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Abstract 

Ball screws and linear guides are among the key components of machine tools. Abrasive wear causes a 
loss in stiffness of these components over time affecting the attainable manufacturing precision and, 
eventually, leads to failures and costly down-time. In order to control these effects, the condition of the 
crucial feed drive components needs to be monitored. This paper shows, how the feed drive condition 
can be monitored by looking at the modal parameters of the system. It will be shown, that preload loss 
cannot only be detected globally, but can be traced back to the worn component. A distinct test cycle was 
developed for this purpose. 
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1 INTRODUCTION 

The productivity of machine tools is mainly characterized by 
the machine’s chip removal rate [Zaeh et al. 2017] and the 
availability of the machine itself [Verl et al. 2009]. For both 
factors, the feed drive components ball screw and linear 
guides are crucial. On the one hand, they are the critical 
components regarding failure [Walther 2011] and on the 
other hand their stiffness strongly affects the position 
accuracy and thus the manufacturing precision 
[Maier 2015]. The decisive factor here is the preload of 
these components, which is needed to increase stiffness 
and prevent backlash. The degradation of ball screws and 
linear guides due to abrasive wear of their roller elements 
leads to a successive loss of preload. In the past, mainly 
reactive and time-based maintenance approaches have 
been used to secure productivity [Zhai & Reinhart 2018]. In 
the first case, maintenance is performed after a failure has 
occurred. In the second case, maintenance is done 
according to a fixed schedule. Both approaches lead to a 
conflict of objectives in terms of profitability, since either 
costly downtime must be tolerated, or maintenance actions 
are taken too early and resources are wasted. 
A promising new approach is condition-based maintenance 
("condition monitoring"), where maintenance activities are 
linked to the actual wear state of components [Farrar & 
Worden 2012]. This approach promises to increase 
machine availability while significantly reducing 
maintenance costs by eliminating unnecessary 
maintenance, using synergy effects by maintaining multiple 
similar machines in parallel and selecting an optimal 
maintenance time.  

In order to be able to do so, this paper shows how to detect 
the preload loss of balls screws and linear guides using 
features, that describe the dynamic behavior of machine 
tools. 

First, in section 2 a short overview is given regarding 
existing methods to detect a preload loss of feed drives. 
Section 3 states the importance of the modal parameters 
on the dynamic behavior of linear systems by summarizing 
basics of structural dynamics. In section 4 it is shown, how 
the knowledge gained from an FEM analysis can be used 
to not only detect preload loss, but to also locate it. In 
section 5 a test cycle is presented enabling reliable and 
reproducible dynamic measurements. Section 6 contains 
two methods for isolating wear sensitive features from the 
measured system’s dynamic behavior. The sensitivity of 
those features is proven in section 7 with the help of a 
variance analysis.  

2 FEED DRIVE CONDITION MONTITORING 

In literature, a variety of different methods exist for the 
condition monitoring of feed drive components. In Tsai et al. 
[2014] it is shown, that the ratio of sliding and rolling of the 
roller elements in ball screws and thus the ball passing 
frequency is dependent on the friction caused by the 
preload. By placing an accelerometer near the return tube 
and implementing a Vold-Kalman-filtering-order-tracking-
algorithm, the current preload level can be monitored. A 
similar approach is followed by Feng & Pan [2012], who 
have shown the correlation between the ball screw preload 
level and the vibrational behavior of the feed drive system 
both in theory and practice using an analytic four 
degree-of-freedom model and a feed drive test bench, 
respectively. Abstaining from the use of external sensors, 
Chang et al. [2010] were able to distinguish between two 
different preload levels by simply measuring the feed drive 
motor current. To do so, a combination of empirical mode 
composition (EMD) and multiscale entropy (MSE) methods 
was used. A similar approach was implemented in Verl et 
al. [2009] using the vibration energy spectrum as a wear 
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sensitive feature. In contrast to the presented approaches, 
the concept of a "characteristic distance", presented in 
Maier [2015] is not dependent on a distinct test cycle with 
constant feed rate, but can also capture ball screw preload 
loss. In Hillenbrand et al. [2018] strain sensors were 
embedded in the ball screw nut. This way, by looking at the 
RMS value of the strain signal, new and worn ball screws 
were distinguished.  

