (β + β̃)/2 days 12.5 [9.70–48.52]

θ̃ Transmission rate in hospitals after intervention 1/week 0.095 [0.033–0.328]

tθ Time to achieve (θ + θ̃)/2 days 11.1 [9.70–48.52]
ϕ̃ Transmission rate at funerals after intervention 1/week 1.115 [0.210–2.104]
tϕ Time to achieve (ϕ+ ϕ̃)/2) days 10.3 [9.70–48.52]
1/η̃ Mean time from symptoms onset to hospitalization after intervention days 4.1 [2–5]
tη Time to achieve (η + η̃)/2 days 27.1 [16.17–48.52]

1/b̃ Mean time from death to burial after intervention days 4.9 [1–5.4]

tb Time to achieve (b+ b̃)/2 days 21.2 [6.93–48.52]

cases, and a reduction of the duration between deaths and corresponding burials, and conse-
quently imply changes of some parameters. Following [80], the model identifies five parameters
that need to be adjusted (see upper part of Tab. 7.1),

• transmission rates in the community (β), in hospitals (θ), and at funerals (ϕ),

• the hospitalization rate (η), and

• the burial rate (b).

It is assumed that these control parameters change gradually in time once the intervention
strategies start. Abusing notation, we introduce corresponding time-varying parameters,
i. e., for a ∈ {β, θ, ϕ, η, b}, we define

a(t) :=

{
a for t < Tinterv

ã+ (a− ã) exp(−qa(t− Tinterv)) for t ≥ Tinterv,
(7.18)

where qa > 0 specifies how fast the transition from a to a new value ã occurs and Tinterv ≥ 0
denotes the starting time of interventions. Note that the mean value (a + ã)/2 is reached
at time Tinterv + ta with ta = log(2)/qa. The (intervention) parameters that are added due
to (7.18) are specified in the lower part of Tab. 7.1.

With this setup, we can finally provide the system of ordinary differential equations (ODEs)
that describe the dynamics of the mentioned compartments [16, Appendix A.1],

S′ = −λ(t)S
E′ = λ(t)S − αE
I ′ = αE − (γ + η(t))I + κH
R′ = (1− δ)γI + (1− δH)γHH
H ′ = η(t)I − (γH + κ)H
D′ = δγI + δHγHH − b(t)D.

(7.19)
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Figure 7.4: Measured data and model output using parameters xfit for the cumulative number
of cases.

The expression

λ(t) := β(t)
I

N
+ θ(t)

H

N
+ ϕ(t)

D

N
(7.20)

is called the force of infection, where N = N(t) := S(t) + E(t) + I(t) + R(t) denotes the
(current) number of individuals in the community. The auxiliary variables for the cumulative
(total) number of burials B = B(t) and the cumulative number of infected cases C = C(t) are
given by {

B′ = b(t)D
C ′ = αE.

(7.21)

Initial values for the system in (7.19), adopted from the authors of [16], are set to(
S(0), E(0), I(0), R(0), H(0), D(0)

)
=
(
2.2 · 107, 3.42, 2.31, 0, 0.1, 4.25

)
(7.22)

and (
B(0), C(0)

)
=
(
0, 0
)
. (7.23)

The information, that is used in [16] to fit the model parameters from Tab. 7.1, is based
on weekly incidences reported through WHO situation reports [8] from December 28, 2013 to
February 13, 2015 (59 weeks). First, pre-intervention parameters and parameters independent
of interventions (middle part of Tab. 7.1) were fitted to data from December 28, 2013 to
October 3, 2014 (40 weeks) and, subsequently, intervention parameters to data from October 3,
2014 to February 13, 2015 (20 weeks). Hence, we set the starting time of interventions to

Tinterv = 40. (7.24)

For concrete values of the fitted parameters, which we denote by xfit, see the right column in
Tab. 7.1. The measured data and the model output using parameters xfit for the cumulative
number of cases C are plotted in Fig. 7.4.
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7.4.2 Setup

Also here, we distinguish between model and calibration parameters. Their relationship is,
however, simple in this case. According to the model description in Subsec. 7.4.1, we have the
following set of 21 model parameters to be inferred,

{β, β̃, tβ, θ, θ̃, tθ, ϕ, ϕ̃, tϕ, η, η̃, tη, b, b̃, tb, γ, α, γH , δ, δH , κ}; (7.25)

see also Tab. 7.1.

Following [16], we assume a uniform prior distribution on these model parameters. The
corresponding ranges provided in Tab. 7.1 are taken from [16, Tab. 1 and 2]. We map these
model parameters to calibration parameters X by a linear transformation such that

X ∼ µ0 = U
(
[−1, 1]21

)
, (7.26)

which implies that X = [−1, 1]21 and n = 21.

The quantity of interest is chosen to be weekly snapshots of the cumulative number of cases
that we denoted by C = C(t). Since corresponding data is available for 59 weeks, the forward
operator is

G : X → Rnd , x 7→ (C(ti))i=1,...,nd
, (7.27)

where nd = 59 and ti denotes the point in time corresponding to i weeks after the beginning
of the outbreak (t = 0). The vector of measured cumulative cases d ∈ Rnd contains the data
provided by WHO as mentioned above. We assume an observational noise level of 5% which
translates to a diagonal covariance matrix Γ for the noise term η from (2.5), i. e.,

Γij = (0.05× di)2 δij , (7.28)

where di denotes the i-th component of d.

7.4.3 Computational results

First, we emphasize that the application of Alg. 7 to iteratively approximate the posterior
distribution µd = PX|D(·|d) is not directly possible for the described experiment since the
definition of the algorithm uses exact quantities which are not available here. Therefore, we
partially have to fall back on estimations and approximations of these quantities as described
in Sec. 3.5. This has consequences for the execution of the algorithm which we discuss and
comment on later.

Following (3.159) and (3.166), we use NC̃ = 250 gradient samples ∇f(X
(`)
j ), X

(`)
j ∼ µ(`),

to estimate C(`) from (7.3) at each iteration `. This corresponds to a pessimistic sampling
factor of βC̃ = 10 for an accurate estimation of the first m = 8 eigenvalues.

In contrast to the experiments from Ch. 5 and 6, in which the Jacobians of the forward
operator G were approximated by central finite differences, here we can compute the “exact”
Jacobians by using an adjoint formulation of the ODE system in (7.19). This is a well-known
and common approach for computing derivatives of functionals [217]. To demonstrate the
“exactness” of the computed Jacobians at a point x0 ∈ X ◦, we use Taylor’s theorem to write

Gi(x0 + ∆h) = Gi(x0) +∇Gi(x0)> ·∆h +O(h2), (7.29)
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Figure 7.5: Verification for Jacobians of the forward operator G. For x0 = xfit, the relative
errors êi = êi(h) := ei(h)/|Gi|, i = 10, 20, 30, 40, 50, show a second order decay for h→ 0 which
also holds for absolute errors ei from (7.31) as it is expected for a correctly computed Jacobian.

where Gi is the i-th component of G, ∇Gi denotes its gradient, and

∆h := h · (1, . . . , 1)> (7.30)

with h > 0 sufficiently small. This corresponds to a first order approximation of Gi, for which
we denote the error by ei = ei(h) with

ei(h) := |Gi(x0 + ∆h)− Gi(x0)−∇Gi(x0)> ·∆h|. (7.31)

Hence, a correctly computed Jacobian would yield a second order decay of ei(h) as h → 0.
For x0 = xfit, this is demonstrated in Fig. 7.5 for i = 10, 20, 30, 40, 50. Thus, we assume that

the Jacobians ∇G(X
(`)
j ) and hence the gradient samples

∇f(X
(`)
j ) = ∇G(X

(`)
j )>Γ−1

(
G(X

(`)
j )− d

)
(7.32)

are computed correctly using the adjoint formulation.

