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This paper proposes a framework for uncertainty prediction in complex fusion networks,

where signals become available sporadically. Assuming there is no information of the

sensor characteristics available, a surrogated model of the sensor uncertainty is yielded

directly from data through artificial neural networks. The strategy developed is applied

to autonomous vehicle localization through odometry sensors (speed and orientation),

so as to determine the location uncertainty in the trajectory. The results obtained allow

for fusion of autonomous vehicle location measurements, and effective correction of

the accumulated odometry error in most scenarios. The neural networks applicability

and generalization capacity are proven, evidencing the suitability of the presented

methodology for uncertainty estimation in non-linear and intractable processes.
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1. INTRODUCTION

Mobility has become a serious challenge in a society with a gradually aging population
and a perpetually increasing traffic. This situation is motivating the automotive industry and
governments to invest heavily in highly automatized vehicles toward full autonomy. Nevertheless,
the progress in autonomous vehicle integration is being hindered from an engineering perspective,
due to limits in vehicle sensing and infrastructure modernization requirements (Ma et al., 2018;
Taeihagh and Lim, 2019). Moreover, considerable advances in electronics and control theory, safety
and robust autonomous driving can only be achieved in conditions that vehicles are fully aware of
the driving scenario (Han et al., 2012; Li et al., 2014).

High quality measurements can be obtained using expensive sensors (Elfring et al., 2016), as
installed in the well-known Google Car. This vehicle includes an advanced laser range finder,
between other sensors, able to process the environment real time (Poczter and Jankovic, 2014).
Nonetheless, these advanced devices are generally associated with elevated cost, and therefore are
not feasible for serial production vehicles. An alternative solution is to compensate measurements
quality with higher redundancy by installing larger number of low cost devices based on different
technologies. As a consequence, the features perception becomes a complex problems where
heterogeneous signals need to be registered, transformed into a common level and conveniently
combined to guarantee safety (Jiang et al., 2011). This process is known as data fusion and usually
involves noisy measurements and highly non-linear transformations.

Data fusion can be executed in either centralized or decentralized architectures. Whilst the
first involves a common processor, and decentralized architectures consist of networks where each
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sensor has its own processing unit (Grime and Durrant-Whyte,
1994; Durrant-Whyte et al., 2001; Garcia-Ligero et al., 2012). On
the one hand, centralized architectures need to be re-designed
when changes in the sensing units take place, which implies
costly and time-consuming development. On the other hand,
decentralized solutions are particularly convenient in networks
where sensors can be dynamically added and removed from the
networks as a result of being sporadically available. Nevertheless,
although a plurality of measurements might become accessible
in decentralized architectures, fusion requires knowledge of the
uncertainty associated to them. Furthermore, measurements
are not used directly, but information extracted from them
hereby referred to as features, which generally involves non-
linear transformations. Consequently, the conversion of sensor
noise into feature noise is a complex task that usually involves
arduous mathematical derivations and can be intractable in
many applications.

Several attempts to uncertainty prediction for inertial
measurement units (IMU) have been presented in the literature.
These include methodologies to fuse odometric measurements
with global positioning system measurements, geographical
information systems and laser scanners, between others. Vision
systems are used in Park et al. (2012) and the disparity between
the image space and the Cartesian space is used to derive the
uncertainty mathematical model. Vision based controlled is used
by Fu et al. (2018) in a system based on an onboard camera and
an IMU. The authors use a non-singleton fuzzy logic controller
able to handle high uncertainties. The Kalman filter has been
also widely used to deal with noisy measurement and models.
The parameters estimation was performed using methods such
as random walk, Gaussian-Markov and autoregressive processes
(El-Diasty and Pagiatakis, 2008). Extended Kalman filters have
been proposed by other authors such as Bry et al. (2012) and
Fabrizi et al. (2000), where the noise assumption is taken using
Gaussian white noise.

This paper presents a solution to facilitate data fusion in
decentralized architectures. The proposed paper enhances our
previous system for feature extraction (Martinez et al., 2017),
where either the source of information, or the sensor noise is
unknown. These networks require an appropriate estimation
of the signals uncertainty so as to properly fuse them into an
“improved measurement,” rather than worsen the fusion output.
The uncertainty allows evaluating the quality of the signals
and provides a combined result of higher accuracy where the
information retained is maximized.

Despite its importance, in the literature revised sensor
noise is either assumed to be known, or fitted with simple
Gaussian distributions. Hereby, a methodology directly for
uncertainty prediction from raw data is proposed based on
Artificial Neural Networks (ANN), assuming no information
is prior available about the sensor characteristics. The
applicability of this data-driven strategy extends to highly
non-linear and even intractable feature transformation,
avoiding tedious mathematical derivations. Proof of this is
supported by its implementation for autonomous vehicle
location through odometry data, obtaining satisfactory results in
varied scenarios.

2. PROBLEM DEFINITION

Autonomous driving highly depends on the sensor
measurement, uncertainty and fusion. Nonetheless, sensor
models are not generality provided by sensormanufacturers. This
lack of data significantly increases challenges in decentralized
architectures, where new sensors can be “plugged & played”
within the ad-hoc network.

2.1. Motivation
The operational limits of the sensor technology condition
safety in autonomous driving, as a consequence of their strong
dependence on themeasurements quality (Zheng andMcDonald,
2003; Michalke et al., 2011). The GPS precision limits are a
well-known example of the noise effect in systems performance,
experienced daily by the general public through of the shelf
navigation devices (Schrader et al., 2012). This involves the fusion
of pseudo-range GPS signals of vehicles, used to minimize the
error produced by uncontrolled sources like satellite clock bias,
atmospheric delay, and acquisition noise. Nevertheless, despite
the complexity of the error origin, previous studies model noise
using Gaussian distributions (Liu et al., 2013).

