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Abstract: The classical result of describing harmonic maps from surfaces into symmetric spaces of reductive
Lie groups [9] states that the Maurer-Cartan form with an additional parameter, the so-called loop parameter,
is integrable for all values of the loop parameter. As a matter of fact, the same result holds for k-symmetric
spaces over reductive Lie groups, [8].

In this survey we will show that to each of the five different types of real forms for a loop group of Agz) there
exists a surface class, for which some frame is integrable for all values of the loop parameter if and only if it
belongs to one of the surface classes, that is, minimal Lagrangian surfaces in CP?, minimal Lagrangian sur-
faces in CH?, timelike minimal Lagrangian surfaces in CH?, proper definite affine spheres in R*> and proper
indefinite affine spheres in R, respectively.
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Introduction

Following the important work of Zakharov-Shabat [40] and Ablowitz-Kaup-Newell-Segur [1] in the 1970s, sys-
tematic constructions of hierarchies of integrable differential equations were developed. They were associ-
ated to a complex simple Lie algebra with various reality conditions given by finite order automorphisms.
Mikhailov [27] first studied their reductions with various reality conditions given by finite order automor-
phisms. Drinfeld-Sokolov [18] constructed generalized KdV and mKdV hierarchies for any affine Kac-Moody
Lie algebra using this ZS-AKNS scheme. In particular, the sine-Gordon equation and the sinh-Gordon equa-
tion are two real forms of the —1-flow or Toda-type equation in the mKdV-hierarchy for the simplest affine
algebra Agl), which is a 2-dimensional extension of the loop algebra * of sl,C.

It is amazing that these two equations have already appeared in classical differential geometry for con-
stant negative Gauss curvature surfaces (or pseudo-spherical surfaces) and constant mean curvature sur-
faces. For example, Bicklund [2] constructed his famous transformation for pseudo-spheres around 1883,
which produced many explicit solutions of the sine-Gordon equation wy, = sin w. This transformation and
the higher flows in the hierarchy can be regarded as hidden symmetries of such submanifolds or differen-
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tial equations. It has ever since become a central problem in geometry how to find special submanifolds in
higher dimension and/or codimension which admit similar geometric transformations and have a lot of hid-
den symmetries, [35]. It is now natural to expect the answer to lie in integrable systems, as we will illustrate
it further using next the rank 2 affine algebra Agz), which is a 2-dimensional extension of a loop subalgebra
of s13C, twisted by an outer automorphism g, that is Asl3C,. Here the outer automorphism ¢ has order 6 and
it is defined by

o(g)(A) =6(g(e'N)), forg(A) e Asl5C,

with € = e™/3 (the natural primitive sixth root of unity) and & is the automorphism of sl5C given by
01 O
5(X) = — Ad(diag(e?, €, -1)Po) X" with Po=|1 0 0
0 0 -1

Then a fundamental question for the affine algebra Agz ) is, how many different real forms it has. In our case
this means how many different real forms of Asl3C, there exist. The answer was given by [3, 5, 22]: there are
5 different real form involutions;

(sce) (A =-g(1/)
(ocz)  T(8)(A) = ~Ad(L,1)g(1/A)
(%) T(&)(A) = - Ad(Po)g(N)

(o) T(8)(A) = Ad(L.Po) g(1/),
Okie) T(8)(A) =8(h),

where I, ; = diag(1, 1, -1) and Py is as just above. Moreover, I denotes I or I, 1.

It was Tzitzéica [39] who found a special class of surfaces in Euclidean geometry, which turns out to
be equivalent to indefinite affine spheres in equi-affine geometry. They are related to the real form invo-
lution (W;s3) given by 7(g)(A) = g(A) above. More precisely, the coordinate frame of an affine sphere
with the additional loop parameter is fixed by the above real form involution. More recently, minimal La-

grangian surfaces in CP? or special Lagrangian cone in C> have been related to the involution (ocp2) given
_T
by 7(g)(A) = -g(1/A) , see [32] or [14].

In this survey, we relate all real forms of the affine algebra Agz) to classes of surfaces:
—

(ecp2) -g(1/A) , .

(ecy2)  —Ad(I,1)g(1/A) , Minimal Lagrangian surfaces in CH?, [28],

T
’

Minimal Lagrangian surfaces in CP?, [31],

—T

(%CH%) -Ad(Po)g(A) , Timelike minimal Lagrangian surfaces in CH?, [13],
(o43) Ad(I.Py) g(1/A), Elliptic or hyperbolic affine spheres in R>, [16],
OHp3) g(), Indefinite affine spheres in R, [12],

where I, denotes I for the elliptic case I,,; for the hyperbolic case. Then each of the classes of surfaces can
be characterized by some Tzitzéica equation? :

P o P2 20 cP?
(ocp2) wzz +e" -[Q7 [e =0, Q@ =0,

cH: ot CH? 2 —20C CH?
(oc2) wzz -e +|1Q7 e =0, Q" =0,
CH2 wCE e_ZWCH—If

H? ,CH} CH; _ ,CH}
('X‘CH%) Wy ' —e Q(c 1R = 0, Q '=R,;'=0,

A w®’ A2 20t B A
(ep3) wzz +He” +]Q° |"e =0, (H=+1), Q3 =0,

2 The classical Tzitzéica equation is the one for the indefinite affine spheres. But also equations differing from the classical one
by signs, like the equation above, are frequently called Tzitzéica equation.
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a2 Q¥ R4’ _ g

(Hipz) wuw —e +e QiAB = RiA3 =0.

’ v - u -

Note that QCH%, RCH? take values in iR and QlAB, R"Aa take values in R, respectively.

It is known that the above equations are different real forms of the —1-flow in the corresponding Agz ).
mKdV hierarchy, or the complex Agz) -Toda field equation; and the real groups are exactly the automorphism
groups of the corresponding geometries.

The fifth equation (¥k;43 ) has been studied in the context of gas dynamics [21] and pseudo-hyper-complex
structures on R? x RP? [19], and it is also related to harmonic maps from R!'! to the symmetric space
SL3R/S0,,1R. The fourth equation (e,3) above can help construct semi-flat Calabi-Yau metrics and exam-
ples for the SYZ Mirror Symmetry Conjecture, see [20, 29]. Specially the local radially symmetric solutions
turn out to be Painlevé III transcendents. It is a striking universal feature of integrable systems that the same
equation often arises from many unrelated sources. To further convince the reader of the great varieties here,
we mention that minimal surfaces and Hamiltonian stationary Lagrangian surfaces in CP? and CH? [23] also
correspond to solutions of integrable systems associated to s[3C, but with different automorphisms (of order
3 and order 4 respectively).

One should also observe that in [26] already all real forms of the affine algebra Ail) have been related
to constant mean curvature/constant Gaussian curvature surfaces in the Euclidean 3-space, the Minkowski
3-space or the hyperbolic 3-space.

The systematic construction from Lie theory above is just the starting point. It naturally gives rise to loop
group factorizations, which in turn provide a method for constructing explicit solutions and symmetries of
the equations. For example the classical Backlund and Darboux transformations have been generalized to
dressing actions via loop group factorizations, see for examples Terng-Uhlenbeck [36] or Zakharov-Shabat
[40]. The classical Weierstrass representation of minimal surfaces has also been generalized by Dorfmeister-
Pedit-Wu, [15], using Iwasawa type loop group factorizations. Many interesting questions naturally arise by
translating between holomorphic/meromorphic data and properties of special geometric objects or special
solutions of integrable PDEs. Although the original DPW method only considered surfaces of conformal type
(that is, associated with elliptic PDEs), it has also been generalized to surfaces of asymptotic line type (that
is, associated with hyperbolic PDEs), such as constant negative Gaussian curvature surfaces given by sine-
Gordon equation, [37]. Another way to get a very special class of solutions, called the finite type or finite
gap solutions, has beautiful and deep links to geometries of algebraic curves or Riemann surfaces and stable
bundles over them, the so-called Hitchin systems.

The paper is organized as follows: After discussing in the following sections one geometry for each real
form of Agz) we will compare their similarities and differences in Section 6 by the loop group method. To be
self-contained and also to put this survey into a larger context, we discuss the classification of our real forms
in the last Section 7 from a geometric point of view.

1 Minimal Lagrangian surfaces in CP?

In this section, we discuss a loop group formulation of minimal Lagrangian surfaces in the complex projective
plane CP?. The detailed discussion can be found in [31] or [30]. In the following, the subscripts z and z denote
the derivatives with respect to z = x + iy and z = x — iy, respectively, that is,

fz:azfzzg(g—ig—’;), fzzazf::%(%ﬂg{/).

1.1 Basic definitions

We first consider the five-dimensional unit hypersphere S° as a quadric in C3;

S ={veC®|(v,v)=1},
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where ( , ) is the standard Hermitian inner product in C> which is complex anti-linear in the second variable.
Then let CP? be the two-dimensional complex projective plane and consider the Hopf fibration 77 : S° — CP?,
given by v — C*v. We point out that the tangent space at u € S° is

TuS® = {veC’ | Re(v,u) = 0}.

Moreover, the space Hy = {v € T,S> | (v, u) = 0} is a natural horizontal subspace. The form (, ) is a positive
definite Hermitian inner product on #, with real and imaginary components

(»)=80)+iQ(,).
Hence g is positive definite and Q is a symplectic form. Put
Us={A: c’-C | C-linear satisfying (Au, Av) = (u, v)},

and SU; = {AeU;s | detA=1}. WenoteU; =S 1. SU; and that these are connected real reductive Lie groups
with their centers consisting of multiples of the identity transformation. Then the groups Us and SU3 act
naturally on S° and CP?. The group Us acts transitively on both spaces. Moreover, this action is equivariant
relative to 77 and holomorphic on CPP?. Using the base point e3 = (0,0, 1) it is easy to verify

$° =U;3/U; x {1}, CP?=U3/U; x S,

1.2 Horizontal lift and fundamental theorem

We now consider a Lagrangian immersion f(CIFDZ from a Riemann surface M into CP?. Then it is known that on
2 2
an open and contractible subset D of M, there exists a special lift into S, that is, fcp :D— S, o fCP =
2
£ |p, and
CP* .CP?
(df= ,f~ )=0 (11)

holds. The lift fCPZ wizll be called a horizontal lift of fCPZ. The induced metric of f(CP2 is represented, by using
the horizontal lift fm as , ,
ds? = Re(dfF, dfF ).

Since the induced metric is Riemannian, we can assume that f@P’2 is a conformal immersion from M to CP?,
We take z = x + iy to be its complex coordinates on D ¢ M. Then the horizontality condition (1.1) implies
( EPZ fwz ) =H{ 9”2 fmz ) = 0, and taking the derivative with respect to z of the first term and z of the second
term, respectively, we infer:

> >

(75T = (157,157 > 0. (12)
Moreover, since f@p2 is conformal, we have
(7,15 = 0. 13)
Therefore there exists a real function ™®* : D — R such that
(f;CPZ, fE]P’Z) = (f;CPZ, §p2> = e“’wz, and ds’= Ze“’CLPZ dzdz. (1.4)
LY = (5L

It is also easy to see from (
and x of the second term, respectively, that

= 0, and the derivative with respect to y of the first term

CP* .CP?
Qi Lfy )=0,
2
that is, fCP is a Legendre immersion. We now consider the coordinate frame

_14CP op? _1,CP cp?  Cp?
Fepr = (e72Y 7 ,e 2% §57 7). (1.5)
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. . . . =T
It is straightforward to see that Fp takes values in Us, thatis, Frp2 Fepz = 1.
For what follows it will be convenient to hft the mean curvature vector of f‘CP from T e )(C]P’Z to

(C]P CP?* ;.CP* -f(C]P’

S, 1tis easy to verlfy that the vectors f=* Jif L ifs i span (T jor2 Z)S )€ and project un-

Tierrz)
der dm to f CP L ifE szp 0 respectlvely In this sense we 1dent1fy the mean curvature vector H =

(& 2
lee’?“’ C +H21e 70" féCP offw w1ththevectorH:H11e’?“’ 9” + Hyie™ T f}cp.