In the first iteration, i. e., for ` = 0, we compute C(0) from (7.3) as before according to the
prior µ(0) = µ0 (see Ch. 5 and 6). Estimations for the corresponding first m = 8 eigenvalues

of Λ(0) and the first four eigenvectors w
(0)
i , i = 1, 2, 3, 4, of W (0) are depicted in Fig. 7.6. The

eigenvalues are quite large due to the high misfit values caused by the prior which includes
regions in the parameter space that do not fit the data very well. However, we see that the first
eigenvalue, which is three orders of magnitude larger than the second one, is highly dominating.
Also, the variability in the estimated eigenvalues, caused by their random nature (see Sec. 3.5),
is estimated quite high. But the minimum values seem to be outliers since the averages (solid
line between the minimum and maximum values) lie near the maximum values. These rather
large intervals are assessed as an additional indication of a “bad” prior.

We identify two dominating parameters in the first eigenvector w̃
(0)
1 , ϕ, the transmission

rate at funerals before intervention, and b, the burial rate before intervention. Recall that w̃
(0)
i

denotes the approximation of w
(0)
i . It is intuitive that ϕ and b but also most of the other
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Figure 7.6: Estimations for the first eight eigenvalues in Λ(0) (a) and for the first four eigen-
vectors in W (0) (b).

dominating parameters (θ, δH , and β) are pre-intervention parameters since, first, the majority
of data points lies in the pre-intervention period and, secondly, the intervention parameters are
not able to compensate once the pre-intervention data points are not fitted sufficiently well.

Consequently, we decide for a one-dimensional active subspace in the first iteration, i. e., we

set k(0) = 1 in Step 3 of Alg. 7. The misfit values fd(X
(0)
j ) that correspond to the samplesX

(0)
j ,

j = 1, . . . , NC̃ , are plotted on the axis w̃
(0)>
1 x in the left part of Fig. 7.7 (orange dots).

Note that they do not need to be additionally computed but reuse evaluations of the forward

map G(X
(0)
j ) which are already computed for the approximation of C(0); see (4.12).

Due to the non-polynomial shape of the misfit values on the first active axis, we prefer to
perform GPR (instead of polynomial regression as in Ch. 5 and 6) which fits a Gaussian process
to the given data points; see Sec. 4.4. We emphasize that, in this case of the first iteration, the
regression is done on a log scale. The noise level corresponding to GPR is estimated with the
data points. The solid blue line in Fig. 7.7 displays the mean function of the fitted Gaussian

process; its exponential is then chosen as a surrogate for g
(0)
N (N = 1) and thus also for g(0).

In the left part of Fig. 7.7, the misfit values (orange dots) follow the GPR surrogate, which

we denote by g
(0)
GPR, quite well in the intervals, say, [−1, 0] and [1, 1.5]. However, both regions

do not contain the lowest misfit values which are located in, say, [0.3, 0.7], where the surrogate
does not fit the samples as well as in the other mentioned intervals. Hence, we guess that the
misfit function does not have a one-dimensional structure w.r.t. the computed first active axis
in the “relevant,” i. e., high posterior, interval. An ad hoc fix would increase the dimension of
the active subspace k(0), but this is not promising in general since also the remaining directions
were computed w.r.t. µ(0) = µ0.

To check our guess, we manually produce additional samples Ỹadd,j (randomly) in the
mentioned relevant interval in a first step. Since µ(0) = µ0 is not a standard normal distribution,
it is not trivial to sample Z̃add,j ∼ PZ̃|Ỹ (·|Ỹadd,j) to complete the additional samples to full
samples

Xadd,j = JỸadd,j , Z̃add,jKW̃ (0) . (7.33)
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first active direction computed in the first (resp. second) iteration, i. e., for ` = 0 (resp. ` = 1).

Instead, we use the alternative explained in Sec. 4.3 with X̂ = {X̂(0)
j

i.i.d.∼ µ(0)}j=1,...,J . The

corresponding misfit values fd(Xadd,j), which do require to execute the model again, are
subsequently computed and added to the left plot in Fig. 7.7 (red dots). We emphasize that

the GPR surrogate g
(0)
GPR is fitted to the orange dots, i. e., the original misfit values, only. The

added misfit values do not follow a one-dimensional shape at all implying that g
(0)
GPR is of bad

quality in the region with higher posterior probability which would, however, be necessary in
order to get a good posterior approximation.

Following Alg. 7, we aim for a second iteration (` = 1) which incorporates and reuses
the information of the first iteration (` = 0). In order to approximate C(1), we first have

to (approximately) produce samples X
(1)
j

i.i.d.∼ µ(1) by carrying out Steps 6 and 7, which we
explain for general iterations `.

So, let ` ∈ N0 be arbitrary for the moment. The prior ρ0,Ỹ ,W̃ (`) on the active subspace

spanned by W̃
(`)
1 is approximated (Step 6) as before in Ch. 5 and 6. The more difficult part is

the approximation of µ
(`)
g ((7.8) in Step 7), or actually its density

ρ(`)
g (y) ∝ exp(−g(`)(y)) ρ0,Y ,W (`)(y). (7.34)

As mentioned, the low-dimensional misfit g(`) is not available, but we would like to use a

surrogate for it, generally denoted by g
(`)
surr, which, however, might not fit well to the misfit

values in high posterior regions (as demonstrated above for ` = 0).
To reduce the impact of an inaccurate surrogate and to avoid biasing subsequent iterations

while still utilizing (at least part of) the information that it contains, we “regularize” the
surrogate by employing a technique called tempering [84]. This approach reduces concentration

of probability mass and widens a posterior distribution. Regarding ρ
(`)
gsurr adapted from (7.34),

tempering means to look at a density

ρ
(`)
gsurr,T

(ỹ) :∝ exp(−g(`)
surr(ỹ))β

(`)
T ρ0,Ỹ ,W̃ (`)(ỹ), (7.35)
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where β
(`)
T ∈ [0, 1] has to be chosen. Note that β

(`)
T = 0 corresponds to ρ

(`)
gsurr,T

= ρ0,Ỹ ,W̃ (`) ,

i. e., , just the prior, and β
(`)
T = 1 means ρ

(`)
gsurr,T

= ρ
(`)
gsurr , i. e., the full posterior. Indeed, the

factor β
(`)
T controls the level of widening since

exp(−g(`)
surr(ỹ))β

(`)
T = exp

(
− 1

1/β
(`)
T

g(`)
surr(ỹ)

)
. (7.36)

The choice of a particular value for β
(`)
T is difficult to justify in general. Actually, it is of

greater importance to be rather pessimistic by choosing a value that is not too large. Recall

that choosing β
(`)
T rather small almost corresponds to sampling from the (wider) prior which

does not “destroy” the current iteration, i. e., does not introduce a misleading bias caused by
an inaccurate surrogate. That is, we recommend to decide for rather small values, particularly
in the first iteration. We come back to this circumstance later when discussing concrete
surrogates.