In contrast to the other work in this field, here the current 
state of preload is determined by directly evaluating the 
measured dynamic behavior of the feed drive system. This 
way, the detection of preload loss is not only possible on a 
global level, but can also be done with respect to single feed 
drive components. Furthermore, the definition of a 
threshold, at which maintenance actions must be 
conducted, can be supported by comparing the required 
machining precision to the actual machining precision. This 
is possible since the latter is strongly governed by the 
machine tool’s dynamic behavior. 

3 MODAL DECOMPOSITION 

The behavior of real systems excited by the force 𝒇 can be 

described as a multiple-degree-of-freedom (MDOF) model 

in various directions [Altintas 2012]:  

[𝑴𝒙]{�̈�} + [𝑪𝒙]{�̇�} + [𝑲𝒙]{𝒙} = {𝒇} (1) 

The mass matrix [𝑴𝒙], the viscous damping matrix [𝑪𝒙] and 

the stiffness matrix [𝑲𝒙] have the dimension n x n, where n 
is the number of degrees of freedom. The vectors �̈�, �̇�, 𝒙 

describe the accelerations, speeds and displacements. The 
equation of motion for this system is represented in the 
frequency domain by using the well-known Fourier 
transformation, leading to 

(−[𝑴𝒙]𝜔2 + [𝑪𝒙]𝑗𝜔 + [𝑲𝒙]){𝑋(𝑗𝜔)} = {𝐹(𝑗𝜔)} (2) 

By rearranging equation (2) the following transfer function 
representation is obtained: 

[𝐻(𝑗𝜔)] =
{𝑋(𝑗𝜔)}

{𝐹(𝑗𝜔)}
= ∑

[𝑅]𝑘

(𝑗𝜔)2 + 𝑗2𝐷𝑘𝜔𝑛,𝑘𝜔 + 𝜔𝑛,𝑘
2

𝑛

𝑘=1

 (3) 

Here, 𝜔𝑛,𝑘 and 𝐷𝑘 are the natural frequencies and the 

modal damping ratio for mode 𝑘 of the system and [𝑅]𝑘 

reflects the residues of mode 𝑘. These are the modal 

parameters for the MDOF-System.  

It can be seen, that the dynamic behavior of a system can 
be fully described with just a few variables in the form of the 
modal parameters. In most cases not all modes 𝑘 are 

needed to describe the dynamic behavior properly [Semm 
et al. 2018]. Observing the modal parameters can thus be 
seen as a storage-efficient way for monitoring a system’s 
dynamic behavior. More important, for feed drives each of 
the lower structural modes represents vibrations caused by 
one or two substructures [Zaeh et al. 2004]. Thus, the 
condition of these components can be identified by 
monitoring the related modes and their modal parameters. 

4 FEM ANALYSIS 

By using a FEM simulation model developed in Zaeh et al. 
[2019], the structural behavior of a feed drive system can 
be predicted. Even though non-linear friction is linearized 
by using linear stiffnesses as a replacement and the model 
is not perfectly parametrized for simulating the feed drive 
test bench presented in section 5, the model can be 
regarded as close to the real structure. In this work, the 
focus is on a proof of concept rather than on a perfect match 
between simulation and reality. 

In the model, the ball screw and the linear guides are 
modeled as an assembly of multiple springs and dampers 
each [Zaeh et al. 2004]. It is assumed, that a loss of preload 
does not change the damping values and uniformly affects 
all spring stiffnesses. Therefore, preload loss can simply be 
simulated by proportionally reducing the stiffness values of 
all involved spring elements. 

In order to be able to efficiently simulate the wear effects, a 
sub-structural coupling approach [Semm et al. 2018, Semm 
et al. 2019] was implemented in Nastran featuring the 
following components (see Fig. 1): 

• cross slide 
• spindle slide 
• work table 
• bed 

 

Fig. 1: Substructures for the investigated test bench 
(Machining Center DMG DMU55H). 

The preload loss of the ball screw and the linear guide was 
investigated for the x-axis of the test bench, which belongs 
to the cross slide component (see Fig. 7). The different 
preload conditions could then be analyzed by calculating a 
state space model of the machine tool with the 
sub-structural coupling of all components. 

Fig. 2: Change in response to a stiffness change of all 
involved spring elements of the ball screw and the linear 

guide in the frequency range 0-300 Hz. 