The main barriers for sensor fusion in application, such
as vehicle localization, are found in the uncertainty of sensor
technology integrated in each vehicle. This inevitably affects the
uncertainty characteristics, and the different nature of the signals
to fuse, involving highly non-linear feature transformations
(Xu et al., 2014). Furthermore, incorrect uncertainty estimation
could reduce the fusion accuracy and produce a security hazard
by deteriorating the system performance. Regardless of its
importance, most research in this area has limited the error
prediction to single vehicle model-based approaches usually
using Gaussian distributions, developed either theoretically or
empirically. Therefore, more accurate uncertainty estimation
would be of great benefit for these applications, and would
solve issues that hinder the implementation of the autonomous
technology nowadays.

2.2. Problem Statement
Odometry measurement for vehicle location is subjected to
sensor noise applied to velocity d and orientation θ . This
uncertainty is extended to the features x and y coordinates,
which are calculated from the noisy signals through geometrical
transformations (Choi and Huhtala, 2016). Consequently, the
vehicle location error is accordingly described by non-linear
mathematical equations and accumulates along the path with
every sampling time. The absence of information about the
features uncertainty, x and y covariance, prevents from fusing
odometry data with additional measurements that might become
available along the trajectory. By means for this, the estimation of
the location uncertainty is of great interest to efficiently correct
the accumulated error (Zhang et al., 2013). Hereby a feature noise
estimator is obtained from data with independence of the sensor
characteristics, and complexity of the feature transformation.
This solution allows for sensor noise prediction, avoids the use of
complex mathematical formulations and facilitates sensor fusion
under any use case.
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2.3. Data-Driven Modeling
Feature transformations are often difficult to derive in
mathematical terms, and calculations that are usually time
consuming and occasionally intractable. Nevertheless, vehicle
trajectory data collection under real-life conditions is generally
possible using limited resources. These evidences support the
use of data-driven algorithms, methods that can efficiently
manage big data and yield insightful conclusions from unknown
complex processes (McAfee et al., 2012; Hou and Wang,
2013). Various algorithms can be used to derive the so-called
surrogate models without requiring actual understanding of
the relationship between inputs and outputs. These models are
compact, normally inexpensive to evaluate compared to their
homologous strictly mathematically derived. Furthermore, they
are mathematically tractable and can estimate the process with
high-fidelity at least locally to the training set (Gorissen et al.,
2010; Koziel et al., 2011). Some examples of surrogate modeling
techniques include: polynomial regressions, kernel methods,
kriging, support vector machine, Radial Basis Functions (RBF),
and Neural Networks (NN) (Jin et al., 2001; Razavi et al., 2012).
Each method has different characteristics in terms of operation,
complexity, design flexibility and fidelity capability. For instance,
support vectors perform particularly well with high dimensional
spaces when only scarce training data is available (Forrester and
Keane, 2009). Highly non-linear and complex process are better
captured using RBF, kriging, and NN, which require determining
a specific number of parameters by trial and error. From a
high level analysis, the structural limits of RBF are relaxed
with kriging, which assumes the model response has stochastic
behavior and fits it with a statistical basis. In the kriging method
the basis function variance is considered a parameter, providing
larger flexibility and resultant increase in training time.

Artificial Neural Networks allow modeling the relationship
between inputs and outputs from data. This characteristic,
applied to sensor noise, is expected to be able to find the
underlying relation between measurement and noise associated
to them. Furthermore, NN accept multiple inputs, which can
be used to determine additional features affecting the noise and
their correlation. With these precedents, NN offer an exceptional
framework for implementing and testing the suitability of models
generated from data applied to noise magnitude prognosis of
sensor measurements. Hereby, NN are selected within the above
strategies to exploit their potential for sensor noise estimation,
and explore their high level of flexibility owing to their substantial
number of defining parameters: network structure, neuron
function, number of hidden layers, and number of neurons
per layer.

2.4. Design for Surrogate Model
Development
In terms of number of hidden layers, the criterion applied
focuses on the trade-off between accuracy and generalization
capabilities. Sensor fusion algorithmswill benefit from a guidance
to assess the extent of the error covariance of new sensor
measurements. This information will allow the system to identify
the degree of information present in the new measurement

and perform the data fusion accordingly, ensuring the output
maximizes the information content. It is therefore acceptable
to obtain a guidance value of this error covariance and not
highly precise results, reason why the network structure selected
for sensor noise estimation is formed by a single hidden layer.
This simplified structure might prevent from learning accurate
noise behavior as observed in deep learning, but would also
facilitate training and avoid noise fitting when applied to noisy
sensor signals. Generalization capability is hereby prioritize
against results accuracy with the selection of the single hidden
layer structure.

The network layers, named input, hidden and output, can
be connected through either feedforward (FF) configuration or
using a feedback (FB) connection. Layers in FFNNs only receive
information from forward layers, whilst in FBNNs any neurons
can connect with each other. Consequently, signals in FBNN
are repeatedly transformed and lean toward steady state or
vibration state. By introducing feedback delays, this structure is
also able to capture the relationship between past inputs and
current output, influence that is completely ignored in the FF
configuration. In the following, both FF and FB configurations
are examined as candidates of NN structure so as to determine
the most suitable configuration with the support of the training
and test results.

Once the network structure is defined, the size of the
layers need to be determined. Input and output layers are
constrained by the input and output signals selected set,
but the hidden layer is a prior a free parameter, closely
related with the process complexity. By reason of lack of
known mathematical formulation of this particular case, this
number has to be determined by trial and error. The
optimal size criteria should consider a trade-off between
complexity, accuracy, and generalization capability of the
neural network candidates. Excessively complex networks not
only raise training time, but also increase the risk of over
fitting, which would return high accurate results over the
training set and poor generalization capacity on new data
(Hagan et al., 2014). The growing method is used in this
application in order to prevent for over fitting by establishing
an initial network with relative small size, and increasing it
gradually with special attention over both the training and
testing accuracy.

3. TRAINING DATA GENERATION AND
ANALYSIS

To encourage acceptable performance under all possible
scenarios, the amount and variability of the training data should
ideally account for any conceivable use case. The data selected
for training proceeds from six different trajectories that combine
disparate direction, length, orientation, and speed as depicted
in Figure 1.

