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The Epstein-Barr virus (EBV) is a ubiquitous pathogen that imparts a significant burden of

disease on the human population. EBV is the primary cause of infectious mononucleosis

and is etiologically linked to the development of numerous malignancies. In recent years,

evidence has also been amassed that strongly implicate EBV in the development of

several autoimmune diseases, including multiple sclerosis. Prophylactic and therapeutic

vaccination has been touted as a possible means of preventing EBV infection and

controlling EBV-associated diseases. However, despite several decades of research,

no licensed EBV vaccine is available. The majority of EBV vaccination studies over the

last two decades have focused on the major envelope protein gp350, culminating in a

phase II clinical trial that showed soluble gp350 reduced the incidence of IM, although

it was unable to protect against EBV infection. Recently, novel vaccine candidates with

increased structural complexity and antigenic content have been developed. The ability

of next generation vaccines to safeguard against B-cell and epithelial cell infection, as

well as to target infected cells during all phases of infection, is likely to decrease the

negative impact of EBV infection on the human population.
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INTRODUCTION

The Epstein-Barr virus (EBV) is an oncogenic γ-herpesvirus that is endemic in human populations
worldwide (1). The oncogenic potential of EBV was first suggested through its association with
Burkitt lymphoma (2) and by its ability to transform B cells in vitro (3, 4). It is now understood that
EBV is able to transform cells through the expression of Epstein-Barr nuclear antigens (EBNA) that
are endowed with transactivating properties and the latent membrane proteins (LMP) that provide
proliferative and survival signals (5). These proteins are expressed during non-productive (latent)
infection along with several viral microRNAs (6). EBV-infected cells are also capable of supporting
productive (lytic) infection, which also contributes to the development of malignancies (7–9) and
is characterized by the expression of more than 80 viral genes (10) and enables the production of
infectious progeny.

EBV predominantly spreads via saliva and EBV virions target epithelial cells and B cells of
the oropharynx upon entering new hosts (11). Primary EBV infection usually occurs during early
childhood and is not accompanied by any overt signs or symptoms. However, when EBV is acquired
during adolescence or adulthood, it commonly results in infectious mononucleosis (IM) (12), a
self-limiting disease whose clinical features include pharyngitis, cervical lymphadenopathy, fatigue,
and fever (13). Most individuals recover from IM within a couple of weeks, but a notable portion
of individuals experience fatigue that lasts for 2–6 months (14). Thus, IM is directly connected to
a significant reduction in quality of life and imposes a sizable financial burden on wider society.
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Additionally, the occurrence of IM has been linked to an
increased risk for the development of Hodgkin lymphoma (HL)
(15) and multiple sclerosis (MS) (16). This suggests that a
prophylactic vaccine against EBV able to prevent IM could
potentially decrease the disease burden associated with HL and
MS. The development of an EBV vaccine is further encouraged
by the association of EBV with several other malignancies of
hematopoietic or epithelial origin (17). Moreover, since EBV
causes post-transplant lymphoproliferative disease (PTLD) in
immunosuppressed hosts, it suggests that vaccination against
EBV might be useful in hematopoietic stem cell or solid organ
transplant candidates, if possible prior to transplantation (18).

IMMUNOGENICITY OF EBV THROUGHOUT
ITS LIFECYCLE

EBV infection and the ensuing lifelong persistence is a complex,
multistep process that starts with the infection of permissive cells
within the oropharynx, and culminates in the maintenance of
EBV in circulating memory B cells (19). The germinal center
model (GCM) of EBV persistence suggests that EBV utilizes
the normal pathway of B-cell differentiation to achieve this
feat. Since EBV is capable of implementing various latency
and lytic transcription programs, it suggests that EBV assumes
distinct antigenic states within infected individuals (Table 1).
Moreover, since the nature of these antigens varies, they offer
unique challenges to the adaptive immune system (Figure 1). Yet,
despite the wide variety of antigens that predominate throughout
the EBV life cycle, EBV vaccines candidates have traditionally
only focused on a limited number of EBV antigens (See the review
by Cohen (24) for a summary on these vaccine candidates. We
now consider the various antigenic states of EBV during a single
infection cycle and how vaccination may aid their recognition
and elimination (Figure 2).

