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Abstract: The ear is able to detect low-level acoustic signals by a highly specialized system including
a parametric amplifier in the cochlea. This is verified by a numerical mechanical model of the cochlea,
which reduces the three-dimensional (3D) system to a one-dimensional (1D) approach. A formerly
developed mechanical model permits the consideration of the fluid and the orthotropic basilar
membrane in a 1D fluid-structure coupled system. This model shows the characteristic frequency to
place transformation of the traveling wave in the cochlea. The additional inclusion of time and space
dependent stiffness of outer hair cells and the signal level dependent stiffness of the string enables
parametric amplification of the input signal. Due to the nonlinear outer hair cell stiffness change,
nonlinear distortions follow as a byproduct of the parametric amplification at low levels constituting
the compressive nonlinearity. More distortions are generated by the saturating displacements of the
string at high input levels, which can be distinguished from the low-level distortions by the order of
additional harmonics. Amplification factors of 15.5 dB and 24.0 dB are calculated, and a change of the
traveling-wave mapping is postulated with parametric amplification representing the healthy state
of the cochlea.
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1. Introduction

The hearing system, including the cochlea of the inner ear, has the ability to detect low level
acoustic signals in the subnanometer range to enable efficient and sensitive communication. This
extraordinary feature is induced by a highly specialized mechano-electrical system transforming
air-guided sound to vibrations along the basilar membrane (BM) surrounded by waterlike fluid. It
is accepted that traveling waves in the mammalian cochlea show a frequency to place mapping, in
the sense that the place of maximum displacement along the BM depends on the frequency of the
stapes movement. This work confirms that statement and extends it by including small axial nonlinear
stiffness changes of outer hair cells (OHC), with the effect of parametric amplification and a place shift
of maximum BM displacement during propagation of the traveling wave. The concept of parametric
traveling-wave amplification was predicted considering strings [1] and electric network circuits [2].
Furthermore, it was shown in the theory of nonlinear oscillations that two harmonic forces with circular
frequencies ω1 and ω2 will produce additional components which contain not only these circular
frequencies but combination tones with multiple n ω1 ±m ω2 and also subharmonic frequencies [3,4].

The cochlear model presented is a 1D approach of the fluid-structure coupled mechanics
formulated by a partial differential equation (PDE) in time and one-space dimension. The solution
of the PDE is executed by a finite difference scheme including a loss term in a damped wave
equation. Another nonlinear term, standing for the restoring force, which increases with the cube of
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displacements, becomes relevant for large displacements. Recently similar approaches for strings with
viscoelastic foundations [5] and formerly with hydrodynamic bearings have been presented [6,7].

2. Methods

2.1. Partial Differential Equation (Parametric Traveling-Wave Amplifier)

To prove the effect of parametric amplification (PA) of acoustic signals for increasing the
hearing sensitivity of the cochlea, we study a 1D cochlear mechanical model in the form of a partial
differential equation based on a former passive approach [8]. The reduction of dimensionality from
3D to 1D or 2D involves various limitations. One of these is the impossibility to calculate sound
wave reflections at rigid walls or walls having limited mechanical impedance values. Even more
important is the inability to simulate the 3D field generated by the superposition of propagating sound
waves in a complex fluid-filled geometry, like the cochlea, including the coupling to the elastic BM.
An alternative hypothesis of a 2D approach relies on the same assumption of a 1D model concerning
the structure (BM), namely, representing the orthotropic elastic shell (BM) as a 1D embedded elastic
beam. Therefore, boundary layers and interactions of 3D sound fields cannot be calculated properly as
well. The derivation of the PDE for the traveling-wave amplifier in the cochlea is based on a structural
cochlear model which reduces the 3D geometry to a 1D approach, representing the BM as an elastic
embedded beam [8] (Figures 1 and 2). The fluid structure coupling relies on the assumption that the
BM displacement is equal to the fluid (volume) velocity gradient in the longitudinal direction of the
cochlea. The 3D box-model of the uncoiled cochlea includes the fluid (perilymph) filled Scala vestibuli
(S.v.) and Scala tympani (S.t.). The Scala media is disregarded in a first approach. For simplification,
the bending stiffness of the resulting elastic embedded beam (Figure 2) is neglected and Equation
(1)—similar to an equation describing the transverse displacements of a string—is developed. If the
effects of the longitudinal BM coupling and the inertial forces caused by the low BM mass compared
to the fluid mass are neglected, Equation (1) obtains the pressure results. The displacement u = u(x, t)
is a function of space and time.