Lemma 1.1. The coordinate frame Fp: of a Lagrangian immersion into CP? is a smooth map Fepz : D — Us.
In particular, det Fp2 is a smooth map from D to S L. The Maurer-Cartan form

Aep2 = f(&;z d}-cpz = .7'—(5%2 (f@pz )de + .7'—(5%2 (fc]pz )de = Z/{(CPZC].Z + VCPZ dz (16)

can be computed as

1, CP? 2 P a———
lwf P Ly m e2? 1w +m QPP e-w® 0
2 12 1,,CP?
Uepz = | -QF e " 7§wz “ie 0 | Vew= ¢ 1o +m e [, (A7)
W lwwz
0 —e2 0 _e2 0 0

CP? CP? CP? ;
where ¢ = (H,f;" ), m=(H,f; ), H denotes the mean curvature vector, and Q- is defined by
2 2 2
Q™ = (i, 1) (1.8)
Here we have used (H, f;-CPZ) = —(f;CPZ, H)and (H, ffchz) = —(ff—chz, H). Moreover, m = —{ holds.

Corollary 1.2. For acp: in (1.6), the following statements hold, see for example [30, Section 2.1]:
2

1. The mean curvature 1-form O'CIP =Q(H, dfCP ) satisfies lUCP (H,df*"") = 1trace(acp2).

2. The acp: satisfies the Maurer-Cartan equations if and only if

cP 1.2\ o | ACPP2 20
W 1+ 5|H| e’ —-|Q7 e =0, 1.9)

CP

2 2 cp?
dog =0, Qi e?* =-(te™” ). (1.10)
Then the fundamental theorem for Lagrangian immersions into CP? is stated as follows:

Theorem 1.3 (Fundamental theorem for Lagrangian immersions into CP?). Assume fm2 :D — CP!isa
conformal Lagrangian immersion and let f(CPZ denote one of its horizontal lifts and Fp2 the corresponding
coordinate frame (1.5). Then acp: = FepdFcpe = Uppdz + Vipadz with Upp: and Vep: have the form (1.7) and
their coefficients satisfy the equatlons stated in (1.9) and (1.10).

Conversely, given functions ww H on D together with a cubic dzﬁerentlal QCP dz> and a 1-form UC]P =
¢dz+mdz on D such that the conditions (1.9) and (1.10) are satisfied (with (H, {5 ) replaced by m and (H, §=" )
replaced by ?), then there exists a solution Fp2 € Uz such that f@pz = Fp2€3 is a horizontal lift of the conformal
Lagrangian immersion f%" = it o <%

1.3 Minimal Lagrangian surfaces in CP?

If we restrict to minimal Lagrangian surfaces, then the equations (1.6) and (1.7) show that the determinant of
the coordinate frame is a constant (in S 1). So we can, and will, assume from here on that the horizontal lift of
the given minimal immersion into CPP? is scaled (by a constant in S*) such that the corresponding coordinate
frame Fip2 is in SUs. It is clear that the Maurer-Cartan form acp: = ]—EH},Z dFepz = Upp2dz + Vep2dZz of the
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minimal Lagrangian surface is given by

%wgpz 0 e%wmz _ % wgpz We_wwz 0
Usp = [ @F e o™ 10 0 |, Vem=| o 1,08 oo™ |,
0 et et 0 0
and the integrability conditions are
o + e \Q(C]p2|2e_2‘”m2 -0, QF -o. (112)

The first equation (1.12) is commonly called the Tzitzéica equation. From the definition of QW2 in (1.8), it is
clear that ) .

is the holomorphic cubic differential of the minimal Lagrangian surface f@pz.

Remark 1.4. The fundamental theorem in Theorem 1.3 is still true for a minimal Lagrangian immersions into
CP2.

1.4 Associated families of minimal surfaces and flat connections

From (1.12), it is easy to see that there exists a one-parameter family of solutions of (1.12) parametrized by
A € §; The corresponding family {wépz, Cépz }rest then satisfies

A CP? A -3 ACP? ;.3
Wep =W, Cep=A"Q dz’.

As a consequence, there exists a one-parameter family of minimal Lagrangian surfaces {f(éﬂ,,2 }est such that

fépz| o1 = fC%. The family {fépz} 1est will be called the associated family of f°* * Let ﬁé]}pz be the coordi-
nate frame of fépz. Then the Maurer-Cartan form &éﬂﬂ = Z/?épz dz + f}épzdé of ﬁépz for the associated family

{fépz} Aest 1s given by Uppe and Vg as in (1.11) where we have replaced Q%" and QCP? by A3 Q%" and

A2 QCP?, respectively. Then consider the gauge transformation G given by

Flp = Fp G, G" = diag(A, 171, 1). (113)

This implies
Apz = (Fhpe) " dFhpa = Ukpadz + Vipadz (1.14)
with Uépz = (GA)‘lﬂéHﬂ G" and VéPZ = (GA)‘lf)éPz GM. It is easy to see that ﬁépz Gles = }A'(’C‘Hﬂ e3. Therefore

fé]P,z = To (ﬁépz G* es) = ﬂO(ﬁéPz es) = fépz. Hence we will not distinguish between {fépz }rest and { fépz Fests
and both families will be called the associated family of f CP* ,and F’ épz will also be called the coordinate frame
of fA..

From the discussion just above we derive a family of Maurer-Cartan forms a
grangian surfaces from ID to CP? . They can be computed explicitly as

épz in (1.14) of minimal La-

Arpz = Ulpadz + Visadz, (1.15)

for A e C*, where Ufpz and Vé]pz are given by

Ccp? 1,,CP? — _,CF
%wzp 0 A le2? -Jwz Qe 0
A _ 2 _, CP? 2 A 2 1, CP?
Ucpz = -A71Q" e -~ 0 v Vepr = 0 1wiF Ae2?
1 1,0 1, ,CP?
0 A tex? 0 -Aez? 0 0

Itis clear that aépz |r=1 is the Maurer-Cartan form of the coordinate frame Fp of fm”2 . Then by the discussion
in the previous section, we have the following theorem.
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Theorem 1.5 ([31]). Let fu]’2 : D — CP? be a minimal Lagrangian surface in CP? and let aépz be the family of
Maurer-Cartan forms defined in (1.15). Thend + aépz gives a family of flat connections on D x SU3.

Conversely, given a family of connections d + aépz onDxSUs, where a&,z isasin (1.15), thend + aépz belongs
to an associated family of minimal Lagrangian immersions into CP? if and only if the connection is flat for all
AeSt

2 Minimal Lagrangian surfaces in CH?>

In this section, we discuss a loop group formulation of minimal Lagrangian surfaces in the complex hyper-
bolic plane CH?. Most of what we present can be found in [28]. We will use complex parameters and restrict
generally to surfaces defined on some open and simply connected domain D of the complex plane C.

2.1 Basic definitions

The space CH? can be realized as the open unit disk in C? relative to the usual positive definite Hermitian
inner product. But for our purposes it will be more convenient to realize CH? in the form

CH? = {[w1, w2, 1] € CP* | [w1]* + [w,|* - 1 < 0}.
It is natural then to consider on C3 the indefinite Hermitian inner form of signature (1, 2) given by
(u,v) = u1171 +u2172 —u3l73. (2.1)

Vectors in C3 satisfying (u, u) < 0 will be called “negative”. Then the set (C3)_ of negative vectors and the
“negative sphere”
H; ={ueCi|(u,u)=-1}, .2)

and the natural (submersions) projections 7 : (C3)- — CH? and 7 : H; — CH? will be the central objects
of this section. (Note that we use the same letter for both projections.) This is called the Boothby-Wang type
fibration, [7, 11]. For later purposes we point out that the tangent space at u € H % is

TuHi ={ve (Ci | Re(v,u) =0}.

Moreover, the space Hy = {v € TyH3 | (v, u) = 0} is a natural horizontal subspace. The form (, ) is a positive
definite Hermitian inner product on H, with real and imaginary components

() =8()+iQ(, ).

Hence g is positive definite and Q is a symplectic form. Clearly, the isometry group of (, ) will be of importance
in our setting. Put
Uy1={A: cloc | C-linear satisfying (Au, Av) = (u,v)},

andSU,,; ={A€U,,1 | detA=1}.WenoteU,; =S L. SU;,; and that these are connected, real, reductive Lie
groups with their centers consisting of multiples of the identity transformation.

The groups U, ; and SU; ; act naturally on H i and on CH?. The group Uj,; acts transitively on both
spaces. Moreover, this action is equivariant relative to 7 and holomorphic on CH?. Using the base point e3 =
(0,0, 1)T it is easy to verify

H; 2Uy1/Uy x{1} and CH®=U,,/U; xS".
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2.2 Horizontal lift and fundamental theorem

We now consider a Lagrangian immersion f(mHIZ from a Riemann surface M into CH?. Then it is known that
2
on an open and contractible subset D of M, there exists a special lift into H > that s, f(CH :D—- H i such that
2 2 2
O | = 1o % holds. Without loss of generality the lift {“= satisfies

<dfCH2, fCH2> =0, (2.3)

and it is called a horizontal lift. Moreover, any two such horizontal lifts only differ by a constant multiplicative
factor from S*.

From equation (2.3) we obtain (
tively we derive ( ;CHZ , ;CW) ( fZ-CHZ, ;CHZ> = e“"" for some real function 0 : D — R. Itis also easy to see
CH? fCHZ) = f(C]HIZ
X = \ly

< e , TCHZ) =0 = %CHZ fCHz) and after differentiation for z and z respec-

>

from ( fCHZ) = 0, and the derivative with respect to y of the first term and x of the second

term, respectively, that

s

QG 155y <,

.. ¢CH? . : : : CH? . CH? CH?\ _
thatis, f~" isaLegendre immersion. Moreover, since f~" is conformal, we also have (f;* , f;" )} = 0. There-
2
fore the metric of f° is given by

Ci 2
ds? = Re(dj"™, dfF') = 2¢*" dzdz.

CH2 CH?
As a consequence, the vectors e™* / zfz, e/ zfz and f form an “orthonormal basis” relative to our Hermi-
tian inner product ( , ). Let us consider the coordinate frame

CHZ cpR _1,CH? f(?HZ
z

Feap = (€739 57 e LY. Q.4)

For what follows it will be convenient to lift the mean curvature vector of f(C]HIZ from T/,ng ( z)(C]HIZ to
Tpes2 Z)Hf. It is easy to verify that the vectors jo¥ , jC | 5 i §iCH gpan (T2 Z)Hf )€ and project
2 2 2 2
under dn to f£F, fziCIHI ,ifFH ,if;CIHI , 0 respectively. In this sense we identify the mean curvature vector
C 2 C 2 C 2 Ci 2
H = Hyjie 1" ffZCHZ + Hyie 29" féCHZ off@HIZ with the vector H = Hjie 2¢ f;CHZ + Hyie 39" ngZ. It
is clear now that we have the following, see [28]:

Lemma 2.1. The coordinate frame Fcyp of a Lagrangian immersion into CH? is a smooth map Feyp : D —
Uy,1. In particular, det 2 is a smooth map fromD to S L For the Maurer-Cartan form

Aepe = }—(E]I}]Iz d]:(CIHIZ = u(C]HIZ dz + V(C]HP dZ, (2.5)
one then obtains,
1, CH? 14,0 1, CH? CHE S
sw; +1 m e? —sw; +m Qe
Ucre = —Q(CHZe_‘”C}JIZ _%wgmz +¢ 0 |» Vem= ¢ %w%CHZ im et |, @6
0 edo™ 0 o™ 0 0

where £ = (H, f;gHZ ), m=(H, f;CHZ) and H denotes the mean curvature vector. Moreover we have
2 2 2
Q™ = (e ) 27)
Here we have used (H, ngz) = —(fSHZ, H)and (H, fsz) = —(ffZ-CIHI2 , H). Moreover m = —{ holds.

Corollary 2.2. For acyp in (2.5), the following statements hold see for example [28]:
1. The mean curvature 1-form O}C{HZ =Q(H, dfCHz) = ¢dz + mdz satisfies io}C{HZ =(H, dfCHZ) = %trace(aCHz ).
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2. The 1-form acyyp: satisfies the Maurer-Cartan equations if and only if

2 1 CH? 2 5 o, CH?
w;CZH _(1_5|H‘2)eﬂ) _|QCH ‘Ze 2w :0’

CH? CH? 20 —wF
dog' =0, Q3 e =—(le )z-

From this one obtains the following theorem.