3.1. Training Data Generation
The trajectories contain highly precise vehicle locations in
Cartesian coordinates, and yaw signals, regarded as Ground
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FIGURE 1 | Path followed in all trajectories for training.

Truth (GT). The GT signals need to be processed to generate
realistic data complying with a real case scenario. Training
data is generated assuming the vehicle velocity and orientation,
identified herewith with the symbols d and θ respectively, are
collected with sensors characterized by white noise. For the
purpose of the following investigations, the standard deviation
values 0.1 and 0.001 are respectively selected for speed and
orientation measurements. These values are based on experience
and are considered representative of general noise measure in
odometry sensors.

• Calculate d and θ GT, dGT and θGT , from xGT and yGT .
•Add white noise artificially to dGT and θGT , through aMonte

Carlo (MC) simulation with 1000 iterations. These results in d
and θ measured (M), dM and θM , and emulates sensor noisy
data acquisition.

• Use the inverse equations to calculate xM and yM from dM
and θM , which in essence is the signal to feature transformation.

• Use the 1000 MC noisy versions of the trajectories to
calculate the location error standard deviation (std) in x and y
and the location covariance (covxy).
Figure 2 illustrates the detailed process in a flow diagram
describing the steps and signals obtained from ground truth
to measured feature data. As included in the respective steps
for geometrical transformations, the signals d and θ could be
obtained along the sampling steps in a cumulative manner as
detailed in following equations (Zhang et al., 2013):

xn =

n
∑

i=1

di · sin





i
∑

j=1

θj



 (1)

FIGURE 2 | Flow diagram illustrating the ground truth data processing to

emulate feature extraction from noisy signals.

yn =

n
∑

i=1

di · cos





i
∑

j=1

θj



 (2)

where n refers to the current time step. By combining Equations
(1) and (2), the variables of interest can be obtained for every
sampling time:

θi+1 = arctan
(

(xi+1 − xi)
/(

yi+1 − yi
))

−

i
∑

j=1

θj (3)

di+1 = (xi+1 − xi)

/

sin





i+1
∑

j=1

θj



 (4)

Noise can be artificially added to the GT results of Equations
(3) and (4) by randomly generating numbers with the previously
designated standard deviation. The results are regarded as sensor
measurements and can be used to obtain the measured features
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following Equations (1) and (2), implemented as:

xi+1 = xi + di+1 · sin





i+1
∑

j=1

θj



 (5)

yi+1 = yi + di+1 · cos





i+1
∑

j=1

θj



 (6)

The ground truth original data and measured features
can be compared to determine the uncertainty over
the vehicle location at every point of the trajectories.
This is defined by the standard deviation of the feature
estimation error:

σx =

√

√

√

√

1

N

N
∑

i=1

(exi − µx) (7)

whereN corresponds to the number of MC iterations of the same
trajectory. The estimation error and the mean estimation error
can be calculated as follows:

ex = xGT − xM (8)

µx =
1

N

N
∑

i=1

exi (9)

Similarly, the equations can be applied to y coordinate to obtain
ey,µy, σy. Finally, the covariance of the errors in x and y is
obtained by:

covxy =
1

N

N
∑

i=1

(xi − µx)
(

yi − µy

)

(10)

The uncertainty is defined as σx, σy, and covxy. Mean error in
x and y bias the location measurement, but are not considered
as estimation targets in this particular study. The previous
transformation provides information of the uncertainty of the
vehicle location, when measured through noisy velocity and
orientation sensors subjected to a specific level of white noise.
This measurement allows evaluating the quality of the current
location through odometry, and therefore to which extent this
measure should contribute into a sensor fusion framework when
compared to other sources.

σx obtained for each of the trajectories is illustrated in
Figures 3, 4, by assuming the vehicle is perfectly located at the
initial point. Figure 3 represents σx growth along the entire
trajectories until the end point of the longest one, whilst
Figure 4 illustrates a zoom in the σx to better visualize the
uncertainty accumulated in shorter paths. σx always presents
and increasing trend due to the cumulative characteristics of
the error in the vehicle location. Nonetheless, this tendency
of accumulation differs between trajectories, which suggests
that the shape of the trajectory and the characteristics of

FIGURE 3 | Cumulative error standard deviation in x, σx in all training

trajectories w.r.t.total steps.

FIGURE 4 | Zoom in cumulative error standard deviation in x with shorter

duration.

the displacement affect the uncertainty growth. The curves
are therefore dissimilar between trajectories and presumably
influenced by variables such as 1x,1y, and 1yaw. Analogous
behavior is observed when analyzing σy and covxy, which agrees
with the previous assumption.

The growth of the combined uncertainty in all
directions σx, σy, and covxy is illustrated in Figures 5,
6, which is represented via ellipses that increase in area
as the error accumulates. A first visual examination
allows identifying how larger increments in a specific
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FIGURE 5 | Error ellipses in σx , σy , and covxy in trajectory 2.

FIGURE 6 | Error ellipses in σx , σy , and covxy in trajectory 5.

direction affect to the growth of the uncertainty differently,
which also allows drawing a priori hypothesis of the
variables closely related. In the following, the study

concentrates on σx, although the results and conclusions
are expected to be dimension agnostic and applicable to both
σ y and cov xy.

3.2. Training Data Analysis
As aforementioned, one of the remaining design parameters of
the NN is the number of inputs. Ideally, the input variables
should contain the maximum number influencing factors over
the target to estimate, but its scope should be constraint to
prevent from excessive training time and network complexity
and overfitting. The optimal input selection should aim to gather
maximum relevant information for the prediction and minimum
non-relevant data. Non-useful information would increase the
model complexity, and might introduce misleading data that
deteriorate the generalization capability.

Inputs can be selected using common sense in easily
interpretable applications, albeit there are alternative correlation
analysis able to evaluate numerically their level of dependence
with respect to the target (Sudheer and Ramasastri, 2002). In
addition to a prior evaluation of inputs and outputs, NNs can
be themselves used for signals selection. In simple network
structures, the importance of each signal can be identified by
looking into the magnitude of the weights that connect them
to the successive layers. A formal analysis of the signals weights
is included in Giordano et al. (2014), where a criteria for input
selection is derived mathematically and tested.

