
Open Access. © 2019 Raji Ghawi and Jürgen Pfeffer, published by De Gruyter. This work is licensed under the Creative Commons
Attribution alone 4.0 License.

Open Comput. Sci. 2019; 9:160–180

Research Article Open Access

Raji Ghawi* and Jürgen Pfeffer

Eflcient Hyperparameter Tuning with Grid Search
for Text Categorization using kNN Approach with
BM25 Similarity
https://doi.org/10.1515/comp-2019-0011
Received February 20, 2019; accepted July 18, 2019

Abstract: In machine learning, hyperparameter tuning is
the problem of choosing a set of optimal hyperparameters
for a learning algorithm. Several approaches have been
widely adopted for hyperparameter tuning, which is typ-
ically a time consuming process. We propose an efficient
technique to speed up the process of hyperparameter tun-
ing with Grid Search. We applied this technique on text
categorization using kNN algorithm with BM25 similarity,
where three hyperparameters need to be tuned. Our exper-
iments show that our proposed technique is at least an or-
der of magnitude faster than conventional tuning.

Keywords: hyperparameter tuning, text categorization,
grid search, kNN, BM25

1 Introduction
In machine learning, a hyperparameter is a parameter
whose value is set before the learning process begins. Hy-
perparameter optimization or tuning is the problem of
choosing a set of optimal hyperparameters for a learning
algorithm. It aims at finding a tuple of hyperparameters
that yields an optimal model which minimizes a prede-
fined loss function on given independent data. The objec-
tive function takes a tuple of hyperparameters and returns
the associated loss [1]. Cross-validation is often used to es-
timate this generalization performance [2]. For decades,
the de-facto standard for hyperparameter optimization in
machine learning has been grid search, which is simply an
exhaustive searching through a manually specified sub-
set of the hyperparameter space of a learning algorithm.
Other approaches proposed over the years include ran-

*Corresponding Author: Raji Ghawi: Technical University of Mu-
nich, Germany, E-mail: raji.ghawi@tum.de
Jürgen Pfeffer: Technical University of Munich, Germany, E-mail:
juergen.pfeffer@tum.de

dom search [2], gradient-based optimization [3, 4], and
Bayesian optimization [5–7]. Despite these efforts, grid
search prevails as the state of the art to hyperparameter
optimization due to its simplicity to implement and paral-
lelization, and its reliability in low dimensional spaces.

Grid search exhaustively enumerates all combinations
of hyperparameters and evaluates each combination. De-
pending on the available computational resources, the na-
ture of the learning algorithm and size of the problem,
each evaluation may take considerable time. Thus, the
overall optimization process is time consuming. This leads
to an increasing need for efficient methods to optimize hy-
perparameters. Most of proposed optimization methods
tend to reduce the number of evaluations. In this work,
we address the efficiency of grid search from another per-
spective, where we propose to reduce the time of each
evaluation instead of reducing the number of evaluations.
Our use case is text categorization using k-NN algorithm
(k nearest neighbor) with BM25 similarity measure [8, 9].
Text Categorization is a supervised learning task, defined
as assigning category labels to new documents based on
the likelihood suggested by a training set of labeled doc-
uments [10]. k-NN is a well known statistical approach
that has been applied to text categorization [11–13] and
has been shown to be one of the top performing meth-
ods. BM25 similarity measure represents the state-of-the-
art TF-IDF-like retrieval functions used in document re-
trieval. The problem of text categorization using k-NN and
BM25 has three hyperparameters: k and b, the free param-
eters of BM25 similaritymeasure, and t, the number of top-
ranking neighbors to predict the category of an input doc-
ument.

The contributions of this paper are as follows:
1. We propose an efficient method, called Fast Tuning,

for hyperparameter tuning with grid search for text
categorization using k-NN approach using BM25 simi-
larity.

2. We present detailed algorithmic procedures to de-
scribe our proposed tuningmethod, aswell as the con-
ventional tuning method.

https://doi.org/10.1515/comp-2019-0011

Eflcient Hyperparameter Tuning | 161

3. We describe how our proposed tuning method is ap-
plied with cross-validation.

4. We conduct several experiments to evaluate the per-
formance of our proposed tuning method comparing
to conventional tuning, in terms of speed-up and time
reduction factors.

5. Our experiments show that the proposed tuning
method outperforms the conventional tuningmethod,
as it is by at least one order of magnitude faster.

The paper is orgarnized as follows. Section 2 presents
foundations and related works. In section 3, we present
the conventional tuning method, where in Section 4, we
present our proposed tuning method. Section 5 describes
how our Fast Tuning method can be applied with cross-
validation. Conducted experiments are presented in Sec-
tion 6. Section 7 is dedicated for discussion and future
work, whereas Section 8 concludes the paper.

2 Foundations and related works

2.1 Hyperparameter optimization

In order to formally describe the hyperparameter opti-
mization problem, we adopt the formulation given in [14].
Given a machine learning algorithm A having hyperpa-
rameters λ1, · · · , λn with respective domains Λ1, · · · , Λn,
we define its hyperparameter space as Λ = Λ1×· · ·×Λn. For
each hyperparameter setting λ ∈ Λ, we use Aλ to denote
the learning algorithm A using this setting. We use l(λ) =
L(Aλ , Dtrain , Dvalid) to denote the validation loss that Aλ
achieves on data Dvalid when trained on Dtrain. The hyper-
parameter optimization problem is then to find λ ∈ Λmin-
imizing l(λ). Each objective function evaluation requires
evaluating the performance of amodel trainedwith hyper-
parameters λ. Depending on the available computational
resources, the nature of the learning algortihm A and the
problem size (Dtrain , Dvalid) each evaluationmay take con-
siderable time.

The traditionalway of performing hyperparameter op-
timization has been grid search, which is simply an ex-
haustive searching through a specified subset of the hyper-
parameter space Λ of a learning algorithm A. A grid search
algorithm must be guided by some performance metric,
typically measured by cross-validation on the training set.

Other approaches proposed over the years include
random search [2], gradient search [3, 4, 15–17], and
Bayesian optimization [5–7]. Random search replaces the
exhaustive enumeration of all parameter combinations by

selecting them randomly. This can be simply applied to
the discrete setting described above, but also generalizes
to continuous and mixed spaces. It can outperform Grid
search, especially when only a small number of hyper-
parameters affects the final performance of the machine
learning algorithm [2].

Bayesian optimization [18, 19] is a global optimiza-
tion method for noisy black-box functions. Applied to hy-
perparameter optimization, Bayesian optimization builds
a probabilistic model M of the function f mapping from
hyperparameter values to the objective evaluated on a
validation set Dvalid. By iteratively evaluating a promis-
ing hyperparameter configuration λ based on the current
model, and then updating it, Bayesian optimization, aims
to gather observations about this function and the location
of the optimum. The three most popular implementations
of Bayesian optimization are Spearmint [7], which uses
a Gaussian process (GP) model for M; SMAC [20], which
uses random forests modified to yield an uncertainty esti-
mate; and the Tree Parzen Estimator (TPE) [6], which con-
structs adensity estimate over goodandbad instantiations
of each hyperparameter to build M. In practice, Bayesian
optimization has been shown [6, 7, 20, 21] to obtain better
results in fewer evaluations compared to grid search and
random search, due to the ability to reason about the qual-
ity of experiments before they are run.

Gradient-based optimization [3, 4, 15–17] can be ap-
plied for specific learning algorithms, where it is possible
to compute the gradient with respect to hyperparameters
and then optimize the hyperparameters using gradient de-
scent. The first usage of these techniques was focused on
neural networks.[16] Since then, these methods have been
extended to othermodels such as support vectormachines
[3] or logistic regression [4].

There are several reasons why grid search prevail as
the state of the art [2] despite decades of research into
global optimization and the several proposed hyperpa-
rameter optimization approaches:
– it is simple to implement and parallelization is trivial;
– it typically finds a better̂︀λ thanpurelymanual sequen-

tial optimization (in the same amount of time);
– it is reliable in low dimensional spaces.

2.2 Text categorization

Text categorization (or classification) is a supervised learn-
ing task, defined as assigning category labels to new doc-
uments based on the likelihood suggested by a training
set of labeled documents [10]. Text classification finds ap-
plications in a wide variety of domains in text mining.

162 | Raji Ghawi and Jürgen Pfeffer

Some examples of domains in which text classification is
commonly used include: News filtering and organization,
document organization and retrieval, opinionmining, and
email classification and spam filtering [22]. There are sev-
eral variants of text categorization problem. Binary cate-
gorization consider only two categories, and is commonly
used in tasks such as: information retrieval (relevant vs.
non-relevant documents), spam filtering (spam vs. non-
spam), and opinion mining (positive vs. negative). On the
other hand,multi-class categorization consider more than
two categories. It is commonly used in topic categoriza-
tion (e.g., sports, science, travel, business, etc), and email
routing.Other variants includehierarchical categorization,
where categories form a hierarchy.

An increasing number of learning approaches have
been applied on text categorization, including regression
models [10], nearest neighbor classification (k-NN) [23–
26], Bayesian probabilistic approaches [27–29], decision
trees [30, 31], neural networks [32–35] and Support Vector
Machines [36–38]. Among others, k-NN is one of the top-
performing approaches.

2.3 Nearest neighbor classification

The k-Nearest Neighbor (k-NN) is a well known similarity-
based learning approach that has been shown to be very
effective for a variety of problem domains including text
categorization [39]. The k-NN approach has been inten-
sively studied in pattern recognition [40], and has been
applied to text categorization since the early days of its
research [11–13]. It is known to be one of the most effec-
tive methods [10, 26]. The k-NN algorithm is quite simple,
it uses the training examples as a basis for computing sim-
ilarity. For a test document d to be classified, the algorithm
finds k examples in the training set that aremost similar to
d (k nearest neighbors), and this forms a neighborhood of
d. Majority voting among the documents in the neighbor-
hood is used to decide the classification for d, that is, the
algorithm assigns to d the category that is most common
in the neighbor documents.