ρ f l
∂2u
∂t2 + Ey h3S

∂2

∂x2

[
u

b4(x)

]
= 0. (1)

Figure 1. Box model of the human cochlea (A). The upper front area (representing the oval window
attaching the Scala vestibuli (S.v.)) is excited by a sinusoidal velocity with the frequency 2 kHz and
amplitude 1 nm/s. The magnified view of the basilar membrane (BM) (B) illustrates the orthotropic
consistency of the BM with collagen containing stiff transverse fibers with Young’s modulus Ey

embedded into softer elastic tissue Ex << Ey .
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Figure 2. Elastic string representing the BM with nonlinear stiffness k(x, t), produced by outer hair
cells (OHC) in the cochlea.

Though known physical damping mechanisms such as boundary layer damping [9,10] are relevant
in the cochlea, an overall standard viscous damping term is included in PDE (2). Furthermore, a
time and space dependent Young’s modulus change ∆Ey, representing the stiffness change by OHC
along the BM, is included in (2). With the so far mentioned physical portions, an unlimited increase of
displacements would result with increasing input signal amplitude. A displacement limiting cubic
nonlinear term kcub u3, considering the stiffening of a string with increasing displacement amplitude,
is added. The cubic term assures the increasing restoring force for positive and negative displacements
of the string representing the BM. Therefore, the transversal displacements cannot grow beyond all
limits as in the unphysiological linear case.

ρ f l
∂2u
∂t2 + kd

∂u
∂t

+ [Ey + ∆Ey(x, t)] h3S
∂2

∂x2

[
u

b4(x)

]
+ kcub u3 = 0. (2)

The equations so far are noted in the time domain without the restriction of the stationarity of
input signals. Multifrequency and transient stimulations, as used in otological diagnostics, can be
utilized and associated BM displacements are calculated. Table 1 summarizes the geometric and
physical parameters of the 1D cochlear model.

Table 1. Physical parameters constituting the 1D cochlear model with parametric amplification.

Symbol Denotation Value Unit

ρ f l fluid density per unit area 1000 kg m−2

b(x) BM width 0.1–0.5 mm
u(x,t) BM displacement m
kd damping constant 4000 kg m−2 s−1

kcub cubic nonlinearity constant −106 kg m−4 s−2

Ey transverse Young’s modulus 100 GPa
∆Ey(x, t) variable Young’s modulus Pa
h BM thickness 10 µm
S cross section area of canal 1 mm2

L BM length 32 mm

Equation (2) is solved for the BM from 0 mm to L = 32 mm. The width of the BM increases
linearly from b0 = 0.1 mm at the base of the cochlea to bL = 0.5 mm at the helicotrema. If a constant
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value b(0) = 0.1 mm is assumed, Equation (1) reduces to the standard wave equation with constant
coefficients describing the propagation of displacements with the velocity

vel =

√
Ey · h3 · S

ρ f · b4
0

= 31.62 ms−1.