As a result of the noisy characteristics of the variables used
in this particular application, complex signal evaluation is not
considered of interest. Instead, the procedure follows inputs
selection, by consisting the combination of a correlation analysis
with the training and testing results interpretation of various
input candidates. First, the signals linear correlation is studied
calculating the Pearson correlation coefficient with respect to
the output. The high sampling rate used compared to the
input candidates’ variability, allows assuming no time lag exists
between inputs and outputs, simplifying the evaluation.

Although immediate effect of inputs over the outputs is
impracticable, the study of the signals’ variability with respect
to delayed ones suggests this assumption is acceptable (Maier
and Dandy, 1997). The output of the correlation provides useful
information to select several input candidates, which are later
tested at a second stage to conclude into the most suitable option.
The best candidate is assessed in terms of training and testing
results in an iterative process.

3.3. Inputs vs. Output Correlation
The signals available to use as inputs are: x, y, yaw, θ , d. The use
of values such as real x and y directly impairs generalization, as
the network would learn from training trajectories characterized
by specific absolute location points. Moreover, the incremental
tendency of the uncertainty suggests additive behavior happening
in every trajectory with independence from the initial and relative
vehicle location. This reasoning supports the use of signals
increments between sampling steps, rather than absolute values
with respect to a pre-defined reference system.

Another hypothesis that can be reasonably stated is the effect
of the direction of the displacement over the uncertainty growth;
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that is, whether variables increments or absolute variables
increments are suitable for the input set. This conjuncture would
be resolved when determining the effect of the inputs increments
sign on the uncertainty accumulation. It is sensible to assume
that the features uncertainty is affected by the actual magnitude
of the displacement with independence on the direction; the
uncertainty should not be affected by the reference system.
Consequently, it could be deduced that the sign omission would
avoid needless information to be fed into the NN, and therefore
would encourage the generalization capacity.

All previous hypotheses are considered to determine the
signal candidates to evaluate in the correlation analysis.
Table 1 contains the Pearson correlation coefficients between
input candidates and output in all training trajectories.
The formula used is the base line Pearson equation,
where r, cov, and σ represent respectively correlation
coefficient, covariance and variance of the designated signals
(Lee Rodgers and Nicewander, 1988).

rxy = cov(var1, var2)/σvar1σvar2 (11)

Table 1 shows high correlation between σx and the signals yaw, x,
and y. d appears to have secondary importance, although it
proves to be relevant in training trajectories 3 and 4, when
compared to 1 and 5 for instance. These differences are associated
with the mean value and mean absolute value of the speed,
observed to be higher in trajectories 3 and 4. In contrast, θ

correlation seems to be negligible.
The correlation coefficients change substantially when

analyzing variables increments. The weight of 1x and 1y
weights reduce, with respect to the original variables and 1yaw
becomes practically independent to the output. 1y shows
stronger relationship with 1σx when compared to 1x. In
contrast, 1yaw are only tangible in trajectories characterized by
substantial direction changes, as happens in trajectories 4 and 5.
1d also loses relevance when compared to the absolute variable
analysis, and θ influence is barely affected and kept negligible.
When focusing on absolute values of the increments, the
correlation results produce similar values compared to relative
increments, supporting a priori hypothesis over the uncertainty
independence with respect to the sign of the movement. A part
from the magnitude of the correlation coefficients, the sign
can be also interpreted. The broad variety of values and sign
within trajectories prevents from selecting a single preferred
combination of training signals, reason why several candidates
are selected to further pinpoint the suitability.

As a final remark, it is worth highlighting that 1y presents
larger correlation with σx than 1x, and vice versa. That
is, in trajectories with more movements in x direction, σy
grows quicker than σx and similarly, in trajectories with larger
displacement in y direction, σx grows quicker than σy. This
is observed in all trajectories with exception of trajectory
4, where both uncertainties are similar probably due to the
followed direction in repeated circles. An explanation of this
phenomenon might be found, in the relative amplitude of the
actual displacement every sampling and the error magnitude.
Whilst the error might be negligible after a large displacement,

it could be of the same order of magnitude of short movements,
causing larger distortion in the vehicle location. Consequently,
large growth of σx could be associated to low 1x instead of
being related to 1y as it was initially deduced from the results
of the analysis.

3.4. Delayed Signals Correlation
Inputs to output correlation analysis is complemented with the
signals delay study, also evaluated using the Pearson coefficient.
The aim of this test is to determine the possible relationship
between old inputs and current outputs; that is, the influence
of past changes in the vehicle movement and location on
the accumulation of the current uncertainty in the vehicle
positioning. The first correlation test of delayed signals analyses
the relationship between delayed inputs and current output. The
steps used are 0, 1, and 2 sampling times. Next, in order to draw
a holistic understanding of the signals interrelation, a second
correlation test between current input signals and the same ones
delayed 1 and 2 sampling steps is also analyzed.

The results of the first test show similar correlation between
input and outputs with independence of the delay implemented.
Nonetheless, the second test also shows strong correlation
between inputs and the respective delayed inputs. Although from
the first results it could be considered that the output depends on
past input signals, the second analysis discredits this assumption
as they could also be due to the high similarity between current
and past inputs. Consequently, no conclusive assumptions can be
derived from this correlation test.

The results from the second correlation test effectively show
that the inputs and delayed version of the inputs are practically
identical, and consequently show similar correlation with the
output. As previously states, this similarity might be due to
the small sampling step implemented with respect to the input
signals variability in time. Further investigations should be
conducted to arise conclusive answers to the previous hypothesis.
Accordingly, additional study with respect to the delay effect of
the feedback NN states is considered during training.

4. TRAINING SETS CANDIDATES

Hereby, a training set is defined as the union of a specific
combination of input signals, obtained from a selected number
of training trajectories in an enclosed array used as training data.
That is, the training set is defined by the signals used between
the candidates previously analyzed in the correlation analysis and
the trajectories fromwhich signals are extracted. The training sets
can contain data proceeding exclusively from a single trajectory
or from the combination of more than one. Furthermore, the
same trajectory can be repeated in each set in more than one
occasion by implementing different noisy version from the 1000
MC simulations, practice that intents to encourage the response
robustness to the presence of noise in the inputs.