Eventually, we compute an approximation µ
(`)
gsurr,T

≈ µ(`)
g , where µ

(`)
gsurr,T

denotes the distri-

bution induced by ρ
(`)
gsurr,T

. The samples

˜̊
Y

(`+1)
j ∼ µ(`)

gsurr,T
(7.37)

are computed by running the RWM algorithm in the active subspace (Alg. 5 with µdg,Y =

µ
(`)
gsurr,T

). The remaining conditional samples

˜̊
Z

(`+1)
j = (Z̃

(`)
j | Ỹ

(`)
j =

˜̊
Y

(`+1)
j ), (7.38)

which are necessary to get samples X
(`+1)
j

approx.∼ µ(`+1) from (7.9), are again generated by the
alternative procedure explained in Sec. 4.3 with

X̂ = {X̂(`)
j

approx.∼ µ(`)}j=1,...,J . (7.39)

We resume the description of the first iteration, i. e., ` = 0. Above, we fit a GPR surrogate

to the misfit values fd(X
(0)
j ) which means that

g(0)
surr = g

(0)
GPR. (7.40)

As recommended, the factor for the tempering approach (widening the posterior distribution)
is chosen to be rather small,

β
(0)
T = 5 · 10−3, (7.41)

since the misfit values are quite different and thus the posterior is rather concentrated.

After the samples X
(1)
j

approx.∼ µ(1) are computed, we proceed to the second iteration ` = 1

and approximate C(1). The corresponding first eight eigenvalues from Λ̃(1) and first four
eigenvectors in W̃ (1) are depicted in Fig. 7.8. We observe that, first, the magnitude of the
estimated eigenvalues drop about five orders of magnitude compared to the first iteration,
which indicates that they are computed in regions with much smaller misfit values. Secondly,
the variability in the estimates (light blue band) becomes quite small, which we assess as a
more “proper” behavior.
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Figure 7.8: Estimations of the first eight eigenvalues (a) and the first four eigenvectors (b)
of C(1) in the second iteration (` = 1).

Let us have a look again at Fig. 7.7. The right part plots the same misfit values (orange
dots) from the first iteration as on the left part, and also plots the same samples that are
manually added (red dots on the left, green dots on the right). The only difference is that
the axis on the right is defined by the first active direction computed in the second iteration

(` = 1), i. e., w̃
(1)>
1 x. Although the deviation of w̃

(1)
1 from w̃

(0)
1 is not substantial, we see that

the green dots much better follow a one-dimensional shape which is exactly what we intend
to occur by computing a second active subspace built with samples from regions with higher
posterior probability.

The surrogate of g(1) for the second iteration on the first active axis w̃
(1)>
1 x and the

corresponding misfit values fd(X
(1)
j ) are plotted in Fig. 7.9. We decide for a polynomial

surrogate of fourth order, i. e.,

g(1)
surr = g

(1)
poly. (7.42)

The coefficient of determination in this case is r2
`=1 = 0.7071. Note that, in contrast to the

sufficient summary plot of the first iteration (left part of Fig. 7.7), the y axis in Fig. 7.9 is
linear (instead of logarithmic) and the misfit values are much smaller, on average. Although
there are quite some outliers that deviate from the surrogate in the interval, say, [0.2, 0.35],
they do not lie in the region of highest posterior probability which is, say, [0.4, 0.5].

Anyway, as before we apply tempering to reduce the impact of the inaccurate surrogate in

sampling from µ
(1)
gsurr,T

= µ
(1)
gpoly,T

with a factor

β
(1)
T = 1 · 10−2. (7.43)

As a final computational step in this demonstration, we compute another set of estimated

eigenvalues and eigenvectors of C(2) after we generated samples X
(2)
j

approx.∼ µ(2) following the
instructions above.

Let us have a look at the evolution of subspaces spanned by the columns of eigenvector
matrices W̃ (`), ` = 0, 1, 2. In particular, we can ask how large we would have needed to

choose, for instance, the dimension k(0) for W̃
(0)
1 in the first iteration in order to span the
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(1)
j ) (orange dots) and a polynomial surrogate of fourth order

for g(1) (blue solid line). The corresponding coefficient of determination is r2
`=1 = 0.7071.

same (or a similar) subspace as we do for a particular k(1) and W̃
(1)
1 . If this dimension is large

(for a certain k(1)), we know that the subspaces changed substantially. Of course, the same
argumentation holds for the transition from iteration ` = 1→ ` = 2.

The results are illustrated in Fig. 7.10. On the left, dimension k(0) varies on the x axis and

the y axis plots the corresponding maximum principal angle [33] (in degree) between W̃
(0)
1 ∈

Rn×k(0)
and W̃

(1)
1 ∈ Rn×k(1)

for fixed k(1) = 1, 2, 3, 4. The right subplot shows the same
quantities for iterations ` = 1, 2. We observe that the subspaces change more from iteration ` =
0→ ` = 1 than from ` = 1→ ` = 2 which might be caused by the substantial difference of the
“bad” prior µ0 = µ(0) and the approximation of µ(1).

Finally, we additionally show the benefit of the iterative algorithm on another illustration.
Of course, the deviation of the iterative approximations for posteriors µ(`) from the true pos-
terior µd (quantified with a suitable measure as, e. g., the Hellinger distance (see Def. A.2.8)
or the KL divergence (see Def. A.2.10)) is difficult to estimate in practice. Nevertheless, to
derive a statement on the quality of the posterior approximations, we compute corresponding

push-forward distributions as in Ch. 6. That is, we choose 1, 000 samples X
(`)
j

approx.∼ µ(`)

for each ` = 0, 1, 2 and evaluate G(X
(`)
j ) for each sample to approximate the push-forward

measure

µ(`)(G−1(·)) : B(Rnd)→ [0, 1]. (7.44)

The results are provided in Fig. 7.11. The x axes again plot the time t in weeks and the
y axes show the cumulative number of Ebola cases C(t) on a logarithmic scale. Measured data
(see also Fig. 7.4) is depicted by a dotted blue line; the mean and median of the push-forward
approximations are drawn as dashed green and, respectively, solid orange line. The light orange
area displays the intervals between the (empirical) 0.025- and 0.975-quantile denoted by q0.025

and q0.975, respectively, i. e., the intervals contain 95% of the computed outputs G(X
(`)
j ). For

the computation of (empirical) quantiles, the corresponding (empirical) cumulative distribution
function (CDF) is linearly interpolated. Note that the top subplot shows the mentioned
quantities for the push-forward prior µ0 = µ(0).

We observe that the “forward uncertainty,” depicted by the light orange quantile intervals,
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Figure 7.10: Both subplots display the distance of two successive subspaces spanned by the

columns of W̃
(`)
1 ∈ Rn×k(`)

and W̃
(`+1)
1 ∈ Rn×k(`+1)

for ` = 0 (left) and ` = 1 (right). The
x axis plots the dimension k(`) and the y axis shows, for fixed k(`+1) = 1, 2, 3, 4, the distance
which is measured by the maximum principal angle [33].

gradually reduces in each iteration. Also, the mean and median become reasonably compatible
with the measured data.

7.5 Conclusions

Sec. 7.1 includes a motivational example demonstrating that it might be useful to consider
an iterative approach for the construction of active subspaces in a Bayesian inverse problem.
The computational experiment involving a model for the 2014 Ebola outbreak in West Africa
(Sec. 7.4) shows that the two goals from above (Goal 1 and 2) are achieved in this case.

Indeed, we see that the first active direction changes from iteration ` = 0 → ` = 1 such
that it is more aligned to the behavior of the misfit function fd in regions with higher pos-
terior probability (Goal 1). Additionally, we confirm that subspaces containing more than
one active direction can also vary substantially, especially regarding the first two iterations
(see Fig. 7.10), which leads to the assumption that subspaces spanned by a certain number of
columns from (iterated) eigenvector matrices W (1) or W (2) serve as a better starting point for
further inference procedures (Goal 2) that intend to include more than, say, 2 or 3 directions.