Theorem 2.3 (Fundamental theorem for Lagrangian immersions into CH?). Assume f(mHIZ :D — CH?is a
conformal Lagrangian immersion and let fCHZ denote one of its horizontal lifts and Fy2 the corresponding
coordinate frame (2.4). Then ey = (Fege ) dFcpp = Upg Az + Vegp dZ with Upg and Vegpe having the form
(2.6) and their coefficients satzsfymg the equations stated in Corollary 2.2.

Conversely, given functions "™ HonD together with a cubic differential Q(C]HI dz?® and a 1-form GCHZ =
¢dz+mdz on D such that the conditions of Corollary 2.2 are satisfied (with (H, §=* ) replaced by m and (H, {5 CP* )
replaced by (), then there exists a solution Fy2 € Uy 1 such that fCHZ = Fepees is a horizontal lift of the
conformal Lagrangian immersion f° = 7 o {CH

2.3 Minimal Lagrangian surfaces in CH?

If we restrict to minimal Lagrangian surfaces, then ¢ and m vanish identically. Moreover, the equations (2.6)
show that the determinant of the coordinate frame is a constant (in S!). So we can, and will, assume from
here on that the horizontal lift of the given minimal immersion into CH? is scaled (by a constant in S Y such
that the corresponding coordinate frame Fy is in SU,,1. It follows that the matrices in (2.6) now are of the
form

1, CH 1 ? OCHE -
SWy i 0 e2 —%w%CH QCH? g~¥ 0
2 _ CH 2 > 1 CcH?
u(CHZ = 7QCH e w *%M;CH 0 ) V(CHZ = 0 zw;CH eiw , (28)
cu? 1,082
0 e7? 0 e 0 0
and the integrability conditions are
o2 2
CHZ CHI (CHZ 2 -2 CH CHZ
wz —€Y +|Q7 e =0, Q7 =0. (2.9)

Note, the first of these two equations is one of the Tzitzéica equations (which differ from each other by some
2
sign(s)). From the definition of Q™ in (2.7), it is clear that
2 2
cCH (2) = QCH (2) dz3
is the holomorphic cubic differential of the minimal Lagrangian surface f(CHZ.

Remark 2.4. The fundamental theorem in Theorem 2.3 is still true for a minimal Lagrangian immersions into
CH?.

2.4 Associated families and flat connections

From (2.9), it is easy to see that there exists a one-parameter family of solutions of (2.9) parametrized by A € S*.
The corresponding family {wéHz, CéHz }rest then satisfies

A CH? A -3 ACH? 4 3
Wegpe =w  , Cop=1"Q  dz’.

As a consequence, there exists a one-parameter family of minimal Lagrangian surfaces {féHz Flest in CH?
such that fA,[1-1 = fC . The family {f2,;. } scs: will be called the associated family of f°*" . Let £, be the
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coordinate frame of f‘éHz. Then the Maurer-Cartan form &éHZ = ZfléHZ dz + f)éHz dz of ﬁéHz for the associated
family { féHZ }rest 1s given by U and Vg as in (2.8) where we have replaced Q(CHZ and QCH’ py A3 Q(C]HIZ

and 1> QCH*| respectively. Then consider the gauge transformation G* given by

Fly = Fh G, G" = diag(A, A7, 1). (2.10)
This implies
Qg = (Fhype) 'dFy = Ubyadz + Vigadz .11)

with U(/[‘:Hz = (G")‘llfléHz G" and V(’éHZ = (GA)_l]}(éHz GM. 1t is easy to see that f-‘éHz Gles = ]:'(éHZ es3. There-
fore féHz i=1To (ﬁéHz Gles) =mo (ﬁéHz e3) = féHz. Hence we will not distinguish between {féHz} rest and
{ f(éHz }rest, and both families will be called the associated family of fCHZ, and F ((A:Hz will also be called the
coordinate frame of f(éHz.

From the discussion just above we obtain that the family of Maurer-Cartan forms aéHz in (2.11) of a mini-

mal Lagrangian surface fC&" : M —s CP? can be computed explicitly as

Al = Upgpdz + Vi dz, (2.12)

for A € C*, where U([A:Hz and VéHZ are given by

2
%w?H 0 Ale2? -1 CH AQCH e~ 0
A _ 2 cH? 2 A 2 1, CH?
Ugse =[-A71Q" " e ~Jwg® 0 » Vege = 0 1wfH Ae2?
4 1,,CH? 1, CH?
0 A lez? 0 Ae2? 0 0

Itis clear that aéHz |r=1 is the Maurer-Cartan form of the coordinate frame F2 of f CH’ Then by the discussion
in the previous section, we have the following theorem.

Theorem 2.5. Let f<CIHIZ : D — CH? be a minimal Lagrangian surface in CH? and let aéHz be the family of
Maurer-Cartan forms defined in (2.12). Thend + aéHz gives a family of flat connections on D x SUj 1.

Conversely, given a family of connections d + aéHz on D x SU,,1, where aéHZ is as in (2.12), then d + aéHz
belongs to an associated famiy of minimal Lagrangian immersions into CH? if and only if the connection is flat
forall A e St.

3 Timelike minimal Lagrangian surfaces in CH?

In this section, we discuss a loop group formulation of timelike minimal Lagrangian surfaces in the complex
projective plane (C]I-]I%. The detailed discussion can be found in [13]. Here we use that the subscripts u and v
denote the derivatives with respect to u and v, respectively, that is,

5 Of _ar_9f
fu—auf—au, fv—avf—av-
3.1 Basic definitions
Let
01 0
Po=|l1 0 o, (3.1)
0 0 -1

and consider the three-dimensional complex Hermitian flat space C3 with signature (2, 1).

T - _ _ _
(z, W) =z  Pow = z1W; + z,W1 — Z3W3.
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Let H3 be the indefinite sphere (note again that the signature of C3 is (2, 1))
H3 :{we(Cg | (w,w):—l}.
Then the two-dimensional indefinite complex hyperbolic space CH? is
CHj = {C*w | w e C3, (w, w) < 0} (3.2)

Then there exists the Boothby-Wang type fibration [7, 11] 7 : Hg — CH{ given by w — C*w. The tangent
space of H; at p € Hj is
T,H; = {w < C} | Re(w, p) = 0}.

Moreover, the space Hp = {w € TpH; | (w,p) = 0} is a natural horizontal subspace. The form ( , ) is an
indefinite Hermitian inner product on #, with real and imaginary components

(,)=8()+iQ(, ).
Hence g is indefinite and Q is a symplectic form. Put
U,1={A: c:-cs | C-linear, satisfying (Aw, Aq) = (w, q)},

andSU,; = {A €Uy, | detA = 1}. Wenote U, ; = S' - SU,,; and that these are connected real reductive Lie
groups with their centers consisting of multiples of the identity transformation. Since, SU; ; and §U\_’21 are
isomorphic groups, so they are both connected. The groups szdl and §ﬁ_’21 act naturally on H: g and (CH%. The
group I’J_zvl acts transitively on both spaces. Moreover, this action is equivariant relative to 77 and holomorphic
on CHJ. Using the base point e3 = (0, 0, 1)T it is easy to verify

H; =051/011 x {1}, CHf=0;1/011xS"

3.2 Horizontal lift and fundamental theorem

fCH% from a surface M into CH3. Then it is known that on

CH} _

We now consider a timelike Lagrangian immersion
an open and contractible subset D of M, there exists a special lift into H: g , that is, fCH% :D—- H g ,mof
f‘CH% |p, and

(@, {°Fy - o 33)

holds, see [13]. The lift fCH% will be called a horizontal lift of fCHi. The induced metric of fCH% is represented,
by using the horizontal lift f(CHf as

ds? = Re(d§"™i, dfCH),
Since the induced metric is Lorentzian, we can take locally null coordinates (u, v) on D ¢ M. Then the hori-
zontality condition (3.3) implies (fEHf , f‘CH% ) = (ng%, fCH% ) = 0, and taking the derivative with respect to v of
the first term and u of the second term, respectively, we infer:

QS 58y < (S, 15 < o, (3.4)

2 2
that is, fCHl is Legendrian. Moreover, since we have chosen u and v as as null coordinates for fCHl, we have

(fSH5SH) 2 P 5O Z0 and  Re (15, 55T £ 0. (35)

One can assume without loss of generality that Re (f([u:H

w®H . D — R such that

2 2
1, f(SHl )} > 0 holds. Therefore there exists a real function

Cl 2 2
(f‘ffH%, ngi) e and ds®=2¢“ 'dudv. (3.6)
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We now consider the coordinate frame

uCH -1 (CH fCHi)
, .

fCHf = (e—%w‘” fu tse v B.7)

It is straightforward to see that }'CH% takes values in ﬁ;;, that is,
T _

holds. For what follows it will be convenient to lift the mean curvature vector of f‘CH% from T to

£ ()

CH; ,CH] .CH] ..CH? .
! g, i Hg and project

2
T Hg It is easy to verify that the vectors f(EHl, IV ) R 1 span chmg

L (uyr)

(u,v)
CH? CH? . .CH? . CH? . . . .
under dm to f,, %, f, L, ify Y, if, 1, O respectively. In this sense we identify the mean curvature vector

CH2 2 2 2 2 2
. —14CHy (CHf 1 1 "y (CH;
H=Hie ? f, S

. _1,CH] CH? 2 . _1,CH] CH? . _14C
1+ Hyie 29 £, of fC1 with the vector H = Hyie™ 2% fu '+ Hyie 2 'f

Lemma 3.1. The coordinate frame }‘CH% of a timelike Lagrangian immersion into (C]HI% is a smooth map }'CH% :
D — L/I;Jl In particular, det 7@}1@ is a smooth map from D to S'. The Maurer-Cartan form

acpe = Fom @F s = Fope (Fopp Judt + Foge (For Jvdv = Uegpdu + Vegpdy (398

can be computed as

CH? 1,CH CH2 > cn?
Twy T+l m ez ! Lw, " +m R 0
2 _, CH? CH2 CH2 1,,CH?
Uege = [ -Q e ™ Lo, +¢ 0 |, Vem = 4 lo,"em e2v M|, B9)
cH? CH?
0 0™ 0 ez ! 0 0
CH;} CH? 2 2
where ¢ = (H,§, '), m = (H,f, '), H denotes the mean curvature vector, and Q™1 and R®™ are purely

imaginary functions defined by
2 2 2 2 2 2
Q" = (fuad» f7) and R = (51, 170, (3.10)
2 2 2 2
Here we have used (H, f?Hl) = —(f?Hl, H) and (H, ngl) = —(f(ng , H). Moreover, ¢ and m take values in iR.

Corollary 3.2. For a 1-form Acrz satisfying (3.8) and (3.9), the following statements hold:

2 2
1. The mean curvature 1-form Ung =Q(H, df(CH%) = ¢du + mdv satisfies iagHIl =(H, dfCHi) = %trace(aCHi ).