 

Fig. 2 shows the simulated transfer function for 100% 
stiffness and 40% stiffness of the ball screw and the linear 
guide, respectively. When analyzing the machine´s 
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structural modes, the relevant frequency range was set to 
0-300 Hz. For higher frequencies, only local structural 
modes were excited whose amplitudes are very small.  

It can be seen, that the stiffness loss of the components 
impacts each mode differently. Peaks in the dynamic 
response tend to shift to lower natural frequencies for 
decreasing stiffness. The amplitude, however, can change 
in both directions. The goal of this analysis is to capture 
relevant ball screw and linear guide modes. Therefore, all 
modes were analyzed in more detail separately. In Fig. 2 
two sections are highlighted: The range 65-100 Hz (Detail 
1) and 130-175 Hz (Detail 2). In Fig. 3, the change of the 
natural vibration modes with the modification of the stiffness 
of the ball screw and the linear guide can be seen in more 
detail for the first frequency section. 

Fig. 3: Change in response to a stiffness change of all 
involved spring elements of the ball screw and the linear 

guide in the frequency range 65-100 Hz. 

It becomes clear, that stiffness loss of just the linear guide 
in this range has a low influence on the dynamic behavior 
of the machine tool since its amplitude response at the 
resonances follows the amplitude of the original state with 
full stiffness of all components. In contrast, the curve 
showing only ball screw stiffness loss is closer to the 
trajectory of the worn state meaning that the ball screw 
stiffness has more influence here. Fig. 4 shows the mode 
shape and its change in natural frequency caused by the 
stiffness loss of the components for the highlighted mode. 

 

Fig. 4: Mode shape and change of natural frequency to a 
stiffness changes of the ball screw and the linear guide for 

mode A (see Fig. 3). 

Again, it can be seen that the influence of the linear guide 
in this frequency range is low compared to the influence of 
the ball screw since the natural frequency of the depicted 
mode (see Fig. 4)  is more sensitive to a reduction of the 
ball screw stiffness than to a decrease of the linear guide 
stiffness.  

In the frequency range of 130-175 Hz the stiffness of the 
linear guide has a more significant influence on the 
machine’s dynamic behavior than the stiffness of the ball 
screw. Here, the response of reduced linear guide stiffness 
and 100% stiffness of the ball screw is close to the worn 
state. The combination of reduced ball screw stiffness and 
100% stiffness of the linear guide follows the trajectory with 
full stiffness of all components (see  

Fig. 5). 

 

Fig. 5: Change in response to a stiffness change of all 
involved spring elements of the ball screw and the linear 

guide in the frequency range 130-175 Hz. 

The mode with the most lateral movement at the linear 
guides, i.e. the mode, which is most sensible to the linear 
guide preload, is shown in Fig. 6. 

 

Fig. 6: Mode shape and change of natural frequency to a 
stiffness change of the ball screw and the linear guide for 

mode B (see Fig. 5). 

Here, it can be seen, that the natural frequency of this mode 
is mainly influenced by the linear guide stiffness, but not by 
the ball screw stiffness. 

The conclusion can be drawn, that wear can be globally 
detected by changes in the dynamic behavior of a system. 
Using preliminary knowledge from an FEM analysis or even 
an experimental modal analysis, it is furthermore possible 
to not only detect wear in the form of preload loss globally, 
but also to refer it to specific components. Therefore, it is 
advisable to evaluate the characteristic modes 
experimentally by exciting the structure and extracting the 
modal parameters, which is described in the following 
sections. 

However, evaluating the extent of the changes caused by 
stiffness losses leads to the interpretation, that even for 
significantly reduced stiffness values of the ball screw and 
the linear guide, the resulting changes of the natural 
frequency are quite small. Thus, in order to be able to 
monitor the condition of the machine tool, the measurement 
of the dynamic behavior and the extraction of the modal 
parameters must be very accurate, which means that 
changes in the natural frequency as small as 1 Hz must be 
detectable. 

5 DATA ACQUISITION: EXPERIMENTAL SETUP  

The experiments were conducted on a DMG duo Block 
DMC 55H test bench (see Fig. 7) using ball screws and 
linear guides with different preload levels. All investigations 
were carried out for the x-axis of the machine tool.  
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Fig. 7: Investigated test bench (machine). 