Another supporting argument, which is partially included in the achievement of Goal 1, lies
in the fact that the approach is robust w.r.t. “bad” prior distributions. Often, especially newly
developed models have neither experience nor evidence on suitable values for involved model
parameters which leads to the prior having a rather large support in which high posterior
regions might occupy a relatively small part. We expect that our iterative scheme needs only
one or a maximum of two iterations to detect regions containing more suitable parameter
values (as is demonstrated in Sec. 7.4).

Although we do regard these outcomes as a first validation of the discussed iterative ap-
proach, further research is necessary to make it more “robust” in our opinion. For example,

it is not clear so far how much the choice of the tempering factor β
(`)
T from Sec. 7.4, which
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the intervals between the (empirical) 0.025- and 0.975-quantile, i. e., it contains 95% of the

computed outputs G(X
(`)
j ), j = 1, . . . , 103.
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aims to reduce the impact of an inaccurate surrogate while still exploiting information from it,
influences the approximations of subspaces. Also, it would be interesting to see statistics on
the maximum principal angles between subspaces (Fig. 7.10) as, e. g., their variability w.r.t.
the random estimations of C(`).





Appendix A
Common results and definitions

A.1 General

Definition A.1.1. (Big Ω notation) For two compatible functions f and g, we define that

f ∈ Ω(g) :⇐⇒ g ∈ O(f). (A.1)

Lemma A.1.2 (Woodbury matrix identity). Let A ∈ Rn×n, U ∈ Rn×k, C ∈ Rk×k, and
V ∈ Rk×n. Assume that A and C are invertible. Then, it holds that

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)
−1
V A−1. (A.2)

Theorem A.1.3 (Poincaré inequality for H1). Assume that D ⊂ Rn is a bounded domain.
Then, there exists a constant CP > 0, depending only on D, such that for each f ∈ H1(D), it
holds that

‖f − f̄‖L2(D) ≤ CP‖∇f‖L2(D), (A.3)

where f̄ :=
∫
D f(x) dx denotes the mean of f on D. The constant CP is called the Poincaré

constant (of D).
If, in addition, D is convex, then CP = d/π, where d > 0 is the diameter of D [21].

A.2 Stochastics

Definition A.2.1 ((Cross-)Covariance matrix). The cross-covariance matrix of two random
vectors X1 and X2 is defined as

Cov(X1,X2) := E[(X1 −E[X1])(X2 −E[X2])>]. (A.4)

Similarly, we define the covariance matrix of a random vector X as

Cov(X) := Cov(X,X). (A.5)

Definition A.2.2 (Auto-correlation matrix). The auto-correlation matrix of a random vec-
tor X is defined as

Cor(X) := E[XX>]. (A.6)

Note that Cov(X) = Cor(X)−E[X]E[X]>.
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Definition A.2.3 ((Sample) Pearson correlation coefficient). a) The Pearson correlation co-
efficient rX,Y of two scalar random variables X and Y is defined as

rX,Y :=
Cov(X,Y )

σXσY
, (A.7)

where σX and σY denote standard deviations of X and Y , respectively.

b) The sample Pearson correlation coefficient rxy for two given associated vectors x =
(x1, . . . , xq)

> ∈ Rq, q ∈ N, and y = (y1, . . . , yq)
> ∈ Rq is defined as

rxy = rxy(x,y) :=
‖x− y‖22

‖x− x̄‖2‖y − ȳ‖2
, (A.8)

where x̄ = x̄ · (1, . . . , 1)> ∈ Rq and ȳ = ȳ · (1, . . . , 1)> ∈ Rq with sample means x̄ of x
and ȳ of y.

Definition A.2.4 (Coefficient of determination, r2 score [81, 102]). Let y = (y1, . . . , yq)
> ∈

Rq, q ∈ N, denote the vector of observed data with sample mean ȳ and f = (f1, . . . , fq)
> ∈ Rq

associated predicted values. The coefficient of determination, denoted by r2 (thus also called
r2 score), is defined as

r2 = r2(y,f) := 1− ‖f − ȳ‖
2
2

‖y − ȳ‖22
, (A.9)

where ȳ := ȳ · (1, . . . , 1)> ∈ Rq.
It quantifies the proportion of variance in a dependent variable that is explained by in-

dependent variables. Normally, r2 ∈ [0, 1]; in regression contexts, r2 = 0 indicates that the
sample mean of observed data ȳ is a better fit than the predicted values, whereas r2 = 1
means that the predictions perfectly fit the data. In the context of simple linear regression,
(i. e., fitting data by a linear function in one variable by using ordinary least square estimators)
we have that

r2 = r2
xy

with x = f .

Lemma A.2.5 (Completing the squares in the multivariate case). Let µ1,µ2 ∈ Rn and Σ1,Σ2 ∈
Rn×n be symmetric matrices such that M := Σ1 + Σ2 is invertible. Then, we can write a sum
of two corresponding quadratic forms as a sum of a single quadratic form and a constant term,
i. e., for variable x ∈ Rn we have

(x− µ1)>Σ1(x− µ1) + (x− µ2)>Σ2(x− µ2)

=

(x−M−1v)>M(x−M−1v) +R,

(A.10)

where
v := Σ1µ1 + Σ2µ2 and R := −v>M−1v + µ>1 Σ1µ1 + µ>2 Σ2µ2. (A.11)

Proof. First, note that for any vectors x,v ∈ Rn and a symmetric invertible matrix M ∈ Rn×n,
it holds that

(x−M−1v)>M(x−M−1v) = x>Mx− 2v>M−1Mx+ v>M−1MM−1v

= x>Mx− 2v>x+ v>M−1v.
(A.12)



A.2 Stochastics 139

Expanding the left hand side of (A.10) gives

(x− µ1)>Σ1(x− µ1) + (x− µ2)>Σ2(x− µ2) =

= x>(Σ1 + Σ2)x− 2x>(Σ1µ1 + Σ2µ2) + µ>1 Σ1µ1 + µ>2 Σ2µ2.
(A.13)

Now, use (A.12) with the definitions in (A.11) to get the result (A.10). �

Theorem A.2.6 (Conditional distribution for jointly Gaussian random variables [149]). Let
X = (X1,X2) ∈ Rn be a random vector with X1 ∈ Rq and X2 ∈ Rn−q for q ∈ {1, . . . , n− 1}.
Assume that X ∼ N (µ,Σ) with

µ = (µ1,µ2) and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
(A.14)

such that the dimensions of both subcomponents correspond to X1 and X2. Then, for x2 ∈
Rn−q,

X1 |X2 = x2 ∼ N
(
µ̄, Σ̄

)
(A.15)

with
µ̄ = µ1 + Σ12Σ22

−1(x2 − µ2) and Σ̄ = Σ11 − Σ12Σ22
−1Σ21. (A.16)

Remark. (1) The expression for Σ̄ is called the Schur complement of Σ22 in Σ. (2) Note
that Σ̄ does not depend on the condition variable X2 = x2 which is typical for conditional
Gaussian distributions.