2. The 1-form oCH satisfies the Maurer-Cartan equations if and only if

CH2 1 CH? 2 2, CH?
wuvl‘(l_z\le)ew ' QU RCH g2 g,

2 2 CH? CH2 2 CH? CH?
do_gﬂ-ﬂl -0, Q:I/ZHle—Zw T _(Ee—w 1 )u, R(S]Hlle—Zw T _(me—(u 1 )V
Theorem 3.3 (Fundamental theorem for Lagrangian immersions into CHZ). Assume f(ClHIi :D — CH? isa
2
conformal Lagrangian immersion and let fCHl denote one of its horizontal lifts and fCH% the corresponding
coordinate frame (3.7). Then Acpz = féﬁ% d]:CH§ = ucmgd” + V(CHidV with Uz and Venz have the form (3.9)
and their coefficients satisfy the equations stated in Corollary 3.2.
2 2 2
Conversely, given a functions w™™, H on D together with a cubic differential Q™i1du’® + R*™idv? and a

2
1-form GEHZ = ¢du + mdv on D such that the conditions of Corollary 3.2 are satisfied (with (H, fSHl ) replaced by

CHj _

m), then there exists a solution 7@1141{ € f];: such that § fcm; es is a horizontal lift of the null Lagrangian

2 2
immersion f°H = 77 0 {5,
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3.3 Timelike minimal Lagrangian surfaces (C]HI%

If we restrict to minimal timelike Lagrangian surfaces, then the equations (3.9) together with £ = m = 0 show
that the determinant of the coordinate frame is a constant (in S 1). So we can, and will, assume from here on
that the horizontal lift of the given minimal immersion into (CH% is scaled (by a constant in S 1) such that the
corresponding coordinate frame Fyp is in SU,,1. Itis clear that the Maurer-Cartan form Acpz = }Eﬁ% dFepe =
Upgzdu + Ve dv of the minimal surface is given by

2
1 CH 14,CH2 CH2 2 _, CH?
twg 0 el P
H2 —oCH CH? 2 1,CHZ
Up =[-Q"He™ ! —Jw, ' 0 |, Vem=[ o lwy e (B.11)
cH? 1, CH?
0 e @ ! 0 ez ! 0 0
The integrability conditions stated in the corollary above then are
CH2 CH2 H2 ~CH2 —20CH CH2 CH?
wy 't —e? T+ QiRM g2 _g QM =R, =0. (G.12)

The first equation (3.12) is again one of the Tzitzéica equations. From the definition of QCH? in (3.10), it is clear
that , . .
i (u,v) = Q" (w)di® + R%i (v)dv?

is the purely imaginary cubic differential of the timelike minimal Lagrangian surface fCH%. Conversely, let

2 2
CCM e a cubic differential and let w®™1 be a solution of (3.12). Then there exists a frame fuﬂ; taking values
in U7.; and a timelike minimal Lagrangian surface given by f%i = 770 (Fcmzes), where es = (0,0, 1.
Remark 3.4. The fundamental theorem in Theorem 3.3 is still true for a timelike minimal Lagrangian immer-
sions into CH?.

3.4 Associated families of minimal surfaces and flat connections

From (3.12), it is easy to see that there exists a one-parameter family of solutions of (3.12) parametrized by
AeR* = {Ae R |A > 0}; The corresponding family {wéH%, Cémg }rer+ then satisfies

A _, CHZ A _ 3-3ACH] 5.3 | 13 pCH] ;.3
Wegz =@, Coz =A7Q 7 du” + TR dv.

As a consequence, there exists a one-parameter family of timelike minimal Lagrangian surfaces {féHz FleR+
1
such that féHz |a=1 = f(CHi. The family {féHz }rer+ Will be called the associated family of fCH%. Let ﬁéHz be the
1 1 1
. 2A A1 ~A A 21 ;
coordinate frame of fCH%. Then the Maurer-Cartan form Acpe = L{CH%du + VCH% dv of J:CH% for tlzle assoaate(zi
family { féHZ JAer+ is given by Ucye and Vg as in (3.11) where we have replaced Q"™ and R hy 173 @
1

and A3RCH%, respectively. Then consider the gauge transformation G" given by

Flu = FypG', G =diag(A,A71,1). (3.13)

This implies
e = (Fl) ' dFgp = Upgppdu + Vigedy (314)
with UéHf = (G")’llfléﬂf G" and VéH% = (G/‘)’lf)éH% GM. 1t is easy to see that ﬁéH% Gles = ﬁéng} There-

fore féH% =7o (]:"éH% G"e;) =7o (]:'éH% e3) = féH%. Hence we will not distinguish between {féH% }rer+ and

{ féHz }aer+> and both families will be called the associated family of fCHf, and F, CcH? will also be called the

coordinate frame of féHz.
1
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From the discussion in the previous section, the family of Maurer-Cartan forms aéHz in (1.14) of a timelike
1
minimal Lagrangian surface fCH% : M — CH{ can be computed explicitly as

aéH% = UéH%du + VéH%dv, (3.15)

for A e C*, where UéHz and VéHz are given by
1 1

CHZ 1 1,CH] CH? 2 _ cH?

lw, ! 0 Alea@ ™! ~Lw, AR 0
A 2 CHZ (C]HIZ A CH? 1, CH?
U(CIHI{ = Q(CH-H 1 _lwu 0 , V(C]HI% = 0 %wv 1 Aez? !

_ u-[ 1, CH2
0 Alezv 0 Aez? ! 0 0
Itis clear that aéHZ |r=1 is the Maurer-Cartan form of the coordinate frame f«:Hf of f CHi Then by the discussion
1

in the previous section, we can characterize a minimal Lagrangian immersion in (C]I-]I1 in terms of a family of
flat connections.

Theorem 3.5 ([13]). Let fCH% : D — CH? be a timelike minimal Lagrangian surface in CH? and let aéHz be the
1
family of Maurer-Cartan forms defined in (3.15). Then d + aéHz gives a family of flat connections on D x SU; ;.
1
Conversely, given a family of connections d + aéH% on D x SU,,1, where a{‘CH% is as in (3.15), then d + aéH%

belongs to an associated famiy of minimal Lagrangian immersions into (C]I-]I% if and only if the connection is flat
forallA e R*.

4 Definite Proper Affine Spheres

In this section, we discuss a loop group formulation of definite proper affine spheres. The detailed discussion
can be found in [16, 17]. The general theory of affine submanifolds can be found in [33]. We will use again
complex coordinates and again restrict to surfaces defined on some simply-connected open subset D of C.

4.1 Basic definitions and results

Classical affine differential geometry studies the properties of an immersed surface fA3 : D — R which are
3 3

invariant under the equi-affine transformations fA — Af™ + b, where A € SL;R and b € R, The following

form in local coordinates (u1, uy) is naturally an equi-affine invariant:

o°f  of of
A= Zd t[au o’ duy’ o ](du duj) ® (duy Aduy), (4.)

which induces an equi-affinely invariant quadratic form conformal to the Euclidean second fundamental
form, called the affine metric g, by A = g ® vol(g). Although the Euclidean angle is not invariant under affine
transformations, there exists an invariant transversal vector field ¢ along f (D) defined by & = %A f, called the
affine normal. Here A is the Laplacian with respect to g.

Another way to find the affine normal up to sign is by modifying the scale and direction of any transversal
vector field (such as the Euclidean normal) to meet two natural characterizing conditions:
(i) Dx¢ A% d¢ A’ (X) is tangent to the surface for any X € TpD,
(i) & A’ and g induce the same volume measure on D:

(et [£ X127y, €)= 80X X0g(Y, 1) - 80X, Y7

forany X, Y e TpD.
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The formula of Gauss,
A3 A3 A3
DXfx- Y:fx- (VXY)+g(X, Y)‘f ’ (42)

or the decomposition of D Xff3 Y into tangential and transverse component, induces a torsion-free affine con-
nection v on D. Its difference with the Levi-Civita connection V2 of g is measured by the affine cubic form
defined as: ,

CY (X,Y,Z) = g(VxY - V5V, Z). (4.3)

It is actually symmetric in all 3 arguments. The affine shape operator S defined by the formula of Weingarten:
3 3
Dxé™ = - (S(X)),

is self-adjoint with respect to g. The affine mean curvature H and the affine Gauss curvature K are defined as

H-= %TrS and K =detS.

In the following we assume that the affine metric g is definite. This means that fA3 (D) is locally strongly
convex and oriented (since its Euclidean second fundamental form is positive definite). Then there exist con-
formal coordinates (x, y) € D, that is,

A3 A3 A3
g=2e" (dx* +dy?) =2e” |dz|* =e” (dz®dz+dzedz),

where z = x + iy. Then it is known that the affine normal & 4> of a Blaschke immersion can be represented in
the form i
A3 1 a3 _w? A3
§ At s e g

The affine normal {AB points to the concave side of the surface, and the orientation given by idz A dz or
du Adv is consistent with the orientation induced by & 4’ This z coordinate essentially defines D as a uniquely
determined Riemann surface.

Alternatively we are studying affine-conformal immersions f of any Riemann surface D into R>:

3

3 3 3 3 3 3 3 3 3 A
det[fy fi' fr]=0=det[fy’ fi' fiz], and det[fy’ f fiz]=ie* . (4.4)
The first condition here reflects that an is affine-conformal. Moreover, we introduce a function QA3 by
3 3 43 3 A3 43
fo =0 fr +QY e fr. (4.5)

\3
Then direct computations derive the fundamental affine invariants: g = 20" |dz|? by (4.1) and c - QA3 dz?+
Q4°dz> by (4.2) and (4.3). We also have

3 3 3 3
det[f;" fr fzze] = (Q%). (4.6)
The shape operator S has the special form

23—
2" 3
H —e Qy,

S = 3
_e~2v" QZAB H

, (4.7)

A3 3 3 A3
where H = —e™®" wk —|Q" |?¢7>“ is the affine mean curvature.
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4.2 Maurer-Cartan form and Tzitzéica equation

The relations discussed above can also be illustrated by computing the evolution equations for the positively
oriented frame

C1f a3 18 A3 ot Al
‘7:A3:(e 2¢ fZ s € 2 fZ ’ew fZZ)’

3 3
where we use §A3 —e v ff;. Then det[f?3 ff f;&;] - je?" implies det F,5 = i and Fy: (po) ' Fys € SL3C
follows for any base point pg € D.

Theorem 4.1. The Maurer-Cartan form
FoddFus = Fud (Fas)edz + FH(Fps)5dz = Uysdz + Vs dz (4.8)

can be computed as

A3 - W3 £ 3
lwAg 0 _He% _%w§3 QA3e7(uA ef%(uA QASZ
5 Wz
_ 3 a3 3 3,483 43 _ 3 1,,A3
UA3 = QA e—w _ % (Uf} e SW Q? s VA3 = 0 %wé’% —He? w . (4-9)
1,,A3 1,43
0 e 0 e2? 0 0

The compatibility condition (F,s ).z = (Fas )2z (or the flatness of .7-'1&31 dF,s) is equivalent to the two structure
equations:

A3 3 3 A3
H = - wp-[Q" e, (4.10)

H - Y s D LI ¥
s = e Q¥ Qz -e (e Q4 });. (4.11)

The first equation is the Gauss equation and the second equation is the Codazzi equation for S. Altogether we
have the following characterization of convex affine surfaces in R>.

Theorem 4.2 (Fundamental theorem for definite Blaschke immersions into R3). Assume f* : D — R is
3 3
an affine-conformal immersion. Define w® , Q* , H and the frame Fu3 as above. Then its affine metric is
3 -
g = Ze“’A |dz|2, its affine cubic form is CA3 = QA3 dz> + QA°dz?, and they satisfy the compatibility conditions
(4.10) and (4.11), which are also equivalent to the flatness of a3 = f&; dFus = Uysdz + Vysdz withUys and Vs
having the form (4.9).
\3

Conversely, given a positive symmetric 2-form g = 2¢" |dz|2 and a symmetric 3-form v = QA3 dz> +

Q~’dz? on D c C such that H defined by (4.10) satisfies (4.11), then there exists a surface (unique up to affine
3

motion) such that g, C" are the induced affine metric and affine cubic form respectively.

4.3 Definite affine spheres

A definite affine sphere is defined to be any affine surface with definite Blaschke metric having all affine nor-
mals meet at a common point which will be called its center, or where all affine normals are parallel. Equiv-
alently an affine sphere is defined to be any “umbilical” affine surface (that is, S is a scalar function multiple
of the identity everywhere).

By the matrix form (4.7) of the shape operator S, a definite affine sphere necessarily satisfies QZAB =0, that
is, QAa is holomorphic. Then the above Codazzi equation (4.11) implies Hz = 0, whence H = const., since H is
real.
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4.3.1 Types of affine spheres

So far we know that definite affine spheres have constant affine mean curvature H. Then a definite affine
sphere is called elliptic, parabolic or hyperbolic, when its affine mean curvature H is positive, zero or negative
respectively.

When H = 0, itisalso called “improper”; and & 4’ is a constant vector which will usually beset to (0, 0, 1)*
by some equi-affine transformation. Its center is at infinity. The only complete ones are paraboloids.