The algorithm can be improved by considering the
distance of a neighbor (a closer neighbor has more influ-
ence). That is, the similarity score of each neighbor doc-
ument to the test document is used as the weight of the
categories of the neighbor document. If several of the k
nearest neighbors share a category, then the per-neighbor
weights of that category are added together, and the re-
sulting weighted sum is used as likelihood score of that
category with respect to the test document. By sorting the
scores of candidates categories, a ranked list is obtained

for the test document, and the top-ranking category is as-
signed as the correct category [10, 22, 41]. However, to ap-
ply k-NN we need to choose an appropriate value for k,
and the success of classification is very dependent on this
value. kNN is a lazy learningmethod as nomodel needs to
be built (learned) and nearly all computation takes place
at the classification stage. This prohibits it from being ap-
plied to areas where dynamic classification is needed for
a large repository [26]. Moreover, to apply kNN we need a
similarity function to measure similarity of two text docu-
ments.

2.4 VSM, TF.IDF, and BM25

The “Vector Space” model (VSM) is a text representation
model commonly used in Information Retrieval [42]. In
this vector model, each document is a vector and its ele-
ment corresponds to words in the whole document collec-
tion.AssumeavocabularyV of atomic terms that appear in
eachdocument, a text object (sentence, paragraph, or doc-
ument) is represented as a vector of real numbers v ∈ R|V|,
where each component corresponds to a term w ∈ V.

Basically, the values in the vector can be binary, 1 for
presence of the word and 0 for absence of the word. Alter-
natively, it is common to take the within document term
frequency (TF), the number of occurrences of the given
term in the given document, into consideration as a basic
factor for weighting documents: TFw,d = c(w, d). For the
similarity between documents, severalmeasures are avail-
able including 1-norm, 2-norm, cosine measure, and dot
product [42]. Using dot product, the similarity between a
query q and a document d is given by:

sim(q, d) = vq.vd =
∑︁

w∈q∩d

c(w, q)c(w, d)

However, the general idea behind the vector-space
representation is that the magnitude of a component
should be related to the “importance” of w in the docu-
ment represented by v, with higher weights assigned to
terms that are frequent in the document and infrequent in
the collection as a whole. Therefore, TF is typically com-
bined with the Inverse Document Frequency, IDF, which is
given by:

idf (w) = log
(︂
M − df (w) + 0.5
df (w) + 0.5

)︂
(1)

whereM is the number of document in the collection,
and df (w) is the document frequency of term w (count of
documents containing w). The TF.IDF scheme is the most

Eflcient Hyperparameter Tuning | 163

popularly used scheme in Information Retrieval [42, 43].
However, another effective way to assign weights to terms
when representing a document as a weighted term vector
is the popular term weighting method BM25 developed by
Robertson et al. [8, 9]. BM25 (and its variants, e.g. BM25F)
represent state-of-the-art TF-IDF-like retrieval functions
used in document retrieval. Mainly, BM25 extends TF.IDF
model in two aspects: 1) term frequency transformation,
and 2) document length normalization.

Term frequency transformation
In order to control the influence of high weights, while re-
taining the influence of small counts, term frequency tf is
computed using the transformation function:

tf = (k + 1).c(w, d)
k + c(w, d)

where parameter k > 0 is used to control the upper bound
which improves the robustness as it avoids overly reward-
ing the matching of any particular term.

Document length normalization
The term frequency is dependent on the document length,
i.e. the number of tokens in a document, and needs to
be normalized [44, 45] for two reasons: 1) the same term
usually occurs repeatedly in long documents; 2) long doc-
ument has usually a large size of vocabulary. As a con-
sequence, a weighting model without employing normal-
ization could produce biased weights with respect to the
document length, favouring long documents. A classical
method of document length normalization is the pivoted
normalization approach proposed by Singhal et. al. [44],
given by:

1 − b + b |d|
avgdl

where |d| is the length of document d in words, avgdl
is the average document length over the text collection,
and b ∈ [0, 1] is a free controlling parameter.

In summery, BM25 combines the previous ingredients
together, in the following similarity function:

sim(q, d) =
∑︁
w
c(w, q) (k + 1) c(w, d)

c(w, d) + k(1 − b + b |d|
avgdl)

.idf (w)

(2)
where c(w, d) and c(w, q) are the term frequencies of term
w in query q and document d respectively, |d| the length of
document d, avgdl is the average document length, idf (w)

is the inverse document frequency of term w (see equa-
tion (1)), and k and b are the BM25 parameters: k control-
ling term frequency saturation rate and b controlling doc-
ument length normalization. Note that k ≥ 0 and 0 ≤ b ≤ 1.

Although most of the work in information retrieval
has focused on how to assess the similarity of a keyword
query and a text document, rather than the similarity be-
tween two documents, many weighting schemes, includ-
ing BM25, can also be applied as similarity functions be-
tween two documents. For instance, in a text categoriza-
tion task using kNN approach, BM25 can be applied as a
similarity measure where the test document being classi-
fied is considered as a query, and compared to training
documents collection. A number of papers [46–49] have
used BM25 as a similarity measure for the kNN classifi-
cation approach in a number of different application do-
mains. Moreover, a number of papers [45, 50, 51] have ad-
dressed parameter tuning for BM25. In the next section,we
address in details the hyperparameter tuning problem for
kNN approach using BM25 similarity.

3 Conventional tuning
For simplicity, we consider multi-class single-label clas-
sification (each document belongs to exactly one cate-
gory). We assume that our approach can be generalized to
more complex classification tasks (multi-label, hierarchi-
cal) with appropriate modifications. Having a training set
of documents, we want to train a k-NN classifier for text
categorization using BM25 similarity measure. However,
we have three free parameters to which we need to set val-
ues, namely: k and b parameters of BM25 similarity mea-
sure; and t the parameter of nearest neighbor algorithm¹

The choice of those parameters affect the performance
of the classifier, and thus there values should be selected
carefully. The main way for selecting best values is to try a
wide range of values for each parameter and test the per-
formance. This process is called parameter tuning or op-
timization. To tune the parameters we need: 1) a valida-
tion set of documents: to test the performance, and 2) a
set/range of possible values for each parameter: to test the
different combinations of parameters.

In the following sections we will use the following no-
tations. The training and validation sets of documents of

1 Traditionally, the parameter of nearest neighbor algorithm is de-
noted k, hence it is so-called k-NN; but in this paperwe insteaddenote
it t to avoid confusion with k parameter of BM25.

164 | Raji Ghawi and Jürgen Pfeffer

a classification task are denoted Dtrain and Dvalid, respec-
tively. Moreover, the set of ground truth categories of the
validation set is denoted Gvalid. We use f to denote the
chosen performance measure used for validation, e.g., F1
measure.We use K, B, and T to denote the sets fromwhich
the hyperparameters k, b, and t are drawn, respectively.
Finally, we assume the following procedures are available:
– top(S, t): this procedure sorts S in ascending order

and returns the top t values.
– vote(S): counts the occurrence frequency of the ele-

ments in S, and returns the most recurrent element.
– BM25(d, d′, k, b): this procedure calculates BM25 sim-

ilarity between two documents d and d′ using param-
eters k and b.

– related(d, D): returns a subset of training documents
D that are related to an input document d (two docu-
ments are related if they share at least one word).

– eval(P, G): evaluates a set of predictions P against
a ground truth set G. This can be any typical perfor-
mancemetric e.g., Recall, Precision, F-measure, or Ac-
curacy; however, we used F-measure in our experi-
ments (Section 6).

In the following, we explain k-NN classification approach
using two simple procedures: applyKNN and classify.

3.1 applyKNN

Given a training and a validation sets of documents, Dtrain
and Dvalid, respectively, text categorization aims at assign-
ing for each document d ∈ Dvalid a category c. To do so, k-
NN approach seeks to find, for d ∈ Dvalid, the top-t similar
documents in Dtrain. We consider BM25 similarity that rely
on two parameters k and b. This approach is illustrated us-
ing the following procedure applyKNN which takes as in-
put: the training and validation sets of documents: Dtrain,
Dvalid, and three parameters: k, b and t. This procedure re-
turns as output a set of predictions p whose elements are
(document, category) pairs: (d, c)where c is the predicted
category of document d ∈ Dvalid. The predictions set p is
initially empty. For each document d in the validation set
Dvalid, the procedure classify is used to find a predicted
category c. The pair (d, c) is then appended to p.

3.2 classify

Theclassifyprocedure is the core component of k-NNap-
proach. It takes as input: a document d, the training set

Algorithm 1 applyKNN in Conventional Tuning
1: procedure applyKNN(Dtrain, Dvalid, k, b, t)
2: P ← ∅
3: for d ∈ Dvalid do
4: c ← classify(d, Dtrain , k, b, t)
5: P ← P ∪ {(d, c)}
6: return P

Dtrain, and the three parameters k, b and t. It returns as
output: a category c predicted for document d.

First, the procedure finds a set S of pairs (d′, σ)where
d′ is a training document and σ is the BM25 similarity be-
tween d and d′. The set S is initially empty. The procedure
related is used to find, among training documents Dtrain
those documents Rd that are related to the input document
d (share at least a word). For each document d′ in Rd, the
BM25 similarity σ is calculated between d and d′ using the
parameters k and b, and the pair (d′, σ) is appended to S.

Then, the procedure top is used to sort S in descend-
ing order based on similarity values (σ), and to return top
t elements. The result S′ is also a set of pairs (d′, σ) and
contain neighbor documents of d. The procedure vote is
then used to find the category c that is most common in
the documents in S′. Finally, the category c is returned as
the predicted category of the input document d.

Algorithm 2 classify in Conventional Tuning
1: procedure classify(d, Dtrain, k, b, t)
2: S ← ∅
3: Rd ← related(d, Dtrain)
4: for d′ ∈ Rd do
5: σ ← BM25(d, d′, k, b)
6: S ← S ∪ {(d′, σ)}
7: S′ ← top(S, t)
8: c ← vote(S′)
9: return c

It is important to note that classify procedure can
be executed in parallel (e.g., usingmulti-threads), because
the document d it classifies is independent of other docu-
ments in the validation set Dvalid. This parallelism is cru-
cial for our Fast Tuning method as we will see later.