EBV Virions
EBV virions are large, multilayered particles that comprise
numerous viral proteins. A single EBV virion comprises more
than 30 different capsid, tegument, and envelope proteins
(25). Of these various virion components, it is the envelope
glycoproteins that mediate the initial stages of infection in
permissive cells. Whilst EBV has been reported to infect various
cell types within its host, only details regarding B-cell and
epithelial cell infection are known. A total of five envelope
glycoproteins (viz gp350, gp42, gH, gL, and gB) are used by
incoming virions to gain access to the cytosol of epithelial
cells and B cells. EBV virions bind to CD21 (26) or CD35
(27) on B cells through the use of gp350, after which gp42,
in complex with gH and gL (28), interacts with HLA class II
molecules to trigger gB-mediated viral-host membrane fusion
within endosomes (29). In contrast, epithelial cell infection relies
on the interaction between BMRF2 and integrins (β1 family and
α5β1) (30) followed by the interaction of gH/gL with ephrin
receptor A2 (EphA2) (31, 32) and integrins (viz. αvβ5, αvβ6,
αvβ8) (33, 34) to trigger gB-mediated fusion at the plasma
membrane. Since these envelope proteins play such a crucial role

during the early phase of infection, they are excellent vaccine
targets (34–39). The ability of sera from EBV-positive individuals
to block infection augurs well for the development of a vaccine
that induces neutralizing antibodies against EBV glycoproteins
(40). However, since EBV uses a different set of glycoproteins
to infect B cells and epithelial cells, it is unclear whether EBV
vaccines would have to target multiple glycoproteins to efficiently
block EBV infection in these cell types. The isolation of a gH/gL-
specific antibody that blocks B-cell and epithelial cell infection
suggests that vaccination with gH/gL alone might be sufficient
to prevent B-cell and epithelial cells infection (39). However,
it is unclear whether vaccine-induced anti-gH/gL antibodies
would be capable of the same feat. The prospect of blocking
EBV infection with neutralizing antibodies is further complicated
when one considers that EBV-specific antibodies have even
been shown enhance epithelial cell infection (38). Moreover,
EBV is also capable of infecting T cells (41, 42) and NK cells
(43) through yet undefined mechanism. This suggests that EBV
vaccines cannot at present be rationally designed to prevent the
infection of all susceptible cell types. Lastly, it is also unknown
whether vaccination can induce sufficient levels of neutralizing
antibody within the oropharynx to prevent EBV infection. Since
the majority of animal models of EBV infection do not employ
virus challenge via the normal infection route, they are incapable
of assessing mucosal immunity (44–53).

Pre-latent Phase
Once EBV colonizes the oropharynx, lytic replication ensues, and
enables the infection of naïve B cells within underlying lymphoid
tissues (54). Within the first 48 h of infection, prior to the first
cell division, naïve B cells transiently express a subset of latent
and lytic genes and are termed pre-latent (Table 1) (55–58). Since
these cells do not express structural proteins or genes necessary
for DNA replication, they do not support productive infection
(59). However, since several antigens are expressed at such an
early time point, it renders the infected B cells vulnerable to the
cellular immune response. Indeed, recently infected B cells are
recognized to varying degrees by latent protein- (e.g., EBNA2 and
EBNA-LP) and lytic protein- (e.g., BHRF1) specific CD4+ and
CD8+ T cells (60). However, of the various epitopes displayed
by pre-latent B cells, EBNA2MHC-I-restricted epitopes are most
efficiently recognized at an early time point and this marks
EBNA2 as a promising vaccine target. Pre-latent cells do not
only display epitopes from de novo expressed antigens, but also
from proteins that are associated with incoming virions. Recently
infected B cells are well-recognized by envelope- (e.g., gp350, gH,
gB) and tegument- (e.g., BNRF1) specific CD4+ T cells (60–63).
Thus, structural proteins are not only recognized by neutralizing
antibodies, but also by T-cell responses. Therefore, vaccines that
comprise structural antigens could potentially elicit protective T-
cell responses in addition to generating neutralizing antibodies,
enabling the targeting of virions and of recently infected cells at a
very early time point after infection.