When the shape operator S in (4.7) satisfies S = HI # 0, the corresponding affine sphere will be called
“proper”. In this case we obtain & A _ g ( fA3 - f§3 ) with some f{}s being the center of the affine sphere. For
simplicity, we will always make f§3 = 0 by translating the surface.

Remark 4.3.

1. Elliptic definite affine spheres have centers ‘inside’ the surfaces and the only complete ones are ellip-
soids. But the center of a hyperbolic definite affine sphere is ‘outside’. They were considered in Calabi’s
conjecture for hyperbolic affine hyperspheres of any dimension (proved by Cheng-Yau [10], et al): Inside
any regular convex cone C, there is a unique properly embedded or complete (with respect to the affine
metric) hyperbolic affine sphere which has affine mean curvature -1, has the vertex of C as its center,
and is asymptotic to the boundary oC. Conversely any properly embedded or complete hyperbolic affine
sphere is asymptotic to the boundary of the cone C given by the convex hull of itself and its center.

2. Itis clear that Qdz’ is a globally defined holomorphic cubic differential (that is, in H°(M, K>) where K is

the canonical bundle of M). Recall Pick’s Theorem: C = 0 if and only if f(ID) is part of a quadric surface.
So Q is nonzero except for the quadrics.
Near any point zp which is not any of the isolated zeroes of Q one could make a holomorphic coordinate
change to normalize Q to a nonzero constant, but we will not do that now, since then we have no control
over the behaviour of Q “far away” from z,. The zeroes of Q will be called “planar” points of the affine
sphere.

3.  We remark that the immersion is analytic for any definite affine sphere, since the defining equation is a
fully nonlinear Monge-Ampere type elliptic PDE, see for example [6, §76].

It is easy to see that the Maurer-Cartan form
Qs = FosdF s = Uysdz + Vysdz

of a definite affine sphere can be computed as

3 R A
1, A3 Lyt 1, A3 3 _—wh
SWz 0 -He> 2wz Qe 0
3 _, A3 3 3 1,43
Ups = QA e ¥ _%wﬁ 0 s Va3 = 0 %w? _He2% . (4.12)
1,43 1 a3
0 e2? 0 e2? 0 0

In summary we obtain the governing equations for definite affine spheres in R>:
3 A3 3 A3 3
wy: +He” +]Q" e =0, Qf =o. (4.13)

Moreover, given a holomorphic function QAB, the first of the equations above is again a Tzitzéica equation.

Remark 4.4. The fundamental theorem in Theorem 4.2 is still true for a definite affine sphere into R>.

4.4 Afamily of flat connections

From now on we will consider exclusively the case of proper definite affines spheres. Then we can and will

scale the surface by a positive factor to normalize H = +1. The following observation is crucial for the inte-
3 3

grability of definite affine spheres: The system (4.13) is invariant under Q* — A>Q* for any A ¢ S'. Thus
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there exists a one-parameter family of solutions of (4.13) parametrized by A € S1; The corresponding family
{w}s, C1,} \es: then satisfies

wgs = wA3, C"Ag = /1_BQA3dz3 +2QMdZ3.
As a consequence, there exists a one-parameter family of definite affine spheres { f& }aest such that f‘& =1 =
fAB, which will be called the associated family. Let f"& be the frame of fg% Then the Maurer-Cartan form
&y = (]:"ga )‘1EQ3 = ?/Alga dz + 9&; dz can be computed as U,s and V,s in (4.12) replacing Q" and Q¥ by

3 QA3 and A2 Q% respectively.
For the elliptic case (that is, H = 1), applying the gauge G* = diag(id,idA™, 1) to &&3, that is,

Fls, = 7161 (4.14)
yields:
als, = (Fis, ) HdFLs, = UL, dz + V), dz (4.15)
where
\3 R 3
%w?a 0 irlere" —%w‘f AQP e " 0
A W3 A 3
UA3+ = /\_1(_2AB e_wA _%a)?B 0 , VA3+ = 0 %w‘;s i/\e%“)A (4.16)
3 1,43
0 il lere” 0 inew?” 0 0

For the hyperbolic case (that is, H = —1), applying the gauge Gt - diag(A, AL, 1) to &AAg, that is,

Fls_ = FLGh (4.17)
yields:
ahs = (Fh, ) MAF,_ = UL, dz+ V), dz (4.18)
where
%wfs 0 /1‘1e%“’[“3 —%ng} /1@(‘"As 0
U= |11Q¥e e _14¥ o |- vii=| o 18 et | (419)
0 Alese” 0 Aeto” 0 0

In both cases a, takes value in the order 6 twisted loop algebra Asl3Cy, but it is contained in different
real forms, namely in the real forms induced by 7(X) = Ad(I5,1Po) X for the hyperbolic case, and by 7 (X) =
Ad(Po) X for the elliptic case. These two real forms are equivalent and both commute with g, but, obviously,
the associated geometries are very different.

Remark 4.5.

1. Indeed definite affine spheres have two different geometries or elliptic PDE because there are two open
cells in the corresponding Iwasawa decomposition, as explained in [16]: To simplify notation, denote
this group of twisted loops ASL3;Cy by G. Then G; and G denote respectively the subgroups of 7-real
loops and the loops with holomorphic extension to the unit disc in C. Iwasawa decomposition means the
double coset decomposition Gr\G/G+. The following observation makes it possible to have a unified treat-
ment of elliptic and hyperbolic definite affine spheres. Let sq := diag(A, -A™!, —1)Py. There are exactly
two open 1,-Iwasawa cells Gr,G. and Gr,50G+, which are essentially the same as two open TZFI-IWZ:IS&WZ:I
cells (but interchanged):

Gr,80G+ = So(gfl;lg+), 61,0+ = So(gleﬂsong)-

2.  We may conjugate the complex frame to a real SL3R-frame:

0
0 |-Fi.
VvFl

FR - Ad

o skak
o sl
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In fact F* = (e1, ez, &) with {e1, e>} being simply an orthonormal tangent frame with respect to the
affine metric. Recall that we obtain the immersion fA3 = —%{ 4 from the last column. It is clear now that
we may also simply take the real part of the last column of F’ & . to get an equivalent affine sphere modulo
affine motions.

We now define the two subgroups SL3IR<i c SL3C

11
. z v
SLsR™={AeSLsC|Ad| I -5 0 |-AeSL3R
0 0 VFL

It is easy to verify that both groups are isomorphic to SLsR
It is remarkable that a simple condition characterizes the extended frames of proper definite affine
spheres:

Theorem 4.6 ([16]). Let fA3 : D — R be a definite affine sphere in R> and let a&a . be the family of Maurer-

Cartan forms defined in (4.15) or (4.18). Thend + agg . gives a family of flat connections on D x mi.
Conversely, given a family of connections d + a"Ag LonDx mi, where aﬁg , is as in (4.15) or (4.18), then

d+ a’}v , belongs to an associated family of affine spheres into IR if and only if the connection s flat for all A € S*.

Proof. We have discussed the first part of the theorem above. Concerning the converse direction we only show,
for simplicity, the hyperbolic (that is H = -1 in the flat connection (4.18)). The positive case is completely
parallel.

The reality conditions for o and 7, guarantee that 7 ~1 7 is affine in A. So we have

FlF=AN"+B,  FlF=CA+D, (4.20)

with A € g_1, B € go, C = T(A), and D = 7(B). The fixed points of both o and 7 are of the form diag(e', e #, 1).

Gauging by them respects the reality conditions. Let ef =+ @12‘ . Use it to scale A3 to a real positive function
which then is written in the form e¥/2. The rest follows from the equations of flatness. O

Remark 4.7. Recall the classical Tzitzéica equation for proper indefinite affine spheres (with no planar
points):
Wyy =¥ —e " (4.21)

We observe that the equation (4.13) for hyperbolic definite affine spheres is the elliptic version of the above
when H = -1 and Q = 1. Both admit the trivial solution w = 0, and the corresponding surfaces are x;x,x3 = 1
and (x2 + x3)x3 = 1 respectively. However, the equation (4.13) for elliptic definite affine spheres admits no
constant real solution, and some elliptic function examples will be given in [16].

5 Indefinite proper Affine spheres

In this section, we discuss a loop group formulation of indefinite proper affine spheres. The detailed discus-
sion can be found in [12].

5.1 Blaschke immersions and their Maurer-Cartan forms.

Let f i#” . D — R3 be a Blaschke immersion, that is, there exists a unique affine normal field & iA’ (up to sign)

such that the volume element of the affine metric ds? = g (which is determined by the second derivative of
a3

f A" and commonly called the Blaschke metric) and the induced volume element on D c R? coincide, that is,

03 sx3 a3
det[f,ﬂA ,f:/A , {A ]2 =g11822 - (glz)z\ (5.1)



DE GRUYTER Survey on real forms of the complex A;z)-Toda equation and surface theory = 213
holds. In the following we assume that the Blaschke metric ds® = g is indefinite. Then there exist null coor-
dinates (u, v) € D [38] or [4, Prop 14. 1. 18], that is,

i

A3
ds? =2¢“ dudv

(5.2)
holds for some real valued function @'*” : D — R. Then the affine normal & i’ can be represented as

. . in3 .
T (53
where A denotes Laplacian of the indefinite Blaschke metric. Combining (5.1) with (5.2), we have

ds? = 2det[fi*, I, F%°] dudv.
Note that the null coordinates can be rephrased as follows:

a3 ] sa3 ] ] s 3
det[fi* £ fun ] = O=det[fi* fi" fiv ],

det[ il fiA g’y _ 20
et[f v fv fuv ] =e s
see (5.2). Moreover, we can introduce two functions

(5.4)
in>\2 i3 A3 iA3 in3\2 in3 A iA3
(Q ) *det[fu s Juu ,fuuu], and —(R ) *de‘:[ v s fwy ,fvvv]- (5.5)
From the definition of Q"As and R'.AB in (5.5), it is clear that

ClAs(u, V)= Q'Ag(u, v)du3 + RiAs(u, v)dv?

form:

(5.6)
is a cubic differential for the null Blaschke immersion f i4” The shape operator S = [s;;], which is defined by
the Weingarten formula, has relative to the basis {0y, ov}, where u and v are null coordinates, the special

43
_2 iA ~A3
- H -e~*Y QY

]
20" LiA’
-e Ry,

H

Here H ¢ R is the affine mean curvature of f i4> Then the coordinate frame of f i’ is defined by

1o i 1 a3 Lind | o Al
Fips = (€72 fu ,e? fv & =e fuv ),

(5.7)
and from (5.1), it is easy to see that F;,s takes values in SL3R. Moreover, a straightforward computation
shows that the following lemma holds.

Lemma 5.1. The Maurer-Cartan form

Qs = Fip5AFip0 = Fips (Fips Judu + Fips (Fipo vdv = Uppodu + Vysdv
can be computed as

(5.8)
1, i} 1 1,08 pind —e® 30 pin’
5wy 0 —He> -3 Wy R* e e 2% Ry
a3 a3 A3 3,83 43 A3 1,iA3
Ups = Q% e Lot 29 QA |, V=] o0 lwlf ~He?" , (5.9)
ia3 in3
0 e 0 e 0 0
Corollary 5.2. The compatibility conditions for the system of equations stated just above are
iA w® 20 A% Lin’
wy +He" +e Q" R" =0, (5.10)
i3 i3 i3 a3 a3
3wt iA3 iA3 20 iAo 30™ iA3 iA3 2w A —w™®
e H,=Q" R, - (Qy e v, € H,=Q, R" - (R

i )u. (5.11)
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Theorem 5.3 (Fundamental theorem for indefinite Blaschke immersions). Let f i’ D — R3 be a Blaschke

immersion with affine normal & ’AB, indefinite Blaschke metric in null coordinates u and v, ds* = 2e“’iA3 dudyv,
affine mean curvature H and cubic differential ci - Q"A3 du® + R® dv3. Then the coordinate frame
1oAY 1™ A pind o ia? . .

Fins = (€729 fii* ,e2 I S w ) satisfies the Maurer-Cartan equation (5.8). Here the coeffi-
cient matrices U;,s and Vi3 have the form (5.9) and their coefficients satisfy the equations stated in Corollary
5.2.