The investigated components were Bosch Rexroth ball 
screws FEM-E-C 40x16Rx6-4 and Bosch Rexroth roller rail 
systems RWA 45. In order to simulate the abrasive wear in 
the rolling elements of both components, Bosch Rexroth 
AG provided ball screws and linear guides with different 
preload levels. The preload classes and preloads used are 
shown in Tab. 1.  

Tab. 1: Preload classes for the ball screw and the linear 
guide. 

Ball screw class Preload 

C3 2390 N 

C2 1450 N 

C1 950 N 

Roller rail systems class Average Preload 

C3 12840 N 

C2 8965 N 

C1 4200 N 

 

There are three different preload classes for the ball screw 
and the linear guide in order to simulate three different wear 
states: 

• C3 with highest preload level (new) 
• C2 with medium preload level (medium wear) 
• C1 with the lowest preload level (high wear) 

This notation will be used in the following sections to 
denominate the used components in measurements. Note, 
that these three preload levels are commonly available for 
purchase showing the industrial relevance of the examined 
wear states. However, the classification (new, medium 
wear, high wear) used in this paper can only be used as a 
reference point since it strongly depends on the application 
area of the feed drive. In future work this problem is to be 
circumvented by comparing the simulated actual machining 
precision with the required precision rather than using 
preload classes for qualifying wear.  

For the identification of the machine’s modal parameters, 
the structure was excited by the inertial actuator SA10-V30 
by CSA Engineering, which is normally used as an active 
vibration control system [Zaeh et al. 2017]. The actuator 
has a maximum force output of 90 N. The force output 
needed depends on the machine’s stiffness. The actuator 
must be strong enough to ensure a good signal to noise 
ratio of the vibration response. More information about the 

required actuator force can be found in Kleinwort et al. 
[2018]. The vibration response was measured by a piezo-
electric acceleration sensor (Kistler 8762A10) as described 
in Zaeh et al. [2017]. The actuator was driven by an 
amplifier (BAA 120 by BEAK). A real time dSpace control 
system with a sampling frequency of 20 kHz was used to 
control the excitation and sample the response signals. The 
system’s response was measured over the relevant 
frequency range of 20 to 300 Hz. The outputs were 
transferred into the frequency domain via a Fast Fourier 
Transformation (FFT). For all measurements in this work, 
the excitation point and the measurement point were 
located on the cross slide of the machine tool at the height 
of the x-axis’ ball screw in order to excite all relevant modes 
in the considered frequency range. Actuator and sensor 
were kept in place via holding magnets. This position was 
selected according to the FEM simulation model. For the 
calculation of the modal parameters, the frequency 
response function (FRF) between the control voltage of the 
actuator and the measured acceleration was used.  

5.1 Test Cycle 

The measurement of the feed drive’s frequency response 
function, which is the basis for the modal parameter 
extraction, is very sensitive to numerous side effects. Fig. 8 
compares the results of the response of the structure for 
two different types of excitation signal: sinusoidal sweep 
and white noise. The excitation with the inertial actuator is 
also compared to an excitation with an impulse hammer of 
type 9728A20000 by Kistler.  

Fig. 8: Comparison of measured FRFs for different 
excitation signals with the machine stationary. 

It can be seen from the different responses, that the 
machine tool behavior is non-linear. The peaks at the 
multiples of 50 Hz indicate disturbances caused by the 
supply power frequency and can be neglected.  

Fig. 9 shows dynamic measurement results (FRFs) 
conducted on the very same position for all axes and using 
the inertial actuator. The only change between the 
measurements was moving the x-axis back and forth 
randomly.  

Fig. 9: Reproducibility of dynamic response 
measurements with respect to axes movements. 

It can be seen, that there are fluctuations in all modes above 
50 Hz, and that these fluctuations are significantly larger 
than the changes caused by feed drive wear (see 
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simulation results in section 4). In order to mitigate those 
effects and measure the pure machine tool dynamics, a 
specific test cycle was developed and implemented. For all 
following measurements, sinusoidal sweeps were used for 
two reasons: First, this allows the excitation to be fully 
automated requiring no manual interaction (in contrast to 
impact tests). Second, the signal is fully deterministic 
guaranteeing the highest possible reproducibility of the 
measurements (in contrast to random noise excitation). 