3.3 Tuning procedure

The conventional way to tune parameters is exhaustive
search, where all possible combinations of parameter val-

Eflcient Hyperparameter Tuning | 165

ues are tried. For each combination the k-NN classification
is applied over the validation set, thus the predicted cate-
gories of input documents are evaluated against the actual
categories (ground truth). The evaluation can be done us-
ing a variety of performance measures (e.g., precision, re-
call, F1, etc). In our case, as we have three parameters to
optimize, the tuning procedurewillmainly consist of three
nested loops (one loop per parameter), and inside of these
loops the k-NN is applied.

Algorithm 3 illustrates the conventional tuning pro-
cess. The input is the training and validation datasets:
Dtrain, Dvalid, a validation ground truth set Gvalid and the
sets of parameter values: K, B, and T. The output is the op-
timal parameter values: ̂︀k ∈ K, ̂︀b ∈ B, and̂︀t ∈ T, and the
performance score at those optimal values: ̂︀f .

First, optimal parameters are initialized to the first el-
ement in their respective ranges, and the variable of best
performance score ̂︀f is set to some lowest values (e.g.,
zero). Then, three nested loops over the ranges of parame-
ter values are used to enumerate all possible combinations
of parameter values. For each such combination (k, b, t),
the procedure applyKNN is used to find the set of predic-
tions P, which comprises (document, category) pairs for
each document in the validation set Dvalid. Then, eval is
used to evaluate the predictions set P against ground truth
set Gvalid giving a performance score f . If this score f is
greater than the so-far-optimal score ̂︀f , then the current
parameter combination (k, b, t) is the best combination so
far, and thus those parameter values are designated as the
so-far-optimal parameters: (̂︀k, ̂︀b,̂︀t). Finally, by the end of
the procedure, the optimal performance score ̂︀f , and the
optimal parameters ̂︀k, ̂︀b, and̂︀t are returned as output.
Algorithm 3 Conventional Tuning
1: procedure Tuning(Dtrain, Dvalid, Gvalid, K, B, T)
2: ̂︀k ← K[0], ̂︀b ← B[0],̂︀t ← T[0]
3: ̂︀f ← 0
4: for k ∈ K do
5: for b ∈ B do
6: for t ∈ T do
7: P ← applyKNN(Dtrain , Dvalid , k, b, t)
8: f ← eval(P, Gvalid)
9: if f > ̂︀f then
10: ̂︀f ← f , ̂︀k ← k, ̂︀b ← b,̂︀t ← t
11: return ̂︀f , ̂︀k, ̂︀b,̂︀t

As discussed earlier, depending on the available com-
putational resources and the problem size, each evalu-
ation may take considerable time. Thus, the overall op-

timization process is time consuming. This leads to an
increasing need for efficient methods to optimize hyper-
parameters. In our case, the main issue is with calling
appyKNN procedure (which in turn calls classify proce-
dure) inside three nested loops over the three sets of pa-
rameter values K, B, and T. Thus, we aim at improving
the optimization process by rewriting the tuning proce-
dure such that we push the three nested loops inside the
applyKNN procedure.

4 Fast tuning
We propose an efficient method, called Fast Tuning, for
optimizing hyperparameters of k-NN approach with BM25
similarity. This method is based on the following idea:
We re-arrange the control-flow components of the conven-
tional tuning algorithm, by pushing the nested loops (over
sets of parameter values) to the inside of the classifypro-
cedure. Thus, we need to call applyKNN procedure only
once, instead of |K| × |B| × |T| times. Therefore, the pro-
cedure classify need to be called |Dvalid| times only (in-
stead of |K| × |B| × |T| × |Dvalid| times in conventional tun-
ing). Since classify can be executed in parallel, the time
needed for the overall tuning process will be dramatically
reduced.

Figure 1 illustrates how the control flow of tuning
procedure is arranged in conventional tuning and Fast
Tuning. The main difference is: in conventional tuning
nested loops over sets of parameter values are outside the
applyKNN procedure, whereas in Fast Tuning these loops
are inside the applyKNN procedure (more precisely, inside
the classify procedure).

Recall that classify procedure takes as input a doc-
ument d ∈ Dvalid and returns a predicted category for that
document as output. However, it assumes a fixed combi-
nation of parameters (k, b, t) which is given as input too.

In Fast Tuning method, classify procedure will han-
dle all possible combinations of parameters in one shot.
This implies that the input will not be a single combina-
tion (k, b, t), but three sets of parameter values K, B and
T. This also implies that the output will not be a single
predicted category, but a grid that associates each combi-
nation (k, b, t) ∈ K × B × T with a predicted category for
the input document basedon that parameter combination.
Therefore, appropriate data structures are crucial: Inter-
nally, for each ⟨k, b, t⟩ combination, we have a predicted
category for an input document. Thus,weneed a 3Dgrid to
hold those categories, and convey them to applyKNN. This
can be implemented as a 3-key value hash table, or nested

166 | Raji Ghawi and Jürgen Pfeffer

hash maps. In the following subsections we present the
new versions of the procedures applyKNN, classify and
Tuning in our Fast Tuning method.

Figure 1: Control flow of Fast Tuning method comparing to conven-
tional tuning

4.1 applyKNN

This procedure takes as input the training and validation
datasets: Dtrain and Dvalid respectively, and the sets of pa-
rameter values K, B, and T. It returns as output a 3-keys ta-
ble Ωwhose 3-keys are parameter combinations (k, b, t) ∈
K × B × T. This table associates each such combination
with a set P of (document, category) pairs. The table Ω is
initially empty. For each document d in the validation set
Dvalid, the procedure classify is used to classify the doc-
ument d for each combination (k, b, t) using the training
dataset Dtrain, thus classify returns a 3-key table Z that
associates with each combination (k, b, t) a predicted cat-
egory c for the document d. Then, for each combination
(k, b, t) the (document, category) pair (d, c) is inserted
properly into Ω table.

Although Ω and Z tables look similar as they both
have 3 keys: k, b, and t, there are some differences be-
tween them as illustrated in Figure 2. First, the procedure
uses a single Ω table, but as many Z tables as the docu-
ments in Dvalid. Second, in Z table, each (k, b, t) cell has
as value a single predicted category c, whereas in Ω table,
each (k, b, t) cell has as value a set of (document, category)
pairs.

Algorithm 4 applyKNN in Fast Tuning
1: procedure applyKNN(Dtrain, Dvalid, K, B, T)
2: Ω[.][.][.]← ∅ ◁ 3D table
3: for d ∈ Dvalid do
4: Z ← classify(d, Dtrain , K, B, T)
5: for k ∈ K do
6: for b ∈ B do
7: for t ∈ T do
8: c ← Z[k][b][t]
9: Ω[k][b][t]← Ω[k][b][t] ∪ {(d, c)}
10: return Ω

Figure 2: Structure of Z and Ω tables

4.2 classify

This procedure takes as input a document d, the training
set Dtrain, and three sets of parameters K, B and T. It re-
turns as output a 3-keys table Z that associates each com-
bination (k, b, t) ∈ K × B × T with a category c predicted
for document d. The procedure consists of two parts, the
first aims at finding an auxiliary 2-key table Q, while the
second uses Q to compute the output 3-key table Z.

The auxiliary table Q associates each combination
(k, b)with a set S of (d′, σ)pairs,where d′ is a training doc-
ument and σ is the BM25 similarity between d and d′. The
table Q is initially empty. The procedure related is used
to find, among trainingdocumentsDtrain those documents
Rd that are related to the input document d. For each doc-
ument d′ in Rd, and for each combination (k, b) ∈ K × B,
the BM25 similarity σ is calculated between d and d′ us-
ing the parameters k and b, and the pair (d′, σ) is properly
inserted into Q (i.e., appended to Q[k][b]).

In the second part of the procedure, the output table
Z is initially empty. For each combination (k, b), the cor-
responding set S of (d′, σ) pairs is extracted from Q and
sorted in descending order based on similarity values (σ).
Then, for each value of the third parameter t ∈ T, the pro-
cedure top is used to find the top t elements of S. The result
S′ is also a set of pairs (d′, σ) and contain neighbor docu-

Eflcient Hyperparameter Tuning | 167

ments of d. The procedure vote is then used to find the
category c that is most common in the documents in S′.
This category c is designated as the predicted category of
the input document d for the current combination (k, b, t),
hence it is inserted properly into the table Z, which is fi-
nally returned as output.

Algorithm 5 classify in Fast Tuning
1: procedure classify(d, Dtrain, K, B, T)
2: Q[.][.]← ∅ ◁ 2D table
3: Rd ← related(d, Dtrain)
4: for d′ ∈ Rd do
5: for k ∈ K do
6: for b ∈ B do
7: σ ← BM25(d, d′, k, b)
8: Q[k][b]← Q[k][b] ∪ {(d′, σ)}
9: Z[.][.][.] = ∅ ◁ 3D table
10: for k ∈ K do
11: for b ∈ B do
12: S ← Q[k][b]
13: for t ∈ T do
14: S′ ← top(S, t)
15: c ← vote(S′)
16: Z[k][b][t]← c
17: return Z

4.3 Tuning procedure

The main Tuning procedure in Fast Tuning method is de-
picted in Algorithm 6. It is basically very similar to Tuning
procedure in conventional tuning. The input is the training
and validation datasets: Dtrain, Dvalid, a validation ground
truth set Gvalid and the sets of parameter values: K, B,
and T, whereas the output is the optimal parameter val-
ues: ̂︀k ∈ K, ̂︀b ∈ B and ̂︀t ∈ T, and the performance
score at those optimal values: ̂︀f . The major difference is
that applyKNN procedure is called only once, before the
three nested loops over the sets of parameters K, B, and
T. Here, applyKNN procedure returns a 3-key table Ω that
associates each (k, b, t) ∈ K × B × T with a set P of predic-
tions (d, c) where each validation document d has a pre-
dicted category c. Inside the three nested loops, the set of
predictions P for each parameter combination (k, b, t) is
extracted from Ω, and evaluated against the ground truth
Gvalid using eval procedure, giving a performance score
f . If this score f is greater than the so-far-optimal scorê︀f , then the current parameter combination (k, b, t) is the

best combination so far, and thus those parameter values
are designated as the so-far-optimal parameters: (̂︀k, ̂︀b,̂︀t).
Finally, by the end of the procedure, the optimal perfor-
mance score ̂︀f , and the optimal parameters ̂︀k, ̂︀b, and̂︀t are
returned as output.