4.1. Training Sets
The input training sets are designed in terms of number of
signals, trajectory characteristics and amount of trajectories
used, and always contain noisy data so as to simulate with
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TABLE 1 | Pearson correlation coefficients analysis of input candidate signals, signal increments, and absolute signal increments.

Signal Signal increment Signal absolute increment

Target Traj x y yaw d θ x y yaw d θ x y yaw d θ

x std/Increment x std

[0] –0.8 0.9 –0.7 0.4 0 0.2 0.6 0.1 0 0 0.3 0.6 0.1 0 0.1

[1] –0.9 –1 –0.4 0.1 0 −0.1 −0.5 0 –0.1 0 0.1 0.5 0.1 0.2 0.1

[2] –0.8 1 –0.7 −0.4 0 −0.5 0.6 0 0.1 0 −0.4 0.6 –0.2 0 −0.1

[3] 1 –0.5 –1 −0.8 –0.1 −0.2 0.4 0 0 –0.2 −0.2 0.1 0 0 0.2

[4] –0.7 0.8 0.9 −0.5 0 −0.2 0.6 –0.3 0.3 0 0.4 0.4 0 0.4 0.1

[5] 0.9 0.8 0.7 0.2 0 0.3 −0.1 –0.3 –0.1 0 0.5 0 0.4 0.1 0.1

TABLE 2 | Input sets candidates proposed for training and testing including: signals selected, data used, and hypothesis to verify/reject in the training results.

Set Inputs Data Explanation

1 1xM,1yM,1yawM All trajectories-3 times Input:relative increment

2 1xM,1yM,1yawM Trajectory[0]-10 times Data:generalization capacity

3 abs(1xM,1yM,1yawM ) Trajectory[0]-10 times Input:generalization of abs. inc

4 abs(1xM,1yM,1yawM ) Traj.[1],[4,][5]-10 times Data:generalization disparate data

5 abs(1xM,1yM,1yawM ) Traj.[1],[4,][5]-5 times Data:generalization disparate data

6 abs(1xM,1yM,1yawM and 1θM ) Traj.[1],[4,][5]-5 times Input:proof of correction analysis

7 abs(1xM,1yM and 1θM ) Traj.[1],[4,][5]-5 times Input:proof of correction analysis

8 abs(1yM and 1θM ) Traj.[1],[4,][5]-5 times Input:proof of correction analysis

9 abs(1xM,1yM and 1yawM ) All trajectories-3 times Additional testing

10 abs(1yM and 1θM ) All trajectories-3 times Additional testing

maximum fidelity real case studies. Table 2 includes the training
set candidates carefully designed to determine: the most suitable
combination of inputs, optimal network structure and size and
data variability requirements.

The second column in Table 2 specifies the input signals
used in each set, where abs and 1 indicates absolute value and
signals increment, respectively. The amount of data used in
each training set is detailed in the third column, alluding to the
variability of trajectories used and amount of MC noisy versions
of each trajectory. For instance, set 1 considers all trajectories
repeated three times each; including therefore three MC noisy
versions of each. The use of larger number of trajectories or
specific ones is thoroughly defined, so as to reflect changes in the
generalization capability with respect to training data variability.
Consequently, by repeating noisy version of the same trajectory,
the data variability should be much less than noisy versions of
different trajectories.

The incremental variables specified in Table 2 are calculated,
with respect to the constant sampling rate in training sets. As
an attempt to encourage generalization, alternative incremental
inputs are proposed by using random dynamic sampling within
the boundary of 1 to 9 sampling steps. Nonetheless, the networks
trained with this data were not able to estimate the target variable,
reason why they are neither included in Table 2 nor in the test
results. The failure to capture the process could be excused in
the data variability and complexity introduced through variable
sampling. The networks trained with this data were presumably
required to emulate a behavior more complicated than the one

described with constant sampling. Consequently, it might be the
case that the amount of training data and network size used
were not suitable to capture efficiently the underlying process.
Figure 7 illustrates a flow diagram that clarifies the design
process and characteristics that define a training set. The input
selection is partitioned in three stages: selection of the key
signals combination, format of the signals preferred (real value,
increments, or absolute increments) and trajectories used to
extract the data.

4.2. Training Candidates
Sets 1 and 2, similarly to 3 and 4, compare the effect
of the data variability on the generalization capacity by
implementing identical input variables, but using data
from different trajectories. Sets 2 and 3 determine the effect
of the inputs sign again with respect to generalization,
and intend to provide numerical support to proof the
independence between uncertainty accumulation and
movement direction. Sets 5 to 8 implement identical data,
but use different input candidates so as to obtain the optimal
signals combination.

5. NN DESIGN AND TRAINING

The NN candidates are compared in terms of: network size,
structural complexity and results output quality. The accuracy
of the estimation is evaluated using various error measurements
applied to both network output, 1σx, and target variable σx.
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FIGURE 7 | Training sets generation from signals proceeding from the available trajectories including signals selection (from correlation analysis), signal processing

(true value, increment, or absolute increment), and training trajectories used (data variability).

TABLE 3 | Training results comparison and analysis in terms of structural and data complexity, training time and performance, and accuracy indexes as convey for error

evaluation.