Latent Phase
The expression of lytic and latent proteins during pre-
latency is short lived and is succeeded by a series of latency
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TABLE 1 | Different EBV transcription programs and associated diseases.

Transcription

program

Expressed proteins Description or function Associated disorder

Pre-latency BZLF1, BRFL1, BMRF1, BcRF1 The expression of various latent and lytic proteins improves survival

and immune evasion of newly infected B cells.EBNA2, BHRF1, EBNA-LP

Latency III EBNA−1, −2, −3A, −3B, −3C and -LP Expression of the full complement of latent proteins serves to activate

naïve B cells and leads to their proliferation as B-cell blasts.

PTLD

LMP−1,−2A and LMP-2B

Latency II EBNA1, LMP1, LMP2A Mimics T-cell help and BCR signaling so that GC B cells are rescued

into the memory compartment.

Hodgkin lymphoma,

Nasopharyngeal carcinoma

Latency I EBNA1 The expression of EBNA1 enables the viral genome to be replicated

along with the host genome during memory B-cell homeostasis.

Burkitt lymphoma, Gastric

carcinoma

Latency 0 None The absence of EBV antigens enables immune escape and ensures

survival of long-lived memory B cells

Lytic More than 80 viral genes are expressed The production of virions promotes the continued infection of

permissive cells within the same host and enables the horizontal

transfer of virions to other individuals.

FIGURE 1 | The targeting of EBV virions and EBV-infected cells by the adaptive immune system. Humoral immunity respectively targets EBV virions and EBV-infected

cells through neutralizing antibodies (1) and antibody dependent-cellular cytotoxicity (ADCC) (2). The targeting of virions by neutralizing antibodies prevents the

infection of host cells, while the binding of antibodies to glycoproteins at the surface of lytically replicating cells enable their recognition and elimination by natural killer

(NK) cells. Vaccines geared toward stimulating humoral immunity against the major envelope glycoprotein gp350 have previously been tested in several clinical studies

(20–22). (3) EBV-infected cells that display viral antigens on major histocompatibility (MHC) molecules are recognized by cytolytic T cells, which release cytotoxic

granules (e.g., perforin and granzymes) and trigger apoptosis in infected cells. A vaccine that elicits EBNA3A-specific T cells responses has previously been

investigated in a clinical trial (23). The ability of future EBV vaccines to stimulate potent humoral and cellular immune responses are likely to provide optimal protection

against EBV infection.

transcriptional programs. The sequential implementation of
latency transcription programs drive naïve EBV-infected B cells
to proliferate (latency III), undergo a GC reaction (latency II)

and differentiate into quiescent memory B cells (latency 0)
that occasionally express EBNA1 (latency I) (54) (Figure 2).
Since healthy EBV-positive individuals recognize multiple latent

Frontiers in Oncology | www.frontiersin.org 3 February 2019 | Volume 9 | Article 104

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


van Zyl et al. Progress in EBV Vaccines

FIGURE 2 | The antigenicity of EBV during a single infection cycle. (Top panel) Incoming virions target permissive cells within the oropharynx, lytic replication ensues

and amplifies the number of virions within newly infected hosts (not shown). Virions subsequently infect naïve B cells within underlying lymphoid tissues. The presence

of numerous glycoproteins at the surface of virions renders them vulnerable to neutralizing bodies (humoral immunity). Newly infected naïve B cells, also referred to as

pre-latent, express a handful of lytic and latent antigens. Infected B cells subsequently transition through several latency stages (III→ II→ 0), gradually reducing the

number of EBV antigens that are expressed, eventually resulting in the establishment of latency 0 in quiescent memory B cells. Since no EBV antigens are expressed

during latency 0, it enables infected cells to evade immune recognition. However, EBV-infected memory B cells are maintained through normal B-cell homeostatic