Algorithm 6 Fast Tuning
1: procedure Tuning(Dtrain, Dvalid, Gvalid, K, B, T)
2: ̂︀k ← K[0], ̂︀b ← B[0],̂︀t ← T[0]
3: ̂︀f ← 0
4: Ω ← applyKNN(Dtrain , Dvalid , K, B, T)
5: for k ∈ K do
6: for b ∈ B do
7: for t ∈ T do
8: P ← Ω[k][b][t]
9: f ← eval(P, Gvalid)
10: if f > ̂︀f then
11: ̂︀f ← f , ̂︀k ← k, ̂︀b ← b,̂︀t ← t
12: return ̂︀f , ̂︀k, ̂︀b,̂︀t

5 Fast tuning with cross-validation
So far, we have seen Fast Tuning technique for a single
training-validation pair. Typically, hyperparameter opti-
mization is performed with cross-validation. Cross valida-
tion is model validation technique for assessing how the
model will generalize to an independent data set.

A common type of cross-validation is n-fold cross-
validation, where the original sample is randomly parti-
tioned into n equal sized subsamples. Of the n subsam-
ples, a single subsample is retained as the validation data
for testing the model, and the remaining n −1 subsamples
are used as training data. The cross-validation process is
then repeated n times, with each of the n subsamples used
exactly once as the validation data. The n results can then
be averaged to produce a single estimation.

In our case of text categorization, n-fold cross valida-
tion turns out to be a set of n classification tasks ∆. Each
task δ ∈ ∆ consists of a training and a validation sets of
documents Dδtrain, D

δ
valid, and a validation ground truth

Gδvalid. If each task is used independently to tune the hy-
perparameters, we will have different values for k, b and t
parameters per task. Butwewould like to have for each pa-
rameter a single, optimal value for all classification tasks
together. Therefore, we need to rewrite the tuning proce-
dure such that it optimizes the hyperparameters k, b and

168 | Raji Ghawi and Jürgen Pfeffer

t jointly for all the classification tasks. Now we revisit the
procedure tuning, and adjust it in order to adapt to cross-
validation. The procedures applyKNN and classify stay
the same, as described in Algorithms 4 and 5, respectively.

With cross-validation, we have a set of classification
tasks ∆, instead of a single pair of training-validation data
sets. Thus, the input of Tuning procedure consists of ∆ and
the three sets of parameter values K, B, and T. The output
consists, as usual, of the optimal parameter values: ̂︀k ∈
K, ̂︀b ∈ B and ̂︀t ∈ T, and the performance score at those
optimal values: ̂︀f .

Since now we have multiple classification tasks, the
procedureapplyKNN is called for each task δwith the train-
ing and validation datasets of this task Dδtrain, D

δ
valid as ar-

guments (besides K, B and T). The resulting 3-key tableΩδ
is associated with an identifier of the task δ in an auxiliary
table X. Recall that the tableΩδ associates each parameter
combination (k, b, t) ∈ K ×B×T with a set P of predictions
(d, c) where each validation document d has a predicted
category c.

Now, inside the three nested loops over the sets of pa-
rameter values, for each task δ ∈ ∆, the 3-key table Ωδ is
extracted from the auxiliary table X, then the set of pre-
dictions P for each parameter combination (k, b, t) is ex-
tracted from Ωδ, and evaluated against the ground truth
of that task Gδvalid using eval procedure, giving a perfor-
mance score fδ. This performance score is averaged over
all tasks: f = 1

n
∑︀

δ∈∆ fδ. If this average performance score
f is greater than the so-far-optimal scorê︀f , then the current
parameter combination (k, b, t) is the best combination so
far, and thus those parameter values are designated as the
so-far-optimal parameters: (̂︀k, ̂︀b,̂︀t). Finally, by the end of
the procedure, the optimal performance score ̂︀f , and the
optimal parameters ̂︀k, ̂︀b, and̂︀t are returned as output.

6 Experiments

6.1 Datasets

In our experimentsweuse twodata sets. Thefirst one is the
News Popularity in Multiple Social Media Platforms Data
Set² [52]. It is a large data set of news items and their re-
spective social feedback onmultiple platforms: Facebook,
Google+ and LinkedIn. The collected data relates to a pe-
riod of 8 months, between November 2015 and July 2016,

2 https://archive.ics.uci.edu/ml/datasets/News+Popularity+in+
Multiple+Social+Media+Platforms

Algorithm 7 Fast Tuning with cross-validation
1: procedure Tuning(∆, K, B, T)
2: X[.]← ∅
3: for δ ∈ ∆ do
4: Ωδ ← applyKNN(Dδtrain , D

δ
valid , K, B, T)

5: X[δ]← Ωδ
6: ̂︀k ← K[0], ̂︀b ← B[0],̂︀t ← T[0]
7: ̂︀f ← 0
8: for k ∈ K do
9: for b ∈ B do
10: for t ∈ T do
11: f ← 0
12: for δ ∈ ∆ do
13: Ωδ ← X[δ]
14: Pδ ← Ωδ[k][b][t]
15: fδ ← eval(Pδ , Gδvalid)
16: f ← f + fδ
17: f ← f /n
18: if f > ̂︀f then
19: ̂︀f ← f , ̂︀k ← k, ̂︀b ← b,̂︀t ← t
20: return ̂︀f , ̂︀k, ̂︀b,̂︀t
accounting for about 90,000 news items on four differ-
ent topics: Economy, Microsoft, Obama and Palestine. For
each news item, we take the Title and the Headline as a
document, and the Topic as category. The average docu-
ment length is about 20 words per document. The second
dataset is the popular BBC dataset³ [53]. It consists of 2225
documents from the BBC news website corresponding to
stories in five topical areas from 2004-2005: business, en-
tertainment, politics, sport, and tech. The average docu-
ment length is about 200 words. For both datasets, the
classification task is to classify a text document into one
of the topical areas.

6.2 Setup

All experiments are conducted on a PC operated by Linux
Ubuntu 16.04 (64-bit), and equipped with an Intel Core i7-
6700 CPU@3.40GHzwith 8 cores, and 32GB of RAM.Algo-
rithms are implemented in Java 8. Parallelism is achieved
via multi-threading, where an Executor Service⁴ is used
over a fixed thread pool of 8 threads. Both conventional
tuning and Fast Tuning methods are parallelised.

3 http://mlg.ucd.ie/datasets/bbc.html
4 https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/
ExecutorService.html

https://archive.ics.uci.edu/ml/datasets/News+Popularity+in+Multiple+Social+Media+Platforms
https://archive.ics.uci.edu/ml/datasets/News+Popularity+in+Multiple+Social+Media+Platforms
http://mlg.ucd.ie/datasets/bbc.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorService.html

Eflcient Hyperparameter Tuning | 169

The document preprocessing pipeline we used com-
prises tokenization, and normalization (no stemming).
Normalization consists of: 1) removal of non-ASCII tokens,
2) conversion to lowercase, and 3) removal of stopwords⁵,
punctuation and numbers.

6.3 Experiments design

The main aim of conducted experiments is to evaluate the
efficiency of our Fast Tuningmethod compared to the con-
ventional tuning. We have conducted five types of experi-
ments using both News Popularity and BBC datasets. The
first three experiments use a single classification task (a
single training-validation pair of datasets), whereas the
fourth experiment uses 5-fold cross-validation (five classi-
fication tasks). In the first experiment, we fix the three sets
of parameter values (K, B, and T), and vary the dataset
size. In the second experiment, we fix the dataset size,
and vary one set of parameters while fixing the remaining
two (thus experiments has three parts). In the third experi-
ment,we also fix the dataset size, and vary the three sets of
parameters simultaneously. In the fourth experiment, we
use 5-fold cross-validation, we fix the three sets of param-
eter values (K, B, and T), and vary the dataset size. The
fifth experiment is dedicated to compare Fast Tuning to a
simple two steps tuning. We fix the three sets of parameter
values (K,B, and T), andvary thedataset size. Table 1 sum-
marizes this design of experiments and shows the sizes of
parameter sets and datasets in each experiment.

Table 1: Experiments design

Exp. |K| |B| |T|
dataset size

tasks
BBC NwP

1 10 10 10 200..2000 1
2-1 2..20 10 10

1000 5000 12-2 10 2..20 10
2-3 10 10 2..20
3 2..20 1000 1
4 10 10 10 100..1000 500..5000 5
5 9 11 10 500..5000 1

In every experiment wemeasure the time (in seconds)
needed for parameter tuning using conventional tuning
and our Fast Tuning method. To compare these times we
used the following two metrics:

5 we used the default English stopwords list from
https://www.ranks.nl/stopwords

Speed Up: it measures how much Fast Tuning is faster
than conventional tuning:

SU = θCθF

Time Reduction: it measures the percentage of time re-
duced when Fast Tuning is used comparing to conven-
tional tuning.

TR = (θC − θFθC
) × 100%

where θC and θF are tuning time using conventional and
fast methods, respectively.

Since the objective of the experiments is to measure
and compare the tuning time for conventional tuning and
Fast Tuning methods, we do not report in our experiments
the optimal values of hyperparameters k, b and t, nor the
values of classification performance metric, as those val-
ues are not relevant to the objective of the experiments,
and have no impact on the results. However, it is worth
mentioning that, in every experiment, both the conven-
tional tuning and Fast Tuning methods find exactly the
same optimal parameter values, and the same value of the
classification performance metric.