Since the fluctuations are position dependent and decrease 
with increasing temperature, their cause is assumed to be 
frictional effects. In order to overcome these effects, a 
distinct test cycle shown schematically in Fig. 10 was 
designed, which was used for all following measurements. 
Here, a linear velocity at the linear guide is superimposed 
on the velocity resulting from the excitation (e.g. a sinus 
sweep).  

 

Fig. 10: Feed drive test cycle (schematically). 

The superimposed linear velocity was chosen to be 
100 mm/min, which is high enough to avoid the friction 
effects, but low enough to avoid an influence from the 
position dependency of the feed drive axis. Using this test 
cycle, a better reproducibility of the measurements can be 
ensured (see Fig. 11). 

Fig. 11: Reproducibility of dynamic response 
measurements with superimposed linear velocity. 

Going back to the comparison of different excitation signals 
(see Fig. 8), Fig. 12 shows, that the test cycle also reduces 
the deviations resulting from the different excitation 
sources, which proves its effectiveness. 

Fig. 12: Comparison of the measured FRFs for different 
excitation signals with superimposed linear velocity. 

5.2 Analyses of the Response Function 

By comparing the measured system’s dynamic behavior 
(FRF) for different ball screw preloads, but fixed linear guide 
preloads (Fig. 14(a)) and for different linear guide preloads, 
but fixed ball screw preload (Fig. 14(b)), respectively, it is 
clear, that the three modes at 66.5 Hz, 83 Hz and 117 Hz 
are sensitive to ball screw wear and the two modes at 
168 Hz and 193 Hz are sensitive to linear guide wear. 

The variation of the ball screw preload class shows that the 
stiffness of the ball screw indeed has an influence on the 
dynamic behavior of the machine tool. However, the 
difference between the preload classes C3 and C2 is so 
small for most modes that it is difficult to detect it. The 
preload class C1, on the other hand, has significantly lower 
natural frequencies and higher amplitude values at the 
significant modes. This is in line with the observations 
described in section 4, where simulations showed that only 
high preload losses at the ball screw lead to detectable 
changes in the modal parameters. 

Similarly, the influence of the stiffness of the linear guide 
can be analyzed as well. The ball screw preload state was 
kept constant at C1. Again, the simulation results from 
section 4 can be confirmed, since the measured FRFs 
showed much more sensitivity to the linear guide stiffness 
than to the ball screw stiffness. 

(a) 

(b) 

Fig. 13: Changes of the dynamic behavior for varying ball 
screw preload (a) and varying linear guide preload (b). 

6 FEATURE EXTRACTION: MODAL 
PARAMETERS 

Knowing the importance and the benefit of the modal 
parameters theoretically described in section 3, two 
methods were implemented for extracting features from the 
measurements of the dynamic behavior (FRF) of the feed 
drive using the test cycle presented in section 5: First, a 
combination of the 3dB-method and peak-picking was used 
for estimating the modal parameters [Ewins 2000]. Here, it 
is assumed that the individual peaks of the transfer function 
are well separated leading to a decrease in amplitude of at 

least 1/√2 for each peak. Two features are to be derived 

here: First, the natural frequency is estimated to be the 

frequency with the highest amplitude (𝑓𝑑,𝑖). Second, the 
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peak amplitude itself serves as another feature (𝐻|𝜔𝑑,𝑖|). 

Fig. 14 shows the resulting frequencies and amplitudes for 
the eight most significant modes measured. 

Fig. 14: Identified modes using the 3dB-method. 

The second method implemented here is the polyreference 
least-squares complex frequency-domain method 
(PolyMAX). It is a global MDOF method meaning that the 
modes in this case do not necessarily need to be well 
separated. Thus, it can also be applied when the 
peak-picking approach fails due to interfering modes, 
making it more robust for application in real production 
environments. With this method, an accurate estimate of 
the modal parameters can be found. The poles of the FRF 
described in equation (3) were calculated with the 
polyreference least-squares complex frequency method 
[Guillaume et al. 2003]. To determine the modal 
coefficients, the least-squares frequency domain algorithm 
was used.  