2.2. Finite Difference Scheme (Damped Wave Equation)

Equation (2) is solved by applying an explicit finite difference scheme (3) according to those
presented in [11].

un+1
i = c1 (2un

i − un−1
i ) + c2 un−1

i +
vel2

c3∆x2 ·
(

un
i+1

(b/b0)
4
i+1

−
2un

i

(b/b0)
4
i

+
un

i−1

(b/b0)
4
i−1

)
+ kcub (un

j )
3. (3)

The (b/b0)
4 terms are time independent but space variable-normed BM width factors. The

normed damping constant of dimension s−1 is k′d = kd ·m2 kg−1. Further abbreviations are

c1 =
1

∆t2

1
∆t2 +

k′d
2 ∆t

, c2 =

k′d
2 ∆t

1
∆t2 +

k′d
2 ∆t

, c3 =
1

∆t2 +
k′d

2 ∆t
,

with i, n denoting space and time indices, respectively. The resolution in space is
∆x = 32 mm/200 = 0.16 mm; and in time ∆t = 1µs. All results are evaluated 100 ms after
onset, according to 105 time steps. The average calculation time is 30 minutes using a Z800 Workstation
(Hewlett Packard, Palo Alto, CA, USA) equipped with 160 GByte RAM.

2.3. Nonlinear Stiffness Function of Outer Hair Cells

We assume that nonlinear stiffness changes of OHC cause time dependent variations of the
Young’s modulus ∆Ey(x, t) and the generation of nonlinear distortions and parametric amplification
in the cochlea. For a derivation, we follow the assumption that the nonlinear BM motion is due to
the nonlinear growth function of the OHC membrane potential [12]. The outer hair cell membrane
potential Vmp is fitted by the second-order Boltzmann function

Vmp = Vh +
Vpp

1.0 + e−z1(xst−x1)/kT · [1.0 + e−z2(xst−x2)/kT ]
. (4)

Vpp is the peak-to-peak value and Vh is the membrane potential for maximum hyperpolarization.
The constants z1 and z2, and displacements x1 and x2, are determined by the Levenberg–Marquardt
algorithm, respectively, and kT is the product of the Boltzmann-constant k and the temperature T
(Table 2). In the next step, the somatic axial stiffness of an OHC as a function of the membrane potential
is derived. This is impossible for the in vivo case, and therefore experimental results of isolated OHCs
are used [13,14]. Applying again the Levenberg–Marquardt algorithm to fit experimental data of OHC
stiffness measurements, a stiffness function is obtained

k(xst) = k0 (1 + a ebVmp + c edVmp), (5)

with constants a, b, c, d, and k0—the constant OHC stiffness is developed (Table 2). The nonlinear
Equations (4) and (5) describe the axial somatic stiffness change in dependence of the OHC stereocilia
bundle displacements k(x, t) = f (xst(t)). The stiffness k(xst) multiplied by a factor fact is inserted
into Equation (3) and corresponds to a velocity change and Young’s modulus change ∆Ey(x, t) in
Equation (2). The factor fact was optimised by numerical experiments before an instability (unlimited
growth) of displacements occured. The equivalent acoustic velocity change according to the nonlinear
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stiffness of OHC is 1.7 µm s−1, and therefore, a small amount 0.53× 10−9 of the undisturbed velocity
which is vel = 31.62 m s−1.

Table 2. Electrical and mechanical parameters constituting the parametric amplification by outer
hair cells.

Symbol Denotation Value Unit

Vmp OHC membrane potential Vh → − 61 mV
Vh OHC membrane potential for maximum hyperpolarization − 65.9 mV
z1, z2 force factors 60 fN, 120 fN
x1, x2 displacements 56.8 nm, 27.3 nm
kT Boltzmann-constant× temperature (energy) 4.11× 10−21 J
xst stereocilia displacement m
k0 OHC stiffness 0.001 Nm−1

a, b constants 0.001415,−0.0419
c, d constants 2.665,−0.003801
fact factor 8.2× 10−10

3. Results

The input signal is the time-dependent displacement u(0, t) = û · sin(ωt) at x = 0 mm, with
û = 1 nm representing the displacement amplitude of the oval window at the base of the cochlea.
The solution of Equation (2) is evaluated by the finite-difference scheme (3). We study six cases and
present four of them, which are collected in Table 3 using a switched sinusoidal signal of frequency
2 kHz and two input amplitudes 1 nm and 100 nm, respectively.