6.4 Results

6.4.1 Experiment 1

In this experiment, we use fixed sets of parameters: K =
B = {0, 0.1, · · · , 0.9}, and T = {3, 5, · · · , 21} (hence
|K| = |B| = |T| = 10), and several samples of the datasets
of different sizes ranging from 100 to 2000 documents. For
each sample, we use 80% of documents as a training set,
and the remaining 20% as a validation set. We measured
time needed for parameter tuning (find optimal parame-
ters) for every sample using conventional tuning and our
Fast Tuning methods, and calculated the speed up (SU)
and time reduction (TR) factors. Table 2 shows a snippet
of obtained results, while the complete results are listed
in Appendix A.1. Figure 3 depicts how the tuning time (in
seconds) changes over the dataset size.

170 | Raji Ghawi and Jürgen Pfeffer

Figure 3: Experiment 1; variable dataset size, fixed K, B and T

Table 2: Experiment 1

Dataset Tuning Time (s)
SU TR %

Size Conv. Fast
BBC

500 535.226 29.605 18.08 94.5
1000 2150.680 116.208 18.51 94.6
1500 4691.521 244.595 19.18 94.8
2000 9196.227 477.491 19.26 94.8

News Popularity
500 5.082 0.311 16.34 93.9
1000 19.689 1.414 13.92 92.8
1500 44.972 3.228 13.93 92.8
2000 78.586 5.741 13.69 92.7

We observe that the tuning time increases very rapidly
in conventional method, while this increase is much
slower in Fast Tuning. For instance, for 2000 documents
of BBC dataset, conventional tuning took more than two
and half hours, while Fast Tuning took less than 8 min-
utes. The Speed-Up factor is in the range 16 to 20 for BBC
dataset (i.e., Fast Tuning is 16 ∼ 20× faster), and in 10 to
17 for News-Popularity set. In general, Fast Tuning is at
least an order of magnitude faster than conventional tun-
ing. The efficiency of Fast Tuning is also clear from the time
reduction factor which is at least 90%, i.e., using Fast Tun-
ing, we can save more than 90% of the time needed using
conventional tuning.

6.4.2 Experiment 2

In this experiment, we use a fixed-size sample of data
sets (BBC: 1000 documents, News-Popularity: 5000), each
sample is split into [80%, 20%] training-validation sets.
We use variable-size parameter sets. This experiment com-
prises three parts, in each part we vary one set of parame-
ters while fixing the remaining two. First, in part 2-1, we
vary K and fix B and T; then in part 2-2, we vary B and
fix K and T, finally in part 2-3, we vary T and fix K and
B. In all these three parts, the size of fixed sets is always
10, while the size of the variable set ranges from 2 to 20. As
usual, we measure the tuning time for both conventional
and Fast Tuning methods. The detailed results are listed
in Appendix A.2. Figure 4 shows how tuning time changes
with respect to the size of the variable parameter set.

It is clear that both conventional and Fast Tuning have
linear behavior with respect to the size of parameter sets.
However, Fast Tuning is much faster than conventional
tuning. To validate this finding, we fit the results of exper-
iment 2 to linear models⁶, and find the coefficients (slope
of the straight line) for each case, as shown in Table 3. We
assumed the intercept to be 0, since when the size of the
parameter is 0 the tuning time is also considered 0.Wefind
that in all cases, the coefficients of Fast Tuning models are
much smaller than their corresponding coefficients of con-
ventional tuning; and this again confirms the efficiency of
fast tuning method.

Table 3: Coeflcients of linear models of experiments 2

BBC News Popularity
Conv. Fast Conv. Fast

Expr. 2-1 218.91 11.66 48.68 3.45
Expr. 2-2 238.26 12.81 45.20 3.33
Expr. 2-3 238.72 9.15 47.27 2.42

Moreover, we observed that in experiment 2-3 where
we vary only the set T, the tuning time of Fast Tuning
method is almost constant. To validate this observation,
we first plot the results on a logarithmic scale, as shown
in Figure 5. This demonstrates that changes of fast tuning
is constant indeed, comparing to the increased change of
conventional tuning.

6 usingPythonmodule:sklearn.linear_model.LinearRegression

Eflcient Hyperparameter Tuning | 171

Figure 4: Results of experiment 2. Fixed dataset size (BBC: 1000 documents, News-Popularity: 5000). Left column (expr.2-1): variable K,
fixed B, T. Middle column (expr.2-2): variable B, fixed K, T. Right column (expr.2-3): variable T, fixed K, B.

Figure 5: Results of experiment 2-3; logarithmic scale; fixed dataset
size, variable K; fixed B and T

Wealso calculated the standard deviation of each case
as shown in Table 4. We find that the standard deviation
values for the case of Fast Tuning in experiment 2-3 are very
close to 1 comparing to the rest of cases. This also confirms

the stability of Fast Tuning with respect to changes of the
size of set T.

Table 4: Standard deviation of the results of experiments 2

BBC News Popularity
Conv. Fast Conv. Fast

Expr. 2-1 1186.95 64.09 284.65 20.83
Expr. 2-2 1390.09 73.22 259.43 19.80
Expr. 2-3 1371.24 1.32 283.59 2.68

6.4.3 Experiment 3

In this experiment we also used fixed-size samples of the
datasets (1000 documents), and we vary the three sets of
parameters K, B, and T simultaneously. That is, we run the
experiment 10 times, at each run, the parameter sets K, B
and T have the same size, namely 2, 4, · · · , 20. We mea-
sure tuning time for both conventional and Fast Tuning
methods, and compute speed up (SU) and time reduction
(TR) factors. The complete results are listed in Appendix
A.3, and plotted in Figure 6.

172 | Raji Ghawi and Jürgen Pfeffer

Figure 6: Results of experiment 3; fixed dataset size; simultane-
ously varying parameter sets K, B and T

We observe how the tuning time increases with the
size of the parameter sets. This increase is very rapid
in conventional method, whereas it is slow in our fast
method. For example, for BBC dataset, when the grid size
is 203, the conventional method took 18,700 seconds (> 5
hours), while Fast Tuningmethod took only 520 sec (∼ 8.5
min), giving a Speed-Up factor of about 36, and a Time-
Reduction of about 97%. Moreover, we observe that the
Speed-Up and Time Reduction factors are not steady, they
are actually increasing too. Figure 7 depicts how these fac-
tors change.

(a) Speed Up

(b) Time Reduction

Figure 7: Speed-Up and Time-Reduction factors; with variable sizes
of K, B and T

The Speed-Up factor increases linearly with the size
of the parameter grid; while the Time Reduction factor in-
creases in a logarithmic manner. This means that the Fast
Tuning method is not only faster than the conventional
method, but also becomes even more faster when the grid
size increases. We can also observe that the values of both
factors are higher for BBC dataset than for News Popular-
ity. Recall that BBC dataset has longer documents than in
News Popularity dataset, thus, we conclude that fast tun-
ing method is also relatively more faster with longer docu-
ments.

6.4.4 Experiment 4

In this experiment, we use 5-fold cross-validation. We use
a fixed sets of parameters, each of size 10, and varying-size
samples of data sets. FromBBC,wedraw 10 samples of size
100up to 1000, and fromNewsPopularitywedraw 10 sam-
ples of size 500up to 5000documents. Each sample is split
into (80%, 20%) training-validation sets. We run conven-

Eflcient Hyperparameter Tuning | 173

tional tuning and our Fast Tuning method with cross val-
idation (Section 5). The complete results are listed in Ap-
pendix A.4, and depicted in Figure 8.

Figure 8: Results of experiment 4; fixed parameter sets; variable-
size dataset samples

Once more, the results show how our Fast Tuning
method outperforms the conventional method. For BBC
dataset, the mean Speed-Up factor is about 18, and the
mean Time-Reduction factor is about 94.5%. For News
Popularity dataset, themeanSpeed-Up factor is about 13.4,
and the mean Time-Reduction factor is about 92%.

6.4.5 Experiment 5

In this experiment, we compare Fast Tuning to a simple
optimization of two-steps:
1. grid search of BM25 parameters k and b
2. grid search of kNN parameter t given the best configu-

ration of BM25.

This simple optimization reduces the tuning time compar-
ing to the conventional approach. However, it does not
guarantee to find the optimal parameter values that con-
ventional and Fast Tuning find, because it does not scan

the entire 3D grid K × B × T. We use a fixed sets of param-
eters: K = {1.2, 1.3, · · · , 2.0}, B = {0.0, 0.1, · · · , 1.0},
T = {5, 7, · · · , 23}, and varying-size samples of data sets.
From News Popularity we draw 10 samples of size 500 up
to 5000 documents. Each sample is split into (80%, 20%)
training-validation sets.

Table 5 shows the optimal parameter values and F1
scores for the two-steps optimization and Fast Tuning. We
observe that the optimal parameter values found by the
two-steps optimization are different from those found by
the Fast Tuningmethod. Consequently, the F1-measure ob-
tainedby two-steps optimization is lower thanwhatweob-
tain using Fast Tuning, for almost all trials, as shown in
Figure 9a. More interestingly, Fast Tuning outperforms the
two-steps optimization even in terms of the tuning time,
as shown in Table 6 and Figure 9b.

Table 5: Results of experiment 5: optimal parameter values and F1
scores for two-steps optimization and Fast Tuning.

size Two Steps Fast Tuninĝ︀k ̂︀b ̂︀t ̂︁F1 ̂︀k ̂︀b ̂︀t ̂︁F1
500 1.2 0.0 15 0.9304 1.2 0.0 15 0.9304
1000 1.3 0.7 15 0.9397 1.4 1.0 19 0.9501
1500 1.2 1.0 21 0.9601 1.2 0.3 23 0.9601
2000 1.4 1.0 23 0.9575 1.9 1.0 21 0.9626
2500 1.8 0.9 19 0.9619 2.0 1.0 23 0.9659
3000 1.2 0.1 15 0.9633 1.9 1.0 23 0.9683
3500 1.5 0.3 17 0.9586 1.9 1.0 23 0.9700
4000 2.0 0.8 23 0.9612 1.2 1.0 23 0.9663
4500 1.7 0.8 23 0.9622 1.7 0.6 23 0.9644
5000 1.8 0.7 23 0.9619 1.7 1.0 23 0.9639

Although the two-steps optimization is very fast com-
paring to the conventional tuning, however, it still can not
beat our Fast Tuning method which is faster than the two-
stepsmethodwith a speed-up ratio of 1.64 on average, and
38% time reduction factor (Table 6).