mechanisms and express EBNA1 when they divide (latency I). The expression of viral antigens during pre-latency, latency I, II, and III renders the infected cells

vulnerable to EBV-specific T cells (cellular immunity). Circulating B cells that re-enter the nasopharyngeal lymphoid system differentiate into plasma cells that support

lytic replication. The expression of approximately 80 viral proteins, several of which are displayed at the surface of infected cells, exposes these cells to EBV-specific T

cells (cellular immunity), and ADCC (humoral immunity). Virions released from lytically replicating cells can initiate another cycle of infection if they are not targeted by

neutralizing antibodies (humoral immunity). (Bottom panel) The number and nature of EBV antigens fluctuates throughout a single infection cycle and these proteins

are targeted by humoral immunity and/or cellular immunity.

proteins (60, 64–67), vaccination with latent antigens might
enable the recognition of B cells that implement latency III,
II, or I. However, since no viral antigens are expressed during
latency 0, quiescent memory B cells successfully evade immune
recognition. The inability of the immune system to target these
cells suggests that vaccine-induced sterile immunity might be
very difficult to achieve against EBV. In order to prevent the
establishment of latency 0 in infected B cells, vaccine-induced
immunity would in principle have to efficiently target EBV
virions and infected cells before their transition to latency 0. This
would be especially important if EBV-infected B cells are able
to directly transition to the memory phenotype (68). However,
it is unclear whether sterile immunity against herpesviruses
is even possible (see section Vaccination Lessons From Other
Herpesviruses). Nonetheless, since latent antigens are expressed
in EBV-associated diseases and malignancies, vaccination with
latent proteins could reduce the disease burden of EBV. Indeed,
the adoptive transfer of latent protein-specific T cells has
provided a clinical benefit to a subset of patients suffering
from EBV-associated malignancies (69–72). Therefore, vaccines
that induce latent protein-specific responses might enable the
targeting of EBV-infected cells before and after transformation.

Lytic Infection
Lytically infected cells play a crucial role in the establishment
of EBV infection, its maintenance, and the horizontal transfer
of EBV between hosts (54). The production of virus during
the early phase of primary infection increases the number
of B cells that are infected, while lytic replication during
persistent infection ensures that the pool of infected B cells
is continuously replenished. Whilst epithelial cells are capable
of spontaneous virus production (73), the GCM model suggest
that EBV-infected B cells require terminal differentiation into
plasma cells in order to support lytic replication (74). EBV-
infected cells achieve the production of virions through the
coordinated expression more than 80 immediate early (IE),
early (E), and late (L) lytic genes (10). The expression of
so many antigens by lytically replicating cells makes them
subject to immune control. T cells isolated from healthy EBV-
positive individuals frequently recognize IE, E, and L antigens
(75–80). Moreover, since lytically replicating cells display viral
glycoproteins at their surface, they can be targeted by antibody-
dependent cellular cytotoxicity (ADCC) (81–84). Thus, lytically
replicating cells are subjected to the cellular and adaptive
immune system.
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FIGURE 3 | Prophylactic EBV vaccine candidates vary in their structural complexity and antigenic content. (A) An epitope peptide from EBNA3A. (B) Recombinant

gp350 expressed as a monomeric protein. (C) EBV latent antigens (red) conjugated to dendritic cell- or B-cell-specific antibodies. (D) Multimeric forms of EBV

structural proteins can be generated through the use of multimerization domains (black). (E) Self-assembling ferritin nanoparticles presenting gp350. (F) Chimeric NDV

VLPs containing lytic (green) and latent (red) EBV antigens. Several EBV antigens (viz. gp350, gH/gL, g, EBNA1, and LMP2) have been targeted using this platform.

(G) EBV VLPs comprise numerous envelope (green), tegument (blue), and capsid (gray) proteins. (H) The tegument of EBV VLPs can be modified to contain latent

antigens (red).