Structure Performance Epochs Data Q RMS rms Cmltv End error

Set 2 100FF 5.99E-06 136 14130 0.059 9 19

Set 2 20LR 9.23E-07 200 14130 0.0447 7.11 9.07

Set 3 20LR 1.07E-06 200 14130 0.0286 4.96 7.46

Set 3 30LR 1.25E-06 82 14130 0.032 4.7 6.6

Set 4 30LR 8.12E-04 67 32900 0.265 119 197

Set 5 30LR 5.92E-05 110 16450 0.22 84.2 67.7

Set 6 30LR 2.60E-05 150 16450 0.24 106.9 88.2

Set 7 30LR 4.50E-05 150 16450 0.27 100.4 80.7

Set 8 30LR 6.15E-05 127 16450 0.18 43.4 30.4

Set 9 40LR 4.67E-06 223 18927 0.0190 2.1 2

Set 10 40LR 4.71E-06 250 18927 0.0220 3.6 4.8

Set 9 30RL 3.56E-06 137 18927 0.0223 3.8 3.9

Set 9 50LR 4.71E-06 300 18927 0.0185 2.6 3.6

5.1. Error Measurements
The results are evaluated by using Root-Mean-Square (RMS)
error and relative error measures between the network output
and reference data, GT variables. The error measurement
include: RMS of σx and relative error of the accumulated
uncertainty obtained at the end of the trajectory, σx(end).
The first assesses the actual performance of the network given
the fact that the target variable is the increment of the
uncertainty, 1σx, and not the cumulative one, σx. The second,
σx RMS, evaluates the variable of interest and determines
the possible predicted error accumulation and the actual one.
Finally, the relative error of the final cumulative uncertainty
analyzes how well the NN would perform in case a new sensor

becomes available at the end of the vehicle path and fusion
is required.

These indicators are calculated for each of the trajectories
separately, so that it is possible to compare the performance in
both, data used for training and data not seen before. It is also
worth mentioning that the data used for training in all cases
consist of 70% of the total amount that defined the training
set, whilst the rest is used for testing and validation during the
training process. None of the sets or NN configurations converge
during the training process, when using the LR architecture
as a consequence of the noisy characteristics of the data used.
Nonetheless, this behavior is not necessarily detrimental due
to the fact that the generalization capability is preferred to the
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estimation accuracy of a specific trajectory; it is of importance to
avoid noise fitting. Consequently, the networks are trained up to
a certain performance value or number of iterations, epochs, and
early stopping is used before the training gradient stabilizes. The
output to estimate is the relative increment of the error in x std in
all cases, 1σx.

5.2. Training Algorithms
Two algorithms are used for training, Levenberg-Marquardt
(LM) and Scaled Conjugate Gradient (SCG). These aim to
compensate from deficiencies in terms of robustness, and
convergence time of the well-known Error Backpropagation
(EBP) and Gauss-Newton algorithms (Moller, 1993; Yu and
Wilamowski, 2011). Both differ in the selection of the step size
and direction during convergence. Ideally, longer steps should
be implemented at early stages and gradually smaller ones
should be considered to encourage the result finesse in later
stages. Moreover, the error shape might also change, affecting
simultaneously to the optimal step direction. SCG implements

FIGURE 8 | Final structure to find the hidden layer.

optimized step size and direction, whilst LM alternates EBP
and Gauss-Newton methods depending on the error shape. LM
combines the advantages of both strategies taking advantage
of the speed convergence of Gauss-Newton with quadratic
error, and the robustness of EBP convergence behavior under
conditions of non-advantageous for Gauss-Newton.

The training results usually benefit from LM when compared
to SCG throughout the test cases. Furthermore, LM presents
low µ values, variable that determines the alternation between
methods, but it converges neither into Gauss-Newton nor into
the steepest descent method.

5.3. Training Results: Input Signals
Selection
Table 3 summarizes the results obtained after training specific
network structures, second column, with the training sets
enumerated in the first column. Training set 2 is used to compare
FF and LR networks. In all cases, the training with identical set
and structure is repeated in more than one occasion, typically up
to six times. This practice is recommended due to the possible
effect that the random weights initialization can cause over
the end solution, which can potentially be trapped into local
optima. The results included in Table 3 are taken from the best
network obtained after training several candidates. These figures
are compared between equal amounts of iterations.

Sets 1 and 2 are omitted for brevity, as the conclusion
coincides with the analysis of sets 3 and 4. Set 2 is used to
implement FF and FB configurations as included in the first two
rows of Table 3. The noise filtering capability of FBNN improves
the estimation accuracy notably, reason why the LR structure
is concluded as the most suitable and successively used in the
subsequent training sets.

FIGURE 9 | (Top) x and y coordinates of trajectory 0; (Bottom-Left) 1σx in trajectory 0 with respect to the sensor sampling; (Bottom-Right) 1σx in trajectory 0 with

respect to the sensor sampling.
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FIGURE 10 | (Top) x and y coordinates of trajectory 1; (Bottom-Left) 1σx in trajectory 1 with respect to the sensor sampling; (Bottom-Right) 1σx in trajectory 1

with respect to the sensor sampling.

FIGURE 11 | (Middle) σx estimation in MC noisy trajectories (blue) respect to path coordinates (Top) and yaw (Bottom) in trajectory 4.

Six networks trained with set 2 are compared to six networks
trained set 3, to determine the effect of sign in the generalization
capacity. The best candidate from set 3 shows that the error is
30% lower compared to the best candidate provided by set 2. The
results evidence the benefits of reducing non-relevant data in the
input set, and corroborate the independence of the location error
accumulation with respect to the movement direction.

Sets 3 and 4 evaluate the relationship between generalization
and variability of the training sets. The candidates are trained
for similar number of epochs using the same structure and size.
Networks trained with set 4 are expected to have improved
generalization capacity, when compared to the ones trained with
set 3, oppositely to the results detailed in rows four and five.

These results are not conclusive due to the deficient amount of
training time allowed for set 4 network candidates, but show
evident differences between networks complexity when trained
with each set. Larger data variability would presumably imply
also higher network complexity, and therefore longer training
time and number of epochs.