Table 3. Passive and active cases with 40 dB input level difference.

Input Amplitude Linear (Passive) Cubic Distortion (Passive) OHC Nonlinear Stiffness (Active)

1 nm Figure 2 space - Figure 3 space
Figure 4 spectrum basal - Figure 5 spectrum medial

100 nm - Figure 6 spectrum basal Figure 7 spectrum medial
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Figure 3. Displacements along the BM with stimulation frequency 2000 Hz at the base (passive),
stimulation amplitude û = 1 nm.
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Initially the linear passive case with the constant Young’s modulus Ey is presented in space
(Figure 3) after 100 ms and frequency (Figure 5) at a basal location (6.4 mm) or n = 40 with û = 1 nm
stimulating displacement amplitude. The maximum displacement is located basally, and the output
frequency remains the input frequency because of the linearity of the system. In case of parametric
amplification by the time and space dependent Young’s modulus, the amplitude of BM displacement
increases to 18.8 nm and the place of maximum displacement shifts to the center of the BM length at
16 mm or n = 100 (Figure 4). This increase corresponds to a BM displacement amplification of 15.53 dB,
evaluated by the fraction of the maximum displacement at half of the BM length with parametric
amplification to the maximum at the more basal place 6.4 mm (n = 40) in the passive case. Figure 6
shows the corresponding frequency spectrum for the active case. The examples considered so far
would lead to an unlimited increase of displacements.
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Figure 4. Displacements with stimulation frequency 2000 Hz (parametric amplified), stimulation
amplitude û = 1 nm. Nonlinear distortions are generated by the OHC nonlinear stiffness function.
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Figure 5. Spectrum of BM displacement at 6.4 mm (n = 40) stimulation frequency 2000 Hz (passive),
stimulation amplitude û = 1 nm.
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Figure 6. Spectrum of BM displacements at 16 mm (n = 100) stimulation frequency 2000 Hz (active),
stimulation amplitude û = 1 nm.
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Figure 7. Spectrum of BM displacements at 6.4 mm (n = 40) stimulation frequency 2000 Hz (passive),
stimulation amplitude û = 100 nm. Nonlinear distortions are generated by the cubic nonlinearity of
the string.

Therefore, the cubic term in Equations (2) and (3) representing the nonlinear increase of the
restoring force with increasing displacement is included. The passive case in Figure 7 shows the
spectrum of displacements at the base (6.4 mm) of the BM with a higher stimulating amplitude of
û = 100 nm. The odd harmonics (y2 + y4 + y6...) y are the distortion components of a string, limited in
its vibration amplitude by a geometrical nonlinearity caused by an increased stiffness with increasing
displacement amplitudes. Figure 8 presents displacements of the healthy cochlea with parametric
amplification and an increase of displacements by 23.97 dB compared to the passive case. It even shows
odd harmonics, caused by the nonlinear OHC stiffness and the saturating displacements induced by
the stiffening of the nonlinear string (BM).
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Figure 8. Spectrum of BM displacements at 16 mm (n = 100) stimulation frequency 2000 Hz (active),
stimulation amplitude û = 100 nm. Nonlinear distortions are generated by the OHC stiffness functions
and the saturating cubic nonlinearity of the string.