174 | Raji Ghawi and Jürgen Pfeffer

Table 6: Experiment 5. Tuning Time

Size
Tuning Time (s)

SU TR %
2Step. Fast

500 0.885 0.668 1.32 24.52
1000 2.187 1.500 1.46 31.41
1500 4.542 2.801 1.62 38.33
2000 8.645 5.400 1.60 37.54
2500 11.809 8.378 1.41 29.05
3000 18.902 10.431 1.81 44.82
3500 25.921 14.306 1.81 44.81
4000 33.930 19.210 1.77 43.38
4500 43.525 23.801 1.83 45.32
5000 53.760 29.936 1.80 44.32
avg. 1.643 38.35

(a) F1 measure

(b) Tuning Time

Figure 9: Fast Tuning vs. two-steps optimization

7 Discussion and future work
The results of conducted experiments show that Fast Tun-
ing is a promising technique to speed up the process of
hyperparameter optimization. The efficiency of this tech-
nique is due to a smart combination of three simple ingre-
dients:

1. separation of independent calculations,
2. utilization of an appropriate data structure, and
3. parallelisation.

Since the computation of BM25 similarity is indepen-
dent from hyperparameter t of kNN, it is possible to pre-
calculate it for all combinations of k and b values, and to
store it in an indexed structure,which is accessedandused
later to perform kNN classification for all t values. From
an algorithmic point of view, this arrangement reduces the
complexity of the tuning algorithm, in terms of parallel
jobs, from |K|×|B|×|T|×|Dvalid| jobs in conventional tuning
to only |Dvalid| jobs in Fast Tuning.

Here, each job is mainly a call to classify procedure,
which comprises, in conventional tuning, a call to BM25
procedure |Dtrain| times, and one call to top and vote pro-
cedures,whereas in Fast Tuning, it comprises a call toBM25
procedure |K|× |B|× |Dtrain| times and to top and vote pro-
cedures |K| × |B| × |T| times.

More formally, let α = |K|, β = |B|, 𝛾 = |T|, δ =
|Dvalid|. Let η denote the average number of related (train-
ing) documents to a validation document. Let c1 and c2
denote the costs of calling the procedures related and
BM25, respectively, and let c3 denotes the cost of calling
top and vote procedures (together). The number of paral-
lel jobs in conventional tuning is α.β.𝛾.δ, which is reduced
to δ in Fast tuning. Moreover, the cost of each job in con-
ventional tuning is c1 + η.c2 + c3, which increases to be
c1 + α.β(η.c2 + 𝛾.c3) in Fast tuning. However, the overall
cost, which is number of jobsmultiplied by the job cost, of
conventional tuning is still larger than of the Fast tuning,
as shown in Table 7. The difference (conventional cost mi-
nus Fast cost) corresponds to the gain in tuning time that
Fast Tuning method provide, and is given by:

δ[(α.β.𝛾 − 1).c1 + α.β.η(𝛾 − 1).c2]

which is proportional to the number of validation docu-
ments δ and to the size of the grid α, β, and 𝛾.

It is also worthy to note that in the case of two-steps
tuning mentioned in experiment 5, the number of paral-
lel jobs is (α.β + 𝛾).δ, which is much less than α.β.𝛾.δ in
conventional tuning.

Eflcient Hyperparameter Tuning | 175

Table 7: Complexity of conventional tuning and Fast tuning

Conv. Fast
Jobs α.β.𝛾.δ δ
Job cost c1 + η.c2 + c3 c1 + α.β(η.c2 + 𝛾.c3)
Total cost α.β.𝛾.δ.c1+ δ.c1+

α.β.𝛾.δ.η.c2+ α.β.δ.η.c2+
α.β.𝛾.δ.c3 α.β.𝛾.δ.c3

diff. δ[(α.β.𝛾 − 1).c1 + α.β.η(𝛾 − 1).c2]

The Fast Tuning method can be easily extended to
other hyperparameter optimization approaches, such as
Random Search [2]. For instance, with random search,
combinations of hyberparameters are generated at ran-
dom, and each combination is evaluated independently,
where the best performing combination is considered as
the optimal one. In our case of text categorization using
kNN and BM25, let Y be the set of randomly-generated pa-
rameters combinations (k, b, t), then in conventional tun-
ing with random search the procedure applykNNwould be
called for each combination (k, b, t) ∈ Y. To implement
Fast Tuning technique for Random Search, we need to
push the loop over Y inside classify procedure as shown
in Figure 10.

Figure 10: Control flow of Fast Tuning method comparing to conven-
tional tuning, when applied for Random Search approach

We assume that Fast Tuning technique will outper-
form conventional tuning also for Random Search ap-
proach. However, a thorough investigation of Fast Tun-
ing technique for Random Search is still necessary, and
we consider it as a future work, that will also consider a
comparison between Grid Search and Random Search ap-
proaches.

Despite the important advantages that Fast Tuning
method provides over conventional tuning in terms of time
gain, it still has some drawbacks. The efficiency of Fast
Tuning method comes with a cost in terms ofmemory con-

sumption. For instance, the 3-key value hash tables Z and
Ω used in Fast Tuning procedure consume a large amount
of main memory. Overall, this makes Fast Tuning require
morememory comparing to the conventional tuning.How-
ever, this trade-off between time gain and memory con-
sumption deserves a dedicated comparative study which
we will conduct in future work.

8 Conclusion
In this paper, we have presented an efficient method,
called Fast Tuning, for hyperparameter optimization with
grid search for text categorization using k-NN approach
and BM25 similarity. The main idea behind this method is
to re-arrange the control flow of the conventional tuning
algorithm such that the time-expensive nested loops over
theparameter sets are pushed inside the classificationpro-
cedure. As consequence, the classification procedure need
to be executed once, instead of as many times as the size
of the parameter grid (|K| × |B| × |T| in kNN approach).
Moreover, since the classification procedure is easy to im-
plement in parallel, the overall tuning time is dramatically
reduced comparing to the time of conventional tuning. We
also addressedhowwe can apply our tuningmethod along
with cross-validation.

In order to test the efficiency of our tuning method,
we run an extensive set of experiments using two popular
datasets andvarious settings: varyingdataset size, varying
sets of parameters, with cross-validation, etc. In all exper-
iments our Fast Tuning method outperforms the conven-
tionalmethod. Our primary finding is that Fast Tuning is at
least an order of magnitude faster than conventional tun-
ing. This Speed-Up factor exceeds 36 in some experiments.
Our method reduces the tuning time by at least 90% in
most cases. Another finding is that our method becomes
even more faster with larger grids and longer documents.

Although we only study k-NN classification approach
using BM25 similarity, we assume that the principle of Fast
Tuning presented here can be adapted for any approach
of text categorization or information retrieval, and for any
similarity measure. Therefore, future works should ad-
dress the generalizationof themethod to other approaches
and other similarity measures. Moreover, the method will
be easily extended to other hyperparameter optimization
approaches, such as random search.

176 | Raji Ghawi and Jürgen Pfeffer

References
[1] Claesen M., Moor B.D., Hyperparameter Search in Machine

Learning, CoRR, abs/1502.02127, 2015
[2] Bergstra J., Bengio Y., Random Search for Hyper-parameter Op-

timization, Journal of Machine Learning Research, 13(1), 2012,
281–305

[3] Chapelle O., Vapnik V., Bousquet O., Mukherjee S., Choos-
ing Multiple Parameters for Support Vector Machines, Machine
Learning, 46(1-3), 2002, 131–159, 10.1023/A:1012450327387

[4] Do C.B., Foo C.S., Ng A.Y., Eflcient Multiple Hyperparameter
Learning for Log-linearModels, In Proceedings of the 20th Inter-
national Conference onNeural Information Processing Systems,
NIPS’07, Curran Associates Inc., USA, 2007, 377–384

[5] Wang Z., Hutter F., Zoghi M., Matheson D., De Freitas N.,
Bayesian Optimization in a Billion Dimensions via Random Em-
beddings, Journal of Artificial Intelligence Research, 55(1), 2016,
361–387

[6] Bergstra J., Bardenet R., Bengio Y., Kégl B., Algorithms for Hyper-
parameter Optimization, In Proceedings of the 24th Interna-
tional Conference on Neural Information Processing Systems,
NIPS’11, Curran Associates Inc., USA, 2011, 2546–2554

[7] Snoek J., Larochelle H., Adams R.P., Practical Bayesian Opti-
mization of Machine Learning Algorithms, In Proceedings of the
25th International Conference onNeural Information Processing
Systems - Volume 2, NIPS’12, USA, 2012, 2951–2959

[8] Robertson S., Walker S., Some Simple Effective Approximations
to the 2-Poisson Model for Probabilistic Weighted Retrieval, In
Proceedings of the 17th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval,
SIGIR ’94, Springer-Verlag New York, Inc., New York, NY, USA,
1994, 232–241

[9] Robertson S., Zaragoza H., The Probabilistic Relevance Frame-
work: BM25 andBeyond, Foundations and Trends in Information
Retrieval, 3(4), 2009, 333–389, 10.1561/1500000019

[10] Yang Y., Liu X., A Re-examination of Text Categorization Meth-
ods, in Proceedings of the 22nd annual international ACM SI-
GIR conference on Research and development in information re-
trieval, ACM, 1999, 42–49

[11] Masand B., Linoff G., Waltz D., Classifying News Stories Using
Memory Based Reasoning, In Proceedings of the 15th Annual
International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR ’92, ACM, New York, NY,
USA, 1992, 59–65, 10.1145/133160.133177

[12] Yang Y., Expert Network: Effective and Eflcient Learning from
Human Decisions in Text Categorization and Retrieval, in B.W.
Croft, C.J. van Rijsbergen, eds., SIGIR ’94, Springer London, Lon-
don, 1994, 13–22

[13] Iwayama M., Tokunaga T., Cluster-based Text Categoriza-
tion: A Comparison of Category Search Strategies, In Pro-
ceedings of the 18th Annual International ACM SIGIR Con-
ference on Research and Development in Information Re-
trieval, SIGIR ’95, ACM, New York, NY, USA, 1995, 273–280,
10.1145/215206.215371