Theorem A.2.7 (Fernique’s theorem). If µ is a Gaussian measure on a Banach space X ,
then there exists α > 0 such that ∫

X
exp(α‖x‖2X )µ(dx) <∞. (A.17)

Definition A.2.8 (Hellinger distance). Let P and Q be two probability measures that are
absolutely continuous w.r.t. a σ-finite reference measure λ. Then, the Hellinger distance of P
and Q is defined as

dHell(P,Q)2 :=
1

2

∫ (√
dP

dλ
−
√

dQ

dλ

)2

dλ, (A.18)

where dP/dλ and dQ/dλ denote Radon-Nikodym derivatives of P and Q, respectively.

Definition A.2.9 (Total variation distance of probability measures). The total variation dis-
tance of two probability measures P and Q, defined on the same σ-algebra A, is defined as

dTV (P,Q) := ‖P−Q‖TV := sup
A∈A
|P(A)−Q(A)|. (A.19)

Definition A.2.10 (Kullback–Leibler divergence). Let P and Q two probability measures
such that P is absolutely continuous w.r.t. Q. The Kullback–Leibler divergence of Q from P
is defined as

dKL(P ‖ Q) :=

∫
X

log

(
dP

dQ

)
dP, (A.20)

where dP/dQ is the Radon–Nikodym derivative of P w.r.t. Q.
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Moreover, if λ is a measure on X dominating P and Q, such that densities p := dP/dλ
and q := dQ/dλ exist, then

dKL(P ‖ Q) =

∫
X
p log

(
p

q

)
dλ. (A.21)

Theorem A.2.11 (Strong law of large numbers). Let (Xj)j∈N be an infinite sequence of i.i.d.
random variables with E[X1] = E[X2] = . . . = m ∈ Rn. Then, the sample average converges
to m almost surely, i. e.,

1

N

N∑
j=1

Xj
a.s.−−−−→

N→∞
m. (A.22)

Definition A.2.12 (Markov kernel). Let (X ,B(X )) and (Y,B(Y)) be two measurable topo-
logical spaces (equipped with their Borel σ-algebra). A map K : X × B(Y)→ [0, 1] is called a
Markov kernel if

1. K(x, ·) is a probability measure on (Y,B(Y)) for each x ∈ X ,

2. K(·, A) is B(X )-measurable for each A ∈ B(Y).

Definition A.2.13 (Reversible Markov chain [193, Def. 6.44]). A stationary Markov chain
(Xj)j∈N0 with values in X is called reversible if the distribution of Xj |Xj−1 = x is equal to
the distribution of Xj |Xj+1 = x for every j ∈ N and x ∈ X .

Definition A.2.14 (Probabilistic Poincaré inequality). Let X be a random variable with
values in Rn. The distribution of X, denoted by PX , is said to satisfy a probabilistic Poincaré
inequality with Poincaré constant CP > 0 if

Var(f(X)) ≤ CP E[‖∇f(X)‖22] (A.23)

for each real-valued function f defined on the support of PX with

E[‖∇f(X)‖22] <∞. (A.24)

Theorem A.2.15 (Eigenvalue Bernstein inequality for subexponential matrices [101, Thm. 5.3]).
Consider a finite sequence (Mj)j=1,...,N of random, independent, and symmetric matrices from
Rn×n, all of which satisfy the subexponential moment growth condition

E[Mp
j ] � p!

2
Bp−2Σ2

j (A.25)

for each p = 2, 3, . . ., where B is a positive constant and Σ2
j are positive semi-definite matrices.

Given an integer ` ≤ n, set

µ` = λ`

 N∑
j=1

E[Mj ]

 . (A.26)

Choose V+ as an orthogonal matrix of size n× (n− `+ 1) that satisfies

µ` = λmax

 N∑
j=1

V >+ E[Mj ]V+

 (A.27)
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and define

σ2
` := λmax

 N∑
j=1

V >+ Σ2
jV+

 . (A.28)

Then, for any t ≥ 0,

P

λ`
 N∑
j=1

Mj

 ≥ µ` + t

 ≤ {(n− `+ 1) exp(−t2/(4σ2
` )) if t ≤ σ2

` /B,

(n− `+ 1) exp(−t/(4B)) if t ≥ σ2
` /B.

(A.29)





Appendix B
Invariance of Poincaré constants for
multivariate normal distributions

Adopting the setup of Ch. 3, we show that the Poincaré constant of a multivariate normal
distribution PX = N (µ,Σ) for a mean vector µ ∈ Rn and a covariance matrix Σ ∈ Rn×n is
the same for PZ|Y (·|y), y ∈ Rk, in general.

We already know that the Poincaré constant of PX is λmax(Σ) by [47] and the computation
in (3.52). The random variable X, orthogonally transformed by the eigenvector matrix W
from (3.8), is distributed according to

W>X ∼ N
(
W>µ,W>ΣW

)
. (B.1)

Taking active and inactive variables and also the split of W from (3.10) into account, we
get that (

Y
Z

)
∼ N

((
W>1 µ
W>2 µ

)
,

(
W>1 ΣW1 W>1 ΣW2

W>2 ΣW1 W>2 ΣW2

))
. (B.2)

Thm. A.2.6 gives that Z |Y = y ∼ N
(
µZ|Y ,ΣZ|Y

)
with

µZ|Y = W>2 µ+W>2 ΣW1(W>1 ΣW1)
−1

(y −W>1 µ) (B.3)

and
ΣZ|Y = W>2 ΣW2 −W>2 ΣW1(W>1 ΣW1)

−1
W>1 ΣW2. (B.4)

Note that ΣZ|Y is the Schur complement of the block W>2 ΣW2 in W>ΣW which does not
depend on the condition variable y.

The interlacing property of Schur complements of (either positive or negative) semi-definite
Hermitian matrices [244, Thm. 5] implies that

λmin(W>ΣW ) ≤ λmin(ΣZ|Y ) ≤ λmax(ΣZ|Y ) ≤ λmax(W>ΣW ). (B.5)

Since W> = W−1, W>ΣW is similar to Σ implying that the eigenvalues of W>ΣW are the
same as the eigenvalues of Σ. Therefore,

λmin(Σ) ≤ λmin(ΣZ|Y ) ≤ λmax(ΣZ|Y ) ≤ λmax(Σ). (B.6)

Hence, we might get a smaller Poincaré constant for PZ|Y than λmax(Σ) for a specific or-
thogonal transformation W , but in general the Poincaré constant for PZ|Y is equal to λmax(Σ).
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Appendix C
Model equations for LuKARS model

This appendix is taken from [258, Appendix A].
In LuKARS, the following balance equation is solved for each individual hydrotope:

dei
dt

=

{
Si − Qsec,i+Qis,i+Qhyd,i

ai
if ei > 0,

0 if ei = 0.
(C.1)

ei is the water level [L] in hydrotope i, t [T] indicates the time and Si is a hydrotope-specific
sink and source term in form of a mass balance of precipitation, snow melt, evapotranspiration,
and interception. We used the temperature index approach from [187] to calculate snow melt.
Interception was estimated based on indications for beech forests in [83]. Then, evapotranspi-
ration was calculated based on the method of [260]. Qsec,i [L3T−1] summarizes all flow terms
that do not contribute to the discharge at an investigated karst spring, i. e., secondary spring
discharge and overland flow. Qis,i [L3T−1] represents the discharge from hydrotope i to a linear
baseflow storage, considered as groundwater recharge. Qhyd,i [L3T−1] is a hydrotope-specific
quickflow component through preferential flow paths (e. g., subsurface conduits) with a direct
connection to the spring outlet. ai [L2] is the space covered by a respective hydrotope.