4. Discussion and Conclusions

The BM represented as a string vibrates with the characteristics of a traveling wave, namely,
the frequency to characteristic place transformation. A main result of this work is the dependence
of this transformation by the time-varying Young’s modulus, causing parametric amplification (PA).
The numerical examples prove the effect of PA in a 1D mechanical–mathematical model of the
cochlea. Therefore, the frequency to place-map is largely dependent on the PA demonstrated by
the difference in Figures 3 and 4, which are supplied by input signals of identical amplitude and
frequency. The amplification of 15.53 dB for the low level case; 24.0 dB for the high level case; and the
place shift of maximum displacement along the BM with the same input frequency, corresponds to
experimental data from the squirrel monkey [15]. The PA is achieved by changing the axial stiffness of
OHC represented by the Young’s modulus change ∆ Ey. In contrast to former approaches of PA applied
to the cochlea [16], where the OHC contraction is in common mode with the input signal frequency and
also constant in space, the stiffness is time and space dependent according to arbitrary and variable
BM displacements. Another work includes the PA by outer hair cells, but reduces it to one location
along the BM without considering traveling waves [17]. Therefore, the inclusion of a signal-dependent
stiffness change along the space coordinate is a main advantage to former approaches. For higher
input levels, geometric nonlinearities of the cells of the organ of Corti become relevant [18] and
saturate the displacements leading to the limitation of BM displacements by geometrical nonlinearities.
For simplicity, these saturation mechanisms are represented by a cubic nonlinearity of the transversal
vibrations of a string neglecting bending stiffness and longitudinal deformations in the present work.

A comparison of the results with experimental data is merely possible fractionally. The fact of the
frequency-dependent maximum BM displacements is fulfilled by displacements shown in Figure 3
(passive) and Figure 4 (active). They show the maximum displacements in the medial part of the
string, or BM as it was measured by von Békésy in human temporal bones [19]. The shift of BM
displacement amplitudes from the active (in vivo) case to the passive (dead) case is observable in
Figures 3 and 4. The experimental validation of this progression is given by the data of Rhode et al.
(1974). In Figure 3 of this work [15], the ratio of basilar membrane displacement/malleus displacement
is presented log-scaled (amplitude and frequency). At the frequency fRhode = 6 kHz, which should
correspond to the frequency f = 2 kHz in this work, an amplitude decrease of 20 dB is found from
the active in vivo case to the passive (1 h after death) case. This measurement was conducted at
one place and it is impossible to measure BM displacements at many places simultaneously, as it is
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possible in numerical models of the organ. Nonetheless, the experiments confirm the place shift of
the maximum BM displacement along the cochlea to the base (direction of the stapes) without the
parametric amplification of OHC (passive case). Therefore, the in vivo activity shifts the maximum BM
displacement to the apex (direction of the helicotrema), as can be seen in Figures 3 and 4 of this work.

Another comparison with experimental data could be conducted with measured otoacoustic
emissions (OAE) e.g., distortion product otoacoustic emissions (DPOAE), applying two tones with
a frequency ratio of e.g., f2/ f1 = 1.2 and different levels of primary tones at the base of the
string. However, a comparison with measured DPOAE requires a three-dimensional (3D) mechanical
mathematical model of the cochlea because the generator of the DPOAE, which is the nonlinear
stiffness of OHC, leads to high frequency mechanical waves in the surrounding fluid. These waves
interfere and are measurable with a sensor in the cochlea [20] or in the ear canal [21]. As the fluid is
not modeled as a dimensional continuum yet, it is not possible to evaluate the interfering components
and produce realistic signals to be comparable with measured OAE.

Nevertheless, it is shown that the inclusion of small stiffness changes of the BM enables a
parametric amplification of acoustic signals caused by nonlinear distortions at low levels in a 1D model
of cochlear mechanics. Though nonlinear cochlear preprocessing has been proposed before [22,23],
these physical concepts did not include the PA and therefore the level dependent BM displacements
did not show frequency-dependent shifts along the BM to be inferred from PA.

The PA causes nonlinear distortions, measurable as OAE propagating inside the cochlea which
are emitted into the ear canal. An evaluation of OAE requires a 3D model of the cochlea to be presented
in a future work. These simulations will include the 3D wave propagation in the fluid and the active
BM with nonlinear OHC functions introduced by time and space variable Young’s moduli of the solid
or BM. This approach will prove the concept of PA and will enable the calculation of OAE, which are
by-products of the cochlear amplifier, which has been evolved to increase the hearing sensitivity.
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