[14] Domhan T., Springenberg J.T., Hutter F., Speeding Up Automatic
Hyperparameter Optimization of Deep Neural Networks by Ex-
trapolation of Learning Curves, In Proceedings of the 24th In-
ternational Conference on Artificial Intelligence, IJCAI’15, AAAI
Press, 2015, 3460–3468

[15] Bengio Y., Gradient-Based Optimization of Hyperparameters,
Neural Computation, 12, 2000, 1889–1900

[16] Larsen J., Hansen L.K., Svarer C., Ohlsson M., Design and reg-
ularization of neural networks: the optimal use of a validation
set, inNeural Networks for Signal Processing [1996] VI. Proceed-
ings of the 1996 IEEE Signal Processing SocietyWorkshop, IEEE,
1996, 62–71

[17] Maclaurin D., Duvenaud D., Adams R., Gradient-based hyper-
parameter optimization through reversible learning, in Interna-
tional Conference on Machine Learning, 2015, 2113–2122

[18] Jones D.R., Schonlau M., Welch W.J., Eflcient Global Optimiza-
tion of Expensive Black-Box Functions, Journal of Global Opti-
mization, 13(4), 1998, 455–492, 10.1023/A:1008306431147

[19] Brochu E., Cora V.M., de Freitas N., A Tutorial on Bayesian Opti-
mization of Expensive Cost Functions, with Application to Active
User Modeling and Hierarchical Reinforcement Learning, CoRR,
abs/1012.2599, 2010

[20] Hutter F., Hoos H.H., Leyton-Brown K., Sequential Model-Based
Optimization for General Algorithm Configuration, in C.A.C.
Coello, ed., Learning and Intelligent Optimization, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011, 507–523

[21] Thornton C., Hutter F., Hoos H.H., Leyton-Brown K., Auto-WEKA:
Combined selection and hyperparameter optimization of clas-
sification algorithms, In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and datamin-
ing, ACM, 2013, 847–855

[22] Aggarwal C.C., Zhai C., A Survey of Text Classification Algo-
rithms, Springer US, Boston, MA, 2012, 163–222, 10.1007/978-
1-4614-3223-4_6

[23] Yang Y., Chute C.G., An Example-basedMappingMethod for Text
Categorization and Retrieval, ACM Trans. Inf. Syst., 12(3), 1994,
252–277, 10.1145/183422.183424

[24] Cohen W.W., Hirsh H., Joins that Generalize: Text Classification
Using WHIRL, In Proceedings of the Fourth International Confer-
ence on Knowledge Discovery and Data Mining (KDD-98), New
York City, New York, USA, August 27-31, 1998, 1998, 169–173

[25] Han E.H., KarypisG., Kumar V., Text CategorizationUsingWeight
Adjusted k-Nearest Neighbor Classification, In Proceedings of
the 5th Pacific-Asia Conference on Knowledge Discovery and
Data Mining, PAKDD ’01, Springer-Verlag, Berlin, Heidelberg,
2001, 53–65

[26] Guo G., Wang H., Bell D., Bi Y., Greer K., Using kNNModel for Au-
tomatic Text Categorization, Soft Computing, 10(5), 2006, 423–
430, 10.1007/s00500-005-0503-y

[27] Chakrabarti S., Dom B., Agrawal R., Raghavan P., Using Tax-
onomy, Discriminants, and Signatures for Navigating in Text
Databases, In Proceedings of the 23rd International Conference
on Very Large Data Bases, VLDB ’97, Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1997, 446–455

[28] Koller D., Sahami M., Hierarchically Classifying Documents Us-
ing Very Few Words, In Proceedings of the Fourteenth Interna-
tional Conference on Machine Learning, ICML ’97, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1997, 170–178

[29] Lewis D.D., Naive (Bayes) at Forty: The Independence Assump-
tion in Information Retrieval, In Proceedings of the 10th Eu-
ropean Conference on Machine Learning, ECML’98, Springer-
Verlag, Berlin, Heidelberg, 1998, 4–15, 10.1007/BFb0026666

[30] Lewis D.D., Catlett J., Heterogeneous uncertainty sampling for
supervised learning, inMachine LearningProceedings, Elsevier,
1994, 148–156

http://dx.doi.org/10.1023/A:1012450327387
http://dx.doi.org/10.1561/1500000019
http://dx.doi.org/10.1145/133160.133177
http://dx.doi.org/10.1145/215206.215371
http://dx.doi.org/10.1023/A:1008306431147
http://dx.doi.org/10.1007/978-1-4614-3223-4_6
http://dx.doi.org/10.1007/978-1-4614-3223-4_6
http://dx.doi.org/10.1145/183422.183424
http://dx.doi.org/10.1007/s00500-005-0503-y
http://dx.doi.org/10.1007/BFb0026666

Eflcient Hyperparameter Tuning | 177

[31] Cohen W.W., Singer Y., Context-sensitive Learning Methods for
Text Categorization, ACM Trans. Inf. Syst., 17(2), 1999, 141–173,
10.1145/306686.306688

[32] Ng H.T., Goh W.B., Low K.L., Feature Selection, Perceptron
Learning, and a Usability Case Study for Text Categoriza-
tion, In Proceedings of the 20th Annual International ACM SI-
GIR Conference on Research and Development in Information
Retrieval, SIGIR ’97, ACM, New York, NY, USA, 1997, 67–73,
10.1145/258525.258537

[33] Wiener E., O. Pedersen J., S. Weigend A., A Neural Network Ap-
proach to Topic Spotting, SDAIR, 1995, 317–332

[34] Ruiz M.E., Srinivasan P., Hierarchical Neural Networks for Text
Categorization, In Proceedings of the 22Nd Annual International
ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’99, ACM, New York, NY, USA, 1999, 281–
282, 10.1145/312624.312700

[35] Kowsari K., Brown D.E., Heidarysafa M., Meimandi K.J., Gerber
M.S., Barnes L.E., HDLTex: Hierarchical Deep Learning for Text
Classification, CoRR, abs/1709.08267, 2017

[36] Joachims T., Text Categorization with Support Vector Ma-
chines: Learning with Many Relevant Features, In Proceed-
ings of the 10th European Conference on Machine Learning,
ECML’98, Springer-Verlag, Berlin, Heidelberg, 1998, 137–142,
10.1007/BFb0026683

[37] Joachims T., A Statistical Learning Learning Model of Text Clas-
sification for Support Vector Machines, In Proceedings of the
24th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’01, ACM, New
York, NY, USA, 2001, 128–136, 10.1145/383952.383974

[38] Zhang W., Yoshida T., Tang X., Text Classification Based on
Multi-word with Support Vector Machine, Know.-Based Syst.,
21(8), 2008, 879–886, 10.1016/j.knosys.2008.03.044

[39] Yang Y., An Evaluation of Statistical Approaches to
Text Categorization, Information Retrieval, 1(1), 1999,
10.1023/A:1009982220290

[40] Dasarathy B.V., Nearest Neighbor (NN) Norms: NN Pattern Clas-
sification Techniques, IEEE Computer Society Press, Los Alami-
tos, CA, 1991

[41] Yang Y., A Study of Thresholding Strategies for Text Catego-
rization, In Proceedings of the 24th Annual International ACM
SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’01, New York, NY, USA, 2001, 137–145,
10.1145/383952.383975

[42] SaltonG., Automatic Text Processing: The Transformation, Anal-
ysis, and Retrieval of Information by Computer, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1989

[43] Fang H., Tao T., Zhai C., A Formal Study of Information Retrieval
Heuristics, In Proceedings of the 27th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’04, ACM, New York, NY, USA, 2004, 49–56,
10.1145/1008992.1009004

[44] Singhal A., Buckley C., Mitra M., Pivoted Document Length Nor-
malization, In Proceedings of the 19th Annual International ACM
SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’96, ACM, New York, NY, USA, 1996, 21–29,
10.1145/243199.243206

[45] He B., Ounis I., Term Frequency Normalisation Tuning for BM25
and DFR Models, in D.E. Losada, J.M. Fernández-Luna, eds.,
Advances in Information Retrieval, Springer Berlin Heidelberg,
2005, 200–214

[46] Murata M., Kanamaru T., Shirado T., Isahara H., Using the K
Nearest Neighbor Method and BM25 in the Patent Document
Categorization Subtask at NTCIR-5, In Proceedings of the Fifth
NTCIR Workshop Meeting on Evaluation of Information Access
Technologies: Information Retrieval, Question Answering and
Cross-Lingual InformationAccess, NII, Tokyo, Japan, 2005, 324–
331

[47] GengX., Liu T.Y., Qin T., Arnold A., Li H., ShumH.Y., QueryDepen-
dent Ranking Using K-nearest Neighbor, In Proceedings of the
31st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’08, ACM, New
York, NY, USA, 2008, 115–122, 10.1145/1390334.1390356

[48] Hu H., Zhu R., Wang Y., FengW., Tan X., Huang J.X., A Best Match
KNN-based Approach for Large-scale Product Categorization, in
ACM SIGIR Workshop on eCommerce (SIGIR 2018 eCom Data
Challenge), ACM, New York, NY, USA, 2018

[49] Wang X.l., Zhao H., Lu B.l., Enhanced K-Nearest Neighbour
Algorithm for Large-scale Hierarchical Multi-label Classifica-
tion, In Proceedings of the Joint ECML/PKDD PASCAL Workshop
on Large Scale Hierarchical Classification, volume 5, Athens,
Greece, 2011

[50] He B., Ounis I., A Study of Parameter Tuning for Term Frequency
Normalization, In Proceedings of the Twelfth International Con-
ference on Information and Knowledge Management, CIKM ’03,
ACM, New York, NY, USA, 2003, 10–16, 10.1145/956863.956867

[51] TaylorM., Zaragoza H., Craswell N., Robertson S., Burges C., Op-
timisationMethods for Ranking FunctionswithMultiple Parame-
ters, In Proceedingsof the 15thACM International Conferenceon
Information and Knowledge Management, CIKM ’06, ACM, New
York, NY, USA, 2006, 585–593, 10.1145/1183614.1183698