VACCINATION LESSONS FROM OTHER
HERPESVIRUSES

The struggle toward a licensed prophylactic vaccine is not
limited to EBV and has also been the case for the majority
of human herpesviruses. The only exception to this trend is
the alpha herpesvirus Varicella-zoster virus (VZV), which is
responsible for the development of varicella and zoster (85,
86). VZV establishes latency after primary infection, is carried
lifelong and is controlled in healthy individuals through the
coordinated activities of humoral and cellular immunity (87).
Vaccination against VZV is carried out with a live-attenuated
virus that induces immune responses comparable to wild-type
VZV infections (88). Vaccinated individuals develop humoral
and cellular immune responses that target numerous VZV
proteins (88–90). Vaccination against herpesviruses has also
been successfully carried out in animals, with Marek’s disease
virus (MDV) representing an exemplary case. MDV is a highly
oncogenic poultry pathogen that causes the development of
lymphomas (91, 92). Vaccination against MD is also carried
out with a live-attenuated virus and successfully prevents the
development of tumors (93).

Whilst vaccination against VZV and MDV successfully
prevents the manifestation of disease, they do not prevent
infection with wild-type strains (94, 95). Similarly, vaccination
against EBV might be able to reduce EBV-associated diseases
and malignancies without achieving sterile immunity (96).
Considering what is known about successful vaccination against
VZV, it is reasonable to assume that the ideal EBV vaccine should
generate immune responses that mimic those observed during
wild-type infections. However, since live-attenuated herpesvirus
vaccines persist in infected individuals (97), it is unlikely that
EBV, an oncogenic virus, would be suitable as a live-attenuated
vaccine. Considering the complexity of EBV infection, in terms
of the different cell types that are infected, the ability of EBV to
spread directly from cell-to-cell (30, 98) and the diverse number
of antigens that predominate during the EBV life cycle, EBV

vaccines have to deal with the challenging task of being efficacious
and highly safe.

PROPHYLACTIC VACCINES

The potential of vaccination to mitigate EBV-associated diseases
was eluded to within a decade of EBVs discovery (99), with so-
called membrane antigen being suggested as a potential target
(100). This was followed by three decades of research in which
gp350 was championed as the vaccine candidate of choice
(24). Since gp350-specific antibodies block B-cell infection,
gp350 was marked as a promising vaccine target. However,
when a subunit gp350 vaccine was finally tested in a phase 2
clinical trial, it failed to prevent EBV infection despite inducing
neutralizing antibodies in vaccinees (20). This was succeeded by
the development of numerous vaccine platforms that vary in
antigenic content and structural complexity (Figure 3, Table 2).

The simplest vaccine platform that has been considered
for EBV infection is an EBNA3A epitope peptide mixed with
tetanus toxin as a water-in-oil emulsion (Figure 3A) (23).
In contrast to recombinant gp350, which was developed to
elicit neutralizing antibodies, the EBNA3A epitope vaccine was
designed to induce EBV-specific T-cell responses that recognize
infected B cells displaying latency III. Vaccination with the
EBNA3A epitope peptide successfully induced the relevant
CD8+ T-cell responses in ∼90% of vaccinees, but failed to
prevent EBV infection. Although vaccination appeared to reduce
incidence of IM, the number of participants was too few for
statistical analysis.

The next group of EBV vaccine candidates is based
on antigen-antibody conjugates, or antigen-armed antibodies
(AgAbs), which specifically deliver antigenic peptides to antigen-
presenting cells (APCs) (Figure 3B) (111). αDEC-205 equipped
with EBNA1 is processed by dendritic cells and enables the
expansion of EBNA1-specific CD4+ and CD8+ T cells from
the blood of EBV-positive individuals (101). Also, humanized
mice vaccinated with αDEC-205-EBNA1 successfully developed
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TABLE 2 | Summary of prophylactic EBV vaccine candidates that have been developed.

Vaccine category EBV antigens included Results

Epitope vaccine EBNA3A (23) Vaccination induced EBNA3A-specific T-cell responses, but the vaccine did not protect

against EBV infection. Vaccinated individuals had a lower incidence of IM, but sample

sizes were to small to enable statistical analysis.

Antigen-antibody

conjugates

EBNA1 (101) Targeting of dendritic cells enabled the induction of EBNA1-specific CD4+ and CD8+ T

cells and vaccination of humanized mice generated EBNA1-specific T cells.