Conversely, given functions W’ , H on D together with a cubic differential Q’A3 du? + R dv such that the
conditions of Corollary 5.2 are satisfied, then there exists a solution F;,s € SL3R to the equation (5.8) such that
f"AS = Fiases is an indefinite Blaschke immersion with null coordinates.

5.2 Indefinite affine spheres

From here on we will consider affine spheres. As already pointed out in the last section this means that the
shape operator s is a multiple of the identity matrix. We will also assume that the Blaschke metric is indefinite.
There are still two very different cases:

Case H = 0: these affine spheres are called improper. They are very special and well known. We will
not consider this case. Case H # 0: such affine spheres are called proper. From now on, we will consider
exclusively the proper case, and by a scaling transformation we can assume that H = —1. Affine spheres with
this property are called indefinite proper affine spheres. Then the Weingarten formula can be represented as

iA3 A3 iA3 A3
u —Ju u —Ju s
a3 a3 a3 a3
thatis the affine normal §** is the proper affine sphere f*” itself up to a constant vector, thatis, & = fi&" +p,
where p is some constant vector. By an affine transformation we can assume without loss of generality p = 0,

and thus we have

fuv _ fiA3.
If we restrict to affine spheres, then the coefficient matrices of the Maurer-Cartan equation
Qg = FipsdFips = Figls (Fips Judtt + Figy (Fips v = Uy du + Vi dy (512)
are of the form
%wLAs 0 et —%wi‘v R¥e ™ o
U = | Q¥ e —%wﬂAg 0 |, V= 0 %wf,A} et | (5.13)
0o e o 0 o
Moreover, the integrability conditions now are
a)ff?,3 - e"’iA3 + efz"’iAS Q4R o, QiAS = RLA3 =0. (5.14)

The first equation in (3.12) is again a Tzitzéica equation. From the definition of QiA3 and R’.As in (5.5), it is clear
that . . .
™ (u,v) = Q™ (w)du® + R (v)dv?

is the real cubic differential of the indefinite affine sphere f A’

Remark 5.4. The fundamental theorem in Theorem 5.3 is still true for an indefinite affine spheres.

5.3 Associated families of indefinite affine spheres and flat connections

From (5.14), it is clear that there exists a one-parameter family of solutions parametrized by A ¢ R*, where the
original surface is reproduced for A = 1. Then the corresponding family { a)?A3 , C?Ag }rer+ satisfies

a3 _ ] sA3
whs =™, ) =2170Q" &’ + PR* 4.
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As a consequence, there exists a one-parameter family of indefinite affine spheres {fl.kg }er+ such that

fi’k; |r=1 = f’AS. The family {fi"A3 }rer+ Will be called the associated family of f’AS. Let .7:'3&3 be the coordinate

frame of f}, ;. Then the Maurer-Cartan form &2, ; = 14}, ;du+ D}, ;dv of £} ; for the associated family {f};}1cp+

is given by U; s and V;,s as in (5.13) where we have replaced Q"AB and R’ byA~3 Q’A3 and 3R’ , Tespectively.
Then consider the gauge transformation G*

Fiyo = F}:G",  G" =diag(A, A7}, 1). (5.15)

This yields
a?As = (F?AB)ildF?As = U?A3du + V?A3dv

with UL, = (GM7'0}; 6" and V}y; = (G*)*D); G It is easy to see that ;G e; = F}};e; holds. Define

1

fl% = ]3'1-’}%3 G"e;. Then we do not distinguish between { f&g Faer+ and { f{}\3 }aer+» and either one will be called
the associated family, and F?Ag will also be called the coordinate frame of f{k;.
From the discussion in the previous section, the family of Maurer-Cartan forms a?Ag of the indefinite

proper affine sphere f i4” . M — R3 can be computed explicitly as

[X?As = U?As du + V?As dv, (5.16)

for A € C*, where U},; and V2, are given by

03 . 1,iA3 03 Sa3 0 iA3
Lol 0 Altez? 1ol AR e 0
A _ a3 a3 203 A sa3 1,iA3
Uips = [ A71Q1* e ~Loif 0 » Vs = 0 1w Aez?
1 10)”*‘3 lwmﬁ
0 A ex 0 Ae? 0 0

It is clear that a?Ag |a=1 is the Maurer-Cartan form of the coordinate frame ;s of f'Ag. Then by the discussion
in the previous subsection, we have the following theorem.

Theorem 5.5 ([12]). Let f i4’ . ) _ R bean indefinite proper affine sphere in R> and let ag‘M be the family of
Maurer-Cartan forms defined in (5.16). Then d + a?Ag gives a family of flat connections on D x SL3R.

Conversely, given a family of connections d + a?Ag onDxSL3R, where a?‘@ isasin (5.16), thend+ a?M belongs
to an associated family of indefinite affine spheres into R if and only if the connection is flat for all A ¢ R*.

6 Extended frames and the loop group method

6.1 Surfaces and extended frames

In the first five sections we started from five different general surface classes: Lagrangian immersions into
CP?; Lagrangian immersions into CH?; Timelike Lagrangian immersions into CH?; Definite Blaschke sur-
faces in R?; Indefinite Blaschke surfaces in R>.

For each of these surface classes we have introduced natural frames (not always “coordinate frames”
in the classical sense) and have characterized them by their “shape”. The Maurer-Cartan equations of these
frames were (due to the special shape of the coefficient matrices) integrable if and only if a simple set of
(highly non-trivial) equations was satisfied.

Inside of each of the classes of surfaces listed above we singled out a special type of surfaces. Respectively
these were
(ecp2 )Minimal Lagrangian immersions into CP?,

(ecpz )Minimal Lagrangian immersions into CH?,
(»BCH% )Timelike minimal Lagrangian immersions into CH3,
(e 43 )Definite affine spheres in R>,
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(a: )Indefinite affine spheres in R>.

We showed that for all these special cases either a conformal parameter or a real (“asymptotic line”) param-
eter is natural to choose for a “convenient” treatment. The cases with a preferable conformal parameter are
indicated by a e and the other cases by a »k. Each of the classes of surfaces can be characterized by a Tzitzéica
equation:

cp? Cp?
cp? |, o™ _|Qcpz|ze-zw?’ -0

CP?
('cﬂﬂ) Wz t€ z

=0,

>

cH? W™ CH? 2 -2 CH?
(oci2) wzz -—e +]Q7 ["e =0, Q; =0,

~i2 ~2
CH? w®™ —20"™1 CH? ,CH? CH? CH?
1 +e Q R =0, QvlzRulzos

(’X‘(C]HI{) Wyy —¢€

3 a3 3 A3 3
(op3) wh +He” +]|Q" e =0, (H=<x1), Q5 =0,
a3 in3 a3 03 a3 A3 A3
Okips) wly —e¥ +e2” Q*R™ =0, Q* =R¥ =o0.
Note that QCH%, R@Hli take values in iR and QiAB, RiAs take values in R, respectively.

For the conformal cases one can introduce a loop parameter A ¢ S which produces an associated family
of surfaces of the same type. For the asymptotic line cases one can introduce a loop parameter A € R.0 which
produces an associated family of surfaces of the same type.

For general (non-geometric) purposes one can usually use A € C*.

The loop parameter was introduced in a special way: Let F denote the frame associated with a surface of
one of the special classes listed above. Then we write 7 ~14F = a, and write

a=FYdF =uda + Vdb,

where for the conformal case, (a, b) is given by complex coordinates (a, b) = (z,z) with z = x + iy, and
for the asymptotic line case, (a, b) is given by null coordinates, (a, b) = (u, v) with real u, v. Actually, one
decomposes naturally in all cases i/ = U_; + Up and V = V1 + V and introduces the “loop parameter” A such
that

a* =A7'U_yda + ag + AV, db, (6.1)

with ap = Uy da+ Vo db. Infacta’is exactly a family of Maurer-Cartan forms al asinthe previous five sections,

where * is one of CP?, CH?, CH?, A3 or iA>. The 1-form o will be called the extended Maurer-Cartan form
and a unique solution to the equation

(FHY'dF =, FMpo) =1 (6.2)

with some base point pg € D will be called an extended frame. Thus the coordinate frames F A of the associated
family of ff are in all five cases the extended frames up to an initial condition, where = is one of CP?, CH?,
CHZ, A® or iA>. In all five cases we have stated a theorem saying

Theorem 6.1. A surface is in the special class considered if and only if the family of Maurer-Cartan form o

yields a flat connection d + al.

Since in all our cases the special surface of actual interest can be derived (quite) directly from the extended
frame, one of our goals is to construct all these frames.

Corollary 6.2. The construction of all special surfaces listed above is equivalent to the construction of all the

1-forms o,

6.2 Flat connections and primitive frames

To find all a” (at least in an abstract sense) these 1-forms need to be described more specifically. To this end
we consider the complex Lie algebra
g=si3C (6.3)
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and the order 6 automorphism & of g given by (X € s[3C):

&(X) =-PX"P, (6.4)
where
0 € 0
P=|e* 0 o (: diag(€?, €*, —1)P0) , (6.5)
0O 0 1

with € = e%. Then on g the automorphism ¢ has 6 different eigenspaces
gic 9, (66)

such that [g;, g;] c gi+; (mod 6) holds for the eigenvalues € = e’s withj=0,1,2,...,5. Note that we then
have for example g_; = gs etc. and we also have 0 c go. The crucial result for our discussion is:

Theorem 6.3. For all special surface classes the matrices U; and V; are contained in the eigenspace of ¢ for
the eigenvalue e*™/°, that is, Uj, V; € gj. More precisely we have

o' = A_lU_lda +a0+AVidbeg_1 ®go ® g1, 6.7)

where a and b denote the coordinates of the surface class under consideration. Moreover, for each special sur-
face class there exists an anti-holomorphic involutory automorphism T of g such that

ategl, (6.8)
where g% denotes the real subalgebra of g consisting of all elements in g which are fixed by 7.

Remark 6.4. In the conformal case we have the following statements:
1. Itisan important feature here that & maps a’ to a¥, y = 1e>™/°
2. The automorphism & leaves invariant g%.

3. The automorphisms ¢ and 7 commute on g.

eg.

The situation in the asymptotic line case is quite different from what we just remarked.

Theorem 6.5. Assume we have an immersion f of split real type with extended frame F* and Maurer-Cartan
form a\. Let # be an involutory anti-holomorphic automorphism of g which fixes a. Writing

o = AU du+ (Uopdu + Vodv) + AV dv,

it follows that T fixes U_1 + Ug and Vo + V. Let us assume that T actually fixes all U; and all V;. And let us
assume also that the Lie algebra generated by

{U-1(u,v), Uo(u,v), Vo(u,v), Vi(u,v)|(u,v) D}
generates the Lie algebra g* . Then © and & satisfy the following relation:
0t6=1 (6.9)
ong.

Proof. By our assumptions we obtain that 7 leaves each eigenspace of ¢ in g invariant. Hence g o 7 0 6(X;) =
Got(e'X;) = 6(e”’1(X;)) = €’76(2(X;)) = T(X;) for all eigenvectors X; of 5. O

More details will be explained in the following section of this paper. An extended frame F* for which the
Maurer-Cartan form a’ satisfies (6.7) and (6.8) will be called primitive relative to ¢ and 7.

Corollary 6.6. In all our special surface classes the extended frame is primitive relative to ¢ and the real form
(anti-holomorphic) automorphism T chosen for the special surface class.
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6.3 The loop group method for primitive extended frames

It is most convenient to explain the procedure for the conformal case and for the asymptotic line case sepa-
rately.

Let 6 be as above and let 7 be the anti-holomorphic involutory automorphism associated with the chosen
surface class. Let

9:5[3(C, G=SL3(C.

By G and g% we denote the corresponding fixed point group and algebra respectively. Actually, for Gt
one could also use any Lie group between G' and its connected component.

From what was said above, the extended frame F of an immersion of our special class is contained in
G'.The corresponding Maurer-Cartan form is contained in gf.

By the form of (FA)‘ldFA we infer that all the loop matrices associated with geometric quantities are
actually defined for all A ¢ C*. In particular, all extended frames are defined on S'. However, geometric
interpretations are usually only possible for A ¢ S! in the case of conformal case or A ¢ R* in the case of
asymptotic line case.