Sets 5 to 8 implement the same data variability, but
use different combination of input signals. The training is
programmed for similar number of epochs in all cases, and
therefore the results are expected to benefit simpler training
sets. By comparing sets 5 and 7 it can be deduced that the
yaw is preferred to θ , and therefore set 6 does not benefit from
the additional information. Nevertheless, the result of set 8 do
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not corroborate this hypothesis, reason why extra training is
programmed with sets 9 and 10. These last sets incorporate
maximum data variability, and are trained for a larger number of
iterations up to a satisfactory performance. As expected from the
preliminary results obtained in sets 5, 6, and 7, the combination
of inputs used in sets 5 and 9, 1x, 1y, and 1yaw, is superior
to the other candidates. These results were already anticipated
by looking into the relationship between coordinates x and y
and odometry signals d and θ , which geometrically dependent
through (1) and (2). Consequently, it is reasonable to assume that
the combination of any of the previous pairs would not provide
extra information to the training set. In contrast, yaw proceeds
from a three dimensional displacement incorporating new data
that seems to the valuable for uncertainty prognosis.

5.4. Delay Effect on the Training Results
The effect of the feedback delay over the estimation accuracy
is studied in the LR configuration by implementing: 1 sample
delay, 2 samples delay and the combination of both. The results
obtained do not vary substantially with incremental delays, which
supports the hypothesis of independence between delayed inputs
and current outputs. Nevertheless, the output precision benefit
in all cases from the noise filtering effect of feedback structures,
reason why 1 step delayed is selected.

Figure 8 presents the structure used to find the optimal
hidden layer size, where n corresponds to the number of neurons
in the hidden layer.

5.5. Hidden Layer Optimal Size
Further training with set 9 using 20, 30, 40, and 50 neurons
was programmed to determine the optimal hidden layer size.
Networks with 20 and 30 neurons presented unacceptable error
measures as they were not able to capture the process complexity.
Fifty neurons networks were able to accurately estimate the
cumulative uncertainty in most of the trajectories, but presented
inconsistent behavior in some cases. The estimation results
obtained with 40 and 50 neurons networks are visually compared
in Figures 9, 10. These illustrations are formed by three graphs,
the trajectory shape at the top level and the uncertainty
estimation at the low level, including the uncertainty increment
of the left and the accumulation on the right.

Figure 9 illustrates trajectory 0, in which the 50-neurons
network returns improved results when compared to the 40-
neurons networks. Higher number of neurons are able to filter
the noisy inputs more effectively, as illustrated in the left graph,
and seem to follow better the uncertainty increment, almost
matching the cumulative value at the end of the trajectory. The
estimation results of the 40-neurons network also match the
increments in uncertainty and the shape of the accumulated
error, but it is not able to effectively filter the noise. It
could be deduced from the previous results that the more the
noise is filtered, the better the estimation accuracy obtained.
Nevertheless, this is not the case observed when analyzing
trajectory 1 as illustrated in Figure 10. Although again 50-
neurons networks filter the noise in the uncertainty increments
in the left graph, the tendency of the cumulative uncertainty
diverges from the target variable causing inconsistent behavior.

TABLE 4 | Comparison of training sets 9 and 11 in terms of set characteristics

and testing results in trajectories not used for training.

Set 9 Set 11

Input signals abs(1x,1y,1yaw) abs(1x,1y,1yaw)

Training Train trajectories

Train trajectories 0-5

&

Test trajectories 1,2,3,

4,9,14,22 and 24

TRAINING DETAILS

NN structure 40 neurons LR 40 neurons LR

No.epochs 223 126

Training
4.67·10−6 8.20·10−6

Performance

AVERAGE TEST RESULTS IN ALL TRAJECTORIES

1σx agv.RMS 0.00469 0.004691

σx agv.RMS 0.4 0.45

avg.end error 0.54 0.52

AVERAGE TEST RESULTS IN SET 9 TRAINING TRAJECTORIES

1σx agv.RMS 0.00445 0.004518

σx agv.RMS 0.41 0.35

avg.end error 0.52 0.43

AVERAGE TEST RESULTS IN SET 11 TRAINING TRAJECTORIES

1σx agv.RMS 0.004838 0.004798

σx agv.RMS 0.4 0.51

avg.end error 0.55 0.58

Oppositely, 40-neurons networks are able to both filter the
noise and follow the cumulative uncertainty tendency, returning
reasonably accurate results at the end point of the trajectory.

Although 50-neurons network are able to return very accurate
results in most of the training trajectories, they show inconsistent
behavior at times, which notably diverge from the target. As
previously stated, the generalization capability primes in front
of the estimation accuracy in the specific application of sensor
fusion. Consequently, 40-neurons networks are considered to be
the best candidate to model the uncertainty increment, and are
therefore considered as reference size in the following tests.

These results agree with the so-called Ockham’s Razor
principle, which prefers simpler networks structures able to
provide acceptable level of accuracy, rather than complex and
more accurate ones. The 50-neurons network is able to capture
higher non-linear process than the smaller versions. This extra
modeling capacity could be either trained to fit the process more
accurately, or to capture other processes such as inputs noise,
excusing the divergent results depicted in Figure 10. Nonetheless,
it is not a suitable network size for the characteristics of the
available training data.

6. TEST RESULTS

Given the fact that the NN has seen 70% of the data used
for testing, although different version of the noisy trajectories
are used, these still share similar characteristics which might
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FIGURE 12 | (Middle) σx estimation in MC noisy trajectories (blue) respect to path coordinates (Top) and yaw (Bottom) in trajectory 24.

FIGURE 13 | (Middle) σx estimation in MC noisy trajectories (blue) respect to path coordinates (Top) and yaw (Bottom) in trajectory 12.

prevent from yielding final conclusions. Furthermore, NNs can
be considered as blackbox models whose robustness cannot be
tested with conventional methods. In order to further analyze the
candidate performance, 28 new trajectories combining straight
lines, sharp turning and winding routes along urban areas are
used for testing.

6.1. Set Candidate 9
Likewise to the methodology followed to process the training
trajectories, the test trajectories are converted into noisy
features emulating data collection through noisy sensors.
Again 1000 MC noisy versions are generated to model the
uncertainty accumulation along the path. The estimation
performance of the 40-neurons network is tested in all
1000 noisy version of each of the 28 trajectories so as

to obtain the average error: RMS of 1σx, RMS of σx,
and end error of the cumulative uncertainty. Although the
estimation results are in average satisfactory, the network
candidate is not able to fit error accumulation with appropriate
accuracy in all test cases. Due to the characteristics of
blackbox model of the NN, it is difficult to predict in
which case scenarios the network will be able to capture the
uncertainty growth.