Several latent antigens (102, 103) Multiple Antibody-antigen conjugates were several orders of magnitude more efficient

than peptide at stimulating cytotoxic CD4+ T cells.

Monomeric gp350 (20) Vaccination induced neutralizing gp350-specific antibodies, reduced the incidence of IM

but did not protect against EBV infection.

Multimeric Tetrameric gp350 (104) Rabbits vaccinated with tetrameric gp350 had neutralizing titers 19-fold higher than

rabbits vaccinated with monomeric gp350.

Trimeric gH/gL and trimeric gB (105) Serum neutralizing titers were respectively >100-fold and 18-fold higher in rabbits

vaccinated with trimeric gH/gL and trimeric gB compared to monomeric gp350.

Nanoparticles gp350 (106) Mice and monkeys that were vaccinated with gp350-containing nanoparticles generated

potent gp350-specific neutralizing antibodies compared to animals vaccinated with

monomeric gp350.

Chimeric NDV VLPs gp350 (107) NDV-VLPs containing gp350 elicited superior neutralizing antibodies in vaccinated mice

compared to monomeric gp350.

gH/gL, gp42, LMP2, EBNA1 (108) The NDV VLP platform was utilized to incorporate various EBV latent and lytic antigens.

EBV VLPs More than three dozen structural proteins (109) EBV VLPs elicited neutralizing EBV-specific antibodies and T-cell responses in vaccinated

mice

More than three dozen structural proteins (63) EBV VLPs stimulated structural protein-specific T cells to the same degree as wtEBV.

More than three dozen structural proteins and

EBNA1 (110)

Modified EBV VLPs stimulated structural protein- and latent protein-specific T cells and

afforded increased protection in humanized mice.

EBNA1-specific IgM and T-cell responses. EBV latent antigens
have also been fused to αCD19, αCD20, αCD21, and αCD22 to
enable B-cell-mediated stimulation of EBV-specific T cells (102).
Antigenic epitopes fused to B-cell-specific antibodies are up to
∼4,000-fold more antigenic than peptide alone and enable the
stimulation of cytolytic CD4+ T cells (102, 103). The ability of
antigen-antibody conjugates to potently stimulate latent protein-
specific T cells suggests that they might induce protective T-cell
responses upon vaccination.

Owing to the weak immunogenicity of monomeric subunit
vaccines (112–115), several groups have moved toward
the development of multimeric vaccines that arrange EBV
antigens in a repetitive manner. This enables multivalent,
long-lasting, stimulatory interactions with the immune system,
and generates considerably stronger B- and T-cell responses than
monomeric proteins (116). A direct approach for increasing
the immunogenicity of individual EBV antigens is through the
use of multimerization domains (Figure 3C). One group has
successfully generated multimeric gp350 (104) and gH/gL (105)
by fusing the individual antigens to mutimerization domains
(e.g., the T4 bacteriophage foldon). They demonstrated that
rabbits vaccinated with the multimeric proteins developed
superior neutralizing antibody responses compared to their
monomeric counterparts. However, both monomeric and
multimeric gH/gL were shown to outperform all other antigens,

with multimeric gH/gL inducing serum neutralization titers
>100-fold higher than monomeric gp350.