[52] Moniz N., Torgo L.,Multi-Source Social Feedback of OnlineNews
Feeds, CoRR, 2018

[53] Greene D., Cunningham P., Practical Solutions to the Problem
of Diagonal Dominance in Kernel Document Clustering, In Proc.
23rd International Conference on Machine learning (ICML’06),
ACM Press, 2006, 377–384

http://dx.doi.org/10.1145/306686.306688
http://dx.doi.org/10.1145/258525.258537
http://dx.doi.org/10.1145/312624.312700
http://dx.doi.org/10.1007/BFb0026683
http://dx.doi.org/10.1145/383952.383974
http://dx.doi.org/10.1016/j.knosys.2008.03.044
http://dx.doi.org/10.1023/A:1009982220290
http://dx.doi.org/10.1145/383952.383975
http://dx.doi.org/10.1145/1008992.1009004
http://dx.doi.org/10.1145/243199.243206
http://dx.doi.org/10.1145/1390334.1390356
http://dx.doi.org/10.1145/956863.956867
http://dx.doi.org/10.1145/1183614.1183698

178 | Raji Ghawi and Jürgen Pfeffer

A Appendices

A.1 Results of Experiment 1

Dataset Tuning Time (s)
SU TR %

Size Conv. Fast
BBC

200 91.919 5.613 16.38 93.9
400 315.586 18.491 17.07 94.1
600 780.428 43.429 17.97 94.4
800 1370.827 73.632 18.62 94.6
1000 2150.680 116.208 18.51 94.6
1200 3044.546 164.330 18.53 94.6
1400 4056.449 214.020 18.95 94.7
1600 5388.106 281.662 19.13 94.8
1800 6739.049 351.180 19.19 94.8
2000 9196.227 477.491 19.26 94.8
AVG. 18.236 94.5

News Popularity
200 1.139 0.102 11.17 91.0
400 3.294 0.265 12.43 92.0
600 6.458 0.440 14.68 93.2
800 12.480 0.908 13.74 92.7
1000 19.689 1.414 13.92 92.8
1200 27.771 1.997 13.91 92.8
1400 37.559 2.677 14.03 92.9
1600 48.487 4.572 10.61 90.6
1800 61.729 4.738 13.03 92.3
2000 78.586 5.741 13.69 92.7
AVG. 13.685 92.63

Table 8: Experiment 1; fixed parameter sets; variable datasets.

A.2 Results of Experiment 2

Results of Experiment 2 - 1

|K| Tuning Time (s) SU TR %Conv. Fast
2 438.559 27.265 16.09 93.8
4 996.262 52.927 18.82 94.7
6 1596.518 76.357 20.91 95.2
8 1942.167 95.429 20.35 95.1
10 2217.448 118.125 18.77 94.7
12 2594.170 140.630 18.45 94.6
14 3033.776 163.186 18.59 94.6
16 3450.672 185.262 18.63 94.6
18 3880.480 207.484 18.70 94.7
20 4315.408 230.489 18.72 94.7
AVG. 18.803 94.67

Table 9: Results of experiment 2-1; BBC dataset (|D| = 1000); fixed
dataset size, fixed B and T, variable K

|K|
Tuning Time (s)

SU TR %
Conv. Fast

2 97.506 6.750 14.45 93.1
4 196.220 13.081 15.00 93.3
6 285.090 19.163 14.88 93.3
8 377.503 25.247 14.95 93.3
10 476.304 32.304 14.74 93.2
12 555.022 39.085 14.20 93.0
14 661.839 46.485 14.24 93.0
16 833.548 58.817 14.17 92.9
18 882.841 63.738 13.85 92.8
20 967.177 70.047 13.81 92.8
AVG. 14.429 93.07

Table 10: Results of experiment 2-2; News Popularity dataset (|D| =
5000); fixed dataset size, fixed B and T, variable K

Eflcient Hyperparameter Tuning | 179

Results of Experiment 2 - 2

|B|
Tuning Time (s)

SU TR %
Conv. Fast

BBC (|D| = 1000)
2 429.376 25.850 16.61 94.0
4 876.606 49.647 17.66 94.3
6 1391.142 79.105 17.59 94.3
8 1913.551 105.117 18.20 94.5
10 2393.510 126.706 18.89 94.7
12 2866.498 154.668 18.53 94.6
14 3352.408 179.058 18.72 94.7
16 3818.868 210.430 18.15 94.5
18 4293.188 226.813 18.93 94.7
20 4762.854 254.429 18.72 94.7
AVG. 18.2 94.5

News Popularity (|D| = 5000)
2 93.004 6.954 13.37 92.5
4 179.900 12.646 14.23 93.0
6 269.904 18.908 14.27 93.0
8 362.696 25.295 14.34 93.0
10 456.562 31.947 14.29 93.0
12 539.946 38.693 13.95 92.8
14 630.192 45.896 13.73 92.7
16 721.767 53.464 13.50 92.6
18 810.643 60.414 13.42 92.5
20 908.746 69.241 13.12 92.4
AVG. 13.822 92.75

Table 11: Results of experiment 2-2; fixed dataset size, fixed K and
T, variable B

Results of Experiment 2 - 3

|T|
Tuning Time (s)

SU TR %
Conv. Fast

BBC
2 475.908 126.720 3.76 73.4
4 965.548 127.827 7.55 86.8
6 1428.281 128.409 11.12 91.0
8 1909.354 126.799 15.06 93.4
10 2375.907 129.023 18.41 94.6
12 2862.697 127.654 22.43 95.5
14 3346.357 125.495 26.67 96.2
16 3831.825 129.781 29.53 96.6
18 4287.822 127.303 33.68 97.0
20 4775.804 129.795 36.79 97.3
AVG. 20.5 92.18

News Popularity
2 90.610 29.254 3.10 67.7
4 179.550 29.658 6.05 83.5
6 269.697 30.166 8.94 88.8
8 359.262 30.420 11.81 91.5
10 449.353 31.573 14.23 93.0
12 540.550 32.583 16.59 94.0
14 629.257 33.084 19.02 94.7
16 763.427 34.164 22.35 95.5
18 878.833 35.827 24.53 95.9
20 978.757 37.836 25.87 96.1
AVG. 15.249 90.07

Table 12: Results of experiment 2-3; News Popularity dataset (|D| =
5000); fixed dataset size, fixed K and B, variable T

A.3 Results of Experiment 3

K, B, T Tuning Time (s)
SU TR %

Size Conv. Fast
2 18.287 7.633 2.40 58.3
4 159.185 22.969 6.93 85.6
6 511.590 47.124 10.86 90.8
8 1191.031 82.581 14.42 93.1
10 2296.797 131.775 17.43 94.3
12 4003.506 185.129 21.63 95.4
14 6349.800 253.599 25.04 96.0
16 9574.152 329.810 29.03 96.6
18 13660.224 424.822 32.16 96.9
20 18699.881 520.614 35.92 97.2
AVG. 19.582 90.42

Table 13: Results of experiment 3; BBC dataset; fixed dataset size;
simultaneously varying parameter sets K, B, and T

180 | Raji Ghawi and Jürgen Pfeffer

K, B, T Tuning Time (s)
SU TR %

Size Conv. Fast
2 0.918 0.446 2.06 51.4
4 5.044 1.065 4.74 78.9
6 16.111 1.909 8.44 88.2
8 36.337 3.583 10.14 90.1
10 72.520 5.382 13.47 92.6
12 123.088 8.282 14.86 93.3
14 213.557 11.853 18.02 94.4
16 297.604 15.551 19.14 94.8
18 428.518 18.705 22.91 95.6
20 606.055 26.421 22.94 95.6
AVG. 13.672 87.49

Table 14: Results of experiment 3; News Popularity dataset; fixed
dataset size; simultaneously varying parameter sets K, B, and T

A.4 Results of Experiment 4

Dataset Tuning Time (s)
SU TR %

Size Conv. Fast
BBC

100 138.075 6.951 19.86 95.0
200 511.316 27.972 18.28 94.5
300 1076.775 60.163 17.90 94.4
400 1773.102 99.562 17.81 94.4
500 2806.150 158.154 17.74 94.4
600 4249.985 213.543 19.90 95.0
700 5376.069 311.219 17.27 94.2
800 7162.647 410.314 17.46 94.3
900 9454.979 553.155 17.09 94.1
1000 12472.158 654.435 19.06 94.8
AVG. 18.237 94.51

News Popularity
500 31.107 1.585 19.63 94.9
1000 100.966 7.081 14.26 93.0
1500 211.485 19.307 10.95 90.9
2000 379.301 31.952 11.87 91.6
2500 589.498 47.611 12.38 91.9
3000 865.104 72.220 11.98 91.7
3500 1237.458 97.362 12.71 92.1
4000 1680.611 129.273 13.00 92.3
4500 2186.986 159.612 13.70 92.7
5000 2752.455 201.666 13.65 92.7
AVG. 13.413 92.38

Table 15: Results of experiment 4; 5-fold cross-validation; fixed sets
of parameters; variable-size dataset samples

	1 Introduction
	2 Foundations and related works
	2.1 Hyperparameter optimization
	2.2 Text categorization
	2.3 Nearest neighbor classification
	2.4 VSM, TF.IDF, and BM25

	3 Conventional tuning
	3.1 applyKNN
	3.2 classify
	3.3 Tuning procedure

	4 Fast tuning
	4.1 applyKNN
	4.2 classify
	4.3 Tuning procedure

	5 Fast tuning with cross-validation
	6 Experiments
	6.1 Datasets
	6.2 Setup
	6.3 Experiments design
	6.4 Results
	6.4.1 Experiment 1
	6.4.2 Experiment 2
	6.4.3 Experiment 3
	6.4.4 Experiment 4
	6.4.5 Experiment 5

	7 Discussion and future work
	8 Conclusion
	A Appendices
	A.1 Results of Experiment 1
	A.2 Results of Experiment 2
	A.3 Results of Experiment 3
	A.4 Results of Experiment 4