Next one does no longer read the extended frame

F'a, b) = F(a, b, 1)

as a family of frames, parametrized by A € S, but as a function of z into some loop group. Here are the basic
definitions:
1. The loop group of a Lie group G is

AG ={g:S" = G}.

Considering G as a matrix group we use the Wiener norm on S* and thus has a Banach Lie group struc-
ture on AG. Since all our geometric frames are defined for A ¢ C*, we can apply the usual loop group
techniques (see, for example [37, Theorem 4.2]).

2. The plus subgroup:

256G - {g c AG g as a holomorphic extension to the open unit disk }

and g~! has the same property.
and the normalized plus subgroup:
AiG={geA"G|g(0)=1I}.
3. The minus subgroup:

A G- {g Al 8 has a holomorphic extension to the open upper }

unit disk in CP! and g~! has the same property.
and the normalized minus subgroup:
A,G={geA G|g(c0)=1}.
We now define automorphisms o and 7 of AG as natural extensions of ¢ and 7 of G:
a(g)(A) = G(g(e™A)), T(8)(A) = T(g(B(A)), (6.10)

where B(A) = A*! and -1 is taken in the case of conformal type and +1 is taken in the case of asymptotic line
type.
(4) The real subgroup

AG" ={g e AG|1(8)(A) = g(A).}.
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We will actually always use “twisted subgroups” of the groups above. First we have

AGo ={gecAG|0a(g)(A) =g(A).}.
The other twisted groups are defined analogously, like

AiGo=A;GNAG.

Finally, we actually use the twisted real loop group:

AGg = {g € AGs | T(8)(A) = g(A)}.
Remark 6.7. The twisted real loop group may be defined as

AGg =AGs N AGT, (6.11)

if 0 and 7 commute, these are the cases of (e.) in Section 6.1, and if o and 7 do not commute, these are the
cases of (#k.) in Section 6.1, then AG{, cannot be defined as in (6.11).

6.3.1 The loop group method for the conformal case

Let us fix a special surface class of conformal type. To understand the construction procedure mentioned
above one considers next again an immersion of conformal type f with primitive extended frame F relative
to o0 and 1 as above.

Then consider the linear ordinary differential equation in z

62L+(Z, 2, /1) = L+(Z, Z, A) (V()(Z, 2) +AV1(Z, 2)) 5 L+(Z>(—, Z*,A) =1.

Here we use the dz-coefficients in F'dF = a = A"1U_;dz + Updz + Vpdz + AV1dz and consider z and A as
parameters of the differential equation. Note that Uo(z, 2) + AV (z, Z) takes values in the Lie algebra of A* G,
thus L. (z, z, A) takes values in A G,. On the one hand, the primitive extended frame F is also a solution of
the above differential equation, thus these two solutions should coincide up to an initial condition, that is,
there exists C(z, 1) which is holomorphic in z € D and A € C* such that

F(z,z,A) = C(z,A)L+(z,2,A) (6.12)

holds.
Such a decomposition is always possible, since S*> does not occur in this paper as domain of a harmonic
map. and defines a holomorphic potential n for f by the formula

n=Cc'dc.
The potential n takes the form
n=A"n_1(2)dz + no(z)dz + A'n1(2)dz + A’n2 (2)dz + - (6.13)

We would like to emphasize:

1. All coefficient functions n;(z) are holomorphic on D.

2. All n; are contained in g;, where g; is defined in (6.6).

This explains the procedure to obtain a holomorphic potential from a primitive harmonic map. The fortunate
point is that this procedure can be reversed.

Theorem 6.8 (The loop group procedure for surfaces of conformal type). Let G, 6 and T as above. Let f be an
immersion of conformal type, F(z,z,A) = FA(z, Z) a primitive extended frame relative to 6 and 7. Define C by
F(z,z,A) = C(z,A) - L+(z,2,A) and put n = C"'dC, called a holomorphic potential for f. Then n has the form
stated in (6.13), the coefficient functions n; of n are holomorphic on D and we have n; € g;.

Conversely, consider any holomorphic 1-form n satisfying the three conditions just listed for . Then solve the
ODEdC = Cn onD with C € AGy. Next write C = F- V, with F € AGS and V € A*Go. Then F(z, %) = F(z, %, A)
is the primitive extended frame of some immersion f of the class of surfaces under consideration.
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Remark 6.9.

1. Inthe the procedure from f to n the decomposition F(z,z,A) = C(z,A) - L.(z, z, A) is always possible. In
the converse procedure the decomposition (usually called “Iwasawa decomposition”, (see [25, 34]) is not
always possible. But the set of points, where such a decomposition is not possible is discrete in .

2. In the conformal case all geometric quantities like frame, potential etc. are actually real analytic on D
and holomorphicin A e C*.

3. Inthe conformal case we can start from a real Lie algebra g, say the one generated by the Maurer-Cartan
form a(z, z), z € D of the coordinate frame of some immersion of conformal type. This always includes
an automorphism x of this Lie algebra. Then, by carrying out the loop group procedure, we naturally and
unavoidably need to use the complexified Lie algebra q*. When extending the automorphism k complex
linear to q© and defining p as the anti-holomorphic automorphism of ¢© which defines g inside q*, then
we naturally obtain that x and p commute. Hence immersions of conformal type always have to do with a
complex linear automorphism and an anti-holomorphic involutory automorphism which commute. (Also
see the Remark after Theorem 6.3.)

6.3.2 The loop group method for the asymptotic line case

The loop group method for this case looks at the outset very different. And indeed, there are remarkable
differences. Since the scalar second order equation is not elliptic, solutions of low degree of differentiability
can occur. In this paper we always use only functions which are as often differentiable as is convenient. Since
the loop parameter is for geometric quantities real now, we do not need to use the complex Lie group G nor
AG etc., but always G replaced by G7, the real Lie group which is defined by t and which is characteristic for
the frame.

The main difference in procedure occurs at equation (6.12). Since the coordinates u and v are on an equal
basis (opposite to z and z) we need to carry out the splitting twice

F(u,v,A) =C1(u,A) - Li(u,v,A), F(u,v,A) =Ca(v,A)-L_(u,v,A). (6.14)

Note that L. (u, v, A1) can be found by solving the differential equation

OvLi(u,v,A) = Li(u,v,A) (Vo(u,v) +AVi(u,v)), Li(us,vs,A)=1

Here we use the coefficients in F"'dF = a = A7'U_;du + Uodu + Vodv + AV,dv and consider u and A as
parameters. Since Vo (u,v) + AV1(u, v) is given and smooth in u and in v, also L+ (u, v, A) is smooth in u
and in v. Moreover, Vy + AV, takes values in the Lie algebra of A*Gg, thus L, takes values in A*Gg.As a
consequence, there exists C; (u, A) only depends on u and is smooth in u and holomorphic in A € C* such
that first equation in (6.14) holds.
The argument for the second equation is, mutatis mutandis, the same. It is also important to observe that
the two equations imply:
C1(u, A) 1 Co (v, A) = Ly (u, v, A)L_(u, v, A) . (6.15)

From this discussion we obtain a pair of potentials,
N1 =C1(u, ) 10uCi(u,A)du and 13 = C2(v,A) 19, Ca(v, A)dv.
Analogous to the conformal case we also need to know what form the potentials n; and 7, take.
n1=A""n1 1 (u)du + 2%71 0 (w)du + A ne1 (w)du + A%y (u)du + -, (6.16)
N2 = A2 (V)dv + A%n2,0(V)Av + A a1 (V)dv + A7 200, 2 (v)dy + . (6.17)

We would like to emphasize:
1. All coefficient functions 1, ; (j = 1, 2) are smooth on some interval I; c R.
2. All the coefficient functions 1, ; are contained in g; .
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Note that here gj% are defined as
g =0 ngj
where g; is the eigenspace defined in (6.6).
As in the conformal case, one can also reverse the procedure. So let us start from two potentials n; (u, A)
and 71, (v, A) satisfying the three conditions listed above.

Next solve the pair of ODEs
N1 =C1(u, ) 10uCi(u,A)du and 13 = C2(v,A) 10y Ca (v, A)dv

for C1(u, A) and C, (v, A) with initial conditions C; (ux,A) = C2(v«,A) = 1.
Next let us solve the equation

C1(u, )71 Co (v, A) = Ly (u, v, A)L_(u, v, A) . (6.18)

Since L+ (u,v,A)and L_(u, v, A) are in A* G} and A~ Gy, respectively, equation (6.18) is a “Birkhoff decompo-
sition” for A € S, see [25, 34].

Remark 6.10. Since, in general, the Birkhoff decomposition can not be carried out for any loop matrices, there
will be points, maybe curves, where the L. (u, v, A) are singular.

But away from singularities (6.18) implies that there exists a matrix function W(u, v, 1) satisfying

W(u,v,A) =C1(u,A)Li(u,v,A) = C2(v,A)L_(u, v, 7). (6.19)

Theorem 6.11 (The loop group procedure for surfaces of asymptotic line type). Let G, ¢ and T as above. Let
f be an immersion of asymptotic line type, F(u,v, ) = FA(u, V) a primitive extended frame relative to 6 and
7. Define C; and C, by F(u,v,A) = C1(u,A) - L+ (u,v,A) and F(u,v,A) = C2(v,A) - L_(u, v, A) and put n; =
C {1dC i (i=1,2), called a pair of potential for f. Then n; has the form stated in (6.16) and (6.17), the coefficient
functions n; ; of n; depends only on one variable and we have n; ; € g]T

Conversely, consider any pair of 1-forms (n1, n12) satisfying the three conditions just listed for n; (i = 1, 2).
Then solve the ODEs dC; = Cin; on D; c R with C; € AGy. Next write C[lCz =L,L_with W =C1L+ = C2L-
with L. € A*G},. Then there exist a gauge Fo € G3 such that F*(u, v) = F(u, v, \)F, takes values in AG is the
primitive extended frame of some immersion f of the class of surfaces under consideration.

7 Complexification and real forms

This section is a brief digression which is intended to help to put this survey into a larger context. It is clear
that the extended frames F introduced in the previous sections take values in the loop groups of

SUs, SU,.1,SU05.1, SL3R or SL3R.

For more details about these frames we refer to Section 6.1 and the corresponding subsections of the first
five sections. We show that their Maurer-Cartan forms correspond to different real forms of Asl3Cy or, more
generally, of the affine Kac-Moody Lie algebra of type Agz)_ Moreover, by using the classification of real forms
of type Agz)
of Asl3Cq.

in [22], we obtain a rough classification of all surface classes associated with specific real forms

7.1 Real forms of Asl3C, and the surface classes considered in this paper

. . . A A A ) A A A
In the following discussion the Maurer-Cartan form a” denotes agp., Qpye, Ocpz gser Xpsos and aj,; in

(1.14), (2.12), (3.8), (4.15), (4.18) and (5.16), respectively. Accordingly, the extended frame F! denotes F&ﬂ,

3Gi={geG|d(g)=g and geGtY).
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Flioy Flye, Flay  Fja_, and Fiys in (113), (2110), (3.13), (4.14), (4.17) and (5.15), respectively. A straightfor-

ward computation shows that the Maurer-Cartan form a’ of the extended frame F* satisfies the following two
equations (where we write a(A) for a if it is convenient):

o(a)(A) =a(d), (a)(A) = a(d),

where ¢ is the order 6 linear outer automorphism of s(3C given by

3400

o(g)(A) = — Ad(diag(e®, €*, -1)Po) g(e ' 1)T,

with € = ¢™/? the natural primitive sixth root of unity and
01 O
Pp=|11 0 0|, (71)
0 0 -1

and 7 is a complex anti-linear involution of sl3C varying with the surface class considered.
Note, for simplicity we will sometimes write o(X) = — Ad(P)X".
More precisely, the family of Maurer-Cartan form o’ takes values in the following loop algebra:

AsCq = {g: C* = sC | a(g)(A) =g(A), T(8)(A)=g(A) andgeW }, (7.2)

where W denotes the set of all 3 x 3—matrices with coefficients in the Wiener algebra on the unit circle which
extend to all of C*.
Similarly, the extended frame F(1) = F* takes values in the loop group ASL3CJ whose Lie algebra is
A5[3 (Cf,:
ASL3Cg = {g: C* = SL3C | 0(8)(A) = g(A), 1(g)(A) =g(A) and g e W}, (7.3)
where o is the order 6 automorphism
0(g)(A) = Ad(diag(e?, €*,~1)Po) g(¢™' 1),

and T is, as above, an appropriate complex anti-linear involution.