Figures 11–13 illustrate the results obtained in test trajectories
4, 24, and 12, respectively. These contain three graphs including
the trajectory coordinates, the cumulative uncertainty and the
yaw signal respectively from top to bottom. The middle graph
illustrates in red the targeted cumulative uncertainty and 1000
estimation outputs of the network in blue. Although the
cumulated uncertainty is well-captured in trajectories 24 and

Frontiers in Neurorobotics | www.frontiersin.org 13 May 2019 | Volume 13 | Article 12

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhang et al. Neural Network Based Uncertainty Prediction

FIGURE 14 | Test trajectory not used in either set 9 or set 11 where set 11 outperforms set 9. Test trajectory 6 comparison of σx .

FIGURE 15 | Test trajectory not used in either set 9 or set 11 where set 9 outperforms set 11. Test trajectory 12 comparison of σx .
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12, this is not the case of trajectory 4. These results can be
explained through the values of the yaw signal in this test
scenarios. The first 200 sampling steps are characterized by
close-to-zero yaw, followed by a large increment in yaw and
a close-to-constant value until the end of the route. When
looking into the tendency of the accumulated uncertainty,
the shape seems to match the growth only in the last 200
sampling steps. This behavior is observed in some of the testing
trajectories, suggesting a consistent response. Furthermore,
when assessing the training trajectories, no scenario with
large yaw changes is observed. As a consequence of this
deficient training data, the network is not able to capture
the uncertainty when these conditions take place in the
testing trajectories.

In contrast to testing trajectory 4, the trajectories 24 and
12 do not present zero yaw values and maintain it mostly
constant along the whole path. As a consequence, the network
is able to accurately fit the uncertainty accumulation, with
accuracy acceptable to allow for sensor fusion at any point
of the route. It can be concluded from the previous that the
generalization capacity of the network could be potentially
improved provided that the training set includes the test
cases missing.

6.2. Set Candidate 11
The deficiencies of training set 9 data variability are corrected
in candidate 11. This implements the same input signals,
absolute value of 1x, 1y, and 1yaw, but includes a larger
amount of trajectories and therefore a larger number of case
scenarios that include possible changes in the yaw signal,
not previously captured. Whilst set 9 only considers data
from the training trajectories 0 to 5, set 11 also includes
some of the trajectories previously used for testing; test
trajectories 1, 2, 3, 4, 9, 14, 22, and 24. Table 4 contains
the details of the sets characteristics, data used, network
structure, training and testing results. This table includes the
results corresponding to the best network trained with sets
9 and 11. Again, new networks are trained with identical
structure and data, and the best is selected to avoid deceiving
results caused by random weights initialization. The results
included in Table 4 evaluate the networks performance in all
testing trajectories, including the ones also used for training
in set 11.

In average, the prediction accuracy of the increment
in the uncertainty, 1σx, is identical in both cases when
analyzing the average accuracy in all test trajectories. This
result suggest that the 40 neurons LRNN has reached
a performance limit with set 9 and does not admit the
further complexity provided in set 11. Moreover, set
9 presents better accuracy when analyzing the average
RMS error in σx and worst results when comparing the
end error.

When looking into the trajectories used to train set 11,
as expected the results provided by the network trained with
set 9 are worse. In this case set 11 has the advantage of
having implemented 70% of those trajectories during training.
Nevertheless, the accuracy of the network trained with set

11 is worse when looking exclusively to the trajectories not
used in any of the sets. This result could be explained
considering the loss of generalization capability, when the
training data complexity overcomes the non-linear capacity of
the network structure.

The networks results are visually compared in Figures 14,
15, where test trajectories 6 and 12 are illustrated. None of
these trajectories have been used to train any of the networks
and therefore, the results can be interpreted as pure testing.
The uncertainty estimation in the 1000 MC using the network
trained with set 9 is represented in green, whilst the respective
results of the network trained with set 11 are illustrated in
blue. The target curve is illustrated in red in both cases.
Figure 14 shows how set 11 outperforms set 9 prediction
results, whilst Figure 15 illustrates the opposite case. Although
the results of both networks are rather similar in terms of
accuracy, set 11 prediction in the 1000 MC noisy versions
of each trajectory are less spread than the equivalent ones
from set 9. The larger variability of data used in set 11 seems
to have the effect to improve the prediction robustness to
noise, and therefore reduce the variability of the prediction
when noisy versions of the same trajectory are used. It can
be deduced that the consistency of the results is improved
when implementing sets with larger variability due to improved
noise robustness.

After identifying the most suitable set for training, the
optimized number of neurons was investigated. The previous
results suggested that the optimal number of neurons is
close to 40, probably situated between 40 and 50 neurons.
Therefore, further tests were performed using 38, 42, 45, and
47 neurons. The training was maintained until stabilization
of the networks performance and allowing generally higher
number of epochs for larger sizes. The results verify the a priori
hypothesis and situate the best candidates within 38 and 42
neurons. In particular the 42-neurons candidate improves the
RMS error in 14 and 18% the 40 and 45-neurons candidates
respectively. The cumulative RMS and end errors are also
noticeable improved. The RMS error is improved by 0.0296 and
0.0184 and the end error by 0.161 and 0.457, when compared
to the 40 and 45-neurons networks respectively. It can be
therefore concluded that the optimal network size is 42-neurons
hidden layer.

7. CONCLUSIONS

This paper proposes a strategy for feature uncertainty
estimation directly from data without prior knowledge of
the sensors characteristics. NNs learning capability of non-
linear processes is tested in the particular application of
vehicle location through odometry measurements. Both
input set and network structure design are based on training
and testing results obtained with various neural network
candidates. The final results confirm NNs as suitable surrogate
modeling technique robust to changes in the testing data,
inputs noise and variable case scenarios, provided that the
training data captures enough data variability and the network
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size and structure complexity is able to resemble the process
non-linear characteristics.
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