The following balance equation is solved for the baseflow storage:

deb

dt
=

{∑
iQis,i−Qb

A if eb > 0,

0 if eb = 0.
(C.2)

eb is the water level [L] in the baseflow storage and
∑

iQis,i [L3T−1] integrates the flows from
all hydrotopes to the baseflow storage. Qb [L3T−1] indicates water flow from the storage B
to the spring and simulates the matrix contribution from the saturated zone to the spring
discharge. The variable A [L2] is the space of the entire recharge area. The discretized forms
of (C.1) and (C.2), as shown in (C.3) and (C.4), are solved for each time step n:

ei,n+1 = max

[
0, ei,n +

(
Si,n −

Qsec,i,n +Qis,i,n +Qhyd,i,n

ai

)
·∆t

]
, (C.3)

eb,n+1 = max

[
0, eb,n +

(∑
i(Qis,i,n)−Qb,n

A

)
·∆t

]
. (C.4)

The discharge terms are computed as:
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146 C Model equations for LuKARS model

Qhyd,i,n = ε

[
max(0, ei,n − emin,i)

emax,i − emin,i

]αi
· khyd,i

lhyd,i
· ai, (C.5)

Qis,i,n = kis,i · ei,n · ai, (C.6)

Qsec,i,n = ksec,i ·max(0, ei,n − esec,i) · ai, (C.7)

Qb,n = kb · eb,n ·A. (C.8)

emax,i [L] and emin,i [L] are the upper and lower storage thresholds of hydrotope i. The
exponent αi controls the magnitude of the quickflow component from each hydrotope. esec,i [L]
represents a hydrotope-specific activation level for Qsec,i. kis,i [LT−1] and ksec,i [LT−1] are the
specific discharge parameters for Qis,i [L3T−1] and Qsec,i [L3T−1]. khyd,i [L2T−1] indicates the
specific discharge parameter for the quickflow and lhyd,i [L] is the mean distance of hydrotope i
to the adjacent spring, allowing to account for the relative location and distribution of hydro-
tope i in a specific recharge area. The ratio between khyd,i and lhyd,i is the hydrotope discharge
coefficient. Then, the dimensionless connectivity/activation indicator ε is defined as:

εn+1 = 0 if

{
εn = 0 & ei,n+1 < emax,i or

εn = 1 & ei,n+1 ≤ emin,i,
(C.9)

εn+1 = 1 if

{
εn = 0 & ei,n+1 ≥ emax,i or

εn = 1 & ei,n+1 > emin,i.
(C.10)



Appendix D
Pending proofs

D.1 Proof of Prop. 7.3.1

Proof of Prop. 7.3.1. Without loss of generality, assume that m0 = 0 implying that d = 0 and

fd(x) =
1

2γ2
‖d−Ax‖22 =

1

2γ2
‖Ax‖22 =

1

2γ2
x>A>Ax. (D.1)

If m0 6= 0, regard the translated variable X̂ := X−m0 with Ĝ(x̂) := G(x̂+m0), d̂ = Ĝ(m̂0) =
d for m̂0 = 0, and µ̂0 = N (0, I). Then,

f̂ d̂(x̂) =
1

2γ2
‖d̂− Ĝ(x̂)‖22 (D.2)

=
1

2γ2
‖d−Ax̂−Am0‖22 (D.3)

=
1

2γ2
‖Ax̂‖22 (D.4)

= fd(x̂). (D.5)

Of course, the translation to the posterior µ̂d̂ has to be reversed to obtain the posterior µd.
With m0 = 0 and d = 0, we have that

∇f(x) =
1

γ2
A>Ax. (D.6)

It follows that

C := C(0) =
1

γ2
A>A

(∫
xx>ρ(0)(x) dx

)
A>A

1

γ2
(D.7)

=
1

γ4
A>AIA>A =

(
1

γ2
A>A

)2

= W (0)Λ(0)W (0)>. (D.8)

Note that a singular value decomposition A = UAΣAV
>
A yields that

W (0) = VA and Λ(0) =

(
1

γ2
Σ>AΣA

)2

. (D.9)
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Let ` ∈ N0. Anticipating, we will see that W (`) = W (0)P (`) = WP (`) for a permutation
matrix P (`). The identities

W1 = W

(
I
0

)
and W2 = W

(
0
I

)
(D.10)

motivate the definition of

P
(`)
1 := P (`)

(
I
0

)
∈ Rn×k(`)

and P
(`)
2 := P (`)

(
0
I

)
∈ Rn×(n−k(`)). (D.11)

Then, for y ∈ Y(`) := W
(`)
1

>
X and z ∈ Z(`) := W

(`)
2

>
X , it holds that

f(Jy, zKW (`)) =
1

2γ2

(
y
z

)>
W (`)>A>AW (`)

(
y
z

)
(D.12)

=
1

2

(
y
z

)>
W (`)>C1/2W (`)

(
y
z

)
(D.13)

=
1

2

(
y
z

)>
P (`)>Λ1/2P (`)

(
y
z

)
(D.14)

=
1

2
y>P

(`)
1

>
Λ1/2P

(`)
1 y +

1

2
z>P

(`)
2

>
Λ1/2P

(`)
2 z (D.15)

=
1

2
y>E(`)1/2

y + r(z), (D.16)

where E(`) := P
(`)
1

>
ΛP

(`)
1 is a diagonal matrix with eigenvalues said to be selected by P

(`)
1 on

its diagonal and r is some function depending only on z. It follows that

g(`)(y) =
1

2
y>E(`)1/2

y +R (D.17)

for some R ≥ 0.
Since the prior, as a standard normal distribution, is rotationally symmetric, the prior

density on the active subspace at step ` is

ρ0,Y (y) = ρ0,Y ,W (`)(y) ∝ exp

(
−1

2
‖y‖22

)
. (D.18)

Note that it does not depend on `.
To compute the distribution of Y̊ (`+1), we continue with

ρ(`)
g (y) ∝ exp(−g(`)(y)) ρ0,Y (y) (D.19)

∝ exp

(
−1

2
y>E(`)1/2

y − 1

2
‖y‖22

)
(D.20)

= exp

(
−1

2
y>
(
I + E(`)1/2

)
y

)
(D.21)

yielding that

Y̊ (`+1) ∼ N
(

0,
(
I + E(`)1/2

)−1
)
. (D.22)
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We are ready to prove the statement above for the initial step ` = 0. Let k(0) ∈ {1, . . . , n−1}
be the dimension of the active subspace according to Alg. 7. Since P (0) = I, we get that

E(0) = P
(0)
1

>
ΛP

(0)
1 = Λ1:k(0) . (D.23)

Combining this and the fact that

Z̊(1) = (Z(0) |Y (0) = y) = Z(0) ∼ N (0, I), (D.24)

it holds that

X(1) = W (0)

(
Y̊ (1)

Z̊(1)

)
∼ N

(
0,Σ(1)

)
, (D.25)

where

Σ(1) = W (0)

((
I + Λ

1/2

1:k(0)

)−1
0

0 I

)
W (0)>. (D.26)

That is, we have that K(0) = k(0).
Now, assume that the statement above holds for some ` ∈ N0 and regard the step from `

to `+ 1. We compute

C(`) =
1

γ2
A>AΣ(`)A>A

1

γ2
(D.27)

=
1

γ2
A>AW

((
I + Λ

1/2

1:K(`)

)−1
0

0 I

)
W>A>A

1

γ2
(D.28)

= WΛ1/2

((
I + Λ

1/2

1:K(`)

)−1
0

0 I

)
Λ1/2W> (D.29)

= W

(
Λ

1/2

1:K(`)