Note, by abuse of language we use the same notation for the Lie group automorphisms ¢ and 7 and their
differentials. The order 6 automorphism o is in all cases the same.

From the first five sections of this paper we obtain by inspection

Theorem 7.1. The five surface classes discussed in the first five sections of this sur-
vey are related to complex anti-linear involutions T as follows: t(g)(A) is given by

- T

(ocp2) -g(1/A) , Minimal Lagrangian surfaces in CP?, [31],
_T

(ocm2) —Ad(12,1)g(1//\T) ,

OFcr) —-Ad(Po)g(A) , Timelike minimal Lagrangian surfaces in CHZ, [13],

(o43) Ad(I.Po)g(1/A), Elliptic or hyperbolic affine spheres in R>, [16],

(%ips) g(d), Indefinite affine spheres in R>, [12],

where I, 1 = diag(1, 1, -1) and Py is as just above. Moreover, I.. denotes I for the elliptic case and I, ;1 for the

hyperbolic case.

Minimal Lagrangian surfaces in CH?, [28],

The involutions (ecp2 ), (ecy2) and (e s ) are called the almost compact types and the remaining ones (»ECH% )
and (»k;,3 ) are called the almost split types.

7.2 Real forms of Agz) and surface classes

Changing the point of view slightly we consider o as before and define the o-twisted loop algebra

As3Co = {g:C* = s13C | 0(g)(A) =g(A)},
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where we assume g € VW, which denotes the set of all 3 x 3—matrices with coefficients in the Wiener algebra
on the unit circle which extend to all of C*.
Similarly we consider the o-twisted loop group ASL;C, whose Lie algebra is Asl3Cg:

ASL3C, = {g: C* — SL3C | 0(8)(A) =8()},

Clearly, one can consider Asl3Cq as the loop part of of the twisted Kac-Moody algebra, see for example [24,
Chapter 8]:
L(s13C, 0) = AslkCy ® Cd & Cc,

that is, I:(5[3(C, 0) is an extension of dimension 2 with center c of the loop algebra Asl3Cs. Moreover, all
the complex anti-linear involutions T considered above can be extended uniquely to complex anti-linear in-
volutions of the Kac-Moody algebra I:(slg(C, 0). This is a consequence of in [22, Theorem 3.4] as A¢ € +1 in
the notation of [22]. As a consequence of Theorem 3.8 in [22], the equivalence classes of involutions on the
Kac-Moody algebra and the loop algebra coincide.

From this point of view the complex anti-linear involutions T considered above then define real forms of
f,(slg C, 0). From [24, Theorem 8.5], it follows that all twisted Kac-Moody Lie algebras i(slg C, x), with x an
outer automorphism of sl3C are isomorphic.

Therefore, if we want to determine all possible real forms (and the possible geometric counter parts) of
all outer twisted loop algebras I:(stg(C, K), we can restrict to x = 0. So in our discussion below we can fix ¢
and only need to vary the anti-linear involution 7, the so-called real form involution. Now we arrive at two
different points of view:

Lie algebraic point of view: One classifies all real forms of the Kac-Moody algebra Agz) up to conjugation.
Any affine Kac-Moody algebra can be represented as the extension of a (possibly twisted) loop algebra Ag,, =
Asl3C, = L(sI3C, 0). While any suitable choice of g and ¢ uniquely defines an affine Kac-Moody algebra, the
converse is not true: different involutions o and ¢ may define the same Kac-Moody algebra, hence i(slg(C, 0)
and L(sl3C, ) may be isomorphic for o # &. Hence, thinking about Kac-Moody algebras via pairs (g, 0),
the correct equivalence relation has to be slightly wider: it is defined in [22] and called “quasi-isomorphism”.
Using the setting defined in loc. cit., it turns out that the involutions listed in Theorem 7.1 are representatives
(up to quasi-isomorphisms) of exactly all real form involutions of i(slg(C, 0). Thus each representative of
a real form of i(5[3 C, 0) has some geometric counter part. For all five geometric cases listed above a loop
group procedure has been developed which allows (at least in principle) to construct all the surfaces of the
corresponding class (see the references in Theorem 7.1). This is a consequence of the fact that these surfaces
can be characterized by a certain “Gauss map” to be harmonic. Actually, a harmonic Gauss map has only
been established explicitly in cases (1) and (3) so far. In all other cases the existence of a harmonic Gauss
map can be concluded, since the Maurer Cartan form of the naturally associated moving frame admits the
insertion of a parameter A in such a way as it is known to correspond to a primitive harmonic map.

Geometric point of view: Here one wants to classify all classes of surfaces which can be constructed as the
five examples discussed in the first five sections of this paper, since the five 7 listed in Theorem 7.1 all induce
a surface class, the question is whether also quasi-isomorphic 7 and 7 can induce different surface classes.
To determine all possible T we recall that the known almost compact type surfaces had 7"s which commute
with g, while the almost split type surfaces had 7¥s which satisfied the relation o710 = 7.

7.3 Real form involutions

It is known that all real form involutions 7 of Asl;C, are induced from some complex anti-linear involution of
5[3C, see [22]. Since we restrict for now our concentration on s(3C it is fairly easy to reduce the possibilities.

Remark 7.2. Tt is known [22] that some real forms of “untwisted” loop algebras such as Af,l) are not coming
from any real form involutions on underlining finite dimensional Lie algebras.
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7.3.1 Real form involutions commuting with o

We now classify real form involutions commuting with o.

Proposition 7.3. Let T be a real form involution of the loop algebra Asl3Cq = L(s15C, o) which commutes with

0. We will use B(X) = X and 1o(X) = -XT.

(a) Ift = Ad(B) o B, then B is a generalized permutation matrix coinciding with Py after setting all non-zero co-
efficients equal to 1. More precisely, after removing appropriate cubic roots and after possibly a conjugation
by Ad(D) with some diagonal matrix D such that Ad(D) commutes with o we obtain B = Py or B = 11 P.

(b) If T is of the form T = Y o B with Y an outer automorphism of sI3C, then we write T = Ad(Q) o To. Then Q is
without loss of generality a diagonal matrix of the form Q = diag(q, qt, 1),q ¢ R*,

Proof. In the following we denote the restrictions of the ¢ and 7 on Asl3C, to the finite dimensional Lie
algebra s[5C by the same symbols.
(a) Since T commutes with g, it also commutes with ¢° = Ad(Q), where Q = diag(e“, e, 1). A direct
evaluation yields
B =uQBQ. (7.4)

This is equivalent to B;; = uQ;;Q;;B;;. Clearly, the definition of Q implies that Q;;Qj; only attains the values
€*, €%, 1. 1tis straightforward to verify:

Q;;05 =1 = (i,j) €{(1,2),(2,1),(3,3)},
05Qj = € — (i,7) €{(3,2),(2,3), (1, 1)},
Q4055 = €* = (i,j) € {(1,3), 3, 1), (2,2)}

Thus B is a “generalized permutation matrix”.
Finally we need to evaluate the commutation relation with ¢ directly. Writing this out yields the equiva-
lent equation
P(B")™! = pBP. (7.5)

Replacing all non-zero coefficients in this equation by 1 still yields a correct equation. Since now the “reduced
equation” reads IAJ(BT)_1 = BP, it follows B = P. Hence B has non-zero entries exactly, where P has them.
Evaluating (7.5) explicitly yields four equations and one infers B§3 = —1. Hence B33 = €, € or €°. For these
cases one pulls out of B the matrix (-€™)I and obtains without loss of generality B33 = —1. Putting x = By,
then the (7.5) also implies By; = x 1

Evaluating the involution property of T implies that x is real. Now we put

D- cnag(w?%m%, 1)

and consider 7 = Ad(D) o T o Ad(D)* and & = Ad(D) o 0 0 Ad(D) . A straightforward computation yields
o =0and B =1,1P, or B = —Py. Clearly the minus sign is irrelevant and we obtain the claim.

(b) By evaluating the first line in Theorem 7.1 we know that 7o commutes with ¢. Hence the C-linear
automorphism Ad(Q) commutes with ¢, whence it also commutes with o? and therefore Q is a diagonal
matrix. A direct evaluation of the commutation property now yields QP = uPQ™'. Taking the determinant
yields y3 = 1 and the equation yields uy = Q§3 and y = Q11Q». Hence 033 = 1 and we can pull out without
loss of generality Qs3I from Q. Finally we evaluate the consequence of T being an involution and obtain the
claim. O

Corollary 7.4. The cases (ecpz), (ocyz) and (ey3) in Theorem 7.1, with case (e ,3) split into two cases, are
exactly all possible geometric cases, where T and o commute.
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7.3.2 Real form involutions satisfying 670 = T

In this case we proceed very similarly to the previous case.

Proposition 7.5. Let T be a real form involution of the loop algebra Asl3Cy = L(sl5C, o) which satisfies the

relation 070 = 7. As above we will use B(X) = X and 1o(X) = -X".

1. Ift = Ad(B) o B, then B is a diagonal matrix coinciding with I after removing appropriate cubic roots and
after possibly a conjugation by Ad(D) with some diagonal matrix D = diag(§, 87", 1) such that Ad(D)
commutes with o.

2. Iftisofthe formt = Y o  with Y an outer automorphism of sl3C, then writing T = Ad(Q) o 7o we obtain
that Q is, up to manipulations as in the proof of the last proposition, the matrix Py.

Proof. (a) Evaluating the defining equation one obtains
PB""'P - B, (76)

for some x satisfying x> = 1. Since we also have 0”70” = T, we also obtain (recall: ¢*(X) = QXQ* with
Q = diag(a®,a,1), a = €%).
QBQ=1B (77)

with n° = 1. Evaluating the last equation one observes that there are three cases: if one of the entries
Bi11, B22, B33 is non-zero, then B is a diagonal matrix. If one of the entries By,, B21, B31 does not vanish,
then = a and B is a generalized permutation matrix associated with the permutation (1, 2, 3) — (3,1, 2).
If one of the three remaining entries of B does not vanish, the = a? and B corresponds to the permutation
(1,2,3) —» (2,3,1).

Next we evaluate that 7 is an involution. A simple computation yields the equation Bb = ~I. From this it
follows that B is a diagonal matrix with diagonal entries in S! and of determinant 1.

Evaluating now the relation (7.6) one obtains with little effort the equation B§3 = 1. Hence, after pulling
out B33l from B we can assume without loss of generality that B33 = 1 holds.

Evaluating all this we see that B is, without loss of generality, a diagonal matrix of the form B = (b, b1, 1)
with b e St.

-1 1
But now it is straightforward to verify that D = (\/E 2 .Vb?, 1) satisfies

Ad(B)oAd(B) ' =0 and Ad(B)rAd(B)™'=g.

This proves the claim.

(b) By evaluating the first line in Theorem 1.1 we know that 7, commutes with o. Hence we obtain ¢ o
Ad(Q)o = Ad(Q). But then we also obtain 62 o Ad(Q)0? = Ad(Q). Similar to the proof of the last proposition
we conclude from his that Q is a generalized permutation matrix, more precisely belonging to a transposition.
Moreover, the equation 0 o Ad(Q)o = Ad(Q). leads to P = vQPT Q. For the underlying permutation matrices
this implies pP= OﬁTQT. Since P and Q are transpositions we conclude p= Q Evaluating now 0 o Ad(Q)o =
Ad(Q) one obtains that all entries of Q are sixth roots of unity and have the same square. Finally evaluating
that 1 is an involution we obtain after a simple computation Q33 = —1 and the other two entries are equal
and +1. If they are equal to 1, then we have shown Q = Py. If they are —1, then we conjugate 7 and ¢ by
Addiag(-1, -1, 1) and observe that this does not change ¢ and brings 7 into the form Ad(Py)7o. O

Corollary 7.6. The cases (%CH%) and (%k;p3) in Theorem 7.1 are exactly all possible geometric cases, where T
and o satisfy 010 = 1.
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