With the PolyMAX-algorithm a large number of possible 
FRF poles was found. The number of found poles increases 
with increasing predefined maximum model order (here 25). 
All unstable poles, i.e. poles leading to negative 
eigenfrequencies or damping, were immediately discarded. 
The remaining poles were then grouped by the eigenmodes 
they belong to. Each group is approximated by a vertical 
line in Fig. 15, i.e. there are eight relevant groups. As a last 
step, for each group the pole with the highest value of the 
expected frequency response assurance criterion (FRAC) 
was selected. Fig. 15 shows the identified modes and the 
resulting, well-fitted model of the measured transfer 
function. 

Fig. 15: Identified modes and fit function using the 
PolyMAX algorithm. 

7 ANAYLSIS OF VARIANCE 

The analysis of variance (ANOVA) is a method for 
determining the dependency of response variables to a set 
of input variables [Dean et al. 2017]. The goal is to 
distinguish real effects from apparent effects caused by 
measurement noise. The input variables within this work 
are the preload classes of the ball screw and the linear 
guide (see Tab. 1). The output variables are the modal 
features derived from the measured FRFs in section 6. 
Thus, for each feature (or quality feature 𝛾 in terms of the 

ANOVA) a model equation for analysis of variance with two 
(input) factors each is considered here:  

𝛾𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝜀𝑖𝑗 (4) 

Here,  𝜇 is the mean value of all measurements, 𝛼 the effect 

of the preload class of the ball screw, 𝛽 the effect of the 

preload class of the linear guide, 𝛼𝛽 the influence of the 

interaction and 𝜀 an error not covered by the model. The 

indices 𝑖 and 𝑗 describe the preload class level (see Tab. 

1). Altogether, 24 model equations were set up for the 
PolyMAX method (natural frequency, modal damping and 
amplitude at the natural frequency for eight modes) and 16 
for the peak-picking method (peak amplitude and 
frequency). 

An input factor is considered to be significant if the change 
is not compatible with the null hypothesis of a purely 
random deviation, i.e. there is no effect of the input factor 
[Dean et al. 2017]. The p-value describes the probability of 
seeing the measured effect of the input parameter under 
the assumption of a valid null hypothesis. This also 
corresponds to the risk of unfairly rejecting the null 
hypothesis. Thus, a sufficiently small p-value suggests that 
a factor has a significant effect on the considered outcome. 

In order to validate the approach presented here, the 
factorial screening depicted in Tab. 2 was conducted. Each 
“x” denotes a tested combination. It can be seen, that the 
experiment design represents a fractional factorial 
screening design with one repetition and a full factorial 
screening design with only partial repetition, respectively. 
The goal was to find qualitative relationships between 
preload loss of the ball screw and the linear guide and the 
system’s modal parameters. 

Tab. 2: Design of experiments. 

  Linear guide preload 

  C1 C2 C3 

Ball 
screw 

preload 

C1 xx x xx 

C2 x xx xx 

C3 xx x xx 

 

By calculating modal parameters for each configuration 
within Tab. 2, the causal connection with the preload 
condition for the eight most significant modes was 
evaluated. Tab. 3 shows the calculated p-values for the 
PolyMAX method (𝑓𝑑,𝑖, 𝑑𝑖 ,  𝐻|𝜔𝑑,𝑖|). The influence is 

regarded as significant, if the calculated p-value is smaller 
than 3%. Those modal parameters are highlighted by 
printing them bold. 

Tab. 3: p-values for PolyMAX method. 

 𝛼𝑖 𝛽𝑗 (𝛼𝛽)𝑖𝑗 

𝑓𝑑,1 0.14588 0.95842 0.81597 

𝑓𝑑,2 0.35223 0.53488 0.52991 

𝑓𝑑,3 0.00008 0.03849 0.73639 

𝑓𝑑,4 0.00001 0.03590 0.20068 

𝑓𝑑,5 0.00017 0.13153 0.60689 

𝑓𝑑,6 0.42266 0.00009 0.60933 

𝑓𝑑,7 0.78108 0.00002 0.56255 

𝑓𝑑,8 0.49767 0.11745 0.83995 

𝑑1 0.00789 0.28051 0.97647 

𝑑2 0.90601 0.95080 0.63993 

𝑑3 0.06550 0.73954 0.79394 
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𝑑4 0.01666 0.04275 0.03085 