(
I + Λ

1/2

1:K(`)

)−1
Λ

1/2

1:K(`) 0

0 ΛK(`)+1:n

)
W> (D.30)

= WP (`)P (`)>
(

Λ
1/2

1:K(`)

(
I + Λ

1/2

1:K(`)

)−1
Λ

1/2

1:K(`) 0

0 ΛK(`)+1:n

)
P (`)P (`)>W> (D.31)

=: W (`)Λ(`)W (`)>, (D.32)

where W (`) = WP (`) and

Λ(`) = P (`)>
(

Λ
1/2

1:K(`)

(
I + Λ

1/2

1:K(`)

)−1
Λ

1/2

1:K(`) 0

0 ΛK(`)+1:n

)
P (`). (D.33)

The permutation matrix P (`) is chosen such that the eigenvalues in Λ(`) are descending. We
decide for k(`) ∈ {1, . . . , n−1} as the dimension of the active subspace based on the eigenvalues

in Λ(`). Recall that E(`) = P
(`)
1

>
ΛP

(`)
1 which modifies (D.22) to

Y̊ (`+1) ∼ N
(

0,

(
I + P

(`)
1

>
Λ1/2P

(`)
1

)−1
)

(D.34)
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= N
(

0, P
(`)
1

>(
I + Λ1/2

)−1
P

(`)
1

)
. (D.35)

To get the distribution of Z̊(`+1) = (Z(`) |Y (`) = y), we need to look at the distribution of

W (`)>X(`) ∼ N
(

0,W (`)>Σ(`)W (`)
)
. (D.36)

The covariance matrix of W (`)>X(`) computes to

W (`)>Σ(`)W (`) = P (`)>W>Σ(`)WP (`) (D.37)

= P (`)>
((

I + Λ
1/2

1:K(`)

)−1
0

0 I

)
P (`) (D.38)

Note that Y (`) and Z(`) are again independent. Hence, it holds that

Z̊(`+1) = (Z(`) |Y (`) = y) = Z(`)

= W
(`)
2

>
X(`) =

(
0 I

)
W (`)>X(`)

∼ N
(

0, P
(`)
2

>
((

I + Λ
1/2

1:K(`)

)−1
0

0 I

)
P

(`)
2

)
.

(D.39)

Finally, we get that

X(`+1) = W (`)

(
Y̊ (`+1)

Z̊(`+1)

)
∼ N

(
0,Σ(`+1)

)
, (D.40)

where

Σ(`+1) = W (`)


P

(`)
1

>(
I + Λ1/2

)−1
P

(`)
1 0

0 P
(`)
2

>
((

I + Λ
1/2

1:K(`)

)−1
0

0 I

)
P

(`)
2

W (`)> (D.41)

= W (`)P (`)>
((

I + Λ
1/2

1:K(`+1)

)−1
0

0 I

)
P (`)W (`)> (D.42)

= W

((
I + Λ

1/2

1:K(`+1)

)−1
0

0 I

)
W> (D.43)

for a natural number K(`+1) with K(`) ≤ K(`+1) ≤ n. �

Remark. The step in (D.42) is crucial and important to understand. There are two different
scenarios that can occur:

1. All eigenvalues selected by P
(`)
1 were already selected before.

In this case, K(`+1) = K(`) and thus Λ1:K(`+1) = Λ1:K(`) .

2. Some eigenvalues selected by P
(`)
1 were not selected before.

Then, 4K(`,`+1) := K(`+1) − K(`) > 0 is the number of newly selected eigenvalues
and Λ1:K(`) is accordingly expanded with them to Λ1:K(`+1) . Note that4K(`,`+1) depends
on both, the permutation matrix P (`) and the dimension of the active subspace k(`).



Notation

n Dimension of a problem
N Set of natural numbers {1, 2, 3, . . .}
N0 {0} ∪N
R Set of real numbers
R≥0 Set of non-negative real numbers
I/In Identity matrix (of dimension n× n)
U (X ) Uniform distribution on a Borel set X
N (m, C) Normal distribution with mean m and covariance matrix C
G Parameter-to-QoI map
x,x Scalar-/vector-valued input parameter/variable
X,X Scalar-/vector-valued random variable
xi i-th component of vector x
xi i-th vector in a sequence of vectors
ei i-th unit vector
(xj)j∈J Sequence with index set J
xk:l Set of elements xk, xk+1, . . . , xl, k ≤ l, from a sequence (xj)j∈N
D1:k Upper left submatrix of dimension k × k of a diagonal matrix D
C(X ,R) Space of continuous functions mapping from X to R
Ck(X ,R) Space of k times continuously differentiable functions mapping

from X to R
Lp(S,F , µ) Space of Lp functions defined on a measure space (S,F , µ)
Hk(X ,R) Space of L2 functions from an open subset X ⊆ Rn to R with L2

integrable weakly derivatives up to order k
B(X ) Borel σ-algebra on a topological space X
P Probability measure
E Expectation value (w.r.t. P)
PX Probability distribution of a random variable X
ρX Probability density function of a random variable X
µ0 Prior distribution
µd Posterior distribution given data d
X ∼ µ Random variable X is distributed according to µ

X
approx.∼ µ Random variable X is approximately distributed according to µ

ran(A) Range of an operator A
ker(A) Kernel/null space of an operator A
λ`(A) `-th eigenvalue of a matrix A (for ordered eigenvalues)
1Ω Indicator function of a set Ω
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152 Notation

dom(f) Domain of a function f
supp(f) Support of a function f , i. e., the closure of the set

{x ∈ dom(f) | f(x) > 0}
X ◦ Interior of a set X
E1 := E2 Expression E1 is defined by expression E2

E1 =: E2 Expression E2 is defined by expression E1

:∝ / ∝: Definition up to a normalizing constant
A � B Matrix B −A is positive semi-definite
Jy, zKW W1y +W2z for W =

(
W1 W2

)
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[33] Å. Björck and G. H. Golub. Numerical Methods for Computing Angles Between Linear Subspaces.
Mathematics of Computation, 27(123):579–594, 1973.

[34] S. G. Bobkov. Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures. The Annals
of Probability, 27(4):1903–1921, 1999.

[35] D. Bolin. Spatial Matérn Fields Driven by Non-Gaussian Noise. Scandinavian Journal of Statistics,
41(3):557–579, 2014.

[36] D. Bolin and J. Wallin. Multivariate Type G Matérn Stochastic Partial Differential Equation Random
Fields. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2019.

[37] G. E. Box. Robustness in the Strategy of Scientific Model Building. In Robustness in Statistics, pages
201–236. Elsevier, 1979.

[38] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time Series Analysis: Forecasting and
Control. John Wiley & Sons, 2015.

[39] S. Brenner and R. Scott. The Mathematical Theory of Finite Element Methods, volume 15. Springer
Science & Business Media, 2007.

[40] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng. Handbook of Markov Chain Monte Carlo. CRC press,
2011.

[41] R. H. Buchholz. Perfect Pyramids. Bulletin of the Australian Mathematical Society, 45(3):353–368, 1992.

[42] T. Bui-Thanh, C. Burstedde, O. Ghattas, J. Martin, G. Stadler, and L. C. Wilcox. Extreme-Scale UQ for
Bayesian Inverse Problems Governed by PDEs. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, page 3. IEEE Computer Society Press, 2012.

[43] T. Bui-Thanh, O. Ghattas, and D. Higdon. Adaptive Hessian-based Nonstationary Gaussian Process
Response Surface Method for Probability Density Approximation with Application to Bayesian Solution
of Large-Scale Inverse Problems. SIAM Journal on Scientific Computing, 34(6):A2837–A2871, 2012.