EBV antigens have also been introduced into virus-like
particles (VLPs) (107, 108) and self-assembling nanoparticles
(106). These platforms enable monomeric antigens to be
displayed in a manner highly comparable to EBV virions,
but since they lack viral DNA they are incapable of causing
disease. One group has developed chimeric VLPs by fusing
EBV antigens to Newcastle disease virus (NDV) structural
proteins (Figure 3D) (107, 108). Chimeric NDVVLPs containing
gp350 have been shown to induce superior neutralizing
antibody responses upon vaccination in mice compared to
monomeric gp350 (107). Subsequently, the NDV VLP platform
was utilized to generate immunogenic particles that contained
multiple EBV antigens, including envelope proteins (gB, gH/gL,
gp350) and latent proteins (EBNA1 and LMP2) (108). The
potential of these particles to stimulate structural protein- and
latent protein-specific immune responses suggests they might
enable the targeting of EBV virions and EBV-infected cells in
vaccinated individuals. The gp350 antigen has also been fused
to Helicobacter pylori-bullfrog hybrid ferritin to generate highly
immunogenic self-assembling nanoparticles (Figure 3E) (106).
Nanoparticles containing gp350 induced significantly higher
neutralizing antibody titers in mice and monkeys in comparison
to monomeric gp350. The incorporation of gp350 into ferritin
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nanoparticles was elegantly shown to enhance the presentation
and recognition of the CD21-binding site on gp350. Moreover,
mice vaccinated with the gp350 nanoparticles were successfully
protected against a recombinant vaccinia virus that expressed
gp350. However, since gp350 did not play a functional role in
the infection process and vaccination success or failure was solely
based on the weight of the animals, it is difficult to relate these
findings to vaccination against EBV in humans.

Another approach to EBV vaccination is through the use
of EBV VLPs. Since EBV VLPs are structurally similar to
EBV and comprise numerous viral antigens (viz., envelope,
capsid, and tegument), they have the potential to elicit immune
responses against multiple EBV antigens. By deleting genetic
elements (109, 117, 118) or proteins (63) involved in DNA
packaging, the generated EBV VLPs contain little to no viral
DNA (Figure 3F). One group has developed a VLP-producing
packaging cell line by deleting the terminal repeats (TR), involved
in DNA packaging, and six viral genes that contribute to
transformation or production of virions (EBNA2, EBNA3-A, -B, -
C, LMP1, and BZLF1) (109). Vaccination of mice with these VLPs
induced polyvalent EBV-specific humoral and cellular immune
response, highlighting the potential of EBV VLPs to elicit broad
immune responses. Impressively, the potency of vaccine-induced
neutralizing antibodies was comparable to the anti-gp350 MAb
72A1. This finding is supported by studies that have shown UV-
inactivated EBV to induce potent neutralizing antibodies (107,
108). We have developed an alternate EBV VLP packaging cell
line by deleting BFLF1/BFRF1A and gB from the EBV genome
(9, 63). By deleting BFLF1/BFRF1A we improved the purity
of the VLPs relative to those obtained with a 1TR genome
in that they contained no detectible DNA (63), while deletion
of gB prevents VLPs from fusing with host cells and greatly
reduces their pathogenic potential (9, 119, 120). We subsequently
increased the antigenic spectrum of EBV VLPs by fusing latent
antigens to the major tegument protein BNRF1 (Figure 3G)
(110). VLPs containing latent antigen are capable of stimulating
both structural protein- and latent protein-specific T cells and
afford increased protection against EBV infection in humanized
mice. Since EBV encodes more than a dozen tegument
proteins, EBV VLPs have the potential to accommodate multiple
immunodominant latent antigens. By fine-tuning the antigenic
cargo of EBV VLPs, they might enable the induction of immune
responses that recognize viral antigens that predominate during
the early stages of the infection and in latently infected cells.

THERAPEUTIC VACCINES

Therapeutic EBV vaccines aim at boosting and sustaining
antiviral adaptive immune responses in patients with
virus-associated disorders. For several reasons, most therapeutic
vaccination approaches have focused on NPC. First, almost
all cases of the non-keratinizing subtype of nasopharyngeal
carcinoma (NPC), which represents >95% of NPC in endemic
regions, are EBV-positive and consistently express EBNA1,
LMP2, and to variable degrees LMP1 (121). Second, EBNA1
and LMP2 are major targets of the virus-specific T-cell response

in healthy virus carriers, and CD4+ and CD8+ T cells against
these antigens have been detected in tumor patients (122, 123).
Moreover, virus-specific T cells can be cultured from NPC
tissues suggesting that T-cell function is either maintained or not
irreversibly impaired in these patients (123). Third, HLA loss is
uncommon in NPC and clinical responses have been observed
after infusion of EBV-specific T-cell preparations, suggesting
that tumor growth can be controlled by the immune system
(124, 125). Based on these findings, different therapeutic vaccines
have been designed and tested in NPC patients. All of these
vaccines have been well-tolerated with minimal side effects and
no evidence of dose-limiting toxicity.