𝑑5 0.00120 0.04902 0.54342 

𝑑6 0.30187 0.02658 0.86111 

𝑑7 0.78151 0.81671 0.54243 

𝑑8 0.62993 0.57533 0.58134 

 𝐻|𝜔𝑑,1| 0.00116 0.04671 0.81931 

 𝐻|𝜔𝑑,2| 0.64055 0.99837 0.88207 

 𝐻|𝜔𝑑,3| 0.00006 0.00481 0.32469 

 𝐻|𝜔𝑑,4| 0.02931 0.29018 0.16988 

 𝐻|𝜔𝑑,5| 0.41152 0.48103 0.69923 

 𝐻|𝜔𝑑,6| 0.42704 0.00246 0.31004 

 𝐻|𝜔𝑑,7| 0.41911 0.39495 0.59177 

 𝐻|𝜔𝑑,8| 0.20555 0.61734 0.67188 
 

It can be seen, that the effect of the preload class of the ball 
screw 𝛼 is high for the modes 1, 3, 4 and 5 whereas the 

effect of the preload class of the linear guide 𝛽 is significant 

for the modes 3, 6 and 7 even though not always every 
modal parameter of each mode has a smaller value than 
3%. The interaction 𝛼𝛽 shows no influence. Damping and 

amplitude of mode 7 is not statistically significant, because 
even though the test cycle is used (see section 5.1) there 
are still fluctuations at this mode (see Fig. 11). 

By using the 3dB-method, the following p-values for the 

estimated modal parameters (𝑓𝑑,𝑖, 𝐻|𝜔𝑑,𝑖|) were calculated 

(Tab. 4): 

Tab. 4: p-values for the 3dB-method. 

 𝛼𝑖 𝛽𝑗 (𝛼𝛽)𝑖𝑗 

𝑓𝑑,1 0.188667 0.632457 0.934276 

𝑓𝑑,2 0.269441 0.037022 0.545050 

𝑓𝑑,3 0.004281 0.529506 0.935150 

𝑓𝑑,4 0.229306 0.190635 0.390704 

𝑓𝑑,5 0.000912 0.028692 0.667283 

𝑓𝑑,6 0.430676 0.000003 0.238926 

𝑓𝑑,7 0.154078 0.000059 0.114517 

𝑓𝑑,8 0.925905 0.067478 0.346550 

 𝐻|𝜔𝑑,1| 0.000234 0.007948 0.857778 

 𝐻|𝜔𝑑,2| 0.990945 0.431978 0.783258 

 𝐻|𝜔𝑑,3| 0.000071 0.005984 0.282532 

 𝐻|𝜔𝑑,4| 0.348038 0.655077 0.773524 

 𝐻|𝜔𝑑,5| 0.329480 0.634335 0.579398 

 𝐻|𝜔𝑑,6| 0.443097 0.002121 0.193793 

 𝐻|𝜔𝑑,7| 0.473215 0.543229 0.656371 

 𝐻|𝜔𝑑,8| 0.086454 0.011217 0.073479 
 

Mode 4 is no longer significant for ball screw preload 
because of errors in identifying the peak at 83 Hz (see Fig. 
14). 

For the feed drive system with well-separated modes as 
considered here (see section 5), the conducted ANOVA 
leads to the conclusion that both the peak-picking and the 
PolyMAX approach show roughly the same dependencies 
of the ball screw’s and linear guide’s preload on the modal 
parameters. However, it is expected that the PolyMAX 

approach will outperform peak-picking when the 
investigated system has several interfering modes. 

8 SUMMARY AND OUTLOOK 

In this paper, a method was presented for monitoring the 
condition of feed drives by looking at the dynamic behavior. 
It was shown, how results from a simulated sensitivity 
analysis can be used not only to detect, but also to locate 
feed drive wear. Furthermore, requirements on the 
precision of the used methods could be derived leading to 
the development of a distinct test cycle for overcoming 
non-linear effects and for achieving reproducible 
measurements of the feed drive’s dynamic behavior. Two 
methods were presented for deriving wear sensitive 
features based on the modal parameters. Lastly, a variance 
analysis was presented, showing the significance of the 
derived features, and confirming the simulation results, i.e. 
that the dynamic behavior cannot only detect wear, but can 
also locate it. However, in this work only the influence of the 
preload on the modal parameters was shown - not how to 
estimate the current preload state from the modal 
parameters. Thus, further work needs to be done to develop 
models able to predict the current condition of feed drive 
components from dynamic measurements. 
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