[44] T. Bui-Thanh, O. Ghattas, J. Martin, and G. Stadler. A Computational Framework for Infinite-
Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic
Inversion. SIAM Journal on Scientific Computing, 35(6):A2494–A2523, 2013.



References 155

[45] J. Carrera, A. Alcolea, A. Medina, J. Hidalgo, and L. J. Slooten. Inverse Problem in Hydrogeology.
Hydrogeology Journal, 13(1):206–222, 2005.

[46] R. J. Carroll, D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu. Measurement Error in Nonlinear
Models: A Modern Perspective. Chapman and Hall/CRC, 2006.

[47] L. H. Chen. An Inequality for the Multivariate Normal Distribution. Journal of Multivariate Analysis,
12(2):306 – 315, 1982.

[48] V. Chen, M. M. Dunlop, O. Papaspiliopoulos, and A. M. Stuart. Dimension-Robust MCMC in Bayesian
Inverse Problems. arXiv preprint arXiv:1803.03344, 2018.

[49] J.-H. Choi, S. Dai, J.-H. Cha, and Y. Seol. Laboratory Formation of Noncementing Hydrates in Sandy
Sediments. Geochemistry, Geophysics, Geosystems, 15(4):1648–1656, 2014.

[50] J. A. Christen and C. Fox. Markov Chain Monte Carlo using an Approximation. Journal of Computational
and Graphical Statistics, 14(4):795–810, 2005.

[51] K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup. Multilevel Monte Carlo Methods and
Applications to Elliptic PDEs with Random Coefficients. Computing and Visualization in Science, 14(1):3–
15, 2011.

[52] P. G. Constantine. Active Subspaces, volume 2 of SIAM Spotlights. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2015. Emerging Ideas for Dimension Reduction in Parameter
Studies.

[53] P. G. Constantine and P. Diaz. Global Sensitivity Metrics from Active Subspaces. Reliability Engineering
& System Safety, 162:1–13, 2017.

[54] P. G. Constantine, E. Dow, and Q. Wang. Active Subspace Methods in Theory and Practice: Applications
to Kriging Surfaces. SIAM Journal on Scientific Computing, 36(4):A1500–A1524, 2014.

[55] P. G. Constantine, A. Eftekhari, J. Hokanson, and R. A. Ward. A Near-Stationary Subspace for Ridge
Approximation. Computer Methods in Applied Mechanics and Engineering, 326:402–421, 2017.

[56] P. G. Constantine, C. Kent, and T. Bui-Thanh. Accelerating Markov Chain Monte Carlo with Active
Subspaces. SIAM Journal on Scientific Computing, 38(5):A2779–A2805, 2016.

[57] R. D. Cook. SAVE: a Method for Dimension Reduction and Graphics in Regression. Communications in
Statistics – Theory and Methods, 29(9-10):2109–2121, 2000.

[58] R. D. Cook. Regression Graphics: Ideas for Studying Regressions through Graphics, volume 482. John
Wiley & Sons, 2009.

[59] R. D. Cook et al. Fisher Lecture: Dimension Reduction in Regression. Statistical Science, 22(1):1–26,
2007.

[60] R. D. Cook and L. Ni. Sufficient Dimension Reduction via Inverse Regression. Journal of the American
Statistical Association, 100(470):410–428, 2005.

[61] R. D. Cook and S. Weisberg. Sliced Inverse Regression for Dimension Reduction: Comment. Journal of
the American Statistical Association, 86(414):328–332, 1991.

[62] A. F. Cortesi, P. G. Constantine, T. E. Magin, and P. M. Congedo. Forward and Backward Uncertainty
Quantification with Active Subspaces: Application to Hypersonic Flows Around a Cylinder. Journal of
Computational Physics, 407:109079, 2020.

[63] S. L. Cotter, M. Dashti, J. C. Robinson, and A. M. Stuart. Bayesian Inverse Problems for Functions and
Applications to Fluid Mechanics. Inverse Problems, 25(11):115008, 2009.

[64] S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White. MCMC Methods for Functions: Modifying Old
Algorithms to Make Them Faster. Statistical Science, pages 424–446, 2013.

[65] T. Cui, G. Detommaso, and R. Scheichl. Multilevel Dimension-Independent Likelihood-Informed MCMC
for Large-Scale Inverse Problems. arXiv preprint arXiv:1910.12431, 2019.

[66] T. Cui, C. Fox, and M. O’sullivan. Bayesian Calibration of a Large-Scale Geothermal Reservoir Model by
a New Adaptive Delayed Acceptance Metropolis Hastings Algorithm. Water Resources Research, 47(10),
2011.

[67] T. Cui, C. Fox, and M. J. O’Sullivan. A Posteriori Stochastic Correction of Reduced Models in Delayed-
Acceptance MCMC, with Application to Multiphase Subsurface Inverse Problems. International Journal
for Numerical Methods in Engineering, 118(10):578–605, 2019.



156 References

[68] T. Cui, K. J. Law, and Y. M. Marzouk. Dimension-Independent Likelihood-Informed MCMC. Journal of
Computational Physics, 304:109–137, 2016.

[69] T. Cui, J. Martin, Y. M. Marzouk, A. Solonen, and A. Spantini. Likelihood-Informed Dimension Reduction
for Nonlinear Inverse Problems. Inverse Problems, 30(11):114015, 28, 2014.

[70] T. Cui, Y. Marzouk, and K. Willcox. Scalable Posterior Approximations for Large-Scale Bayesian Inverse
Problems via Likelihood-Informed Parameter and State Reduction. Journal of Computational Physics,
315:363–387, 2016.

[71] T. Cui, Y. M. Marzouk, and K. E. Willcox. Data-Driven Model Reduction for the Bayesian Solution of
Inverse Problems. International Journal for Numerical Methods in Engineering, 102(5):966–990, 2015.

[72] A. Damianou and N. Lawrence. Deep Gaussian Processes. In Artificial Intelligence and Statistics, pages
207–215, 2013.

[73] M. Dashti and A. M. Stuart. The Bayesian Approach to Inverse Problems. Handbook of Uncertainty
Quantification, pages 1–118, 2016.

[74] R. Dawe and S. Thomas. A Large Potential Methane Source–Natural Gas Hydrates. Energy Sources,
Part A, 29(3):217–229, 2007.

[75] E. A. de Souza Neto, D. Peric, and D. R. Owen. Computational Methods for Plasticity: Theory and
Applications. John Wiley & Sons, 2011.
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[143] D. Jukić and V. Denić-Jukić. Groundwater Balance Estimation in Karst by using a Conceptual Rainfall–
Runoff Model. Journal of Hydrology, 373(3-4):302–315, 2009.

[144] S. J. Julier and J. K. Uhlmann. Unscented Filtering and Nonlinear Estimation. Proceedings of the IEEE,
92(3):401–422, 2004.

[145] H. Kahn and A. W. Marshall. Methods of Reducing Sample Size in Monte Carlo Computations. Journal
of the Operations Research Society of America, 1(5):263–278, 1953.

[146] J. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems, volume 160. Springer Science
& Business Media, 2006.

[147] O. Kallenberg. Random Measures, Theory and Applications. Springer, 2017.

[148] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engi-
neering, 82(1):35–45, 1960.
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[234] S. Särkkä. Bayesian Filtering and Smoothing, volume 3. Cambridge University Press, 2013.
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