In the first therapeutic vaccination trial for NPC, 16
patients with residual disease received four cycles of autologous
monocyte-derived dendritic cells (DC) loaded with LMP2-
specific CD8+ T-cell epitope peptides (126). In more than half
of these patients, increases in LMP2-specific CD8+ T cells were
noted and these increases were sustained for 3 months before
declining. Partial clinical responses were observed in two patients
that had shown heightened virus-specific T-cell frequencies. This
study used a small number of defined CD8+ T-cell epitope
peptides selected on the basis of the patients’ HLA type. In
order to boost a wider range of T-cell specificities including
those still undefined or presented on HLA class II molecules,
autologous DC expressing truncated LMP1, and full length LMP2
protein were used (127). Partial clinical response or stable disease
was achieved in three of the 16 vaccinated patients. Based on
the widely used modified vaccinia Ankara (MVA) vector, a
therapeutic vaccine was designed that expresses a fusion protein
of full length LMP2 and the C-terminal half of EBNA1. Two
dose escalation phase IA clinical trials were conducted with this
MVA-EBNA1/LMP2 vaccine on NPC patients in Hong Kong and
the United Kingdom (128, 129). Patients who had received the
highest dose responded to EBNA1, LMP2, or both. Moreover,
increased CD8+ and CD4+ T-cell responses against LMP2 and
EBNA1 were observed in both patient cohorts in Hong Kong
and UK, demonstrating that the vaccine was immunogenic in
different ethnicities with different HLA types and EBV strain
variants. In ongoing phase IB and II trials, immunogenicity, and
clinical efficacy of the vaccine are further examined.

Despite these encouraging results, therapeutic vaccination
alone is unlikely to reduce disease recurrence in the majority of
patients. Additional studies are needed to test whether treatment
outcomes can be improved by combining therapeutic vaccination
with other forms of immunotherapy, e.g., adoptive T-cell therapy
or checkpoint inhibition. Besides, issues of optimal combination
need to be addressed for incorporating immunotherapy into
standard treatment protocols.

CONCLUSIONS AND FUTURE
PROSPECTS

The number of EBV vaccine candidates has greatly increased
over the last decade. The latest advances in vaccine technology,
coupled with our growing understanding of EBV biology and
immunology, have enabled emerging EBV vaccine candidates to
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directly address the shortcomings of a monomeric gp350 vaccine.
However, since the correlates of protection against EBV have
not been clearly defined, it is hard to reliably predict the ideal
EBV vaccine targets and whether humoral immunity or cellular
immunity or both should be engaged. Vaccines comprising
a limited set of EBV antigens would certainly be easier to
manufacture and safer compared to vaccines that contain a large
combination of EBV antigens. However, if vaccination with a
limited set of antigens is unable to preclude the establishment of
latency, vaccines might have to increase their antigenic spectrum
to include multiple structural antigens and perhaps even latent
antigens. However, since latent proteins are highly polymorphic
compared to structural proteins (130, 131), it suggests that
they are considerably more challenging to target across multiple
geographic regions. Nevertheless, since all EBV-associated
malignancies express latent antigens, it suggests that they are
worth exploring as vaccine targets. Also, different vaccine types
might end up having different aims and target populations.While
vaccines based on a one or several antigens might be sufficient
to prevent the occurrence of IM and its complications such as
multiple sclerosis without necessarily being able to confer sterile
immunity, a cocktail of EBV antigens from different EBV strains,

carrying latent and lytic proteins might be able to achieve a
higher level of protection against infection and its malignant and
non-malignant consequences. The first type of vaccine would
probably be indicated in immunocompetent western populations
at low risk of EBV-associated tumors and the second in
populations vulnerable to endemic EBV-associated malignancies
or persons awaiting organ transplantation. However, only
vaccination campaigns will be able to determine which types of
vaccines confer protection and to what degree.
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